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Summary

The Internet of Things (IoT) enables to connect heterogeneous electronic
devices in an efficient, sustainable and continuous way, allowing a level of
human-to-machine and machine-to-machine interaction never reached before.
These devices can be exploited to collect a large amount of data, which in turn
allow making decisions and driving other electronic devices for a wide variety
of applications. Thanks to the technologies developed in the field of Big
Data, the collected data can be stored and automatically processed in order
to support decisions, improve processes, and improve the quality of services
and products. With the advent of Industry 4.0, IoT technologies have been
increasingly applied in the industrial sector. In this way, industrial machines
can be always connected, and equipped with many devices, which enable the
interaction with the outside world. In this context, new applications can be
developed, such as predictive maintenance and automatic quality control.
The aim of the thesis is to firstly analyse the different approaches, protocols
and technologies that can be used to exploit IoT in the industrial sector.
Then, a Python web application has been developed to manage the collection,
storage and visualization of data gathered from sensors positioned on an
industrial machine. The real data collected by a milling machine has been
used as case study.
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Chapter 1

Introduction

The term Internet of Things (IoT) was used for the first time in 1999 by
Kevin Ashton [1] , to describe an hardware and software system where the
Internet is connected to the physical world via ubiquitous sensors. As he
himself pointed out: “In the twentieth century, computers were brains with-
out senses, they only knew what we told them. In the twenty-first century,
because of the Internet of Things, computers can sense things for themselves"
[1]. The concept of Internet of Things refers to the possibility of connecting
electronic devices, sensors and actuators, in order to allow the exchange of
data and commands between them and with the outside world, interfacing
them to the Internet. The IoT enhances the capabilities and expanded the
possibilities of information systems and automatic information processing.
Before the advent of the IoT, software usually worked by storing and pro-
cessing mostly user input. From the advent of intelligent electronic devices
and the IoT, the world of automatic information has the possibility of ac-
quiring data directly and automatically from the physical world, allowing
a level of interaction between hardware and software capable of satisfying
the needs of the cities of the future. This fills the gap between the physical
real world and the artificial intelligence and computing capabilities provided
by software and computers, opening new scenarios, challenges, applications,
business models and markets.
A process therefore begun and even everyday objects have been augmented
through micro-controllers, electronics to communicate, communication pro-
tocols, sensors, actuators and they have been connected to the Internet,
allowing them to be automatically monitored by a software and to be reach-
able remotely by the user. These objects became smart objects. Depending
on the application, the networks formed by these smart objects can be small
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or large, characterized by different topology, protocols used, type of commu-
nication, type of power supply, computational and memory capabilities.
However, there are a large number of applications and use cases where net-
works formed by nodes distributed in space are needed and where energy
availability is limited. To reduce the energy consumption and the cost of
these electronic devices, the hardware of these nodes is typically very simple
and limited to what is strictly necessary to acquire the data of interest and
transmit them to a more intelligent central node with greater computational
capacity, availability of memory and energy. This phenomenon is often re-
ferred to as Edge Computing [2]. The Edge Gateway, closer to the edge of
the network, where the data is collected, can also filter and aggregate the
incoming data from the smart objects, and then it can forward these data to
Big Data storing and processing systems. The fact that the Edge Gateway
can filter and aggregate the data can reduce the network bandwidth required
by the IoT system and the overall latency of the acquisition and processing
phase [2].
In simpler applications, the data collected by smart objects is already very
informative itself and it is only stored and displayed in a way that it is
understandable by the user, often through web applications or mobile appli-
cations. The data is then directly consumed by the end user, who extracts
the information content and use it to solve a problem. However, there are
many applications where the data collected are too large to be processed
by the user or they are not very informative themselves. These Big Data
are usually processed asynchronously by specific software. The simplest pro-
cessing is filtering and aggregation, but machine learning, statistical analysis
and artificial intelligence algorithms of considerable complexity can also be
applied. These algorithms extract from the initially uninformative raw data
an high information content immediately exploitable by the end user in the
real world or by other connected smart devices in the cyberspace. Knowing
what to measure and what type of data processing to apply is one of the
biggest difficulty when developing an IoT solution.
For this reason, from an operational point of view, the approach is often
systematic and sequential. Initially the data of interest and the necessary
sensors are defined. The nodes are then deployed, interconnected and inter-
faced with the Internet, using protocols and tools that can be implemented
quickly but are not very efficient from an energy consumption point of view
[3]. The data are also visualized through web or mobile applications devel-
oped by applying fast prototyping techniques, but not processed. A possible
and diffused approach is prototyping dashboards using Grafana [Grafana]
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or similar tools. During this phase the prototype is proposed to potential
customers also presenting some possible data processing strategies that can
be implemented and how the system can support decisions and help to solve
the problem of interest. Once the feedback are collected, at a later stage,
if the prototype has generated sufficient market interest and the risks and
costs have been assessed, the data processing modules are developed in detail,
possibly training machine learning models that use the raw data, identifying
hidden patterns and trends [4].
Cities are complex systems, where a large amount of data is generated and
can be collected and processed to improve the citizens’ quality of life, the
efficiency and monitoring of processes typical of highly urbanized areas [5] .
In this context, the application of the most modern data collection and pro-
cessing technologies through IoT solutions is leading cities to be increasingly
smart and interconnected with the cyberspace. The IoT found applications in
different sectors that together constitute the concept of smart city [6] : home
automation, smart electrical grids, smart agriculture, smart healthcare, au-
tomatic traffic management, smart mobility, waste management, smart fac-
tories.

1.1 Industrial control systems
Industrial control systems are characterized by both hardware and software
components and their purpose is the control of industrial processes. These
systems can be small, consisting of a few controllers or very large, even con-
sisting of thousands of nodes distributed throughout the plant. The control
logic can be centralized, distributed or hybrid. Industrial control systems
were initially composed of programmable logic controllers (PLCs) that im-
plemented simple control logic, but over the years they have evolved into
more complex systems, such as supervisory control and data acquisition sys-
tems (SCADA) or distributed control systems (DCS).

1.1.1 Supervisory Control and Data Acquisition sys-
tems

SCADA are Industrial Control Systems (ICS) that have been used in order
to monitor complex and geographically distributed equipment, machines and
processes, replacing the manual intervention of operators, which is expensive
and time-consuming. The SCADA central controllers are connected to the
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actuators and sensors through intermediate nodes, which can be PLCs or
Remote Terminal Units (RTUs). The SCADA software provide data collec-
tion, reporting, recipe management, alarming and alerting in case of relevant
events or dangerous situations. SCADA systems allows to control industrial
processes and machines with minimal human intervention, forwarding the
commands directly to the actuators. SCADA systems can perform business
logic, changing the state of machines and their operational parameters in
order to provide self-healing of the individual components and reduce down-
time. The human-machine interface (HMI) provided by the SCADA software
let data and commands available to operators. The primary purpose of using
SCADA is remote monitoring and control of field sites through a centralized
control system. Instead of workers having to travel long distances to per-
form tasks or gather data, a SCADA system is able to automate this task.
Field devices control local operations such as opening or closing of valves and
breakers, collecting data from the sensor systems, and monitoring the local
environment for alarm conditions.

1.1.2 Distributed control systems
Distributed control systems (DCS) consists of geographically distributed con-
trol units called controllers. In DCS, unlike traditional SCADA, the control
authority is decentralized and distributed. Each controller controls a single
process or machine. In a DCF there are many local controllers that com-
municate via a high speed local area network. Because of the distributed
nature, DCSs are more fault-tolerant. DCF systems have spread to replace
analog and pneumatic controllers in medium and large plants.

1.1.3 Manufacturing Execution Systems and others de-
cision support tools

Manufacturing execution systems (MES) are information systems exploited
in industrial processes and manufacturing to track the path that leads the
raw materials to be transformed into semi-finished products first and finished
products later [7] . MES usually make use of a large amount of complex
and persistent data gathered from different sources. Because of they works
with so much data, they usually are composed by numerous different user
interface screens. MES can orchestrate a lot of small processes involved in the
manufacturing and in facts complex business logic is typically implemented.
Essentially, they are large and complex Enterprise Applications [8] . Today
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they are generally implemented as web applications because they can be
accessed remotely using any browser-enabled device. MES operate across
multiple functional subsystems, including:

• Product definitions and catalog across their entire life cycle from raw
material to finished product

• Physical and human resources allocation and scheduling

• Traceability

• Supplier and customer database

• Machine, equipment, working tools database

• Life cycle of the production order from the customer to the scheduling
on the machines

• Management of warehouse movements and inventory

• Maintenance of machines and other tangible assets

• Employee database

• Downtime management for overall equipment effectiveness (OEE)

• Machine data collection and performance monitoring

Some of these function can require many information and can be very
complex to be implemented. For example, some MES have the ability to
translate the customer orders to production orders in the machines, consid-
ering employee and equipment availability, production quantities, paralleliza-
tion and aggregation opportunities and other factors in order to optimize the
production cost and maximize the generated outcome. MES can be very
useful in the most regulated industries where every event, action and phase
of the production process must be logged. Due to their transversal nature,
MES systems can integrate functions typically covered by Enterprise Re-
source Planning (ERP) systems and vice versa. The line that divides them
is in fact not uniquely defined. However, ERP systems are generally oriented
to the management of accounting and administrative aspects [9] , while MES
are developed ad-hoc to manage production processes in the plant [7].

Usually organizations use two different software, one ERP and one MES,
eventually developed by different companies and deployed at different mo-
ments. The MES software is almost always installed after the ERP, as it
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becomes particularly useful for medium-large companies, while the ERP soft-
ware is almost always indispensable even in very small companies, for exam-
ple to meet regulations that may concern the issuance of electronic invoices
and other forms of IT interaction with the public administration. Because
many of the data necessary for the functioning of the MES, such as the data
of employees, suppliers and customers, as well as customer orders are al-
ready stored by the ERP which is manually populated by the operators, the
two software are put in communication and interconnected, using any of the
integration patterns used in enterprise applications [8].

For this reason, ad-hoc integration and communication modules often need
to be developed, tested and maintained. This often requires the cooperation
of both parties, who are not always equally available. Today, modern ERPs
and MESs, natively expose documented public APIs that can be called from
other information systems and applications, therefore the integration is less
expensive.

These systems have role-based authentication, so that specific software
features can only be used by operators who actually have the authority and
know-how to do so. For example, for quality control operators, specific sec-
tions of the software are enabled, through which rejects and anomalies can
be recorded in order to take corrective actions afterwards.

In some MES, through mobile devices positioned on the machines and in
other strategic positions of the plant, operators can monitor the progress of
the production process, register new data, take some actions. These devices,
usually tablets or notebooks, are interconnected to the MES application via
LAN or via Internet, if the MES is installed in the cloud. The information
flow can be bidirectional, reaching a level of interaction with the industrial
control system that was impossible with SCADA and DSC systems.

1.1.4 Industry 4.0 and Smart factories

With industry 4.0 begins a process of intensive digitization of production
processes and factories, in their entirety made up of physical, electronic and
human resources.

The fundamental principle of Industry 4.0 are connected and distributed
objects in space. Many of these objects are cyber-physical systems (CPSs),
capable of putting the real world in communication with the cyberspace.
They are implemented through typical IoT solutions and are capable to sup-
port and orchestrate complex operations, as well as provide a large amount of
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data for information systems. The operators and other members of the man-
ufacturing organization play an important collaborative role in relation to
this connected system, being in a certain sense also cyber-physical systems,
acting as a link between the physical world and the software.

These IoT assets can augment the capabilities of machines that originally
did not have the ability to communicate and cooperate with other systems.

By combining IoT and big data analytics, factories become smart, using
new smart features, functions and services, including:

• Predictive maintenance and equipment failure forecasting

• Resource overload forecasting and avoidance

• Automatic product quality control and non-conformities detection

• Predictive demand

• Machine and equipment dynamic reconfiguration at runtime

• Augmented reality

• Smart working

• Smart logistic

Many of these features are not possible or are highly inefficient without
using this new approach. For example, by collecting data related to product
quality and mechanical instability of machines and tools, a MES can derive
useful information on the health and maintenance status of machines. With-
out the use of interconnected sensors, this type of evaluation could only be
carried out with manual methods by the operators. However manual surveys
and evaluations are obviously discrete events over time and do not always
manage to be useful and bring a significant gain of time, money and resources,
as they are conducted too early, too late or too infrequently. Instead, apply-
ing the IoT these processes not only become automatic, but potentially also
continuous and can provide updated information in real time to the operators
and especially to other cyber-physical systems.

On the other hand, the advent of the IoT philosophy has pushed manu-
facturers of manufacturing equipment to produce machines that are already
natively connected. These machines typically expose APIs that can be used
by other computer systems, for example MES. They use different protocols,
some vendor-specific, generating complications regarding interoperability and
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highlighting the clear need for universally accepted standards and protocols,
a point on which a lot of work has been done in recent years. These ma-
chines often provide both punctual and integral information, for example by
showing the number of pieces produced or rejected since the beginning of
the processing or more or less detailed information on the current process-
ing. However, it is also possible to further increase the capabilities of these
machines by mounting other IoT devices, sensors and actuators in them.

In addition to the IoT devices used for monitoring the machines and the
production process, other networks of nodes can be installed in order to mon-
itor accessory systems, for example regarding the consumption of electricity
or the ventilation and air conditioning system of the plant. These nodes can
collect important data in order to reduce energy consumption and therefore
costs.

The MES, which until a few years ago were typically software without
interactions with other electronic devices, have had to adapt to the new
demands arising from the use of the IoT and the huge amount of data they
can generate. The possibility of being able to communicate directly with
the physical world and with machines has made it possible to develop new
functions.

Now the product life cycle can not only be monitored, but potentially
also orchestrated, sending instructions to machines at the right time to put
orders coming from ERP systems into production, configuring the machines
automatically. The data collected can be shown to the operator through the
modern HMIs provided by the MES, in the form of alarms, events, states,
trends, predictions. The operator is therefore informed in real time on the
status of the production process and on any anomalies and supported in
decisions.

MESs are therefore becoming more and more complex and useful, also ac-
quiring functionalities that were previously implemented in SCADA systems
[7]. Today the MES are often integrated with the SCADA systems already
present in the plant and with other information systems such as the company
ERP, centralizing the control of business and production processes.

1.2 Predictive maintenance
One of the applications made possible by the technological innovations intro-
duced in industry 4.0 is certainly predictive maintenance. In order to adopt
predictive maintenance strategies, it is necessary to periodically monitor the
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status of the machines and tools through condition monitoring (CM) plans.
Condition monitoring is important because it allows you to minimize the
risk of downtime and failures. Modern machines, designed for industry 4.0,
already include sensors and expose data. Older machines, on the other hand,
must be enriched with sensors and actuators networks. The values measured
by the sensors during machining can also be used to predict information
about the wear of the tools, becoming in effect tool condition monitoring
(TCM) systems. In machines where auxiliary tools are used intensively,
these systems are very important because they allow you to replace the tool
at the right time, when it is worn enough to no longer work accurately, but in
any case before it breaks completely. An example are the milling machines,
which mount cutting tools that wear out and become ineffective.

1.3 Objectives
The first objective of the thesis is to list the protocols and technologies that
can be used in the factories of tomorrow to create large cyber-physical sys-
tems. In fact, today there are a large number of protocols and technologies,
which make the choice complex and generate interoperability problems. The
applicability of the different protocols to different scenarios will be evaluated
considering the delay and reliability constraints present in many of the appli-
cations in the field of industrial control and monitoring. The second goal is
to develop a software framework for data collection, storage and visualization
for predictive maintenance applications.
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Chapter 2

Communication
technologies and protocols

Before the diffusion and the consolidation of wireless technologies, indus-
trial communication systems consisted of a network of cables that physically
connected electronic devices and machines. The most used technologies are
Ethernet and Fieldbus. These systems are still very popular today, although
they will likely be replaced by industrial wireless sensor and actuators net-
works (IWSAN) in the future. Backward compatibility and interoperability
with these legacy technologies is often a necessity.

2.1 Industrial communication systems require-
ments

Industrial communication systems are used for many applications and op-
erational needs. The International Society of Automation has proposed a
classification of industrial systems into three categories and six classes based
on the nature of the system, the characteristics of urgency, the maximum tol-
erable latency, the methodology of accessing the resource, the methodology
of carrying out the operation [10]. The three categories are elencate below.
Safety / Emergency systems: these systems deal with monitoring and control
in emergency conditions or in conditions that can compromise the safety of
people and things, such as during a fire. When you are in an emergency sit-
uation it is important to act in the shortest time possible [11], which is why
in these systems they require very low latency, in the order of milliseconds.
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The required reliability is obviously very high, whereas regarding to the net-
work consumption they generally do not use a lot of traffic. The maximum
tolerable delay is in the order of milliseconds.
Control system: a large portion of industrial equipment require continu-
ous control. These systems can be classified into open or closed loop sys-
tems. Closed loop systems consist of sensors and actuators and are fully
electronic and automated, while open loop systems require operator interven-
tion. Closed loop electronic control systems have much lower delay tolerances
[11] than open loop systems. Some of processes in this category are critical
and a high delay or a malfunction can cause damage to the manufacturing
process or to the industrial equipment. The tolerated delay can range from
a few milliseconds to hundreds of milliseconds.
Monitoring: this category includes non-critical monitoring processes, for ex-
ample the monitoring of process variables or metrics related to the quality
and efficiency of the industrial process. Equipment health monitoring also
falls into this category. The data collected by these systems can be processed
a posteriori as the result of the processing never has immediate consequences
[11]. Therefore, even larger delays are tolerated, in the order of minutes or
hours.
It is therefore clear that in some industrial applications it is necessary to
guarantee very low latency and very high reliability. Reliability can be eval-
uated by considering the percentage of packets not correctly received by
recipients. It can therefore be measured with quantitative metrics and then
optimized at the level of protocols and technologies, also applying optimal
network and protocol configurations based on the installation site and field
conditions. Latency and reliability can be improved by using deterministic
communication protocols [12] that guarantee maximum channel access, data
transmission and reception times.

Another important goal is the scalability. Networks must allow for the ad-
dition of a large number of nodes. In addition, they must reconfigure them-
selves at the topology and routing level automatically at runtime, providing
also flexibility. This goal can clash with the goal of having a deterministic
network, in fact many of the protocols at the MAC layer use time-based
multiplexing schemes that impose limitations on the maximum number of
nodes.
In any computer system, security is always a fundamental aspect. Espe-
cially in IoT networks, which can then expose the corporate network to the
Internet, security must be guaranteed [13]. Some protocols used in sensor
networks, especially wireless networks, do not implement very strong security
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functions to limit protocol overhead [13]. In these cases, security must be
guaranteed at the application level. Security can be improved by applying
complex multiplexing schemes at the physical level.

2.2 Wired communication
The technologies that make use of physical cables have been used because
they allow high speed and very low latency communications, they guaran-
teed good reliability and a deterministic behavior that can be modeled and
predicted even in the worst scenarios [12] .

2.2.1 Industrial Ethernet
Initially, many companies independently developed various wired communi-
cation technologies, which later become standards [14]. These protocols often
use serial interfaces. When Ethernet began to spread, it was considered con-
venient to adopt it in the industrial field to develop widespread standards
that guaranteed high interoperability.
However, standard Ethernet uses a CSMA/CD approach [14]. After sensing
the channel as idle, the nodes can transmit data. Hearing the channel dur-
ing transmission, they can detect collision, because the transmitted signal
must be equal to the eared signal. When a collision is detected, the trans-
mission stops, and the station waits for a random period of time before it
can re-transmit. These characteristics make networks probabilistic [15], in
the sense that channel access, transmission and reception times cannot be
guaranteed. This is a problem for industrial applications, which require very
low latency times.
To solve this problem, Ethernet protocols have been developed using a MAC
layer implemented in order to ensure determinism and low latency [12].

The most important and diffused industrial internet protocols are:

• PROFINET

• EtherCAT

• Powerlink

• Ethernet/IP
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2.2.2 Fieldbus
Fieldbus systems adopt the bus concept. In computer science and electronics,
a bus is in general a shared communication medium between that multiple
nodes can use to communicate. Access to the bus is possible using a suit-
able bus adapter, which allows to write and read from the bus. This type
of architecture has been applied to solve many problems, for example in the
communication between components within a hardware system, or in the
communication between processes in (micro)services-oriented software archi-
tectures [16]. In Figure 2.1 the architecture of a distributed system where a
message bus is used is shown.

Figure 2.1: Distributed system architecture using a message bus. Image from
[17].

Bus architectures can allow greater interoperability between components,
greater scalability and elasticity of the network. In fact, only the adapter is
needed to connect a new node to the bus. However, the bus is potentially a
single point of failure and must support large networks and heavy loads.
In communication systems that use wired connections at the physical level,
bus architectures can considerably reduce the costs of installation and main-
tenance of the cables, as well as the number of connections required compared
to point-to-point connections. This has made bus systems very popular.

Some of the fieldbus-oriented protocols are [12]:

• PROFIBUS

• Foundation Fieldbus H1

• INTERBUS
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However, even in this case, many companies have developed standards
independently, generating interoperability problems and the need for univer-
sally accepted standards and technologies.

2.3 Wireless communication

2.3.1 Wireless industrial sensor and actuators networks
challenges

The wireless channel is always shared and all communications at the phys-
ical layer must be considered broadcast communications. This implies that
connections can collide with each other and makes wireless channels particu-
larly susceptible to interference, noise, fast changes in operating conditions.
Channel access and transport protocols are required to mitigate the inherent
problems and limitations of the wireless channel.
Industrial environments are typically complex, consisting of many rooms,
walls and electronic devices. The propagation conditions can therefore be
very poor. There can be many sources of interference and noise.
Rapid variations of the operating conditions make delays unpredictable and
the deterministic behavior of the network cannot be easily guaranteed. The
number of nodes and the transmission powers must be optimized in order to
reduce the probability of collision.
Reliability and very low latency must be guaranteed at the protocol level, as
they are necessary for a multitude of industrial applications. But the phys-
ical functioning of the wireless channel makes it more difficult to develop
protocols suitable for industrial conditions.
Wireless technologies can be used to create industrial wireless sensors and
actuators networks (IWSANs) [18]. Using wireless technologies brings obvi-
ous advantages as regards the cost of installing and maintaining networks,
since there is no need to use cables. These networks can consist of hundreds
or thousands of nodes, typically battery powered. Therefore the energy con-
sumption must be as low as possible and the batteries must guarantee the
functioning of the node for years. The problem is even more evident if we
consider the fact that the nodes can also be positioned in areas that are
difficult to reach of the plant, for example inside the machines or in the ven-
tilation systems of the plant. To increase the longevity of the network, energy
harvesting technologies can be implemented. These solutions can exploit the
mechanical conditions of the plant, for example vibrations. They can also
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exploit differences in temperatures and light.
The need to increase reliability has pushed towards the use of time division

multiple access (TDMA) schemes, so the need for synchronization of nodes is
evident. Synchronization is typically guaranteed by transmission protocols.

Other techniques can improve reliability at the physical level, for example
by using unrelated transmission frequencies and pseudo-random frequency
hopping patterns. The concept of redundancy can be applied at various lev-
els. At the frame level, error correction codes can be added to the frame.
At the routing level, multiple paths must exist for each pair of nodes and
possibly packets can be transmitted redundantly over multiple paths. Care-
ful scheduling can minimize collisions and better distribute traffic by using
different routes for simultaneous transmissions from different nodes.

In the upcoming paragraphs, some of the protocols that can be considered
to implement IWSANs are discussed.

2.3.2 WiFi
The standards of the IEEE 802.11 family have been designed for home use
and for the Internet [19]. These protocols guarantee very high transmission
speeds, but they consume too much power and cannot be used for battery-
powered devices. Moreover, antennas and WiFi modules are expensive.
The biggest problem is the probabilistic nature of these protocols, which can-
not guarantee the determinism required by industrial control applications.
The probabilistic behavior is due to the functioning of the MAC layer in this
protocol family, based on the CSMA/CA approach. Using the distributed
coordination function (DCF), transmissions can fail and be retried for a num-
ber of times, small delays cannot be guaranteed. Several modifications have
been proposed at the MAC level [20] to improve the deterministic behavior
of the protocol.

2.3.3 802.15.4
The 802.15.4 standard defines the operation of the low-rate wireless personal
area network (LR-WPANs) [21]. It specifies the physical layer and MAC
layer. At the physical layer it works on unlicensed industrial scientific and
medical (ISM) radio bands and direct sequence spread spectrum (DSSS) is
used. Depending at which frequency bandwidth it is used the chip code
changes, in particular it is larger for 2.4 GHz. Because it specifies only
the physical and MAC layers, protocol built on top of it must implement
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routing functionalities. This has led to the development of many compati-
ble routing protocols, each best suited to certain operating conditions and
applications. This also means that a large number of types of protocols
and therefore networks with different characteristics can be developed using
the same hardware. Manufacturers of 802.15.4-compliant components must
therefore implement only the physical and MAC layer, while the implemen-
tation of higher levels is demanded to the firmware level.
IEEE 802.15.4 was developed to support distances in the order of 10 me-
ters. It supports relatively high data rates up to 250 kb/s. It was designed
to be used in dense networks composed by constrained, simple and battery
powered devices, using little or no infrastructure.

In 802.15.4, the nodes of a network can be of two types, full-function device
(FFD) or a reduced-function device (RFD). One of the FFD must be the
coordinator, which is a logical role. An FFD also has routing functionalities
and can participate to network of any topology. RFDs can participate only
to start networks, because they can can talk only FFD. Mixing FFDs and
RFDs many topology are possible, for example star, P2P, cluster-based trees.
The coordinator can be connected to the internet or to other sensor networks.
The supported topologies are shown in Figure 2.2.

Figure 2.2: IEEE 802.15.4 topologies. Image from [22].

Regarding the MAC Layer, a coordinator can determine whether to work
in beacon-enable mode or not. In beacon-enabled mode, the coordinator
broadcast beacon messages in order to synchronize the nodes. These beacons
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divide the time in superframes. A superframe is composed of 15 equally
spaced slot. The time is slotted, beacons start in correspondence of a backoff
period start. In the superframe we distinguish the Contention Access Period
(CAP), the Contention Free Period (CFP) and an optional idle period in
order to improve energy efficiency of the network. The superframe structure
is shown in Figure 2.3.

Figure 2.3: IEEE 802.15.4 superframe structure. Image from [23]

The Poll-Based Transfer is implemented in order to avoid nodes that are
sleeping to lost data. The coordinator, store data for nodes that are not
awake, and alerts them of this data through beacon.

In beacon-enabled mode, the Slotted CSMA/CA access scheme is used.
Otherwise, the Unslotted CSMA/CA access scheme is used. The Slotted
CSMA/CA employs the Binary Exponential Backoff (BEB) algorithm to
reduce the probability of collisions.

During the CAP, the nodes compete for the time slots using CSMA/CA
and the channel access is probabilistic. During CFP, in contrast, the chan-
nel access is deterministic and therefore the protocol supports delay-critical
operations assigning Guaranteed Time Slots (GTSs). A GTS is composed
of one or many time slot that are assigned by the coordinator to a specific
node in a mutually-exclusive way. GTSs assignments are broadcast through
beacon messages.

26



2.3 – Wireless communication

2.3.4 WirelessHART

WirelessHART is the first attempt to create a deterministic protocol that
can be used for industrial sensor networks and process control application.
It was developed by the HART Foundation and has its basis in the HART
protocol, with which it is backward compatible. [24]

It is based on IEEE 802.15.4 and uses TDMA deterministic channel access
scheme. At the physical layer it uses direct sequence spread spectrum and
frequency hopping in the 2.4 Ghz band. The range of the nodes is about 100
meters and the maximum data rates is 250 Kbps.

WirelessHART networks are made up of nodes with different logical func-
tions, of which the most important is the role of network manager. There
is also a security manager, as well as access points, field devices, adapters.
From a topological point of view, field devices are terminal nodes, therefore
they are physically connected to actuators, sensors and other electronic de-
vices. All nodes, with the exception of field devices, contribute in different
ways to the formation and maintenance of network functions, the reliability
of communications, routing and security.

At the MAC level, access to the channel is performed using a TDMA-based
approach. The time is divided into time slots of fixed duration, sufficient
to transmit packets of the maximum size and receive an acknowledgment.
During transmission, the frequency is varied between 15 possible channels,
allowing a theoretical maximum number of 15 parallel transmissions during
the same slot.

The topology and routing are mostly maintained by the network manager,
who is also responsible for assigning the transmission slots. For this reasons
the network manager is typically a computationally powerful node and is
not battery powered. Its computational capabilities can place limits on the
maximum network size. It is potentially a single point of failure.

Graph based routing is used. The network manager builds many directed
graphs that are not unique and may overlap by design in order to guarantee
redundancy.

To increase reliability, also Automatic Repeat Requests (ARQs) are used.
The security manager guarantees data integrity at the MAC level, imple-
menting many functions useful for data encapsulation.

The protocol is not natively IP-compatible, therefore suitable gateways
must be used to communicate with other IP-compatible networks. An ex-
amplary WirelessHART network is shown in Figure 2.4.
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Figure 2.4: WirelessHART architecture. From [25]

2.3.5 ISA100.11a
The standard ISA 100.11a is also based on the 802.15.4 protocol and was
developed for the same use cases as the WirelessHART protocol [26].

Channel access can be CSMA/CA or through deterministically assigned
time slots if the communication require very low latency. During the CAP,
CSMA/CA is used which, however, considers different priority classes.

During CFP, unlike WirelessHART, the size of time slots and superframes
is not fixed and can also vary based on the traffic load of the single node.

The Network System Manager (NSM) provides routing functionalities
building redundant routing graphs. Different graphs are used for different
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traffic types and priorities, in order to improve quality of service [27]. The
NSM collects statistics and in formations about the nodes and considers con-
straints configured by the designer of the network, like latency, throughput
and data rate bounds. The generated graphs are tuned dynamically at run-
time by the network system manager to consider variations on the operation
conditions like battery levels and links quality.

An examplary ISA100.11a network is shown in Figure 2.5.

Figure 2.5: ISA100.11a architecture. From [25]
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2.3.6 Bluetooth and Bluetooth Low Energy
The initial goal of the Bluetooth protocol was to develop a wireless protocol
that would allow the commercialization of wireless computer peripherals.
It was therefore developed for short-range networks consisting of a reduced
number of battery-powered nodes. In this market segment the protocol has
been very successful, considering the fact that it has become a standard
included also in computers and smartphones. Therefore, a very large number
of input/output devices and peripherals compatible with this standard has
been built.

There are many variations and strains, including very low-energy versions
like Bluetooth Low Energy (BLE) [28]. This version has a very simple state
machine, which is shown in Figure 2.6.

Figure 2.6: BLE device state machine. From [29].

These protocols are not based on the 802.15.4 protocol, but have been
developed with different assumptions and goals in mind. Bluetooth range
varies from 0.5 meters to 100 meters and it operates in unlicensed bands in
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the 2.4 GHz range. Depending on the version and on the configuration, data
rates are between 0.5 and 3 Mbps. It supports mesh, tree, star and mixed
topology [30].

Despite their diffusion, these protocols are not usable for industrial appli-
cations as they implement highly probabilistic networks and the reliability is
not high enough [31] [32].

Furthermore, these protocols are not directly compatible with IP networks.

2.3.7 Zigbee
ZigBee takes advantage of the 802.15.4 protocol at the physical and MAC
layer, adding its own implementation of the higher layers [33]. It has been
designed for short range, low data rate and low consumption networks. It
has achieved considerable diffusion in domotic and smart home applications.
Development of the protocol began in 1998, but the first version was only
released in 2004. Since then many improved versions have been released,
paying close attention to backwards compatibility.

Physically it uses the same frequencies as WiFi and Bluetooth, with which
it can interfere.

In ZigBee networks, nodes can take on different logical roles: ZigBee co-
ordinator, ZigBee ordinary device and ZigBee router. ZigBee routers and
the coordinator are full function devices and can perform routing, while end
devices can only communicate with coordinators. In this way, even complex
and multi-hop topologies are supported, so the network is scalable and can
cover even large distances. The coordinate also performs network forma-
tion. Logical roles can be dynamically changed to evenly distribute power
consumption and network traffic.

When there are interference, collisions and consequent re-transmissions
make the protocol probabilistic, therefore it is not suitable for applications
oriented to industrial control, where the delay must be bounded and the
overall behaviour deterministic.

2.4 Application-to-application protocols
In order to enable global identification of IoT devices, a convenient addressing
mechanism was needed. Another important goal was the integration of sensor
networks developed with different technologies, for example in a corporate
or global network. Therefore, an IP-compatible protocol optimized for low-
power devices, called 6LowPAN, was standardized [34]. The protocol is based
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on the sixth version of IP, considering the exponentially increasing number
of devices connected to the Internet due to the spread of the IoT. IPv6
can support a trillion cubed unique addresses. Essentially 6LowPAN is an
adaptation layer between the data link and the network layer. 6LoWPAN
brings the IP functionality to wireless sensor networks low-power devices so
that they can become nodes in the global Internet. The protocol implements
many useful features, such as header compression that allows devices to save
memory, as well as packet fragmentation capabilities. The protocol also uses
methods to derive the IP of the nodes using the link layer address in order
to further compress the header.

Regarding routing, there are several options available. Moreover, mesh
routing has been implemented, which is not available in the ordinary IP
protocol [35].

One of the immediate advantages of using IP-compatible addressing was
to make smart objects available to the entire ecosystem of applications, tools
and protocols developed for the Web.

One of these protocols is the Hypertext Transfer Protocol (HTTP) used
massively on the Web and well known by software and hardware developers
already on the market [36]. However, some technical and operational char-
acteristics of this protocol do not make it suitable for use on constrained
devices, so many other application-level protocols has been developed to tar-
get constrained, low-power devices.

2.4.1 Communication patterns

2.4.2 CoAP

CoAP is an application layer protocol derived from HTTP [37]. Many fea-
tures have been changed and new functions have been added. The main dif-
ference is that CoAP uses the User Datagram Protocol (UDP) at the lower
level, while HTTP uses the Transmission Control Protocol (TCP). UPD is
a connection-less best-effort protocol and therefore much lighter than TCP,
which requires packets to be acknowledged. UPD therefore prioritizes la-
tency over reliability. However, CoAP has implemented some features that
can increase the reliability of the protocol, such as requesting confirmation
at the application level. In a CoAP communication, messages of different
types can be exchanged:
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• Confirmable: these are messages that require the receipt of a confirma-
tion. If the confirmation is not received, the node retries the transmis-
sion.

• Non confirmable: these are messages that do not require confirmation,
therefore they are used for applications where less reliability is required.

• Acknowledgment: confirmation of receipt.

• Reset: it is sent to the transmitter when a Confirmable message has
been received, but it is not possible to reply immediately. It is used to
implement an asynchronous communication mechanism.

• Piggy-backed response: it is included as a part of the Acknowledgment.
It the the data response.

• Separate response: asynchronous, delayed response.

The communication pattern is request-response, like HTTP. The seman-
tics of the request are also specified by the method. The methods are in fact
deliberately inspired in the name and in the semantics to HTTP methods.
There are four methods:

• GET: Read-only operation, resource state representation request

• PUT: Insert or update operation (UPSERT)

• POST: Insert or update operation (UPSERT)

• DELETE: Command for delete a resource

CoAP uses the concept of a unique address resource identified by a Uniform
Resource Identifier (URI). Therefore the client makes a request to the server
specifying the method and the resource, the server responds possibly not a
representation of the state of the resource, in accordance with the philosophy
of representational state transfer (REST).
To ensure good reactivity, the nodes implement a simple distributed cache,
so that if an intermediate node already has the requested data, it responds
directly. The intermediate nodes that build the cache are called proxy nodes.

33



Communication technologies and protocols

2.4.3 MQTT
The MQTT protocol is oriented towards publisher/subscriber communica-
tion. It has been developed specifically for communication between machines
(M2M) and to be used in devices with limited computational capabilities and
low consumption [38]. This is especially true from the point of view of the
publisher, who is almost always a node in the sensor network, while the sub-
scriber can also be a software application on the Cloud that is interested
in the published data to store or process them. In fact, the MQTT proto-
col is one of the most used protocols by Cloud software and infrastructure
providers as a IoT data input mechanism.
Nodes can be of two types: client and server, which is unique and it is called
broker. The client nodes are the ones that generate (publishers) and consume
(subscribers) the data. Communication between clients is never direct, but
is always mediated by the broker, who has the task of routing the messages
that are published to the nodes that have shown interest in that message.
Communication between client and server is therefore two-way, so many im-
plementations use the TCP protocol with the broker that uses ping messages
to evaluate the status of connections with clients.
The protocol defines three levels of QoS:

• QoS 0: best-effort, at most once delivery;

• QoS 1: at least once delivery using acknowledgment;

• QoS 2: exactly once delivery.

To support higher QoS, the overhead of the protocol increases, so it’s
important to make a trade-off based on the nature and usage of the individual
data packet. For example, exactly-once deliver is obtained using a complex
confirmation mechanism that involves publishers, brokers and subscribers.
The actual reliability described by the QoS level may not be achieved if the
broker implementation does not allow it in all situations and edge cases,
for example if messages are stored in memory, they do not survive a broker
stop or restart. More reliable implementations store messages in non-volatile
memory, for example using a transactional database.
The nodes interested in a certain data flow subscribe to the corresponding
topic. Subscriptions are managed and stored by the broker. The broker keeps
the messages in memory until they have been transmitted to all interested
parties. Depending on the QoS level, the broker keeps the messages and
possibly re-transmits if it does not receive acknowledgment.
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2.4.4 DSS
Data Distribution Service (DDS) is an application framework designed for
low latency communication between constrained devices. The initial aim was
to connect threads of different applications in a location-aware way, apply-
ing the concept of location transparency [39]. The communication pattern is
topic-based publisher/subscriber, but unlike MQTT, the system is also com-
pletely distributed from a logical point of view, being brokerless. There are
therefore no single points of failure. Publisher and subscriber are discovered
at run-time and each device keeps its own register. The main difference is
therefore architectural. This device can reduce communication latency times,
as there is no broker, which is often installed in a Cloud due to relatively
high computational requirements.
During the definition of the topic, the typed structure of the exchanged data
is also specified. The type is specified through a typed data schema. On a
practical level, developers publish typed messages, which can be instance of
classes or structs based on the language used in the single application node.
The framework takes care of marshaling automatically and in a language-
agnostic way.
The framework implements a complex and exhaustive QoS system that touches
all aspects of communication, such as data expiration, delivery methodology,
persistence level over time and many other parameters. Publishers offer one
level of QoS and subscribers require another, therefore communication occurs
only if the two contracts are compatible, meaning that the QoS requested
by the subscriber must not be more stringent than the one offered by the
publisher.
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Chapter 3

Proposed framework

The proposed software framework was developed for the ingestion, storage
and visualization of data in applications oriented to predictive maintenance.
The overall architecture of the framework is shown in Figure 3.1. The frame-
work consists of a sensor and actuator network simulator developed with
NodeRED [40] and a Python web application exposed via a Flask web server.
The simulator sends the sensor readings to the web application via MQTT
protocol using Mosquitto broker. The web application uses a PostgreSQL
database as a persistence layer, which it accesses through the abstraction
layer provided by SQLAlchemy. The components were containerized and
deployed using Docker. Many of the components were chosen because they
are open-source, general-purpose and widely used and documented. The
individual components are discussed below.

3.1 Tools

3.1.1 Backend
Python

Python is a high-level programming language. It supports many program-
ming paradigms and styles, including object-oriented, functional, procedural
and aspect-oriented programming. Python was developed to have a general-
purpose and non-specialized core, but highly extensible through the use of
modules.

Python was defined to allow the development of applications that are
modular, readable and free of large amounts of boilerplate code. Readability
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Figure 3.1: Software framework architecture

is one of the fundamental objectives, for which an indentation convention has
also been implemented which must be followed by the programmer.

The Zen of Python [41] summarizes the philosophy of Python in these
points:

• Beautiful is better than ugly.

• Explicit is better than implicit.

• Simple is better than complex.

• Complex is better than complicated.

• Flat is better than nested.

• Sparse is better than dense.

• Readability counts.

• Special cases aren’t special enough to break the rules.

• Although practicality beats purity.
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• Errors should never pass silently.

• Unless explicitly silenced.

• In the face of ambiguity, refuse the temptation to guess.

• There should be one– and preferably only one –obvious way to do it.

• Although that way may not be obvious at first unless you’re Dutch.

• Now is better than never.

• Although never is often better than *right* now.

• If the implementation is hard to explain, it’s a bad idea.

• If the implementation is easy to explain, it may be a good idea.

• Namespaces are one honking great idea – let’s do more of those!

With this philosophy and features, Python immediately became partic-
ularly attractive to scientists, who usally are not programmers. Python is
indeed simple to learn. In 2018, the 2018 Kaggle Machine Learning Data
Science Survey [42] resulted in nearly all data scientists using Python for
their applications. This has led the community to develop a large number of
libraries and modules for scientific and data analysis oriented applications.
These modules allow you to collect, represent, clean, process and display
even large amounts of data. Many mathematical models and operators have
been implemented ready to be applied in the data processing pipeline. In
addition to processing, there are many modules for viewing the results, for
example to build plots and graphs of various types ready to be attached to
publications or scientific documents.

Although Python’s first goal is certainly not to be a very fast language,
Python applications interface easily with lower-level languages such as C
or Fortran. Therefore many of these modules used for scientific applications
have been developed in other languages, for example Numpy is written almost
completely in C. This technique makes the modules very efficient and fast.

Python is considered a general purpose programming language, it can in
fact also be used for the development of web and desktop applications, for
example.
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Flask

Flask is a Python micro web framework. It was first developed and released
on April Fool’s Day in 2010 [43], as a joke. Armin Ronacher, its developer,
was in fact working on a set of Python libraries, called The Pallets Projects.
The set of modules was rewritten and published in a single file, riding the
general interest that there was for minimalist and simple frameworks, as op-
posed to Django [44] , which is considered a complete and battery-powered
framework. In fact, many of the functions typically needed to develop com-
plex web applications are already included with Django, such as authentica-
tion, authorization, database management and an object-relational mapper
(ORM). On the contrary, Flask is minimalist, therefore the developer adapts
the design to his own needs by importing Python modules that implement
the researched features. Being minimalist, it is generally a good choice for
prototypes or applications that are not too complex, also being quick to learn.

The basic features implemented by Flask are:
• URL routing

• Logging

• Templating via Jinja2 [45] template engine

• XSS and other vulnerabilities protection

• Request payload serialization
The concept of minimalist framework is well explained in the official ar-

ticle where some architectural and functional choices of the framework are
discussed [46] :

Flask will never have a database layer. It will not have a form
library or anything else in that direction. Flask itself just bridges to
Werkzeug to implement a proper WSGI application and to Jinja2 to
handle templating. It also binds to a few common standard library
packages such as logging. Everything else is up for extensions.
Why is this the case? Because people have different preferences and
requirements and Flask could not meet those if it would force any
of this into the core. The majority of web applications will need a
template engine in some sort. However not every application needs
a SQL database.
The idea of Flask is to build a good foundation for all applications.
Everything else is up to you or extensions.
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PostgreSQL

PostgreSQL is a free and open source relational database management system
(RDMS). The database is ACID-compliant. It is characterized by a high
level of reliability and robustness, being the product of more than 30 years
of development carried out by various software houses and the community.

It was initially developed as a successor to the Ingres database [47] , which
inspired the original name, POSTGRES. In 1996 the project was officially
renamed to PostgreSQL, to highlight compatibility with SQL standards.

The principal features are:

• transaction support with Atomicity, Consistency, Isolation, Durability
(ACID)

• foreign keys

• SQL-compatible

• materialized views

• triggers

• stored procedures

It supports all operating systems. PostgreSQL is defined as object-oriented
database, as it supports some functions typical of object-oriented languages,
such as table inheritance and function overloads.

Unlike other database systems which use locks for concurrency control,
PostgreSQL manages concurrency using multiversion concurrency control
(MVCC). Each transaction is isolated because works with a versioned snap-
shot of data which can be different of the real current state of the data model.
In this way, PostgreSQL does not suffer from dirty reads [48].

This has led the community to develop many extensions and plugins that
allow you to support specific use cases or to improve performance for some
specific types of data or queries. Some examples are:

• PostGIS provides data types, functions and operators to work geo-spatial
2D and 3D data.

• Ltree provides data types, functions and operators to work with hierchi-
cal tree-like data.

• Pgcrypto provide cryptography and encryption functions.
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• many Foreign Data Wrappers (FDW) allows to connect and cooperate
with other data storage systems

Furthermore, being open source, modified versions optimized for specific
applications and data models have also been developed, for example:

• TimescaleDB is an open-source customization tuned to work with time-
series data.

• MartenDB is .NET Transactional Document DB and Event Store based
on PostgreSQL.

PostgreSQL supports unrelated, unstructured or semi-structured data mod-
els via the JSONB [49] data type, making it suitable for many applications
where NoSQL databases are typically used.

SQL Alchemy

SQLAlchemy [50] is a Python object-relational mapper (ORM). It allows
to separate the model at the application level from its representation in
the persistence level, following the separation of concerns software design
principle. The approach adopted by SQLAlchemy is complimentary-oriented,
as the level of abstraction provided is not as solid as that of other ORMs.
The way in which the entities are stored and the queries built can in fact
be customized by the developer in a very granular way, in order to support
even scenarios where performance is important and it is necessary to generate
sub-optimal queries [50].

3.1.2 Frontend
The frontend of the application consists of many Hypertext Markup Lan-
guage (HTML) pages. Some features and interactivity have been imple-
mented using JavaScript. The Bootstrap web application framework was
used.

Bootstrap is an open source and free framework for developing web pages.
It is composed of many Cascading Style Sheets (CSS) files and some JavaScript
scripting used to make some components of the framework interactive. Boot-
strap was initially developed to be used internally by the Twitter development
team. It was developed to avoid problems of inconsistency and etoregeity
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among the developers of the team, who before Bootstrap used many exter-
nal tools and libraries, making the frontend code chaotic and cooperation
difficult.

Bootstrap is relatively simple for web developers to learn, because they
are already familiar with HTML, CSS and JavaScript. The philosophy is
to develop mobile-first and responsive components. The layout and size
of the elements therefore adapt to the device in which they are displayed
according to the size of the screen. The primary use of Bootstrap is to
give a uniform appearance to all pages of the application by applying the
global HTML element styles and colors defined by Bootstrap, which can
however be customized by the developer. In addition to the basic styles,
Bootstrap contains decides of web components such as dropdowns, buttons,
navbars, modals and popups, breadcrumbs, ect. It also provides many CSS
utility classes. Bootstrap allows you to stylize pages in such a way that their
appearance does not vary depending on the browser used by the user.

Bootstrap provides the basic elements to define the page layout. The basic
layout component is the Container. There are fixed-width and a fluid-width
containers. The latter always fills the width of the parent element, the former
are fixed-width, in the sense that they have a max-width which is constant
values that depends on the size of the screen.

Containers are created by applying the "container" and "container-fluid"
CSS classes to HTML elements of type div. Containers can be nested together
and are then used to define the basic layout of the page. By appropriately
positioning and sizing the containers, it is possible to obtain all the most
common layout types such as one, two or three column layouts, optionally
with the presence of footer and/or header sections.

To create components that are responsive and mobile-first, Bootstrap uses
the concept of breakpoints. Five breakpoints are available, each referring to
a different screen size in pixels. When a class with a breakpoint is applied to
an element, it is only active for screens at least as large as specified by the
breakpoint itself. The Table 3.1 shows all the available breakpoints.
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Breakpoint Starting point Scenario
xs 0px portrait mobile
sm 576px landscape mobile
md 768px portrait tablets
lg 992px landscape tablets
xl 1200px desktops, laptops, TVs

Table 3.1: Breakpoints in Bootstrap

The default breakpoint is xs. Larger breakpoints override smaller break-
points and viceversa.

Another important element for developing pages with Bootstrap is the
grid system. The system is mobile-first and fully responsive. It is composed
of some fundamental elements, which are:

• containers

• rows

• columns

The rows must be children of the containers and the columns must be
children of the rows. In Bootstrap, the width of a row is logically separated
by 12 equally sized slots. By default the columns divide the 12 equally large
slots, but it is possible to apply different sizes to the individual columns. For
example, this code creates two columns one 4/12 wide and one 8/12 of the
space made available by the container:

<div class="container">
<div class="row">
<div class="col-4">

...
</div>
<div class="col-8">

...
</div>

</div>
</div>

In the context of columns, the breakpoint can be defined to define the
starting point from which the columns are shown as a horizontal sequence
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of blocks. Below the breakpoint, the columns appear as a vertical stack of
blocks. The default breakpoint is xs, so if it is not specified the columns are
always shown in horizontal sequences. By specifying the breakpoint instead
it is possible to have different views on different screens. The classes can also
be combined with each other.

3.1.3 NodeRED
Node-RED [51] is an open source and free visual workflow editor. It allows
you to create low-code complex workflows that connect different software
and devices, also taking care of integration at the application level. It was
initially developed specifically for the Internet of Things by IBM Emerging
Technology, in fact it is included in IBM Bluemix, an IoT-oriented Platform-
as-a-service package proposed by IBM.

Flows and workflows are created by linking together nodes of different
types, which abstract common functionalities. It is possible to integrate
custom JavaScript functions to satisfy the most complex use cases. Nodes
process messages coming on their input and eventually send messages on
their output nodes, continuing the flow. The system is developed in NodeJS
[52] environment, so it can be installed in many devices, for example single
board computers (SBCs), cloud, FPGA etc. The system takes advantage of
the event-driven, asynchronous non-blocking nature of NodeJS [53] . NodeJS
JavaScript environment is single-threaded, so Node-RED applications may
have performance issues in CPU-intensive operations [53] , but if well de-
signed Node-RED applications can be scaled horizontally.

Considering its drag and drop nature, it is particularly suitable in the
prototyping phase and for developing proof-of-concepts, as it can also be used
by people who have no experience in programming. In addition, the system
supports collaborative development, because the flows can be exported to
JSON and can optionally be versioned by a versioning collaborative system,
such as GIT.

Node-RED can be extended by developing new types of nodes and inter-
connections. This has resulted in the open source community developing a
large amount of nodes, making the ecosystem particularly rich.

3.1.4 Docker
Docker [54] provide operating system level virtualization for software mod-
ules. Through Docker it is possible to create self-contained packages, which
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contain all the dependencies they need to be able to work in the environment
that hosts them. When using virtualization through virtual machines, the
use of hardware is less efficient, since in each virtual machine it is necessary
to allocate the resources necessary for the operating system. Docker takes a
different approach, creating a virtualization environment on top of the oper-
ating system. Nonetheless, the containers are isolated. Containers share the
host operating system’s kernel and hardware resources. Docker is an open
source technology.

The experience provided by Docker is designed to be developer-centric
and therefore to be integrated into the usual development workflow. Unlike
classic virtualization, it is geared towards running applications rather than
emulating hardware.

Docker is not the first technology to create containers, but compared to
its predecessors it has spread particularly for the following practical reasons.

• Speed: creating, deploying and running containers is extremely fast via
Docker, and can be done on any PC.

• Simplicity: Docker is simple to use and learn, especially for developers,
to which the particular way is aimed.

• Portability: Docker containers are extremely portable, they can be fol-
lowed in any environment where the Docker execution environment is
installed. For example, applications can be moved from the develop-
ment environment to the production environment very easily.

• Scalability: Because they are light and decoupled, the containers can
be easily scaled. Therefore, many technologies have been developed to
orchestrate containers, such as Kubernetes [55] .

The Docker environment is made up of several modules that interact with
each other. the Docker environment can be seen as a client-server application
[56].

The Docker Client interact with the Docker daemon, which is the server,
sending commands and receiving responses. Examples of commands are those
to launch, stop or build containers. Docker is shipped with a standard com-
mand line interface (CLI) executable Docker client. Client and server can be
in different machines.

The Docker daemon listens for incoming requests sent by the Docker client
application. It is installed on the host machine, where the virtualization is
needed.
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In essence, containers are runnable instances of Docker images. Docker
images are templates to build containers. They are described by the corre-
sponding Docker file, where every dependency of the application is listed. In
the Docker file many other things can be configured, for example regarding
network functions or any volumes to allocate. In practice, the instructions
for building the image are encoded in the Docker file. Docker files are text
files, meant to be written by the developer, as an integral part of the software
development pipeline.

Modern applications often consist of many collaborating services. For
example, applications often need a database, which can be provided via a
Docker container. For this reason, Docker Compose was developed, a tool
for configuring and running applications made up of multiple containers [57].
The application and required dependencies are described via a YAML file.
The configuration file eventually specifies the correct boot order and other
necessary configurations to allow individual containers to cooperate.

3.2 Data model
The data model was developed focusing on predictive maintenance applica-
tions. Since the proposed data model is relatively simple, it is described
below in terms of database tables. These correspond to classes in the appli-
cation. As the model is simple, the classes mirror their tables. One-many
relationships are mapped through Python lists. In general this is not true,
since for complex applications there is a tendency to separate the software
model from the one that describes its physical persistence, in the perspec-
tive that the persistence model and the Domain model [58] can be changed
and developed independently. The complete model of the tables is shown in
figure 3.6.The main entities are described in the following paragraphs:

3.2.1 Machine

The Machine entity is used to represent the machines to be monitored in
the manufacturing process. In general, in manufacturing processes some
machines may need to be configured for the work session they are about
to start. These configurations have been abstracted with the concept of
Working Parameter. The operator then specifies for each machine which
are the necessary settings and what type they are (float, string).
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3.2.2 Tool

The Tool entity is used to represent the tools that are mounted in the ma-
chines to perform the working activity. The tools are subject to wear. Tool
wear is described by the Wear Parameter abstraction. The operator de-
fines the various parameters that can numerically or textually describe the
level of wear of the tool.

3.2.3 Sensor

The sensors mounted in the machines to monitor the parameters of interest
are abstracted from the Sensor entity, to which the relative Sensor Read-
ings are linked. In the context of predictive maintenance, these sensors often
measure continuous numerical quantities related to ongoing mechanical or
thermal stresses and variations.

3.2.4 Working

It represents a process performed by a Machine. The processing is charac-
terized by an instant of beginning and end. The Tool that was mounted on
the Machine and the values of the Working Parameters needed by the
machine are specified. These values are stored in the working_configuration
table. At the end of the machining it is possible to specify which was the
value of the tool’s Wear Parameters. The wear values are stored in the
wear_configuration table.

Figure 3.2: Machine model
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Figure 3.3: Tool model

Figure 3.4: Working model

Figure 3.5: Sensor model
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Figure 3.6: Data model
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3.3 Machine acquisition simulator
In order to validate the MQTT data acquisition system of the web appli-
cation, a data acquisition simulator was developed using Node-RED. The
Node-RED application sends messages to the MQTT topic to which the web
application listens.

The structure of the topic is the following:

device/+/sensor/+

For example, to send data to the vibration sensor positioned in the Milling
machine, it is necessary to publish to the following topic:

device/Milling machine/sensor/Vibration

The subscriber application recognizes the corresponding sensor and pop-
ulates the sensor_readings table, where the data acquired by the sensors
during processing are stored. The acquired data are then shown by the web
application on the processing detail page.

Several flows were used to publish fake sensor readings. The proposed
flows can be combined to generate more complex flows, possibly publishing
the births of several sensors at a time. By also introducing actuator nodes,
many scenarios can be simulated, such as control loops.

3.3.1 Single-sensor random value publisher
The flow shown in Figure 3.7 has the effect of publishing a random reading
of a sensor on the corresponding topic. From left to right, it is composed as
shown below.

• Inject node: it is used to trigger the flow by clicking the node’s button.
The node can be configured to trigger the flow only once or at regular
time intervals. It can possibly generate a message that will be passed
into the input branch of the next node, but in this case it has not been
used.

• Function node: The function node is used to define a JavaScript custom
function that manipulates the message the node receives in the input
branch. In this case the function node was used to define the message
to be published.
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max = 100
min = 5
msg = {

payload: {
timestamp: new Date().getTime() / 1000,
sensor_value:
Math.floor(Math.random() * (max - min + 1) + min)

}
}
return msg;

• MQTT out node: This node receives the message generated by the func-
tion node and publishes it in the corresponding topic. The configuration
of the node is shown in Figure 3.8. Through the configuration panel it
is possible to configure the connection to the broker to be used. In this
case, an instance of Mosquitto was used.

Figure 3.7: Single-sensor random value publisher
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Figure 3.8: MQTT out node configuration
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3.3.2 Single-sensor value publisher using a file as source
The flow shown in Figure 3.9 has the effect of publishing a sensor reading
obtaining the corresponding value reading the content of a comma-separated-
value (CSV) file. From left to right, it is composed as follows:

• Inject node: same as before. In this case, the single trigger mode was
used.

• File node: The file node is used to read the file. It has been configured
to read the file one line at a time, assuming that in each line there is a
sensor value corresponding to a different instant of time.

• CSV node: This node receives the message CSV and converts it to a
JSON message. The columns of the CSV are mapped in JSON properties
with the same name.

• MQTT out node: as before.

Figure 3.9: Single-sensor value publisher using a file as source

3.4 User Experience and User Interface
In order to support the different use cases, the application consists of many
pages. The application was developed to be simple to use for an operator
who has no experience with other information systems.

3.4.1 Machine registry
The machine registry allows the operator to computerize the machine park
used in the manufacturing process. It is possible to add other machines
to the register or view the details of the machines present by clicking on
the corresponding row. In Figure 3.10 the machine registry page is shown.
When a new machine is registered, it is possible to specify the sensors that
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are mounted on the machine and the working parameters. In Figure 3.11
the page to register a new machine is shown. By clicking on a row on the
machine list page, the details of the selected machine and the details of any
machining in progress are displayed through the machine details page, shown
in Figure 3.12.

Figure 3.10: Machine registry page
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Figure 3.11: Machine registration page
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Figure 3.12: Machine details page

3.4.2 Tool registry

Using the tool registry, it is possible to register the tools that will be mounted
in the machines during the machining processes. On the tool registry page,
shown in Figure 3.13, the tools are shown in a grid. It is possible to add
new tools or view the details of the tools already registered. In Figure 3.14
the page for register a new tool is shown. When adding a tool, it is possible
to specify the parameters that describe its wear over time. The details of
a tool are shown in the tool detail page, shown in Figure 3.15. This page
also shows the evolution of the tool’s wear, described by its wear parameters.
The actual value of the wear parameters are specified by the operator at the
end of each work session.
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Figure 3.13: Tool registry page
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Figure 3.14: Tool registration page
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Figure 3.15: Tool details page

3.4.3 Work sessions history

Through this section it is possible to view the history of the work sessions
carried out by the machines. The page is shown in Figure 3.16. As with
other entities, it is present a page to register a new work session, shown
in Figure 3.17. It is necessary to specify the machine that performed the
work session, the tool that was mounted in the machine and the value of
the working parameters required by the machine. The work session details
page shows important details about the work session, for example the value
assumed by the sensors during work session. The operator can also specify
the value of the tool wear parameters at the end of the machining, in order
to trace the evolution of the tool wear.
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Figure 3.16: Work sessions history page
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Figure 3.17: Work session registration page
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Chapter 4

Use case: data collection
from a milling machine for
predictive maintenance
applications

In order to validate the applicability of the proposed framework, the applica-
tion database was populated using real data collected in the context of milling
operations. In this context, the study and validation of machine monitoring
techniques for predictive maintenance purposes is very important, as tools
are used that wear out as an integral part of the machining process.

4.1 Introduction
Milling machines operate by removing material from the surface of the object
they are working on. The milling process can generally be adapted and
calibrated for each specific machining through some operational parameters,
typically configurable in the milling machine. Some of the parameters used
are shown in Table 4.1

Another important aspect to consider is the quality of the tool used for
milling. In particular, the material can greatly affect the life of the tool.

As the number of jobs increases, the wear mechanisms affecting the tool
become ever more important until a critical level is reached, and the tool is
no more capable to ensure the required quality level. The wear of cutting
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tools is of different types, but the most important is certainly the flank wear,
as this type of wear is the one that generally progresses faster and limits the
life time of the tool. Flank wear occurs at the tool flanks, which is the part
of the tool in contact with the object being cutted. Flank wear is usually
measured considering the maximum observable width in millimeters of the
wear band VB.

Name Description
Spindle speed Rotational frequency of the spindle of the machine, it is

measured in revolutions per minute (RPM).
Cutting speed Rotational speed of the tool, usually measured in m/min.
Feed rate Velocity at which the cutter is fed, usually measured in

mm/min
Depth of cut How deep the tool is cutting into the material, usually

measured in mm

Table 4.1: Milling machine working parameters

4.2 Dataset

The NASA Milling Dataset [59] was used. This dataset stores data collected
during milling operations under different machine configurations, operating
conditions and tools used. During the milling, data from six sensors posi-
tioned in different positions were collected. Vibration, acoustic and current
sensors were used. At the end of some work sessions flank wear (VB) was
measured.

The data is organized in a 1x167 Matlab struct array composed by the
fields listed in Table 4.2.

Sixteen different cases were considered, each with different parameters and
operating conditions. Some cases have been repeated for multiple processes.
The cases are enumerated in Table 4.3.

64



4.2 – Dataset

Name Description
case Case number, between 1 and 16
run Counter for experimental runs in each case
VB Flank wear, measured after runs. This field is optional
time Duration of the experiment (restarts for each case)
DOC Depth of cut (does not vary for each case)
feed Feed rate (does not vary for each case)
material Cutting tool material (does not vary for each case)
smcAC AC spindle motor current values
smcDC DC spindle motor current values
vib_table Table vibration sensor values
vib_table Spindle vibration sensor values
AE_table Acoustic emission at table
AE_spindle Acoustic emission at spindle

Table 4.2: Dataset fields

Case Depth of cut Feed rate Tool material
1 1.5 0.5 1 - cast iron
2 0.75 0.5 1 - cast iron
3 0.75 0.25 1 - cast iron
4 1.5 0.25 1 - cast iron
5 1.5 0.5 2 - steel
6 1.5 0.25 2 - steel
7 0.75 0.25 2 - steel
8 0.75 0.5 2 - steel
9 1.5 0.5 1 - cast iron
10 1.5 0.25 1 - cast iron
11 0.75 0.25 1 - cast iron
12 0.75 0.25 1 - cast iron
13 0.75 0.25 2 - steel
14 0.75 0.5 2 - steel
15 1.5 0.25 2 - steel
16 1.5 0.5 2 - steel

Table 4.3: Considered cases
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4.3 Data ingestion
The data was entered into the web application’s date base using a single-
purpose Python script.

The script has populated the machine registry with a reference milling
machine. This machine has been registered with two mandatory working
parameters, which are precisely those considered in the dataset: depth of
cut and feed.

The tools used in the machining have been registered. For each case a
single tool was generated, considering that in the experiments the same tool
was used in the various runs of the same case. All tools were registered with
a wear Parameter to describe flank wear.

A different work session was therefore generated for each run. The work
session has always been created considering the reference milling machine
and the correct instance of the tool, which is therefore the same for a fixed
case number. The working parameters, required by the reference milling
machine, have been configured as described in the various runs of the dataset.

4.4 Results
The data model developed in the application was found to be suitable for
representing real-world data referred to the context of milling and monitoring
for predictive maintenance purposes.

Figure 4.1 shows the work sessions history page with the data coming from
the dataset. Going into the details of the single work session, it is possible to
view the values of the working parameters and the time series of the sensor
values during the work session, as shown in Figure 4.2. The page also shows
the value of the wear parameters at the end of the work session, which in
this case is not a user input, but has been imported from the dataset.

Many tools have been generated, for each case of the dataset, visible in the
grid on the tools list page. Going to the details page of the single cutting tool,
it is possible to view the evolution of the wear parameters, so it is shown how
the VB has varied in the various runs, with the case fixed, considering that
a tool has been generated for each case. An example detail page is shown in
Figure 4.3, where the increasing wear trend can also be easily noticed.
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Figure 4.1: Work sessions history page - NASA Milling dataset
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Figure 4.2: Work sessions details page - NASA Milling dataset
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Figure 4.3: Tool details page - NASA Milling dataset
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Chapter 5

Conclusions and future
Works

The development of IoT technologies has made possible the interconnection
of hardware and software devices, generating complex networks of cyber-
physical systems that cooperate to make processes more efficient or to col-
lect a large amount of data that can be used to solve problems that were
previously difficult to solve. In this thesis the protocols that can be used to
develop networks of cyber-physical systems in the industrial and manufactur-
ing environment have been explored and discussed, with particular attention
to wireless protocols that have a deterministic behavior and can therefore
guarantee high levels of reliability and low latency, even in industrial en-
vironments where propagation conditions can be unstable or bad. Some
possible applications of sensor and actuator networks were then discussed
and a software framework for data collection for predictive maintenance sce-
narios was developed. The framework was developed with open-source, free
and widely used technologies. The applicability of the proposed framework
was confirmed considering the data collected during milling work sessions
performed under different operating conditions and using different cutting
tools. The proposed framework can be improved and extended in functional-
ity by implementing in future works a module for predicting the wear of the
machines and tools, to be combined with the data collection and visualiza-
tion module already developed, providing a complete predictive maintenance
platform.

It is also necessary to investigate which sensors are necessary and where
they can be positioned to obtain information related to the wear of the ma-
chines and tools, considering the different types of machines and processes
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commonly used in manufacturing processes. Different predictive models, sta-
tistical analysis and machine learning algorithms need to be tested to get the
best predictive performance in each case.
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