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1 Introduction

1.1 Multi-agent systems

In recent times, multi-agent system are becoming increasingly important in
many different engineering fields. In literature we can find different defini-
tions of multi-agent system, they can be described [22] as a set of subsystems
that are, at least partially, autonomous: each agent has its own behaviour
or dynamics depending on the context. The main characteristics of Multi-
Agent Systems (MAS) are [23]:

• Sociability: ability to share and request information from other agents.

• Autonomy: Each agent can take action independently.

• Proactivity: Each agent uses its history, sensed parameters and in-
formation of the other agents.

MAS can be classified depending on their feature[23]:

• Leadership: MAS can be leaderless, a configuration in which each
agents acts to reach its own objective, or leader-follower in which
there are one or more agents that are leaders and the other chase
their behaviour. In this latter case, leader(s) can be predefined or
collaboratively chose by the agents. In this work, particular attention
is posed on leader-follower configurations with one leader .

• Decision function: This feature can be linear or non-linear. In the
first case the decision function of each agent is proportional to the
parameters sensed from the environment. Clearly in the non-linear
case the relation is not a simple proportionality.

• Hetrogeneity: In homogeneous MAS, all the agents have the same
identical characteristics, while in heterogenous MAS, agents are differ-
ent. In this work the focus is on heterogenous agents

• Delay: The time delay that occurs when sharing information among
the agents can be taken in consideration or not, in this thesis, time
delay is neglected.

• Topology: topology refers to reciprocal locations and relations among
agents. It can be static or dynamic, up to section 4 static topologies
are considered, in section 5 some cases with switching topologies are
considered.
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The overall system is studied in order to find more efficient ways of schedul-
ing, path finding, obstacle avoidance etc. In a physical context, MAS are
used to control swarms of physical objects such as robots or satellites, in
1996 the first article that approached the problem of coordination among a
set of robots was published [24]. In [25] we can find the definitions of the
two main problems:

• Coordination among robots

• Planning trajectory

In this thesis, the main field of interest is the Aerospace, in particular con-
sidering sworms of satellites, and the main objective is the coordination, in
particular the reach of consensus. Consensus is a condition in wich each
agent in the MAS has a common charachteristic with the others, for ex-
ample position and/or velocity. In this context an attempt to find better
coordination laws is made, in order to reduce the global energy consumpion
of the system and obtain better performances to reach consensus.

Figure 1: Concept of a group of satellites orbiting around the earth.

Satellites orbiting around the earth are used for many different purposes
such as pollution control, disasters monitoring (earthquakes, forest fires...),
communications, space observation and so on [14]. For all these purposes,
they ususally need an high pointing accuracy (the variables of interest are
considered to be angular displacement and velocity) as we can find in [1],[2],
and to be optimized in terms of costs. In [26], [27] and [28] we can find
some conrol laws for fisrt order dynamics MAS, considering time delays,
and the preliminary concepts needed to face such problems. In particular,
control laws involving Laplacians and some lemmas about parameters bound
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and graph properties are shown. Satellites are considered to have a rigid
body described by Newton‘s law, and a flexible appendage, that could be,
for example, a solar panel, described by a second order differential equa-
tion coupled with the rigid body equation that can be found from different
sources in literature ([15],[16],[17] and [18]). In this way the model is more
accurate, higher pointing accuracy is obtained and unwanted flexible parts
excitments are avoided. For all these purposes, a background of graph the-
ory and algebraic graph theory was studied starting from some reference
books as [10],[11],[12] and [13], then some new methods to tune the tran-
sient of such systems using directed topologies are presented starting from
the ideas found in [6], [7] and [8]. In particular, a subcase for a one-leader-
follower MAS consensus under directed topologies is demonstrated using a
parameter inequality already present in [3], then it is extended to the flexi-
ble dynamics case and a method to reduce the global control input without
lowering performances is shown. In [4] we can find a resume of the tho-
eretical results for first order MAS in continous and discrete time, also with
switching topologies.

Figure 2: Concept of a CubeSat with flexible appendages.

Moreover, most relevant external disturbances found in Low Earth Orbit are
modeled following [19],[20] and [21]. Since often satellites are not equipped
with gyroscopes, and, otherwise, to take in account possible failures, the
absence of a velocity measure is also considered by translating the MAS in
discrete time and using differentiators to estimate the velocity.
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1.2 Thesis outline

This work is divided in four main sections:

• Section 2: This section is dedicated to the mathematical introduction,
with particular focus on graph theory and algebraic graph theory. The
basic notions needed to understand succeding sections are introduced
such as basic definitions and properties about graphs and related ma-
trices. Moreover some of the ”less common” matrix properties are
shown with some simple proofs.

• Section 3: this section provides an overview of the problem starting
from the work already present in literature. Consensus of second or-
der heterogeneous multi-agent systems with flexible appendages and
undirected communication topologies is considered. At first velocity is
supposed to be measurable, so each agent is assumed to be equipped
with instrumentation able to perform the measure. Then a control law
able to stabilize the system also without velocity measures is presented.
Some numerical simulations with different communication topologies
among the agents are shown.

• Section 4: this section are present the main results of the work. Di-
rected topologies are taken into account in order to propose methods to
better tune the transient of the system and reduce the number of com-
munication. In this section leader-follower control is considered, so all
the agents have to reach the same state (consensus) of an agent called
Leader. Consensus reachability over directed topologies is prooved for
first and second order dynamics, also with flexible dynamics. The sys-
tem is translated in discrete time to involve differentiators to estimate
velocity in case it is not measurable. At last, external disturbances
models are presented and numerical simulations are performed.

• Section 5: this section deals with the possible failure of one or more of
the agents, the communication topology is checked to be still capable
reaching consensus and it is recomputed if it‘s not. Some simulations
with switching topologies are presented.

Section 6 and 7 are dedicated to conclusions and references.
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2 Mathematical tools

This section introduces the main mathematical tools used in the succeeding
sections.

2.1 Graph theory

A graph G consists of a finite set of Vertices V(G) and a set of Edges E(G).
We take V(G) to be {1,2,...,n} and E(G) to be {e1, e2, ..., em}. An edge
ek = {i, j} connects the i − th and j − th vertices. The following figure
shows a simple graph:

Figure 3: Simple Graph

Now some of the graphs main properties are listed.
Connected graph: a graph is said to be connected if there exist a path
from any vertex to any other. For example:

(a) Connected graph (b) Unconnected graph

The graph in figure (b) is not connected because does not exist a path from
vertex 4 to the others.
Directed graph: A directed graph is a graph in wich the pairs of vertexes
connected by an edge is an ordered pair, so the edge connecting {i,j} does
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not connect {j,i} in general. In other words, the edges have a direction:

Figure 5: Directed Graph

In this example the edge connecting 2 to 1 does not connect 1 to 2. A directed
graph is said to be weakly connected if the underlying undirected graph is
connected. This is obtained replacing each directed edge with an undirected
one. The graph in Figure 3 is an example of weakly connected graph.
Self loop graph: this graphs has at least one edge connecting a vertex to
itself:

Figure 6: Self loop Graph

A graph with no self loops is called loopless.
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A source is a vertex from which all the edges are pointing out. For
example in the next figure vertex 1 is a source.

Figure 7: Graph with a source

If on the contrary a vertex has all the edges pointing in, it is called a
sink.
Weighted graph: a weighted graph is a directed graph in whch a positive
real number ae is associated to each edge: G = (V (G), E(G), {ae}e∈E(G))
Note that if the edge connecting vertex i to vertex j is not present, it can
be interpreted as a 0 weigth associated to that edge. An unweighted graph
has ai = 1 ∀i. The following picture is an example of weighted graph:

Figure 8: Weighted Graph
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2.2 Algebraic graph theory

Let‘s see now how to manipulate graphs and their properties using matrices.
The first important definition is the Adjacency Matrix A. In general it is an
n× n matrix (n number of vertex) defined as follows:

A =

{
aij if {i, j} ∈ E(G)

0 otherwise

So it is a matrix where all the entries are equal to the weight of the edge
connecting vertex i to vertex j. Clearly if an edge does not exist its corre-
spondent weight is 0. For example:

Figure 9: Weighted Directed Graph

The graph in Figure 7 is associated to the following adjacency matrix:

A =


0 0.2 9.3 0 0
0 0 0 5 0
0 0 0 1.5 10

4.4 0 0 0 0
0 0 0 3.2 1


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Notice that the transpose of A is the matrix that has as entries the
weights of the edges connecting vertex j to vertex i, so an interpretation is
that the rows of A represent the information that the correspondent vertex
is giving to the others, and the colums (so the rows of AT ) the information
tha the correspondent vertex is receiving from the others. Some properties
can be extrapolated from this definition:

• Loopless graph: the adjacency matrix of a loopless graph has all
the diagonal entries equal to 0 since there is no edge from a vertex to
itself.

Figure 10: Weighted Directed Graph

A =


0 0.2 9.3 0 0
0 0 0 5 0
0 0 0 1.5 10

4.4 0 0 0 0
0 0 0 3.2 0



• Unweighted graph: all entries of an unweighted graph are either 1
or 0.

13



• Undirected graph: the adjacency matrix of an undirected graph is
symmetric since the edge connecting i to j also connects j to i with
the same weight.

Figure 11: Undirected Graph

A = AT =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0



• Unconnected graph: an unconnected (undirected) graph has the
k − th row and column all set to 0, where the k − th vertexes are the
not connected once. This is because they are not giving or receiving
information.

• Graph with a source(or a sink): a graph with a source has the
correspondent column set to 0 since that vertex is only giving infor-
mation to the others. The dual of the source is the sink, in that case
the correspondent row is 0 since it only receives information from the
others.
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For example the graph in Figure 5 has a source and two sinks, so the
adjacency matrix is:

A =

0 1 1
0 0 0
0 0 0


• Complete graph: a graph is said to be complete if all the entries of

the adjacency matrix are not 0. This means that exist an edge from
all vertex to any other, themselves included.

Another important definition is the Degree matrix . In general it can be
defined in two ways:

Dout = diag(A1n) = row-sum of A

Din = diag(AT1n) = column-sum of A

where 1n is the column vector of all 1. The first is the out-degree matrix,
that isa a diagonal matrix in which any entry is the sum of the weights of
the edges pointing out the correspondent vertex. The second is the same
but each entry is the sum of the weights of the edges pointing in the corre-
spondent vertex.Clearly if the graph is not weighted the sum of the weights
corresponds to the number of edges. The graph in Figure 8 has the following
degree matrices:

Dout =


9.5 0 0 0 0
0 5 0 0 0
0 0 11.5 0 0
0 0 0 4.4 0
0 0 0 0 3.2



Din =


4.4 0 0 0 0
0 0.2 0 0 0
0 0 9.3 0 0
0 0 0 9.7 0
0 0 0 0 10


Notice that if the graph is undirected A is symmetric, so Dout = Din since
A = AT .
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Now we can define the Laplacian Matrix. In general the Laplacian of
a graph is a matrix defined as:

L = Dout −A

So the off-diagonal elements are the opposite of the weights and if the graph
is loopless the diagonal ones are the absolute value of the sum of the off
diagonal on the same row:

L = [lij ] =

{
−aij for i 6= j∑n

h=1,h6=i aih for i = j

For example:

Figure 12: Directed loopless graph

L =


19.4 −10 −1.2 −8.2

0 0 0 0
0 0 4 −4
−0.1 0 0 0.1


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It follows from the properties of the Laplacian that:

• L1n = 0 : the row-sum is always 0.

• If the graph is undirected L is symmetric, so L = LT and 1TL = 0.
This latter identity can be obtained computing the transpose of L1n =
0

• [Lx]i = dout(i)(xi − weighted-evrage(xj) for all j neighbour of i if the
graph is loopless.

• The diagonal elements are always non-negative, while the off diagonal
are always non-positive.

• All the eigenvalues λi(L) have non-negative real part.

This latter property can be easily prooved using the first Gershgorin theo-
rem: The theorem states that, given a square n × n matrix A = [aij ] and
calling

Kir = {z ∈ C : |z − aii| <= Rri }

Kic = {z ∈ C : |z − aii| <= Rci}

where aii is a diagonal element of A and

Rri =
n∑

j,j 6=i
|aij | row-sum

Rci =
n∑

j,j 6=i
|aji| column-sum

all the eigenvalues of A are inside the intersection between the union of all
the Kr

i and the union of all the Kc
i .

So if
Kr =

⋃
i

Kr
i and Kc =

⋃
i

Kc
i

λi(A) ∈ Kr ∩Kc ∀i
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In our case A = L so by definition

Rri =
n∑

j,j 6=i
|aij | = aii ∀i

So this means that all the Kr
i are circles in the Gauss plane centered in

(Rri , 0) with radius Rri :

Figure 13: Row-Ghershgorin circles

So Kr, which is the union of alla the circles, corresponds to the biggest one
and can be written as

Kr = {z ∈ C : |z −
‖L‖∞

2
| ≤
‖L‖∞

2
}

Since the intersection of Kr with any other set is either empty or inside Kr

itself, we can conclude that the real part of the eigenvalues of a Laplacian
matrix are all non negative.
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We can define as a generalized Laplacian any L such that:

L =


li,j < 0 if i 6= j and i adjacent to j

li,j = 0 if i 6= j and i is not adjacent to j

any number otherwise

This can be useful in some cases, for example if we consider

L = Din −AT

L is a generalized Laplacian (notice that it corresponds to the Laplacian
obtained inverting the direction of the edges in the graph). In this way the
quantity Lx can be seen as the difference between the information of each
node and the information that it receives from the others, for example:

Figure 14: Graph example

L =


2 −1 0 0 −1
−1 1 0 0 0
−1 0 1 0 0
0 0 −1 2 −1
0 0 0 0 0



Lx =


2x1 − x2 − x5

x2 − x1
x3 − x1

2x4 − x3 − x5
0


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2.3 Some properties of matrices

In this section some matrix properties that will be used in the next sections
are given.
Block matrix determinant: considering a block matrix as

H =

[
A B
C D

]
we can factorize it as:

H =

[
I 0

CA−1 I

] [
A 0
0 S

] [
I A−1B
0 I

]
= H1H2H3

where S is the Schur‘s complement of H, S = D − CA−1B. It holds
that det(H) = det(H1)det(H2)det(H3) and since det(H1) = det(H2) = 1,
det(H) = det(H2). So now we can write that:

det(H) = det(

[
A 0
0 S

]
) = det(A)det(S) = det(A)det(D − CA−1B)

Matrix pseudo-inverse: given any A ∈ Rn,m ,it is defined A† such that:

• AA†A = A

• A†AA† = A†

• AA† and A†A symmetric

A† is called the Moore-Penrose inverse of A, or pseudo-inverse of A. Some
properties of the pseudo inverse are:

• If A is invertible A† = A−1

• (A†)† = A

• (αA)† = 1
αA
†

• If λi is an eigenvalue of A and λi 6= 0, then 1
λi

is an eigenvalue of A†

• If λi is an eigenvalue of A and λi = 0, then also the correspondent
eigenvalue of A† is 0.
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2.4 Kronecker Product

Given any two matrices A = [ai,j ] ∈ Rp,q and B = [bi,j ] ∈ Rn,m, the Kro-
necker product is defined as:

A⊗B =

a11B ... a1qB
... ... ...

ap1B ... apqB


So it is always doable and the result is a matrix ∈ Rpn,qm.
For example: [

1 2
2 5

]
⊗
[
0 7
1 −1

]
=


0 7 0 14
1 −1 2 −2
0 14 0 35
2 −2 5 −5


Some properties:

• A⊗ (B + C) = A⊗B +A⊗ C

• A⊗B 6= B ⊗A in general

• (αA)⊗B = A⊗ (αB) = α(A⊗B)

An useful concept that will be used later is the Kroneker product between
a Laplacian matrix and a diagonal matrix. Let‘s consider an example:

L = L1 ⊗R

where L1 =

 1 −1 0
−1 2 −1
0 −1 1

 and R =

[
1 0
0 2

]
.

So we get

L =



1 0 −1 0 0 0
0 2 0 −2 0 0
−1 0 2 0 −1 0
0 −2 0 4 0 −2
0 0 −1 0 1 0
0 0 0 −2 0 2


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L1 is related to the following graph:

Figure 15: L1 graph

While L is related to the following one:

Figure 16: L graph

So basically the result is a set of disjointed graphs with all the weights
scaled by the correspondent diagonal entry of R. Notice that, even if the
Kroneker product is not commutative in general, the effect on the graph
topology is the same inverting the product order. We just get a different
nodes enumeration.

Lc = R⊗ L1 =



1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 1 0 0 0
0 0 0 2 −2 0
0 0 0 −2 4 −2
0 0 0 0 −2 2


That corresponds to the following graph:

Figure 17: Lc graph
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2.5 Differential equations canonical form

Any linear ordinary differential equation of order n can be reduced to a
system of n linear ordinary differential equations of order 1. Given:

any(t)(n) + an−1y(t)(n−1) + ...+ a2ÿ(t) + a1ẏ(y) + a0y(t) = g(t)

we ca call:

x(t) =


x1(t)
x2(t)
...

xn(t)

 =


y(t)
ẏ(t)
...

y(n−1)(t)

 ; ẋ(t)


ẏ(t)
ÿ(t)
...

y(n)(t)


So the equation can be written as:

anẋn + an−1xn + ...+ a1x2 + a0x1 = g(t)

ẋ1 = x2

...

ẋn−1 = xn

The latter systme can be written in a compact matrix form:

Aẋ(t) +Bx(t) = C(t)

where:

A =


1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... an

 ; B =


0 −1 0 0 ... 0
0 0 −1 0 ... 0
0 0 0 −1 ... 0
... ... ... ... ... ...
a0 a1 a2 a3 ... an−1



C(t) =

 0
...
g(t)


If ai are scalar then A is always invertible and we can reduce to a simpler

form ẋ(t) +Ax(t) = g(t), if ai are matrices the method can still be used, we
will have I (identity matrix) instead of 1 and A, B will be block matrices.
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3 Undirected graphs case

In this section the problem of controlling a MAS under undirected connected
topologies is faced analyzing the main methods found in literature. In par-
ticular, the problem is applied in the aerospace field in which each agent
represents a satellite orbiting in Low-Earth Orbit and the graph topology
the capability of agents to share information on angular position and/or
velocity. The set of equations describing the single agent dynamic is the
following [1],[2]: {

Jiθ̈i(t) + δTi η̈i(t) = ui(t)

δiθ̈i(t) + η̈i(t) + Ciη̇i(t) +Kiηi(t) = 0

These equations describe the rotational motion of a rigid body with flexible
appendages. Considering the rotations in a 3-dimensional space, θi(t) ∈ R3

is the vector of rotations around the three axes and Ji is the inertia matrix.
Vector ηi(t) ∈ Rmj is the modal coordinates vector representing the flexible
modes of the appendages, mj is the number of modes. Ci ∈ Rmj ,mj is the
damping coefficients matrix and Ki ∈ Rmj ,mj the stiffness matrix. δi ∈ R3,mj

is the coupling matrix between the space of θi(t) and the space of ηi(i). At
last, the control input is ui(t) ∈ R3.

Considering a set of N agents, i = 1, 2, ..., N , so we have a set of 2N
equations. It can be grouped using block matrices:

θ(t) =
[
θ(t)T1 θ(t)T2 ... θ(t)TN

]T
η(t) =

[
η(t)T1 η(t)T2 ... η(t)TN

]T
u(t) =

[
u(t)T1 u(t)T2 ... u(t)TN

]T
and 

J = blockdiag(J1, J2, ..., JN )

C = blockdiag(C1, C2, ..., CN )

K = blockdiag(K1,K2, ...,KN )

∆ = blockdiag(δ1, δ2, ..., δN )

where θ(t) ∈ R3N , η(t) ∈ RmtotN , with mtot =
∑

jmj , u(t) ∈ R3N , J ∈
R3N,3N , C ∈ Rmtot,mtot , K ∈ Rmtot,mtot , ∆ ∈ Rmtot,3N .
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The set of equations can be written as:{
Jθ̈(t) + ∆T η̈(t) = u(t)

∆θ̈(t) + η̈(t) + Cη̇(t) +Kη(t) = 0

In addition, coefficients matrices have some properties:

J = JT > 0; C = CT > 0; K = KT > 0;[
J ∆T

∆ I

]
> 0

This latter property is found in literature [1],[2], and the necessity of it is
also prooved in section 4.4. ”>” stands for positive definite matrix. Matrices
Ci and Ki can be defined from the natural frequency ωj and the damping
coefficient ζj of each fexible mode in the following way:

Ci = diag(2ζjωj); Ki = diag(ω2
j ) ∀ j

So also C and K are diagonal matrices. The following table reports ans
example used as a reference for next sections:

Figure 18: Table 1

The modes are considered to be 4 for all the agents and a random variance
added from the nominal values in Table 1. So Ci ∈ R4,4 and Ki ∈ R4,4
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3.1 Measurable velocities

In this first case, angular velocity and displacement are considered to be
measurable by the agents, so they are supposed to be equipped with gyro-
scopes. For now, the objective is considered to be the reach of consensus
without the presence of a leader (reference), that will be introduced later.
Formally, consensus is:

lim
t→∞
||θi(t)− θj(t)|| = 0 ∀ i, j

lim
t→∞
||θ̇i(t)− θ̇j(t)|| = 0 ∀ i, j

meaning that all the agents reach the same state, or the same position and
velocity.

The proposed control law is the following:

ui(t) = −g
N∑
j

pijR(θ̇i(t)− θ̇j(t))−
N∑
j

qijR(θi(t)− θj(t))

R is, at least, a positive definite matrix, that in general should be considered
also diagonal for sake of simplicity. pij , qij and g are the control parameters.
It is well known from literature [9], that, if pij = pji, qij = qji and g > 0,
consensus is reached, and the final value of the angular positions and veloc-
ities is the average among the initial conditions (time averaging consensus).
This control law can be better understood in matrix form: calling

Lv = [lij ]v =

{∑
j pij i = j

−pij i 6= j
; Ld = [lij ]d =

{∑
j qij i = j

−qij i 6= j
;

the control law is:

u(t) = −(gLv ⊗R)θ̇(t)− (Ld ⊗R)θ(t)

Hence, it can be seen as a PD-like (Proportional Derivative) controller.
Matrices Lv and Ld are the Laplacian matrices corresponding to the graph of
the communication topology of angular velocities and displacements. Since
pij = pji and qij = qji, the graph is undirected and Lv = LTv ≥ 0, Ld =
LTd ≥ 0.

It is easier to understand now the role of matrix R since, as explained in
section 2.4, if it is diagonal, it splits the graph into 3 independent subgraphs,
one for each of the three coordinates.
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Some simulations are now performed with different topologies:

Simulation 1

A total of N = 5 agents is considered. The communication topology
is considered to be the same for angular velocities and displacements, so
Lv = Ld = L. L = D −A corresponds to the following graph:

Figure 19: Simulation 1 graph

The simulation parameters are:

L = 100


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 ; g = 4

The initial displacements are set at random between −1 and 1, while initial
velocities are set to 0 as the initial conditions of the modal vectors. C and
K are defined randomly starting from Table 1. J and ∆ are also defined
randomly starting from:

J0 =

100 3 4
3 280 10
4 10 190

 ; δ0 =


6.4564 1.2781 2.1563
−1.2562 0.9176 −1.6726
1.1169 2.4890 −0.8367
1.2364 −2.6581 −1.1250


while the matrix R are set as the identity matrix.
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The following Figures (20-21) show the transient of the roations around
the y − axis and the space of phases of x− y positions and velocities:

Figure 20: y-axis rotations of agents 1 to 5, Simulation 1

Figure 21: x-y plane of rotations (left) and velocities (right)

As expected, angular positions reach consensus to the average among
the initial positions (Figure 20). In the phase space plots (Figure 21), we
can also see how velocities start and finish at 0, so the paths are closed.
Flexible modes all converge to 0 since K > 0 and C > 0.

29



Simulation 2

In this simulation N = 7 agents are considered:

Figure 22: Simulation 2 topology, 7 agents

The simulation setting are the same as in simulation 1, but in this case
velocities are also set at random value, different from 0. The following
Figures (23-24) show the velocity and displacements transients and the x-y
plane portraits:

Figure 23: y-axis rotations and velocities of agents 1 to 7, Simulation 2

Also in this case both velocities and displacements reach consensus. With
respect to the previous situation, in this case positions trend is to diverge
as ramps with a slope equal to the average initial velocity.
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Figure 24: x-y plane portraits, Simulation 2

L = 100



2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 4 −1 −1 0
0 0 0 −1 2 0 −1
0 0 0 −1 0 2 −1
0 0 0 0 −1 −1 2


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3.2 Non-measurable velocities

Often satellites are not equipped with gyroscopes, so they are not able to

get measure of angular velocity. For this reason, the control law in section

3.1 can be modified [1] as follows:{
ui(t) = −zi(t)− g

∑N
j pijR(θi(t)− θj(t))

żi(t) = −gzi(t)− g
∑N

j (gpij − qij)R(θi(t)− θj(t))

Also in this case we can use block matrices to write the equations ∀ i:{
u(t) = −z(t)− (gLv ⊗R)θ(t)

ż(t) = −gz(t)− g((gLv − Ld)⊗R)θ(t)

In this case, z(t) =
[
z1(t)

T z2(t)
T ... zN (t)T

]T
is the controller state

that changes dynamically following the second equation in the set. In this
case the parameter g has a lower bound, and in literature [1] we can find that
always exists a g sufficiently large such that the system reaches consensus.

Simulation 2 of section 3.1 is reproposed with this modified control law,
initial velocities are set to 0, g = 100, Lv = 4Ld = 4L

Figure 25: y-axis rotations transient, Simulation 2
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Also in this case consensus is reached, parameters can be tuned to trade
between settling time and control input, or to avoid chattering. For sake of
completeness, the transient of the modal vectors is shown in the next Figure
(26):

Figure 26: modal coordinates transient

Now a last case is analyzed introducing the concept of leader. The leader
in undirected topologies is an agent, that can be a real physical object like
others or equivalently just a signal, that acts as a reference for the others.
So in this case consensus is the reaching of the same state of the leader:

lim
t→∞
||θi(t)− θleader(t)|| = 0 ∀ i

lim
t→∞
||θ̇i(t)− θ̇leader(t)|| = 0 ∀ i

As found in [29], control laws are able to guarantee consensus also in
the presence of a leader. To make the leader a constant reference we set its
dynamic to be:

Jleaderθ̈leader(t) = 0; ηleader(t) = 0
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A simulation is now presented with the following topology. The leader is

Figure 27: Directed topology with the presence of a leader

set as a convention in the last position in the enumeration (Agent 7, circled
in red). Since the leader is not moving, its state is constant and equal to the
initial conditions, the other agents should converge to it. In this example
leader‘s initial conditions are:

θleader(0) =
[
0.7684 0 0.224

]T
; θ̇leader(0) =

[
0 0 0

]T
The following figure shows the transient of the rotations around the x-axis:

Figure 28: Directed topology with the presence of a leader
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4 Directed graph cases

In this section directed topology cases are be introduced, the main results
of this work and related proofs are shown.

4.1 Eigenprojections in dynamic systems

To introduce the main results eigenprojections and their applications in
dynamic systems are shown. In general the eigenprojection of a matrix A is
an idempotent matrix A+ that satisfies:

Range(A+) = Null(Aν)

Range(Aν) = Null(A+)

where ν is the smallest natural number such that rank(Aν) = rank(Aν+1).
Since A+ is idempotent, it is completely determined by its range and null
space. Let‘s take an example:

A =

2 −1 −1
0 1 −1
0 0 0

 A+ =

0 0 1
0 0 1
0 0 1


In this case rank(A0) 6= rank(A1),rank(A1) = rank(A2) so ν = 1. A basis

of the range of A can be {

2
1
0

 ,
1

1
0

} and a basis of the null space is

1
1
1

.

So the dimension of null(A) is 1, that will correspond to the dimension
of range(A+), while the dimension of range(A) is 2, that will correspond
to the dimension of null(A+). This means that rank(A+) = 1. It is a
property of idempotent matrices to have the trace equal to the rank [6] so

trace(A+) = rank(A+) = 1. Combining this with range(A+) = span(

1
1
1

)

we get:

A+ =

0 0 1
0 0 1
0 0 1


Notice that the non-zero column must be the third otherwise null(A+) 6=
range(A). From this example we can see a useful property of eigenprojec-
tions: if a square matrix A such that rank(A) = rank(A2) has a row all set
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to 0, its eigenprojection is a matrix with the correspondent column set to 1
and all other entries set to 0.

It is a property of eigenprojections that:

A+ = lim
|τ |→∞

(I + τAν)−1

that can be used to link eigenprojections with dynamic systems. To this
end, let‘s consider the following differential equation:

ẋ+Ax = 0

and its Laplace transform:

sx(s)− x0 +Ax(s) = 0 → x = (sI +A)−1x0

We know that the solution in time domain is x(t) = e−Atx0, so using final
value theorem if limt→∞ x(t) exists and is finite we can write:

lim
s→0

s(sI +A)−1x0 = lim
t→∞

e−Atx0

Since in general (CB)−1 = B−1C−1, if C = sI +A and B = 1
sI:

lim
s→0

s(sI +A)−1 = lim
s→0

[(sI +A)
1

s
I]−1 = lim

s→0
(I +

1

s
A)−1

Now calling τ = 1
s and if ν = 1:

lim
t→∞

e−Atx0 = lim
|τ |→∞

(I + τA)−1x0 = A+x0

So we can conclude that if the solution of a first order differential equation
like ẋ+Ax = 0 has a finete limit to infinity, it is equal to A+x0 if rank(A) =
rank(A2). We can now apply this to some simple cases involving Laplacians.
Let‘s consider

ẋ+ Lx = 0

where L = Din − AT is the generalized Laplacian associated to a general
directed graph one source(leader) and a directed spanning tree starting from
it, for example:
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Figure 29: Graph example

L =

2 −1 −1
0 1 −1
0 0 0

 L+ =

0 0 1
0 0 1
0 0 1


Since the graph has a source, the correspondent third row is 0. This means
that, since rank(L) = rank(L2), the eigenprojection of L has the third
column set to 1 and all other entries set to 0, as already shown. Moreover
the 0 eigenvalue of L is simple, so since other eigenvalues are all positive,
the solution converges. This means that:

lim
t→∞

x(t) = L+x0 =

x0(3)
x0(3)
x0(3)


meaning that all the agents will converge to the source‘s (leader) initial
condition (consensus).

Figure 30: First order transient example
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This latter example can be generalized for all directed graphs with a
source, since rank(L) = rank(L2) holds in general. To show it let‘s take the
Jordan form of such Laplacian:

L = TJT−1; J =


J0 ... 0 0
0 J1 ... 0
... ... ... 0
0 0 ... Jn


where Ji is the Jordan block associated to the ith eigenvalue of L. Now
taking the square of L: L2 = LL = TJT−1TJT−1 = TJ2T−1. Since T is
full-rank, the rank of L2 is the same of J2.

J2 =


J2
0 ... 0 0
0 J2

1 ... 0
... ... ... 0
0 0 ... J2

n


Consider in a slightly more general case d as the number of sources in the
graph, rank(L) = n − d, moreover d is also the number of rows set to
0 in the Laplacian (if d = 0 then rank(L) = n − 1 since we have the 1
vector that is a basis of null(L), but the reasoning is the same). This
means that the algebraic multiplicity of the 0 eigenvalue is always equal to
geometric multiplicity, this can be shown writing g (geometric multiplicity)
as g = dim{null(L − 0I)} = dim{null(L)} that is equal to the number of
zero rows of L. This means that the 0 eigenvalue is semisimple and that the
correspondent Jordan blocks are of dimension 1. All other Jordan blocks
are full-rank so this implies that rank(J2) = rank(J). For example:

L =


2 −1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 J =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2


rank(L2) = rank(L) = rank(J) = rank(J2).
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Let‘s now analyze the second order case, starting from a general case
like:

ẍc + gLẋc + Lxc = 0

where g ≥ 0 is a real number. We can transform the system in a first order
one as in (2.5):

ẋ+Ax = 0

where A =

[
0 −I
L gL

]
and x =

[
xc
ẋc

]
. In this case rank(A) 6= rank(A2) so

we can‘t use the same approach as for the first order dynamics. Let‘s at
first study the sign of the eigenvalues of the system: using block matrices
properties (2.3) we can write that:

det(

[
H1 H2

H3 H4

]
) = det(H1)det(H4 −H3H

−1
1 H2)

and apply it to A− sI:

det(

[
−sI −I
L gL− sI

]
) = det(−sI)det{gL− sI − L(−1

s
I)(−I)} =

= det(−sI)det(gL− sI − 1

s
L) = det(−sI)det((g − 1

s
)L− sI) =

= det(−sI)det(L− s

g − 1
s

I)

So if λi = si
g− 1

si

is an eigenvalue of L, si is an eigenvalue of A. We can now

solve the latter equation to find the eigenvalues of A as function of those of
L:

s2i − gλis+ λi = 0

s1,2i =
gλi ±

√
g2λ2i − 4λi

2

If all the eigenvalues of L are real, we know that λi ≥ 0, so if g2λ2i < 4λi
the square root is complex and Re{si} = gλi ≥ 0 since g ≥ 0. If g2λ2i ≥ 4λi

the square root is a real number, but
√
g2λ2i − 4λi ≤ gλi so also in this case

si ≥ 0. If the eigenvalues of L are in general complex, a more strict bound
for g that guarantees the eigenvalues si to have non negative real part can
be found in literature [3], in particular

g2 >
Im2(λi)

Re(λi)||λi||2
∀ i|λi 6= 0
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If the two Laplacians matrices are not the same, the explicit computation of
eigenvalues is not trivial and can be done using numerical tools. This shows
that all the eigenvalues of the system are non-negative, but still we have to
proove consensus.

To this end, let‘s consider the solution in the time domain x(t) = e−Atx0.
The exponential can be replaced by its Taylor series:

e−At = I + (−A)t+ (−A)2
t2

2
+ (−A)3

t3

3!
+ ...

Now substituting the canonical Jordan form of A = TJT−1 we get:

e−At = I + (−TJT−1)t+ (−TJT−1)2 t
2

2
+ (−TJT−1)3 t

3

3!
+ ...

Since all the powers can be written as (TJT−1)n = TJnT−1, the whole
exponential can be rewritten as:

e−At = Te−JtT−1

From now on, let‘s consider A as (−A) for sake of simplicity, so all the
eigenvalues of A are non-positive. The Jordan matrix J can be written as
J = diag(J0, J1, ..., Jn) where Ji is the Jordan block associated to the i− th
eigenvalue. If we consider J0 as the Jordan block of the 0 eigenvalue, since
it has algebraic multiplicity 2 and geometric multiplicity 1, it is equal to:

J0 =

[
0 1
0 0

]
Moreover ediag(ji) = diag(eJi) so we can write:

eJt =

[
eJ0 0
0 eFt

]
where F is the block matrix containing all the non-zero eigenvalues of A.
Notice that Jn0 = 0 for any natural n > 1 so:

eJt =

[
I + J0t 0

0 eFt

]
Let‘s now consider the final value taking the limit:

lim
t→∞

eJt ≈
[
I + J0t 0

0 0

]
since eFt goes to 0 having all strictly negative eigenvalues.
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Now we can say that

lim
t→∞

eAt ≈ T
[
I + J0t 0

0 0

]
T−1 = T

[1 t
0 1

]
0

0 0

T−1
T is a matrix whose columns are the right generalized eigenvectors of A,
while T−1 is a matrix whose rows are the left generalized eigenvectors of
A. Since in J we put the two zero eigenvalues in the first to places, the
correspondent left and right eigenvectors will be in the first two columns

and rows of T−1 and T that are respectively l1 =
[
1 0 0 .. 0

]T
and

l2 =
[
0 1 0 .. 0

]T
, r1 =

[
1 0 1 0..

]T
and

[
0 1 0 1..

]T
. This can

be intuitively seen considering that if we take a vector v that has all zero
entries exept one set to 1, vTA = 0 if the 1 is in the same place of the 0 row
of L. Moreover if we take a vector v with half of the entries set to 1, and the

other half set to 0 (
[
0 0 0 1 1 1

]T
for instance), Av = 0. Then Jordan

form ”rearrange” variables in order to have the alternation of xi and ẋi, so
also the entries of the eigenvectors will follow that pattern. Now, calling xl
and ẋl the initial conditions of the leader, we can compute:

lim
t→∞

eAtx0 ≈ T

[1 t
0 1

]
0

0 0

T−1x0 =


xl + ẋlt
ẋl

xl + ẋlt
ẋl
...


where x0 =

[
xl ẋl xc0(1) ẋc0(1) xc0(2) ẋc0(2) ...

]T
is the initial con-

ditions vector with the initial position and velocity alternated for each agent.
This establishes consensus since the positions and velocities of all the agents
(leader included) are the same. Moreover notice that position diverges as
a ramp, and that if ẋl = 0 all the agents converge to the same constant
position. At last it can be useful write this latter result as

lim
t→∞

eAtx0 ≈
[
L+ L+t
0 L+

]
x′0

where x′0 =

[
xc(0)
ẋc(0)

]
.
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4.2 Rigid dynamics, continuous time

Goin back in the aerospace context, let‘s start with simple cases, so flexi-
ble dynamics and external disturbances will be neglected. Considering N
agents, we can write the single agent dynamic as Jiθ̈i = ui where Ji is the
inertia matrix of the i-th agent, θi = [θix θiy θiz]

T and ui = [uix uiy uiz]
T .

We can apply to the dynamic system the following control law:{
Jθ̈ = u

u = −gLθ̇ − Lθ

where J = blkdiag{J1, J2, ..., JN}, θ = [θT1 , θ
T
2 , ..., θ

T
N ]T and L = L1⊗R with

R a diagonal positive matrix.
L1 represents the communication topology between the agents and L = L1⊗
R splits in 3 identical graphs that do not share information each other, one
for each coordinate, as explained in section 2.4. In general the comunication
topology among the agents is considered to have one Leader wich is a source
and a directed spanning tree. The Laplacian is a generalized one computed
as L = Din −AT .

As before (referring to section 3, not done yet), consensus is reached if:

lim
t→∞
||θi(t)− θj(t)|| = 0 ∀ i, j

lim
t→∞
||θ̇i(t)− θ̇j(t)|| = 0 ∀ i, j

Since J is positive definite, also J−1 is and θ̈ + gJ−1Lθ̇ − J−1Lθ = 0 re-
spects all the hypothesis used in section (4.1) since multiplying by a positive
definite matrix doesn‘t change the sign of the eigenvalues, so consensus is
reached. The g parameter and the weights in the communication graph can
be changed to tune the system behaviour as shown in the following numerical
examples.

Example 1: in this first simulation 4 agents and a leader are considered.
System parameters are the following:

L1 = ε(Din −AT ) = 200


1 0 0 0 −1
−1 1 0 0 0
0 −1 1 0 0
0 0 0 1 −1
0 0 0 0 0

 ; J0 =

350 3 4
3 280 10
4 10 190

 ;

Ji = rand(0.5÷ 2)J0: the inertia matrices of the agents are randomly com-
puted starting from J0
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The leader is considered to be, as a convention, the last in the agents
enumeration.

[
θ(0)

θ̇(0)

]
=


rand(12, 1)

θf
0
0
...


So the initial positions of the agents are random except for the leader that
has θ5(0) = θf = [0.7684, 0, 0.224]T that will be the reference for other
agents. The g parameter is set to 2. The following Figures(31-32) shows the
graph topology and the transient of the θy and θ̇y for all the agents:

Figure 31: Graph topology for rigid dynamics, agent 5 (red) is the leader

Figure 32: y-axis rotation for rigid dynamics

Notice that L has all real eigenvalues, so in this case g > 0 is sufficient
to guarantee consensus. In Figure 34 a comparison with different values of
g is shown.
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Figure 33: y-axis angular velocity fo rigid dynamics

Figure 34: g values comparison

We can notice that as g increases, the oscillatory behaviour decreases.
For very small values of g we get a long transient with great oscillations.
Let‘s now perform the same simulation with the Leader‘s initial velocity
different from 0, we expect the final value of the angular position of all the
agents to diverge as a ramp with a slope equal to the Leader‘s initial velocity.
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Figure 35: Leader‘s initial velocity different from 0

As expected the position of all the agents goes to infinity trying to follow
the leader‘s one. In this case the initial condition θ̇5(0) = 0.1rad/s. Let‘s
now analyze more complicated topologies, as the example in the next figure:

Figure 36: Graph topology, agent 8 (red) is the leader

In this case, to get a more realistic simulation, an input saturation is
added to the model, that for small satellites can be around 0.02 Nm, so
umax = 0.02, umin = −0.02. The initial conditions and physical parameters
are the same as the previous simulation, obviously adding 3 agents.
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The generalized laplacian L1 = Din −AT in this case is:

L1 = 200



2 −1 0 0 0 0 0 −1
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
−1 0 0 0 1 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0


Since the eigenvalues are not all real, the lower bound of g is: gmin =

0.0065. Above this value, we can tune g to tune the transient, the following
simulation was performed with g = 2.5.

The following Figure(37) shows the transient of the rotations around the
y-axis:

Figure 37: y-axis rotations for agents from 1 to 8, rigid dynamics

Consensus is reached in a reasonable time also in the presence of strong lim-
itations on the input saturation. Now a different way to tune the transient
is shown. Until now, the entire Laplacian matrix has been multiplied by a
scalar factor ε, giving the same weight to all the arcs in the graph. However,
the weights of the arcs can be tuned arbitrarely, so the idea is to lower the
value of ε and giving a weight to each arc that is proportional to the distance
in the graph between the node that it reaches and the Leader. Taking as an
example the same topology of the last simulation (Figure 25) we can obtain
the same performances in terms of settling time and control input energy
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giving to the arcs different weights as in the following figure:

Figure 38: Graph topology with modified weights

So now the graph Laplacian can be written as:

L1 = εDw(Din −AT ); Dw = diag(d); d =
[
1 5 4 3 2 4 5 0

]
The diagonal matrix Dw depends on the vector d that contains the distances
as said before. The previous case can be seen as a subcase where d =[
1 1 1 1 1 1 1 0

]
and ε = 200, to get similar performance in the

two cases, we can set the quantity ||d||1ε to be the similar, so since in the
first case ||d||1 = 7, ε can be set to 58 in this second case. The following
Figure(39) shows the comparison between the two cases:

Figure 39: Case 1 above, Case 2 below
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4.3 Rigid dynamics, discrete time

In this section the discrete time equivalent of the system in section 4.2 is
studied. This can be useful to compute an estimate of the angular velocity
in case it is not measurable. Let‘s start considering:

ẋ(t) =

[
θ̇(t)

θ̈(t)

]
=

[
0 I

−gJ−1L −J−1L

] [
θ(t)

θ̇(t)

]
= Ax(t)

We can use the Euler‘s method to discretize ẋ(t) = Ax(t):

ẋ(t) ≈ x(t+ k)− x(t)

k

x(t+ k) ≈ (kA+ I)x(t)

kA+ I =

[
I kI

−kgJ−1L −kJ−1L+ I

]
So we can say that:

θ(t+ k) ≈ θ(t) + kθ̇(t)

θ̇(t) ≈ θ(t+ k)− θ(t)
k

This means that the velocity is approximated with the average velocity
between two time instants, t and t + k. Clearly limk→0

θ(t+k)−θ(t)
k = θ̇(t)

so the approximation is consistent. Now an upper bound for k must be
computed to guarantee the convergence of the solution. Recalling that for a
discrete LTI system the eigenvalues of the associated matrix must be in the
unit circle, we can write:

eig(kA+ I) = 1− k
gλi ±

√
g2λ2i − 4λi

2

where λi is an eigenvalue of J−1L. Calling sj =
gλi±
√
g2λ2i−4λi
2 and re-

calling (4.1) that if g2 > Im2(λi)
Re(λi)||λi||2 , Re(sj) > 0 for all non zero eigenvalues.

Let‘s call Remin the minumum real part among the real parts of all the non
zero sj , all the non zero eigenvaluea of A lie in a circular segment:

sj ∈ Θ = {X : X = a+ ib; a2 + b2 ≤ k||sj ||max; a ≥ kRemin}
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So 1−ksj for k = 1 lies in a circular segment that is flipped with respect
to Θ and translated by 1, in the following Figure (40) represented by the
green area:

Figure 40: Visual proof

In this Figure (40) smax = ||sj ||max is the maximum modulus among all the
eigenvalues. The distance BC is BC = 1 − Remin. Reducing k both the
radius of Θ and the distance from point C = (1,0) are reduced. To ensure
Θ ⊂ U where U is the unit circle (grey circle with dashed edge), segment
AB for a generic k must be less or equal to segment ED.

AB =
√
k2s2max − (1− kRemin)2, ED =

√
1− (1− kRemin)2

AB ≤ ED → k2s2max − (1− kRemin)2 ≤ 1− (1− kRemin)2

k ≤ 1

smax
↔ k ≤ 1

||sj ||
∀ j : sj 6= 0
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Clearly, if sj = 0 the correspondent eigenvalue is 1, but the behaviour of
the zero eigenvalues of A was already analyzed in 4.1, so this discrete time
equivalent diverge in the same way, for non zero leader‘s initial velocities.

Following Figures (41-42) show two simulations where the control law
uses the estimated velocity, smax = 5.2513 so kmin = 0.1904, in the fisrst
simulation k = 0.01, in the second k = 0.2.

Figure 41: First simulation, k = 0.01

Figure 42: Second simulation, k = 0.2
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4.4 Flexible dynamics, continuous time

In this section flexible dynamics are added to the model in order to get
higher accuracy. As in section 3, the ”rigid” equation is coupled with a
second order equation that models the effects of a flexible appendage on the
motion of the whole body:

Jθ̈(t) + ∆T η̈(t) = u(t)

∆θ̈(t) + η̈(t) + Cη̇(t) +Kη(t) = 0

u(t) = −gLθ̇(t)− Lθ(t)

Also in this case, considering N agents (N-1 followers and 1 leader) J =
diag(Ji) > 0, C = diag(Ci) > 0, K = diag(Ki) > 0, θ(t) ∈ R3Nangular
displacements vector, η(t) ∈ RmtotN , where mtot is the sum of the number
of modes of the flexible parts of all the agents, is the modal coordinate
vector. ∆ = diag(δi) is the coupling matrix from the space of θ to the space
of η.

We can reduce the equations to a single first order equation:

Aẋ(t) +Bx(t) = 0

A =


I 0 0 0
0 J 0 ∆T

0 0 I 0
0 ∆ 0 I

 ; B =


0 −I 0 0
gL L 0 0
0 0 0 −I
0 0 K C

 ; x(t) =


θ(t)

θ̇(t)
η(t)
η̇(t)


A is a symmetric matrix, so eig(A) are all real. Moreover, taking the

Schur‘s complement of A:

S(A) =

[
I 0
0 J

]
−
[
0 0
0 ∆T

] [
0 0
0 ∆

]
=

[
I 0
0 J −∆T∆

]
If J −∆T∆ > 0 also A > 0. So we assume:[

J ∆T

∆ I

]
> 0 ↔ J −∆T∆ > 0 → A > 0

Hence A is invertible. In particular:

A−1 =

I 0 0 0
0 (J −∆T ∆)−1 0 −(J −∆T ∆)−1∆T

0 0 I 0
0 −∆(J −∆T ∆)−1 0 ∆(J −∆T ∆)−1∆T


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Since A > 0 also A−1 > 0.

B can be written as B =

[
B1 0
0 B2

]
. The block B2 has all positive eigen-

values, this can be saied since C = CT > 0, K = KT > 0, so the associated
system is stable, moreover det(B2) = det(C)det(C−1K) 6= 0 so there is no
zero eigenvalue.

The block B1 was already studied in section 4.1. This means that the
product A−1B does not change the sign of the eigenvalues of B, that are all
non negative, moreover the zero eigenvalues of A−1B are the same with the
same multiplicity of B1. So e−A

−1B can be written in the same way as in
section 4.1:

e−A
−1Bt = Te−JtT−1 = T

[
eJ0t 0
0 eFt

]
T−1

Since eFt converges (eigenvalues of F are strictly negative):

lim
t→∞

η(t) = 0; lim
t→∞

η̇(t) = 0

Now some simulations are presented with different conditions.

Simulation 1
In this first simulation the same topology of Figure 36 (N = 8) is considered.
The considered parameters are:

θ0 =

[
rand(3(N − 1), 1)

θf

]
; θ̇0 =

rand(3(N − 1), 1)
0
0
0

 ;

η0 = rand(4N, 1); η̇0 = rand(4N, 1); θf =
[
0.7684 0 0.224

]
J ,C,K and ∆ are defined randomly as in section 3.

g = 3; L = L1 ⊗ I; L1 = ε(Din −AT );

ε = 200 Dw = diag(
[
1 1 1 1 1 1 1 0

]
)

The following figure shows the transient of the rotation around the y−axis:
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Figure 43: Rotation around y-axis for agents 1 to 8, flexible dynamics

Simulation 2
In this second simulation two cases are presented, in the first case, an undi-
rected topology as in section 3 is used, then the matrix Dw is used to trans-
form it in an undirected one to see if better performances can be achieved.
The next figure shows the undirected topology:

Figure 44: Undirected topology, 7(red) is the leader

The considered parameters are (N = 7):

θ0 =

[
rand(3(N − 1), 1)

θf

]
; θ̇0 =


rand(3(N − 1), 1)

0
0
0

 ;

η0 = rand(4N, 1); η̇0 = rand(4N, 1); θf =
[
0.7684 0 0.224

]
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J ,C,K and ∆ are defined randomly as in section 3.

g = 3; L = L1 ⊗ I; L1 = ε(Din −AT );

ε = 200 Dw = diag(
[
1 1 1 1 1 1 0

]
)

The next figures show the transient of the rotation around y− axis and the
transient of the flexible modes of all the agents:

Figure 45: Case 1, y-axis rotations for agents 1 to 7

Figure 46: Modal coordinates for all the agents, all components
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As expected from theory, angular displacements converge to the Leader,
while modal coordinates converge to 0. A measure of the control input
signal energy is computed as ue = ||ua||2, where ua is the vector that
contains the signal norms of all the input torques for all the agents. In
this first case ue = 92.4589. Let‘s now consider the case where Dw =
diag(

[
1 1 2 3 3 4 0

]
) and ε = 58:

Figure 47: Case 2, y-axis rotations for agents 1 to 7

In this case performances in terms of setlling time are slightly better, but
substantially the same, for example considering a tolerance band of ±0.01
this case is already settled at 40 seconds, while the first case was not. How-
ever there is a big difference in terms of control input, since in this case
ue = 32.8235, so almost a third of the previous. This can be seen also from
the following comparison between the control inputs on the y − axis in the
two cases:
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Figure 48: Black: Case 1, Red: Case 2

Notice that the product DwL1 is the Laplacian associated to a directed
graph, in particular it is obtained by splitting the arcs of the previous undi-
rected one and giving each of them a different weight depening on the entries
of Dw:

Figure 49: Graph associated to DwL1
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4.5 External disturbances

In this section, a model for external disturbances is shown and added to the
simulations. The external torques can be splitted in four different contribu-
tions:

Jθ̈(t) + ∆T η̈(t) = u(t)− Taer − Tmag − Trad − Tgrav
θ̈(t) = J−1u(t)− J−1∆T η̈(t)− J−1(Taer + Tmag + Trad + Tgrav)

• Aerodynamic friction torque:

The orbit is considered to be at 300Km, the air density is computed
using JB2008. The aerodynamic force is computed as Fa = 1

2ρSv
2Cd

and the corresponding torque as Taer = r ∧Fa where r is the distance
vector between the center of pressure and the center of mass. To get
the worst case scenario the center of pressure is set at the border of
the spacecraft. To compute v a simulation of the spacrafts‘ orbit is
added to the model. For sake of simplicity the orbit is considered the
same for all the spacrafts, circular.

• Gravity gradient torque:

The gravity gradient provoke a net torque around the center of mass.
This torque can be computed as:

Tgrav = 3n2

(Izz − Iyy)φ
(Izz − Ixx)θ

0


where n =

√
µ
a3

, µ: gravitational parameter, a: orbital parameter,

Ixx, Iyy, Izz: Inertia matrix diagonal entries.

• Solar radiation pressure:

Light rays from all celestial bosies carry some momentum, all of them,
except the sun, are completely negligible. This produces a net force
on the radiation center of pressure, that, if is not coincident with the
center of mass, produces a torque. The force can be evaluated as:

Frad = (1 +K)PsS
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where K is the reflectivity of the body (0÷1),Ps = Is
c , Is = 1400W/m2,

c = speed of light, S = frontal area. The corresponding torque is:

Trad = r ∧ Frad

where r is the distance vector between the center of mass and the
center of pressure.

• Magnetic torque:

The current loops in the spacecraft interact with the earth‘s magnetic
field and produce a torque, since it is very complex to build an accurate
model of the magnetic field, we just consider this disturbance as 10%
of all the others. So:

Tmag = 0.1(Taer + Trad + Tgrav)

The orbit is considered to be the same for all the agents for sake of sim-
plicity. The employed model is the free 2 body equation:

v̇ +
µ

||r||3
r = 0

where r is the reciprocal position vector (Earth-Spacecraft), µ is the Earth‘s
gravitational parameter and v̇ is the linear acceleration. In the following
Figures (50-51) some of the time evolutions of these external torques are
analyzed, starting from the aerodynamic torque with Cd = 2.2:

Figure 50: Aerodynamic torque on Agent 1
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The aerodynamic torque follows the the coordinates of the orbit with an
oscillatory behaviour.

The following Figure (51) shows two different cases of gravity gradient
torque, with different Inertia matrices, clearly since the final position of the
body has 0 y component, the gravity gradient torque on y converges to 0:

Figure 51: Gravity gradient torque, above Jxx < Jyy < Jzz, below Jyy <
Jxx < Jzz

The solar radiation is in the order of 10−7 even in the worst case sce-
nario (maximum distance from the center of pressure), so it is considered
completely negligible. Let‘s now analyze the effect on the final angular po-
sitions. The following Figure(52) shows the comparison between two cases
after a long time, the below with external torques, the above without:
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Figure 52: Positions settlings

In the second case the position trend is to settle to a final position around
10−4, while in the first oscillations are still decreasing. So in the presence
of external torques the control law is not able to guarantee an arbitrary
precision on the position just waiting enough for it to settle. This problem
is an example of possible future works.
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5 Failure Management

In this section possible failures of one or more of the agents is taken in
consideration, more precisely a failure that affects the capability of com-
munication and, as a consequence, the graph topology. Let‘s consider the
following example where 7 is the leader:

Figure 53: Topology example

If agent 3 stops to communicate with the others, the graph splits in 3 sub-
graphs each of them independent from the others. So we expect each of
the subgraphs to evolve with initial conditions equal to the state that they
reached at the instant of failure. The following Figure (55) shows the modi-
fied topology and the tansient of rotation angles around the z−axis if agent
3 fails after 20 seconds:

Figure 54: Modified topology
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Figure 55: Transient with agent 3 failing at 20s

As expected, after 20 seconds, agents 1 and 2 still reach consensus, the
others will not since there is no direct path starting from the leader. In par-
ticular agent 3 is completely disconnected, so it will follow its own dynamics,
while agents 4,5 and 6 create a subgraph with two sources and agent 6 trend
is to get an average position between 4 and 5.

These kind of situation can be faced with different strategies depending
on how new communications can be established among the working agents
(adding new edges to the graph). A first approach can be to recompute
thetopology among the agents that still work in a way that there exist a
directed path from the leader to any agent adding the least number of edges.
A possible algorithm (1) could be:

1. Recompute the graph Laplacian removing the broken agent(s).

2. Check if rank(L) = 1, if so then a directed path exists and the algo-
rithm stops, otherwise go to step 3.

3. Modify a 0-row that is not the last (corresponding to the leader) so
that the diagonal element L(i, i) = 1 and L(i, i ± 1) = −1. To chose
between i± 1, select the one such that the j − th agent with j = i± 1
belongs to a different subgraph with respect to the i− th, if possible.

4. Repeat from 2
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In this way the resulting Laplacian corresponds to a new topology that
guarantees consensus (in wich the broken agent(s) can be reinserted or not).
Taking as example the case in figure 42 and 43, we have the original Lapla-
cian L0 and the Laplacian after the failure L1 that are:

L0 =



1 0 0 0 0 0 −1
0 1 0 0 0 0 −1
−1 −1 2 0 0 0 0
0 0 −1 1 0 0 0
0 0 −1 0 1 0 0
0 0 0 −1 −1 2 0
0 0 0 0 0 0 0


; L1 =



1 0 0 0 0 0 −1
0 1 0 0 0 0 −1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 −1 2 0
0 0 0 0 0 0 0


Applying the algorithm, we get a new Laplacian that is (reinserting agent

3 after the modifications):

L =



1 0 0 0 0 0 −1
0 1 0 0 0 0 −1
0 0 0 0 0 0 0
0 −1 0 1 0 0 0
0 0 0 −1 1 0 0
0 0 0 −1 −1 2 0
0 0 0 0 0 0 0


that corresponds to:

Figure 56: Recomputed topology, algorithm 1
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A simulation is now shown in which at 20 seconds agent 3 breaks, and
at 25 seconds the modified topology is replaced:

Figure 57: Angular displacement around z − axis, replaced topology at 25s

Agent 3 diverge as a ramp with a slope equal to the instantaneous ve-
locity at 20 secods (the remaining oscillations are due to the flexible parts),
while other agents reach consensus.

A second approach can be to set new leaders so that each subgraph
has one. In particular each subgraph can set as leader the agent that was
connected with an agent now belonging to a different subgraph. In case this
happens for more than one, select the one that has the minimum gap in
therms of position and/or velocity using the last information available. So
a possible algorithm (2) can be:

1. Identify all the independent subgraphs

2. Check if a subgraph has a leader, if yes, move to point 4, if not move
to point 3

3. Among the agent(s) that were connected to an agent that now be-
longs to a different subgraph, choose the one that has the minimum
displacement and/or velocity gap (in terms of norm) with respect to
the neighbours and set it as a leader.
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4. Check if the subgraph topology is capable of reaching consensus, mod-
ify it as in algorithm 1 (obviously not allowing edges across the sub-
graphs).

5. Step to another subgraph if present, otherwise stop

For example, referring to the same starting topology (figure 43), we have
3 independent subgraphs, in the left one agent 7 is the original leader and
the topology ha a directed path to agents 1 and 2. The subgraph on the
right has two agents previously connected to agent 3, but agent 4 have a
smaller position gap at the failure instant (||θ4(20)− θ3(20)||), so it is set as
a leader. Now algorithm 1 is used to guarantee the existence of a directed
path from agent 4 to 5 and 6. The modified subgraph Laplacian is:

Lsub3 =

 0 0 0
−1 1 0
−1 −1 2

 or Lsub3 =

 0 0 0
0 1 −1
−1 −1 2


Obviously the subgraph containing only agent 3, it becomes the leader

of itself. The new topology is the following:

Figure 58: Recomputed topology, algorithm 2

In the next figure the angular displacement transient is shown:
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Figure 59: Rotations transient, topology switched at 25s, algorithm 2

Clearly in this latter case, the subgraph of 4,5 and 6 diverges following
the velocity of 4, so it is less useful. However a third approach can be used
with a slight modification to the second one:

1. Use algorithm 2

2. Put an edge from the original leader to each of the new ones, except
for the broken agents.

In this way the topology is divided in groups of agents, and the leader of each
subgroup is connected to the original leader. It is clear that these strategies
must be chosen depending on which communications can be established
between the agents, if any communication is possible, then there always exist
a simple topology that connects the leader with each agent with a directed
edge. So in general the strategy that brings the smallest number of changes
in the graph is preferred. In this latter algorithm, the new subgroups leaders
should be chosen also depending on the capability of receiving information
from the original one.

The following two Figures (60-61) show the modified topology in this
last case and the correspondent transient:
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Figure 60: Recomputed topology, algorithm 3

Figure 61: Rotations transient, topology switched at 25s, algorithm 3

These three strategies can be chosen also depending on how the graph
is splitted after the failure and on subobjectives of the MAS, for example to
minimize the number of communications.
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6 Conclusions

The objective of this work was to study and improve the problem of control-
ling a Multi-Agent System in the aerospace context. After the introductive
chapters, section 3 is a resume of some control strategies over undirected
communications topologies with some numerical simulations. In particular
a set of satellites with flexible appendages, considered both able or not to
measure angular velocity, was considered taking consensus as final objective.

In section 4 the control laws in section 3 are extended to the directed
graph topologies, in order to reduce the number of communications needed
to reach cnsensus or to improve control performances. Sufficient parame-
ters conditions to reach consensus over directed connected topologies with a
source (leader) are given and some different ways to tune them are shown.
Moreover, a way to transform undirected topologies into directed ones to get
a strong improvement in terms of control input energy, leaving unaltered the
transient charachteristics, is discussed. To get more precise simulations, a
model of the most relevant external disturbances in Low-Earth Orbit is pro-
posed and included. At last some sufficient conditions for the discrete time
equivalent of the system to converge are provided in order to implement a
differentiator to estimate the angular velocity if not measurable.

In section 5 the effects of the possible failure of an agent are disucssed
with some algorithms to overcome the changes, trying to minimize the dif-
ference between the new and the original topology. Then some simulations
with switching graphs are given. Hence, the overall objective of the thesis
is reached.

As possible future works many aspects can be studied, for example find
a control law that does not need a velocity measure or estimate to guaran-
tee consensus over directed topologies, generalize section 4 to an arbirtary
number of leaders, study the beahviour of the system in large scales or get
an higher number of parameters comparisons to find the best combinations
in different real cases.
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7.1 Figures

[1] Starling1 Swarm Technology Demonstration (Sanchez et al., 2018)

[2] JPL - Mars Cube One (MarCO) at: www.jpl.nasa.gov
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