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Abstract

Alzheimer’s disease (AD) is an incurable neurodegenerative disorder which af-
fects neurons, reducing their function and causing their death. AD is the most
common form of dementia and it manifests with memory impairment and cog-
nitive loss.
Data science can play an important role in enhancing our understanding of
this disease and it can help to characterise the pathological evolution of the
biomedical parameters in AD patients.
We propose here the latent slope-intercept model, a Bayesian latent variable
model for longitudinal data analysis, inspired by the Probabilistic Princi-
pal Component Analysis. The model was derived analytically, implemented
in Python and then applied to clinical scores and brain imaging data from
Alzheimer’s patients.
We showed that we are able to characterise the intrinsic variability of the data
in the latent space, where the separation between healthy individuals and pa-
tients is enhanced. Moreover, we were able to interpret the effect of AD on the
considered biomarkers and on their rate of variation, obtaining results consis-
tent with the known pathophysiology of the disease.
We finally present two possible extensions of the model, to multi-centric data
with a federated learning scheme, and to a more general modelling of the global
disease progression.
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Résumé

La maladie d’Alzheimer (MA) est une maladie neurodégénérative incurable qui
affecte les neurones, réduisant leur fonction et entraînant leur mort. La MA
est la forme de démence la plus courante et se manifeste par des troubles de
la mémoire et des pertes cognitives.
La science des données peut jouer un rôle important pour améliorer notre
compréhension de cette maladie et peut aider à caractériser l’évolution pathologique
des paramètres biomédicaux chez les patients atteints de la MA.
Nous proposons ici le latent slope-intercept model, un modèle bayésien à
variables latentes pour l’analyse des données longitudinales, inspiré de le Probabilistic
Principal Component Analysis. Le modèle a été dérivé analytiquement, implémenté
en Python puis appliqué aux scores cliniques et aux données d’imagerie cérébrale
des patients atteints de la maladie d’Alzheimer.
Nous avons montré que nous sommes capables de caractériser la variabilité
intrinsèque des données dans l’espace latent, où la séparation entre les individus
en bonne santé et les patients est renforcée. De plus, nous avons pu interpréter
l’effet de la MA sur les biomarqueurs considérés et sur leur taux de variation,
obtenant des résultats conformes à la physiopathologie connue de la maladie.
Nous présentons enfin deux extensions possibles du modèle, à des données
multicentriques avec un schéma d’apprentissage fédéré, et à une modélisation
plus générale de la progression globale de la maladie.
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Chapter 1

Introduction

In the last decades, Alzheimer’s disease (AD) has been gaining attention as a
public health priority. AD is an incurable neurodegenerative disease and the
most common form of dementia. With dementia, we refer to a set of symp-
toms affecting especially older people which includes memory loss, impairment
of cognitive functions and impossibility to perform everyday tasks, causing
disability and dependency on others [1].
According to the World Health Organization, in 2015, around 47 million people
in the world were affected by dementia and this figure is expected to increase
to 132 million by 2050 [1]. It is clear then that AD has a very high human,
social and economic cost for the patient, for his family and for the entire soci-
ety, and this cost is expected to raise [1].

AD affects brain cells, reducing their function and causing their death. It
is progressive disease because, in an initial phase, the symptoms are small and
imperceptible but they can rapidly worsen over time. For this reason, AD is
usually detected in its late stages.
Even though there are currently no treatments available to cure or reverse the
progression of AD, early detection can provide several benefits to the patients
and their caregivers: (a) a better preparedness of the patient and a prioriti-
sation of an healthy lifestyle to preserve his/her cognitive abilities, (b) early
access to palliative treatments that can reduce the effect of the disease, (c)
better plans for the future and cost savings and (d) possibility to participate
to clinical trials [2].
It becomes therefore of great importance to develop methods able to detect
AD in its early stages, before the appearance of symptoms.

In the last decades, healthcare facilities are collecting an increasing amount
of medical data from AD affected patients, including clinical scores, biologi-
cal samples and imaging data. The analysis of these large collections of data
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can be of great importance for a better understanding of the pathophysiology
of Alzheimer’s disease. In particular, it has been shown that the dynamics of
several biomarkers can inform on the development of the disease in a presymp-
tomatic phase [3]. These dynamics can be used to model a global progression
of AD [4]. The evolution of the parameters of one subject can then be com-
pared to the global evolution for diagnostic and monitoring purposes.

In this thesis, we propose the latent slope-intercept (LSI) model, a latent
variable model for the study of longitudinal data, i.e. data varying with time.
This model is designed to be applied to longitudinal observational studies of
Alzheimer’s patients.
LSI assumes a linear time evolution of the biomarkers of a subject and aims
to project this evolution on a latent space, which is new hidden representation
of the original observable data. In particular, we capture from the longitudi-
nal data an intercept term, which is the baseline value of different biological
parameters, and a slope term, which is the rate of variation of the biomarkers.
Since healthy individual and sick patients shows different progressions for their
biological parameters, we aim to model this variability in the latent represen-
tation of the data and we expect to see the points coming from AD patients
distributed in a different portion of the latent space with respect to the cogni-
tive normal subjects. This difference can be exploited to classify the patients
in the two groups of diagnosis. Moreover, the model is a generative one and
this gives the possibility to simulate a sick or healthy patient and observe the
difference in evolution of their biomarkers.

This thesis is structured as follows. In chapter 2 we present the state of the
art, focusing in particular on latent variable models and their application to
the study of AD. Chapter 3 contains theoretical description of the LSI model.
In chapter 4 the LSI is applied to synthetic data (generated exploiting the
generative capabilities of the model itself) and to real longitudinal data com-
ing from cognitive normal individuals and AD affected patients, for which
we interpret and discuss the clinical validity of the results. In chapter 5, we
present an extension of the LSI model to multi-centric studies where the data
is securely stored in different centres and the training is performed using a
federated learning scheme.
In chapter 6, we show another generalisation and extension of the model, in
order to estimate a global evolution of the disease from the individual progres-
sion captured by LSI. Finally, in chapter 7 we draw some conclusion on the
model, the obtained results and the presented extensions and we provide some
possible future works.
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Chapter 2

State of the art

The LSI model belongs to the category of latent variable models. Here we
present more in details what latent variable models are and how they are
applied to the study of Alzheimer’s disease in the literature.

2.1 Latent variables models

Latent variables models are based on the assumption of the existence of latent
variables, hidden representations of the data that cannot be directly measured.
These latent variables should be inferred from the observable ones, so to they
represent a low dimensional space in which one can analyse more easily the
data.
High dimensional datasets are very common in the medical domain, for in-
stance when we consider medical images or genetic data. In this case, a lower
dimensional representation can be sufficient to capture the relevant variability
of the data and the relation among features and it can be much more tractable
than the original high dimensional dataset.
In machine learning, this concept is also called dimensionality reduction.

Latent variables models are typically generative models, i.e. they are able
to generate likely realisation of the data. Indeed, by randomly sampling in
the latent space we can create new data with similar characteristics to the one
used to train the model (coming from the same data distribution).
A classical example of generative models are the generative adversarial net-
works (GAN) [5], which became very popular for their ability to generate
photo-realistic fake human faces [6]. Another common example of generative
model is the variational autoencoder (VAE) [7]. VAE can encode an input
sample into a Gaussian distribution on the latent space (encoding) and then
reconstruct the sample from the latent space (decoding). This method is using
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neural networks for the encoding and decoding operation, and it can therefore
model non-linear transformations.

To sum up, there exists different techniques that we can classify as latent
variable models: some of them are linear and easier to train (like PCA), others
are using non-linear transformations and are more complex (GANs and VAE),
but their principles are similar.
We will now look into more details of the Principal Component Analysis
method and its probabilistic extension, the Probabilistic Principal Compo-
nent Analysis (PPCA), as they will be the starting point for formulating our
model in chapter 3.

2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) [8] is a technique to project some d-
dimensional data on a new latent space of dimensions q ≤ d, identified by q
orthonormal axes (also called principal axes), along which the variance of the
projected data is maximised.

Given a set yn of N data points of dimension d, the aim of PCA is to
find a transformation W that project the observable data yn to a compact
representation in the latent space xn of dimension q ≤ d as follows:

xn = W T (yn − µy) (2.1)

where µy = 1
N

∑
n yn is the sample mean of all points.

To find W we concatenate, along the columns, the q principal eigenvectors
associated to the largest eigenvalues of the sample covariance matrix S given
by:

S =
1

N

∑
n

(yn − µy)(yn − µy)T (2.2)

Given the latent representation, we can reconstruct the original data by ap-
plying the following inverse transformation:

yn = Wxn + µy (2.3)

It can be proven that finding the transformation W that maximises the vari-
ance in the projection is equivalent to finding the transformation that min-
imises the squared reconstruction error, i.e.

∑
n ||yn − ŷn||2 where ŷn is ob-

tained by projecting the original data into the latent space using eq. (2.1) and
reconstructing it with eq. (2.3).
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In fig. 2.1 we report an example of PCA, where we compute and plot the two
principal components (scaled by the squared root of the associated eigenvalue)
using 1000 data points sampled from the following 2 dimensional multivariate
Gaussian distribution:

yn ∼ N
([

0
0

]
,

[
4 2
2 2

])
(2.4)

8 6 4 2 0 2 4 6

4

2

0

2

4

PCA applied to a synthetic dataset
1st component
2nd component
yn samples

Figure 2.1 – Example of PCA applied on a synthetic dataset. We can clearly
see that the first principal component is aligned in the direction of maximum
variance of the Gaussian. The second principal component is perpendicular to
the first.

2.1.2 Probabilistic Principal Component Analysis

Probabilistic Principal Component Analysis (PPCA) is a probabilistic exten-
sion of principal component analysis proposed by Tipping and Bishop in [9].
PPCA is based on a Bayesian probabilistic framework which gives several
advantages over the standard PCA. First of all, it estimates a probability dis-
tribution of the data that can be used to generate new samples. Secondly,
it allows to estimate the uncertainty of a data. This is especially relevant in
medical application, where we are interested in both the result a model pro-
vides and its uncertainty. Moreover, we can use Bayesian model comparison,
to automatically compare different models and their generalisation. And fi-
nally, we can use the inferred distribution to compensate for missing data in
the projection.

Let yn be the d-dimensional observable data and xn the q-dimensional latent
representation, PPCA is formally defined by the following generative model:

yn = Wxn + µy + ε (2.5)
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where W is the projection matrix, µy is the sample mean of the yn and
ε ∼ N (0, σ2Id) is a Gaussian noise.

From eq. (2.5), we can derive a likelihood function of the data given the
latent representation xn and the model parameters:

yn|xn ∼ N (Wxn + µy, σ
2Id) (2.6)

We set a prior over the latent variable:

xn ∼ N (0, Iq) (2.7)

and this allows us to find the marginal likelihood of the observable data yn
marginalised over the latent prior:

yn ∼ N (µy, σ
2Id +WW T ) (2.8)

Equation (2.8) represents the likelihood of the data to be generated from the
latent model: this quantity should be maximised with respect to the model
parameters W , µ and σ2. This can be performed by maximum likelihood es-
timation over the Gaussian distribution eq. (2.8). However, as detailed in [9]
this can be computationally expensive (it requires the eigendecomposition of
the sample covariance matrix S) and therefore an alternative optimisation us-
ing the Expectation-Maximisation (EM) method is proposed.

With the PPCA method, we can derive a full posterior distribution of the
latent representation xn given yn as:

xn|yn ∼ N (M−1W T (y − µy), σ2M−1) (2.9)

and M = W TW + σ2Iq.
In contrast to PCA, where the projection for one data point yn is given by a
single point xn in the latent space, in this case we instead have a full distribu-
tion p(xn|yn).

As already stated, PPCA is also a generative model: by sampling a point
in the latent space following eq. (2.7), we can use eq. (2.5) to generate a new
data sample coming from the same distribution of yn.
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2.2 Latent variable models applied to Alzheimer’s
disease

Antelmi et al. proposed an extension of VAE for multiple views or modalities,
i.e. different features of the data coming from different sources, and tested it
with data from Alzheimer’s patient [10].
In the case of neurodegenerative diseases like Alzheimer’s these multi-view data
can include clinical scores (standardised assessments of the cognitive abilities
of the patient) and images coming from Magnetic Resonance Imaging scans
(MRI) and Positron emission tomography (PET).

A recent work from Balelli, Silva, and Lorenzi [11] proposed a multi-view
latent variable model based on the PPCA technique. In the same work, they
also propose a federated learning scheme for training the latent variable model
on multiple datasets stored in different centres, argument we will focus on with
a detailed description in chapter 5.
Their latent variable model is similar to the one we will propose in chapter 3,
since they are both based on the PPCA [9] technique. But while [11] extended
PPCA for the use of multi-view data, our model focuses on the analysis of
longitudinal data.
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Chapter 3

Latent slope-intercept model: a
latent variable model for
longitudinal data

In this chapter we present the latent slope-intercept model (LSI), a latent
variable model for the analysis of longitudinal data. We give the mathematical
formulation of the model and the optimisation scheme. Further details are
available in appendix A.

3.1 Theoretical formulation
The LSI model extends the framework of Probabilistic Principal Component
Analysis (PPCA) [9], to handle longitudinal data, i.e. repeated measurements
over time.
Let us consider data from N subjects: for each subject n ∈ N we dispose of Tn
samples ynt ∈ Rd, where t ∈ {tn1, . . . , tnTn} denotes the time point of sample
acquisition. Overall, the data from each patient n can be summarized by a
matrix Yn of size Tn × d, a d dimensional time-series of length Tn.
Assuming that the variations across features are correlated, our aim is to pro-
vide a common q-dimensional latent space representation of the d dynamics
represented by Yn.
Considering only one patient n and a generic time instant t (one row of the
matrix Yn), we assume that the observable variable ynt follows the generative
model equation given by:

ynt = t(Wxn + ω) + V xn + µ+ ε (3.1)

where ε ∼ N (0, σ2Id) and xn is the q-dimensional latent variable that models
the evolution of all the features of patient n.
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The evolution of Yn over time is assumed to be linear and characterised
by the intercept V xn + µ and the slope Wxn + ω: V and W are the d × q
projection matrices for the intercept and the slope, respectively.
We note that we are using the same latent variable xn for the projection of
both the slope and the intercept.
In addition, we introduce the parameter ω as the average slope and µ as the
average intercept to centre the projected slope and intercept around 0, thus
allowing the model to have zero mean.
The term ε is an additive Gaussian observational noise with variance σ2, inde-
pendent and identically distributed (iid) for every t and along every dimension
d. Appendix A provides a more detailed description of all the model parame-
ters.

From eq. (3.1), one can derive the likelihood of the observable variables
conditioned on the value of the latent variable xn as:

ynt|xn ∼ N ((tW + V )xn + tω + µ, σ2Id) (3.2)

By setting a prior on xn, assuming independence between the latent di-
mensions:

xn ∼ N (0, Iq) (3.3)

we can easily derive the marginal likelihood for the observed data:

ynt ∼ N (tω + µ, C) (3.4)

where C = σ2Id + (tW + V )(tW + V )T

We note that eq. (3.4) provides a direct relation between the model param-
eters and the observable variables.

Exactly like the PPCA method, with the LSI we can derive a full posterior
distribution of the latent representation xn given ynt as:

xn|ynt ∼ N (M−1
n (tW + V )T (ynt − tω − µ), σ2M−1

n ) (3.5)

and Mn = (tW + V )T (tW + V ) + σ2Iq.

Up to this point, we considered only one patient n at a generic time t.
As stated before, for each patient we have Tn samples at time points tn1, . . . , tnTn .
In appendix A, we derive and report the complete vectorial formulation of the
model for all N patients and all time instants tn.
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3.2 Optimisation

There are five unknown parameters in the LSI model: W ∈ Rd×q, V ∈ Rd×q,
ω ∈ Rd, µ ∈ Rd and σ2 ∈ R. In order to learn their optimal values, we want to
maximize the marginal likelihood eq. (3.4) with respect to the model parame-
ters (maximum likelihood estimation).
One possibility is to derive an exact analytic expression for the parameters, by
setting the derivative of the log marginal likelihood with respect to each of them
to 0. This can be computationally challenging since it requires to compute the
sample covariance matrix in time, yielding to an asymptotic complexity of
O(NT 2d2).

Here, we decided to use the Expectation-Maximization method (EMmethod),
by relying on the optimization framework originally introduced for PPCA [9].
EM is an iterative method which can be adapted to estimate the model param-
eters, accounting for the inference of the distribution of latent or missing vari-
ables. This method aims to maximise the marginal likelihood p(yn) indirectly,
by iteratively maximising the expected complete log likelihood Ep(xn|yn) ln p(yn, xn),
corresponding to the expected value of the joint distribution of the observ-
able and latent variables, computed with respect to the posterior distribution
p(xn|yn). It can be proven that, by applying this method, we converge to a
local optimum of the marginal likelihood p(yn).
The algorithm is composed of two steps: an expectation step (E-step), in which
the expected complete log likelihood is computed using the current estimates
of the parameters, and a maximisation step (M-step) in which this likelihood
is maximised with respect to the model parameters.
With our formulation, for the E-step we just need to compute the first and
second moment of the posterior distribution eq. (3.5), while for the M-step we
can derive an analytical closed form for the inference of every parameter of the
model: W , V , ω, µ and σ2. The results of these derivations are reported in
the appendix A.2.
To sum up, we show in algorithm 1 the steps used to train the model, referring
to the formulas derived and presented in the appendix A.2.

3.3 Implementation

The latent slope-intercept model was implemented in Python. The code was
structured in a easy to use class, with a programming interface similar to the
one of the scikit-learn library [12].
The class exposes several methods and allows to: (a) randomly initialise the
model parameters, (b) generate synthetic data by sampling from the latent
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Algorithm 1: Training of the latent slope-intercept model

randomly initialise W , V , ω, µ and σ2

for i = 1, . . . , n_epochs do

/* E-step */

compute 〈xn〉 and 〈xnxTn 〉, the moments of the posterior p(xn|yn),
eqs. (A.14) and (A.15)

/* M-step - optimise Ep(xn|yn) ln p(yn, xn) with respect to
the model parameters */

compute µ̃, eq. (A.16)
compute ω̃, eq. (A.17)
compute W̃ , eq. (A.18)
compute Ṽ , eq. (A.19)
compute σ̃2, eq. (A.20)

end

space, (c) encode (projection) and decode (inverse projection) from the latent
space, (d) perform training of the model parameter and (e) load and save the
model to file.

Particular attention is given to the computational efficiency of the imple-
mentation, since we aim to apply the model to large datasets that may take
a long time to train. Whenever possible, the computations were written and
implemented in vectorial form, to sensibly speed up the computation times,
using numpy library for scientific computing [13].
Moreover we used the library numba [14], which performs Just-In-Time (JIT)
compilation of compatible Python code, to further speed-up the code and par-
allelise the execution over all the available cores of the CPU.

Automated tests using the pytest framework [15] were performed. These
tests allowed us to verify if the implemented vectorial formulas are correct and
provide the same results as the non-vectorial formulas derived analytically.
Moreover, we used the pytest-benchmark plugin [16] to compute the execution
time for the optimisation of each model parameter. In this way, we were able
to discover the presence of bottlenecks in the code and fix them.
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Chapter 4

Applications

In this chapter, we show the results of the application of the LSI model on
two datasets: a synthetically generated one and a dataset extracted from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [17].

4.1 Synthetic dataset

By exploiting the generative capabilities of the LSI model, we can generate a
synthetic dataset to assess the ability of LSI to recover the ground truth pa-
rameters. We sampled N = 1000 latent observations xn, with n = 0, . . . N −1,
of dimension qgen = 4, which follow a standard Gaussian distribution N (0, I).
We then applied the decoding equation eq. (3.1) with randomly generated W ,
V , ω and µ to reconstruct yn in the observable space, of dimension d = 10.
A Gaussian noise with variance σ2 = 3 is added to each sample at every time
point. For every subject n, we consider a random number of time points Tn
between 2 and 10, sampled from a uniform distribution. Therefore, tn is set as
the integers between 0 and Tn− 1: for example if Tn = 4, we set tn = 0, 1, 2, 3.
In fig. 4.1, we provide an example of a synthetically generated sample. Each
feature evolves almost linearly in time up to the additive noise.

4.1.1 Cross validation for hyperparameter tuning

The hyperparameter q, corresponding to the latent dimension is an user de-
fined input for the LSI model.
We then set up an experiment to find out which is the best q to use for the
specific dataset we are considering, something in machine learning we usually
call hyperparameter tuning.
Actually, since we generated the data from a latent dimension of qgen = 4, we
already know that this is the best value for q: adding other dimensions will not
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Figure 4.1 – Example of a randomly selected sample of the synthetic dataset.
Each colour corresponds to a different dimension. We can observe the almost
linear evolution in time, up to the additive noise.

improve the modelling of the data, since the additional dimensions will only
capture noise and we risk to overfit. We are therefore using this experiment
as a confirmation and verification for the correct functioning of the model.

The k-fold cross validation method (k-fold CV) is a very common one to
test the generalisation of a model in machine learning and statistical learning.
First of all, the training dataset is split in k non overlapping folds. Then, k
iterations are performed: the model is fitted on k−1 folds and evaluated on the
remaining fold, changing at each iteration the testing fold and resetting model.
The final score of the model is the average of the score computed in each of
the k iteration. Notice that with cross validation we are always evaluating the
model on unseen data. Indeed the test dataset at a specific iteration is kept
apart and not used for training. This is very important, because it allows for a
unbiased evaluation of the performances on an independent dataset. Instead,
in the case the evaluation was performed on the same data used for training,
we will always prefer more complex models, risking to overfit them.

We performed a 5-fold cross validation, varying the dimension of the latent
space q from 1 to 9. We consider the Mean Absolute Error (MAE) computed
in the test set to perform model comparison and selection. In particular, MAE
is defined as:

MAE =
1

Nd

∑
n

1

Tn
|yn − yn,est| (4.1)

where N is the number of patients in the test set, yn is the ground truth and
yn,est is the estimated sample obtained by projecting yn into the latent space
and reconstructing it.

21



Moreover, we also compare the marginal likelihood of the observable variable
eq. (3.4) on the test folds. Note that in Bayesian machine learning, we usually
compute the marginal likelihood, marginalised over the model parameters, and
use it to perform model comparison by evaluating it on the training set (seen
data). Here, we are instead computing the marginal likelihood marginalised
over the latent variable. This measure should on one hand penalise larger
dimensions of the latent space q, since the prior would spread on multiple di-
mensions and so decrease its value, thus avoiding overfitting. On the other
hand, there may be a leakage of information from the training set through the
model parameters, which can optimistically bias this measure. Therefore, we
decided to compute it on the unseen split (as for the MAE) rather than on the
whole dataset, so to rule out this potential bias.

Figure 4.2 shows the results of the 5-fold cross validation for the synthetic
dataset. For each iteration of the CV, we trained the model for 2000 EM
iterations, which allowed to reach convergence. According to both the MAE
and the marginal likelihood, the best latent dimension is q = 4. This represent
the value for which we have the minimum for the MAE and the maximum
for the marginal likelihood. For latent dimensions q > 4, we do not get any
improvements, meaning that further increasing the number of parameters does
not improve the quality of the reconstruction. Our model was able to recover
the true dimension of the latent space used for generating the data, qgen = 4.
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Figure 4.2 – 5-fold cross validation varying the latent dimension q for the
synthetic dataset
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4.1.2 Results and discussion

With the optimal value of q = 4 found by performing model comparison, we
retrained the model for 2000 epochs on the synthetic dataset.

Figure 4.3 shows an example of reconstruction of a random training sam-
ple. The procedure to obtain the reconstruction is the following: the original
data point is projected in the latent space by using the posterior distribution
eq. (3.5) and then reconstructed by applying the modelling equation eq. (3.1).
From the picture, we can clearly see that the first 4 dimensions (out of the
total d = 10 dimensions) of the time-series are all matching the uncertainty
region of the estimate identified by the model parameter σ.
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Reconstruction of a training sample - synthetic dataset

Figure 4.3 – Reconstruction of the first 4 dimensions of a training sample for
the synthetic dataset. Solid lines correspond to real data, dashed lines to
estimates.

Finally, we report the projection of the training data points on the latent
space. In fig. 4.4 we focus on the first two dimensions x0 and x1. From these
figures, we can observe that the points are distributed around the origin, with
the same variance and the independence among the 2 dimensions. Indeed when
we generated the synthetic dataset, we sampled from a N (0, I) and this was
captured in the latent space of the trained model.
In fig. B.1, we report all the pairwise plots of the 4 dimensions of the latent
space, where we observe the same distributions.
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Figure 4.4 – Projection of training points on the first 2 dimensions of latent
space for the synthetic dataset.

4.2 ADNI dataset

In this section we consider the Alzheimer’s Disease Neuroimaging Initiative∗

(ADNI) [17] dataset.
For our experiments, we consider 8 clinical scores, which are standardised
assessments given to patients after performing tasks and answering to spe-
cific questions: Alzheimer’s Disease Assessment Scale - Cognitive 11-tasks
version (ADAS11) [19], Mini-Mental State Examination (MMSE) [20], Clin-
ical Dementia Rating Scale - Sum of Boxes (CDRSB) [21], Functional Ac-
tivities Questionnaire (FAQ) [22] and Rey’s Auditory Verbal Learning Test
(RAVLT.immediate, RAVLT.learning, RAVLT.forgetting, RAVLT.perc.forgetting)
[23, 24]. In addition we consider 5 brain volumes measurements extracted from
Magnetic Resonance Imaging (MRI) scans: Whole Brain (WholeBrain), Ven-
tricles, Hippocampus, Middle temporal gyrus (MidTemp) and Entorhinal.
In total we have d = 13 features for each exam taken by each patient.
More information about the clinical scores, the volume data and the proce-
dures used to obtain them can be found in [25, 26].

∗Data acknowledgement: Data used in preparation of this thesis were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [17]. As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete listing
of ADNI investigators can be found in [18].
The ADNI was launched in 2003 as a public-private partnership, led by Principal Investi-
gator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
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The dataset contains for each patient several exams, each with an exam
date. We encode as tn the number of years from the first exam (baseline).
Finally, we performed some cleaning and preprocessing of the data. We re-
moved for instance the exams containing missing values (nan) and the patients
with only one exam. We also normalized each feature using min-max normal-
isation, so to range from 0 to 1.

After the preprocessing, we end up with a final dataset composed by a total
of 2019 exams from 505 patients (175 diagnosed with AD and 330 cognitively
normal).

4.2.1 Cross validation for hyperparameter tuning

For the ADNI dataset, we repeat the same 5-fold cross validation described in
section 4.1.1.

In fig. 4.5, we observe a monotonic increasing function for the marginal
likelihood and a monotonic decreasing function for the MAE. This is due to
the fact that the ADNI dataset is complex and high dimensional, hence it
requires a higher capacity latent space to reconstruct the data.
Nevertheless, we can notice that for q > 6, the relative variation of both the
MAE and the marginal likelihood is milder. Therefore we will consider q = 6
as the optimal dimension of the latent space for the following experiments.
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Figure 4.5 – 5-fold cross validation varying the latent dimension q for the ADNI
dataset
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4.2.2 Results and discussion

We train the model for 2000 iterations using q = 6, as discussed in the previous
section.

In fig. 4.6 we show the reconstruction of two training samples, one from a
cognitively normal (CN) subject and one from a patient affected by Alzheimer’s
disease (AD). The LSI model is able to reconstruct the trajectory of all the
displayed features (MMSE, FAQ, WholeBrain, Ventricles) for the two subjects.
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Figure 4.6 – Reconstruction of two training samples for the ADNI dataset.
Solid lines correspond to real data, dashed lines to estimates.

We then report the latent representation for the training data points. In
fig. 4.7 we show the projection on the latent dimensions x1 and x4, while in
fig. B.2 we report all the pairwise scatter plots for the 6 dimensions of q.
Interestingly, the observations coming from healthy individuals and the AD
patients form two separated clusters in the latent space represented in fig. 4.7.
We recall that the model has no knowledge of the diagnosis of the patient (it is
unsupervised), but because of the intrinsic difference between healthy and sick
patients, the data is projected in different regions of the latent space. This can
be exploited in case we need to perform classification of cognitively normal
subjects vs patients with Alzheimer’s disease, by using the classifier on the
latent space instead of the original higher dimensional space.
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Figure 4.7 – Projection of training points on the dimension x1 and x4 of latent
space for the ADNI dataset.

4.2.3 Medical interpretations

We give here a medical interpretation of the results obtained for the ADNI
dataset. From the analysis of the optimised parameters of LSI model, we would
like to understand the impact of AD on the clinical scores and biomarkers of
the patients. To this end, we exploited the generative capabilities of the latent
variable model and we simulated two synthetic patients, one cognitively normal
and one affected by AD. Since we observed that patients tends to clusters
according to the presence or not of the disease, we generated the synthetic
patients using the latent representations determined by the centroids of the
cluster of the healthy and of the AD patients. From these two latent points,
we computed the slope and the intercept of the resulting time-series, which
are given by:

intercept = V xn + µ (4.2)
slope = Wxn + ω (4.3)

recalling the model equation eq. (3.1).
Figure 4.8 shows the value of the intercept for the 2 synthetic patients as a bar
plot. If we focus on the clinical variables, we notice that the value of ADAS11,
CDRSB, FAQ, RAVL.forgetting and RAVLT.perc.forgetting are higher in the
AD patient with respect to the healthy one. These results match what we
expect from the known medical effects of the disease.
For instance, the Alzheimer’s Disease Assessment Scale - Cognitive 11-tasks
version (ADAS11) [19] measures the severity of cognitive dysfunction in Alzheimer’s:
an higher ADAS11 means more dysfunctions. Similarly the Clinical Dementia
Rating [21] tries to estimate the severity of dementia, in different cognitive cat-
egories: an high value may indicate the presence of dementia. The Functional
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Assessment Questionnaire (FAQ) measures the ability of performing daily ac-
tivities, higher means more dependence on others to perform those activities
[22]. Rey’s Auditory Verbal Learning Test aims to test the episodic memory
of the patient, and it is performed by reading 15 words to the patients and
ask him/her to recall them immediately and after a delay [23, 24]. As ex-
pected, the sick patients forgets more words than healthy ones after the delay
(RAVLT.forgetting, RAVLT.perc.forgetting).
The remaining clinical scores have the opposite trend. For instance, the ability
to immediately recall and learn the words diminishes in Alzheimer’s patients
(RAVLT.immediate, RAVLT.learning). Also the Mini Mental State Exam-
ination (MMSE), a simplified examination for the cognitive mental status,
diminishes.

Other interesting considerations can be done for the brain volumes ex-
tracted from MRI images. The volume of the whole brain (WholeBrain) dimin-
ishes in the AD case. Also the brain regions known to be affected from the dis-
ease diminishes in volumes: Hippocampus, Middle temporal gyrus (MidTemp)
and Entorhinal. The Ventricles, which are cavities inside the brain, are instead
enlarging. In conclusion, the intercept, i.e. the punctual value, for the clinical
and MRI volumes features changes from healthy to sick patients according to
the expected medical effects of the disease.
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Figure 4.8 – Value of the intercept for the features of 2 synthetic patients. The
values for the cognitively normal subject are plotted in blue, while the ones
for the Alzheimer’s patient are plotted in red.

We now consider the slope of the features for the 2 synthetic patients,
fig. 4.9. Firstly, we notice is that in all cases the absolute value of the slope for
AD is larger than for CN. If for instance we consider the MMSE, we notice that
for a cognitive normal patient, the slope is slightly negative, meaning that, with
ageing, the cognitive abilities are reducing. But the larger negative slope for
the AD synthetic patient may indicate that, in the presence of the disease, the
worsening is much faster. The same applies for all the other clinical scores: the

28



healthy subjects evolves toward the worsening of their cognitive and everyday
life abilities, but in the case of AD patients the worsening is more evident and
faster. As expected, all the brain volumes, except the Ventricles, are decreasing
faster in the case of dementia. The Ventricle are on the opposite increasing
faster. The only contradictory results is shown for RAVLT.forgetting, where
we have a change of sign for the slope, yielding to a negative slope (reduction)
for the AD case. Anyway, notice that the absolute value of the slope is very
small, thus making it more susceptible to possible estimation errors.
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Figure 4.9 – Value of the slope for the features of 2 synthetic patients. The
values for the cognitively normal subject are plotted in blue, while the ones
for the Alzheimer’s patient are plotted in red.
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Chapter 5

Extension to multi-centric studies

In this chapter, we present an extension of the latent slope-intercept model to
multi-centric studies, using a federated learning training scheme.

5.1 Motivation
The latent slope-intercept model we detailed in chapter 3 requires to be trained
on a centralised dataset. The access to large amount of clinical data generated
and stored in hospital or clinical centres becomes essential to provide good
generalisation of the model.
However, due to privacy policies (such as the European GDPR [27]), raw data
can not be shared across hospitals, nor with research centres. New learning
strategies should then be developed to securely handle data distributed in
different centres for training models.

5.2 Federated learning
In recent years, a new machine learning paradigm called federated learning
(FL) has gained popularity to solve the issue of applying models to secured
and sensitive decentralised data [28].
Traditional machine learning methods optimise the model parameters on a
training dataset stored locally, on the device where the computations are per-
formed. On the contrary, federated learning methods are specifically developed
to train a model in a distributed and decentralised manner, with the data split
across different clients.
In the biomedical context, every hospital or medical centre (the clients) locally
trains on their private datasets a model provided by a researcher through a
central server. Therefore, the clients return to the server the optimised pa-
rameters of their local models. Finally, the server combines those local models
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to generate a global one. These steps are repeated for several rounds of com-
munication clients-server, up to convergence: at each round, the clients use
the current global model to initialize the local training. In this way, the final
global model has been trained with more data (the union of all the private
datasets) and so it will possibly generalise better. The great advantage of
using FL is that the private medical data is never shared or disclosed to the
central server, nor to the researcher: only model parameters are communicated.

In the literature, several aggregation strategies, i.e. procedures to combine
the local models to get the global one, have been proposed. The standard
aggregation strategy is federated averaging (FedAvg) [28], which essentially
performs a weighted average of the local model parameters, based on the num-
ber of local samples. Algorithm 2 presents in details how the method works.
We denote θr the global parameters of the model at round r, θrc the parameters
of the local model at round r, nc the number of data points available in centre
c and n the total amount of data across all the centres, n =

∑
c nc.

Another strategy is FedProx [29], which is a generalisation of FedAvg that in-
cludes also a proximal term in the local function to optimise, so to avoid that
the local models deviate too much from the global one. This methods yields
to a more robust convergence, especially in the case of statistical heterogeneity
of the datasets.

Algorithm 2: Federated Averaging training scheme

server: randomly initialise global parameters θ0

foreach learning round r = 0, . . . R− 1 do
foreach client c in parallel do

server: send the current global parameters θr

client c : optimise the local parameters θr+1
c on the local

dataset using SGD and θr as starting point
client c : send the local parameters θr+1

c to the server
end
server: update the global parameters as θr+1 =

∑
c
nc

n
θr+1
c

end

FedAvg and FedProx are both designed specifically for training schemes
based on Stochastic Gradient Descent (SGD), and so they are suited for in-
stance for neural networks and deep learning architectures. On the contrary,
our model is following a Bayesian approach and its optimisation scheme is

31



based on the Expectation-Maximisation.

Balelli, Silva, and Lorenzi [11] recently proposed a new fully Bayesian fed-
erated learning scheme for heterogeneous and distributed datasets, where pa-
rameters are optimised using the EM method.
The main idea behind the framework in [11] is to assume the existence of a
hierarchical probabilistic structure, where the local parameters in each centre
are sampled from a global distribution, and in turn the local data sampled from
their local distribution, parametrised by the local parameters. The federated
learning scheme developed in [11] can be adapted to propose a multi-centric
extension to the LSI model presented in chapter 3.

5.3 Federated latent slope-intercept model
We consider C centres: each centre, indexed by c, owns a private dataset,
composed of longitudinal data from Nc patients.

Recalling the notation of the centralised version of the model (see chapter 3
and appendix A), we set θ = {W,V, ω, µ, σ2} as the ensemble of the unknown
global model parameters, while θc denotes the local parameters for centre c.
We assume that for every c = 1, . . . , C, the parameters θc are described by a
distribution p(θc|θ) parametrised by θ, the global parameters.
We can set the distributions p(θc|θ) to be Gaussian:

Wc |W ∼ N (W, σ2
W ) (5.1)

Vc |V ∼ N (V, σ2
V ) (5.2)

ωc |ω ∼ N (ω, σ2
ω) (5.3)

µc |µ ∼ N (µ, σ2
µ) (5.4)

for all the parameters except σ2
c , where a more reasonable choice may be an

Inverse-Gamma distribution:

σ2
c |σ2 ∼ Inverse-Gamma(α, β) (5.5)

such that 〈σ2
c 〉 = σ2.

The Inverse-Gamma distribution has a strictly positive support and it is there-
fore suited for σ2

c which must be non negative.

The training of the federated LSI model is performed both locally and
globally. The local step is using the EMmethod to find a maximum a posteriori
(MAP) estimate, instead of a maximum likelihood (ML) estimate.
In each centre, we aim to optimise the marginal likelihood of the data p(yn|θc)
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(marginalised over the latent space) eq. (3.4), weighted by a prior p(θc|θ) as
follow:

arg max
θc

p(yc|θc)p(θc|θ) = arg max
θc

ln p(yc|θc) + ln p(θc|θ) (5.6)

The prior p(θc|θ) can be seen as a regularisation term, that forces the local
distribution to not deviate too much from the global one.
At the server level, θc are aggregated using a maximum likelihood estimation
on p(θc|θ) to determine the global parameters θ. Notice that by choosing a
Gaussian formulation for p(θc|θ), the ML estimate for the parameters θ is the
mean of the θc. The estimation for the Inverse-Gamma can be performed using
the method proposed by [30].

The federated training procedure is summarised in Algorithm 3. The train-
ing can be implemented and run on one single machine, using different threads
to simulate the various clients and keeping the private datasets separated. In
this way, it is easy to test the convergence of the model and verify its correct
functioning.

Algorithm 3: Federated latent slope-intercept model

server: randomly initialise global parameters θ
foreach learning round r = 0, . . . R− 1 do

foreach client c in parallel do
server: send the current global parameters θ
client c : optimise the local parameters θc on the local
dataset using EM MAP on p(yc|θc)p(θc|θ)
client c : send the local parameters θc to the server

end
server: optimise the global parameters θ using ML on p(θc|θ)

end
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5.4 Towards real world application of multi-centric
studies

After studying a theoretical framework for extending the latent slope-intercept
model with a federated learning scheme (section 5.3), we devoted part of this
work to the investigation of current software technologies for the effective de-
ployment of federated learning in real scenarios.

For deploying a federated model in a real production environment, such as
in hospitals and clinics, we need to satisfy several requirements: (a) to create
a stable and easy-to-use software to install in the hospitals (the clients of the
federated networks), where the actual training is taking place, (b) to create
a central server that launches and coordinates the federated training and (c)
to create an interface for the data scientists and researchers to easily deploy
arbitrary machine learning models and train them with the data stored in the
multiple centres, without getting access to the raw data.

FedBioMed [31, 32] is a framework developed in the Epione team at Inria
and designed for federated learning in healthcare. The aim of this framework
is precisely to provide the requirements listed above. During the work for
this thesis, I contributed to the development of FedBioMed. In particular, I
contributed to the complete code re-factoring of the framework, moving to the
use of PySyft [33], a new promising Python library for federated learning.
We are planning to extend the framework to allow not only SGD based training
(suited for neural networks and deep learning) but also general and arbitrary
training schemes, like for instance the EM algorithm used in the federated
latent slope-intercept model. With FedBioMed we are trying to create one of
the first framework of this kind, ready for deployment in real hospitals and
actually usable by researches and clinicians.
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Chapter 6

Global disease progression model

The LSI model (chapter 3) makes the assumption that the time evolution
is linear for each dimension. For the specific case of longitudinal data from
Alzheimer’s patients (chapter 4), this assumption can be reasonable since we
consider follow-up visits that are usually few and close in time from the first
visit (baseline).
But, if we want to consider instead a longer time evolution (for instance the
entire history of the disease), this assumption is probably not holding. Indeed
we expect that for a sick patient in a preliminary phase of the disease, the rate
of variation will be small and it will abruptly accelerate going forward in the
progression of the disease.
Moreover, it would be of great interest to estimate a global disease progres-
sion. So far, we have been studying individualised disease progressions, i.e.
the evolution of the biomedical parameters for each specific individual. Now,
we would like to find a global disease progression, so that the current medical
status of each patient can be compared to it to understand the current stage
of the disease in the global evolution.

More formally, we assume the existence of a global latent progression of
the disease x(s) along a common disease time reference s. Notice that s is not
directly linked to the variable tn which, in our experiments with the ADNI
dataset, is the time (in years) from the first visit of patient n. Indeed, each
patient can take its first visit at a different stage of the disease, and the disease
itself can appear at different age in different patients.
From the generative equation eq. (3.1), we can write in expectation:

y(t, x(s)) = t(Wx(s) + ω) + V x(s) + µ (6.1)

by making explicit the dependency of y on t and x(s).
We can then consider the eq. (6.1) as a first order Taylor approximation of the
global disease evolution around t ≈ 0.

35



For every x(s), we recall in eq. (6.1) the intercept term V x(s) + µ as the
punctual value of y at time t = 0 and the slope term Wx(s) +ω as the rate of
variation along the time t. From this, we write the global disease progression
as a function of s, considering the value of the intercept term at x(s):

y∗(s) := y(0, x(s)) = V x(s) + µ (6.2)

and we impose its first derivative with respect to s to be equal to the slope
term at x(s):

dy∗(s)

ds
:=

dy(t, x(s))

dt
= Wx(s) + ω (6.3)

By applying the chain rule of calculus, from eq. (6.2) we can write:

dy∗(s)

ds
=
dy∗(s)

dx

dx

ds
= V ẋ(s) (6.4)

and by imposing the condition in eq. (6.3) we obtain:

V ẋ(s) = Wx(s) + ω (6.5)

Finally, grouping eqs. (6.2) and (6.5), we get the following linear time-invariant
system: {

ẋ(s) = V +Wx(s) + V +ω

y∗(s) = V x(s) + µ
(6.6)

where V + = (V TV )−1V T is the pseudo-inverse of V .
Solving eq. (6.6) using the standard methods for linear dynamical systems, we
get:

x(s) = esV
+W (x(0) + (V +W )−1V +ω)− (V +W )−1V +ω (6.7)

y∗(s) = V (esV
+W (x(0) + (V +W )−1V +ω)− (V +W )−1V +ω) + µ (6.8)

Notice that the progression of the disease is exponential in s.
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Chapter 7

Conclusions

In this project, we proposed the latent slope-intercept model, a latent variable
model for the analysis of longitudinal data, based on Probabilistic Principal
Component Analysis (PPCA).

Our tests focused in the first place on the application of the model to a
synthetic dataset, created exploiting the generative capabilities of the model
itself. A 5-folds cross validation has been applied to choose the best value
for q, the dimension of the latent space and the only hyperparameter of the
model. The optimal value for q we found matches with the value of qgen, the
ground truth dimension of the latent space. Moreover, the model was able to
well reconstruct the training data starting from their projection on the latent
space.

We then focused on the application on medical data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [17]. By plotting the latent repre-
sentations of the training data, we noticed that the points corresponding to
a patient affected by Alzheimer’s are distributed in a different region of the
space with respect to the ones corresponding to healthy subjects. This differ-
entiation has been learned by the model without ever providing it with the
diagnosis of each patient.
We simulated two subject, one affected by AD and one cognitive normal, and
we draw some medical conclusion on the estimated model parameters. In par-
ticular, we notice that the intercept (punctual value) of the biomarkers for
AD patient have more pathological values than those of the healthy patient,
consistently to the medical knowledge. Even more interestingly, the slopes of
the biomedical parameters for AD patients are, in absolute value, higher than
a healthy patient. This means that the model captured the fact that AD yields
to a rapid worsening of the clinical status, in contrast to normal ageing.
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We proposed an extension to the model, so that it can be trained with a
federated learning scheme using data distributed in different centres. As we
already stated, this is particularly relevant for medical data, which often can-
not be transmitted outside of the hospital or clinic where they are captured.
With this extension, the model can exploit the different private datasets for
training, without requiring them to be moved in a centralised server.

Moreover, a global disease progression model has been proposed starting
from the local individual progressions captured by LSI. With this generalisa-
tion, we get a solution of a dynamical system that allows us to draw an absolute
disease trajectory over time in the latent space. From these, we expect to see
an evolution from the cluster of healthy patients toward the portion of the
space mapping AD patients.

The latent slope-intercept model presents several innovations with respect
to currently available methods. First of all, it allows to analyse with a simple
framework longitudinal data, of possibly different length in time. Moreover,
due to the fact that the model is linear, it is very easily interpretable. Indeed,
we were able to interpret the value and the speed of each biomarker and com-
pare them for a sick and healthy patient. This is something very important in
the medical field, and it is something that is usually not possible with more
complex non-linear model, like for instance neural networks and deep learning,
which are often treated as black boxes. Moreover, LSI presents the advantages
of the Bayesian framework, such as providing a generative distribution, esti-
mating the uncertainty of the results, and allowing to use automatic Bayesian
model selection.
Finally, we recall that, beyond the biomedical motivation at the basis of this
project, the proposed LSI model is general and of potential application to any
kind of dataset.

As future work, we will implement in Python and test the two proposed
extensions of the model: the federated version of LSI (chapter 5) and the global
disease progression model (chapter 6).
Among other possible improvements of the LSI, we can indicate the extension
to multi-view data, i.e. data coming from different sources (like MRI images,
PET images, clinical scores) that up to now were simply concatenated and
considered as a single view. Finally, we can exploit the capability of PPCA to
handle missing data to perform a more complete analysis on the ADNI dataset,
including incomplete exams that we excluded in the tests performed in this
thesis.
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Appendix A

Latent slope-intercept model
formulation

A.1 Model definition
For every subject n, we have:

yn = tn ⊗ (Wxn + ω) + 1Tn ⊗ (V xn + µ) + E
= (tn ⊗W + V †)xn + tn ⊗ ω + µ† + E

(A.1)

where

• tn = [tn1 . . . tnTn ]T is a Tn vector of time instants, different for each subject n

• yn are the samples for subject n. It is a vector Tnd, where Tn is the number of
time instants and d is the number of features. It is the vectorisation (row-major)
of a matrix Yn, of dimensions Tn × d, where each row represents a measurement
performed at the same time instant:

yn = vec(Yn) = vec


 yntn11 . . . yntn1d

...
yntnTn1

. . . yntnTnd


 =



yntn11
...

yntn1d
...
...

yntnTn1...
yntnTnd


• xn is the latent variable, dimension q

• W is the projection matrix of the slope on the latent space, dimension d× q

• V is the projection matrix of the intercept on the latent space, dimension d× q

• ω is the average slope, dimension d
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• µ is the average intercept, dimension d

• E ∼ N (0, σ2ITnd) is an additive Gaussian noise, iid for every subject and for every
time instant

• V † = 1Tn ⊗ V and µ† = 1Tn ⊗ µ, for a more compact notation

• ⊗ is the Kronecker product

In particular, focusing at a generic time instant t, from eq. (A.1) we have:

ynt = t(Wxn + ω) + V xn + µ+ ε

= (tW + V )xn + tω + µ+ ε
(A.2)

and ε ∼ N (0, σ2Id).

A.1.1 Likelihood and marginal likelihood

From eq. (A.1), we can derive the likelihood of the model to generate the data ynt, given
the latent representation xn:

yn|xn ∼ N ((tn ⊗W + V †)xn + tn ⊗ ω + µ†, σ2ITnd) (A.3)
likelihood

By considering the following prior on the latent variable xn:

xn ∼ N (0, Iq) (A.4)
prior

we can derive the marginal likelihood, i.e. the likelihood of the data yn marginalised
over the prior xn, by applying a simple linear transformation of Gaussians:

yn ∼ N (tn ⊗ ω + µ†, Cn) (A.5)
marginal likelihood

where Cn = σ2ITnd + (tn ⊗W + V †)(tn ⊗W + V †)T

From eq. (A.5), we can notice that, for the same subject n, the observations ynt from
different time instants are not independent.

A.1.2 Posterior distribution

We want to derive p
(
xn|yntn1 , . . . , yntnTn

)
. We can do that applying Bayes rule:

p(xn|yntn1 , . . . , yntnTn
) =

p(yntn1 , . . . , yntnTn
|xn)p(xn)

p(yntn1 , . . . , yntnTn
)

(A.6)

Since the likelihood and the prior are Gaussian, the posterior will be Gaussian as well
because of conjugacy. Therefore, it is sufficient to derive its mean and variance, by
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comparing what we get from the numerator of eq. (A.6) to the final form of the posterior
we expect. The form of the posterior, omitting the terms not dependent on xn, is given
by:

xn|yntn1 , . . . , yntnTn
∼ exp

{
−1

2
(xn −m)TΣ−1(xn −m)

}
∼ exp

{
−1

2
xTnΣ−1xn −

1

2
mTΣ−1m+ xTnΣ−1m

}
∼ exp

{
−1

2
xTnΣ−1xn + xTnΣ−1m

}
(A.7)

As reported above, we don’t have independence among different time instants of ynt, but
we have conditional independence of ynt|xn. We can exploit this fact and write:

p(yntn1 , . . . , yntnTn
|xn) = p(yntn1|xn) . . . p(yntnTn

|xn)

So,(
yntn1 , . . . , yntnTn

|xn
)

(xn)

∼ exp

{
− 1

2σ2

∑
t∈tn

(
||ynt − (tW + V )xn − tω − µ||2

)
− 1

2
xTnxn

}

∼ exp

{
− 1

2σ2

∑
t∈tn

(
xTn (tW + V )T (tW + V )xn − 2xTn (tW + V )T (ynt − tω − µ)

)
− 1

2
xTnxn

}

∼ exp

{
−1

2
xTn

(
1

σ2

∑
t∈tn

(tW + V )T (tW + V ) + I

)
xn + xTn

(
1

σ2

∑
t∈tn

(tW + V )T (ynt − tω − µ)

)}
(A.8)

By comparing eqs. (A.7) and (A.8), we get

Σ−1 =
1

σ2

∑
t∈tn

(tW + V )T (tW + V ) + I =
1

σ2

(∑
t∈tn

(tW + V )T (tW + V ) + σ2I

)

Σ = σ2

(∑
t∈tn

(tW + V )T (tW + V ) + σ2I

)−1
= σ2M−1

n (A.9)

and

Σ−1m =
1

σ2

∑
t∈tn

(tW + V )T (ynt − tω − µ)

m = M−1
n

∑
t∈tn

(tW + V )T (ynt − tω − µ) (A.10)

Overall the posterior is given by:

xn|yntn1 , . . . , yntnTn
∼ N (M−1

n

∑
t∈tn

(tW + V )T (ynt − tω − µ) , σ2M−1
n ) (A.11)

posterior

withMn =
∑

t∈tn(tW+V )T (tW+V )+σ2I = τnW
TW+ηnW

TV +ηnV
TW+TnV

TV +σ2I
and ηn =

∑
t∈tn t, τn =

∑
t∈tn t

2.
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A.1.3 Predictive distribution

We derive the predictive distribution ynt∗ |yntn1 , . . . , yntnTn
, to compute predictions for

future time instants. Combining the posterior eq. (A.11) and the likelihood for a new
time instant t∗ :

ynt∗ |xn ∼ N ((t∗W + V )xn + t∗ω + µ, σ2I)
we get the following predictive distribution:

ynt∗|yntn1 , . . . , yntnTn
∼ N ((t∗W + V )M−1

n

∑
t∈tn

(tW + V )T (ynt − tω − µ) + t∗ω + µ,

σ2I + σ2(t∗W + V )M−1
n (t∗W + V )T ) (A.12)

predictive

by marginalising on xn.

A.2 Parameters estimation
We would like to maximise the marginal likelihood eq. (A.5) with respect to the param-
eters of the model (W , V , µ, ω, σ2). We can do that using the EM algorithm.
We start by deriving the complete log-likelihood of the parameters, which is given by:

L =
∑
n

ln p(yntn1 , . . . , yntTn , xn) =
∑
n

(∑
t∈tn

ln p(ynt|xn) + ln p(xn)

)
=

= −
∑
n

(∑
t∈tn

(
d

2
lnσ2 +

1

2σ2
‖ynt − (tW + V )xn − tω − µ‖2

)
+

1

2
‖xn‖2

)
=

= −
∑
n

(∑
t∈tn

(
d

2
lnσ2 +

1

2σ2

(
‖ynt − tω − µ‖2 + xTn (tW + V )T (tW + V )xn+

−2xTn (tW + V )T (ynt − tω − µ)
))

+
1

2
‖xn‖2

)

We compute its expectation with respect to xn|ynt:

〈L〉 = −
∑
n

(∑
t∈tn

(
d

2
lnσ2 +

1

2σ2

(
‖ynt − tω − µ‖2 + Tr((tW + V )T (tW + V )〈xnxTn 〉)

−2〈xn〉T (tW + V )T (ynt − tω − µ)
))

+
1

2
Tr(〈xnxTn 〉)

)
(A.13)

expected complete
log-likelihood

where the first and second order moments of xn|ynt are given by:

〈xn〉 = M−1
n

∑
t∈tn

(tW + V )T (ynt − tω − µ) (A.14)

〈xnxTn 〉 = σ2M−1
n + 〈xn〉〈xn〉T (A.15)
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The strategy is now to maximise the expected complete log-likelihood eq. (A.13) with
respect to the model parameters. It was proven that doing that is equivalent to maximise
the marginal likelihood eq. (A.5).

Estimation of µ̃

To estimate the optimal value for µ, we rearrange the expected log-likelihood eq. (A.13),
excluding the terms not depending on µ:

〈L〉 = −
∑
n

∑
t∈tn

1

2σ2

(
µTµ− 2(ynt − tω)Tµ+ 2〈xn〉T (tW + V )Tµ

)
we differentiate it with respect to µ and set the derivative to 0:

∂〈L〉
∂µ

= −
∑
n

∑
t∈tn

1

2σ2

(
2µ− 2(ynt − tω) + 2(tW + V )〈xn〉

)
= 0

=⇒ µ̃ =
1∑
n Tn

∑
n

∑
t∈tn

(ynt − (tW + V )〈xn〉 − tω) (A.16)

Estimation of ω̃

We proceed in the same way for deriving ω̃ :

〈L〉 = −
∑
n

∑
t∈tn

1

2σ2

(
t2ωTω − 2t(ynt − µ)Tω + 2t〈xn〉T (tW + V )Tω

)
∂〈L〉
∂ω

= −
∑
n

∑
t∈tn

1

2σ2

(
2t2ω − 2t(ynt − µ) + 2t(tW + V )〈xn〉

)
= 0

=⇒ ω̃ =
1∑
n τn

∑
n

∑
t∈tn

t (ynt − (tW + V )〈xn〉 − µ) (A.17)

Estimation of W̃

We rewrite the expected log-likelihood eq. (A.13) to simplify the computation of the
derivative with respect to the entries of the matrix W . We also omit the constant terms
with respect to W .

〈L〉 = −
∑
n

∑
t∈tn

1

2σ2

(
t2 Tr(W TW 〈xnxTn 〉) + tTr(W TV 〈xnxTn 〉) + tTr(V TW 〈xnxTn 〉)

− 2t〈xn〉TW T (ynt − tω − µ)
)

We differentiate the previous equation with respect to W and set the derivative to 0,
obtaining:

∂〈L〉
∂W

= −
∑
n

∑
t∈tn

1

2σ2

(
2t2W 〈xnxTn 〉+ 2tV 〈xnxTn 〉 − 2t(ynt − tω − µ)〈xn〉T

)
= 0

=⇒ W̃ =
(∑

n

∑
t∈tn

t(ynt − tω − µ)〈xn〉T − tV 〈xnxTn 〉
)(∑

n

τn〈xnxTn 〉
)−1

(A.18)
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with τn =
∑

t∈tn t
2

Estimation of Ṽ

We proceed in the same way for deriving Ṽ :

〈L〉 = −
∑
n

∑
t∈tn

1

2σ2

(
Tr(V TV 〈xnxTn 〉) + tTr(W TV 〈xnxTn 〉) + tTr(V TW 〈xnxTn 〉)

− 2〈xn〉TV T (ynt − tω − µ)
)

∂〈L〉
∂V

= −
∑
n

∑
t∈tn

1

2σ2

(
2V 〈xnxTn 〉+ 2tW 〈xnxTn 〉)− 2(ynt − tω − µ)〈xn〉T

)
= 0

=⇒ Ṽ =
(∑

n

∑
t∈tn

(ynt − tω − µ)〈xn〉T − tW 〈xnxTn 〉
)(∑

n

Tn〈xnxTn 〉
)−1

(A.19)

Estimation of σ̃2

We proceed in the same way as for deriving σ̃2 :

∂〈L〉
∂σ2

= −
∑
n

∑
t∈tn

d

2σ2
− 1

2(σ2)2
(
‖ynt − tω − µ‖2 + Tr((tW + V )T (tW + V )〈xnxTn 〉)

− 2〈xn〉T (tW + V )T (ynt − tω − µ)
)

= 0

=⇒ σ̃2 =
1

d
∑

n Tn

∑
n

∑
t∈tn

(
‖ynt − tω − µ‖2 + Tr((tW + V )T (tW + V )〈xnxTn 〉)

− 2〈xn〉T (tW + V )T (ynt − tω − µ)
)

(A.20)
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Appendix B

Additional figures

We report here some additional figures from the experiments performed in chapter 4.
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Figure B.1 – Pairwise scatter plots of the latent space of dimension q = 4 for the synthetic
dataset. Notice that the latent dimensions are independent on each others and centred
around the origin.
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Figure B.2 – Pairwise scatter plots of the latent space of dimension q = 6 for the ADNI
dataset. Notice that for some latent dimensions the AD and CN subjects form two
separated clusters.
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