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Abstract

Estimation of remaining useful life and State of Health (SoH) of machines plays
a vital role in performing predictive maintenance for complex systems today. De-
spite the numerous researches on this topic and the huge number of requests from
companies, it still remains a challenge. On the one hand, current techniques rely on
machine learning algorithms not taking into account the huge amount of computa-
tional power needed and the costs of such server architectures. On the other hand,
developing an edge-computing solution considering strong computational power
limits can be very challenging. To address this issue, this thesis work proposes
a possible edge-computing approach, based on up-to-date parameter estimations
techniques such as Kalman filtering, residual error processing and global sensitivity
analysis. The thesis has been carreid out in the framework of MorePRO project,
owned and supervised by a collaboration between Politecnico di Torino and Brain
Technologies Srl. The goals of this work are to employ a multi-model approach
to estimate key parameters that can be associated to CNC machine wear, to find
the best way to estimate the reliability of such predictions and then to use this
reliability index to update the nonlinear predictive models for the forecast of sys-
tem states. The approach adopted in this work is firstly to study the state of the
art, comparing the methods and figuring out the advantages and disadvantages,
secondly, to practically implement the previously mentioned approaches. Finally,
various tests were carried out to empirically demonstrate the feasibility of this
approach and to provide solid proofs and conclusions.
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1 INTRODUCTION 1

1 Introduction

1.1 Wear estimation

The estimation in real-time of the state of a production machine is one of the most
significant topic in scientific research. The estimation of the SoH together with
predictive maintenance techniques are slightly becoming a relevant issue because
of their direct relation that link them to production efficiency. As Industry 4.0
continues to become reality, many companies are struggling with AI algorithms im-
plementation that can lead to to major cost savings, higher predictability, and the
increased availability of the systems. Indeed, the benefits of predictive strategies
are definitely very strategic. Thus, the increasing demand of monitoring systems
that allows to keep track of the production as much efficiently as possible have
led to the development of many predictive maintenance methods [2]. The main
functions of those algorithms are:

• SoH (state of health) estimation of a machine, motor or single component.

• Calculation of patterns that can help prediction and prevention of failures.

Currently, such methods are predominantly based on machine learning algorithms
that lead to very good results in terms of efficiency and precision but they often
doesn’t take into account of the computational effort and real-time requirements.
Nevertheless, predictive maintenance doesn’t require anything more than mathe-
matical computation on when machine conditions are at a state of needed repair or
even replacement so that maintenance can be performed exactly when and how is
most effective. Moreover, when the processing has high precision requirements, the
predictive algorithms are particularly useful. Nowadays, those requirements are
very common in companies which rest their production on such fields as aerospace,
oil & gas, automotive and so on. The complexity of those high precision processes
depends on many aspects:

– Kind of processing.

– Modelling and simulation of robotic, mechanical and electronic systems.

– Wrought materials.

– Different tools such as milling machines, cutting machines, end-effectors and
so on.

– Production timings requirements.

Dealing with those complexity level can be very hard and expensive for companies,
consequently, it is always more present the need of a method that can be easily
applied regardless of the wrought material, the kind of processes and the field
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of application. To sum up, the key functionalities of prediction algorithm are
consistent when there is abstraction with respect to processing types, real-time
characteristics and efficiency both in terms of computational effort and naturally,
in terms of cost savings.

1.2 CNC machine SoH

CNC (Computer numerical control) [1] machine are high precision machines which
actuate manufacturing processes of material substraction that usually require com-
puterized control action to guarantee high precision and efficiency. A subtractive
manufacturing process typically employs machine tools to remove layers of mate-
rial from a stock piece known as the blank or workpiece and produces a custom-
designed part. This processing type is almost indipendent from the material of
which the workpiece is composed: plastics, metals, foam, glass etc.. This is the
reason why CNC machines finds application in most of industrial processing fields.

Figure 1.1. Example of CNC machine schematic diagram

As it is shown in figure 1.1 this machines have typically a SCARA or a cartesian
robotic configuration with an end-effector which usually is a cutter. The modelling
of the cutter contact is quite difficult because of the high number of variables that
must be considered, the most relevant are:

– Robotic configuration.

– Environmental parameters.

– Wear condition of the machine: SoH.

All of those elements needs to be kept under control constantly in order to guaran-
tee the efficiency and the precision of the machine. In particular, there is no way
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to check the State of health of the end-effector in a direct way. It could be possible
to install sensor to check temperature, voltage, pressure and estimate a possible
SoH of the tools. However, even with the knowledge of variables that can be mea-
sured by sensors, it is difficult to extract information about actual condition of the
machine, firstly because is very likely that sensors cannot be set up in the right
position, secondly because the knowledge of those parameters could not be enough
to understand the real condition. For instance, obviously, a temperature sensor
cannot be positioned near enough to the cutter to measure the correct temperature
but must be positioned further, and that definitly lead to constant and inevitable
measurement errors. Nowadays, the majority of the systems which estimate the
SoH commonly propose digital-twin solutions. The limitation of such system is the
difficulty to isolate the tool’s wear from the others monitored effects. Moreover,
such monitoring systems combine machine learning techniques and digital-twin
simulation to estimate SoH, not taking into account computational requirements.
Digital-twin models are very useful when the variables that need to be controlled
are numerous, but the most influent parameters in the SoH estimation are the ones
related to the cutting process of the end-effector: the most stressed mechanical el-
ements. Therefore, the parameters which are directly linked to the SoH are a lot
and some of the most important are:

• Friction coefficients.

• Temperature.

• Chip load.

Those elements are strictly related to the contact forces, that’s why understanding
and modeling those element is fundamental for the estimation of the state of health
of CNC machine end-effector.

1.3 Edge Computing advantages

As it was mentioned in the introduction, most of the existing architectures re-
garding the wear estimation and the predictive maintenance entrust the majority
of their computational power in the cloud. Since to execute deep machine learn-
ing calculations there is the necessity of hardware resources, they have no choice
but to rely on cloud computing solution. However, a centralized server, even if
geographically far, can be definitely useful because of the potentially infinite num-
ber of resources that can be accessed and also, because of the huge data storage
capacity available in the servers. On the other side, Edge Computing is an IT
distributed architecture which allows to elaborate data locally, as much close as
possible to the source. It is based on distributed calculation concept, which relies
its principles in the separation of the code execution and in the storage of data
only when it is strictly necessary. This solution compensate some of the cloud
computing shortcomings and provide some advantages:
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• Low-latency: Edge computing devices are installed locally and compensate
latency that prevent the execution in real-time.

• Costs: Since hardware requirements are very low, the costs of those micro-
processors is almost insignificant.

• Reliability and Security: Since most of the times the edge computing does
not depend on internet connection and servers it offers an uninterruptible
service. Users do not need to worry about network failures or slow internet
connections.

• Scalability: Updates and modification on a cloud computing architecture can
be very expensive. Edge computing do not require a datacenter to store data
and it is easy to add and remove devices from the network architecture.

For sure, the limitation that characterize an edge computing device are strong
constraints and developing a system which is comparable in performance with the
powerful machine learning tools can be rather challenging, but definitely it is a
way that it is worth to study.

1.4 MorePRO project

Considering all the thematic exposed above, the MorePRO project wants to bring
on the field a new and innovative proposal, which is not present in any production
system nowadays. It is basically based on a logic architecture distributed in three
different levels:

• Monitoring of the SoH of machine and plant critical components through
embedded sensors and, consequently, applying machine learning and data
mining techniques.

• Keeping track of the SoH of the machine using digital twins tools. The
goal is to combine real-time environment signals along with some estimated
quantities in a specific simulation environment.

• Developing of forecast models, able to estimate the SoH of the machine and
the time evolution decay of the plant/machine.

The general development architecture can be subdivided in two main levels. A
first field level (Edge), where signals will be acquired and processed for a local
supervision of the SoH. This is extremely useful to have a rapid reaction when
any danger anomaly is detected. The same signals are then deployed to a second
server level, mainly located on the cloud, which will be able to set up a proper
bank of data, implement digital twin techniques and compute the right parameters
to reconfigure the elaboration logic of every single edge device. The crucial part
is the continuous interoperability between the two levels and the possibility to
reconfigure the architecture on the fly depending on the case problem. The figure
below represents a general scheme on which the project will based on.
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Figure 1.2. Synthetic structure of MorePRO system

With reference to the figure, the edge device will implement the data-mining,
digital-twin and monitoring algorithm allowing the bidirectional data exchange
with both the plant and the supervisor. In practice, it will process the real signal
coming from the field along with the simulation output in order to compute a SoH
of the considered element under monitoring. On the other side, the supervisor will
be able to adjourn and perfection the algorithm of the device itself in order to re-
configure and support the planning decisions. A possible physical implementation
can be seen in the next figure.

Figure 1.3. Overall system structure

1.4.1 Partnership

To the aim of this project several companies are involved. Thus, it is relevant
to see how each of them is involved in the work, in order to understand how
a development process is usually treated when a completely new and innovative
device must be designed.

• brain Technologies: it will in particular contribute to the definition and
design of the digital architecture (in collaboration with the other partners)
and to the software development of the distributed intelligence system pro-
posed by the project, including the architecture of the control supervisors
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whose action is propagated both in the devices and in the cloud. brain Tech-
nologies will also contribute to the implementation, testing and validation
phases of the final prototype.

• MCM S.p.A: it will contribute to the analysis of user needs and to the
proposal of new or improved functionalities of the processing systems as
drivers for the development of the monitoring and predictive management
methods of the plants covered by the project. Other activities in which
MCM will play an active role include: 1) interfacing the machines for data
collection, also through the installation of new sensors; 2) supporting the
integration of the new MorePRO solutions with the plant supervisor software,
3) analysis and testing of the prototype system with its validation at the
production unit of CAMS, a partner in the project.

• AL.MEC: it will contribute to the design and manufacture of electronic
boards and components necessary for data collection from machines and
sensors, their mash-up and processing on board the machine and sending
standardised information to predictive maintenance systems.

• CAMS: it is participating in the project by contributing its vision and ex-
pertise as a user of highly flexible production lines for the manufacture of
complex, high value-added parts. CAMS will support in particular 1) the
first phase of definition and analysis of the requirements that will guide the
subsequent development of the new plant monitoring and predictive manage-
ment solutions, 2) the identification and definition of its cases of industrial
interest, 3) the implementation, testing and validation of the final prototype
in its own production lines equipped with flexible MCM systems.

1.5 Work Organization

MorePRO project is starting out in September 2020, and the work must be or-
ganized in order to start the development as fast as possible. In this situation
model-based software design can be very suitable. Model-based approaches recom-
mend to follow precise development procedures, the so called V-shaped represents
a process to be chased in order to guarantee efficiency and cost-effectiveness during
such project natural advancement.
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Figure 1.4. V-shape development flow.

During the first phases of the realization of scientific projects such as MorePRO,
model-based approaches as the one shown in Figure 1.4 are necessary for the
organization of the work. This become even more true as much as the number
of people that join the project increases. Therefore, in the following paragraphs
there will be a brief introduction to the team components and their aim in the
V-shaped development, followed by a presentation of the work flows and the aims
of the project team.

1.5.1 MorePRO team

From the collaboration between Politecnico di Torino and brain Technologies srl it
is aroused a team of graduating students supervised by Giovanni Guida, Innovation
Manager of brain Technologies, with the aim of developing the first phases of the
project. As it was previously mentioned, the project is only at the first stage, so
once it is defined the concept of operations, the aim of this team is to obtain a
first implementation after the first six months of work. Despite the development
flow suggests to focus first on the requirements and analysis, it has been decided
to employ one member of the team to do a requirement analysis, two members
working on a detailed modelling of the problem, and the three remaining members
working on the core implementation. This choice comes from the necessity to get
a fulfilling conclusion satisfying all time-requirements.
Therefore, there are three different sub-teams:

1. Prediction team: This team will focus the attention on the prediction analysis
and parameter estimation. After the development of a simple model, the aim
becomes to deeply study parameter identification through kalman-filters and
residual error analysis techniques. Estimation of wear and SOH of a CNC
machine is the main objective, to get to this, multi-model approach will
be implemented and tested in detail, using simulative environment such as
MATLAB and Simulink.
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2. Modelling team: This team is created to obtain a preliminary detailed mod-
elling of the kynematics and dynamics of a CNC Machine as first. Sec-
ondly, the main objective is to study and specify the interaction between
end-effector and workpiece.

3. Requirements team: This team is in charge to carry out an overall view
of the project, analyzing requirements and specifics for each part of the
project. Finally, another important role of this team is to develop a design
of experiment in order to opportunely test the functionalities individually
and together.

After the first three months of work, the team sub-division is not valid anymore
because each team-component will be focused on developing further features that
are explained in detail in 1.5.3 paragraph.
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Figure 1.5. Team organization chart.

1.5.2 Work flow

An organization of the work flow is fundamental to help streamline and automate
repeatable tasks, minimizing room for errors and increasing overall efficiency. The
MorePRO project work flow can be synthesized in the following schematic:
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Figure 1.6. Workflow schematic.

As it was explained in the previous paragraph, the tasks have been assigned to be
executed in parallel, however they are meant to be put together. Nevertheless, it
is important to keep in mind a clear idea of the pre-determined work-flow.
For what regards this thesis, the work-flow is well defined and it is listed as follows:

1. State of art analysis: Comparison with all the current techniques present in
the literature about parameter estimation and predictive maintenance.

2. Development of simple model for simulation scopes: In this stage the aim is to
build a simulation suitable model that has to be the base for the prediction
algorithm. This model is intended to be very simple in terms of physics
and mathematical modelling.The idea is to test the algorithm in a simple
environment as first, and then complicate the modelling until the real plant
testing is ready.

3. Multi-model approach: This phase is the most crucial because it starts the
actual development of the prediction algorithm. The scope of this stage is
to apply the multi-model approach(only applied for Battery management
systems until now) for the estimation of SoH of the end-effector.

4. Specific features: As last stage but not least, there is the implementation
of specific improvements to the estimation algorithm that include machine
learning techniques, reliability calculation and modelling betterment.

1.5.3 Objective of this thesis

The primary focus of this research project is to obtain a competitive knowledge
about simple mechatronic modelling and parameter identification, aiming to the
development of a fully operational system (starting from simulation environments)
that is able to estimate the SoH of an end effector and determinate the precision
and the reliability of that estimation. This thesis work arises in the scope of the
MOREPRO project by brain Technologies srl, and it comes from the necessity of
many companies requirements. This means that the work must match as much as
possible all the needs of nowadays businesses both in terms of time and in terms of
efficiency, in order to strongly overcome in the market. The first part of the study
will be devoted to the application of the Batman concepts, while the second part is



1.6 Thesis outline 10

the characterization work of this thesis: Reliability estimation through innovative
techniques and model matching updates.

1.6 Thesis outline

The contents of this Thesis are organized as presented in the following. In Chapter
1, an introduction related to the predictive maintenance techniques is presented,
starting from the CNC machine SoH and explaining the edge computing advan-
tages with respect to the cloud computing. MOREPRO project is also introduced
and presented.
In Chapter 2, an in-depth study of the state of the art literature in topics of in-
terest for this work is carried out. In particular, the problem of estimation of the
wear conditions and the parameter identification is analyzed from many possible
current techniques.
In Chapter 3, physical model is carried out, starting from the mechanical and
electrical part and explaining the simulink implementation.
In Chapter 4, it is explained the multi-model approach. EKF working principle
is summed up and the principal application of the residual error analysis for the
estimation of the SoH is introduced. Moreover, in this chapter the main blocks
used in simulink are reported and explained.
Chapter 5 is core of the thesis, it explain the important concept of observability
and introduce the main method for the reliability computation.
In Chapter 6, on the basis of the considerations made in the previous chapter, I
want to observe the effect of the presence of exogenous disturbances on the algo-
rithm performance. In detail, the exogenous disturbances will be considered on the
most significant parameters already identified by the Sensitivity Analysis carried
out previously.
In Chapter 7, the integration with the updates developed from the other team
components is explained. Moreover, the tests are presented as proof of the main
results of the thesis.
Chapter 8 are the conclusions of the thesis project and presents also some com-
ments about the future works.
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2 State of art

System reliability is one of the main issues in the nowadays industry, thus the de-
velopment of advanced system maintenance techniques is an emerging field based
on the information collected through system or component monitoring (or system
state estimation) and equipment failure prognostics (or system state forecasting).
According to the standard EN 13306 (2001), such techniques can be grouped into
two main categories. The first one is corrective maintenance and it consists of
replacing the component and repairing the damage after some major breakdown.
This kind of approach is used when the consequences of a failure are not so crit-
ical and the intervention on the field does not require a lot of costs and time. In
particular, we refer to palliative maintenance when the repair is provisional, and
curative maintenance when it is definitive. The second one is preventive main-
tenance and it refers to provide an alarm before faults reach critical levels so
as to prevent system performance degradation, malfunction, or even catastrophic
failures. When the maintenance intervention is time-based, meaning that the com-
ponents are replaced based on a predefined schedule which relies on the working
hours of the component, it is referred as predetermined maintenance. Obviously,
this approach is not optimal, since the components are being replaced before the
end of their lives, therefore increasing the costs.
A possible solution is to use condition-based maintenance, which refer to the anal-
ysis of real-time data in order to find in the change of their characteristic a possible
failure. However, this approach do not guarantee to design a maintenance policy
with certainty. On the contrary, predictive maintenance try to estimate the SoH
of the machine, relying on more dynamic algorithms. [5]

Figure 2.1. Forms of maintenance
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2.1 Methods for estimating SoH

1. Model-based approach
This approach makes use of physical failure model in order to predict the
degradation rate of a component or its lifetime. In practice, a mathematical
model able to capture the failure mechanism must be developed. It seems
obvious that the more accurate and sophisticated the model is, the more
precise will be the SoH estimate of the machine under control. However, it
is not always possible to obtain a model that perfectly adhers to the reality,
that is why a trade-off between a very precise model and an estimate that
allows to hide the lack of knowledge of the plant is needed. Usually, this
approach follows some prefixed steps:

– Critical part selection: it is important, especially in very complex
plant, to focus the study only on the part that actually contribute to
the lifetime duration of the machine.

– Failure mechanism determination and model definition: intu-
itively, this is the most difficult part, where a suitable model must be
designed in order to capture the most relevant aspects.

– Governing loads evaluation: it is important to understand which
loads affects most the failure and how they are related to the operational
usage of the system.

– Data collection: once the model is defined, it is possible to collect
data from the field.

– Failure prediction: combining the monitored data with those one
coming from the model it is possible to have an actual estimation of the
health of the plant.

– Model validation: finally, it is possible to determine how the model
is reliable by comparing the failure prediction with actual failure data.
[6]

In particular, having a view at the models available in literature, we can
distinguish between different kind of models:

• Electromechanical models: in this case we have models that describe
the behavior of the plant by means of equations that link macroscopic
parameters such as forces, currents, torques, etc. This approach results
to be very accurate but at the same type they are very time-consuming
in terms of computation.

• Mathematical models: these are based on the calculation of coeffi-
cients of linear and non-linear mathematical functions, needed to inter-
polate the data obtained experimentally through the measurement of
some relevant quantities. The negative aspect is that these functions
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result not to connect in a natural way the physical quantities between
them, often finding relationships that have no real link with the actual
dynamic of the plant. [15]

2. State observer
State observer is a very popular approach to system maintenance. For linear
systems with additive Gaussian noise terms, KF can be used for prediction.
However, when dealing with nonlinear systems with additive Gaussian noise
terms EKF are more suitable. For nonlinear systems with non-Gaussian
noise terms, the PF also called sequential Monte Carlo method, which are
based on the sequential importance sampling (SIS) and the Bayesian theory,
lead to a suboptimal solution to state estimation problem [7].

• KF is an established technology for dynamic system state estimation
that is mostly used in many fields including: target tracking, global
positioning, dynamic systems control, navigation, and communication.
The KF covers a set of recursive equations that are repeatedly evaluated
as the system operates [8]. Any causal dynamic system generates its
outputs as some function of the past and present inputs. It is often
also convenient to think of the system having a “state” vector (which
may not be directly measurable such as the SoH of a machine) where
the state takes into account the effect of all past inputs on the system.
Present system output may be computed with present input and present
state only, past inputs do not need to be stored. The KF can be viewed
macroscopically in this way:

Figure 2.2. Schematic of state update

The true system has a measured input uk and a measured output yk .
It also has an unmeasured internal state xk . A model of the system
runs in parallel with the true system, simulating its performance. This
model has the same input uk and has output ŷk. It also has internal
state x̂k, which has known value as it is part of the model simulation.
The true system output is compared with the model output, and the
difference is an output error, or innovation. This innovation is converted
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to a vector value by multiplying with the Kalman gain Lk, and used
to adapt the model state x̂k to more closely approximate the true sys-
tem’s state. The state estimate and uncertainty estimates are updated
through computationally efficient recursive relationships.

• EKF (Extended Kalman Filter) is used in order to deal with non-
linear systems. In practice, it is based on a linearization of the system
such that is possible to treat it as a linear time-variant (LVT). Since
this algorithm will be widely used during the Thesis work it will be
introduced and discussed more in detail in the next phases.

• Particle filters are nonlinear state observers that approximate the
posterior state distribution using the set of weighted spots, called par-
ticles. The particles consist of samples from the states-space and a set of
weights which represent discrete probability masses. A better estimate
can be obtained by increasing the number of particles. Particle filtering
has a wide applicability in fault prediction because of the simple imple-
mentation. The algorithm consists of two steps: the first one is state
estimation, and the second one is long-term prediction. The state esti-
mation involves estimating the current fault dimensions and changing
parameters in the environment. The next step is the state prediction,
which uses the current fault dimension estimate and the fault growth
model, to generate state prediction from (τ + 1) to (τ + p). Once the
long-term prediction is estimated, given the lower and upper bounds of
a failure zone (Hlb and Hub), the prognosis confidence interval can be
estimated.

3. Vibration monitoring
VM is a particular way of analyze the SoH of a machine by using, as obvi-
ous, vibrations as an indicator. This technique is particularly used because
vibrations bring an high content of information, in the sense that a possible
damage is almost instantaneously captured by them. However, vibration-
based monitoring applications focus more on diagnostic aspects than pre-
dicting ones. Nevertheless, in some cases this method can be used and useful
for making a prognosis of the system. Thus, looking at the PF-curve in the
figure, it is possible to distinguish between a first part on the left, where after
a certain time of inspection a point of deterioration observability (P) is used
for monitoring purpose, and a second part on the right, where the objective
is to predict the behavior of the curve till the failure, used for prognosis.[6, 9]
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Figure 2.3. P-F curve

4. Moving Horizon Estimation
MHE is a powerful technique for facing the estimation problems of the state
of dynamic systems in the presence of constraints, nonlinearities and distur-
bances [10]. MHE is an optimization approach that uses a series of measure-
ments observed over time, containing noise (random variations) and other
imprecisions and produces estimates of unknown variables or parameters. It
requires an iterative method that relies on linear programming or nonlinear
programming solvers to find a solution. The basic concept is to minimize an
estimation cost function defined on a moving window composed of a finite
number of time stages. The cost function includes the usual output error
computed on the basis of the most recent measurements and a term that pe-
nalizes the distance of the current estimated state from its prediction (both
computed at the beginning of the moving window).

5. Learning algorithm
These techniques use measurement signals and their statistics to create non-
linear structures which can provide desirable outcomes given the input data.
These structures include a wide range of methods, such as principal compo-
nent analysis (PCA), partial least squares (PLS), artificial neural networks,
fuzzy-logic systems and graphical models like hidden Markov models (HMM).

• ANN propose methodologies similar to those in the biological nervous
system. For a set of available monitoring data which are used as inputs
and predefined known outputs it is possible to use some of the training
algorithms, such as back-propagation algorithm, to map the connection
between the input and output. Neural networks are self-adaptive struc-
tures whose weights between neurons are adjusted by minimizing the
criteria to match a model to desired outputs. The training procedure
allows the network to learn the relationship among the data without
engaging the model of the system. Once the weights are set, the ANN
is ready to generate the desired output as a fault evolution prediction.
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Figure 2.4. Schematic of a Artificial Neural Network

• Fuzzy logic also provide mapping between the input and output sig-
nals. It can be said to be an extension of the multi-value logic. In a
wider sense, is almost synonymous with the theory of Fuzzy sets, refer-
ring to classes of objects with fuzzy boundaries, in which the concept of
membership takes on a matter of degree [11]. Unlike neural networks,
they are based on linguistic and reasoning human capabilities. By defin-
ing the appropriate if-then rules and adjusting membership functions,
fuzzy systems can give very accurate prognosis.

Figure 2.5. Components of a Fuzzy logic system

The common fuzzy logic system processes data in three sequential stages:
fuzzification, inference and defuzzification. In the fuzzification step, a
crisp, or well-defined, set of input data is gathered and converted to a
fuzzy set using fuzzy linguistic variables that is, fuzzy linguistic terms.
Second, an inference is made based on a set of rules. Last, in the defuzzi-
fication step the resulting output is mapped using so-called membership
functions. A membership function is a curve that maps how each point
in the input space is related to a membership grade. Using the wear
estimation example, various levels of wear in a given set would receive
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a membership grade between 0 and 1; the resulting curve would not
define “new” but instead would trace the transition from worn to new
[12].

• Hidden Markov Models is a statistical model which can be used to
describe system transitions between states. It represents an extension
of a regular Markov chain with unobservable or partially observable
states. The general structure of a discrete-time HMM with N states,
S = (s1, s2, . . . , sN) and M observation symbols, V = (v1, v2, . . . , vM) is
shown in the schematic below.

Figure 2.6. Schematic of HMM

The states are interconnected so that a transition between any two
states is possible. The hidden state at time t is denoted as qt and
the state-transition rule follows the Markov property, meaning that the
state qt depends only on the state qt−1. The transition matrix A = {aij}
stores the probability of state j following state i. The observation ma-
trix B = {bj(k)} shows the probability of observation k being produced
from the j-th state. The initial state array π = {πi} holds the infor-
mation about initial probabilities; thus, the formulation of HMM is:
λ = (A,B, π).
HMMs can be used to estimate the occurrence of a breakdown, before
it happens. Using the Baum-Welch algorithm, HMM can be trained
in order to give desired outputs related to system health, for the mon-
itored data inputs. HMM offer a reasonable estimation of the RUL
time, meaning the time when the system will be in the specified, faulty
state. Also, it is possible to estimate the probability of system being in
specified state after n iterations.

6. Frequency domain condition indicators
Another possibility regards the analysis of frequency domain indicators. This
kind of research was fundamental for the whole thesis streamline, because



2.1 Methods for estimating SoH 18

it is the base of information extrapolation from signals. A deep study can
be done about all frequency domain indicators but ”Developing a real-time
data-driven battery health diagnosis method, using time and frequency do-
main condition indicators” [13] perfectly sum up the main features in brief.
This article is about battery health diagnosis, but the main principles can
be applied also in the study-case of this thesis. The flow diagram of the
construction of condition indicators which is used in the study is depicted in
Figure 2.7

Figure 2.7. Flow diagram of condition indicator construction. The gray boxes
indicate the condition indicators.[13]

7. Hybrid algorithm
In the literature it is possible to find some methods that make use of some
of the theories exposed so far in order to increase the estimation quality
of the SoH. These is done in order to overcome the limitations of a single
approach. It will be seen that also in this Thesis work a mixed/hybrid
approach will be carried out, using some of techniques exposed above, such
as EKF, multimodal analysis and ML.

2.1.1 Past project references

This project research, and the whole thesis work, is part of a continuing evolving
series of projects handled by brain Technologies srl. Since the origin of MorePRO
comes from the evolution of some ideas developed in the previous projects, it is
necessary to have a preparatory overview of the ideas and the principles make up
the past projects.
The projects that precede this work are:

1. The BAT-MAN research and development, which is an industrial project
owned by brain Technologies and it is the starting point of the application
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of the innovative approach based on an EKF bank and whose main goal is
the realization of an electronic device capable of detecting and forecasting,
in real-time, the working conditions of a Lead-Acid battery.

2. The ERMES (Extendible Range MultiModal Estimator Sensing), which
is an algorithm designed by Brain Technologies whose innovative value is
to identify the methodologies to apply to the problem of the diagnosis of
an accumulation system, and in particular to the problem related to the
estimation of the SoH of batteries. The proposed ERMES algorithm for the
estimate the state of health (SoH) and the state of charge (SoC) is based on
the model with the augmented state, which means to consider the uncertain
parameters related to SoH and SoC as states and not simply as output. The
algorithm involves the generation of a battery model based on an equivalent
circuit and a bank of N EKF (Extended Kalman Filter) each based on a
different SoH hypothesis. Since this approach is very similar to the one
adopted in this thesis, a more detailed explanation of the multi-model and
the residual error analysis approach is available in the dedicated chapter of
this thesis (chapter 4, reference related to this project is Virtual Sensing for
the Estimation of the State of Health of batteries [14]).

2.1.2 Comparison between the methods

Advantages Disadvantages

Model-Based High reliable results
when the model is
accurate

High computational ef-
fort

Kalman Filters High accuracy and online
estimation

High calibration and
strong hypotesis on the
model

Particle Filters Ease implementation,
ability to cope with large
scale system

Strong sample size de-
pendence

Vibration Monitoring Speed of fault detection Hardly suitable for prog-
nosis scope

Moving Horizon High noise filtering Very high computational
effort, not able to cope
with high dynamics

Learning algorithm High accuracy and esti-
mation

Need of an huge set of
data

Hybrid algorithm Online estimation, cor-
rection of disadvantages
of other methods

Strongly depends on the
model precision

Table 2.1. Comparison between SoH estimation methods.



3 PHYSICAL MODEL 20

3 Physical Model

Mathematical modeling is the art of translating problems from an application area
into tractable mathematical formulations whose theoretical and numerical analysis
provides insight, answers, and guidance useful for the originating application [15].
Nevertheless, the modeling of a CNC machine can be a very challenging objective,
this is due to the complexity and the high number of elements that those techno-
logic tools can achieve.

Starting from a blank sheet, the general idea beside this Thesis work is to de-
velop a model able to represent in the most effective way the real condition of the
plant under study. However, considering the high complexity of a CNC machine,
it has been decided to start from a basic model in order to allow an embryonic
prediction algorithm as soon as possible and obtain some effective results from a
simple simulation environment. The main objective of the simulation is to un-
derstand and emulate the behaviour of a particular manufacturing system on a
computer prior to physical production, thus reducing the amount of testing and
experiments on the shop floor. By using a virtual system, less material is wasted
and interruptions in the operation of an actual machine on the workplace can be
avoided. The goal of the modern manufacturing technologies is to produce already
the first part correctly in the shortest period of time and in the most cost effective
way. Since the product complexities increase and the competitive product life cy-
cle times are reduced, the construction and testing of physical prototypes become
major bottlenecks to the successful and economically advantageous production of
modern machine tools [16]. It is clear that, in this way, it is possible to discrimi-
nate better which parameter/quantity mostly affects the case under assumption.
In a second moment, it will be up to the modelling team to further complicate the
model in order to have a better adherence to the real case.
As for all mechatronic devices, it is possible to distinguish between a mechanical
and an elctrical part, parts that are not independent but they work together to
exploit the necessary tasks.

3.1 Mechanical part

As regards the mechanical part, a very simple model of a milling machine is used.
In particular, having a look at the figure below, a rotational disc is considered that
translates in the piece direction in order to cut it.
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Figure 3.1. Simplified milling machine model

The state equations of the systems are obtained through a classical Newton for-
mulation. Since the schematic is very simple, defining the various quantities:

• θ̇: Rotational velocity.

• ẋ: Linear velocity.

• F1: Horizontal force that moves the cutter.

• F2: Normal Force due to contact.

• fc: Binary function that defines the presence of contact. Indeed, it assumes
1 value when the work piece is present or 0 otherwise.

• Ta: DC motor torque applied to the cutter.

• In: Inertia of the motor and the cutter.

• β: Contact rotational friction.

• ∆x: Depth of cutting.

• cost : Minimum contact force (introduced in order to avoid model disconti-
nuities).

it is very easy to trace the two Newton equations:


θ̈ =

Ta − βθ̇Fc
In

ẍ =
F1 − fc(F2∆x + cost)

m
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3.2 Electrical part

For the electrical part instead, modern CNC machines are driven by brush-less or
servo motors. The most important characteristics required for the servo motors
that drive CNC machines are: fast response to instructions, good acceleration
and deceleration properties, the capability to control velocity safely in all velocity
ranges and to control very precise the position [17]. Machines with computer
numerical control need controllers with high resolution that gives good precision.
At this time, both classical and modern control techniques are used, such as PID
controllers, feedback control, feedforward control, adaptive control or auto tuning
methods.
In order to get a basic framework easy to manage, a DC motor is implemented
to drive and interface with the mechanical part. The figure 3.2 shows a simplified
DC motor circuit used to pull out the electrical equations.

Figure 3.2. Simplified schematic of a DC motor

Defining the following quantities:

• Vs: supply Voltage.

• ia: Armature current.

• Ta: DC motor torque applied to the cutter.

• kt: Motor torque proportionality constant.

• L: Inductance.

• R: Resistance.

• Vb: Back E.M.F

• Attmot: Engine friction.
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• k: Proportionality constant.

• b: Total flux

• IL: Motor inertia.

it is possible to derive the equations for the supply Voltage and the Torque applied
to the cutter. 

Vs = Ria(t) + L
dia(t)

dt
Vb = kbθ̇

Ta = ktia(t)− Attmotθ̇
Ta = ILθ̇

Thus, playing a little bit with the equations:

ktia(t)− Attmotθ̇ = ILθ̇

V s = Ria(t) + L
dia(t)

dt
+ kbθ̇

Since the supply Voltage is related to the angular velocity through the equation:

Vs =
Ta
k
R + kω

rearranged for angular velocity:

ω =
Vs
k
− Ta
k2
R

Thus, it is possible to notice that two main variables affect the speed of the motor:
the supply Voltage and the Load Torque.

3.3 Plant model

Finally, the electromechanical model used is mainly based on the following dynamic
equations:

i̇a =
Vs
L
− Ria

L
− kvθ̇

L

Ta = ktia(t)− Attmotθ̇

θ̈ =
Ta − βθ̇Fc

In

ẍ =
F1 − fc(F2∆x + cost)

m
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Thus, replacing the torque equation in the angular acceleration one, the final state
equations of the model are obtained:

θ̈ =
ktia
In
− Attmotθ̇

In
− βFcθ̇

In

ẍ =
F1

m
− Fc(F2α + c)

m

i̇a =
Vs
L
− Ria

L
− kvθ̇

L

3.4 Most significant parameter choice

A literature research on the parameters that most influence end-effector wear has
shown that the friction coefficient plays a key role in the interaction between
the workpiece and the end-effector tool.
In this first phase of development, it is decided to adopt the friction coefficient,
referred to as β, as the parameter on which to base the filter wear hypothesis.
From now on, in the multi-model approach and therefore in residual error analysis
and evaluation tests, β will be used as a parameter to be estimated and from which
to extrapolate the SoH of the machine.
Clearly, the interaction between the tool and the workpiece is more complex than
a simple coefficient, since it depends on various factors such as temperature, the
used material, relative speed, applied forces, cooling media, etc.
Thus, the key factor is that the analysis carried out during this Thesis work must
work independently of the specific choice of the parameter in a way that a conse-
quently complication of it could lead to results that are not so far from the ones
obtained considering β as representative. This is the reason why, an in-depth
modelling of the interaction will be the goal of another research group working on
the same project.

3.4.1 Simulink implementation

The equations described to date can be translated into model through suitable
simulation environment program. For this thesis work, it has been decided to
implement the model in Matlab and simulink, because are suitable for this sort
of simulations. Implementing such mathematical model using those tools is very
intuitive, particularly if the MATLAB Guidelines are followed. Applying these
guidelines one can improve the consistency, clarity, and readability of models. The
guidelines also help you to identify model settings, blocks, and block parameters
that affect simulation behavior or code generation. MATLAB guidelines can be
found in the mathworks site [18].

In Figure 3.3 it is shown how it is implemented a simple contact logic using boolean
operators, which is intended to handle the contact with the workpiece.
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Figure 3.3. Contact logic

For the implementation of the equations described in paragraphs 3.2 and 3.1, it
was decided to create a dynamic MATLAB function and to use integrator blocks
to integrate the output and feedback where needed:

Figure 3.4. Plant Simulink.
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Initial condition of the integrators are all set to 0, as well as the starting condition
of the contact. The output of the plant coincide with the states of the system:

1. θ̈ : angular acceleration.

2. ẍ : linear acceleration.

3. ˙idc : derivative of the current.

In the next page (figure 3.5), there is the overall simulink implementation of the
model.
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Figure 3.5. Simulink implementation of the model
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To sum up, the simulink blocks are:

• Green block: plant implementation.

• Orange block: simple triggers which introduce 2% of uncertainty on the
inputs.

• Cyan blocks: PID controllers on the position and angular velocity.

• Yellow block: contact logic.

For what regards the PID controllers, they have been tuned using a MATLAB
predefined tool (Control System Tooolbox) in such a way to find a good balance
between robustness and efficiency. Instead, the next plot represents the contact
logic output:

Figure 3.6. Contact force control input plot.

As it was expected, since the contact logic is made up so that the output is 1
when there is contact and 0 when there is no contact, the contact force input
plot oscillate in a discrete way between those two values. Finally, in Figure 3.7
are depicted all outputs and main parameters of the model so that the physical
behaviour is described.
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(a) Voltage plot (b) Position plot

(c) Linear velocity plot (d) Current plot

(e) Angular velocity (f) Input force plot

Figure 3.7. Summary plots of Model’s main parameters.
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4 EKF Bank: Multi-model approach

State observers are mainly used to provide an estimate of the internal state of a
given real system, from measurements of the input and output of the real system.
This utilization is very suitable when there is noise and it is needed to be reduced,
or when there is a state which cannot be measured directly and there is the ne-
cessity of have a more accurate estimation of it. Using a Kalman-filter in order
to understand the state and the working condition looking at the residual error is
not a common utilisation of such state-observers. What it is need to be done for
this scope is a deep analysis of the residual errors. The latter, are defined as the
module of the difference between a state estimation and the real state:
Supposing that x(t) is a state of a system M(x(t)):

Residual error = | ˆx(t)− x(t)| ∀t

The residual error can seem very similar to an estimation error, but there is
a slight but very important difference. On one hand, the residual error is the dif-
ference between the state estimation and the state coming from the output of the
real plant, so there is no need to know the internal exact formulation of the plant.
On the other hand, the calculation of the estimation error suppose to perfectly
know the real value of the parameter to be estimated. This difference is rather
crucial, because it is not possible to suppose the real value of the internal state
of the system. Moreover, it is important to mention that the residual error can
be affected by measurement noise. For this Thesis work it was supposed to have
a really low measurement error on the states because the approach is intended to
be as much simple as possible at first.

Starting from the considerations done until now, is it possible to relate the residual
error to a state or to a set of parameters that can represents the SoH?
How much the other parameters changes affect the residual error calculation?
Which is the state on whom the difference of the residual errors are more high-
lighted?
Is it really possible to apply the multimodel approach for the estimation
of SoH?
The questions that need to be solved to answer to the last one are numerous, and
during this chapter there will be the proof of concepts and some possible answer
to the listed questions, mainly based on empirical approach.

The starting question is: What is the effect of a parametric variation on the resid-
ual error, and which is the weight of this variation? Initially, the focus was the
search for papers and/or documents that take into account the effects of para-
metric variations on the residual error produced by the observer: a possibility is
to consider faults as parametric variations that induce a change in system behav-
ior. Nevertheless those kind of approach are quite time-consuming because require
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strong theoretical analysis. Another available option, rather more practical, is the
search for a method that foresees a sensitivity analysis with the aim of identifying
which are the parameters whose variations have a relevant effect on the output and
consequently these parameters could be used as criteria to do the scheduling and
eventually decide which will be the partition method for the state space. Sensitiv-
ity analysis is the method most frequently used during research on this topic and
seems to give the best results. This method consists in getting a many data from
experiment strongly varying the condition, so that there is a strong background
where a a global sensitivity analysis (GSA) can be performed[19].

4.1 EKF

The Extended Kalman filter is a method to estimate both the states of the system
and also his parameters; it is an iterative procedure, composed by different equa-
tions that are fast evaluated as the system changes during time. In each step there
is the estimation not only of the system states but also of the covariance matrix,
indicator of the uncertainty of the states estimate. A ”large” value of covariance
indicates a high level of uncertainty while a ”small” one indicates confidence in
the estimate. As seen previously, our system is represented by the following state
equations: 

θ̈ =
ktia
In
− Attmotθ̇

In
− βFcθ̇

In

ẍ =
F1

m
− Fc(F2α + c)

m

i̇a =
Vs
L
− Ria

L
− kvθ̇

L

We can notice the form of a classical nonlinear system ẋ = f(x, u) and starting
from the following state-space model in a discrete-time domain:{

xk+1 = f(xk, uk)+ωk

yk = h(xk) + vk

where xk are the states, uk are the inputs, yk is the output, ωk is the disturbance
and vk is a measurement noise. f(·) is a nonlinear state transition function that
describes the evolution of states x from one time step to the next. The nonlinear
measurement function h(·) relates x to the measurements y at time step k. At
each time step, f(xk, uk) and h(xk) are linearized by a first-order Taylor-series
expansion. We assume that f(·) and h(·) are differentiable at all operating points
(xk, uk).
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Figure 4.1. Diagram of nonlinear discrete time system in state-space form

The inputs uk are:

• Va: armature voltage

• F1: horizontal force that moves the cutter

• Fc: function that define the contact with the object.

The states xk are the same of the plant model while the output yk we suppose to
coincide with the states. We must define the following quantities:

• Fk=
∂f

∂xk
(xk, uk) = Jacobian of f computed in (xk, uk)

• Hk=
∂h

∂xk
(xk) = Jacobian of h computed in xk

• x̂k = estimate of xk computed at step k

• xpk = prediction of xk computed at step k-1

• Pk = covariance matrix of xk − x̂k
• Qd = covariance matrix of ωk

• Rd = covariance matrix of vk

As regards the matrices Qd and Rd, since we have no information on the distur-
bances, we chose them as diagonal matrices by a trial and error procedure. The
algorithm can be summarized with the following step:

1. Prediction

xpk = f(x̂k−1, uk−1)

P p
k = Fk−1Pk−1F

T
k−1 +Qd

2. Update

Sk = HkP
p
kH

T
k +Rd

Kk = P p
kH

T
k S
−1
k

∆yk = yk − h(xpk)
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x̂k = xpk +Kk∆yk

Pk = (I −KkHk)P
p
k

In addition, a further step was added to the algorithm to calculate the residual error
for each state variable, which we recall is the modulus of the difference between
the estimates produced by EKF and the data collected from the simulation of the
plant.

Residual error = | ˆx(k)− x(k)| ∀k (4.1)

The final output of the EKF block are therefore the residual errors that is needed to
carry out an analysis and establish whether a multi-model approach may be better
for the final objective. In the figure 4.2 there is the Simulink implementation of
the EKF.

Figure 4.2. Simulink scheme of the EKF.

4.2 Residual error analysis

Considering the residual error as raw value, it is not significant to watch the errors
amount every sample time since it does not lead to any particular conclusion.
To assign a meaningful sense to the residual error, it must be conducted a signal
elaboration and the discrete values of the error sampled in time must be processed.
Signal theory and data processing are a widely treated in today scientific literature,
so there are countless articles that can be followed in order to understand the best
way to treat a signal. One of the most complete article is the one cited in the state
of the art chapter of this Thesis [13]. This article plainly explain how to analyze
residual errors using both frequency domain and time domain indicators. Among
all, some of the most simple and efficient according to the article are:

• Mean.

• Integral.

• RMS.

• Correlation.
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• PSD.

• Covariance.

To verify which is the best, it can be applied and experimental approach. In
particular, it is possible to set up some test to verify which of this methods,
applied on the residual error, it is most suitable. It must be kept in mind that the
objective is to find a method that can highlight the difference between changing
of beta. That’s because the aim is to make the system very sensitive to little
change of beta, but confidently less sensitive to other parameters variations. So
the approach will be to test 20 little variation of beta, starting from the nominal
condition and increasing of 20% every step. It will also be reported a little variation
on the horizontal input force of about 2%. The nominal values (calculate with
beta nominal) of the errors elaborated for each state and for each considered are
reported in the following table:

Method Nom. Rot. acc. Nom. linear acc. Nom. curr. der.

Mean 1.7111 0.0242 0.4959
RMS 3.6821 0.0509 1.1879
Correlation 1.3979 1.0000 3.8928
covariance 10.6403 0.0020 1.1663
integral error 58.7780 1.2503 33.7761

Table 4.1. Nominal values of the errors for each method.

In order to understand the results, it is also defined a FOM(Figure of merit) as a
simple index that describe how far the non-nominal condition model is with respect
to the nominal one. This FOM index is the ratio between the absolute value of
the residual error and the absolute value of the residual in nominal condition:

FOM =
|Residual error parameter|

|Nominal residual error parameter|

Keeping in consideration the nominal values reported in Table 4.1, the following
plot will show which signal manipulation can be considered as the most suitable.
Let’s start the tests from each method:
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1. MEAN:

(a) Rot. acc. (b) Lin. acc.

(c) Curr. der

Figure 4.3. Mean test.

FOM angular FOM linear FOM current

4.6759 1.4162 4.0266

Table 4.2. FOM mean
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2. Covariance:

(a) Rot. acc. (b) Lin. acc.

(c) Curr. der

Figure 4.4. Covariance test.

FOM angular FOM linear FOM current

5.9107 1.7358 7.9633

Table 4.3. FOM Covariance
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3. PSD: For the power spectral density, it has been considered an interpolation
of the maximum peaks.

(a) Rot. acc. (b) Lin. acc.

(c) Curr. der

Figure 4.5. PSD test.

FOM angular FOM linear FOM current

7.527 1.001 5.743

Table 4.4. FOM PSD
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4. Correlation:

(a) Rot. acc. (b) Lin. acc.

(c) Curr. der

Figure 4.6. Correlation test.

FOM angular FOM linear FOM current

1.3979 1.0000 3.8928

Table 4.5. FOM Correlation
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5. RMS:

(a) Rot. acc. (b) Lin. acc.

(c) Curr. der

Figure 4.7. RMS test.

FOM angular FOM linear FOM current

4.1469 1.3404 3.1979

Table 4.6. FOM Correlation
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6. Integral:

(a) Rot. acc. (b) Lin. acc.

(c) Curr. der

Figure 4.8. Integral test.

FOM angular FOM linear FOM current

4.4911 1.0886 3.8739

Table 4.7. FOM Integral
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Results can be summed up in the following tables:

• Angular acceleration:

mean integral RMS cov corrmax PSD

1.93 58 5.8 30 6.1 −19.9
β ↑ 2.05 61 6 32 6.4 −18.6

2.19 66 6.2 34 6.8 −17.4
2.32 70 6.5 36 7.2 −16.8

⇓ 2.44 73 6.7 39 7.6 −15.9
2.55 77 6.9 41 8 −15
2.76 80 7.2 44 8.4 −14.2
2.88 84 7.4 46 8.7 −13.5
2.98 87 7.7 50 9.1 −12.7
3.1 91 7.9 53 9.6 −12.2

• Linear acceleration

mean integral RMS cov corrmax PSD

0.005 0.15 0.01 0.002 0.15 −63

The results on the linear acceleration, varying F2, differ so little from the
results obtained with the nominal values that they are irrelevant.

• Current derivative

mean integral RMS cov corrmax PSD

0.67 20 1.8 3.0 9.2 −25.9
β ↑ 0.71 21 1.9 3.2 9.2 −25.8

0.75 22 2.0 3.5 9.2 −25.2
0.79 23 2.1 3.9 9.2 −24.9
0.83 25 2.2 4.3 10 −24.8

⇓ 0.87 26 2.3 4.7 11 −24.3
0.91 27 2.4 5.2 13 −23.7
0.95 28 2.5 5.6 15 −23.2
0.99 29 2.6 6.2 16 −22.6
1.03 31 2.8 6.7 18 −22.6

Beyond the good results for the integral error reported above, most of the methods
appear suitable for the scope. Indeed, choosing to utilize the rotation acceleration
error or the current related error, there is not a method that really take advantages
on the others. The RMS method and the integral are almost equivalent in terms of
FOM, that indicates that are both good for the aim. So the decision to choice for
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the integral error method comes from another consideration: the integral error
is cumulative and takes into account the previous state of the system. The RMS
is very good and will be used to elaborate the errors as well as the integral error.
Nevertheless, considering that mechanical system states naturally needs time to
evolve and change, taking into account a cumulative way to treat the residual error
is definitely the best choice. The integral error behaviour will be widely treated
from this point until the end of this thesis work.

4.2.1 Residual error comparison

Once decided that the integral of the residual errors is the most suitable choice to
carry out a multivariate analysis, it is possible to see what of the variables available
contain more information. This is done using a simulation environment composed
of:

• The Plant Model obtained in 3.3.

• The EKF described in 4.1.

• A logic of management and decision of the integral of the residual errors that
contains a possible integral reset as it will be seen.

The estimator allows the absolute error computation of the angular acceleration
error and of the derivative of the current. Thus, exploiting a boxplot analysis
(details can be found in appendix) on the integral of such errors, it is possible to
decide which kind of error best describe our model. The simulation is carried out
considering the nominal parameters of the machine, described in the table below.

Nominal value

Mass [kg] 3
Radius [m] 0.3
Resistance [kΩ] 0.6
Inductance [mH] 0.1
Torque constant 1.5
Voltage constant 0.2
Motor Inertia [kgm2] 0.001
Friction coefficient 0.1

Table 4.8. Nominal CNC parameters.

The same machine is considered to work in nominal condition when:
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Nominal value

Angular velocity refer-

ence [
rad

s2
]

210

Position reference [m] 0.5
Duty cycle [%] 50
Number of cycles 4
Contact point [m] 0.4
Workpiece length [m] 0.09

Table 4.9. Nominal working conditions.

In the same environment, a variable ec is defined and used to discriminate which
of the residual errors available will be considered. In particular:

• ec = 1: only the angular acceleration error is considered.

• ec = 2: only the current derivative error is considered.

• ec = 3: an average between the two errors is computed and considered.

Thus, considering a one hundred seconds simulation, the friction coefficient β of
the plant is made to change between five different values while the filter one is
keep fixed to the nominal one. In this way, analyzing the boxplots of the three
different errors it is possible to see which of the three one allow a better distinction
between the various friction coefficient cases.

Figure 4.9. Boxplot of the angular acceleration error.
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Figure 4.10. Boxplot of the current derivative error.

Figure 4.11. Boxplot of the average error.

Having a look at the results, it is possible to see that in the first and in the last
case a better separation between the matched value and the other ones is obtained.
On the contrary, considering the derivative of the current the separation is not so
marked as the other ones. Thus, a first suggestion is that the ec variable must
be set to 1 or to 3 to obtain more remarkable results. Moreover, focusing just on
these values, when considering the angular acceleration, looking the median values
of the boxes, an higher distance between the nominal error is obtained. Finally,
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it is possible to conclude that when setting ec equal to one better results will be
expected in the next.

4.3 Evaluation tests

Till now, all the simulations were carried out assuming that the machine always
exploit the same kind of lavoration. Thus, it is convenient to test/stress the
environment with different input conditions in order to see if the state observer
works well in any case and which kind of processing affects more the algorithm.
In particular, a kind of multivariate error analysis is made, changing one variable
at a time:

• Angular Velocity
With all the other parameters fixed, only the angular velocity is made to
change:

Figure 4.12. Boxplot error with 200 [
rad

s2
] angular velocity.

Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.5
Duty cycle [%] 50 50
Number of cycles 4 4

Table 4.10. Test with 210 [
rad

s2
] angular velocity.
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Figure 4.13. Boxplot error with 210 [
rad

s2
] angular velocity.

Nominal value Testing value

Angular velocity [
rad

s2
] 210 220

Position [m] 0.5 0.5
Duty cycle [%] 50 50
Number of cycles 4 4

Table 4.11. Test with 220 [
rad

s2
] angular velocity.

Figure 4.14. Boxplot error with 220
rad

s2
angular velocity.
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Nominal value Testing value

Angular velocity [
rad

s2
] 210 230

Position [m] 0.5 0.5
Duty cycle [%] 50 50
Number of cycles 4 4

Table 4.12. Test with 230 [
rad

s2
] angular velocity.

Figure 4.15. Boxplot error with 230 [
rad

s2
] angular velocity.

• Position
With all the other parameters fixed, only the position reference is made to
change:

Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.4
Duty cycle [%] 50 50
Number of cycles 4 4

Table 4.13. Test with 0.4 [m] position reference.
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Figure 4.16. Boxplot error with 0.4 [m] position reference.

Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.47
Duty cycle [%] 50 50
Number of cycles 4 4

Table 4.14. Test with 0.47 [m] position reference.

Figure 4.17. Boxplot error with 0.47 [m] position reference.
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Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.53
Duty cycle [%] 50 50
Number of cycles 4 4

Table 4.15. Test with 0.53 [m] position reference.

Figure 4.18. Boxplot error with 0.53 [m] position reference.

Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.6
Duty cycle [%] 50 50
Number of cycles 4 4

Table 4.16. Test with 0.6 [m] position reference.



4.3 Evaluation tests 50

Figure 4.19. Boxplot error with 0.6 [m] position reference.

• Duty cycle
With all the other parameters fixed, only the duty cycle is made to change:

Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.5
Duty cycle [%] 50 20
Number of cycles 4 4

Table 4.17. Test with 20 % duty cycle.

Figure 4.20. Boxplot error with 20 % duty cycle.
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Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.5
Duty cycle [%] 50 40
Number of cycles 4 4

Table 4.18. Test with 40 % duty cycle.

Figure 4.21. Boxplot error with 40 % duty cycle.

Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.5
Duty cycle [%] 50 60
Number of cycles 4 4

Table 4.19. Test with 60 % duty cycle.
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Figure 4.22. Boxplot error with 60 % duty cycle.

Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.5
Duty cycle [%] 50 80
Number of cycles 4 4

Table 4.20. Test with 80 % duty cycle.

Figure 4.23. Boxplot error with 80 % duty cycle.

• Number of cycles
With all the other parameters fixed, only the number of cycles is made to
change:
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Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.5
Duty cycle [%] 50 50
Number of cycles 4 4

Table 4.21. Test with 4 number of cycles.

Figure 4.24. Boxplot error with 4 number of cycles.

Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.5
Duty cycle [%] 50 50
Number of cycles 4 6

Table 4.22. Test with 6 number of cycles.
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Figure 4.25. Boxplot error with 6 number of cycles.

Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.5
Duty cycle [%] 50 50
Number of cycles 4 8

Table 4.23. Test with 8 number of cycles.

Figure 4.26. Boxplot error with 8 number of cycles.
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Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Position [m] 0.5 0.5
Duty cycle [%] 50 50
Number of cycles 4 10

Table 4.24. Test with 10 number of cycles.

Figure 4.27. Boxplot error with 10 number of cycles.

Having a look at the various tests performed so far, it is possible to see that
there are no sensible variation when considering different working conditions with
respects to the nominal ones. Thus, the error associated with the correct model to
estimate is always smaller than the other ones. Moreover, in some particular cases
there is a better distinction between the boxplots, indicating a more accuracy on
the estimation algorithm. Moreover, it is necessary to state that during these tests
a reset of the integral error was considered, whose choice is justified in 4.3.1.

4.3.1 Reset time choice

A crucial aspect of residual error analysis is the choice of the integral’s reset time.
An integration period should be chosen mainly for two reasons:

• clearly, after a certain period of time while it is growing up, it will reach its
maximum value distorting the results;

• there may be situations in which there are transient errors depending on
many factors such as the work period, the type of machining process, ecc.
that can influence the integral.
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Thus, in order to choose an optimal reset time, a boxplot analysis was carried out
by varying it through the simulation range.

Figure 4.28. T reset analysis

From the boxplots above can be seen that with a reset time of 10s, the error
variation is quite small compared to the others. This is probably due to the fact
that in 10s time there are no sensible dynamic variations in the system that would
capture an estimation mismatch. From 30s onwards the results are quite similar
but it has been decided to investigate a narrower range right after 30s because by
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increasing more and more the reset time it is possible to run into the problems
listed above.

Figure 4.29. T reset choice

The results highlight that choosing a reset time of 30 seconds is the best choice for
this kind of framework, because it corresponds to a processing period. In practice,
since it is not possible to exactly know how long a processing period takes it is
better to choose a reset time large enough to capture the dynamic variations of
the system under study.
In Figure 4.30 it is possible to notice the behaviour of the angular acceleration
error’s integral with nominal values for all the parameters when a Reset time of
30s has been chosen.



4.3 Evaluation tests 58

Figure 4.30. Integral error in nominal condition with Reset time of 30s.
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4.4 Multi-model: Algorithm structure

With all the considerations made so far, it is possible to implement the final
estimation algorithm. This part will represent the core of the MorePRO project
and of the edge-device that will be implemented on the CNC machine to have an
on-line SoH monitoring.
As far as the algorithm is concerned, it is mainly composed of three distinct parts:

• The CNC model that represents the dynamics equations governing the
system;

• The Extended Kalman Filter bank where each filter is based on a dif-
ferent friction coefficient hypothesis and which get as input the same inputs
applied to the model mentioned before and the outputs at the terminals
produced by the latter and aims to estimate, based on the assigned β hy-
pothesis, the acceleration at the terminals obtained by linearizing the CNC
model around the specific working point.

• A logic of decision and management of the integral of the residual errors
that include a reset, a best model choice and possibly the reliability of such
choice.

In the following figure the general Simulink structure is depicted, summarizing all
the components described above.

Figure 4.31. Simulink implementation of the algorithm.

In the green box are contained the dynamic behavior and the state equations of
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the plant while in the yellow one is contained the entire EKF bank. The residual
error estimation is than forwarded to the light blue block which represents the
logic of error management, whose internal structure is represented in Figure 4.32.

Figure 4.32. Simulink implementation of error logic.

In the next pages it is possible to find an in-depth explanation of the various
mentioned structures.

4.4.1 Switching estimator

It is considered a problem of state estimation with a parameter variation in a finite
range. The idea is to put N EKF in parallel, where each of them works with a
different ”wear condition” hypothesis. In particular, the friction coefficient β is
chosen as switching parameter, obtaining N independent EKF, each with a fixed
value of β.

Figure 4.33. Switching estimator
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The working principle of the switching estimator is:

• Each EKF will purpose its own estimate.

• Each EKF works with a different friction coefficient, switched over a finite
set of values.

It has been decided to put N=6 EKF with a β range values from 0.1 to 1 linearly
spaced as detailed in table 4.25. The aim is to identify the filter with the minimum
residual errors, which means that filter which works with the friction coefficient
more similar to the real one and that represents better the condition of the machine.

Filter β value

#1 0.1
#2 0.28
#3 0.46
#4 0.64
#5 0.82
#6 1

Table 4.25. Friction coefficient associated to each filter

4.4.2 Best model choice

A key part of the algorithm is dealing with residual errors and extrapolate useful
information from the, as the errors contains an intrinsic assessment of the EKF’s
quality. The underlying idea is to choose the model with the smallest residual
error as the best model because it will have the closest friction coefficient to the
real one with all other parameters unchanged.
In order to implement this management, a Matlab function has been developed
which is dependent on both the input errors, the reset of the integral and also
a ”dwell time” which will be explained shortly. In principle, the choice works
through these steps:

- Initially a dwell time is set, that is a period in which the function can
not check the errors data because it is supposed as a period for a dynamic
evolution of the system so that there are relevant data in the estimates.

- When there is a reset of the integral, the function cannot select the model
because the data is not reliable as no past information are collected.

- After resetting the integral and the dwell time at which the transient has
passed, the function analyses the errors data and assigns the model with the
lowest error as the best model.

The Figure 4.34 shows that with the condition listed in Table 4.26 the best model
is always the first because, as it should be, it is the one that has the same value
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as the nominal one.

Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Friction coefficient 0.1 0.1
Duty cycle [%] 50 50
Number of cycles 4 4

Table 4.26. Test with nominal friction coefficient

Figure 4.34. Best model choice with nominal condition

While testing a friction coefficient variation in the range 0.1÷ 0.5 the best model
changes according to the less residual error like shown in figure 4.35.

Nominal value Testing value

Angular velocity [
rad

s2
] 210 210

Friction coefficient 0.1 0.1÷0.5
Duty cycle [%] 50 50
Number of cycles 4 4

Table 4.27. Test with friction coefficient variation
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Figure 4.35. Best model choice with β variation



5 RELIABILITY 64

5 Reliability

Parameter estimation can be subject to several disturbances, such as measurement
noise and propagation errors, but the correctness can be affected also by a simple
mismatch between the filters (and how they are built) and the real model. There-
fore, it is necessary to introduce a parameter that tries to catch this difference and
indicate the correctness of the predictions. From now on, this index will be called
Reliability and is expressed in percentage.

5.1 Observability concept

To understand the parameter identification and the way the reliability is intended
in this thesis, some important concepts about the observability property must
be introduced. Rudolf E. Kálmán introduced for the first time the concept of
observability for linear systems in 1960, the aim was to find a measure of capability
to deduce internal states of a system from knowledge of its external outputs. On
the other side, immeasurable process states are reconstructed from measurements
of other process variables and a process model. In control theory, the observability
plays a fundamental role, e.g., in the model predictive control, since not all the
states are directly monitored and it must be find a way to estimate them. The
success of state estimation depends on three fundamental factors:

• Choice and quality of the measured variables.

• The accuracy of the model.

• Observability of the system.

The first factor is a modelling task in which the focus should be the choice of
the right set of variable to consider as states and to provide an efficient way to
measure the variables as much accurately as possible. Secondly, the accuracy of
the model depends on the physical knowledge of the system and on the level of
detail in which the system is described. Finally, observability is a system property
that determines if the states of the process can be uniquely determined at any
time instant from measurements of the system inputs and outputs over a finite
time period. Supposing to have no model-plant mismatch, determining the state
at any time is equivalent to understand if the initial state is unique. If all the
system state can be estimated, the system is said to be completely observable,
otherwise it is called ”unobservable”. Nevertheless, one possibility is that only
some of the states are partially observable. For this particular case, providing
that the system is detectable, it is possible to achieve a good state estimation.
A detectable system is a special unobservable case when the state modes have
negative real parts. In this case, the estimated state converges to the true value
asymptotically. On the other hand, an observable system state estimation always
converge to the true state over a finite time period. Mathematically, the strict
definition of observability is:
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The system M(x) is observable if, and only if, for any x0, xo ∈ Ux

∃u ∈ Uu : y (t,u(t),x0) = y (t,u(t),x′0) ∀t ∈ [0, tf ]⇒ x′0 = x0 (5.1)

According to this definition, the system is observable if, for any possible evolution
of state and control vectors, the current state can be estimated using only the
information from outputs . Nevertheless, there is a weaker definition: A system
is locally weakly observable if the initial states determined from measurements
are unique in its neighborhood. Observability and local weak observability are
equivalent for linear systems (Hermann and Krener, 1977). An advantage of local
weak observability is that it can be verified by algebraic tests e.g., using differential
algebra and Lie derivatives [21].
As it was shown until now, the observability is a global concept that requires a very
rigorous analysis, that become even more difficult when the system to analyze is
non-linear. However, Singh and Hahn (2005) use empirical observability grammi-
ans to analyse observability of non-linear systems and Rumschinski et al. (2014)
present the formulation of a finite-time output energy measure which they use
in a computational method to analyze the observability of uncertain systems[20].
For the analysis of the physical model presented in this thesis, since the model
has been developed only for simulation purposes and the objective of this the-
sis is not to demonstrate the observability properties, this analysis will be done
only empirically, meaning that the observability properties are seen by looking at
the behaviour of the outputs in the simulation. However, it is important to have
in mind that the obsevability property of a state can have a crucial role in the
estimation of the parameters.

5.2 Preliminary topics

In order to understand how to calculate the reliability, some preliminary concepts
must be introduced. A first definition of Reliability is the probability that a prod-
uct, system, or service will perform its intended function adequately for a specified
period of time, or will operate in a defined environment without failure. In this
study case, reliability refers to how consistently a method measures something. A
fundamental completing an instrument meant to measure motivation should have
approximately the same responses each time the test is completed. Although it
is not possible to give a precise calculation of reliability, an estimation of this
index can be achieved through different measures.[22] In this thesis, reliability is
expressed as the percentage of precision of the estimations. As it was mentioned
before, is not possible to achieve a precise calculation of it because it depends from
many factors. To reduce the number of factors that must be taken into account, it
can be done a differentiation between the ones related to the physical model, and
the ones due to the algorithm implementation. For this thesis, reliability calcula-
tion has been chosen to be related strictly related to the algorithm factors. In the
next chapters, it will be also empirically established that this kind of calculation
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based on the algorithm results, is also affected by the variation of physical model
parameters with respect to the nominal ones. Finally, one important algorithm
results that directly influence the reliability (beyond the residual error) is the re-
sult of the best choice model represented in an occurrence barplot, that is a very
understandable plot that shows the number of times that a Model has been chosen
as the best one normalized with the total number of choices.

5.3 Reliability related issues

Having a single number (or percentage) that clearly and immediately shows the re-
liability of the obtained results can lead to huge advantages. At first, it is possible
to have a direct feedback of the results, moreover, this index allows to implement
a closed loop that in some way can update the models to make the prediction
always more accurate. On one side, in order to achieve a closed loop (5.1, it is nec-
essary that the index is updated as fast as possible, on the other side, the system
is designed to update the parameters and the range every 250 samples because it
is mandatory to wait a certain time to observe the response of the system to the
updated parameters. Thus, it must be found a good trade off for the setting of
the update time and the reliability must be interpolated in order to predict the
progress of the next updates.

Model Update

Filters best model

Data from real plant

Reliability
estimation

Figure 5.1. Block scheme of parameters update.

A more technical but relevant problem related to the computation of a trustworthy
reliability index regards the countless configurations of predicted outputs.
In particular, the reliability index is mainly related to three important factor:

• Accuracy of the match between real plant and models: The most important
factor is that the model must match (in terms of parameter modelling) the
real plant behaviour as much as possible. This requirement is also the most
difficult to check, because there are many cases where the prediction can
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appear very good while the model is completely wrong. In this thesis, it
is proposed a solution involving an analysis of the residual errors and the
distance among them combined to some possible calculation looking at the
best model occurrence plot.

• Update time: As it was mentioned before, a too small update time could
lead to inaccuracy because the shortness of the observed period could be not
enough to catch parameter update results. In opposition, a too large update
time could lead to mistakes on the interpretation of the reliability behavior.

• Choice of reliability calculation method and shape of the ”best model occur-
rence” barplots: This point is strictly related to the prediction algorithm,
there is indeed a strong correlation between the shape of the best model
occurrence plots and the type of algorithm that we want to choice for the
predictions.

5.4 Computation methods

There are several ways that allows the computation of reliability, some of the most
relevant and efficiency aimed are presented in this thesis. In particular, three
methods are resulted to be the most suitable:

1. Gaussian mask: this method comes from the first approach of reliability
computation of the BAT-MAN approach.It utilizes statistical pdfs such as
the Gaussian distribution.

2. Regression tree: Application of simple machine learning methods to classifi-
cate the output of the algorithm.

3. Relative error: on-line computation of the relative errors among the residuals.

5.4.1 Gaussian mask

This method wants to extract the reliability percentage through the usage of a
specific gaussian function built in order to fit the vector of best model occurrances.
This vector has N elements as the number of filters and each element represent
the percentage of occurrances. For example:

BMOvector =


0
0
5
75
20


This vector means that there are 5 filters, and every element of the vector is the
relative percentage of occurrence. The method wants to check the shape of this
vector which must be similar to a gaussian curve, or it must be contained inside
it. The gaussian must be built properly choosing the σ which represents the width
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of the curve, the µ which is the center of the function that matches the most high
occurrence. Then, this function can be compared with the occurrence vectors by
using many techniques, the simplest one is to make a subtraction point by point
and pull out a Reliability percentage from the number of subtraction that results
greater than 0.

Figure 5.2. Normal distribution fitting example.

This method works with systems that works around a defined range of values. For
example, in the estimation of the residual charge of a battery, where the voltage and
the current works around prefixed values and cannot overcome this range. In this
study case, the domain of the parameters of a mechanical system can assume very
different values with respect to the nominal conditions. Therefore this method is
not suitable for mechanical systems because it doesn’t provide enough information
about the plausibility of the parameters. For instance, if we consider a friction
parameter beta which in the real model is way out the range where the filters are
built (considering the filters as ideally coherent with the model except from the
beta parameter) the best choice of the model would be the filter with the nearest
beta, and the reliability would be high, but there is no information about how far
we are from the real model, so the reliability calculation could be totally wrong.

5.4.2 Regression tree

Another method is provided by simple machine learning algorithms such as linear
regression and classification. The idea behind is very simple: Train a regression
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tree with an hand-made database which consider most of the possibilities that
the occurrence of the model can achieve and then use this tree to evaluate the
reliability. In this way it is implemented a simple supervised machine learning
algorithm. The database must include all the most common configuration of oc-
currences. Matlab also provides a learnerForCoder which trains the tree in order
to be compatible with the code generation process, which is fundamental for the
edge-computing requirements of the whole project. The function that matlab pro-
vides is fitrtree(X,Y) that returns a regression tree based on the input variables X
and the output Y. The returned tree is a binary tree where each branching node
is split based on the values of a column of X. An example of the database built
can be:

X =



12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
50.0 0 0 0 0 0 0 50.0
25.0 25.0 0 0 0 0 25.0 25.0

0 50.0 0 0 0 0 50.0
100.0 0 0 0 0 0 0 0

0 100.0 0 0 0 0 0 0
0 0 100.0 0 0 0 0 0
0 0 0 100.0 0 0 0 0
0 0 0 0 100.0 0 0 0
0 0 0 0 0 100.0 0 0
0 0 0 0 0 0 100.0 0
0 0 0 0 0 0 0 100.0


And the relative output reliability:

Y =



0
5
3
15
100
100
100
100
100
100
100
100


The database has been extended with more in order to include more possibilities,
and can always be modified in order to add particular situations that must be
evaluated differently.
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5.4.3 Relative error

This method has been introduced in order to compensate the lack of functionality
introduced in the Reliability computation of BAT-MAN project. In the compu-
tation of the reliability of the multimodel applied to BMS(battery management
systems) there is no need to look outside the working range of voltages of the
batteries, so the possibility of the prediction to go totally outside the range it was
not considered. Now, since the beta can go outside the set range of action of the
filters, this possibility must be considered. The idea behind the calculation of the
Relative error is to find a way to validate the range of the models looking at the
residual error of each model If the residual errors are too similar among them it
would means that the models are too similar between them or otherwise that the
distance between the models and the filters is too much. That would result in
two possibilities: The Noise is too high and must be reduced (if possible) or the
filter parameters must be updated in order to match the Real model as much as
possible. An ideal set-up is shown in the following figure:

Filters

Real model

Friction coeff.

Noise

Figure 5.3. Noise-friction plane models representation: ideal situation

When the noise is too high, the distances are very similar:
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Filters

Real model

Friction coeff.

Noise

Figure 5.4. Noise-friction plane models representation: higher noise

Finally, when the Filters are too far from the physical model and they need to
be updated the situation appears as in the figure below. Also in this case the
distances are very high but similar between them.

Filters

Real model

Friction coeff.

Noise

Figure 5.5. Noise-friction plane models representation: high noise and bad filter
calibration

Thus, the relative error is intended to be a parameter which goes from 0 to 1
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depending on how much the errors are similar among them and it is defined as:

errrel =
| max ( error vec )−min ( error vec ) |

| max ( error vec ) |
(5.2)

which is implemented in simulink as in the figure below:

Figure 5.6. Simulink implementation of relative error computation.

5.5 Method comparison

At this stage, the methods must be compared in order to understand which is
the most suitable. In this phase, is fundamental to try to understand which are
the situations and the condition which could lead the algorithm to fail, thus,
some ”stress” tests are set and the most relevant results are shown in the next
paragraphs.

5.5.1 Gaussian mask

In this test, there are 8 filters with beta equally spaced from 0.1 to 1, the first plot
is a simulation with real β equal to 0.46. The vector of occurrances is:

BMOvector =



0.2522
0.0111
19.7469
79.9898

0
0
0
0


(5.3)

the barplot of the BMO vector and the gaussian are graphically shown in the next
figure.
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Figure 5.7. Bar plot of the best model occurrences with Gaussian mask fitting.

The obtained reliability is 95.0354% which is a good estimation considering the
shape of the barplot. As it was said previously, this method is not suitable in two
cases: The first case, is when the occurrences are equally allocated. To test this
case, it is possible to simulate a β input that changes in time from the first filter
to the last one as shown in the following figure:

Figure 5.8. Fake stair input for simulation.

The relative barplot and the gaussian distribution appears as in the figure below:



5.5 Method comparison 74

Figure 5.9. Barplot of best model occurance output.

And the Reliability obtained is 74.8158% which is too high for this barplot shape.
What can be done to improve this estimation is to try modifying the shape of
the gaussian curve, but there is not a unique shape that works in every condition,
therefore, this method has limited possibilities of application. Moreover, this tests
shows how the reliability, instead of going to 0, remains around 50% when real
beta goes outside the working range of the filters. This happens because there is
no way that this method can understand that the real beta is actually outside the
range of the filters. The red dotted line shows delimits the working area of the
filters and the blue line is the reliability tracking:

Figure 5.10. Reliability tracking with Gaussian method.
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5.5.2 Regression Tree

The regression tree method, has no particular faults detection when beta is inside
the range, but has the same defects of the gaussian mask method when beta goes
outside the range:

Figure 5.11. Reliability tracking with Regression tree method

As it was expected, the reliability outside the range remains wrongly high, this
happens because the best model choice is always the closest to the highest beta
filter, and this is translated with a 100% occurrence of the last filter.

5.5.3 Relative error

Finally, with the introduction of the relative error in the calculation of the relia-
bility as in the equation (1), it is established how the reliability decreases as long
as beta goes outside the range of the filters.
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Figure 5.12. Reliability tracking with combination of regression tree and Relative
error method.

This result is fundamental for the development of the thesis work, because it allows
to understand if the set of beta is correctly set. From now on, the reliability index
will be used not only to understand the quality of the predictions, but also as a
feedback used to update the filter’s beta. With ”Range update” it is meant to
change the value of the beta in each filter equally spaced from the first value of
the range to the last one. Obviously, if the parameter that we want to estimate
is not beta, or is the combination of two or more parameters, the ”range update”
expression will refer to the change of each of those parameters singularly. It is
important to recall that beta is considered as the representative parameter of the
SoH in this thesis hyphotesis, nevertheless, it is always possible to consider other
parameters or a combination of them.

5.5.4 Final reliability computation

The reliability parameter, for simplicity reasons, is a singular variable expressed in
percentage that combine two method mentioned in the paragraphs 5.4.2 and 5.4.3
and it is computed as follows:

Rel = (RTprediction − (1− err2rel) ∗ 100) (5.4)

Where errrel is the relative error and RTprediction is the reliability percentage that
results from the Regression tree. The final formula 5.4 is obtained from the idea of
checking the correctness of the algorithm choice trough the regression tree, while
checking also the correctness of the residuals trough the relative error.
As it is explained in the paragraph 5.5.3, the relative error plays an important
role in this formula, since it allows to understand how much the residual errors
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are relatively far from each other. In other words, the relative error is directly
proportional to the Reliability. The more the relative error decreases, the more
the prediction are considered to be unreliable. This concept could go against intu-
ition, because it can be very natural to look for a small residual error and a small
difference between them, but in this case, the relative error represents the relative
position in the 2-D plane of the real model with respect to each filter. Therefore,
the ideal condition to achieve would be that the filters had residual error equal to
0, while the other filters had high residual errors, because this would mean that
the one of the filters perfectly match up the reality. In this ideal case, the relative
error would be 0, and the reliability would be consequently 100%.

6 Robustness and parameter update

Once the index for the reliability is established, the goal becomes to update the
filters parameters, starting from the friction coefficient, to make the EKF bank
match the real system. To do this, many methods based on machine learning
theory and statisical consideration are suitable. One of the simplest and most
utilized is the gradient descent algorithm.

6.1 Gradient descent based optimization algorithm

Supposing that the models are represented in a N-dimensional plane, where N is
the number of parameters that are supposed to be updated, the update is com-
pletely ”blind” as long as the direction and the module of the update-vector is not
regardless known. Furthermore, A relative N-dimensional Function can be defined
as the Function to be optimized:

Rel function = f(βrange, R, kt...) (6.1)

The figure below is a 2-D simplified representation of the problem, where the
Reliability function only depends on the range of action of the model.
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Filters

Real model

Beta Range

Noise

Figure 6.1. Noise-Range representation of filters and models.

In this case, considering the optimization problem that it is described, the Gradi-
ent descent algorithm is very suitable. Gradient descent is a first-order iterative
optimization algorithm for finding a local minimum of a differentiable function.
This algorithm can be the base for the Reliability optimization algorithm, with
the difference that the aim is to maximize the reliability instead of minimizing a
function.

6.1.1 Statement of the problem

Let f : RN −→ R be the objective function one intends to minimize. Given an
initial point x(0) ∈ RN , one iteratively updates this point using the steepest descent
of the objective function at the current point,

x(t+1) = x(t) − ηH−1∇f(x(t)) (6.2)

where η > 0 is a hyperparameter (called the learning rate in a machine learning
context)which may in general be step-dependent. The iterative update therefore
includes H of the objective function, which is the hessian matrix of the function.

6.2 Range update

The algorithm defined in the previous paragraphs can be implemented, for ex-
ample, to find the best range in which the filters should change. The range of
beta is intended to be the scale in which the filters change. Supposing that the
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first filter is set to the nominal value of beta, which is the ”new” condition of the
machine, the difference between the friction coefficient of the last filter and the
nominal friction is the range that must be updated. Supposing that the noise is
very low, to have good reliability, the range must obviously include the friction
coefficient of the nominal model. Regarding the implementation of the algorithm,
since the response of the system is not immediate, it can be implemented a discrete
version, where every Tu of time the Reliability is checked out and if it is below a
predetermined threshold a counter is increased, otherwise is set to 0. Once the
counter reaches an established value, which means that the Reliability stays below
the threshold for enough time, there is a direction of update tentative. The up-
date direction is chosen following the Gradient descent criteria, as well as H (see
equation 6.2) which is the hessian matrix of the function in the original gradient
descent algorithm. In this case, H is intended to be the step of the update, and it
is chosen proportional to the distance of the Reliability from 100%, so that there
will be stronger update when the reliability is very low.

6.2.1 Tests

The first test shows how the Range update is fundamental when the model works
with a friction coefficient which is totally outside of the Real plant friction. In
this simulation, the real plant friction is set to β = 10 and the initial range is 1,
while the nominal friction is β = 0.1, consequently, the last filter has a friction
coefficient of β = 1.1;
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Figure 6.2. Reliability tracking with range update and β = 15

As we the figure above shows, the Reliability increases after the updates until it
is stabilized to 90-95%
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Figure 6.3. Residual error boxplot of the first 800 s of simulation with β = 15.

The boxplot above, shows how initially the integral errors of the filters are almost
equal.(it is the boxplot of the error in the first 800 s of simulation). After the
update, in the last 800 s of simulation, the boxplot of the integral error appears
as follows:
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Figure 6.4. Residual error boxplot of the first 800 s of simulation with β = 15.

Finally, the next plot shows how the range is updated until the real friction coef-
ficient is included in the range.
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Figure 6.5. Range update tracking with β = 15.

When the real plant friction coefficient is already included in the initial range,
there are two possibilities: if the initial reliability is higher than the predetermined
threshold, there will be an update, otherwise the range will remain fixed. For
example, with beta=0.6 we have an high initial reliability, but not enough for
the threshold, which in this case is set to 90%. Initially, the reliability is around
80%, so there are little updates until the reliability reaches at leas 90. The next
plots shows, the reliability tracking and the boxplots before and after the updates.
Reliability:
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Figure 6.6. Reliability tracking with range update and β = 0.6.
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Initial integral error:

Figure 6.7. Residual error boxplot of the initial 800 s of simulation with β = 0.6.

after the updates:

Figure 6.8. Residual error boxplot of the final 800 s of simulation(after the
update) with β = 0.6.
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6.3 Range Translation

Another possibility regarding the update of the filters is the translation of the range
of action of the filters, which can be combined with the range update previously
described. One the first hand, this technique has the advantage of keeping the
range of action smaller, so that the estimation of beta and the SOH is more
accurate, but translating the the range of action of the filters also means losing
a direct relation with the nominal filter, which can be good for the estimation
of the beta, but not necessarily useful for the machine SOH estimation. The
algorithm is implemented with the Gradient descent basic ideas, and it is very
similar to the previous one, but in this case there is also the update translation of
the first filter beta until the range is smaller than a threshold and the reliability
is high. subsectionTests For instance, in this case real plant beta is fixed to 3.1, it
is imposed that the range of action must be smaller than 2, the simulation time is
40000 and the reliability threshold is 90%. Initial box-plot of the errors:

Figure 6.9. Residual error boxplot of the initial 800 s of simulation with β = 3.1.
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Final box-plot of the errors:

Figure 6.10. Residual error boxplot of the final 800 s of simulation(after the
update) with β = 3.1.

Reliability:
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Figure 6.11. Reliability tracking with range update and β = 3.1. x-axys: time[s];
y-axys:Reliability percentage[%].
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(a) Range tracking (b) First beta tracking

Figure 6.12. Beta first filter and range update with β = 3.1. x-axys: time[s].

This last figure represents the tracking of the range update in the panel (a) and
the tracking of the initial value of the range of the panel (b). This method has not
been investigated further because of the loss of direct relation with the nominal
friction. In fact, the first value of the range of the filters shall be set to the nominal
conditions, therefore, changing the value of the first beta means to lose it for the
computation of SoH. Although is always possible to keep the value of the nominal
friction and compare it with the estimation, the goal is to provide the SoH and
not to estimate the friction coefficient and even if the results obtained with this
method are good, it is way more valuable to keep a direct reference to the nominal
friction to provide real-time computation of SoH.

6.4 Robustness

System robustness is defined as a system’s ability to remain functioning under
disturbances. This implies that information is needed on how the system responds
to different degrees of disturbance. All the simulation made so far, didn’t consider
any noise except a small measurement one as input of the filters states, but it was
considered that the filters perfectly matched the real model apart from the beta
friction coefficient. The absence of noise is a very strong supposition and it doesn’t
match the real conditions, therefore, an uncertainty must be considered to make
the simulation more realistic and to test the robustness.

6.5 Parameters uncertainty

There are many disturbances that can be considered, but for simplicity reasons
it is possible to introduce an uncertainty that can change the filters parameters
of a fixed percentage. Considering an uncertainty percentage fixed to 20%, for
example, this uncertainty can change the value of the kt (constant of the electric
motor) of plus or minus 20% of the nominal value in the real plant. A robustness
analysis of the system can be performed by imposing some uncertainties and look
at the system response to them. For example, what happens at the reliability when
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the uncertainty grows up? The next figure shows how the reliability decreases as
the uncertainty percentage grows (in the y axis there is the reliability while the x
axis is the uncertainty).

Figure 6.13. Reliability tracking with uncertainty percentage increase.

As it was expected, by increasing the percentage of uncertainty the reliability
decreases. As well as the beta estimation become more inaccurate:

Figure 6.14. β estimation with uncertainty percentage increase.

6.5.1 Residual error behaviour

Finally, the last figure is the behaviour of the residual error average with the
uncertainty increase:
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Figure 6.15. Residual error behaviour with uncertainty percentage increase.

The behaviour of the residual error is important to understand how the noise and
the uncertainty affects the estimation error. The three panels reported above (6.13,
6.14,6.15) perform a robustness analysis to the uncertainty parameters. What it is
established is that an uncertainty on the parameters lower than around 50% keep
the estimation to acceptable performances, while adding disturbances of more than
50% could lead to big estimation errors.

6.5.2 Model parameters update

The improvement of the filter’s model parameter range is fundamental to make
the estimation of the SoH more accurate. The next step consists in the update
of the model ”fixed parameters”, that is the parameters which should be not
dependent from the change of the SoH of the machine. Since there is not always
a direct correlation of the parameters with the residual error, and moreover it is
not proven that all the parameters are observable, this operation is not simple.
The first possibility is to attempt by changing only few parameters, one idea is
to change the most influential parameters and see the system response. This
parameters variation is strictly correlated with the error in the estimation and
come from the analysis carried out by the team of the MorePRO project [27]. The
idea is to try a gradient descent optimization algorithm one parameter at a time
and see the effect on the estimation. Since there is no way to define the direction
of the update, it is very difficult to implement a random algorithm that can lead
to good optimization. However, this work can be simplified a lot if the working
modes of the systems need to be chosen from a finite number of models. Therefore,
the model parameter update has not been investigated further, since an analysis of
the possibility to reduce the number of models to a finite number must be an input
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of this study. Nevertheless, the MorePRO team also include as objective a deeper
machine learning solution which could lead to this important result.This solution
has been investigated by the Morepro team in parallel with the development of
the work presented in this thesis. Thus, the model parameter update is still an
available option to improve the estimation, but is considered a future step to work
on.



7 INTEGRATION WITH CL FRICTION MODEL AND FINAL RESULTS 89

7 Integration with CL friction model and final

results

The final result of the MorePro project, wants to obtain a model that represents
the physics in the best way. Therefore, the modelling team of the project developed
a more accurate description of the end-effector tool contact with the workpiece.
thus, the global formulation proposed is:

β =

(
3.32

(
DCnπ

1000

)−0.45
− 0.24(tnCL)

)
∗
[
1−

(
T − T0
Tm − T0

)mr
]

(7.1)

In this formulation the parameters involved are all geometric or that can be di-
rectly measured by sensors except of the chip load, which therefore becomes the
parameter to be estimated because it is directly related to the tool wear. This
model includes more detail about the physical environment such as the tempera-
ture T, the diameter of the cutting tool DC, the cutting speed Vc = πDCn

1000
and the

fleed rate fr = nTcl.
This model can be simply included in this thesis work changing the filters equation
including the equation 7.1. The new representative parameters for the SoH is the
chip load CL that is defined as the theoretical length of material that is fed into
each cutting edge as it moves through the work material. This modification to the
model used until now has been implemented to the final model used for the tests
and for the validation of the functional behavior of the system.
The final integrated model structure is shown in the figure 7.1:

Real plant

EKF bank Best model 
decision Logic

Reliability
computation

Model and range
update

Reliability

SoH

Text

data from plant
Input

Figure 7.1. Block diagram of the final integration
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The functioning of this block diagram is very similar to the one explained in the
previous chapter. The inputs are the ones related to the plant:

• Reference of the cutter position.

• Velocity reference.

The ouputs of interest are:

• SoH.

• Reliability.

The blocks are:

• The light-orange block is the real plant, that represents the real working
condition of the cutting process.

• The Red block is the EKF bank, that contains the Filters and is in charge
to compute the integral residual errors for each filter. This block receives as
input the data from the real plant and the input of the plant.

• The blue block is the Logic related to the best model decision. This block
is needed to choose the best mode, keep track of the occurrences and to
compute the SoH. The input to this block are the data from the EKF bank
related to the residual errors.

• The light grey blocks are in charge of the computation of the reliability
based on the best model occurence output received from the blue block and
to compute the updates based on the calculated reliability

The main functional behaviour of the whole system used for the testing should be
clear, but it is necessary to clarify also the most important parameters that needs
to be set in each simulation:

• Simulation time: Duration of simulation expressed in seconds. It cannot be
too high due limited computation power.

• Uncertainty: This parameter express the difference between the filter param-
eters and the real model parameters. The value is expressed in percentage
and can be summed or subtracted from the real plant parameter value. For
example uncertainty of 10% means that the filter parameter differ of plus or
minus 10% with respect to the real plant equivalent parameter.

• Real CL: This is the value of the CL in the real plant that has to be estimated
and represents the SoH.

• Number of filters.

• Inital filter range: Difference between the value of the last filter value of CL
and the nominal CL. For example, if the number of filters is 8 and the range
is 1, the 8 filters value of CL will be equally spaced from 0.1 to 1.1.
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• Sample time:Simulation step that is set fixed to 0.1 in order to make the
simulation computationally lighter

• Number of cycles: Number of cut repetitions. The frequency of a cut depends
on the simulation time divided by the number of cycles.

Now, an important consideration regards the SoH calculation. SoH represent the
wear condition of the system, nevertheless, the real variation of the CL in function
of the SoH should come from experimental prooves in a real environment. Thus,
in this thesis the SoH is considered to be 100% when the CL is equal to the
nominal value of 0.1, at the opposite side, SoH is considered to be 0% when
CL is equal to 1.5. That consideration comes from the possible accepted values
of CL in industrial machines, and it could not match the reality. Nevertheless,
this thesis wants to demonstrate the applicability of the multi-model approach on
each possible situations, as a consequence, there is no need to be precise on the
definition of the variation of CL. For instance, if from experimental results it is
derived that CL value in nominal and in degraded condition is very different, it is
always possible to adapt the algorithm in order to make it work with different CL.
In the 7.2 section of this chapter will be reported some of the most significant
situation in order to demonstrate the robustness with respect to uncertainties and
to show the behavior of the system with respect to different input and conditions.

7.1 Tests organization

The test are organized following a DoE procedure, in order to reduce process
development time and maximize the process reliability. The preliminary hypothesis
of the reported tests are:

• The model is supposed to represent the system in a real environment with
the nominal condition considered as ”new” machine.

• The tests are performed using limited computational environment, so the
sample time and the duration of the simulation are constraints.

The organization of the tests can be summed up in the following table:

Simulation
time

uncert Real
CL

# of
filters

Cutter
speed

Initial fil-
ter range

Position
reference

10000-
40000s

0-50% 0.1-1.6
mm

4-8 210-350
0.5-1.5

Sinusoidal,
Step

Table 7.1. Test main parameters

All of these parameters were combined and randomly set in order to simulate as
much conditions as possible. Nevertheless, in the next paragraph only some of
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the most relevant results are reported, in particular, variation of CL and some
condition with increasing uncertainties.

7.2 Results

In order to understand the main settings used in tests and the plots shown for each
test, the main settings are reported in the following table 7.2 and in the figure 7.2.

Simulation
time

uncert Real CL Real SoH
# of fil-
ters

Initial fil-
ter range

10000s 10% 1.3 mm ∼ 15% 8 1

Table 7.2. Test main settings.

In particular, the panels (a) and (b) represent the residual error boxplots of each
filter before and after the update of the filter’s range of action; In the x axis are
shown the 8 different values of CL for the filters, while in the y axis there is the
residual error integral. The panel (c) graphically shows the initial and the final
range of the filters. The panel (d) is the tracking of the filter’s range update.
Finally, the panel (e) is the reliability behavior, while the panel (f) depicts the
final wear estimation to be around 85%, which means 15% of remaining useful life
(SoH) of the end-effector tool.
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(a) Boxplot of the models residual error be-
fore the update
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(b) Boxplot of the models residual error
after the update
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(e) Reliability
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(f) Wear estimation

Figure 7.2. Significant plots
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7.2.1 Test on Nominal conditions with CL=0.1

The first test reported is a simulation in nominal conditions, in order to show the
behavior of the system when the SoH of the real system is equal to the nominal(new
conditions). The uncertainty imposed is equal to 0, meaning that there is perfect
match between the model and the filters. The only disturbance is the one related
to the EKF inputs, that it is imposed to have mean equal to 0 and variance equal
to 5% of the value.

cl uncert t sim
0.1 0 10000

Table 7.3. Test settings

In the following table are Reported the estimation error before the update of filter’s
range of action.

cl cl estimated before update err before update
0.1 0.102 0,02

Table 7.4. Estimation errors before the update

However, as it was expected, since this is a simulation in nominal conditions and
the CL=0.1 is naturally already in the range of action of the filters, the update
does not lead to improvement in the estimation of CL.

cl cl estimated after update err after update
0.1 0.102 0,018737592

Table 7.5. Estimation errors after the update
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(a) Boxplot of the models residual error be-
fore the update

(b) Boxplot of the models residual error
after the update

(c) Range representation (d) Occurrence rate

(e) Reliability (f) Wear estimation

Figure 7.3. Test on Nominal conditions with CL=0.1
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7.2.2 Test on high wear conditions with CL=1.4 outside the initial
range

The second test reported wants to show response of the system when the CL of
the real system is outside the initial filter’s range. The uncertainty imposed is
equal to 0 so that there is no parameters difference between the real model and
the plant except of CL.

cl uncert t sim
1.4 0 10000

Table 7.6. Test settings

The following table shows the estimation error before the update of filter’s range
of action.

cl cl estimated before update err before update
1.4 1,067 0,333

Table 7.7. Estimation errors before the update

In this case, it is clear that the upgrade of the range which initially didn’t contain
the the real plant CL, is fundamental to significantly reduce the estimation error:

cl cl estimated after update err after update
1.4 1,380635367 0,019364633

Table 7.8. Estimation errors after the update
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(a) Boxplot of the models residual error be-
fore the update

(b) Boxplot of the models residual error
after the update

(c) Range representation (d) Occurrence rate

(e) Reliability (f) Wear estimation

Figure 7.4. Test on high wear conditions with CL=1.4 outside the initial range
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7.2.3 Test on uncertainty 10% and CL 1.3

This test wants to show response of the system when the CL of the real system to
uncertainties. The uncertainty imposed is equal to 10%.

cl uncert t sim
1.3 10% 10000

Table 7.9. Test settings

The following table shows the estimation error before the update of filter’s range
of action.

cl cl estimated before update err before update
1.3 1,067 0,233

Table 7.10. Estimation errors before the update

Since in this case the initial range is not enough to include the CL, the update
is again significant to reduce the estimation error. However, the estimation error
increases as long as the uncertainty percentage increases.

cl cl estimated after update err after update
1.3 1,276069035 0,023930965

Table 7.11. Estimation errors after the update
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(a) Boxplot of the models residual error be-
fore the update

(b) Boxplot of the models residual error
after the update

(c) Range representation (d) Range update

(e) Reliability (f) Wear estimation

Figure 7.5. Test on uncertainty 10% and CL 1.3

7.2.4 Test on uncertainty 50% and CL 0.5

The last reported test wants to show the system response to 50% uncertainty.
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cl uncert t sim
0.5 50% 10000

Table 7.12. Test settings

The following table shows the estimation error before the update of filter’s range
of action.

cl cl estimated before update err before update
0.5 0.39 0,12

Table 7.13. Estimation errors before the update

As it is shown in the 6.13, the estimation error significantly increases after 50% of
uncertainties. In fact, also in this test it around 0.09.

cl cl estimated after update err after update
0.5 0.41 0,09

Table 7.14. Estimation errors after the update
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(a) Boxplot of the models residual error be-
fore the update

(b) Boxplot of the models residual error
after the update

(c) Range representation (d) Occurrence rate

(e) Reliability (f) Wear estimation

Figure 7.6. Test on uncertainty 50% and CL 0.5
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8 Conclusion and future works

This thesis analyzes several aspects related to the operation and development of
a new estimation technique based on a multimodel approach called multi-model
approach and produced by Brain technologies and part of the MorePro project.
The starting principle that characterized the whole development of this predictive
technique is the edge-computing. This characteristic imposes strong computational
limitations that lead consequently to an approach that is completely different from
the majority of the state of art proposals. Another important principle on which
the project is based on is the huge potential field of application of the system. In
fact, even if the system proposed in this thesis is limited to a simplified model
of CNC machines, this work lays the foundation for future application to more
complex systems. In particular, following the same path described in the chapters
the following contributions and conclusions were obtained: Firstly, it has been
seen how the application of the algorithm already developed by brain Technologies
in the ERMES project for the SoH estimation of battery system by adopting a
new switching multi-model estimation technique is also suitable for a mechanical
applications, which concerns the wear prediction of a dynamical model resembling
the work carried out by a CNC machine. This result, comes from the choice
of a friction coefficient as main representative for discriminating different wear
conditions of the plant under assumption and from the analysis on the residual
errors of the Extended Kalman Filters bank implemented. Secondly, a reliability
analysis has been carried out, developing an index that has two main functions:

• Check the correctness of the SoH estimation in terms of parameters range
and best model occurrence validation.

• Give the necessary feedback for the filters range of action and parameters
update.

Despite the system has not been tested in a real environment, not going beyond
a MIL (Model in the loop) testing, this thesis work lays foundations for future
edge-computing SoH prediction techniques.

8.1 Future works

This thesis should act as foundation for the application of this approach for reliable
and low-cost predictive maintenance techniques for industrial machines. Once the
applicability of this approach has been proven, the next steps concerns to bring
improvements to the systems and perform the next steps of testing: Software in the
loop and hardware in the loop. First of all, the first possible improvement regards
the possibility to include machine learning techniques to reduce the possible models
to a finite number of possibilities. This study has been already started and a first
draft has been carried out by the MorePro team [24], in particular, K-Neares and
self-organizing maps has been implemented in order to reduce the possible models
among all. This work could lead to huge steps forward regarding the model’s
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parameters update because the algorithm should choose among finite number of
possible models.
Another possibility regards the modelling of the State of health as function of more
than a single parameter. To do this, data from observation of real machine are
necessary. Once the data are available, a deeper modelling of the cutting process
of new and old machinery can be carried out, and the prediction algorithm could
be tested with this new data. The final step to do is without doubts the testing
with a real system, planning a detailed DoE in order to finally test the behavior
in all possible scenarios and definitively proof the feasibility of this approach.



Appendix A

Boxplot

The boxplot, otherwise called the exterior and quartiles diagram, is a graphic rep-
resentation adopted to describe the distribution of a sample by means of dispersion
and position indices.

Figure 8.1. Boxplot representation

It can be oriented both vertically and horizontally by a rectangle and it is divided
into two parts from which two segments come out. The box is delimited by the
first and third quartile q1/4 and q3/4 and divided inside by the median q1/2. So
that in the red rectangle are represented the majority of the values, while segments
delimits the minimum and maximum values also called outliers.
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DoE

Design of experiments (DOE) is defined as the branch of applied statistics that
deals with planning, conducting, analyzing, and interpreting controlled tests to
evaluate the factors that control the value of a parameter or group of parameters
[14]. DOE is a powerful data collection and analysis tool that can be very useful in
a variety of experimental situations. Statistical methods are often used at the end
of the testing phase in order to summarize data and extract additional information
about the process. Nevertheless, incorporating statistical considerations into the
design of the experiments can lead to many advantages such as:

• Reduction of process development time;

• efficient use of resources;

• Increased process reliability;

The DOE method consists of two main phases:

• Screening phase where the objective is the identification of the significant
factors and their correlation.

• Optimization phase during which the objective is the identification of the
response.

Some important concepts of the DoE are[23]:

• Controllable input factors, or x factors, are those input parameters that can
be modified in an experiment or process.

• Uncontrollable input factors are those parameters that cannot be changed.

• Responses, or output measures, are the elements of the process outcome that
gage the desired effect.

• Hypothesis testing helps determine the significant factors using statistical
methods. There are two possibilities in a hypothesis statement: the null and
the alternative.

• Blocking and replication: Blocking is an experimental technique to avoid
any unwanted variations in the input or experimental process. For example,
an experiment may be conducted with the same equipment to avoid any
equipment variations.

• Interaction: When an experiment has three or more variables, an interaction
is a situation in which the simultaneous influence of two variables on a third
is not additive.

The DoE process can be summed up in the following figure:



Figure 8.2. DoE
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Gradient Descent algorithm

Gradient descent is a first-order iterative optimization algorithm for finding a
local minimum of a differentiable function. The pseudocode of a gradient descent
algorithm is:

Figure 8.3. Gradient descent pseudocode

On each iteration, the parameters are updated in the opposite direction of the
gradient of the objective function J(w) w.r.t the parameters where the gradient
gives the direction of the steepest ascent. The size of the step we take on each
iteration to reach the local minimum is determined by the learning rate. Therefore,
the direction of the slope downhill until we reach a local minimum is followed.
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