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Abstract

In the context of traffic control, modern techniques involve the presence of autonomous
vehicles (AVs) implementing control strategies with the objective of stabilizing traffic flow
and avoiding congestion. This approach has proven to be effective through experiments
where a small number of AVs is inserted within a group of human-driven vehicles travelling
on a ring road. With the objective of unveiling the key factors underlying experiments, we
select a mathematical description of traffic flow and study its properties.
In this work, the well-known Optimal Velocity model, or Bando model, is adopted to model
the behaviour of a group of N vehicles driving on a closed ring road without being fed by
any external input signal. The main feature of this dynamical model is the definition of
a velocity function for each vehicle, computed on the basis of the current distance with
respect to the preceding vehicle. The dependence of the velocity, or optimal velocity, on
the headway involves the hyperbolic tangent function, which makes the whole dynamical
model nonlinear.
Beside Bando model, the analysis of a modified Optimal Velocity model is developed. This
model is somehow a simplification, because it substitutes the hyperbolic tangent with a
piecewise linear function in the definition of the velocity. In this way, the resulting Optimal
Velocity model is significantly simplified and it can be studied as a linear system subject
to saturated control law.
The objective of the proposed control law is to steer the system towards a particular equi-
librium state, called speed equilibrium or uniform flow equilibrium, in which the N vehicles
travel at the same speed and move on the ring keeping the same inter-vehicle distance. To
study the stability of this particular equilibrium, both models are rewritten in a new set of
state variables. In particular, the relative velocities of each couple of adjacent vehicles and
their relative distances with respect to the distance at the uniform flow equilibrium. As a
first step, the stability analysis is carried out by linearizing the model around the speed
equilibrium and studying how the model parameters affect the eigenvalues of the linearized
system. For Bando model, we apply results from the literature and state the relationship
between the model parameters that must be satisfied to ensure local asymptotic stability of
the uniform flow equilibrium to be asymptotically stable. Moreover, the same relationship
is derived for groups of three, four and five vehicles by applying Routh criterion.
In the second part, the analysis is carried out on the original nonlinear models. Through
the definition of local sector conditions on the nonlinearities of the models, it is possible to
state a result that allows to determine an ellipsoidal estimate of the region of attraction. It
is shown that the choice of the model parameters affects the size of the estimate, thereby
validating the relationships between the stability and the model parameters that is ob-
served through the former analysis based on linear approximation. The ellipsoids are then
constrained to lie inside a polytope that forces a lower bound on the inter-vehicle distances.
In this way, it is possible to define an invariant set from which collision is avoided.



Contents

1 Introduction 5

2 Optimal Velocity Model 11
2.1 Bando model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Uniform flow equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Time simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Model in error coordinates . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Optimal Velocity model with saturation . . . . . . . . . . . . . . . . . . . 21
2.2.1 Time simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Model in error coordinates . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Comparison of the two models . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Linear analysis 31
3.1 Linearization of Bando model . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Time simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Linear analysis of the model with saturation . . . . . . . . . . . . . . . . . 40

3.2.1 Time simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Comparison of the linear models . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Stability and safety analysis of the Optimal Velocity model with satura-
tion 53
4.1 Linear systems subject to saturated control law . . . . . . . . . . . . . . . 53
4.2 Ellipsoidal estimate of the region of asymptotic stability . . . . . . . . . . 59
4.3 Dependence of the RAS on the model parameters . . . . . . . . . . . . . . 62
4.4 Safe region of asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . 67

5 Stability and safety analysis of the Bando Optimal Velocity model 71
5.1 LTI systems with Neural Network Controller . . . . . . . . . . . . . . . . . 71
5.2 Ellipsoidal estimate of the region of attraction . . . . . . . . . . . . . . . . 76

5.2.1 Local sector condition on tanh . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Offset local sector condition on tanh . . . . . . . . . . . . . . . . . 82

5.3 Dependence of the ROA on the model parameters . . . . . . . . . . . . . . 84
5.4 Safe region of attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2



6 Conclusion and future work 91
6.1 Summary and comparison of the models . . . . . . . . . . . . . . . . . . . 91
6.2 Improvement of the analyses and future work . . . . . . . . . . . . . . . . 94

Bibliography 97

3



4



Chapter 1

Introduction

The interaction of groups of vehicles travelling on a roadway concerns everyday life and,
in particular, traffic congestion is a usual phenomenon that may occur.
Traffic jams may have several causes, such as bottlenecks, lane changes or accidents, but
in the experiment [1] carried out by Sugiyama et al. it is demonstrated that the behaviour
of human drivers alone can lead to congestion.
In this experiment, shown in Figure 1.1, a group of 22 vehicles driven by humans travel
on a ring road, starting at equally spaced positions. At first the flow is uniform, but,
after some time, the vehicles speed up and slow down periodically, being too close with
one another and then having too large headways. As a result, traffic flow is not uniform
anymore and the travel is uncomfortable and unsafe, possibly leading to accidents. These
phenomena where vehicles accelerate and then suddenly brake are known in the literature
as stop-and-go waves. In the absence of changes to the roadway, since the behaviour of
human drivers is sufficient to cause traffic jams, if there exists the chance to influence the
driving of people, it is possible to improve traffic conditions, make drivers more comfortable
and avoid accidents.
Several techniques have been employed in order to estimate and control traffic flow and
handle and prevent traffic congestion.
Traffic control may rely on Eulerian systems at fixed locations, such as ramp metering [2],
[3] and variable speed limits [4], [5], [6]. Both these techniques may show some limitations,
because speed limits may not be attended by drivers and traffic congestion could occur
on the access ramp of the road. Moreover, between two points where these systems are
installed, there is no control on traffic.
In addiction to these fixed devices, the usage of Lagrangian or mobile systems is a common
solution, both in control [7], [8], [9], [10] and sensing [11], [12]. It consists in the introduction
in traffic flow of a certain number of controlled vehicles that, if needed, help to make the
flow uniform, dampen stop-and-go waves, increase the road capacity and avoid traffic
congestion. Of course, these vehicles need suitable sensing devices in order to localize
other cars, measure their velocities and detect the presence of a possible traffic jam, and
they must implement a control strategy able to stabilize traffic.
Nowadays, the main approaches in the usage of Lagrangian systems in traffic flow are
variable speed limit control, platooning and mixed traffic.
Variable speed limit (VSL) strategies may be implemented at fixed points along the road
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Introduction

(a) t = 0 s (b) t = 0.04 s

(c) t = 0.08 s (d) t = 0.13 s

(e) t = 0.18 s (f) t = 0.24 s

Figure 1.1: Experimental evidence for the physical mechanism of forming a jam. "The
Mathematical Society of Traffic Flow", Yuki Sugiyama et al., New Journal of Physics,
2008, Multimedia supplement.

or they could be implemented by employing connected automated vehicles that adjust the
speed of traffic flow [13], [14].
Platooning refers to the employment of only controlled vehicles, that form ’a platoon’.
Examples of control techniques specific for this kind of system are the well known Adaptive
Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC). In a platoon, all
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vehicles implement the same control strategy in order to reduce their inter-vehicle distance
and keeping it safe or reaching high velocities avoiding accidents.
Mixed traffic refers to the usage of a possibly small percentage of autonomous vehicles that
travel along side human drivers. A typical penetration rate representing the percentage of
these vehicles with respect to the others is

penetration rate = 3 − 5%.

As shown in [10], the presence of a small number of autonomous vehicles (AVs) may keep
traffic flow fluid, avoid sudden acceleration and braking, prevent the occurrence of stop-
and-go waves and make the travel safe and comfortable.
In Figure 1.2 is shown the experiment by Stern et al., with a setup similar to Sugiyama
et al. one, where 22 vehicles travel on a ring road and only one of them is automated. At
the beginning, the vehicles start equally spaced on the ring and the control action of the
AV is switched off. Then, after some time, a wave arises, making some cars too close and
others too far. During the experiment, the AV turns on its control strategy and dampens
the wave, restoring the previous uniform flow.
Usually, the objective of traffic stabilizing is having all vehicles travelling at the same
constant speed and keeping a safe headway.

(a) t = 0 s

(b) t = 93 s

(c) t = 321 s

Figure 1.2: Ring road experiment with one AV by Stern et al.

Whatever is the selected control strategy, first of all there is need of a mathematical model
able to describe the behaviour of any group of vehicles.
Traffic flow may be modeled by two kinds of mathematical descriptions:

• Macroscopic modelling
Traffic is considered as a continuous flow and what is highlighted is the collective
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behaviour of the group, without focusing on how the single vehicle behaves.
The mathematical description of these models includes nonlinear partial derivative
equations (PDEs) that resemble the fluid-dynamics (i.e. conservation of mass equa-
tion). In this framework, the quantities of interest are traffic density, flow and average
speed of the whole group and the result is the density distribution of the vehicles.
An example of macroscopic model is LWR model [15], [16], which exploits the con-
servation of cars mass law and it is based on the assumption that the average speed
of the group of vehicles depends only on its density.

• Microscopic modelling
The attention focuses on the dynamics of the single vehicle and the mathematical
description of the whole group consists of a system of ordinary derivative equations
(ODEs) for each car. The result is the trajectory of each vehicle and the quantities
of interest are positions, velocities and accelerations of the vehicles.
Car-following models are microscopic models, where the dynamics of the single ve-
hicle depends only on the behaviour of the preceding one. Since each vehicle gets
information only from the one in front of it, neglecting what happens behind, the
information flow is unidirectional and therefore this kind of model is said to be ‘uni-
directional’.
Two car-following models are the Follow-the-leader model [17], [18] and the Optimal
velocity model [19]. In both mathematical descriptions, the acceleration of the i-th
car depends on the position and/or the velocity of the preceding vehicle (i+1) in a
nonlinear way (see Figure 1.3).

Figure 1.3: Three vehicles of the platoon

1. Follow-the-leader model
Suppose the platoon is composed by N vehicles, xi is the position of each vehicle
and vi is its absolute velocity.I

ẋi = vi

v̇i = C vi+1 − vi
xi+1 − xi

, ∀ i = 1, ..., N
(1.1)

The acceleration of each car is linear with its relative speed with respect to the
preceding vehicle ∆v = vi+1 − vi and it is inversely proportional to their relative
distance ∆x = xi+1 − xi. C is a constant with dimension [m/s].
The drawback of this model is that, if two adjacent vehicles have the same
velocity, the following vehicle does not speed up or slow down, whatever is their
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relative distance. So, if the headway is too large, the following vehicle does not
speed up in order to catch the leading one, and, if the headway is too small, the
following vehicle does not brake in order to make the distance safer.

2. Optimal velocity model
In order to solve the drawback of the Follow-the-leader model, the speed of each
vehicle is compared with an optimal velocity value, computed on the basis of the
headway with respect to the preceding vehicle. For instance, a possible optimal
velocity function is defined in (1.2).

Vopt(xi+1 − xi) = Vmax
tanh (xi+1 − xi − lv − ds) + tanh (lv + ds)

1 + tanh (lv + ds) (1.2)

I
ẋi = vi

v̇i = b [Vopt (xi+1 − xi) − vi] , ∀ i = 1, ..., N
(1.3)

b is a constant with dimension [s−1] representing the sensitivity of the driver,
∆x = xi+1 − xi is the headway, ds is the safe inter-vehicle distance and lv is
the length of each vehicle. Whenever the headway with respect to the preceding
vehicle is small, the optimal velocity function tends to zero; on the contrary, if
the inter-vehicle distance is very large, the optimal velocity tends to Vmax, which
is the maximum allowable value.

• Macro/microscopic modelling
It is possible to describe traffic flow as a collective phenomenon and add the dynamics
of each single vehicle in order to both have an idea of the behaviour of the platoon
and track the single car. These models mix macroscopic and microscopic descriptions
of traffic and coupling equations that allow to combine them together.
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Chapter 2

Optimal Velocity Model

2.1 Bando model
The Optimal Velocity model or the Bando model [19] is a microscopic description of traffic
flow, where the acceleration of each single vehicle depends on an ’optimal’ velocity function
as described in (2.1). With this dynamical model, the velocity function of each car depends
only on the headway with respect to the preceding vehicle.I

ẋi = vi

v̇i = b [Vopt (xi+1 − xi) − vi] , ∀ i = 1, ..., N
(2.1)

b [s−1] is a constant representing the sensitivity of the driver, xi and vi are the absolute
position and velocity of the i-th vehicle and ∆xi = xi+1 − xi is the headway with respect
to the preceding vehicle (i+1).
In the dynamical model introduced by Bando et al. the optimal velocity Vopt(∆xi) may
be any monotonically increasing function that tends to zero when ∆xi is ‘too small’ and it
tends to a maximum value when ∆xi is ‘too large’. In this way, when the distance between
the i-th vehicle and the vehicle i+1 is too small, the i-th vehicle slows down and it speeds
up when its headway with respect to vehicle i+1 is too large.
A realistic function for the optimal velocity is

Vopt(xi+1 − xi) = Vmax
tanh (xi+1 − xi − lv − ds) + tanh (lv + ds)

1 + tanh (lv + ds) (2.2)

where Vmax is the maximum speed, lv is the vehicle length and ds is the safe distance
between vehicles i and i+1. It is depicted in Figure 2.1. If ∆xi = xi+1 − xi º lv + ds

so the inter-vehicle distance between the i-th vehicle and its preceding car is large, then
tanh (xi+1 − xi − lv − ds) tends to 1 and Vopt(∆xi) asymptotically converges to its max-
imum value Vmax. In this way, the i-th vehicle accelerates in order to reduce the gap in
front of it.
If ∆xi = xi+1 − xi ¹ lv + ds, the headway between the i-th vehicle and its preceding car is
too small, then tanh (xi+1 − xi − lv − ds) tends to -1 and Vopt(∆xi) is low. In this way, the
i-th vehicle slows down and the inter-vehicle distance with respect to the preceding vehicle
increases.
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Optimal Velocity Model

Figure 2.1: Vopt(xi+1 − xi) of the Bando model

The optimal velocity function (2.2) makes the model nonlinear and it shows only a de-
pendence on the headway. More complex Optimal Velocity models describe the velocity
as function of both the headway and the relative velocity with respect to the preceding
vehicle:

Vopt(∆xi, ∆vi)

In this way, the model shows the dependence of the acceleration of each car not only on the
distance between itself and the vehicle in front, but also on the difference of their velocities.

2.1.1 Experimental setup
In the following chapters, the Optimal Velocity model will be employed to describe the
behaviour of a platoon of N vehicles that travel on a ring road, as shown in Figure 2.2.
Even if a closed ring road is not a realistic setup and it neglects some phenomena that may
arise in real life (like a narrowing of the roadway or a crossroad) this framework represents
a sort of infinite road. Moreover, it allows to see the presence of the so-called stop-and-go
waves, as shown in [1] and [10].

Since the vehicles travel on a closed ring and the acceleration of the i-th vehicle depends on
the headway with respect to its preceding vehicle, the model described in (2.1) and (2.2)
becomes as follows.
Let us call one car of the platoon as the 1st vehicle, then its acceleration v̇1 depends on
the headway ∆x1 = x2 − x1 as follows.ẋ1 = v1

v̇1 = b
è
Vmax

tanh(x2−x1−lv−ds)+tanh(lv+ds)
1+tanh(lv+ds) − v1

é
,

(2.3)
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2.1 – Bando model

Figure 2.2: Sketch of 4 vehicles of the platoon that travel clockwise on a ring road

where x2 is the position of the 2nd vehicle, x1 is the position of the 1st vehicle and the 2nd

vehicle is in front of the 1st one. See Figure 2.2.
In an analogue way, the acceleration of the 2nd vehicle depends on the headway with respect
to the 3rd car, as shown in (2.4), where x3 is the position of the 3rd vehicle in front of the
2nd one,

ẋ2 = v2

v̇2 = b
è
Vmax

tanh(x3−x2−lv−ds)+tanh(lv+ds)
1+tanh(lv+ds) − v2

é
,

(2.4)

and so on. Since there are N vehicles and they travel on a closed ring, the 1st vehicle is
placed in front of the N-th and then v̇N depends on the headway ∆xN = x1 − xN .

ẋN = vN

v̇N = b
è
Vmax

tanh(x1−xN−lv−ds)+tanh(lv+ds)
1+tanh(lv+ds) − vN

é
,

(2.5)

Looking at Figure 2.2, the absolute positions of the vehicles are taken with respect to a
zero reference, that is the position of the 1st vehicle at the start of the experiment.
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2.1.2 Uniform flow equilibrium
In [10] it is shown the Optimal Velocity model of N vehicles travelling on a ring road of
length L, where the acceleration of the N-th vehicle depends on an external input u:

ẋi = vi, ∀ i = 1, ..., N

v̇i = b [Vopt (xi+1 − xi) − vi] , ∀ i = 1, ..., N − 1
v̇N = u

(2.6)

The objective of the control strategy developed in this study is to drive the system to a
particular equilibrium state, called uniform flow equilibrium or speed equilibrium, where
all vehicles travel at the same absolute velocity.
Considering system (2.6), the vehicles may drive at the same speed v̄ if Vopt(∆xi) = v̄, ∀ i =
1, ..., N −1. Since the velocity function of each vehicle strictly depends on its headway, the
speed equilibrium is achieved when the uncontrolled N −1 vehicles have the same headway
∆xi = d, ∀ i = 1, ..., N − 1. The distance between the N-th vehicle and the 1st one may
be anyone. In this way, Vopt(d) = v̄ and, if v̄ is fixed, d is fixed as well.

Similarly, we want to define a speed equilibrium state for our autonomous Optimal Velocity
model of N vehicles on a ring road.I

ẋi = vi, ∀ i = 1, ..., N

v̇i = b [Vopt (xi+1 − xi) − vi] , ∀ i = 1, ..., N
(2.7)

where i + 1 = 1 when i = N .
Since in model (2.7) the acceleration of the N-th vehicle is a function of its headway, the
speed equilibrium is achieved when Vopt(∆xi) = v̄, ∀ i = 1, ..., N and so when ∆xi =
d, ∀ i = 1, ..., N . This means that at the uniform flow equilibrium the vehicles are equally
spaced on the ring road and, if the road has length L, their inter-vehicle distance is fixed
and equal to d = L

N .

2.1.3 Time simulation
In this section, the Optimal Velocity model (2.7) is simulated in time domain, considering a
platoon of N = 10 vehicles on a ring road of length L and setting the following parameters:

Vmax = 15 m/s, b = 10 s−1, d0 = lv + ds = 10 m

By construction, the state vector of the Optimal Velocity model

y = [x1, x2, ..., xN , v1, v2, ..., vN ] ∈ R2N

is limited for any initial condition. Absolute positions xi are bounded because the vehicles
travel on a closed ring of limited length and the absolute velocities are upper bounded
because Vopt(∆xi) at most is equal to Vmax.
In order to reach the speed equilibrium, where all the vehicles share the same absolute
velocity, the relative distances must be the same. So, on a ring road of length L = 150 m,
the final desired distance should be:

∆xi = xi+1 − xi = d = L

N
= 15 m

14



2.1 – Bando model

Let us run the simulation of model (2.7) starting from the initial conditions shown in Table
2.1. When the headway relative to one couple of vehicles is ‘small’ with respect to d0, which

Table 2.1: Initial conditions

Vehicle number Initial absolute positions [m] Initial absolute velocities [m/s]
1 x1(0) = 0 v1(0) = 5
2 x2(0) = 12 v2(0) = 7
3 x3(0) = 23 v3(0) = 6
4 x4(0) = 30 v4(0) = 4
5 x5(0) = 36 v5(0) = 8
6 x6(0) = 63 v6(0) = 5
7 x7(0) = 76 v7(0) = 6
8 x8(0) = 93 v8(0) = 8
9 x9(0) = 112 v9(0) = 12
10 x10(0) = 136 v10(0) = 6

is the safety distance, the velocity function of the following vehicle tends to zero in order
to slow it down and increase their relative distance.
For example, look at the inter-vehicle distance between the 4th and the 5th vehicle at the
starting time:

∆x4(0) = x5(0) − x4(0) = 6 m ¹ d0

Since it is too small, the optimal velocity of the 4th (the following car of the couple) should
be low and in fact:

V 4
opt(0) = 0,005 m/s

Since the initial velocity v4(0) = 4 m/s is far larger than V 4
opt(0), the 4th vehicle (V4) slows

down in order to increase its relative distance with respect to its leading vehicle (V5), as
shown in Figure 2.3 and Figure 2.4.
As V4 slows down, V5 speeds up in order to reduce its distance with respect to V6, so the
relative distance between V4 and V5 increases and this causes V 4

opt to increase with respect
to its previous value, as shown in Figure 2.5. So V4 speeds up because it tries to follow its
optimal velocity and at the end it assumes the velocity of vehicle V5.
On the contrary, when the headway relative to one couple of vehicles is ‘large’ with respect
to d0, the velocity function of the following vehicle tends to Vmax in order to decrease their
relative distance.
For example, look at couple of vehicles V10 and V1 in Figures 2.6-2.8. At the beginning,
their inter-vehicle distance is

∆x10(0) = x10(0) − x1(0) = 14 m º d0,

so the velocity function of the following vehicle, V10, is almost equal to Vmax.

V 10
opt(0) = 14,99 m/s

This makes V10 to speed up and, since from t = 0,28 s V1 slows down, their inter-vehicle
distance, ∆x10 decreases. When ∆x10 is lower than d0 = 10 m, so the distance between
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Figure 2.3: Relative distance between V5 and V4

Figure 2.4: Absolute velocities of V4 (green) and V5 (purple)

V1 and V10 is not safe, V 10
opt reduces and vehicle V10 slows down in order to increase the

headway. Then, as ∆x10 increases, V 10
opt increases as well and vehicle V10 speeds up until it

assumes a velocity similar to vehicle V1 and an almost constant inter-vehicle distance.
After the transient, all vehicles assume equally spaced positions, as shown in Figure 2.9,
and the same constant velocity, so they reach the uniform flow equilibrium state. Since
their final inter-vehicle distance is d = L

N = 15 m, which is larger than d0, their absolute

16



2.1 – Bando model

Figure 2.5: Optimal velocity V 4
opt(t)

Figure 2.6: Relative distance between V10 and V1

velocity will be almost equal to Vmax.

2.1.4 Model in error coordinates
In order to study how the Optimal Velocity model (2.7) behaves with respect to the uniform
flow equilibrium state, it is rewritten in other state variables.
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Figure 2.7: Absolute velocities of V10 (red) and V1 (blue)

Figure 2.8: Optimal velocity V 10
opt(t)

The new state variables are the relative velocities yi of one vehicle with respect to its
following one and the spacing errors zi that represent the gap between the relative distances
of each couple of vehicles and the desired distance d = L

N at the speed equilibrium.

zi = xi+1 − xi − d = ∆xi − d

yi = vi+1 − vi

18



2.1 – Bando model

Figure 2.9: Relative distances of the platoon

When i = N , they are equal to zN = x1 − xN − d and yN = v1 − vN .
In these coordinates, the differential equations of model (2.7) become:

żi = yi, ∀ i = 1, ..., N

ẏi = b
è
Vmax

tanh(zi+1+d−lv−ds)−tanh(zi+d−lv−ds)
1+tanh(lv+ds) − yi

é
, ∀ i = 1, ..., N

(2.8)

where i + 1 = 1 when i = N .
For the sake of simplicity, let us call d0 = lv + ds and rewrite model (2.8) as

żi = yi, ∀ i = 1, ..., N

ẏi = b
è
Vmax

tanh(zi+1+d−d0)−tanh(zi+d−d0)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N

(2.9)

where i + 1 = 1 when i = N .
At the speed equilibrium, ∆xi = d and vi = Vopt(d) = v̄, ∀ i = 1, ..., N , because the
vehicles travel at the same speed and are equally spaced. It means that

zi = 0, yi = 0, ∀ i = 1, ..., N

In this new set of state variables,

x = [z1, z2, ..., zN , y1, y2, ..., yN ]T ∈ R2N , (2.10)

the speed equilibrium point of model (2.7) coincides with the origin of model (2.9) and,
since the speed equilibrium is the desired state, zi and yi are referred to as ’error’ coordi-
nates.
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In Section 3.1, it will be shown that the linearization of model (2.9) around the origin
(i.e. uniform flow equilibrium) has a structural zero eigenvalue that prevents the uniform
flow equilibrium to be asymptotically stable. In order to solve this drawback, we will con-
sider a modification of this model.
Since in Figure 2.2 the vehicles travel on a closed ring road, their relative distances are
not independent from one another, because their sum must be equal to the length L of the
ring.

NØ
i=1

∆xi =
NØ

i=1
zi + d = L

Since L = Nd, the sum of the spacing errors is equal to zero and this allows us to rewrite
one state variable as function of the others.

NØ
i=1

zi = L − Nd = 0

zN = −
N−1Ø
i=1

zi

Let us substitute it in model (2.9) and define a Reduced Optimal Velocity model (2.11) in
2N − 1 state variables (2.12).



żi = yi, ∀ i = 1, ..., N − 1

ẏi = b
è
Vmax

tanh(zi+1+d−d0)−tanh(zi+d−d0)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N − 2

ẏN−1 = b

Vmax

tanh

3
−
N−1q
i=1

zi+d−d0

4
−tanh(zN−1+d−d0)

1+tanh(d0) − yN−1

 ,

ẏN = b

Vmax

tanh(z1+d−d0)−tanh

3
−
N−1q
i=1

zi+d−d0

4
1+tanh(d0) − yN

 ,

(2.11)

where d0 = lv + ds. Having substituted one variable, the state vector has been reduced to

x̃ = [z1, z2, ..., zN−1, y1, y2, ..., yN ]T ∈ R2N−1, (2.12)

As shown in Section 3.1, the Jacobian matrix of the linearization of this model around the
origin (i.e. uniform flow equilibrium) can have all eigenvalues with negative real part if
the parameters satisfy a necessary and sufficient condition, and thus the origin will be an
asymptotically stable equilibrium point for the nonlinear model.
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2.2 – Optimal Velocity model with saturation

2.2 Optimal Velocity model with saturation
Let us consider the Bando Optimal Velocity model on a ring road, where d0 = lv + ds:

ẋi = vi, ∀ i = 1, ..., N

v̇i = b
è
Vmax

tanh(xi+1−xi−d0) + tanh(d0)
1 + tanh(d0) − vi

é
, ∀ i = 1, ..., N

(2.13)

where i + 1 = 1 when i = N .
Since tanh(ξ) is upper and lower bounded and linear around the origin, you may consider
substituting it with the saturation function defined in (2.14) and shown in Figure 2.10.

sat(ξ) =


−umin, if ξ < −umin

ξ, if − umin ≤ ξ ≤ umax

umax, if ξ > umax

(2.14)

The resulting optimal velocity function is still bounded and monotonically increasing and
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Figure 2.10: tanh(ξ) (blue) and sat(ξ) (red)

the modified Optimal Velocity model is defined in (2.15).
The reason of the substitution will be clear in Chapter 4. Basically, a system like (2.15),
where the nonlinearity is given by the saturation function (2.14), is simpler than a generic
nonlinear system and its properties may be studied with particular techniques defined in
[23]. 

ẋi = vi, ∀ i = 1, ..., N

v̇i = b
è
Vmax

sat(xi+1−xi−d0) + tanh(d0)
1 + tanh(d0) − vi

é
, ∀ i = 1, ..., N

(2.15)
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where i + 1 = 1 when i = N .
It is worthy to check if the modified Optimal Velocity model behaves similarly to the Bando
model (2.13) and if it is able to describe the dynamics of traffic flow.
In particular, the modified optimal velocity (2.16) as function of the spacing is depicted
in Figure 2.11 and the linear behaviour occurs for ∆xi = xi+1 − xi such that d0 − 1 m ≤
∆xi ≤ d0 + 1 m.

Figure 2.11: Vopt(xi+1 − xi) of the Bando model (blue) and of the Optimal Velocity model
with saturation (red)

Vopt(xi+1 − xi) = Vmax
sat (xi+1 − xi − d0) + tanh (d0)

1 + tanh (d0) (2.16)

2.2.1 Time simulation
Let us consider a platoon of N = 10 vehicles on a ring road of length L = 150 m where
the dynamics of the vehicles is described by the modified Optimal Velocity model (2.15)
with the following model parameters:

Vmax = 15 m/s, b = 10 s−1, d0 = lv + ds = 10 m

With these parameters, the linear region of the saturated model occurs for 9 m ≤ ∆xi ≤
11 m.
Let us run a simulation of the behaviour of the platoon, where the velocity function is
(2.16). The initial conditions are the same shown in Table 2.1.
For example, let us have a look at the 4th vehicle, V4. At the beginning, its headway is

∆x4(0) = x5(0) − x4(0) = 6 m < d0 − 1 m.
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2.2 – Optimal Velocity model with saturation

Figure 2.12: Relative distance between V4 and V4

Figure 2.13: Absolute velocities of V4 (green) and V5 (purple)

Since this distance is less than d0 − 1 m m, as shown in Figure 2.11, the optimal velocity
function of V4 saturates to the lower bound and so V 4

opt(0) = 0 m/s, as shown in Figure
2.14. Therefore, vehicle V4 brakes and its headway increases. At t = 0.27 s, ∆x4 becomes
equal to d0 − 1 m = 9 m, it enters the linearity region and the optimal velocity function
is linearly dependent on the headway. At t = 0.45 s, ∆x4 exceeds d0 + 1 m = 11 m and
so the optimal velocity function saturates to the upper bound and becomes equal to Vmax.
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Figure 2.14: Optimal velocity V 4
opt(t)

When the transient is over, ∆x4 is equal to d = L
N = 11.6 m, so the optimal velocity

function of V4 stays constant and equal to Vmax. With respect to the velocity function of
the Bando Optimal Velocity model shown in Figure 2.5, V 4

opt can saturate or be linear with
the headway.
The model (2.15) behaves in a similar way with respect to Bando model (2.13) because the
nonlinear functions that regulate the velocity of each vehicle with respect to the headway
are similar and the principle is the same.

2.2.2 Model in error coordinates
As well as for Bando model, the Optimal Velocity model (2.15) with saturation function
(2.16) may be rewritten in a new set of state variables: spacing errors with respect to the
inter-vehicle distance at the uniform flow equilibrium and relative velocities.

zi = xi+1 − xi − d = ∆xi − d

yi = vi+1 − vi

The differential equations of the model in error coordinates is (2.17) and the new state
vector is (2.18).

żi = yi, ∀ i = 1, ..., N

ẏi = b
è
Vmax

sat(zi+1+d−d0)−sat(zi+d−d0)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N

(2.17)

where i + 1 = 1 when i = N .

x = [z1, z2, ..., zN , y1, y2, ..., yN ]T ∈ R2N (2.18)
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For the same reason as for the Bando model, it is convenient to consider that the spacing
errors are not independent from one another, because the vehicles travel on a closed ring
of length L. Thus, the sum of their inter-vehicle distances is equal to L and the sum of the
spacing errors is equal to zero. This fact allows us to express one state variable as function
of the others:

zN = −
N−1Ø
i=1

zi

As a consequence, system (2.17) is reduced to model (2.19), whose state vector (2.20) has
dimension 2N − 1.

żi = yi, ∀ i = 1, ..., N − 1

ẏi = b
è
Vmax

sat(zi+1+d−d0)−sat(zi+d−d0)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N − 2

ẏN−1 = b

Vmax

sat

3
−
N−1q
i=1

zi+d−d0

4
−sat(zN−1+d−d0)

1+tanh(d0) − yN−1

 ,

ẏN = b

Vmax

sat(z1+d−d0)−sat

3
−
N−1q
i=1

zi+d−d0

4
1+tanh(d0) − yN



(2.19)

x̃ = [z1, z2, ..., zN−1, y1, y2, ..., yN ]T ∈ R2N−1 (2.20)

2.3 Comparison of the two models
In both the Bando model (2.13) and the Optimal Velocity model with saturation (2.15),
the velocity function of each vehicle is computed on the basis of the current distance with
respect to the preceding vehicle. Both the optimal velocity functions are nonlinear and
they are lower and upper bounded. When the headway is too large, the velocity function
tends to the maximum value and, when the headway is too short, the velocity function
tends to zero. Thus, the idea at the basis of the models is the same. Nevertheless, substi-
tuting the saturation function (2.14) in the expression of the optimal velocity defined in
Bando model could lead to some differences in the behaviour of the platoon.
In this section, both models are simulated in time domain, starting with the same initial
conditions and same model parameters, in order to highlight their differences.

Simulation 1. Let us consider a platoon of N = 5 vehicles travelling on a ring road
of length L = 55 m. The parameters are:

b = 10 s−1, Vmax = 15 m/s, d0 = lv + ds = 10 m.

In Table 2.2 are shown the same initial conditions for both models. In Figure 2.15 and
2.16 are shown the relative distances of both models as they converge to the inter-vehicle
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distance at the uniform flow equilibrium: d = L
N = 11 m. It is clear that the convergence

of the model with saturation function is faster with respect to Bando model.
Since the final inter-vehicle distance is equal to d0 + 1 m = 11 m, the vehicles of the model
with saturation function will drive at the maximum velocity Vmax, as shown in Figure 2.18.
On the contrary, in Bando model, the absolute velocities of the vehicles are lower, because
their velocity functions do not saturate, as shown in Figure 2.17. At steady state, the
vehicles in Bando model drive at

vi = Vopt(d) = v̄ = 13.2 m/s.

The velocity of the convergence to the uniform flow equilibrium will be seen through the
study of the linearization of both models in Chapter 3.

Table 2.2: Initial conditions

Vehicle number Initial absolute positions [m] Initial absolute velocities [m/s]
1 x1(0) = 0 v1(0) = 5
2 x2(0) = 9 v2(0) = 7
3 x3(0) = 22 v3(0) = 6
4 x4(0) = 36 v4(0) = 4
5 x5(0) = 47 v5(0) = 3

Figure 2.15: Relative distances of the model with tanh in Simulation 1

Simulation 2. Let us consider again a platoon of N = 5 vehicles, that travel on a ring
road of longer length: L = 75 m. The parameters are the same:

b = 10 s−1, Vmax = 15 m/s, d0 = lv + ds = 10 m.
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Figure 2.16: Relative distances of the model with sat in Simulation 1

Figure 2.17: Absolute velocities of the model with tanh in Simulation 1

In Table 2.3 are shown the initial conditions of both models and in Figure 2.19 and 2.20 are
shown the relative distances in time domain. With the choice of parameters shown above,
the Bando model converges to the uniform flow equilibrium, as the vehicles assume equally
spaced positions at the end of the transient. Since their inter-vehicle distances converge to
d = L

N = 15 m, their velocity functions will be almost equal to Vmax:

vi = Vopt(d) = v̄ = 14.99 m/s.
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Figure 2.18: Absolute velocities of the model with sat in Simulation 1

On the contrary, the vehicles of the Optimal Velocity model with saturation function drive
at constant and equal absolute velocities, but they assume any inter-vehicle distances,
as shown in Figure 2.20. This drawback of the Optimal Velocity model with saturation

Table 2.3: Initial conditions

Vehicle number Initial absolute positions [m] Initial absolute velocities [m/s]
1 x1(0) = 0 v1(0) = 5
2 x2(0) = 12 v2(0) = 7
3 x3(0) = 24 v3(0) = 6
4 x4(0) = 38 v4(0) = 4
5 x5(0) = 56 v5(0) = 3

function will be explained better in Section 3.2, but, with a larger length of the ring road,
the vehicles assume inter-vehicle distances that exceeds the linearity region of the optimal
velocity function shown in Figure 2.11. This makes the velocity functions saturate up to
Vmax and be independent on the current headways, so that the headways do not play any
role in the computation of the time derivative of the velocities. Basically, in this way,
the main feature of Bando model fails and it is like having no information on the current
headways in order to regulate the velocities of vehicles.
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Figure 2.19: Relative distances of the model with tanh in Simulation 2

Figure 2.20: Relative distances of the model with sat in Simulation 2
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Chapter 3

Linear analysis

3.1 Linearization of Bando model
In this section is presented the linearization of the Optimal Velocity traffic model by Bando
et al. on a ring road of length L. In particular, the model that will be linearized is the
Optimal Velocity model (3.1) of N vehicles in error coordinates (3.2).

żi = yi, ∀ i = 1, ..., N

ẏi = b
è
Vmax

tanh(zi+1+d−d0)−tanh(zi+d−d0)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N

(3.1)

where i + 1 = 1 when i = N .

x = [z1, z2, ..., zN , y1, y2, ..., yN ]T ∈ R2N , (3.2)

where d0 = lv + ds is the safety inter-vehicle distance, b is the sensitivity of the drivers,
Vmax is the maximum value of the optimal velocity function, zi are the spacing errors with
respect to the distance d = L

N at the uniform flow equilibrium and yi are the relative
velocities of each couple of adjacent vehicles.

zi = xi+1 − xi − d = ∆xi − d

yi = vi+1 − vi

Since our aim is to let the group of vehicles reach the uniform flow equilibrium, where all of
them drive at the same velocity and keep the same constant distances, we are interested on
the properties of this equilibrium point. For this reason, model (3.1) is linearized around
the uniform flow equilibrium.
At the uniform flow equilibrium,

xi+1 − xi = ∆x∗ = d = L

N
vi = v∗ = Vopt(d),

(3.3)
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which corresponds to
zi = z∗ = 0
yi = y∗ = 0

(3.4)

Therefore, the uniform flow equilibrium point for model (3.1) corresponds to the origin
and its linearization around this equilibrium is

żi = yi, ∀ i = 1, .., N
ẏi = −γzi + γzi+1 − byi, ∀ i = 1, ..., N

(3.5)

where γ = b∂Vopt(d)
∂zi

= bVmax
1+tanh(d0) sech2(d − d0) and i + 1 = 1 when i = N .

Given the state vector (3.2), the linearized model in matrix form is

ẋ = Jx, (3.6)

where the Jacobian matrix is equal to

J =
5 0 IN

Jyz −bIN

6
∈ R2N×2N

with IN that is the identity matrix N × N ,

Jyz = bVmax sech2(d − d0)
1 + tanh(d0)


−1 1 (0)

. . . . . .
(0) −1 1
1 0 . . . −1

 ∈ RN×N .

Let us perform the analysis of the eigenvalues of the linearized model (3.5) by determin-
ing the characteristic polynomial of J . We compute det(J − λI2N ) through the Schur’s
complement S of J − λI2N .

J − λI2N =
5
−λIN IN

Jyz (−b − λ)IN

6
Being γ = bVmax

1+tanh(d0) sech2(d − d0), its Schur’s complement is

S = 1
λ + b


−λ2 − bλ − γ γ (0)

. . . . . .
(0) −λ2 − bλ − γ γ
γ 0 . . . −λ2 − bλ − γ

 .

We exploit the following property of the Schur’s complement:

det(J − λI2N ) = det(S) det((−b − λ)IN ).

Since S is a block circulant matrix, its determinant is

det(S) = − λ

(λ + b)N−1

N−1Ù
k=1

(−λ2 − bλ − γ + γe
2kπj
N )
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and the resulting characteristic polynomial of J is

det(J − λI2N ) = λ(λ + b)
N−1Ù
k=1

(λ2 + bλ + γ − γe
2kπj
N ). (3.7)

where γ = bVmax
1+tanh(d0) sech2(d − d0).

The characteristic polynomial shows a structural eigenvalue in the origin. Moreover, it
is the same expression of the characteristic polynomial shown in [20]. Therefore, the
same necessary and sufficient conditions may be considered in order to state whether the
remaining roots have negative real part. By considering only the Optimal Velocity model,
we can rewrite the conditions in [20] as

Vmax

b

sech2(d − d0)
1 + tanh(d0) <

1
1 + cos

!2π(i−1)
N

" , ∀ i = 2, ..., N. (3.8)

For a fixed N , we solve a system of N − 1 inequalities (3.8) and get the resulting stability
constraint. The most restrictive constraint is obtained for i = 2, thus, for any N , the non-
zero roots of J have negative real part if and only if the following condition is satisfied.

Vmax

b

sech2(d − d0)
1 + tanh(d0) <

1
1 + cos(2π

N )
(3.9)

Since J has one structural zero eigenvalue, we cannot state whether the origin is an asymp-
totically stable equilibrium point for model (3.1). For this reason, let us switch to the
Reduced Optimal Velocity model (3.10).



żi = yi, ∀ i = 1, ..., N − 1

ẏi = b
è
Vmax

tanh(zi+1+d−d0)−tanh(zi+d−d0)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N − 2

ẏN−1 = b

Vmax

tanh

3
−
N−1q
i=1

zi+d−d0

4
−tanh(zN−1+d−d0)

1+tanh(d0) − yN−1

 ,

ẏN = b

Vmax

tanh(z1+d−d0)−tanh

3
−
N−1q
i=1

zi+d−d0

4
1+tanh(d0) − yN

 ,

(3.10)

where d0 = lv + ds. Having substituted one variable, the state vector has been reduced to

x̃ = [z1, z2, ..., zN−1, y1, y2, ..., yN ]T ∈ R2N−1. (3.11)
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As before, the uniform flow equilibrium point corresponds to the origin of model (3.10),
therefore, we linearize it around the same equilibrium. The linearized model of (3.10) is

żi = yi, ∀ i = 1, .., N − 1
ẏi = −γzi + γzi+1 − byi, ∀ i = 1, ..., N − 2

ẏN−1 = −γ
N−2q
j=1

zj − 2γzN−1 − byN−1

ẏN = 2γz1 + γ
N−2q
j=1

zj − byN

(3.12)

where γ = b∂Vopt(d)
∂zi

= bVmax
1+tanh(d0) sech2(d − d0). The linear system (3.12) may be rewritten

in matrix form as
˙̃x = J̃ x̃. (3.13)

The Jacobian matrix is equal to

J̃ =
C

0 J̃zy

J̃yz −bIN

D
,

where

J̃yz = bVmax sech2(d − d0)
1 + tanh(d0)



−1 1 (0)
−1 1

. . . . . .
(0) −1 1
−1 −1 −1 . . . −2
2 1 1 . . . 1


∈ RN×N−1,

and

J̃zy =


1 (0) 0

1
...

. . . ...
(0) 1 0

 ∈ RN−1×N .

The eigenvalues of J̃ depend on the parameters Vmax, b and d − d0. For a given number
N of vehicles, we fix d0 and vary d by changing the length L of the ring road. Through
numerical simulation, we see that all the eigenvalues have negative real part if the param-
eters belong to certain ranges. In this case, the linearized system (3.12) around the origin
is asymptotically stable and the uniform flow equilibrium is an asymptotically stable equi-
librium point for the nonlinear system (3.10). The equilibrium point may become unstable
if b decreases, Vmax increases or |d − d0| decreases.
We are interested in understanding which is the relationship between the model parame-
ters and the eigenvalues of J̃ and which constraints the model parameters must satisfy in
order to guarantee asymptotic stability of the uniform flow equilibrium. To answer this
questions, for a specific number of vehicles, we compute the characteristic polynomial of J̃
and apply Routh stability criterion [21],[22].
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3.1 – Linearization of Bando model

N = 3. Let us consider a group of three vehicles as the smallest size of the platoon.
In this case, the characteristic polynomial is

det(J̃ − λI5) = −(λ + b)
è
λ4 + 2bλ3 + (3γ + b2)λ2 + 3bγλ + 3γ2

é
, (3.14)

where γ = bVmax
1+tanh(d0) sech2(d − d0). As expected, it does not shown any structural zero

eigenvalue and it is such that the characteristic polynomial of the non-reduced linear model
(3.5) with N = 3 is

det(J − λI6) = −λ det(J̃ − λI5).

In fact, the reduction of the original model (3.1) has the objective of avoiding the struc-
tural zero eigenvalue, while the rest of the polynomial doesn’t change. Therefore, the
characteristic polynomial of J̃ is

det(J̃ − λI) = −(λ + b)
N−1Ù
k=1

(λ2 + bλ + γ − γe
2kπj
N ).

By imposing the necessary and sufficient condition (3.9) derived from the results in [20], we
can ensure that the eigenvalues of J̃ have negative real part. By considering the polynomial
(3.14), we can derive the same constraint applying the Routh stability criterion. One
eigenvalue of (3.14) is λ1 = −b and it is negative. For the remaining polynomial of 4th

order, let us fill the Routh table, Figure 3.1, and apply the criterion in order to derive
a necessary and sufficient condition to guarantee that the polynomial have roots with
negative real part and thus the origin is an asymptotically stable equilibrium point for the
model with N = 3. In order for the polynomial to have all roots with negative real part,

Figure 3.1: Routh table of the linearized model when N = 3

the elements of the first column of the table must be positive, which is true if γ < 2b2.
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This condition is equivalent to

Vmax

b

sech2(d − d0)
1 + tanh(d0) < 2. (3.15)

The same condition can be derived from (3.9) when N = 3. If the parameters of the model
with N = 3 are chosen such that (3.15) holds, then the eigenvalues of the linearization
around the origin have negative real part, so the linearized model (3.12) is asymptotically
stable and the uniform flow equilibrium is asymptotically stable for the original nonlinear
model (3.10) when N = 3.

N = 4. As well as before, we compute the characteristic polynomial of J̃ when N = 4.

det(J̃ − λI7) =

−(λ + b)
#
λ6 + 3bλ5 + (4γ + 3b2)λ4 + (8bγ + b3)λ3 + (6γ2 + 4b2γ)λ2 + 6bγ2λ + 4γ3$ ,

Again, it has the following relationship with the characteristic polynomial of the original
model (3.1).

det(J − λI8) = −λ det(J̃ − λI7),
so the condition (3.9) ensures asymptotic stability of the reduced model (3.10). J̃ has again
an eigenvalue equal to λ1 = −b. For the remaining part of the polynomial we build the
Routh table, Figure 3.2, and apply the Routh stability criterion. We derive the inequalities

Figure 3.2: Routh table of the linearized model when N = 4

that guarantee that the elements of the 1st column of the table are positive. The necessary
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and sufficient condition to satisfy in order for the roots of the polynomial to have negative
real part is (3.16).

Vmax

b

sech2(d − d0)
1 + tanh(d0) < 1 (3.16)

This stability condition is equivalent to (3.9) when N = 4.

N = 5. We follow the same procedure for a model with N = 5, computing det(J̃ − λI9),
filling the Routh table of the characteristic polynomial without −(λ + b) and applying the
criterion. The roots of the characteristic polynomial have negative real part if the following
constraint is satisfied.

Vmax

b

sech2(d − d0)
1 + tanh(d0) <

987
1292 (3.17)

From constraints (3.15)-(3.17) we end up to particular cases of condition (3.9), thus the a
necessary and sufficient condition for asymptotic stability of the uniform flow equilibrium
for the Reduced Optimal Velocity model (3.10) is

Vmax

b

sech2(d − d0)
1 + tanh(d0) <

1
1 + cos(2π

N )
= κN , (3.18)

where κN depends only on the number of vehicles. Moreover, as the number of vehicles
increases, κN reduces and the condition is more restrictive. Anyway,

lim
N→∞

κN = 1
2 ,

so, for any N , there always exists a set of parameters (b, Vmax, d, d0) that ensures asymp-
totic stability of the uniform flow equilibrium.
Looking at (3.18), for a fixed N , the uniform flow equilibrium may become unstable if b
decreases, Vmax increases or |d − d0| reduces, because the right-hand term increases. By
fixing d0 = lv + ds, the stability of the uniform flow equilibrium for the model of a given
number N of vehicles depends on the length L of the ring road. If the length of the ring
road is such that d º d0 or d ¹ d0 then, for any b and Vmax, the left-hand side term of
(3.18) is almost equal to zero. Thus, the stability constraint is satisfied, but the eigenvalues
of J̃ tend to the imaginary axis.
The relationship of stability on the parameters is confirmed also by the numerical analyses.
Varying the parameters, b, Vmax and d−d0 we perform a numerical analysis computing the
real part of the most critical eigenvalue, λmax, and focus on the level set of Re(λmax) = 0.
In Figure 3.3 are depicted the level sets for a group of 10 vehicles. In the borderline case,

Vmax

b

sech2(d − d0)
1 + tanh(d0) = κN , (3.19)

we have marginal stability, which means that at least two eigenvalues of J̃ lie on the
imaginary axis. When this scenario occurs, Re(λmax) = 0, so it is exactly the situation
shown in Figure 3.3. In the borderline case, b and Vmax are linearly dependent when d − d0
is fixed and this is confirmed by the curves in Figure 3.3. If Vmax is fixed, b is proportional
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Figure 3.3: Zero level of Re(λmax) when N = 10

to sech2(d − d0) and this confirms the curves shown in Figure 3.3, whose profile resembles
sech2. Moreover, in Figure 3.3, beyond a certain value of d − d0, Re(λmax) < 0, so for
high values of d − d0 the eigenvalues of J̃ are negative and the stability constraint (3.18)
is satisfied.
From [20], the real part of the eigenvalues for the Optimal Velocity model is

Re(λ) = − b

2+1
2

Añ
b4 + 32γ2(1 − cos(2π

N )) − 8b2γ(1 − cos(2π
N )) + b2 − 4γ(1 − cos(2π

N ))
2

B 1
2

,

where γ = bVmax
1+tanh(d0) sech2(d − d0).

lim
|d−d0|→∞

Re(λ) = 0,

so the real part of the eigenvalues remains negative but tends to zero. Therefore, fixing
d0, if the ring road is too long (d º d0) or too short (d ¹ d0), the trajectories reach the
uniform flow equilibrium, but the convergence is slow.
Moreover, the stability of the uniform flow equilibrium depends on the size of the group
of vehicles. Assume to increase N and the length L of the ring road such that d = L

N is
constant. Then,

lim
N→∞

Re(λ) = 0.

So, as the number of vehicles and the length of the ring increase, the stability of the uniform
flow equilibrium worsens and the convergence to the equilibrium is slower. The dependence
of stability on b, Vmax, d−d0 and N shows off in the nonlinear framework, too, as described
in Chapter 5.
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3.1.1 Time simulation
We simulate the Optimal Velocity model (2.1) of a group of N = 10 vehicles on a ring
road. It is simulated on a ring of length L = 100 m, where d0 = lv + ds = 10 m, with two
different choices of b and Vmax.

A - Asymptotically stable equilibrium point
In this first scenario, the model parameters are b = 10 s−1 and Vmax = 10 m/s. With this
choice, the stability condition (3.18) is satisfied, where κ10 = 0.5528, so the uniform flow
equilibrium is an asymptotically stable point for the nonlinear system (2.1). Assume that
the initial conditions are far from the equilibrium. Anyway, the trajectories of the model
converge to the uniform flow equilibrium, where the vehicles keep the same inter-vehicle
distances, as shown in Figure 3.4 and drive with the same velocity.

Figure 3.4: Simulation A - Evolution of the absolute positions xi of a group of N = 10
vehicles with respect to time

B - Unstable equilibrium point
At the start of the simulation the vehicles are equally spaced and drive at the same velocity
vi = Vopt(d), so the system starts at the uniform flow equilibrium. The parameters are
b = 3 s−1 and Vmax = 20 m/s, then

Vmax

b

sech2(d − d0)
1 + tanh(d0) > κ10.

The stability condition (3.18) is not satisfied and the equilibrium point is unstable. In time
simulation, the trajectories of (2.1) start from the uniform flow equilibrium and eventually
the equilibrium is not kept and the stop-and-go waves rise up, as shown in Figure 3.5.
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Figure 3.5: Simulation B - Evolution of the absolute positions xi of a group of N = 10
vehicles with respect to time

3.2 Linear analysis of the model with saturation
In this section we study the properties of the Optimal Velocity model (3.20) with saturation
function around the uniform flow equilibrium.

ẋi = vi, ∀ i = 1, ..., N

v̇i = b
è
Vmax

sat(xi+1−xi−d0) + tanh(d0)
1 + tanh(d0) − vi

é
, ∀ i = 1, ..., N

(3.20)

where i + 1 = 1 when i = N . We consider the model in error coordinates (3.22), so that
the uniform flow equilibrium coincides with the origin:

żi = yi, ∀ i = 1, ..., N

ẏi = b
è
Vmax

sat(zi+1+d−d0)−sat(zi+d−d0)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N

(3.21)

where i + 1 = 1 when i = N .

x = [z1, z2, ..., zN , y1, y2, ..., yN ]T ∈ R2N (3.22)

If the state and d − d0 are such that the saturation function (2.14) lies in the linear region,
then model (3.21) is linear and equal to:

żi = yi, ∀ i = 1, ..., N

ẏi = bVmax
1+tanh(d0)zi+1 − bVmax

1+tanh(d0)zi − byi, ∀ i = 1, ..., N,

(3.23)
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which is similar to the linear model (3.5). Therefore, system (3.23) has a structural zero-
eigenvalue and we cannot state whether the uniform flow equilibrium is an asymptotically
stable equilibrium point for model (3.21). For this reason, we reduce the state vector (3.22)
and define the following nonlinear model in the same way as for the Bando model in Section
3.1. 

żi = yi, ∀ i = 1, ..., N − 1

ẏi = b
è
Vmax

sat(zi+1+d−d0)−sat(zi+d−d0)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N − 2

ẏN−1 = b

Vmax

sat

3
−
N−1q
i=1

zi+d−d0

4
−sat(zN−1+d−d0)

1+tanh(d0) − yN−1

 ,

ẏN = b

Vmax

sat(z1+d−d0)−sat

3
−
N−1q
i=1

zi+d−d0

4
1+tanh(d0) − yN



(3.24)

x̃ = [z1, z2, ..., zN−1, y1, y2, ..., yN ]T ∈ R2N−1 (3.25)
System (3.24) may be written as

˙̃x = Ax̃(t) + B sat(Kx̃(t) + d̄), (3.26)

where d̄ = (d − d0)1N ∈ RN ,

A =
50 Azy

0 −bIN

6
,

with IN the identity matrix ∈ RN×N and

Azy =


1 (0) 0

1
...

. . . ...
(0) 1 0

 ∈ RN−1×N ,

B =
50N−1xN

Byz

6
∈ R2N−1×N ,

where

Byz = bVmax

1 + tanh(d0)


−1 1 (0)

−1 1
. . . . . .

(0) −1 1
1 0 . . . 0 −1

 ∈ RN×N

and
K =

#
Kyz 0Nx2N−1

$
∈ RN×N−1,
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where

Kyz =


1 (0)

1
. . .

(0) 1
−1 . . . . . . −1

 ∈ RN×N .

In order to find out the equilibrium points x̄ of system (3.26), let us solve the following
equality:

Ax̄ + B sat(Kx̄(t) + d̄) = 0. (3.27)

1. Suppose x̄ and d̄ are such that sat(Kx̄+ d̄) lies in the linearity region, then equation
(3.27) is equal to

Ax̄ + B(Kx̄ + d̄) = 0

(A + BK)x̄ + Bd̄ = 0

x̄ = −(A + BK)−1Bd̄

Since Bd̄ = 0, ∀ d̄, x̄ = 0 is the only equilibrium point for system (3.26), provided
that each row of sat(Kx̄(t) + d̄) lies in the linearity region.

sat(Kx̄ + d̄) =


1, if Kx̄(t) + d̄ ¼ 1
Kx̄ + d̄, if − 1 4 Kx̄ + d̄ 4 1
−1, if Kx̄ + d̄ ≺ −1

(3.28)

In order to be in the linearity region, the following inequality must hold,

− 1 4 Kx̄ + d̄ 4 1. (3.29)

Then x̄ = 0 is an equilibrium point for system (3.26) in its linearity region if d̄ is such
that

− 1 4 d̄ 4 1, (3.30)

then
− 1 ≤ d − d0 ≤ 1. (3.31)

Being d0 = lv +ds fixed, if L is such that d = L/N satisfies inequality (3.31), the only
equilibrium point of system (3.26) coincides with the uniform flow equilibrium, where
all the vehicles travel at the same velocity and have constant and equal headway. If d̄
doesn’t satisfy inequality (3.31), the system doesn’t work in the linearity region and
the initial hypothesis doesn’t hold anymore.

2. Suppose to be in the high saturation region, where x̄ and d̄ are such that

sat(Kx̄ + d̄) = 1N .

Then equation (3.27) is equal to

Ax̄ + B1N = 0.
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3.2 – Linear analysis of the model with saturation

Since B1N = 0, then
Ax̄ = 0. (3.32)

Any vector x̄ such that

x̄ = [rand(N − 1,1), zeros(N,1)]T (3.33)

solves equation (3.32). Therefore, if the system works in saturation, there are more
equilibrium points in addiction to x̄ = 0 and these equilibria are such that the vehicles
are arbitrary spaced and travel with the same maximum velocity, Vmax.

3. Let us suppose to be in the low saturation region. In this case, since

sat(Kx̄ + d̄) = −1N

and B(−1)N = 0, again equation (3.27) is equal to (3.32) and it has the same set of
solutions (3.33). In this case, if the velocity functions saturate to the lower value, it
means that at the equilibrium all vehicles are still.

In conclusion, when system (3.26) works in the linearity region, the only equilibrium point
is the uniform flow, where all the vehicles travel at the same velocity and are equally
spaced. When it works in the saturation region, there are additional equilibria, where the
vehicles have zero relative velocities and any spacing error.

Let us study the stability properties of the equilibrium points in the linearity region and
in the saturation region.

1. Linearity region

In this case, model (3.26) is equal to

˙̃x(t) = Ax̃(t) + B(Kx̃(t) + d̄) (3.34)

and, since Bd̄ = 0, it is equivalent to

˙̃x(t) = (A + BK)x̃(t). (3.35)

The stability properties of this linear system are given by the study of matrix A+BK.

A + BK =
50N−1×N−1 Mzy

Myz −bIN

6
,

where IN is the identity matrix ∈ RN×N ,

Mzy =


1 (0) 0

1
...

. . . ...
(0) 1 0

 ∈ RN−1×N .
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and

Myz = bVmax

1 + tanh(d0)



−1 1 (0)
−1 1

. . . . . .
(0) −1 1
−1 −1 −1 . . . −2
2 1 1 . . . 1


∈ RN×N−1.

In the linearity region, the only equilibrium point is x̄ = 0 and, fixing d0 = lv + ds,
the stability of this equilibrium depends only on b and Vmax.
Moreover, matrix A + BK is similar to the Jacobian matrix J̃ of the linearized
Optimal Velocity model (3.12) except for the absence of sech2(d−d0). Therefore, the
eigenvalues of A + BK have negative real part if and only if the following condition
is true.

Vmax

b

1
1 + tanh(d0) <

1
1 + cos(2π

N )
(3.36)

Therefore, if model (3.24) works in the linearity region, the uniform flow equilibrium is
the only equilibrium point and it is asymptotically stable if and only if the parameters
satisfy condition (3.36).

2. Saturation region

When the state x̃(t) and d − d0 are such that system (3.26) works in one of the
two saturation regions, it is equal to

˙̃x(t) = Ax̃(t). (3.37)

Basically, the derivative of the velocity of each vehicle does not depend on the distance
with respect to the preceding vehicle, so the main feature of the Optimal Velocity
model is lost. The linear system (3.37) may have several equilibrium points, including
x̄ = 0, and they correspond to have any inter-vehicle distances and absolute velocities
that are all equal to Vmax or equal to zero.
The stability properties of the equilibrium points depend on matrix A, which has N
eigenvalues equal to −b and N − 1 eigenvalues equal to zero. For this reason, all the
equilibrium points of (3.37) are unstable and, if model (3.24) works in one of the two
saturation regions, the uniform flow equilibrium is unstable.

Since in the saturation region the system has several equilibrium points besides the uniform
flow equilibrium, the objective is to avoid that all the velocity functions of the nonlinear
model (3.20) saturate to Vmax or all saturate to zero. The parameter of the model that
determines whether the velocity functions saturate is d − d0. Therefore, by fixing d0 =
lv + ds, it’s the length L of the ring road that makes the trajectories of (3.20) converge to
the linearity region or the saturation region for a given number N of vehicles.
If −1 m ≤ d − d0 ≤ 1 m, it is not possible that at the same time instant all the velocity
functions saturate to Vmax or to zero, for any initial condition. This is because, since
the ring road is closed, the inter-vehicle distances cannot be such that xi+1 − xi − d0 >
1 m or xi+1 − xi − d0 < −1 m ∀ i = 1, ..., N at the same time. Therefore, in the worst
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case, even if N − 1 velocity functions saturate up to Vmax, the last velocity function lies in
the linearity region or in the low saturation region. Similarly, if N − 1 velocity functions
saturate down to zero, the remaining velocity function lies in the linearity region or in the
high saturation region. In both cases, all the velocity functions will reach the linearity
region and eventually the trajectories of (3.20) converge to the uniform flow equilibrium.
If d − d0 > 1 m, it means that the ring road is ’too long’ and sooner or later all the
inter-vehicle distances are such that

xi+1 − xi − d0 > 1 m,

so the velocity functions of all vehicles reach the high saturation region at different times.
Starting with any initial condition, all velocity functions saturate up to Vmax because
the inter-vehicle distances are too large. When they all lie in the saturation region, the
derivatives of the velocities don’t depend on the headways anymore, so they keep their
velocities constant independently on the headways. The result is that the vehicles travel
with the maximum velocity and assume any inter-vehicle distances.
If d − d0 < −1 m, the ring road is ’too short’ and the inter-vehicle distance of at least one
couple of vehicles is shorter than the safe distance:

xi+1 − xi − d0 < −1 m.

When this happens, the following vehicle of the couple stops because its velocity function
saturates to zero. All vehicles behind it brake and stop as well, so all velocity functions
saturate to zero and the vehicles are still.

The three different scenarios are shown in the following time simulations.

3.2.1 Time simulation
Let us consider the nonlinear system (3.20) modelling a group of N = 3 vehicles on ring
roads of different length L. Suppose that d0 = lv + ds = 10 m is fixed and the parameters
are b = 5 s−1 and Vmax = 10 m/s.

Simulation 1. −1 m ≤ d − d0 ≤ 1 m
Suppose the ring road has length L = 31.5 m, then d = L

N = 10.5 m and d − d0 = 0.5 m.

1. Case A. Suppose to start with the following inter-vehicle distances, depicted in Figure
3.6.

∆x1(0) = 11.2 m, ∆x2(0) = 11.2 m, ∆x3(0) = 9.1 m.

In this scenario, ∆x1(0), ∆x2(0) > d0 + 1 m, so their optimal velocity functions, V 1
opt

and V 2
opt, start in the high saturation region. On the contrary, d0 − 1 m < ∆x3(0) <

d0 +1 m, so the optimal velocity function V 3
opt starts in the linearity region. In Figure

3.7 and Figure 3.8 are shown the trajectories of this simulation. The linearity region
in Figure 3.7 is bounded by the red lines. Since ∆x3 < d0, the distance between
the 3rd and the 1st vehicle is not safe, so the optimal velocity of the 3rd vehicle is
low and the 3rd vehicle brakes and its headway ∆x3 increases. It increases so much
that it enters the high saturation region. As the 3rd vehicle brakes, the distance
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Figure 3.6: Initial positions in Simulation 1.A

Figure 3.7: Inter-vehicle distances in Simulation 1.A

∆x2 between the 3rd and the 2nd vehicle reduces and the optimal velocity function of
the 2nd vehicle decreases, leaves the saturation region and enters the linearity region.
Since the 2nd vehicle is braking, also the distance between the 2nd and the 1st vehicle,
∆x1, decreases and the velocity function of the 1st vehicle reduces and enters the
linearity region decreasing from Vmax. As the 1st vehicle brakes, ∆x3 reduces and it
enters the linearity region.
When all the velocity functions are in the linearity region, they converge to the
uniform flow equilibrium. At the beginning of this simulation, N − 1 vehicles were
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Figure 3.8: Optimal velocities in Simulation 1.A

in saturation region and just one started in the linearity region. Yet all saturation
functions reach the linearity region. Since the parameters satisfy condition (3.36),
the trajectories in the linearity region converge to the uniform flow equilibrium.

2. Case B. Suppose to start with the following initial inter-vehicle distances:

∆x1(0) = 11.5 m, ∆x2(0) = 11.5 m, ∆x3(0) = 8.5 m.

In this case, ∆x1(0), ∆x2(0) > d0 + 1 m, so their optimal velocity functions, V 1
opt and

V 2
opt, start in the high saturation region. On the contrary, ∆x3(0) < d0 − 1 m, so

the optimal velocity function V 3
opt starts in the low saturation region. The different

saturations are shown in Figure 3.10. At the beginning, the 3rd and the 1st vehi-
cle are very close, so the optimal velocity of the 3rd vehicle saturates to zero and it
brakes. Meanwhile, the distances between 2nd and 1st vehicle and 3rd and 2nd vehicle
are large, so the 1st and the 2nd vehicle see a large headway in front of them. Their
optimal velocity functions saturate to Vmax, so they speed up. The 3rd vehicle brakes
and the 2nd and 1st vehicle accelerate. At the same time, ∆x2 decreases and ∆x3
increases, as shown in Figure 3.9, while ∆x1 remains constant because both the 1st

and the 2nd vehicle are travelling at the same speed, Vmax. As ∆x2 reduces, its opti-
mal velocity function leaves the high saturation region and enters the linearity region
(bounded by the red lines). As ∆x3 increases, its optimal velocity function leaves
the low saturation region, enters the linearity region and reaches the high saturation
region.
Finally, when all velocity functions are in the linearity region, the inter-vehicle dis-
tances converge to d = L

N and the platoon reaches the uniform flow equilibrium,
because the parameters of the model satisfy condition (3.36).
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Figure 3.9: Inter-vehicle distances in Simulation 1.B

Figure 3.10: Optimal velocities in Simulation 1.B

Simulation 2. d − d0 > 1 m
Let us consider a ring road of length L = 36 m, then d = L

N = 12 m and d − d0 = 2 m.
Suppose to start with the following initial initial inter-vehicle distances:

∆x1(0) = 10 m, ∆x2(0) = 10 m, ∆x3(0) = 16 m.
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Since d0 −1 m < ∆x1(0), ∆x2(0) < d0 +1 m, the initial optimal velocity functions V 1
opt and

V 2
opt don’t saturate and they lie in the linear region (bounded by the red lines), as shown

in Figure 3.11. On the contrary, since ∆x3(0) > d0 + 1 m, V 3
opt saturates and it is equal

to Vmax, as shown Figure 3.12. Since V 3
opt = Vmax, the 3rd vehicle speeds up in order to

decrease its distance with respect to the 1st vehicle. As ∆x3 decreases, the distance ∆x2
between the 2nd and 3rd vehicle increases up to d0 + 1 m = 11 m and its velocity function
enters the saturation region, so V 2

opt becomes equal to Vmax and the 2nd vehicle speeds up.
Since the 2nd vehicle accelerates, its distance with respect to the 1st vehicle increases and
even the V 1

opt enters the high saturation region and becomes equal to Vmax.
When all the optimal velocity functions lie in the high saturation region, the three vehicles
travel at the same velocity, Vmax, and they don’t regulate their velocity with the headway,
so they don’t reach the uniform flow equilibrium.

Figure 3.11: Inter-vehicle distances in Simulation 2

Simulation 3. d − d0 < −1 m
Let us consider a ring road of length L = 24 m, then d = L

N = 8 m and d − d0 = −2 m.
Suppose to start with the following initial initial inter-vehicle distances:

∆x1(0) = 9.5 m, ∆x2(0) = 9.5 m, ∆x3(0) = 5 m.

Since d0 − 1 m < ∆x1(0), ∆x2(0) < d0 + 1 m, the initial optimal velocity functions V 1
opt

and V 2
opt lie in the linear region (bounded by the red lines), as shown in Figure 3.13. On

the contrary, since ∆x3(0) < d0 − 1 m, the headway of the 3rd vehicle is not safe, so V 3
opt

saturates to zero, as shown Figure 3.14. Since its velocity function saturates to zero, the
3rd vehicle brakes and stops, so its distance with respect to the 1st vehicle, ∆x3, increases
and the distance with respect to the 2nd vehicle, ∆x2, decreases. As the 3rd vehicle stops,
also the 2nd brakes and enters the low saturation region, as well as the 1st vehicle does.
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Figure 3.12: Optimal velocities in Simulation 2

Figure 3.13: Inter-vehicle distances in Simulation 3

Finally, all the velocity functions lie in the low saturation region, so the vehicles are still
and their inter-vehicle distances are different from d. Thus, the group of vehicles doesn’t
reach the uniform flow equilibrium.

50



3.3 – Comparison of the linear models

Figure 3.14: Optimal velocities in Simulation 3

3.3 Comparison of the linear models
The linearized Bando Optimal Velocity model around the uniform flow equilibrium (3.12)
and the Optimal Velocity model with saturation function in the linearity region (3.35)
share similar state equations. From the expression of the characteristic polynomial of the
Jacobian matrix J̃ of the former, we derive a necessary and sufficient condition (3.18) on
the parameters to guarantee that the uniform flow equilibrium is asymptotically stable.
Being (3.12) an approximation of the nonlinear model (3.10) around an equilibrium point,
the stability condition concerns a neighborhood of the uniform flow equilibrium and its
satisfaction guarantees local stability. The Optimal Velocity model with saturation func-
tion in the linearity region is described by matrix A + BK and the uniform flow is the
only equilibrium point in this working condition. By noticing that A + BK is similar to
J̃ , we derive a similar necessary and sufficient condition (3.36) that guarantees the asymp-
totically stability of the uniform flow equilibrium in the linearity region. Since the (3.35)
is not an approximation, because the model is linear in the linearity region, the stability
properties of A + BK hold in the whole linearity region and not just in a neighborhood of
the uniform flow equilibrium.
Fixing the number of vehicles and d0 = lv + ds, the stability condition of the linearized
Bando model involves the parameters b, Vmax and d = L

N . Instead, provided that the state
and d − d0 are such that the model with saturation (3.24) works in the linearity region,
the stability of the uniform flow equilibrium depends only on b and Vmax.
On the contrary, if the Optimal Velocity model with saturation function works in one of
the two saturation regions, the behaviour of the model changes. The velocity functions
saturate either to zero or to Vmax, so the vehicles don’t regulate their velocities on the
basis of the headways and the main feature of Bando traffic modelling fails. In these two
scenarios, the system (3.37) is linear and it is described just by matrix A. It has several
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equilibrium points, in which the relative velocities are zero and the spacing errors with
respect to the desired distance at the uniform flow equilibrium are whatever. As shown in
the previous section, depending on d−d0, the trajectories of the model (3.24) can converge
to the linearity region or to one of the two saturation regions, whatever are the initial
conditions. They converge to the saturation regions if d − d0 > 1 m or d − d0 < −1 m.
Therefore, fixing d0 and N , if the length L of the ring road is too long or too short, either
the velocities of all vehicles are equal to Vmax or the vehicles stop. In both cases, the
velocity functions don’t depend on the headways anymore and the vehicle distances may
be anyone. This characteristic concerns only the Optimal Velocity model with saturation
function, because in the Bando Optimal Velocity model the hyperbolic tangent never satu-
rates and the vehicles always regulate their velocities on the basis of the headways. In the
Bando model, if |d−d0| is very high, it means that, as the vehicles tend to the uniform flow
equilibrium, the vehicle distances tend to d and the corresponding velocity functions tend
to Vmax. Nevertheless, they do not saturate. Moreover, increasing |d − d0|, the eigenvalues
of the linearized Bando model around the uniform flow equilibrium tend to the imaginary
axis. So, even if the stability condition (3.18) holds, the convergence to the equilibrium is
slow.
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Chapter 4

Stability and safety analysis of
the Optimal Velocity model
with saturation

4.1 Linear systems subject to saturated control law
In [23] a very deep study is carried out about linear systems subject to saturated inputs.
These systems in open loop are linear, but, when they are fed with a feedback control law,
physical constraints of the actuators make the control signal to be bounded.
In Figure 4.1 is shown the control system.
Depending on its amplitude, the control signal ν(t) provided to the actuator may be ampli-
fied or saturated to a minimum value or a maximum value, which depends on the physical
construction of the actuator. The signal coming out from the actuator can be modelled by
a saturation function as

u(t) = sat(ν(t)),

where u(t) and ν(t) ∈ Rm and sat(ν(t)) is a vector function whose rows are defined in (4.1)
and shown in Figure 4.2.

Figure 4.1: Closed-loop system
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Figure 4.2: Saturation function

sat(ν(i)) =


−umin(i), if ν(i) < −umin(i)

ν(i), if − umin(i) ≤ ν(i) ≤ umax(i)

umax(i), if ν(i) > umax(i)

(4.1)

∀ i = 1, ..., m.
Let us suppose that the system in open loop is linear

ẋ(t) = Ax(t) + Bu(t), (4.2)

where x ∈ Rn is the state vector and u ∈ Rm is the control signal provided by the actuator.
Suppose that all states can be measured and that the signal provided by the controller and
subject to saturation is

ν(t) = Kx(t),
where K ∈ Rm×m is a known constant matrix. Then, the control input fed to the linear
system is

u(t) = sat(Kx(t)).
Thus, the closed-loop system (4.2) is

ẋ(t) = Ax(t) + B sat(Kx(t)). (4.3)

It is clear that the saturation introduced by the actuator makes the whole closed loop
system nonlinear. Nevertheless, a nonlinear system like (4.3) shows some particular char-
acteristics that allow to study interesting system properties (i.e. stability) in a simple way
with respect to generic nonlinear systems.

Region of linearity
When x(t) is such that −umin(i) ≤ ν(i) ≤ umax(i), ∀ i = 1, ..., m, ν(t) is not saturated. It
follows that

sat(Kx(t)) = Kx(t) (4.4)
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and the closed loop system (4.3) is linear and equal to

ẋ(t) = (A + BK)x(t). (4.5)

When (4.4) is true, the system lies in the region of linearity, which is defined as

RL = S(K, umin, umax) = {x ∈ Rn : −umin 4 Kx(t) 4 umax}. (4.6)

It is important to notice that, even if the trajectories of (4.3) start in RL, they may go out
of it. Furthermore, even if the linear system (4.5) is asymptotically stable (i.e. (A + BK)
has all eigenvalues with negative real part), the whole nonlinear system (4.3) may be un-
stable. This is true also if the initial conditions of (4.3) lie within the region of linearity.

Region of Asymptotic Stability
If the linear system (4.5) is asymptotically stable, the convergence of the trajectories of
(4.3) depends on the initial conditions. The region of attraction RA for system (4.3) is the
set of points x ∈ Rn such that, if the trajectories start with initial conditions x(0) = x,
they asymptotically converge to the origin.

RA = {x ∈ Rn : x(t, x(0)) → 0 as t → 0} (4.7)

Since the region of attraction is difficult to evaluate and basically it might be identified
only through many simulations, it is possible to consider its inner approximation, as the
region of asymptotic stability (RAS). Then, if (A + BK) is asymptotically stable and the
trajectories of system (4.3) start within the region of asymptotic stability, they asymptot-
ically converge to the origin.
Lyapunov functions may be employed to estimate the region of asymptotic stability to-
wards the origin. Let V (x) be a Lyapunov function, then the surface

Ls(V, c) = {x ∈ Rn : V (x) = c, c > 0} (4.8)

is called a Lyapunov surface or level surface. For different values of c the same Lyapunov
function defines different level surfaces, as shown in Figure 4.3.
If V̇ (x) ≤ 0, it means that, when a trajectory crosses a Lyapunov surface V (x) = c, it
cannot come out again (i.e. the level surface is invariant). In this case, the origin is stable
because the trajectories cannot go far away from it, they move inside a set defined by

S(V, c) = {x ∈ Rn : V (x) ≤ c}. (4.9)

If V̇ (x) < 0, it means that the trajectories enter into inner surfaces with a smaller c and,
as c decreases, surfaces shrink to the origin, so the trajectories converge to the origin as
t → ∞. If the origin is asymptotically stable, that is V̇ (x) < 0, any trajectory that starts
inside S(V, c) for sure converges to the origin (i.e. the level surface is invariant and con-
tractive). Thus, S(V, c) is an estimate of the region of asymptotic stability.
Actually, S(V, c) is for sure contained inside a RAS, but this region may be far larger than
S(V, c), that is why this method to define the RAS is conservative.

Region of Asymptotic Stability through sector nonlinearity
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Figure 4.3: Lyapunov surfaces

Let us consider a generic linear system, where the feedback control input is affected by
saturation

ẋ(t) = Ax(t) + B sat(Kx(t)) (4.10)

and define the dead-zone nonlinear vector function (4.11).

φ(v(t)) = sat(v(t)) − (v(t)). (4.11)

Each row of φ(v(t)) is represented in Figure 4.4, where i = 1, ..., m.
If it is possible to inscribe each element of φ(v(t)) in a local sector, some local conditions
can be stated, that may be useful to analyse the stability of system (4.10).
The local sector where the dead-zone nonlinearity is inscribed is shown in Figure 4.5 in
dashed line, where λ(i) ≤ 1.

Figure 4.4: Dead-zone nonlinearity
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(a) (b)

Figure 4.5: Global sector (a) and local sector (b)

If the dead-zone nonlinearity belongs to the local sector sec[0, −λ(i)], it means:

−λ(i)v(i) ≤ φ(v(i)) ≤ 0, for 0 ≤ v(i) ≤
umax(i)

1 − λ(i)
= uλ

max(i)

0 ≤ φ(v(i)) ≤ −λ(i)v(i), for − uλ
min(i) =

−umin(i)

1 − λ(i)
≤ v(i) ≤ 0

If λ(i) = 1, the sector becomes global sec[0, −1] and the dead-zone nonlinearity function
φ(v) is entirely contained in this sector.
Thanks to the belonging of the nonlinearity to global or local sectors, in [23] the authors
state the following results.

Lemma 4.1. (Global sector condition)
For any v ∈ Rm, φ(v) satisfies the following inequality

φ(v)T T (φ(v) + v) ≤ 0 (4.12)

for any diagonal positive definite matrix T ∈ Rm×m.

Lemma 4.2. (Classical local sector condition)
If v ∈ S(v, uλ

max, uλ
min) = {v ∈ Rm : −uλ

min 4 v 4 uλ
max}, φ(v) satisfies

φ(v)T T (φ(v) + Λv) ≤ 0 (4.13)

where Λ ∈ Rm×m is a diagonal matrix, whose elements are λ(i) and T ∈ Rm×m is any
diagonal positive definite matrix.

This sector condition applies not only to the dead-zone function (4.11), but to any
nonlinearity that belongs to the local sector shown in Figure 4.5. So, when it is used to
prove the stability of system (4.10), it ensures the stability of any system whose nonlinearity
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belongs to the same local sector.
In the particular case where v(t) = Kx(t), Lemma 4.2 becomes:
if x ∈ S(K, uλ

max, uλ
min) = {x ∈ Rn : −uλ

min 4 Kx 4 uλ
max}, φ(v) satisfies the following

inequality:
φ(Kx)T T (φ(Kx) + ΛKx) ≤ 0 (4.14)

Lemma 4.3. (Generalized local sector condition)
If v, ω ∈ S(v − ω, umax, umin) = {v, ω ∈ Rm : −umin 4 v − ω 4 umax}, then φ(v) satisfies

φ(v)T T (φ(v) + ω) ≤ 0 (4.15)

for any diagonal positive definite T ∈ Rm×m.

Sector condition (4.15) is a generalization of (4.13), but it applies specifically to the
dead-zone nonlinearity function (4.11).
In the particular case where v(t) = Kx(t), Lemma 4.3 becomes:
if x ∈ S(K − G, umax, umin) = {x ∈ Rn : −umin 4 (K − G)x 4 umax}, then φ(v) satisfies
the following inequality

φ(Kx)T T (φ(Kx) + Gx) ≤ 0 (4.16)

When G is such that G = ΛK, sector condition (4.16) is equal to the classical condition
(4.13).

Asymptotic stability analysis through quadratic Lyapunov functions

As already said, global and local sector conditions may be useful to state theorems for
the stability analysis of systems. In particular, if the dead-zone nonlinearity function
(4.11) belongs to a global or local sector, it satisfies some sector condition that may be
employed to state stability properties of system (4.10).
Let us rewrite system (4.10) as

ẋ(t) = (A + BK)x(t) + Bφ(Kx(t)), (4.17)

where φ(Kx(t)) is the dead-zone nonlinearity defined in (4.11).
In [23], an important result is stated on asymptotic stability of system (4.17), employing
the generalized sector condition (4.16) and considering quadratic Lyapunov functions as

V (x) = xT Px.

Proposition 4.1. If there exist W ∈ Rn×n symmetric and positive definite, S ∈ Rm×m

symmetric and positive definite and Z ∈ Rm×n such that they satisfy LMIs (4.18) and
(4.19) in W , S and Z, then the ellipsoid

E(P,1) = {x ∈ Rn : xT Px ≤ 1},

where P = W−1, is a region of asymptotic stability for system (4.10).5
W (A + BK)T + (A + BK)W BS − ZT

SBT − Z −2S

6
< 0 (4.18)
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C
W WKT

(i) − ZT
(i)

K(i)W − Z(i) u2
0(i)

D
≥ 0, i = 1, ..., m, (4.19)

where KT
(i) and ZT

(i) are the transpositions of the i-th rows of K and Z respectively.

The satisfaction of condition (4.19) ensures that the ellipsoid E(P,1) is included in the
polyhedral set

S(|K − G|, u0) = {x ∈ Rn : −u0 4 (K − G)x 4 u0}.

By choosing v = Kx and ω = Gx and applying Lemma 4.3, for any x ∈ S(|K − G|, u0)
sector condition (4.16) becomes:

2φ(Kx)T T (φ(Kx) + Gx) ≤ 0. (4.20)

If this condition is true, the following relation is satisfied:

V̇ (x) ≤ V̇ (x) − 2φ(Kx)T T (φ(Kx) + Gx) (4.21)

The satisfaction of inequality (4.18) implies that V̇ (x)−2φ(Kx)T T (φ(Kx)+Gx) < 0, then
it follows that V̇ (x) < 0. Thus, x ∈ E(P,1) ⊆ S(|K − G|, u0), asymptotically converges to
the origin.

A result similar to Proposition 4.1 can be derived employing local classical sector con-
ditions. In this case, the constraints to satisfy are Bilinear Matrix Inequalities in the
decision variables and their practical handling may be more difficult with respect to LMIs.

In Proposition 4.2 is stated the condition to satisfy in order for system (4.10) to be globally
asymptotically stable.

Proposition 4.2. If there exist W ∈ Rn×n symmetric and positive definite and S ∈
Rm×m diagonal positive definite such that they satisfy (4.22) then the origin is globally
asymptotically stable for system (4.10).5

W (A + BK)T + (A + BK)W BS − WKT

SBT − KW −2S

6
< 0 (4.22)

If condition (4.22) is true, the region of attraction of system (4.10) is the whole state
space.

4.2 Ellipsoidal estimate of the region of asymptotic
stability

The Optimal Velocity model with saturation function may be considered as a linear sys-
tem subject to saturated control law. Having substituted the hyperbolic tangent of the
Bando model with a piecewise function, the resulting nonlinearity is exactly the saturation
function depicted in Figure 4.2.
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With the aim of applying the techniques described in [23], let us consider the Optimal
Velocity model in error coordinates in order to study the region of asymptotic stability of
the origin (i.e. uniform flow equilibrium) and let us consider its reduced version in order
to guarantee the property of asymptotic stability within the region of linearity.
The model that will be analyzed is (4.23), whose state vector is (4.24).

żi = yi, ∀ i = 1, ..., N − 1

ẏi = b
è
Vmax

sat(zi+1+d−d0)−sat(zi+d−d0)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N − 2

ẏN−1 = b

Vmax

sat

3
−
N−1q
i=1

zi+d−d0

4
−sat(zN−1+d−d0)

1+tanh(d0) − yN−1

 ,

ẏN = b

Vmax

sat(z1+d−d0)−sat

3
−
N−1q
i=1

zi+d−d0

4
1+tanh(d0) − yN



(4.23)

x = [z1, z2, ..., zN−1, y1, y2, ..., yN ]T ∈ R2N−1 (4.24)
System (4.23) cannot be written as (4.26), unless we choose to put d = d0. This choice
leads to consider a particular situation, where the ring road has a specific length such
that when the vehicles are equally spaced, their inter-vehicle distance equals the safety
distance. Nevertheless, the presence of d − d0 would introduce a bias in the definition of
the saturation function and no change of variables is able to cancel it. For this reason, let
us consider d = d0 and system (4.25), which can be written as (4.26).

żi = yi, ∀ i = 1, ..., N − 1
ẏi = bVmax

1+tanh(d0) sat (zi+1) − bVmax
1+tanh(d0) sat (zi) − byi, ∀ i = 1, ..., N − 2

ẏN−1 = bVmax
1+tanh(d0) sat

3
−

N−1q
i=1

zi

4
− bVmax

1+tanh(d0) sat (zN−1) − byN−1,

ẏN = bVmax
1+tanh(d0) sat (z1) − bVmax

1+tanh(d0) sat
3

−
N−1q
i=1

zi

4
− byN

(4.25)

ẋ(t) = Ax(t) + B sat(Kx(t)), (4.26)
where

A =
50 Azy

0 −bIN

6
,

with IN the identity matrix ∈ RN×N and

Azy =


1 (0) 0

1
...

. . . ...
(0) 1 0

 ∈ RN−1×N ,
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B =
50N−1xN

Byz

6
∈ R2N−1×N ,

where

Byz = bVmax

1 + tanh(d0)


−1 1 (0)

−1 1
. . . . . .

(0) −1 1
1 0 . . . 0 −1

 ∈ RN×N

and
K =

#
Kyz 0N×N

$
∈ RN×2N−1,

where

Kyz =


1 (0)

1
. . .

(0) 1
−1 . . . . . . −1

 ∈ RN×N−1.

Thanks to the choice of the Reduced Optimal Velocity model, if the parameters satisfy
condition (3.36), A + BK is asymptotically stable, thus system (4.25) is asymptotically
stable in its region of linearity. This fact allows to compute an underestimate of its re-
gion of asymptotic stability, so that all the trajectories of (4.25) that start within this set
asymptotically converge to the origin (i.e. uniform flow equilibrium).

Having substituted the hyperbolic tangent with the saturation function, depicted in Figure
2.10, each row of our sat(Kx(t)) vector in (4.26) is the same saturation function shown in
Figure 4.2, where the values defining the piecewise function are

umax(i) = umin(i) = 1.

Moreover, sat(Kx(t)) is a vector function ∈ RN .
Our model may be equivalently rewritten as

ẋ(t) = (A + BK)x(t) + Bφ(Kx(t)), (4.27)

where each row of φ(Kx(t)) ∈ RN is the dead-zone nonlinearity depicted in Figure 4.4.
Our objective is to exploit the results described in [23] and summarized in Section 4.1 in
order to characterize the region of asymptotic stability of our model (4.25).

Global stability
In order to see if the region of attraction of (4.25) is the whole state space and so it is
globally asymptotically stable, it is sufficient to look for any matrix W and S satisfying
the LMI (4.22). Thus, the problem is defined, but there exists no feasible solution to LMI
(4.22), leading to the conclusion that the origin (i.e. uniform flow equilibrium) is not glob-
ally asymptotically stable.
For this reason, we look for an estimate of the region of asymptotic stability of system
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(4.25).

Local stability
Proposition 4.1 in Section 4.1 allows to compute an invariant and contractive ellipsoid
which underestimates the region of asymptotic stability, so that, if the trajectories of sys-
tem (4.25) start within that ellipsoid, for sure they converge to the origin.
The procedure consists in finding a feasible solution for LMIs (4.18) and (4.19) in W = P−1,
S and Z. Condition (4.18) ensures that the derivative of the Lyapunov function of system
(4.25) is negative if x ∈ S(|K −G|, u0), and (4.19) ensures that ellipsoid E(P,1) is included
in S(|K − G|, u0) where the dead-zone nonlinearity satisfies a local sector condition.
LMIs (4.18) and (4.19) are provided to a suitable solver, where m = N , n = 2N − 1 and
u0(i) = umax(i) = 1.
Since the ellipsoids are an underestimate of the region of asymptotic stability, in order to
find the best estimate, the objective is to maximize the volume of E(P,1) ∈ R2N−1. With
this aim, the maximization of the volume is performed by maximizing log(det(P−1)). Then
the optimization problem is defined as

maximize log(det(W ))
subject to inequalities (4.18), (4.19)

(4.28)

Example 4.1. Let us consider a group of N = 5 vehicles, with b = 10 s−1, Vmax = 10 m/s
and d0 = 10 m. Since d = d0, the length of the ring road is fixed to L = 50 m.
With these parameters the stability constraint (3.36) is satisfied, then the eigenvalues of
A+BK have negative real part and the origin is an asymptotically stable equilibrium point
for model (4.25). The state vector is

x = [z1, z2, ..., z4, y1, y2, ..., y5]T ∈ R9.

We compute the maximum-volume ellipsoid E(P,1) ∈ R9 by solving problem (4.28). To have
an idea of the size of the ellipsoid, in Figure 4.6 and Figure 4.7 are shown the sections
of E(P,1) onto (z1, z2) and (y1, y2) respectively. By choosing any (zi, zj), ∀ i /= j, the
sections of E(P,1) are equal to the ellipse in Figure 4.6 and the sections of E(P,1) onto
(yi, yj), ∀ i /= j, are equal to the ellipse in Figure 4.7.
Thus, starting with any initial condition x(0) ∈ E(P,1), the trajectories of system (4.25)
will converge to the origin (i.e. uniform flow equilibrium).

4.3 Dependence of the RAS on the model parameters
In Section 3.2 we saw that the parameters of model (3.24) affect the stability of the uniform
flow equilibrium point when the model works in the linearity region. If the state x(t) and
d−d0 are such that the model works in the linearity region and b and Vmax satisfy the con-
straint (3.36), then the uniform flow is the only equilibrium point and it is asymptotically
stable. For a given number of vehicles and a fixed d0, the stability constraint is satisfied
for high values of b and low values of Vmax. In this section we study the dependence of
the volume of the estimate of the region of asymptotic stability for model (3.24) on these
parameters and find out if the increase of b and the reduction of Vmax improve not only
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Figure 4.6: Section of E(P,1) onto (z1, z2)
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Figure 4.7: Section of E(P,1) onto (y1, y2)

the satisfaction of the stability constraint in the linear framework but also lead to an im-
provement of the ellipsoidal estimates in the nonlinear framework.
In order to study the dependence of the volume of the ellipsoidal estimates on the parame-
ters, we consider the nonlinear model (4.25) and solve the optimization problem (4.28) for
different couples of values b and Vmax. We focus on the model in which d = d0 because it
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can be written as (4.26). Moreover, we saw in Section 3.2 that if d = d0 the trajectories of
(4.25) converge to the linearity region for any initial condition and the stability constraint
(3.36) holds exactly in the linearity region.
For a group of N = 5 vehicles we fix d0 = 10 m and consider a ring road of length L = 50 m,
so that d = L

N is equal to d0. Let us fix Vmax = 10 m/s, compute the ellipsoidal estimate
E(P,1) for different values of b and project it on subspaces generated by bases of the state
variables. In Table 4.1 are shown the ranges of the state variables belonging to E(P,1).
Increasing b leads to ellipsoidal estimates of the RAS with larger volume. The ellipsoids

Table 4.1: Dependence of the ellipsoidal estimate of the RAS on b. Increasing b, the size
of E(P,1) increases. Vmax = 10 m/s, d = d0 and N = 5.

b [s−1] Ranges of zi and yi ∈ E(P,1)

b = 10 −6.98 m ≤ zi ≤ 6.98 m
−77 m/s ≤ yi ≤ 77 m/s

b = 20 −10.85 m ≤ zi ≤ 10.85 m
−169 m/s ≤ yi ≤ 169 m/s

b = 30 −14.2 m ≤ zi ≤ 14.2 m
−289 m/s ≤ yi ≤ 289 m/s

are inner-approximations, so we can’t state if an increase of b makes the volume of the
RAS of system (4.25) increase, but we get a larger set of initial conditions from which
we are sure the trajectories of the model converge to the uniform equilibrium. Finally,
we perform the same analysis fixing b = 10 s−1 and determine the ellipsoidal estimates of
the RAS for different values of Vmax. For each value we project E(P,1) onto subspaces of
the state variables and in Table 4.2 are shown the ranges of the state variables belonging
to the ellipsoids. By increasing Vmax, the volume of the ellipsoidal estimates of the RAS

Table 4.2: Dependence of the ellipsoidal estimate of the RAS on Vmax. Increasing Vmax,
the size of E(P,1) decreases. b = 10 s−1, d = d0 and N = 5.

Vmax [m
s ] Ranges of zi and yi ∈ E(P,1)

Vmax = 5 −14.2 m ≤ zi ≤ 14.2 m
−144 m/s ≤ yi ≤ 144 m/s

Vmax = 10 −6.98 m ≤ zi ≤ 6.98 m
−77 m/s ≤ yi ≤ 77 m/s

Vmax = 15 −3.74 m ≤ zi ≤ 3.74 m
−47 m/s ≤ yi ≤ 47 m/s

decreases. Again, we can’t be sure that the volume of the RAS of system (4.25) reduces as
Vmax increases, but an increase of Vmax leads to a smaller set of initial conditions for which
we are sure the trajectories of the model converge to the unifrom flow equilibrium.
In conclusion, even if we cannot determine the actual region of asymptotic stability for
the model (4.25), we can state that high values of b and low values of Vmax improve
the satisfaction of the stability constraint (3.36) of the linear system around the uniform
flow equilibrium and enlarge the ellipsoidal estimates of the RAS of the nonlinear model.
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Therefore, they lead to the determination of wider sets of initial conditions for which the
trajectories of the nonlinear model are ensured to converge to the uniform flow equilibrium.

In the Optimal Velocity model with saturation function
ẋi = vi, ∀ i = 1, ..., N

v̇i = b
è
Vmax

sat(xi+1−xi−d0) + tanh(d0)
1 + tanh(d0) − vi

é
, ∀ i = 1, ..., N

(4.29)

b is a weight which represents the sensitivity of the driver. If the velocity vi of one vehicle
is too low with respect to the optimal velocity computed on the basis of the headway,
then this vehicle should accelerate in order to reduce the gap in front of it. With constant
Vopt(xi+1 − xi) > 0, a higher b leads to a higher acceleration, then it means that the driver
reacts faster. The same is true when the headway is too short, the optimal velocity should
be lower than the current velocity of the vehicle and it must brake. The deceleration may
be faster or slower on the basis of weight b. Therefore, b represents the time reaction of
the driver when he needs to update its velocity on the basis of the headway in front of
it. A platoon with a high b coefficient is more reactive, while a low value of b means that
the drivers react slowly. It’s reasonable to think that a reactive platoon is able to keep
the uniform flow equilibrium more easily with respect to a less sensitive group of vehicles.
Therefore, it is reasonable that if b is larger the stability of the uniform flow equilibrium is
better. Moreover, this evidence is shown both in the linear framework and in the estimate
of the RAS of the nonlinear model.
Vmax is the maximum value of the velocity function, therefore it is the maximum absolute
velocity the vehicles can reach. In order to understand this dependence on Vmax, let us
simulate a platoon of N = 5 vehicles travelling on a ring road of length L = 50 m, such
that d0 = 10 m equals d. Let us choose b = 10 s−1 and simulate model (4.29) starting with
the same initial conditions and with two different values of Vmax.

1. Vmax = 5 m/s
As shown in Figure 4.8, the trajectory of only one vehicle (2nd) starts in the linearity
region (bounded by the red lines) and the other four vehicles start in one of the two
saturation regions. Anyway, since −1 m ≤ d−d0 ≤ 1 m, all the trajectories reach the
linearity region and converge to the uniform flow equilibrium because the parameters
satisfy the stability condition (3.36).

2. Vmax = 15 m/s
In Figure 4.9 are shown the relative distances of the model with the same initial
conditions and a higher value of Vmax. At the beginning of the simulation, the vehicles
close long distances and increase short distances in less time with respect to the
previous case. This is because, with the same inter-vehicle distance and with the
same actual velocity, a higher value of Vmax leads to a higher time derivative of
the velocity. Therefore, with a higher Vmax, when the inter-vehicle distance is too
long, the acceleration is larger, and, when the inter-vehicle distance is too short, the
deceleration is stronger. Even if the closing of long distances and the opening of short
distances is faster, a higher value of Vmax makes more difficult to adjust the velocity
of one vehicle when it approaches its preceding one. With the same headway, the
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Figure 4.8: Relative distances of the group of 5 vehicles when Vmax = 5 m/s

Figure 4.9: Relative distances of the group of 5 vehicles when Vmax = 15 m/s

magnitude of the optimal velocity function is larger, so brakings and accelerations
are stronger and less gentle than before and this causes periodic oscillations of the
velocity. Anyway, since also in this scenario the parameters satisfy condition (3.36),
the trajectories reach the uniform flow equilibrium in more time than before, as shown
in Figure 4.10.

As shown in Figures 4.8-4.9, at least when d = d0, a lower value of Vmax improves the
stability of the model. In the linear framework it helps the satisfaction of the stability
condition (3.36) and leads to eigenvalues of the linear system with more negative real part.
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Figure 4.10: Relative distances of the group of 5 vehicles when Vmax = 15 m/s

In the nonlinear framework, by decreasing Vmax, the ellipsoidal estimates of the RAS of
the model (4.25) has a larger volume, so we get a wider set of initial conditions from which
the trajectories are ensured to converge to uniform flow equilibrium.

4.4 Safe region of asymptotic stability
If it is possible to compute an invariant and contractive set within a ‘safety area’ for system
(4.25), not only its trajectories starting in this set asymptotically converge to the origin
(i.e. the uniform flow equilibrium), but the inter-vehicles distances ∆xi of the cars are
lower bounded during the whole travel.
The objective is to find the maximum-volume region of asymptotic stability for the system
(4.25) lying within a polytope that forces a bound on the spacing errors zi. In this way,
bounding zi to a minimum value prevents the collision between two adjacent vehicles.

In general, as explained in [23], if one wants to inscribe the ellipsoid E(P,1) = {x ∈
Rn : xT Px ≤ 1}, in a symmetric polytope as

S(|Q|, ρ) = {x ∈ Rn : |Qx| 4 ρ} = {x ∈ Rn : |Q(i)x| ≤ ρ, ∀i}, (4.30)

the following inequality must be satisfied for each element of vector ρ:

Q(i)P
−1QT

(i) ≤ ρ2
(i), ∀i, (4.31)

where QT
(i) is the transpose of the i-th row of Q.

LMIs (4.31) are included in the set of constraints of the optimization problem (4.28), in
order to find the maximum-volume ellipsoid included in a safety symmetric polytope (4.30)
that ensures asymptotic convergence to the origin.

67



Stability and safety analysis of the Optimal Velocity model with saturation

For example, one can impose a bound on the minimum and the maximum inter-vehicle
distance ∆xi:

dmin ≤ ∆xi ≤ dmax, (4.32)
where dmin is the safety distance and dmax is the maximum allowed inter-vehicle distance.
Condition (4.32) is equivalent to the following constraints on the spacing errors:

dmin − d ≤ zi ≤ dmax − d, (4.33)

where d is the desired distance between two consecutive vehicles.
Suppose L and N are such that d = 10 m, dmin = 8 m and dmax = 12 m, then the safety
range for zi is symmetric:

− 2 m ≤ zi ≤ 2 m. (4.34)
The matrix inequalities (4.31) are added to the optimization problem, where Q is defined
as follows. Since the polytope is such thatI

Q(i)x ≤ ρ(i)

Q(i)x ≥ −ρ(i)

and the safety ranges are defined in (4.33), where dmin − d = −(dmax − d), then

Q =
#
IN−1 0N×N

$
∈ RN−1×2N−1,

where IN−1 is the identity matrix ∈ RN−1×N−1 and

ρ =


dmax − d
dmax − d

...
dmax − d

 ∈ RN−1.

The resulting optimization problem is then

maximize log(det(W ))
subject to inequalities (4.18), (4.19), (4.31).

(4.35)

Example 4.2. Let us solve (4.35) for a group of N = 5 vehicles with the same parameters
as Example 4.1, b = 10 s−1, Vmax = 10 m/s, d0 = 10 m and L = 50 m, and choose
dmin = 8 m and dmax = 12 m. In this way, the relative distances are bounded by

8 m ≤ ∆xi ≤ 12 m. (4.36)

Looking at the sections of the ellipsoid on subspaces generated by the zi variables, the
constraints (4.34) are satisfied, as shown in Figure 4.11. Being E(P,1) an invariant and
contractive set, if the trajectories of system (4.25) are initialized inside it, they remain
within this set and converge to the origin.
Therefore, the vehicles whose behaviour is modelled by (4.25) do not collide, as their min-
imum inter-vehicle distance is lower and upper bounded.
In Figure 4.12 are shown the relative distances of a group of 5 vehicles with b = 10 s−1,
Vmax = 10 m/s and d = d0 = 10 m. The initial conditions in error coordinates belong to
E(P,1) and the relative distances lie in the safety range defined in (4.36).
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Figure 4.11: Sections of the safe E(P,1) and S(|Q|, ρ) onto (zi, zj)
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Figure 4.12: Evolution of the vehicle distances with respect to time. Starting the trajec-
tories within E(P,1) included in the safety polytope, the distances are lower and upper
bounded
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Chapter 5

Stability and safety analysis of
the Bando Optimal Velocity
model

5.1 LTI systems with Neural Network Controller
In article [24], a method to compute an underestimate of the region of attraction is carried
out for discrete time systems with Neural Network Controllers. In this section, the same
analysis is developed for continuous time systems.

Let us consider the continuous time LTI plant

ẋ(t) = Ax(t) + Bu(t), (5.1)

where x ∈ Rn is the state and u ∈ Rm is the input.
In general, the controller π is an ü - layer Neural Network defined by

ω0(t) = x(t) (5.2a)
ωi(t) = φi(W iωi−1(t) + bi), i = 1, ..., ü (5.2b)

u(t) = W ü+1ωü(t) + bü+1, (5.2c)
where ωi ∈ Rni are the activation outputs of each i-th layer. Each activation ωi depends
on a weight matrix W i ∈ Rni×ni−1 , a bias vector bi ∈ Rni and an activation function vector

φi(v) = [ϕ(v1), ..., ϕ(vni)]T ∈ Rni ,

where each element ϕ(ν) is a particular scalar function. For instance, ϕ(ν) = tanh(ν).
By defining the input vector to the activation function ωi as

vi(t) = W iωi−1(t) + bi, i = 1, ..., ü,

the output of each layer is
ωi(t) = φi(vi(t)).
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Thus, each layer, i = 1, ..., ü, has its own set of ni activation functions, φi(v), its own input
vector vi ∈ Rni and its own output vector ωi ∈ Rni . Let us put together all the inputs and
outputs of all the layers:

vφ = [v1, ..., vü]T ∈ Rnφ ,

ωφ = [ω1, ..., ωü]T ∈ Rnφ ,

where nφ = n1 + n2 + ... + nü, and collect all activation functions together:

φ(vφ) = [φ1(v1), ..., φü(vü)]T ∈ Rnφ .

Thus ωφ(t) = φ(vφ(t)). The controller defined in (5.2) can be rewritten as (5.3), where
linear and nonlinear parts are split up.

5
u(t)
vφ(t)

6
= N

 x(t)
ωφ(t)

1

 (5.3a)

ωφ(t) = φ(vφ(t)), (5.3b)

where
N =

5
Nux Nuω Nub

Nvx Nvω Nvb

6
A local sector condition on the activation function φ(v) may be used to carry out a stability
analysis for system (5.1)-(5.2).
Let us consider a generic equilibrium point

x∗ = Ax∗ + Bu∗

u∗ = π(x∗).

(x∗, u∗) must satisfy equation (5.3), then

5
u∗
v∗

6
= N

x∗
ω∗
1

 , (5.4a)

ω∗ = φ(v∗). (5.4b)

Therefore, the equilibrium point is (x∗, u∗, v∗, ω∗).

Consider ϕ(ν) = tanh(ν), shown in blue solid line in Figure 5.1. In ν ≤ ν ≤ ν̄, tanh (ν)
lies within the two green dashed lines, defining the local sector [α, β], where α ≤ β. In
sector [α, β], ϕ(ν) satisfies the following inequality.

(ϕ(ν) − αν)(βν − ϕ(ν)) ≥ 0, (5.5)

where ν = −ν̄, β = 1 and α = tanh(ν̄)
ν̄ .

The local sector constraint (5.5) is centered in (ν, ϕ(ν)) = (0,0) and it is useful to evaluate
stability of (x∗, u∗) such that (ν∗, ϕ(ν∗)) = (0,0).
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Figure 5.1: Local sector on tanh

According to the choice of the equilibrium point where we want to evaluate stability, it is
required to define offset local conditions for any generic (ν∗, ϕ(ν∗)).

Let us consider ϕ(ν) = tanh(ν), shown in blue solid line in Figure 5.2. In ν ≤ ν ≤ ν̄),
tanh (ν) lies within the offset local sector [α, β] around v∗, where α ≤ β and ν = −ν̄, if it
satisfies the inequality (5.5).

(∆ϕ(ν) − α∆ν)(β∆ν − ∆ϕ(ν)) ≥ 0, (5.6)

where ∆ϕ(ν) = ϕ(ν) − ϕ(ν∗) and ∆ν = ν − ν∗.
For example β = 1 and α = min

î
tanh(ν̄)−tanh(ν∗)

ν̄−ν∗
, tanh(ν∗)−tanh(ν)

ν∗−ν

ï
.

Figure 5.2: Offset local sector on tanh

Let us assume that, for vi ∈ [vi, v̄i], each activation function ϕ(vi) lies locally in the
sector [αi, βi], for i = 1, ..., nφ. Then the local sectors can be put together in vectors αφ

and βφ. In [24] the authors state the following lemma.

Lemma 5.1. Given v̄, v, v∗, αφ, βφ, where αφ 4 βφ, v 4 v∗ 4 v̄ and ω∗ = φ(v∗). Let us
assume vφ ∈ [v, v̄] and φ lies in the local sector [αφ, βφ] around v∗ element-wise for any vφ.
Then 5

vφ − v∗
ωφ − ω∗

6T

ΨT
φ Mφ(λ)Ψφ

5
vφ − v∗
ωφ − ω∗

6
≥ 0 (5.7)

73



Stability and safety analysis of the Bando Optimal Velocity model

∀ vφ ∈ [v, v̄] and ωφ = φ(vφ), where λ ∈ Rnφ and λ(i) ≥ 0,

Ψφ =
5 diag(βφ) −Inφ

− diag(αφ) Inφ

6
,

Mφ(λ) =
5 0nφ diag(λ)
diag(λ) 0nφ

6
,

where Inφ and 0nφ are the identity matrix and the zero matrix ∈ Rnφ×nφ .

The satisfaction of the local sector condition (5.5) or the more general offset local
sector condition (5.6) applies in the computation of an inner approximation of the region
of attraction for system (5.1)-(5.2).
In [24] the authors state a theorem that allows to estimate the region of attraction for
a discrete system. In a similar way, we state the same theorem for a continuous control
system.

Theorem 5.1. Let us consider a system with plant (5.1) and Neural Network Controller
(5.2) with equilibrium point (x∗, u∗, v∗, ω∗). Assume αφ, βφ ∈ Rnφ are such that φ satisfies
the offset local sector condition (5.6) around (v∗, φ(v∗)). Let v1 ∈ [v1, v̄1], v1 ∈ Rn1 , be the
first element of vector vφ and v1 = 2v1

∗ − v̄1, where v1
∗ ∈ [v1, v̄1] is the first element of the

equilibrium value v∗.
Let us define the following matrices

RV =
5

In 0n×nφ

Nux Nuω

6
, Rφ =

5
Nvx Nvω

0nφ×n Inφ

6
,

where n is the dimension of the state vector. If there exist a symmetric positive definite
matrix P ∈ Rn×n and a vector λ ∈ Rnφ , where λ(i) ≥ 0, satisfying

RT
V

5
AT P − PA PB

BT P 0

6
RV + RT

φ ΨT
φ Mφ(λ)ΨφRφ < 0 (5.8)

C
(v̄1

(i) − v1
∗(i)

)2 W 1
(i)

W 1
(i)

T
P

D
≥ 0, i = 1, ..., n1, (5.9)

where W 1 is the weight matrix of the first layer, W 1
(i) is the i-th row of W 1, v1

∗(i)
and v̄1

(i)
are the i-th elements of v1

∗ and v̄1 respectively. Then

E(P, x∗) = {x ∈ Rn : (x − x∗)T P (x − x∗) ≤ 1}

is an inner approximation of the region of attraction of system (5.1)-(5.2).

Proof. The satisfaction of LMIs (5.9) guarantees that

E(P, x∗) ⊆ S(W 1, v̄1) = {x ∈ Rn : v1 4 v1 4 v̄1} = {x ∈ Rn : v1−v1
∗ 4 W 1(x−x∗) 4 v̄1−v1

∗}.

Let us consider the following quadratic Lyapunov function candidate

V (x − x∗) = (x − x∗)T P (x − x∗), P > 0.
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To establish the result, we show that for all x ∈ (E(P, x∗) \ {x∗})

V̇ (x − x∗) = (ẋ − x∗)T P (x − x∗) + (x − x∗)T P (ẋ − x∗) < 0.

V̇ (x − x∗) =

(x−x∗)T AT P (x−x∗)+(u−u∗)T BT P (x−x∗)+(x−x∗)T PA(x−x∗)+(x−x∗)T PB(u−u∗)

Which can be written in the following matrix form:

V̇ (x − x∗) =
#
(x − x∗)T (u − u∗)T

$ 5AT P + PA PB
BT P 0

6 5
x − x∗
u − u∗

6
.

Pre-and-post multiply LMI (5.2) by [(x − x∗)T (ωφ − ω∗)T ] and its transpose.

#
(x − x∗)T (ωφ − ω∗)T

$
RT

V

5
AT P + PA PB

BT P 0

6
RV

5
x − x∗

ωφ − ω∗

6
+
5

vφ − v∗
ωφ − ω∗

6T

ΨT
φ Mφ(λ)Ψφ

5
vφ − v∗
ωφ − ω∗

6
< 0

which is equivalent to

#
(x − x∗)T (ωφ − ω∗)T

$ 5 In Nux

0nxnφ Nuω

6 5
AT P + PA PB

BT P 0

6 5
In 0nxnφ

Nux Nuω

6 5
x − x∗

ωφ − ω∗

6

+
5

vφ − v∗
ωφ − ω∗

6T

ΨT
φ Mφ(λ)Ψφ

5
vφ − v∗
ωφ − ω∗

6
< 0

where the terms in blue are [(x − x∗)T (u − u∗)T ] and its transpose. Thus

#
(x − x∗)T (u − u∗)T

$ 5AT P + PA PB
BT P 0

6 5
x − x∗
u − u∗

6
+
5

vφ − v∗
ωφ − ω∗

6T

ΨT
φ Mφ(λ)Ψφ

5
vφ − v∗
ωφ − ω∗

6
< 0

where the terms in red are equivalent to V̇ (x − x∗).

V̇ (x − x∗) +
5

vφ − v∗
ωφ − ω∗

6T

ΨT
φ Mφ(λ)Ψφ

5
vφ − v∗
ωφ − ω∗

6
< 0

where, from Lemma 5.1, for x ∈ S(W 1, v̄1) the term in green is ≥ 0.
It follows that, for x ∈ E(P, x∗) ⊆ S(W 1, v̄1), x /= x∗,

V̇ (x − x∗) < 0.
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5.2 Ellipsoidal estimate of the region of attraction

5.2.1 Local sector condition on tanh
The results of [24] are applied to the Optimal Velocity model (5.10) in error coordinates
with N vehicles on a ring road of length L.

żi = yi, ∀ i = 1, ..., N − 1

ẏi = b
è
Vmax

tanh(zi+1+d−d0)−tanh(zi+d−d0)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N − 2

ẏN−1 = b

Vmax

tanh

3
−
N−1q
i=1

zi+d−d0

4
−tanh(zN−1+d−d0)

1+tanh(d0) − yN−1



ẏN = b

Vmax

tanh(z1+d−d0)−tanh

3
−
N−1q
i=1

zi+d−d0

4
1+tanh(d0) − yN



(5.10)

In this section, we consider the particular case where L is such that d = L
N = d0 and the

reason is that, with this choice, the local sector condition on tanh will be centered in the
origin. The model becomes equal to (5.11).

żi = yi, ∀ i = 1, ..., N − 1

ẏi = b
è
Vmax

tanh(zi+1)−tanh(zi)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N − 2

ẏN−1 = b

Vmax

tanh

3
−
N−1q
i=1

zi

4
−tanh(zN−1)

1+tanh(d0) − yN−1



ẏN = b

Vmax

tanh(z1)−tanh

3
−
N−1q
i=1

zi

4
1+tanh(d0) − yN



(5.11)

First of all, the nonlinear system (5.11) may be rewritten as

ẋ = Ax(t) + Bu(t) = Ax(t) + B tanh(Kx(t)), (5.12)

where the state vector is

x = [z1, z2, ..., zN−1, y1, y2, ..., yN ]T ∈ Rn,
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A =
50 Azy

0 −bIN

6
∈ R2N−1×2N−1,

with IN the identity matrix ∈ RN×N and

Azy =


1 (0) 0

1
...

. . . ...
(0) 1 0

 ∈ RN−1×N ,

B =
50N−1xN

Byz

6
∈ R2N−1×N ,

where

Byz = bVmax

1 + tanh(d0)


−1 1 (0)

−1 1
. . . . . .

(0) −1 1
1 0 . . . 0 −1

 ∈ RN×N

and
K =

#
Kyz 0N×N

$
∈ RN×2N−1,

where

Kyz =


1 (0)

1
. . .

(0) 1
−1 . . . . . . −1

 ∈ RN×N−1.

System (5.12) may be considered as a plant (5.1), driven by a 1-layer controller π (5.13).

ω0(t) = x(t) (5.13a)

ω1(t) = φ1(W 1ω0(t) + b1) (5.13b)

u(t) = W 2ω1(t) + b2 (5.13c)

Since there is only one layer, vφ = v1 ∈ Rn1 and ωφ = ω1 ∈ Rn1 and the only activation
function vector is

φ(vφ) = φ1(v) = [ϕ(v1), ..., ϕ(vn1)]T ∈ Rn1 .

So, nφ = n1 = N .
The nonlinearity is given by

ω1(t) = φ1(v1(t)) = φ1(W 1ω0(t)) = φ1(W 1x(t)) = tanh(W 1x(t)) = tanh(Kx(t)),

so
W 1 = K and b1 = 0
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Then
u(t) = W 2ω1(t) + b2 = W 2 tanh(Kx(t)) + b2.

But, since from (5.12) u(t) = tanh(Kx(t)), then

W 2 = IN and b2 = 0,

where IN is the identity matrix ∈ RN×N .
Since

ω1 = φ1(v1) = tanh(Kx) =


tanh(z1)
tanh(z2)

...
tanh(zN−1)

tanh(−z1 − z2 − ... − zN−1)

 ∈ RN ,

then n1 = N . Having defined W 1 and W 2, let us compute matrix N .5
u(t)
v1(t)

6
= N

 x(t)
ω1(t)

1

 =
50N×2N−1 W 2 0

K 0N×N 0

6  x(t)
ω1(t)

1

 (5.14)

Let us compute an under-estimate of the region of attraction of system (5.11) using the
method described in [24], where the equilibrium point is given by

x∗ = Ax∗ + Bu∗

u∗ = π(x∗)
Since we are interested in a region of attraction around x = 0 (i.e. uniform flow equilib-
rium), x∗ = 0 and the corresponding input at the equilibrium is u∗ = 0.
Finally, (x∗, u∗) must satisfy (5.4) and (5.14), therefore

v∗ = v1
∗ = W 1x∗ = 0

and
ω∗ = ω1

∗ = φ1(v1
∗) = tanh(v1

∗) = 0.

Then, the equilibrium point is (x∗, u∗, v∗, w∗) = (0,0,0,0) and the local sectors [αφ, βφ] are
centered in the origin as in Figure 5.1.

In order to determine the ellipsoidal estimates of the region of attraction, we choose the
vector v̄1, in which the hyperbolic tangent satisfies the local sector condition (5.5).
Therefore, the ellipsoidal estimates will be included in the following polyhedral set.

E(P,0) ⊆ S(K, v̄1) = {x ∈ R2N−1 : −v̄1 4 Kx 4 v̄1}

Being the ellipsoidal estimates inner-approximations of the region of attraction of model
(5.11), to determine the best approximation, we maximize the volume of E(P,0) ∈ R2N−1.
The maximization of the size of the ellipsoids is performed by minimizing the trace of matrix
P . Therefore, the best approximation is determined solving the following optimization
problem.

minimize trace(P )
subject to inequalities (5.8), (5.9)

(5.15)
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Example 5.1. Let us consider a platoon of N = 5 vehicles driving on a ring road of length
L = 50 m, in which the safety distance is d0 = lv + ds = 10 m. Since d = L/N is equal
to d0, the group of vehicles is modelled as (5.11). These parameters satisfy the stability
constraint (3.18), so the origin is an asymptotically stable equilibrium point for the model.
The state vector is

x = [z1, z2, z3, z4, y1, y2, y3, y4, y5]T ∈ R9

Suppose the model parameters are b = 20 s−1 and Vmax = 5 m/s and suppose the levels of
the local sectors are

v̄1 = [3 3 3 3 3] ∈ R5.

The hyperbolic tangent is inscribed in the local sector shown in Figure 5.3.
We compute the maximum-volume ellipsoid E(P,0) ∈ R9 by solving problem (5.15). To

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

1.5

ta
n
h
(

)

Figure 5.3: Local sector with ν̄ = 3

have an idea of the size of the ellipsoid, in Figure 5.4 and 5.5 are shown the sections of
the ellipsoid onto (z1, z2) and (y1, y2) respectively.
Having chosen v̄1

i = 3 ∀ i = 1, ...,5, since

E(P,0) ⊆ S(K, v̄1) = {x ∈ R9 : −v̄1 4 Kx 4 v̄1}

and

K =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

−1 −1 −1 −1 0 0 0 0 0

 ∈ R5×9,

the following constraints hold on zi.

−3 ≤ zi ≤ 3, ∀i = 1, ...,4
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Figure 5.4: Section of E(P,0) onto (z1, z2) when v̄1
i = 3
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Figure 5.5: Section of E(P,0) onto (y1, y2) when v̄1
i = 3

This means that vector v̄1 limits the size of the ellipsoidal estimate with respect to zi, as
shown in Figure 5.4. Therefore, the larger is v̄1, the wider is the maximum-volume ellipsoid
and the better is the estimate.
Nevertheless, increasing too much the values of vector v̄1 to enlarge the local sector may
lead to infeasible solutions to problem (5.15). For this reason, we determine the best esti-
mate of the region of attraction of the model (5.11) by choosing the highest v̄1 for which a
feasible solution to (5.15) exists.
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5.2 – Ellipsoidal estimate of the region of attraction

With the same model parameters as before, the highest value of v̄1
(i) for which the optimiza-

tion problem is feasible is

v̄1
(i) = 3.1308.

In Figure 5.6 is shown the section of the maximum-volume ellipsoid onto (z1, z2) and in
Figure 5.6 the section onto (y1, y2). As expected, since the defined polyhedral set S(K, v̄1)
is wider, the volume of the ellipsoidal estimate is larger and, with b = 20 s−1 and Vmax =
5 m/s, this is the best approximation of the region of attraction of model (5.11) we can
obtain.
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Figure 5.6: Section of E(P,0) (blue) onto (z1, z2) when v̄1
i = 3.1308, one trajectory (red) is

initialized inside and one trajectory is initialized outside (green)

Since E(P,0) is an invariant and contractive set, if the trajectories are initialized inside
it, they remain within the ellipsoid and converge to the origin. In Figures 5.6-5.7 are
shown the projections of one trajectory (red) that starts inside E(P,0). Being E(P,0) an
underestimate of the region of attraction, there are trajectories that converge to the origin
but don’t start from the ellipsoid. In Figures 5.6-5.7 the green curves are the projections
of one trajectory that doesn’t start from E(P,0) and yet it converges to the origin.
Looking at the sections, we cannot state whether one point x∗ belongs to E(P,0) or not. To
know if it belongs to the ellipsoid, we have to check if

xT
∗ Px∗ ≤ 1.
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Figure 5.7: Section of E(P,0) (blue) onto (y1, y2) when v̄1
i = 3.1308, one trajectory (red) is

initialized inside and one trajectory is initialized outside (green)

5.2.2 Offset local sector condition on tanh
With respect to what has been done in Section 5.2.1, here we focus on the general case
where L is such that d /= d0. The nonlinear model is then

żi = yi, ∀ i = 1, ..., N − 1

ẏi = b
è
Vmax

tanh(zi+1+d−d0)−tanh(zi+d−d0)
1+tanh(d0) − yi

é
, ∀ i = 1, ..., N − 2

ẏN−1 = b

Vmax

tanh

3
−
N−1q
i=1

zi+d−d0

4
−tanh(zN−1+d−d0)

1+tanh(d0) − yN−1



ẏN = b

Vmax

tanh(z1+d−d0)−tanh

3
−
N−1q
i=1

zi+d−d0

4
1+tanh(d0) − yN



(5.16)

The nonlinear system (5.16) may be rewritten as

ẋ = Ax(t) + Bu(t) = Ax(t) + B tanh(Kx(t) + d̄), (5.17)

where d̄ = (d − d0)1N ∈ RN and x ∈ R2N−1, A ∈ R2N−1×2N−1, B ∈ R2N−1×N and
K ∈ RN×2N−1 are the same quantities defined in Section 5.2.1. The only difference is the
presence of d̄ in the nonlinear functions. As well as before, system (5.17) may be considered
as a plant (5.1) driven by a 1-layer controller π (5.18).

ω0(t) = x(t) (5.18a)
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5.2 – Ellipsoidal estimate of the region of attraction

ω1(t) = φ1(W 1ω0(t) + b1) (5.18b)
u(t) = W 2ω1(t) + b2 (5.18c)

Since there is only one layer, vφ = v1 ∈ Rn1 and ωφ = ω1 ∈ Rn1 and the only activation
function vector is

φ(vφ) = φ1(v) = [ϕ(v1), ..., ϕ(vn1)]T ∈ Rn1 .

So, nφ = n1 = N .
The nonlinearity is given by

ω1(t) = φ1(v1(t)) = φ1(W 1ω0(t)+b1) = φ1(W 1x(t)+b1) = tanh(W 1x(t)+b1) = tanh(Kx(t)+d̄),

so
W 1 = K and b1 = d̄

Then
u(t) = W 2ω1(t) + b2 = W 2 tanh(Kx(t)) + b2.

But, since from (5.17) u(t) = tanh(Kx(t) + d̄), then

W 2 = IN and b2 = 0,

where IN is the identity matrix ∈ RN×N . As before n1 = N . We can compute matrix N :

5
u(t)
v1(t)

6
= N

 x(t)
ω1(t)

1

 =
C
0N×2N−1 W 2 0

K 0N×N d̄

D x(t)
ω1(t)

1

 (5.19)

Let us compute an under-estimate of the region of attraction of system (5.16) using the
method described in [24], where the equilibrium point is given by

x∗ = Ax∗ + Bu∗

u∗ = π(x∗)
Since we are interested in a region of attraction around x = 0 (i.e. uniform flow equilib-
rium), x∗ = 0 and the corresponding input at the equilibrium is u∗ = tanh(d̄).
Finally, (x∗, u∗) must satisfy (5.4) and (5.19), therefore

v∗ = v1
∗ = W 1x∗ + b1 = b1 = d̄

and
ω∗ = ω1

∗ = φ1(v1
∗) = tanh(v1

∗) = tanh(d̄).
Then, the equilibrium point is (x∗, u∗, v∗, w∗) = (0, tanh(d̄), d̄, tanh(d̄)) and the local sec-
tors [αφ, βφ] are centered in (d̄, tanh(d̄))

In order to determine the ellipsoidal estimates of the region of attraction, we choose the
vector v̄1, in which the hyperbolic tangent satisfies the offset local sector condition (5.5).
Therefore, the ellipsoidal estimates will be included in the following polyhedral set.

E(P,0) ⊆ S(K, v̄1) = {x ∈ Rn : v1 − v∗ 4 Kx 4 v̄1 − v∗}
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Being the ellipsoidal estimates inner-approximations of the region of attraction of model
(5.16), to determine the best approximation, we maximize the volume of E(P,0) ∈ R2N−1.
The maximization of the size of the ellipsoids is performed solving the same optimization
problem (5.15) as before and trying to choose the largest values of v̄1 − v∗ and |v1 − v∗|.
Now the local sectors are not centered in the origin, because they are translated towards
one of the two flat regions of tanh dependently on the sign of d − d0. With respect to the
case where the local sectors are centered in the origin, this feature leads to lower maximum
levels v̄1 − v∗ (and |v1 − v∗|) for which the optimization problem is feasible and so to
ellipsoidal estimates with smaller volume. The main reason of the reduction of v̄1 − v∗ as
the local sectors move away from the origin is due to the flat branches of the hyperbolic
tangent. Keeping the same difference v̄1 −v∗, as v∗ moves towards one of the two branches,
it means that the local sector tends to be global. Since global stability doesn’t hold for
model (5.16), the result is that the optimization problem (5.15) is unfeasible. Therefore,
with the same choice of b and Vmax, if the local sectors are not centered in the origin, the
resulting ellipsoidal estimates of the region of attraction of model (5.16) have a smaller
volume. This means that, if d < d0 or d > d0, the estimates of the region of attraction are
smaller than the estimates of the region of attraction of the model (5.16) when d = d0.
Finally, the maximum value of v̄1 −v∗ for which the optimization problem (5.15) is feasible
reduces as the number of vehicles increases. The dependence of the size of the ellipsoids
on |d − d0| and N reflects the worsening of stability as these two parameters increase that
was shown in the linear framework in Section 3.1.

Example 5.2. Let us consider a platoon of N = 5 vehicles driving on a ring road of length
L = 55 m, in which the safety distance is d0 = lv + ds = 10 m. Therefore d = d0 = 1 m
and the offset local sectors are centered in v∗ = 1 m. Suppose the model parameters are
b = 20 s−1 and Vmax = 5 m/s as in Example 5.1.
The maximum value of v̄1 for which problem (5.15) admits a feasible solution is such that

v̄1 − v∗ = 0.36.

Therefore, the maximum ellipsoidal estimate of the region of attraction that lies in the
polyhedral set S(K, v̄1) has a quite small volume and its sections onto (z1, z2) and (y1, y2)
are depicted in Figure 5.8 and Figure 5.9.

5.3 Dependence of the ROA on the model parameters
In Section 3.1 we saw that the parameters affect the eigenvalues of the linearized model
(3.12) around the origin and if they satisfy the condition (3.18) then the uniform flow
equilibrium is asymptotically stable. The parameters affect also the size of the ellipsoidal
estimate of the ROA of the nonlinear model (3.10) around the origin. By fixing d = d0, the
local sectors are centered in the origin and they provide the widest ellipsoidal estimates,
while choosing d > d0 leads to relatively smaller ellipsoids. Therefore, we fix d = d0 and
compute the ellipsoidal estimates for different values of b and Vmax and see that they affect
the maximum value of v̄(i) for which problem (5.15) is feasible. In particular, increasing b
and reducing Vmax help the satisfaction of the stability constraint and lead to larger v̄(i)
and so to ellipsoidal estimates with larger volume.
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Figure 5.8: Section of E(P,0) onto (z1, z2) when v̄1 − v∗ = 0.36
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Figure 5.9: Section of E(P,0) onto (y1, y2) when v̄1 − v∗ = 0.36.

For a group of N = 5 vehicles we fix d0 = 10 m and consider a ring road of length
L = 50 m, so that d = L

N equals d. Let us fix Vmax = 10 m/s, compute E(P,0) for different
values of b and project it on subspaces generated by bases of the state variables. In Table
5.1 are shown the ranges of the state variables belonging to E(P,0). As expected, by in-
creasing b, the volume of the ellipsoidal estimate of the ROA increases. The ellipsoids are
inner-approximations, so we can’t state whether tuning b actually makes the ROA enlarge,
but a larger b allows to get to a wider set of initial conditions for which we are sure the
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Table 5.1: Dependence of the ellipsoidal estimate of the ROA on b. Increasing b, the levels
v̄ increases and the size of E(P,0) increases. Vmax = 10 m/s, d = d0 and N = 5.

b [s−1] Vector v̄ Ranges of z1 and y1 ∈ E(P,0)

b = 10 v̄(i) = 1.3040 −1.304 m ≤ z1 ≤ 1.304 m
−10.32 m/s ≤ y1 ≤ 10.32 m/s

b = 20 v̄(i) = 2.4421 −2.442 m ≤ z1 ≤ 2.442 m
−23.85 m/s ≤ y1 ≤ 23.85 m/s

b = 30 v̄(i) = 2.8906 −2.888 m ≤ z1 ≤ 2.888 m
−33.08 m/s ≤ y1 ≤ 33.08 m/s

trajectories of (3.10) converge to the uniform flow equilibrium. Finally, we compute the
ellipsoidal estimates by solving (5.15) fixing b = 20 s−1 with different values of Vmax. The
ellipsoids are projected on subspaces generated by bases of the state variables. In Table
5.2 are shown the ranges of the state variables belonging to E(P,0). Even if we can only

Table 5.2: Dependence of the ellipsoidal estimate of the ROA on Vmax. Increasing Vmax,
the levels v̄ decreases and the size of E(P,0) decreases. b = 20 s−1, d = d0 and N = 5.

Vmax [m
s ] Vector v̄ Ranges of z1 and y1 ∈ E(P,0)

Vmax = 5 v̄(i) = 3.1308 −3.127 m ≤ z1 ≤ 3.127 m
−21.04 m/s ≤ y1 ≤ 21.04 m/s

Vmax = 10 v̄(i) = 2.4421 −2.442 m ≤ z1 ≤ 2.442 m
−23.85 m/s ≤ y1 ≤ 23.85 m/s

Vmax = 20 v̄(i) = 1.3030 −1.303 m ≤ z1 ≤ 1.303 m
−20.16 m/s ≤ y1 ≤ 20.16 m/s

determine an estimate of the region of attraction of the model (3.10), we see that high
values of b and low values of Vmax improve the satisfaction of the stability constraint (3.18)
of the linearized model around the uniform flow equilibrium and lead to the determination
of wider sets of initial conditions for which the trajectories of the nonlinear model are
ensured to converge to the uniform flow equilibrium.

In the Optimal Velocity modelI
ẋi = vi, ∀ i = 1, ..., N

v̇i = b [Vopt (xi+1 − xi) − vi] , ∀ i = 1, ..., N
(5.20)

b is the sensitivity of the driver. Therefore, with the same headway and same absolute
velocity vi, a vehicle with larger b reacts faster. As consequence, an increase of b improves
the stability of the uniform flow equilibrium and this feature is shown both in the linear
and nonlinear framework.
Vmax is the maximum value of the velocity function and we see that, when d = d0, larger
values of Vmax affect the trajectories of the nonlinear model in a similar way as seen in
Section 4.3. We simulate system (5.20) modelling a group of N = 5 vehicles on a ring road
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of length L = 50 m, where d0 = lv + ds = 10 m. We select b = 10 s−1 and choose two
values of Vmax, keeping the same initial conditions.

1. Vmax = 5 m/s
As shown in Figure 5.10, the trajectories of the nonlinear converge to the uniform
flow equilibrium because the parameters satisfy the stability condition (3.18) where
κ5 = 0.7639.

Figure 5.10: Relative distances of the group of 5 vehicles when Vmax = 5 m/s

2. Vmax = 15 m/s
As well as for the model with saturation function in Section 4.3, a larger value of Vmax
helps in closing long distances and opening short distances in less time. Nevertheless,
it leads to oscillations of the velocity functions and of the inter-vehicle distances
because it is more difficult to brake and accelerate gently when the distances are
too short or too long respectively. As a result, the convergence to the uniform flow
equilibrium takes more time. Anyway, since the parameters satisfy constraint (3.18),
the trajectories reach the equilibrium, as shown in Figure 5.12.

5.4 Safe region of attraction
In the same way as in Section 4.4 for the Optimal Velocity model with saturation, we can
determine an ellipsoidal estimate of the region of attraction of the Optimal Velocity model
(5.16) that lies in a safety polytope that forces a lower bound on the inter-vehicle distances.
This leads to determine a contractive and invariant set such that, if the trajectories of the
model are initialized in this set, they converge to the uniform flow equilibrium and collision
is avoided.
The procedure consists in adding the LMIs (5.21) to the optimization problem (5.15), so
that the ellipsoidal estimate is included in (5.22). In this way, we force a lower (and upper)
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Figure 5.11: Relative distances of the group of 5 vehicles when Vmax = 15 m/s

Figure 5.12: Relative distances of the group of 5 vehicles when Vmax = 15 m/s

bound on the inter-vehicle distances (5.24) by imposing a lower (and upper) bound on the
inter-vehicle distances (5.23). C

P QT
(i)

Q(i) ρ2
(i)

D
≥ 0, ∀ i, (5.21)

where
Q =

#
IN−1 0N×N

$
∈ RN−1×2N−1,
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where IN−1 is the identity matrix ∈ RN−1×N−1 and

ρ =


dmax − d
dmax − d

...
dmax − d

 ∈ RN−1.

S(|Q|, ρ) = {x ∈ Rn : |Qx| 4 ρ} = {x ∈ Rn : |Q(i)x| ≤ ρ, ∀i}, (5.22)

dmin − d ≤ zi ≤ dmax − d, (5.23)

dmin ≤ ∆xi ≤ dmax, (5.24)

The resulting optimization problem that maximizes the volume of the ellipsoidal estimate
of the region of attraction for model (5.16) included in the safety polytope is (5.25).

minimize trace(P )
subject to inequalities (5.8), (5.9), (5.21)

(5.25)

Example 5.3. Let us suppose to deal with the same model in Example 5.1 in Section 5.2.1,
where N = 5 and the parameters are b = 20 s−1, Vmax = 5 m/s and d0 = 10 m. To get
the maximum-volume ellipsoidal estimate, consider that the length of the ring road is such
that the inter-vehicle distances at the uniform flow equilibrium, d, is equal to d0.
Suppose to force the following lower bound on the inter-vehicle distances:

dmin = 8 m.

In order to get a symmetric polytope S(|Q|, ρ), dmax = 12 m, so that

8 m ≤ ∆xi ≤ 12 m, (5.26)

− 2 m ≤ zi ≤ 2 m. (5.27)

We define matrix Q and vector ρ, solve the optimization problem (5.25) and compute the
maximum-volume ellipsoidal estimate E(P,0) of the ROA contained in the safety polytope
S(|Q|, ρ). The resulting ellipsoid is smaller with respect to the one computed in Example 5.1
and its section onto (z1, z2) is shown in Figure 5.13. Therefore, initializing the trajectories
of (5.11) in this smaller ellipsoid, they converge to the uniform flow equilibrium and the
vehicle distances are bounded between 8 m and 12 m and the vehicles don’t collide. In
Figure 5.14 are shown the relative distances of a group of 5 vehicles with b = 20 s−1,
Vmax = 10 m/s and d = d0 = 10 m. The initial conditions in error coordinates belong to
E(P,0) and the relative distances lie in the safety range defined in (5.26).
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Figure 5.13: Section of E(P,0) (blue) onto (z1, z2), projection of S(|Q|, ρ) (pink) and one
trajectory (red) of the model
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Figure 5.14: Evolution of the vehicle distances with respect to time. Starting the trajec-
tories within E(P,0) included in the safety polytope, the distances are lower and upper
bounded

90



Chapter 6

Conclusion and future work

6.1 Summary and comparison of the models
Experimental evidence on a ring road shows that the presence of a small number of au-
tonomous vehicles (AVs) is able to dampen stop-and-go waves, avoid huge oscillations of
the speed and prevent accidents of a group of human-driven vehicles. Being unclear by
which mechanism AVs can improve the behaviour of human-driven vehicles so far, this
work aims to analyse the properties of a group of N vehicles on a ring road.
Traffic flow is described by the nonlinear Bando Optimal Velocity model and the analysis
focuses on the stability of the uniform flow equilibrium and on the safety of the trajectories
of the vehicles. Being the hyperbolic tangent of the Bando model similar to a bounded
piecewise linear function, called saturation function, we substitute it and define a simplified
traffic model. The resulting Optimal Velocity model with saturation is piecewise linear and
we carry out the same analyses for both the models.
As a first step, the stability analysis of the uniform flow equilibrium is performed on the
linearization of the Bando model rewritten in the spacing errors and relative velocities.
Since the linearized model shows a structural zero eigenvalue, the objective is to remove
it. As the vehicles travel on a closed ring, one spacing error is written as function of the
others, the state vector is reduced and the linearization around the uniform flow equilib-
rium doesn’t have any structural zero eigenvalue anymore. Depending on the choice of the
parameters of the model, the uniform flow equilibrium may be stable or unstable. The
application of Routh stability criterion on the linearization of the reduced model of groups
of three, four and five vehicles allows to state a necessary and sufficient condition on the
parameters that ensures asymptotic stability of the uniform flow equilibrium. Anyway,
the purpose is to state a result on a generic group of N vehicles. From the non-reduced
linearized model of a group of N vehicles, we derive the expression of the characteristic
polynomial and apply previous results from the literature. We come up with a necessary
and sufficient condition on the roots of the characteristic polynomial and notice that it is
the generalization of the conditions derived from Routh criterion. The equilibrium may
become unstable if the gap between the safety distance d0 and the inter-vehicle distance
d at the equilibrium is low, the sensitivity of the driver b reduces or the maximum of the
velocity function Vmax increases. Moreover, if the difference between the safety distance
and the inter-vehicle distance at the equilibrium increases, then the stability condition
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holds and the eigenvalues of the linearized model have negative real part. Nevertheless,
the eigenvalues tend to the imaginary axis, so the uniform flow equilibrium is asymptoti-
cally stable but the convergence to the equilibrium is slow. Lastly, the number of vehicles
of the model affects stability, too. Increasing N and the length L of the ring road such
that d = L

N is constant, the eigenvalues of the linearized model tend to the imaginary axis,
slowing down the convergence of the trajectories to the equilibrium.
The study of the stability of the uniform flow equilibrium in the linear framework is carried
out on the Optimal Velocity model with saturation, too. Having replaced the hyperbolic
tangent with the saturation function, the velocity function may be linear with the headway
or it may either saturate to zero or to the maximum value Vmax. By simulating the model, it
is seen that when all velocity functions saturate to Vmax or all saturate to zero, the vehicles
travel with constant velocity and with any inter-vehicle distances. So, they don’t reach the
uniform flow equilibrium. On the contrary, if the velocity function of at least one vehicle
doesn’t lie in the same saturation region of the others or it lies in the linearity region, it
is able to make the other velocity functions enter the linearity region. The convergence of
the trajectories to the linearity region or the saturation regions depends on the difference
between d and d0. When −1 m ≤ |d − d0| ≤ 1 m, for any initial condition the velocity
functions will converge to the linearity region, otherwise they saturate to Vmax or to zero.
When the velocity functions are linear with the respective headways, the whole model is
linear and the uniform flow is the only equilibrium point. Moreover, the analysis of this
linear model leads to a necessary and sufficient condition on the parameters similar to the
condition derived for the linearization of Bando model. On the contrary, if all velocity
functions saturate to Vmax or to zero, the model has several equilibrium points that are
unstable.
The main purpose of this work focuses on the analysis of the Optimal Velocity models
in the nonlinear framework. In particular, it deals with the ellipsoidal under-estimate of
the region of attraction of the uniform flow equilibrium. Therefore, we determine a set of
initial conditions from which the trajectories of the model are ensured to converge to the
uniform flow equilibrium.
In the particular case where d = d0, the Optimal Velocity model with saturation func-
tion may be considered as an LTI plant fed with a saturated control input. Therefore,
we apply the results from the literature about these particular systems, define local sector
constraints and compute ellipsoidal under-estimates of the region of asymptotic stability
(RAS) of the uniform flow by solving a set of LMIs. The Bando Optimal Velocity model
may be considered as an LTI plant fed with a Neural Network controller with one layer.
A recent study in the literature describes a method to determine ellipsoidal estimates of
the region of attraction (ROA) of the equilibrium points of LTI systems with Neural Net-
work controllers, based on local sector conditions and the solution of LMIs. We apply this
procedure to our model and compute inner-approximations of the ROA of the uniform
flow equilibrium for the Bando Optimal Velocity model. In order to determine the best
approximation of the RAS and of the ROA for the two models, we define and solve two
optimization problems that aim to maximize the volume of the ellipsoidal estimates.
For both models, from numerical analysis, we study how the parameters affect the size
of the ellipsoidal estimates. We notice that the volume of the ellipsoids decreases as the
drivers’ sensitivity b reduces and Vmax increases. Being the ellipsoids under-estimates, we
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cannot state whether the RAS and the ROA reduce by changing these parameters. Nev-
ertheless, if b decreases and Vmax increases, the ellipsoidal set that ensures asymptotic
convergence to the equilibrium shrinks. As a result, the influence of these parameters on
stability of the linearized model is confirmed in the nonlinear framework, too. Moreover,
for the Bando model, if d > d0 (or d < d0), the corresponding local sectors where tanh
is inscribed move towards the flat area of the hyperbolic tangent and the volume of the
resulting ellipsoidal estimates decreases. The fact that the size of the ellipsoids reduces as
|d − d0| increases reflects the worsening of the real part of the eigenvalues of the linearized
model around the uniform flow equilibrium.
Lastly, being the ellipsoidal estimates invariant sets, we exploit this property to deter-
mine a set of initial conditions from which the trajectories of the vehicles can start and
the don’t collide. By adding to the optimization problems constraints on the minimum
(and maximum) spacing errors, we inscribe the ellipsoids in a polytope that forces a lower
bound on the inter-vehicle distances. Therefore, not only the trajectories of the models
that start within the ellipsoidal estimates converge to the origin, but the distance between
each couple of vehicles is lower bounded and collision is avoided. The identification of sets
of initial conditions from which the inter-vehicle distances are lower bounded during the
whole travel fits into the context of road safety.

Comparison of the Optimal Velocity models

Both the Bando Optimal Velocity model and the Optimal Velocity model with saturation
function are microscopic traffic models featuring a nonlinear bounded velocity function
which depends on the distance with respect to the preceding vehicle. Since the velocity
function of the latter is piecewise linear, the model with saturation function is a simpli-
fication of the Bando model and in the different working conditions it can be studied as
an LTI system. Nevertheless, the model with saturation introduces a drawback, because
when the ring road is too long or too short the velocity functions saturate to zero or to
Vmax. Therefore, the vehicles don’t regulate their velocities with respect to the current
headways and the main principle of the Optimal Velocity traffic modelling fails. This un-
wanted scenario is a feature of the saturation function alone and it doesn’t show off in the
Bando model because the hyperbolic tangent never saturates. So, in the Bando model, the
vehicles always regulate their velocities on the basis of the headways.
The analyses of the models in the nonlinear framework through the estimate of the region
of attraction of the uniform flow equilibrium are similar. In the nonlinear model with sat-
uration function, we assume that the length of the ring road is such that the inter-vehicle
distance d at the uniform flow equilibrium equals the safety distance d0 = lv + ds. This as-
sumption allows to rewrite the model in a suitable matrix form shown in [23] and determine
ellipsoidal estimates of the region of asymptotic stability of the uniform flow equilibrium via
the definition of local sector conditions on the nonlinearity of the model. On the contrary,
for the Bando model, we don’t make any assumption on the parameters. We compute an
estimate of the region of attraction of the uniform flow equilibrium through the definition
of local sector conditions on the hyperbolic tangent. The size of the ellipsoidal estimates
is affected by the sensitivity of the drivers b and by the maximum value of the velocity
functions Vmax and, as expected, the dependence is the same for both models. Despite
the computation of the ellipsoidal estimates for both models is based on the satisfaction of
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the nonlinearities of local sector conditions, in the Bando model the method shown in [24]
requires to choose ’a priori’ the level vectors v̄ that define the local sectors. Then, in order
to maximize the size of the estimate, we aim to choose the largest level vectors. In the
model with saturation, this choice is not needed, since the optimization problem already
maximizes the width of the local sectors.

6.2 Improvement of the analyses and future work
The objective of the ellipsoidal estimates is to determine the widest approximation of the
region of attraction of the uniform flow equilibrium for the two models. Nevertheless, the
analysis of both models shows some limitations.

Limiting choice of the parameters in the model with saturation

In the Optimal Velocity model with saturation function, having reduced the state vec-
tor, the only case where the model can be written in the suitable form described in [23] is
when the length L of the ring road is such that d = L

N equals d0 = lv + ds. As a result,
the ellipsoidal estimate of the RAS applies to this particular choice, while it would be
interesting to estimate the RAS for any length of the ring road. A possible way to solve
this limitation is to inscribe the dead-zone nonlinearity (or the saturation function itself)
in a local sector that is not centered in the origin in order to extend the method to LTI
system subject to saturated control input featuring a bias in the argument of the saturation
function.

Conservativeness of the estimate in the Bando model

The estimate of the ROA of the Bando Optimal Velocity model is not limited to a particu-
lar choice of the parameters, because it is sufficient to employ offset local sector constraints
on the hyperbolic tangent. The main drawback in the Bando model is that the size of the
ellipsoids is limited by the choice of the level vectors v̄ defining the local sectors. Especially
if d /= d0, the largest levels for which a feasible solution exists can be very low and lead
to relatively small local sectors. Therefore, the size of the resulting ellipsoids is low and
the estimates are conservative with respect to the actual region of attraction. The reason
why choosing larger v̄ vectors lead to no feasible solutions is due to the flat branches of
the hyperbolic tangent that defines the nonlinearity of the model. Thus, the profile of the
nonlinear function employed to define the model introduces some conservativeness in the
estimation of the region of attraction. Nevertheless, we may consider other microscopic
traffic models [25] that belong to the family of Optimal Velocity models featuring more
complex nonlinear functions other than the hyperbolic tangent. The method described in
[24] involving local sector conditions applies to any kind of nonlinearity. Therefore, the
same method can apply to any Optimal Velocity model where the nonlinearity is different
from the hyperbolic tangent. Employing other nonlinear functions or defining local sector
conditions not directly on them but on their linear combinations may lead to better ellip-
soidal estimates of the region of attraction.

94



6.2 – Improvement of the analyses and future work

Further analyses

With the aim of refining the stability analysis of groups of vehicles on a ring road, one pos-
sible way is to describe the dynamics by other or more complex mathematical models. As
an example, it is a common choice in the literature [10],[12],[20] to combine the Follow-the-
leader model and the Optimal Velocity model. The resulting model is a weighted function
of the two mathematical descriptions and the addition of the Follow-the-leader model may
provide a more complete characterization of traffic dynamics.
In the objective of providing the explanation to the effectiveness of the introduction of
autonomous vehicles (AVs) among human-driven ones on ring roads [10], the study of the
dynamic traffic model may consider the introduction of external signals representing the
AVs. In this framework, a possible improvement of the stability analysis could be the eval-
uation of the effect that an external signal has on the region of attraction of an equilibrium
point. Moreover, the effective results of AVs on the behaviour of human-driven vehicles
may be investigated on further properties other than stability. For instance, the effect that
AVs have on the improvement of the behaviour of the rest of vehicles should be sought in
the context of the reachability or controllability analysis.
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