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Abstract
The rapid development of Artificial Intelligence (AI) is revolutionizing an in-

creasing number of fields and industries. The exploration of another planet through
autonomous rovers could be considered the most fascinating application of such
technologies. These robots need efficient and robust autonomous guidance and nav-
igation techniques to make decisions and avoid obstacles in challenging and partially
unknown environments. Machine Learning is a type of AI, and Deep Reinforcement
Learning is one of the most recent and promising techniques to face this challenge
among its branches. It combines the framework of the Reinforcement Learning ap-
proaches, where an agent learns a policy that maps states into actions by interacting
with an environment and obtaining a numerical reward depending on its behaviour,
with the approximation ability of the Deep Neural Networks.

Inspired by these considerations, this thesis focuses on the development of a
collision avoidance algorithm based on Deep Reinforcement Learning applied to a
ground robot equipped with a depth camera. A Neural Network, that represents the
policy of the agent, has been trained to map a set of inputs obtained from simulated
odometry and camera data into linear and angular velocity of the robot. The training
has been performed using Proximal Policy Optimization (PPO), that is a state-of-
the-art policy learning algorithm, and a multi-stage approach, consisting in training
the agent in simulated scenarios characterized by incremental complexity, suitably
designed. To increase the performance of the control algorithm, a hybrid control
framework has been implemented to switch between the PPO stochastic policy and
a deterministic policy able to find a time-convenient path to reach the target in
absence of obstacles. The deterministic policy has been obtained by training a
Neural Network using the Deep Deterministic Policy Gradient (DDPG) and the
switching process is based on robot’s sensors measurements of the environment.
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The algorithm has been tested through MATLAB simulations in several different
and challenging scenarios, showing good performance in avoiding static obstacles.
Finally, the algorithm has been verified on a Gazebo simulator, revealing acceptable
performance dealing with complex environments in a more realistic framework.
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Chapter 1

Introduction

1.1 Motivation

The rapid development of Artificial Intelligence (AI) is revolutionizing our world:
from finance to agriculture, from healthcare to cybersecurity, from surveillance to
marketing, a huge number of fields and industries are taking advantages of such
innovative and powerful techniques [1–3]. The space sector is recently catching up
to this trend, applying advanced computer algorithms to problems in space science
and technologies [4–6]. For example, the exploration of another planet through au-
tonomous rovers could be considered as one of the most fascinating applications of
these technologies. Autonomous guidance and navigation techniques are essential
in space exploration missions: they allow robots to traverse unknown and complex
terrains covering more distance with respect to the situation with human drivers in
the loop [7]. In addition to autonomy, rover navigation must be safe and efficient:
the aim is to reach a human-like ability to identify and avoid possible hazards, such
as steep slopes or large rocks, allowing the rovers to safely cross over hard terrains
while saving energy consumption, since the robots feature a limited amount of en-
ergy per day that is used for moving, using science instruments, and communicating
with Earth. The evolution of NASA Mars Rovers in the last three decades, moti-
vated by the great communication latency between Mars and Earth, shows great
developments in this direction: from Sojourner to Perseverance, passing through
Spirit, Opportunity, and Curiosity, each rover has been designed to travel safely and
efficiently more distance in a Martian day operation with fewer instructions from
engineers on Earth [8–14].

In recent years, the literature has shown an increasing trend in applying Deep
Reinforcement Learning (DRL), a branch of Machine Learning (ML), which in turn
is a type of AI, to Autonomous Mobile Robot Navigation. DRL combines the frame-
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1.2. Background

Figure 1.1: From left to right: Sojourner, a Mars Exploration Rover project test
rover and Curiosity in JPL’s Mars Yard testing area [credit: NASA/JPL-Caltech].

work of the Reinforcement Learning approaches, where an agent learns a policy that
maps states into actions by interacting with an environment and obtaining a nu-
merical reward depending on its behaviour, with the approximation ability of the
Deep Neural Networks. The advantages of such innovative methods, that rely on
map-free, robust adaptability, and limited influence from sensors quality [15], have
attracted the interest of the robotic research community. Inspired by these con-
siderations, the aim of the thesis is to study and implement Deep Reinforcement
Learning techniques to develop a collision avoidance algorithm to make a ground
robot able to autonomously move in an indoor environment, reaching a user-defined
target avoiding the obstacles present in the path.

1.2 Background

1.2.1 Machine Learning

Machine Learning represents one of the most important and prolific AI branches.
It has been defined by Michie et al. [16] as an ensemble of “automatic computing
procedures based on logical or binary operations that learn a task from a series of
examples” . ML approaches are usually divided into three separate categories [17–
19]:

• In supervised learning, an agent is provided with a labelled set of training
examples, consisting of input and expected output couples, by an external
supervisor. The objective is to make the agent able to develop a generalization
ability to work properly with different situations with respect to the ones
present in the training set.

• In unsupervised learning, the agent is provided with unlabelled training data
without the presence of a supervisor and is tasked with finding patterns hidden
in the collection to determine how to group (cluster) the elements accordingly.

2



1.2. Background

• In reinforcement learning, an agent learns in a trial-and-error manner by acting
interactively within an environment that provides feedbacks in the form of
rewards based on the actions taken.

1.2.2 Reinforcement Learning

Reinforcement Learning has been described by Sutton and Barto [19] as “learning
what to do - how to map situations to actions - so as to maximize a numerical reward
signal. The learner is not told which actions to take, but instead must discover which
actions yield the most reward by trying them”.

1.2.2.1 Markov Decision Process

RL algorithms work on systems that are formalized as Markov Decision Pro-
cesses (MDPs). MDPs are mathematical structures that idealize sequential decision-
making problems in finite forms, aimed to represent their essential features in a
simple way. The core of the MDP is learning from interaction to achieve a goal.
The agent, that is the learner and decision maker, interacts with the environment,
defined as everything that is not the agent. The interaction occurs at each discrete
time step: the agent receives a representation of some aspects of the environment’s
state St ∈ S and as a response selects a specific action At ∈ A(s). Consequently,
in the next time step, the agent receives a reward Rt+1 ∈ R ⊂ R, that is a simple
number, and is located in a new state St+1 [19].

Figure 1.2: The agent–environment interaction in a Markov Decision Process [19].

A finite MDP is defined as a MDP whose sets of states, actions, and rewards
have a finite number of elements. In a finite MDP the random variables Rt and St

can be described by precise discrete probability distributions that depend only on
the preceding state and action. This is defined by the transition dynamics function
p, that represents the dynamics of the MDP:

p(sÍ, r | s, a) .= Pr{St = sÍ, Rt = r, | St−1 = s, At−1 = a},

where p indicates, for particular values of these random variables sÍ ∈ S and r ∈ R,
the probability of those state and reward to occur at time t given specific values of

3



1.2. Background

the anterior state and action values.

1.2.2.2 Goals and Rewards

The reward signal represents the goal of the reinforcement learning problem. It
is crucial to use it to communicate the agent what is the goal, not how to reach
it, otherwise hypothetically the agent could learn a way to achieve some eventually
set subgoals without obtaining the final desired goal. More precisely, the agent’s
objective is to maximize the discounted expected return, where the return Gt is
defined as a function of the sequence of the rewards received after time step t over
the future:

Gt
.= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞Ø
k=0

γkRt+k+1,

where γ is a parameter from 0 to 1, called the discount rate, whose effect is to make
that immediate rewards contribute more to the sum than the future ones. The
discount factor has to be suitably chosen for the specific problem: when γ = 0 the
agent is myopic since is interested only in maximizing immediate rewards, while as
γ approaches to 1 the agent becomes more farsighted since it gains interest in future
rewards.

1.2.2.3 Policies and Value Functions

The core of a RL agent, or, to use the fittest analogy, the brain, is represented by
the policy. The policy is an input-output relation that defines how the agent interacts
with the environment: it is a mapping that selects actions based on the perceived
states from the environment. In simple problems, the policy can be a simple function
or lookup table. A policy can be deterministic, mapping each state to a single specific
action, or, in the more general case, stochastic, assigning probabilities to each action
in each state [19,20].

Algongside the concept of policy, present in all the RL algorithms, a huge variety
of them it is based also on the concept of value function. Value functions estimate
the expected reward that an agent can expect in the future for being in a certain
state or for acting through a specific action in a certain state. Since the behaviour
of the agent depends on the policy it has learned, value functions are defined on the
basis of a specific policy.

To give a formal definition, the value function vπ(s) of a state s under a policy
π is defined as the expected return when starting from state s and acting following
π from there on. In parallel, the action value function qπ(s, a) represents the value
of taking action a in state s following a policy π, and it is defined as the expected
return starting from s, selecting action a, and from there on acting through policy

4



1.2. Background

π [20].

1.2.2.4 Bellman Equations

Bellman equations represent the basis on which many RL methods have been
developed. The Bellman equation for the state value function vπ(s) provides a
powerful general relationship for MDPs by defining a relationship between the value
of a state and the value of its possible successor states [19]:

vπ(s) =
Ø
a

π(a | s)
Ø
sÍ,r

p(sÍ, r | s, a)[r + γvπ(sÍ)]

It states that the value of a state is equal to the sum of the expected reward ob-
tained plus the value of the expected next state, considering all the possibilities and
weighting each of these by the probability it occurs.

Analogously, The Bellman equation for the action vale function qπ(s, a) provides
a relationship between the value of a state-action pair and the possible next state-
action pairs [20]:

qπ(s, a) =
Ø
sÍ

Ø
r

p(sÍ, r | s, a)[r + γ
Ø
aÍ

π(a | sÍ)qπ(sÍ, aÍ)]

Their importance is related to the fact that they can reduce an infinite sum over
possible futures to a system of linear equations. However, their direct use is possible
only for MDPs characterized by small sets.

1.2.2.5 Optimal Policies and Optimal Value Functions

In general, finding the solution of an RL problem can be interpretd as finding a
policy able to achieve a sufficiently large amount of rewards. For a finite MDP it
is possible to precisely define an optimal policy as the policy whose expected return
is greater than or equal to that of all the other policies for all states. The optimal
policy could be one or more than ones. In any case, all the optimal policies are
indicated as π∗ and they share the same optimal state-value function, denoted v∗,
and the same optimal action-value function, denoted q∗ [19].

For finite MDPs with n states, the Bellman optimality equation, i.e., the Bellman
equation for v∗, represents a system of n equations in n unknowns and it has a unique
solution. In principle it is possible to solve this system of nonlinear equations,
provided that 3 conditions are met [19]:

• The dynamics p of the environment is completely known;

• It is available sufficient computational power to compute the solution;
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• The state must include information about all aspects of the past interaction
between the agent and the environment that are significant for the future (this
is known as Markov property).

In practice, these conditions are systematically violated, and the search moves to
approximate solutions. However, many RL algorithms are based on the approximate
solution of the Bellman optimally equation.

1.2.2.6 Features of RL Algorithms

Modern RL literature presents a huge variety of different methods. In order to
close this brief background review a collection of the most important features used
for distinguishing among the several different classes of algorithms is presented:

• Model-free and model-based algorithms: some RL methods, calledmodel-
based methods, exploit models to replicate the behaviour of the environment
to plan, i.e., to decide an action by considering possible future scenarios before
they actually happen [19]. By contrast, more popular model-free methods are
based on an explicit trial-and-error way of learning and in general are easier
to implement.

• Online and offline learning algorithms: in the offline learning only a
limited amount of previously collected data about a specific environment is
available, whereas in online learning algorithms the agent gradually obtains
experience in the environment [21].

• On-policy and off-policy algorithms: on-policy algorithms are based on
the improvement of the same policy that is used to make decisions, whereas
off-policy algorithms evaluate a policy different from the one used to generate
the data [21].

• Value-based and policy-based algorithms: value-based methods imply
the optimization of the action-value function qπ(s, a) and the optimal policy
is then derived, whereas policy-based methods directly optimize the policy
until the cumulative reward is maximized [22]. Some algorithms exploit a
combination of the two methods.

1.2.3 Deep Reinforcement Learning

For most real-world situations, the high-dimensionality of the state space does
not allow to apply traditional RL approaches to these problems. Deep Reinforcement
Learning, that combines RL framework with deep learning techniques, has made it
possible to tackle a wide range of complex decision-making problems previously
intractable for the machines [22]. The basic idea is to use multi-layer Artificial
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Neural Networks (ANNs) as function approximators of the value functions or to
directly represent the policy functions. The reason is that ANNs are effective when
dealing with large datasets and they do not need an exponential increase of data
when the dimension of the action or state space is augmented. Furthermore, they
can be trained in an incremental way as the additional samples are obtained during
the learning process [21].

1.2.3.1 Neural Networks

ANNs are networks of interconnected units or nodes, called neurons, that emu-
late the biological neurons that compose the human brain. Each connection, that
resembles the synapses of biological brains, can transmit a signal, that is a real
number, to other neurons. Each neuron receives this signal, processes it, and then
sends the output impulse to other neurons. The connections are characterized by
a weight, that is adjusted during the learning process and represents the strength
of the influence of a neuron on the others. Typically, the neurons produce their
output by computing the weighted sum of their input signals, eventually adding
a bias, and then applying the result to a nonlinear function, called the activation
function [22–24].

Figure 1.3: A sketch of a biological neuron (left) and its mathematical model (right)
[23].

The nonlinearity introduced in this way is essential for the approximation power
of the ANNs and the choice of the activation function varies depending on the
application. The following are some of the most common activation functions:

• The logistic sigmoid squashes real numbers to range between 0 and 1 as
defined by the following equation:

f(z) = 1
1 + e−z

7



1.2. Background

Figure 1.4: Sigmoid function.

• The hyperbolic tangent (tanh) constrains output values to a range between
-1 and 1 as defined by the following equation:

f(z) = ez − e−z

ez + e−z

Figure 1.5: Tanh function.

• The rectified linear unit (ReLu), also called rectifier, simply outputs 0 if
the input is negative or equal to 0, or outputs the input itself if it is positive:

f(z) =

0 when z ≤ 0

z when z > 0

Figure 1.6: ReLu function.

• The softmax function is very different from the previous ones, since it takes
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a vector of K real numbers as input and normalizes it into a probability dis-
tribution composed by K probabilities proportional to the exponentials of the
input numbers. Each component of the output vector is ranged between 0 and
1 and their sum is 1 [25].

f(z)i = eziqK
k=1 ez

In general, the neurons are organized into distinct layers, and different layers may
apply different transformation on their inputs. The signal is transmitted from the
input layer, that takes the input features, through the hidden layers, called in this
way because they are generally not accessible from outside the network, to the output
layer. In the simplest case, the feedforward neural network, the signal is transmitted
from the front to the back in a very straightforward way [26], but there exist dozens
of different and articulated types of ANN structures, each one characterized by
unique features.

Figure 1.7: An example of feedforward ANN with 3 input units, one hidden layer
with 5 units and 2 output units [21].

1.2.3.2 Deep Neural Networks

Therefore, functions are parametrized by the network’s connection weights. The
universal approximation theorem states that a feedforward neural network with a
single hidden layer using arbitrary squashing functions is able to approximate any
Borel measurable function to any desired level of accuracy if containing a sufficiently
large number of neurons [27]. Nonetheless, in practice, if the single hidden layer has
too many neurons, inflexible training or overfitting problems may arise [22]. For this
reason, it is usually preferred to use more than one hidden layers, and this kind of
structure is generally known as Deep Neural Network (DNN). The depth of a neural
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network is defined as the number of hidden layers that contains. The successive
layers of a DNN allow to implement an abstract hierarchical representation of the
network’s input [2, 19], making easier the task of approximating complex functions.

1.3 Thesis Outline

The thesis is organized as follows:

• In chapter 2, the problem of robotic autonomous navigation through Deep
Reinforcement Learning is formulated. Furthermore, the structure of the rein-
forcement learning agent and the kinematic model of the robot are presented.

• In chapter 3, the ingredients for the development of the main character of this
work, i.e., the PPO agent, are presented, as well as the features and working
principles of the adopted learning algorithm.

• In chapter 4, the motivation behind the implementation of a hybrid architec-
ture is presented, as well as the implementation of the second reinforcement
learning agent, trained by DDPG algorithm, and the features and working
principles of the algorithm.

• In chapter 5, all the implementation details adopted for the design of the two
agents are presented, e.g., hyperparameters used. Furthermore, the learning
curves for both the agents are displayed, and results about the performances
of the agents are illustrated.

• In chapter 6, the control algorithm that deploys the RL agents is presented, and
the results regarding MATLAB and Gazebo simulations of its implementation
are discussed.

• In chapter 7, the conclusions about the thesis and the ideas for future works
are discussed.
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Chapter 2

Deep Reinforcement
Learning-based Autonomous
Navigation

2.1 Introduction

In recent years, the application of Deep Reinforcement Learning to automatic
collision avoidance has rapidly achieved an increasing interest in robotic research
community. Robotic autonomous navigation problems involve, in addition to the
aforementioned problem of the high dimensionality of the state space, another crit-
ical challenge for the traditional RL methods: the partial observability of the envi-
ronment. Actually, the application of Deep Neural Networks has also made possible
to tackle partially observable tasks, in which the agent has not a complete knowl-
edge about the environment’s state. Indeed, in most real-world situations the agent
features a limited perception of the environment, increasing the complexity of the
problem. To deal with this kind of situations, the concept of Partially Observable
Markov Decision Process (POMDP) has been introduced [28]: a POMDP is de-
fined as an MDP where an agent receives an observation that contains only partial
information of the environment state [22,29].

2.2 Problem Formulation

The collision avoidance problem can be formulated as a POMDP defined by
a six-tuple (S,A,P,R,W,O), where S is the state space, A is the action space, P
is the transition function, R is the reward function, W is the observation space,
and O is the probability function, that defines how the observations are obtained
from the environment state [30–33]. The agent, at each time step, has access to
an observation vector which it uses to compute a collision-free action that drives
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2.3. Reinforcement Learning Agent

the robot towards its goal from the current position by avoiding collisions with the
obstacles. The robot has been modelled as a differential drive vehicle, a configuration
where the wheels rotate around the center point of the robot [34]. Through the
observations, the agent, that can be likened to the robot’s brain, can perceive the
environment up to the possibilities of the sensors the robot is equipped with, and
no global information about the environment is available. More precisely, it detects
the presence of the obstacles in front of it thanks to a Depth Camera and it knows
the relative position of the user-defined goal, since it is computed on the basis of the
data obtained from its odometry sensors. The action that the agent produces as an
output is a bidimensional vector composed by the linear and angular velocity, used to
command robot movements. To guide the agent to achieve the desired performance,
the Reward function is suitably designed.

2.3 Reinforcement Learning Agent

The most important thing of the problem is, as mentioned, the agent. In general,
a Reinforcement Learning agent can be considered composed of two elements [35]:

• The policy, that maps observations into actions and it is represented by a Deep
Neural Network, whose structure has to be suitably designed.

• The learning algorithm, that updates the policy parameters based on the input
observations, actions taken, and rewards collected. Its goal is to find an optimal
policy that maximizes the cumulative reward received during the task. The
learning algorithm can be chosen among the state-of-the-art ones present in
literature; however, they present a number of hyperparameters that need to
be suitably tuned for the specific problem.

Figure 2.1: A scheme of a generic Reinforcement Learning agent [35].
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2.4. Robot Kinematic Model

2.4 Robot Kinematic Model

The target hardware is a differential drive robot. It is described by the same
kinematic model of a unicycle, but it features a more stable structure from a me-
chanical point of view [36]. The robot pose in Cartesian coordinates is represented
by a vector of three variables:

p = [x, y, θ]T ,

where x and y represent the position of the center of mass of the robot [?, 37] and
the angle θ represents the orientation of the robot. The model is described by the
following equation: 

x

y

θ

 =


cosθ

sinθ

0

 v +


0
0
1

 ω,

where v and ω are the driving (linear) and steering (angular) velocity. Furthermore,
v and w are related to the rotation velocities of the two wheels, ωL and ωR, by the
following relations:

v = r(ωR + ωL)
2 ,

ω = r(ωR − ωL)
d

,

where r is the radius of the wheels and d is the distance between them.

Figure 2.2: Kinematic model of a differential drive robot [37].
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Chapter 3

PPO Agent Development

The core and decision-maker of the collision avoidance algorithm developed in
this work is represented by a Proximal Policy Optimization (PPO) agent. PPO is
the reinforcement learning algorithm chosen to train the agent. To create the agent,
the elements introduced in the previous chapter have to be suitably designed. These
are the action and observation spaces, the reward function, the learning algorithm,
and the policy representation. Thereafter, the agent has to be properly trained to
obtain the desired performance.

3.1 Observations, Actions, and Rewards

The observation vector is the input on the basis of which the agent decides
the action to compute at each time instant. This vector has been designed to
give information to the robot about the target direction and the local presence
of obstacles in the path. For the first purpose, the observation vector contains
the target position in polar coordinates with respect to the robot local frame, i.e.,
distance and angle. Secondly, the real robot is equipped with a Depth Camera
that outputs the depth measurement of the objects present inside its Field Of View,
up to specific limits. This data can be used to derive the ranges of the obstacles
with respect to the robot, emulating a 2-D LiDAR featured with additional 3-D
information. More in detail, the raw output of the camera is processed inside the
algorithm developed to obtain a manageable number nranges that encapsulates the
distances from the robot of the objects detected by the camera. Keeping the size of
the observation vector small, that is nobs = nranges+2, allows to have faster training
phases and simpler neural networks.

The action space has been designed as a set of couples of permissible linear and
angular velocities in a discrete space. A finite set of atomic actions enables a faster
learning rate and, furthermore, can represent a flexible distribution if characterized
by a proper number of actions, even more flexible with respect to a continuous Gaus-
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3.1. Observations, Actions, and Rewards

sian distribution [38]. The dimension of the set and the specific values of the nact

actions have been decided based on the maximum linear and angular velocity of the
target robot, making several trials and evaluating learning speed and performances
in simulation.

The reward function has been designed with the primary goal of reaching the
target defined and avoiding the obstacles present in the path. Moreover, some
elements have been introduced to achieve secondary objectives. The function is the
sum of several terms:

Rt = Rt
goal + Rt

fail + Rt
dist + Rt

safe − ctime

Rt
goal and Rt

fail are sparse rewards: the agent receives a huge positive reward if it
reaches the goal, a huge negative reward if it collides with an obstacle, 0 reward in
any other case. The goal-reached and collision conditions are evaluated on the basis
of suitably defined thresholds, ρgoal and ρfail:

Rt
goal =

cgoal if dt < ρgoal

0 otherwise
,

Rt
fail =

cfail if min(ranges) < ρfail

0 otherwise
,

where dt represents the distance of the robot from the target at the time instant
t, while cgoal and cfail are hyperparameters. Both these rewards also cause the
termination of the episode.

Rt
dist represents instead a dense feedback and it is the difference of the distance

of the robot to the target compared to the previous time instant, multiplied for a
hyperparameter cdist, so it encourages the agent to get closer to the target:

Rt
dist = cdist(dt − dt−1)

Regarding the secondary objectives, Rt
safeis a function designed to promote a

safe distance ρsafe of the robot from the obstacles, providing incremental negative
rewards when this is not respected. In fact, even if the agent is penalized for col-
lisions, this in general does not coincide with the maintaining of a safe distance
from the obstacles [31]. Furthermore, the robot has a very limited perception of the
environment around it, so it has been decided to train it in a more “conservative”
way.
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3.2. PPO Algorithm

Rt
safe =

csafe
è
tanh

1
λ

min(ranges)+b1

2
+ b2

é
if min(ranges) < ρsafe

0 otherwise
,

where csafe, λ, b1, and b2 are hyperparamters.
The last term, ctime, is a penalty constant applied at each time instant, that

encourages the robot to reach the target in the smallest amount of time.

3.2 PPO Algorithm

Proximal Policy Optimization is a state-of-the-art Reinforcement Learning algo-
rithm that has shown impressive performance on a wide range of different tasks in
recent years [39–42]. It is a model-free, online, on policy, policy-gradient algorithm
that can work with either discrete or continuous observation and action spaces.
More accurately, PPO refers to a family of algorithms; however, it is common to
use the term to refer directly to the most performing version, the “clipped” variant,
that is also the one that has been used in this work. PPO is a descendant of the
Trust Region Policy Optimization (TRPO) algorithm [43], that has been designed
to overcome the main problem of the policy-gradient algorithms: the “destroying”
effect that large policy update makes on the policy. On the heels of its predecessor,
PPO is based on the idea of ensuring gentle policy updates, but it is also simple
to implement, sample efficient, and it requires minimal hyperparameter tuning [39].
More in detail, PPO exploits an actor-critic structure where the policy, represented
by a neural network, called the actor, is trained concurrently to an advantage esti-
mate function, that estimates the value of the selected action in the current state,
and it is represented by the second neural network, called the critic.

Figure 3.1: Representation of the actor-critic structure [35].

Basically, the algorithm works alternating two operations: the sampling of the
data obtained online by interacting with the environment, and the optimization of
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3.2. PPO Algorithm

a couple of objective functions [44]. Fundamental concepts in the algorithm are the
policy probability ratio and the advantage estimate function:

• The first compares the probability of selecting specific action at in state st

before (πθold) and after (πθ) the policy update:

pt(θ) = πθold(at | st)
πθ(at | st)

• On the other hand, the advantage function Aπ(st, at) measures whether the
specific action a in state s is better or worse than randomly selecting the action
according to the policy π. This function is unkwown and it has to be estimated,
and this procedure can be done with different methods. The one suggested
by the original authors of PPO, the Generalized Advantage Estimator [45],
involves the difference between the return Gt and the value function baseline
V (st).

These two elements are directly used in the objective function, that is approximately
maximized at each iteration:

LCLIPt (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− Ô, 1 + Ô)Ât],

where the expectation Êt[...] indicates the empirical average over a finite batch of
samples. The clip function is intended to bound the update of the policy parameters
θ to avoid that the new policy “moves” far away from the old policy. Ô is a parameter
between 0 and 1, typically 0.2. Furthermore, this function can be modificated with
the addition of an entropy term, Ht, that increases agent exploration.

In parallel, to learn the critic parameters φ, the mean squared difference between
the state-value function estimate and the return is minimized [42,44–46]:

LV Ft (φ) = Êt[(Vφ(st)−Gt)2]

Stochastic gradient descent algorithms, typically Adam Optimizer [47] are used to
otpimize the two functions and learn the network parameters.

The specific implementation of the PPO used in this work, offered by Reinforce-
ment Learning Toolbox of MATLAB, is represented by the following pseudocode:
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3.3. Neural Network Architecture

Algorithm 3.1 PPO algorithm [48].
1: Input: initial actor parameter values θ0, initial critic parameter values φ0
2: for training episode j=1,2,3,... do
3: repeat
4: Generate N experiences by following the policy πθold.
5: Compute the return Gt and the advantage estimate Ât for each episode

step.
6: for learning epoch k=1,2,3,... do
7: Sample from current experiences set a random mini-batch data set of

M elements.
8: Update the critic network parameters θ by minimizing the loss Lcritic

across all sampled mini-batch data with any optimization algorithm:

Lcritic(φ) = 1
M

MØ
i=1

(Gi − Vφ(si))2

9: Update the actor network parameters φ by minimizing the loss Lactor
across all sampled mini-batch data with any optimization algorithm:

Lactor(θ) = − 1
M

MØ
i=1

min(pi(θ)Âi, ci(θ)Âi) + Hi

ci(θ) = max(min(pi(θ), 1 + Ô), 1− Ô)

10: end for
11: until the training episode reaches a terminal state
12: end for

3.3 Neural Network Architecture

As described in the previous section, the PPO agent is based on an actor-critic
representation. Therefore, it is necessary to design two Neural Networks. The
first, the critic, takes in input the observation vector and outputs a single number,
that represent the value of the action chosen by the actor. This network has been
designed using two hidden layers of Nc1 and Nc2 neurons. The second is the actor,
that represents the policy. The input is again the observation vector, however the
output it produces is a vector that contains the probability of executing each of the
possible couple of velocities defined in the action space. To obtain this behaviour, a
softmax has been used as an activation function in the output layer. As the previous,
the network contains two hidden layers with Na1 and Na2 neurons. All the hidden
layers have been designed as Fully Connected (FC) layers, i.e., the neurons have full
connections to all the activations of the previous layer [23], using ReLu as activation
functions.
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3.4. Multi-Stage Training

Figure 3.2: PPO Critic and Actor Neural Networks scheme.

3.4 Multi-Stage Training

Once the different elements that characterize the Reinforcement Learning prob-
lem have been designed, the agent is substantially a Neural Network characterized
by initial random weights. Then, it needs to learn the desired skills by updating
the weights through the learning algorithm during the training. It has been showed
that, as humans and animals, reinforcement learning agents learn much better when
they are subject to problems of incremental complexity [49]. On the basis of these
considerations, the agent has been trained using a multi-stage approach, starting
from environment characterized by elementary complexity and changing the envi-
ronment toward more complicated ones where the agent performance is sufficiently
satisfactory. In fact, it is known the sensitivity of the neural networks with respect
to initial values of their weights [50,51]. Hence, this kind of approach can accelerate
the learning phase and allow to obtain higher rewards [30]. Furthermore, the ran-
domness has been considered a key element for the training: in each episode of the
training phase, the starting position, starting orientation, and the target, as well as
the positions of the obstacles in some of the environments, are randomly defined,
making the agent enable to explore the observation space and to acquire a robust
policy.

More in depth, the training conceived firstly involves a simple environment with-
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3.4. Multi-Stage Training

out obstacles, in which the agent can learn the ability to reach the target. At each
episode, the agent interacts with the environment until it reaches the goal, collides
with an obstacle, or after a specific number of time steps, like a time-out. When
it achieves a satisfactory level of performance, measured averaging the rewards it
collects in a episode for a certain number of episodes, the training phase is stopped.
By preserving the learned neural network parameters, it is then resumed in a more
complex environment, where the agent can gain, and later affine, collision avoidance
abilities. This process is repeated for a certain number of stages, characterized by
gradually more complex environments, with an increasing number of obstacles and
a decreasing operating space in between.
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Chapter 4

Hybrid Control Architecture

4.1 Introduction

The beating heart of the collision avoidance algorithm implemented in this work
is represented by the PPO agent introduced in Chapter 3. As it will be exposed
in Chapter 5, it shows powerful generalization abilities and it is able to successfully
face complex scenarios. However, it shows limited performance when dealing with
some trivial situations: an example is that, if the robot is asked to reach a target
ahead of it in total abscense of obstacles, most likely it will reach the goal following a
pointless curve trajectory supplemented by narrow but frequent directions changes,
rather than acting through a simple straight line. This limitation, shown in other
researches, for example [30], it is mostly due to the stochastic nature of the PPO
policy, that computes the probability of executing each of the possible actions given
the observation vector as input. The second reason is that the agent is trained in
this kind of situation only in the first part of the training phase, and then it will not
face anymore situations where it it expected to act following straight trajectories.
Hence, roughly speaking, the agent is not trained to behave in this manner, and
even if it would, it always act in a stochastic way.

Since this kind of situations can be easily tackled with traditional control tech-
niques, the aforementioned research used a PID controller to overcome this prob-
lem, that has been integrated in a switching architecture that can act using the RL
stochastic policy or the PID depending on the situation detected. Inspired by this
research, the idea in this work is to train a second reinforcement learning agent,
characterized by a deterministic policy, and to switch between the two agents de-
pending on the specific situation approached. Deep Deterministic Policy Gradient
(DDPG) has been chosen as the learning algorithm for this second agent due to its
deterministic nature, ease of implementation and generalization ability.
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4.2. DDPG Agent

4.2 DDPG Agent

4.2.1 DDPG Algorithm

The Deep Deterministic Policy Gradient algorithm [52] is a model-free, online,
off-policy reinforcement learning algorithm. It has been designed specifically for
continous action spaces; however, it can work with both continuos or discrete obser-
vation spaces. It is based on an actor-critic configuration: the actor network, that
represents the current policy πθ(s), deterministically maps states into actions, and
the critic Qφ(s, a) is learned using the Bellman equation. The objective for the policy
function is to maximize the expect reward, and the actor weights θ are updated in
the direction of the performance gradient, using the policy gradent theorem [52,53]:

∇θJ(πθ) ≈ E
è
∇θQφ(s, a)|s=st,a=πθ(st)

é
= E

è
∇aQφ(s, a)|s=st,a=π(st)∇θπθ(s)|s=st

é
The idea is to apply the chain rule to the optimal function J , obtaining the

gradient of the critic output with respect to the policy weights ∇θQφ(s, a) by com-
puting the product of the gradient of the critic output with respect to the action
taken by the actor ∇aQφ(s, a) and the gradient of the actor output with respect to
the policy weights ∇θπθ(s) [54].

The key features of the DDPG are the replay buffer, the target networks, and
the exploration noise:

• The replay buffer is a cache memory with a fined size, used to store the tran-
sitions (st,, at, Rt, st+1) sampled from the environment acting according to the
exploration policy. The update of the networks is performed by randomly
extracting a minibacth of samples from the buffer.

• The target networks represent a copy of the actor and critic networks, QÍ
φÍ(s, a)

and πÍ
θÍ(s), and they have been implemented to overcome a problem of the

Q-learning approach: this algorithm, commonly used until a few years ago,
updates the parameters φ of the Q function approximator by minimizing the
following function:

L(φ) = E
è
(Qφ(st, at)− yt)2

é
,

where
yt = R(st, at) + γQφ(st+1, π(st+1))

The problem is that yt is itself a function of Qφ and this, in practice, leads to
unstable learning [52,55]. In DDPG, the computation of yt is performed using
QÍ
φÍ(s, a) and πÍ

θÍ(s), whose weights are updated in a “soft” delayed manner
with respect to their original counterparts. This slow change in the target
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4.2. DDPG Agent

values improves the stability of learning.

• The exploration noise is essential to enable the agent to explore: the explo-
ration policy is obtained by adding a noise process N to the deterministic
policy. In the implementation proposed by the authors [52], the noise is mod-
elled as an Ornstein-Ulhenbeck process [56], that is a stochastic process that
as times goes on dritfs toward its mean function [57].

The specific implementation of the PPO used in this work, offered by Reinforcement
Learning Toolbox of MATLAB, is represented by the following pseudocode:

Algorithm 4.1 DDPG pseudocode [54].
1: Input: initial actor parameter values θ0, initial critic parameter values φ0
2: Initialize target networks QÍ and πÍ with weights θÍ

0=θ0 and φÍ
0=φ0

3: for training time step t=1,2,3,... do
4: Select the action at = πθ(st) + Nt depending on current exploration policy
5: Execute action at, observe the reward Rt and the next observation st+1
6: Store the experience collected (st, at, Rt, st+1) in the replay buffer
7: Randomly extract a minibatch of M experiences (si, ai, Ri, si+1) from the

buffer replay
8: Set yi = Ri + γQÍ

φÍ(st+1, πÍ
θÍ)

9: Update the weights of the critic network by minimizing the loss L across all
sampled mini-batch data:

L(φ) = 1
M

MØ
i=1

(yi −Qφ(si, ai))2

10: Update the weights of the actor network by using the sampled policy gradient:

∇θJ(πθ) ≈
1

M

MØ
i=1
∇πθ(si)Qφ(si, πθ(si))∇θπθ(si)

11: Update the target networks parameters depending the smoothing factor τ :

φÍ = τφ + (1− τ)φÍ

θÍ = τθ + (1− τ)θÍ

12: end for

4.2.2 Observations, Actions, and Rewards

The observation vector for the agent is made up of a single value: the angle
between the target and the robot reference frame. Even if the lack of knowledge of
the target distance could seem a limitation, the agent has been trained to quickly
point toward the goal by rotating in a quasi-static manner, being able to approach
the target direction in a very marginal space.
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Again, the actions are permissible couples of linear and angular velocities of the
robot. However, in this case, the action space has to be continuous, hence trans-
lational and rotational velocities can be any value inside, respectively, the ranges
[0, vmax] and [−wmax, wmax], defined according to real robot specifications. Hence,
the dimension of the action space in this case is 2.

The reward function used for this agent is:

Rt = Rt
goal + Rt

fail + Rt
dir,

where Rt
goal and Rt

fail are the same terms presented for the PPO agent, except for
the fact that Rfail is assigned when the robot touches the borders of the room, since
it has no access to any range measurement, while the last term is defined as:

Rt
dir = cdir

5
tanh

3
λ

ϕ

4
+ b

6
vt−1,

where ϕ is the angle between the goal and the robot heading and cdir, λ, and b are
hyperparameters. As introduced before, the idea behind this function is to instruct
the robot to rotate almost statically toward the goal and to increase the linear
velocity only when the heading direction is close to point toward the goal.

4.2.3 Training Environment

The agent has been trained in a simple environment, that emulates a room with
fixed walls but without obstacles in the middle. At each episode, the starting pose
of the robot and the target position are randomly generated. Actually, to ensure
a partial consistency in the amount of time needed for reaching the target and in
the total reward collectable in the epidose, one of the coordinates that represent the
initial and target position of the robot has been kept fixed. Therefore, the random
generation of one coordinate of the starting position and one coordinate of the goal
position, together with the random initial orientation, ensures enough exploration
of the observation space from the agent. The episode finishes when the robot either
reaches the target, collides with a wall, or after a time-out.

4.2.4 Neural Network Architecture

In this case, the algorithm is based on an actor-critic architecture, therefore it is
necessary to design two neural networks. The critic takes the observations and the
actions as input, as well as the estimation of the action-value function as output. It
has been designed using two different input branches, one for the observation vector
and the other for the action taken, connected to two separate FC hidden layers of
Nc1 and Nc2 neurons. The two layers are merged together using a third FC layer
of Nc3 neurons, whose output is the estimate of the Q value. On the other hand,
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Figure 4.1: DDPG Critic and Actor Neural Networks scheme.

the actor takes only the observation vector as input, that is processed through two
FC hidden layers of Na1 and Na2 neurons, connected to the output layer composed
of 2 neurons, one for each dimension of the action space. This layer is activated by
a hyperbolic tangent function, therefore the output values are consequently scaled
with respect to the ranges considered in the action space. Lastly, all the activation
functions used in the hidden layers of both the networks are rectified linear units.

4.3 Scenario Classification

The idea behind the concurrent implementation of two different reinforcement
learning agents is related to the development of a control algorithm that takes robot
sensor data as input, decides which agent to exploit, and produces the action of
the robot as output. As will be explained in depth in Chapter 5, at each sampling
time, based on robot sensor measurements, through a simple “if” loop, the action
is computed using one of the two agents. More specifically, if the target is inside
the horizontal Field Of View (FOV) of the camera, and if the path towards it is
obstacle-free, the action is taken by the deterministic DDPG agent, otherwise it is
the stochastic PPO agent that decides what to do.
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Chapter 5

Implementation Details

5.1 Hardware Details

The training sessions of the agents, as well as MATLAB and Gazebo simulations,
have been performed using a laptop with an AMD Ryzen 7 4800H CPU and 16 GB
RAM. The target robotic hardware is a ground robot developed by the Department
of Mechanical and Aerospace Engineering (DIMEAS) of Politecnico di Torino. It
has been developed out of a commercial robot kit (Devastator Tank Mobile Robot
Platform), and the hardware it is equipped with, together with its velocity limits,
are presented in Table 5.1.

As reported in the aforementioned Table, the robot is equipped with a Intel Real
Sense D435, that is a stereo vision depth camera system. It exploits two imagers
at a certain distance to capture the scene from different perspectives, and a vision
processor that correlates the points in the two images to obtain a depth value for
each pixel [58]. These data are used to produce a depth map of the scene detected
by the camera. The essential features of the sensor, needed to model the interaction
between the agent and the environment, are presented in Table 5.2.

Figure 5.1: DIMEAS ground robot.

26



5.2. PPO Agent Implementation

Figure 5.2: Depth measurment versus range [58].

5.2 PPO Agent Implementation

Both the reinforcement learning agents have been implemented and trained by
modelling the robot as a point particle, that moves according to the kinematic model
presented in Section 2.4, using MATLAB. Nevertheless, each of the two agents has
been specifically designed for the task it has to solve, and in this section there will
be presented the details of the design procedure adopted for the PPO agent.

5.2.1 PPO Agent Details

The PPO agent, as introduced in Section 3.1, takes as input a number nranges of
range measurements, together with the position of the target in polar coordinates.
To obtain a trade-off between the accuracy of the sensing information and a small
number of inputs, hence a fast learning phase, it has be decided to use nranges = 13.
The idea is to convert the depth data from the camera into range measurements,
and then divide the Horizontal Field of View covered by the camera into 13 angular
sectors, by taking the minimum range in each sector. In this way, the agent is
provided with a knowledge of the distance from obstacles in the area in front of it.
In the implementation and training of the agent, the data used for the composition
of the observation vector has been generated by simulating range-bearing sensor
readings. The properties of the simulated sensor have been designed to emulate the
behaviour of the real camera. However, the minimum and maximum ranges of the
real camera, that are crucial values, depend on the lighting conditions. Hence, it
has been decided to take this information by considering an accurate Gazebo model
of the robot, developed by the DIMEAS, that it has also been used to verify the
behaviour of the robot in a realistic framework, as it will explained in Section 6.2.
By performing some tests with the model, it has been observed that the range of the
simulated camera is approximately from 0.3 m to 4 m with respect to robot center
(the camera is mounted in the front side of the robot), and the horizontal FOV
results slightly lower than 86°. Therefore, the properties of the simulated range-
bearing sensor have been tuned to [0.3 m, 4 m] range and 85° as horizontal FOV.
Furthermore, the range measurements are normalized from range [0.3, 4] to [0, 1]
before to be used to compose the observation vector.
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Table 5.1: DIMEAS ground robot features.

On-Board Computers

Lattepanda Delta 432 (Companion PC)

Intel 8th Gen Celeron Processor N4100
(1.1-2.4 GHz Quad-Core, Four-Thread)

Intel UHD Graphics 600, 200-700 MHz

4G LPDDR4 2400 MHz Dual-Channel

Xubuntu 20.04 with ROS

NXP FRDM K64F (Microcontroller)

ARM Cortex-M4 32-bit single core 120
MHz

1024 KB program flash memory

256 KB RAM

Mbed OS

Sensors

Intel Real Sense D435 Depth Camera Sensor

IMU 9DoF Accelerometer + Gyroscope +
Magnetometer

Velocity Limits

Maximum Linear Velocity 0.1 m/s

Maximum Angular Velocity 0.115 rad/s

Due to the relatively low maximum velocities of the robot, it has been designed a
set of nact = 11 discrete couples of velocities, and experiments to further fractionate
the velocities values have led to inconclusive results. In practice, when the robot
needs to move forward, it is pointless to use a velocity lower than the maximum
linear speed vmax, and when it needs to rotate, due to the very limited ωmax, it is to
convenient to encourage it to make the maneuver with the minimum possible linear
speed (0 in MATLAB simulation), and the maximum angular velocity ωmax. The
complete set of possible actions actuable by the agent is presented in Table 5.3 ,
where vmax = 0.1 m/s, and ω = 0.115 rad/s.

Regarding the reward function, the designed coefficients are presented in Table
5.4.

About the neural networks, it has been decided to take Nc1 = Nc2 = Na1 =
Na2 = 100 . Furthermore, an important hyperparameter to tune is the learning
rate for both the networks: as explained in Section 3.2, the actor and critic weights
are updated by minimizing a couple of loss functions; more in depth, the gradient
of a loss function is computed to derive the steepest direction of decrease of the
function itself [23], and the learning rate measures the size of the step, hence how
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Table 5.2: Intel Real Sense D435 features.

Parameter Value

Horizontal FOV 86°

Vertical FOV 57°

Nominal range 0.2 m to 10 m

Ideal range 0.3 m to 3 m

Table 5.3: PPO actions.

v ω

vmax 0

vmax ±0.3 ωmax

vmax ±ωmax

0.3 vmax ±0.3 ωmax

0.3 vmax ±ωmax

0 ±ωmax

much the weights of the networks are changed with respect to previous values at
each iteration. In practice, a small learning rate leads to long training phases, while
an high rate increases the probability to be trapped in local minima. In this case,
it has been decided to take a learning rate equal to 0.001 for both actor and critic.

Finally, the parameters of the learning algorithms have been tuned: the agent
has been designed to collect experiences with a sample time Ts = 1s for the whole
duration of the episode, since the experience horizon has been taken equal to the final
time instant of the episode, 500 s. In fact, the experience horizon is the number of
experience steps that the agent collects before learning, unless the episode terminates
before, and then it is trained by sampling a random batch of 128 elements for 3
epochs. The discount factor γ has been tuned to 0.998, while for the entropy loss
weight, that modulates the relevance of the entropy term Ht, and for the clip factor
Ô, there have been taken the values used by the original authors [44], i.e., 0.01 and
0.2 respectively. Even the method for the computation of the advantage function
has been taken according to the choice of the original authors, i.e., the Generalized
Advantage Estimator (GAE) [45], with a GAE factor equal to 0.95. In Table 5.5,
all the hyperparameters of the learning algorithm are resumed.
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Table 5.4: PPO reward function hyperparameters.

Parameter Value

cgoal 50

ρgoal 0.1 m

cfail −50

ρgoal 0.35 m

cdist 3

csafe −10

λ 0.1

b1 −0.3

b2 −0.2

ρsafe 0.6 m

ctime 0.1

Table 5.5: PPO algorithm hyperparameters.

Parameter Value

Ts 1

Experience horizon 500

Mini-batch size 128

Number of epochs 3

Discount factor 0.998

Clip factor 0.2

Entropy loss weight 0.01

GAE factor 0.1
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5.2.2 PPO Agent Training

Randomness is a key element in the training of a reinforcement learning agent.
Indeed, randomness rules the initialization of neural network weights, as well as the
sampling of the minibatch data used for updating the same weights, and usually
even the environment is related to a stochastic component. Furthermore, the PPO
policy is based on the stochastic choice of an action, depending on a probability
distribution. Actually, it has been showed that the variation of the random seed
among different trials of the same learning process can drastically vary the perfor-
mance of the algorithms [50]. This represents a huge problem for the achievement of
reproducible results [59]. To mitigate this problem, and to better verify the converge
ability of the tuned algorithm, as well as the performance of the resulting agent, it
has been decided to reproduce the training phase 5 times, varying the random seed.
The seed has been fixed before the initialization of the neural networks, hence there
have been considered 5 different initial conditions for the neural networks. More-
over, to verify and show an example of the high variability of the learning procedure,
that includes the initialization of the weights but goes also beyond it, the first run
of the learning process has been repeated for a second time, with the same network
weights, but a random generator out of phase with respect to the previous. Actually,
after the initialization of the neural weights, before to start the learning process, the
random generator has been exploited to produce different results with respect to the
first trial.

The whole training process for the PPO agent in this work has been based on a
multi-stage procedure, made up by different environments of incremental complexity,
that has been showed to ensure faster converge and higher results. In each stage,
the training is performed until the agent gets an average reward of 50, measured in
the last 100 episodes. When it achieves this level of performance, the agent faces
the next, more complex, environment:

1. The first stage, the one the agent deals with when it is nothing more than
a random initialized neural network, is an obstacle-free room surrounded by
walls. The idea is to provide the agent the ability to exploit the inputs it
receives to reach the target. To simultaneoulsy obtain a generalized policy
and partially uniform the maximum reward the agent can achieves, at each
episode the starting orientation of the robot is randomly generated, while the
starting and target position are randomly chosen from two lines, as illustrated
in Fig 5.3.

2. When the agent has gained the ability to reach a target, it is the moment for
learning to overcome obstacles. For this reason, the second stage resembles the
same environment presented in stage 1, but with the generation of a wall of
length 0.5 m . To make things more complex, and to ensure the usually desired
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Figure 5.3: First training stage for the PPO agent.

generalization ability, the target is always generated in front of the robot, but
the wall is generated in the middle of the path. Actually, the starting position
of the wall can vary, resulting in some episodes with the wall closer to the robot
than others, as wells as episodes with the wall slightly moved with respect to
the left or the right direction.

Figure 5.4: An example of the second training stage for the PPO agent.

3. In the third stage, two couples of horizontal walls are generated at fixed y-
positions in the room; however, the x positions of the walls, as well as their
lengths, can vary depending on random initial conditions. Furthermore, this
stage adopts the same random generation for the starting pose and target
position explained for the first training environment.
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Figure 5.5: An example of the third training stage for the PPO agent.

4. The fourth stage replicates the philosophy of the previous one, but with 4
couples of walls.

Figure 5.6: An example of the fourth training stage for the PPO agent.

5. The last stage, is quite different from the previous ones, since it involves a
specific fixed obstacles environment. Hence, in each episode the walls are in
the same manner as presented in Fig 5.7. In any case, the generalization
is ensured by the random generalization of the initial and target conditions
explained in the first stage and hence characteristic of each scenario except for
the second.

As stated, this procedure has been repeatead 6 times. After the completition of the
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Figure 5.7: Fifth training stage for the PPO agent.

training, hence, after the achievement of the 50 average reward in the final stage, the
resulting agents show great collision avoidance abilities, that cannot be distinguished
through visual comparisons of individual trajectories. Consequently, they have been
evaluated by measuring their performance when facing the fourth and fifth training
environments for 1000 episodes.

5.2.3 Evaluation and Testing

As expected, the training phase of the agents varies depending on the random
seed. For some unkown reasons, the fourth run failed in the first stage: the training
has been stopped after 8000 episodes, while in the other runs the level of 50 average
reward was reached between 238 and 578 episodes. However, this problem has been
found also in [59], where 2 runs out of 10 of their PPO configuration with different
random seeds failed. Nevertheless, in this case, the other 5 runs arrived to the
completition of the final stage, and the performance of the resulting agents have
been measured by testing each agent for 1000 episodes in the environment n°5 and
for 1000 episodes in the environment n°6. The performance in the fifth stage have
been considered due to the huge variability of the environment, useful to test the
generalization ability of the agents. The drawback of this environment is that its
difficulty can vary significantly depending on the randomness; however, 1000 tests
can allow to make comparisons between the different policies. Actually, even if the
agents have been trained in the same way, and even if they seem to act in the same
way, they are related to stochastic policies represented by neural networks with
different weights, hence with different input-output probability distributions.

The huge variability in training phases due to stochasticity is observable in Table
5.6, where the number of learning episodes before the achievment of the 50 average
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reward in each stage is presented, and in Table 5.7, that presents the success rates
of the agents after training completition. Since the goal of the work is to deploy a
reinforcement learning agent to develop a collision avoidance algorithm, there have
been chosen two policies for more accurate validation tests, and they are the ones
related to run 1B and run 3. Furthermore, an example of successful trajectory of
the robot in stage 4 and 5 is shown in Fig 5.8.

Table 5.6: PPO training episodes for each stage.

Run Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

1A 578 969 2013 9377 3658

1B 243 653 1126 8688 7444

2 293 482 627 9736 8212

3 568 2174 1382 14896 6061

4 - - - - -

5 238 4366 3575 19186 7433

Table 5.7: PPO success rates in stage 5 and 6.

Run Success Rate in Stage 5 Success Rate in Stage 6

1A 95.8% 92.8%

1B 99.8% 86.4%

2 93.1% 82%

3 98.8% 92.2%

4 - -

5 99.4% 87.1%
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Figure 5.8: PPO successful trajectories in stages 4 and 5.

Finally, to provide a visual information about the training phase, Fig 5.9 displays
the different learning curves for the 6 runs in the first stage, while Fig 5.10 and Fig
5.11 present the complete learning curves for the policies chosen for the validation
phase, compared with their counterparts obtained by training the agent without the
multi-stage approach, i.e., by using only the final training scenario after the networks
initialization. The comparison shows the glearing benefits for choosing the adopted
multi-stage paradigm.

Figure 5.9: Learning curves of PPO agents related to stage 1.
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Figure 5.10: Comparison between average rewards obtained through multi-strage
training and training from scratch in PPO run 1b.

Figure 5.11: Comparison between average rewards obtained through multi-strage
training and training from scratch in PPO run 3.

5.3 DDPG Agent Implementation

5.3.1 DDPG Agent Details

The DDPG agent takes as input the angle of the target with respect to the robot
coordinate frame, and outputs a couple of values that represent a linear velocity in
the range [0, 0.1 m/s], and an angular velocity in the range [−0.115 rad/s, 0.115 rad/s].
The hyperparameters of the reward function are presented in Table 5.8.

The neural networks have been designed by picking Nc1 = Nc2 = Nc3 = Na1 =
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Table 5.8: DDPG reward function hyperparameters.

Parameter Value

cgoal 50

ρgoal 0.1 m

cfail −50

cdir 10

λ 0.1

b −0.5

Table 5.9: DDPG algorithm hyperparameters.

Parameter Value

Ts 1

Experience Buffer Lenght 106

Mini-batch size 64

Discount factor 0.99

Smoothing factor 0.001

Na2 = 30, and a learning rate equal to 0.01 for the critic network, and to 0.001 for
the actor. Additionally, a gradient threshold of 1 has been implemented for both
the networks: its function is to clip the gradient when it overcomes a threshold.

Finally, the learning algorithm hyperparameters are presented in Table 5.9. Re-
garding the exploration noise, it has been used an Ornstein-Ulhenbeck exploration
noise model with 0 mean, 0 initial action, 0.1 variance and 10−5 decay rate of the
standard deviation [60].

5.3.2 DDPG Agent Training

The DDPG agent has been trained using a single training environment, that is
the one correspondent to stage 1 in the PPO agent training, considering a maximum
number of steps for episode equal to 100. The training phase is stopped when the
agent achieves an average reward of 60, measured in the last 50 episodes. Due to
the lower complexity of the task of the DDPG agent, and hence a straightforward
training phase, in this case it has not been adopted a systematic procedure with
parallel learning procedures as in PPO. However, the λ coefficient has been finely
tuned to obtain the desired performance: from further experiments with the hybrid
architecture, that will be better discussed in Chapter 6, it has been observed that a
too sharp variation in the trajectory of the agent commanded by the deterministic
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Figure 5.12: DDPG learning curve.

policy could lead to unexpected collisions. Actually, when the PPO agent is going
to complete an obstacle avoidance maneuver, at a certain moment the robot cannot
sense the obstacle anymore, or when it is out from the horizontal FOV of the cam-
era, or when it is closer than the minimum range of the vision sensor. Nevertheless,
it has learnt to keep a safe distance from obstacles and to perform safe and large
trajectories. The problem arises when the PPO agent is not allowed to complete a
safe and large maneuver because the action decision is passed to the DDPG agent,
and to avoid this situation two strategies have been adopted: the addition of conser-
vativeness to restrict the cases when the action is taken by the deterministic policy,
and the adoption of a DDPG agent that makes a trajectory not too straight when
it adjusts the direction to reach the target. Hence, λ has been tuned to obtain a
slight curvature in the first limited portion of path. Actually, even the random seed
variation can lead to slight different trajectories; however, in this case, the difference
is miniscule. The learning curve of the chosen policy is reported in Fig 5.12, and the
behaviour of the DDPG agent, compared with the PPO, is presented in Fig 5.13. It
can be noted that the DDPG policy leads to a straightforward reaching of the target.
To verify the agent ability despite its lack of knowledge of the target distance, the
policy has been tested with 1000 cases in the training environment, applying the
random generation of both the coordinates of the starting and goal positions, along
with the initial orientation, and the goal has been reached all the times.
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Figure 5.13: Comparison between the behaviour of the DDPG and PPO agents.
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Chapter 6

Simulations

The two candidate PPO policies showed good success rates in the last two train-
ing environments, that represent challenging tests for measuring the collision ability
of the robot. Consequently, they have been deployed in the hybrid collision avoid-
ance algorithm, object of this work. The algorithm has been first implemented in
MATLAB, adopting a more realistic simulation with respect to the one used for
the training. In this phase, performance measurements have been finely collected
to deeply evaluate the performance of both the policies and also of the algorithm.
Afterwards, the control algorithm has been implemented on a GAZEBO simulator,
to test the behaviour of the algorithm through a highly realistic framework.

6.1 MATLAB Simulation

6.1.1 Control Algorithm

In the validation phase, the robot has not been considered a point particle any-
more, but it has been modelled as a circle of radius r = 0.11 m, since the robot
measures approssimatevely 21 cm x 22 cm. Furthermore, the sampling time has not
been taken equal to 1 second anymore, but it has been tuned to resemble the real
control frequency obtained in the Gazebo simulation. As will be presented in Sec-
tion 6.2, the control frequency of the algorithm is around 2 Hz. Hence, in MATLAB
simulation it has been designed the robot to take an action every 0.5 s; however, to
increase the accuracy of the simulation, precise measurements about the distance
from the obstacles have been measured implementing a fictitious second range bear-
ing sensor, that sense every 0.05 s all the environment sorrounding the robot without
distance limits. Obviously, the agent has not access to this information.

At the starting instance of the control algorithm, it is avalaible the starting pose
of the robot and the target position. The algorithm is constitued by a while state-
ment, that runs until the robot reaches the goal, considering a threshold of 0.10 m,
collides with an obstacle, detectable when the distance from an obstacles is equal to
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or lower than 0.11 m, or after a timeout at 1000 s. At each iteration of the algorithm,
with a Tscontrol = 0.05 s,the pose of the robot is updated and the fictitious sensor
is exploited to compute effective distance from obstacles. Nevertheless, the robot
action is computed with a Tsaction = 0.5 s, hence the same action is commanded
for 10 consecutive time instants. The computation of the action is based on the
construction of the observation vector, that involves the simulation of the vision
sensor, the shrinking of the range measurements to 13, their normalization, and
the computation of the distance and angle of the robot with respect to the target.
This data is also exploited to decide the policy responsible for action computation,
and the choice is based on a if statement. Basically, if the angle with respect to
the target is inside the horizontal field of view of the camera, hence if the robot
can sense the environment between itself and the target, and if the distance from
the target is lower than the range measurement related to the angular sector that
includes the target, hence the path towards the goal is obstacle-free, the action is
computed through the DDPG policy, else through the PPO policy. However, after
some experiments, it has been decided to consider more conservative conditions for
the DDPG choice, ensuring safer trajectories: the horizontal field of view considered
in the if statement has been reduced to 80° instead of 86° and, instead of considering
just the range measurement of the angular sector that contains the target, it has
been decided that also the range measurements of the two angular sectors closer to
the one that includes the target have to fulfill the condition, i.e., the distances of
obstacles in those sectors have to be higher than the distance from the target.

Algorithm 6.1 MATLAB validation control algorithm.
1: Input: starting pose of the robot, target position
2: repeat
3: if the time step is a multiple of Ts

Tscontrol
then

4: Simulate vision sensor
5: Reduce the number of ranges
6: Construct the observation vector
7: Choose the policy responsible for making the action
8: Compute the action exploiting the chosen policy
9: end if

10: Command robot action
11: Update the pose of the robot
12: Simulate the fictitious sensor to evaluate effective distance from obstacles
13: until a termination condition happens

6.1.2 Results

The control algorithm discussed above has been tested for both the policies
related to PPO run 1B and run 3 by using 7 validation environments. These en-
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vironments have been designed with the idea of experimenting several challenging
situations, different with respect to the ones used for training (the exception is
the first validation environment, that resembles the final training stage of the PPO
agent). To better evaluate the performance of the algorithm, and to provide a uni-
formity in the test, all the environments involved are based on fixed configurations
of obstacles. However, the verification of a huge number of different situations is al-
lowed by the random generation of initial and target conditions. More in depth, the
validation environment n°1, n°2, n°3, and n°4 involve the same random generation
structure of the initial and target conditions adopted for the first, third, fourth and
fifth training stage of the PPO agent. Instead, the validation environment n°5 is
based on a fixed initial position, with the usual random initial orientation, and two
lines of possible target positions, one in the upper part of the map and the other in
the lower. On the other hand, the validation environments n°6 and n°7 are based
on fixed starting positions and fixed target locations, while the initial orientation is
randomly generated.

Both the policies showed very good performance, and, again, their difference
cannot be sensed by comparing the trajectories. To make a significant comparison
between the two, the algorithm has been evalueted in each environment for 500
times deploying the first policy and for other 500 times with the second. It has been
measured the number of times that the robot reaches the goal (success), collides
with an obstacles (crash) or the timeout happens. Moreover, at each test, it has
been measured the minimum distance between the robot and the obstacles. This
value, averaged over the total number of tests for each environment, can provide
additional information about the safety of the collision-free trajectories performed
by the robot.

Fig. 6.1, Fig. 6.2, Fig. 6.3, and Fig. 6.4 display an example of successful trajec-
tory for each of the 7 environments, and in Table 6.1 and Table 6.2 the performance
metrics are presented for policy 1B and policy 3. The control algorithm shows great
collision-avoidance skills and huge generalization abilities for both the policies, that
present very close results. However, the policy obtained from the run 3 is character-
ized by slightly higher results, and for this reason it has been chosen to be deployed
in the target hardware, thorugh a Gazebo simulation. For the same reason, the
trajectories presented in this section are related to the PPO policy obtained from
run 3.

The hybrid architecture provides enormous accuracy in target reaching; however,
it should be mentioned that the minimum distance from an obstacle is often detected
when the action si computed by the DDPG policy. Nevertheless, thanks to the more
restrictive conditions adopted for the deterministic policy transition, the drawback
of the hybrid configuration is limited to the reduction of the safe margin, but has
not resulted in an increase of failures. Actually, in this phase the observed crashes
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Table 6.1: Performance of the control algorithm with PPO policy 1B.

Environment Success rate Crash rate Timeout rate Avg min distance

1 99.8% 0.2% 0% 0.070 m

2 84.2% 15.8% 0% 0.084 m

3 97.8% 2.2% 0% 0.118 m

4 98% 0.6% 1.4% 0.103 m

5 95.6% 4.4% 0% 0.065 m

6 100% 0% 0% 0.083 m

7 95.8% 0% 4.2% 0.084 m

Table 6.2: Performance of the control algorithm with PPO policy 3.

Environment Success rate Crash rate Timeout rate Avg min distance

1 100% 0% 0% 0.087 m

2 90.2% 9.8% 0% 0.100 m

3 96.6% 3.4% 0% 0.120 m

4 98.8% 1% 0.2% 0.086 m

5 97.8% 2% 0.2% 0.074 m

6 100% 0% 0% 0.091 m

7 100% 0% 0% 0.067 m

Figure 6.1: Robot trajectories in validation environments n°1 and n°2.
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Figure 6.2: Robot trajectories in validation environments n°3 and n°4.

Figure 6.3: Robot trajectories in validation environments n°5 and n°6.
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Figure 6.4: Robot trajectory in validation environment n°7.

have been occurred during the execution of the PPO policy. Regarding the timeout
situation, it has been observed that the robot occasionally ends up in a deadlock:
in practice, when the direction towards the goal is occluded by obstacles, the robot
tries to rotate to find obstacle-free paths. The rotation occurs until the robot finds a
way to move; however, when robot orientation becomes too different with respect to
goal direction, and the path is already occluded, the robot starts to rotate towards
the opposite direction. This behaviour makes sense, but considering the fact that
the action selection made by the agent is based only on present observation vector,
the consequence is that in certain situations the robot is blocked in an endless loop
where it continues to alternate rotation to a side with rotation to the opposite side.

6.2 Gazebo Simulation

Finally, the objective of the work was to experiment the performance of the
developed control algorithm when applied to the target robot. This has been done
in simulation, using a Gazebo model of the robot.

6.2.1 Control Algorithm

Gazebo is a 3D robotics simulator, characterized by a robust physics engine and
realistic rendering of environments. The simulation has been performed through
a MATLAB-Gazebo cosimulation, that allows to connect MATLAB and Gazebo
through the ROS interface. The model of the ground robot can be controlled by
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publishing messages to the robot (such as desired velocities), and by subscribing to
topics that the robot publishes (such as odometry and camera data).

The algorithm implemented in the Gazebo simulation is based on the same hybrid
philosophy presented in previous section. In particular, the choice of the policy to
adopt for computing the action is based on the same if statement explained in
Subsection 6.1.1. Even the construction of the observation vector is the same, with
the exception that the range measurements are obtained by converting the depth
values provided by the camera through geometric relationships. This is the most
heavy procedure of the algorithm from a computational point of view, since a huge
number of x-y-z values are converted into distance and angle couples. To ensure a
faster process, hence to acquire an higher control frequency, not all the points from
the depth image are converted into range findings, but only the ones whose height is
in the range [−0.1 m, 0.1 m] with respect to the height coordinate of the center of the
camera. The lower limit of the range is necessary to avoid to confuse the points of
the floor with obstacles, while the upper limit allows to skip useless computations,
since the height of the robot is only 14.35 cm. With the adoption of this range,
the control algorithm shown a control frequency about 2 Hz; however, it varies a
bit since it depends on the number of points detected by the camera in the specific
scene.

The pseudocode of the control algorithm is presented in Algorithm 6.2. It has
to be mentioned that the odometry data are computed with respect to the robot
initial pose when connected in simulation, hence the target position has to be defined
considering this reference.

Figure 6.5: Example of depth image obtained from the camera.
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Figure 6.6: Example of converted range measurements.

Algorithm 6.2 Gazebo control algorithm.
1: Input: target position
2: repeat
3: Receive odometry data
4: Compute distance from target
5: Compute angle error with respect to target
6: Receive depth camera data
7: Convert depth data into range measurements
8: Reduce the number of ranges
9: Construct the observation vector

10: Choose the policy responsible for making the action
11: Compute the action by exploiting the chosen policy
12: Command robot action
13: until distance from target is lower than a threshold or a timeout happens
14: Command robot to stop

6.2.2 Results

The algorithm has been tested in several different and challenging scenarios, and
some examples of its performance are presented in Fig. 6.7, Fig. 6.8, Fig. 6.9,
and Fig. 6.10. The colors of the trajectories in the figures replicate the choices
adopted for the validation results, hence the blue refers to the actions decided by
the PPO policy, while the orange is related to the DDPG policy. It has to be noted
that while the first Gazebo environment resembles the last PPO training stage, and
the second is characterized by the same idea of some validation environments, the
third and fourth scenario are very different to the ones that the agent tackled during
learning. In particular, the fourth involves quite narrow paths, resembling a maze-
like structure. The algorithm shows great performance and generalization abilities,
altough, obviously, it presents some limitations. The most challenging situations are
related to sharp turns and too occluded scenarios. A huge hardware limitation is
represented by the minimum range detected by the depth camera and to its limited
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Figure 6.7: First Gazebo environment.

horizontal field of view (86°). Regarding the former, in the Gazebo simulation, when
the object is closer to 30 cm to the center of the robot, i.e., about 20 cm with respect
to the face of the robot, it cannot sense the object anymore. The hybrid architecture
increases partially the efficiency of the trajectory and leads to great results in the
target reaching accuracy, since the goal threshold has been maintaned to 10 cm as
in MATLAB simulations, and it never happened that the robot overcame the target
due to errors in the direction. However, due to aforementioned camera limitations,
the hybrid configuration adopoted can sometimes lead to additional crashes, when
it happens that the PPO policy brings the robot too close to an object until the
presence of the obstacle is not correctly sensed anymore, and hence, the action
decision is passed to the DDPG policy that cuts the path by going directly towards
the obstacle.

Figure 6.8: Second Gazebo environment.
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Figure 6.9: Third Gazebo environment.

Figure 6.10: Fourth Gazebo environment.
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Chapter 7

Conclusions and Future Works

In conclusion, the work of this thesis is based on three parts: the design and
training of a reinforcement learning agent through Proximal Policy Optimization
algorithm, to command the movements of a ground robot to reach a user-defined
target while avoiding collisions with the obstacles present in the path; the design and
training of a second agent, with the aim to produce efficient trajectories in specific
situations, through Deep Deterministic Policy Gradient algorithm; the development
and testing of a control algorithm, that deploys alternatively the two agents.

The stochastic PPO agent has been developed to learn collision avoidance abil-
ities. It has been designed to receive some information about the distance of the
obstacles in the area detected by the camera embedded with the robot, as well as
the relative target position, as input, and to produce the linear and angular velocity
of the robot as output. To ensure reproducibility, the training of the agent, based
on five different environments characterized by incremental complexity, has been
performed by exploiting multiple training runs with different random seeds, that led
to slightly different but satisfactory policies. The most promising policies have been
chosen to be deployed and tested into the control algorithm.

The resulting PPO policies showed great collision avoidance abilities; however,
they present largely inefficient trajectories in trivial situations. Hence, a determinis-
tic DDPG agent has been devised to provide efficient and precise trajectories when
the path towards the target is obstacle-free.

Finally, a control algorithm has been developed to collect robot sensor data,
process it, decide what agent to exploit, provide the inputs to it, and command
robot velocities according to the decision made by one of the agents. The algorithm
has been tested through MATLAB and Gazebo simulations by using a variety of
challenging environments, and showed good performances in avoiding static obstacles
and a great generalization ability. Nevertheless, its performances decreased when
dealing with sharp turns or too occluded scenarios. The adoption of the hybrid
architecture has led to more efficient trajectories and enormous accuracy in the
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reaching of the target, but with the drawback of a reduction of the safety distance
kept by the robot from obstacles.

Some ideas for future works could be:

• Implementation of real-word experiments, considering possible problems that
could arise, e.g., noise in the depth camera data that can lead to ghost obsta-
cles.

• Enhancement of the hybrid architecture, by trying to exploit the deterministic
policy in a more efficient manner, without reducing the safety distance kept
by the stochastic agent.

• Achievment of a continuous and smooth behaviour of the stochastic policy.

• Deployment of an additional vision sensor to increase the perception abilities
of the agent.

• Implementation of a more complex observation vector for the collision avoid-
ance agent, that includes both present and past information about the envi-
ronment, e.g., range measurments in the last n time steps, to try to tackle
moving obstacles situations.
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