
POLITECNICO DI TORINO

Dipartimento di Elettronica e Telecomunicazioni
Corso di Laurea Magistrale in Communications and Computer Networks Engineering

Tesi di Laurea Magistrale

DPIpot - Analysis of Anomalous Traffic Via
DPI Enhanced Honeypots

Supervisors:
Prof. Marco Mellia
Prof. Idilio Drago

Candidate:
Tommaso Rescio

S259578

April 2021

Contents

1 Introduction 3
1.1 Motivation . 4
1.2 Research questions . 6
1.3 Methodology . 6
1.4 Organization of the thesis . 9

2 State of the art 10
2.1 Deep Packet Inspection . 10
2.2 Honeypots . 11

3 Comparison of DPI tools 17
3.1 Introduction . 17
3.2 Datasets and Methodology . 18

3.2.1 Selection of DPI Tools . 19
3.2.2 Selection and pre-processing of traces 21
3.2.3 Matching flow labels . 22

3.3 Results . 25
3.3.1 Labelled flows per protocol 25
3.3.2 Classification performance 26
3.3.3 How many packets are needed for DPI? 27

3.4 Benchmarking . 28
3.5 Outcome . 31

4 Implementation 32
4.1 Orchestrator . 33

I

4.2 DPIpot . 34
4.3 Benchmarking . 36

5 Analysis of the captured traffic 38
5.1 Datasets and Methodology . 38

5.1.1 Selection of the scenarios . 39
5.1.2 Preprocessing and characterization 40

5.2 Different attack phases . 42
5.3 Replying to all connections . 44

5.3.1 Destination port analysis . 44
5.3.2 Source Autonomous System analysis 50

5.4 Exposing different services . 54
5.4.1 Destination port analysis . 54
5.4.2 Source Autonomous System analysis 56

5.5 Identifying protocols on-the-fly . 59

6 Conclusions and future works 61
6.1 Conclusions . 61
6.2 Future works . 62

II

List of Figures

1.1 Steps. 7
1.2 Complete framework. 8

2.1 Example of a network with an honeypot. 11
2.2 T-Pot framework. 15

3.1 Testing methodology. 19
3.2 Percentage of labelled flows for each tool. The last bar in the plots

reports percentages for our reference label. 23
3.3 Average per flow confidence score for the top reference labels. 26
3.4 Accuracy when increasing the number of packets per flow. 29

4.1 Final configuration. 32
4.2 DPIpot overview. 35
4.3 DPIpot transaction rate. 37

5.1 Methodology. 39
5.2 Final deployment. 39
5.3 Most contacted ports in the time. 42
5.4 General characterization . 44
5.5 CDF of flows per ports in the different infrastructures. 45
5.6 Increment with respect to the Darknet per port. 45
5.7 Most contacted ports in the time. 48
5.8 Delta. 49
5.9 CDF of flows per AS in the different infrastructures. 50
5.10 Increment with respect to the Darknet per AS. 50

III

5.11 Most contacted ASes in the time. 52
5.12 Delta. 53
5.13 Total volume per service. 54
5.14 Increment of the number of flows with respect to the Darknet per service. 55
5.15 Increment in number of flows with respect to the Darknet of non-active

services. 57
5.16 Increment in number of flows per AS with respect to the Darknet per

service. 58
5.17 Top 15 protocols. 59
5.18 Top 15 ports for each DPIpot supported service. 60

IV

List of Tables

3.1 Flows exported by the different tools before the pre-processing. 20
3.2 Macrotraces characteristics with pre-processing results. 22
3.3 Label standardization . 24
3.4 Example of flow label constistency and score. 24
3.5 Summary of classification results. 28
3.6 Peak memory occupation and processing time. 30

5.1 Characterization of the infrastructure 41
5.2 Ports mapped to services. 46

V

Abstract

The exponential spread of the Internet over the last decades carries
a simultaneous increase and sharpening of cybersecurity attacks. Given
that the current information society is almost totally dependent on techno-
logical solutions, cyber-attacks generate truly disastrous repercussions on
human relationships, on work activities, on scientific progress and on eco-
nomic growth. Bearing in mind these aspects, in this thesis we contribute
to the development of automatic methods for monitoring the network and
identifying cyber-threats.

For this purpose, we implement a flexible set of honeypots, i.e., de-
coys that mimic a target for hackers and use their intrusion attempts to
gain information about them. More in detail, we consider a flexible infras-
tructure, whose configuration can be changed dynamically to select which
kind of services to expose, on which ports, how to reply, etc. We analyze
the impact that different deployments can have on the type of information
obtained about attacks. In particular, the goal is to understand a) what
is the share of traffic reaching the honeypots that arrives at different at-
tack phases (i.e., just probing open ports, establishing the three-way hand-
shake, actually sending packets or performing login attempts), b) whether
the attack pattern changes, when we start replying to all the connection
requests, c) whether the attack pattern changes depending on the kind of
services we expose, d) whether by identifying protocols on-the-fly before
replying, even when traffic reaches non-standard ports, influences the at-
tack patterns. In order to identify protocols on-the-fly, we propose a novel
solution called DPIpot, an infrastructure that is able to accept requests
on all ports and to recognize the attacker’s protocol through DPI (Deep
Packet Inspection) and to address the input traffic to the most appropriate
protocol-specific honeypot. To understand the changes in the traffic hit-
ting each scenario, we use Darknet traffic as a baseline. A Darknet is a
network composed of IP addresses that are publicly reachable but do not
provide nor host any service. The addresses in the Darknet, as opposed to
the honeypot ones, passively record the received packets, without answer-
ing any request. By comparing these two ecosystems, we are able to spot

1

and highlight the most significant differences, and gain a wider knowledge
of the attackers’ behavior.

As a main result of the DPI analysis, we observed that all tools reach
steady-state classification after one packet, suggesting they can be ex-
ploited in online scenarios. Indeed, we choose nDPI as the best library
to perform Deep Packet inspection on-the-fly since it is the most accurate
- with respect to the other considered DPI tools - and it provides a good
trade-off between accuracy and number of supported protocols.

As a main result of the traffic analysis, we record an increment in traffic
when we start replying: this increment is visible both in traffic volume and
the number of remote sources reaching the infrastructure. We then observe
that often, when the attacker finds an active service, it immediately starts
probing adjacent ports. When we expose only some services, we observe
a significant increase only for those services. Furthermore, in most of
the cases, there is no significant difference between replying at level four
only or at layer seven only, except for some specific services, like RDP.
Thus, in many cases, completing the three-way handshake is enough to
engage more attackers. The analysis of the traffic reaching DPIpot leads
to other interesting observations. We record that attacks on non-standard
ports are very common, and replying with the correct protocol attracts a
larger volume of attacks. For some services, we see that the largest part of
the traffic is directed to non-standard ports.

2

Chapter 1

Introduction

The exponential spread of the Internet over the last few years carries a simultaneous
increase and sharpening of cybersecurity attacks. Given that the information society is
almost totally dependent on technological solutions, cyber-attacks can generate truly
disastrous repercussions on human relationships, work activities, scientific progress
and economic growth. It is enough to think to our everyday life activities, the frequent
use of smart working in the most varied working sectors, the unstoppable expansion
of social media, and the use of information technology in most of the production ac-
tivities, to understand that a disservice caused by a cyberattack can damage not only
human rights but also the very functioning of society. For example, in November 2016,
more than 900,000 Deutsche Telekom routers went offline after being infected with a
variant of Mirai1, a malware designed to operate on Internet-connected devices, espe-
cially IoT devices, making them part of a botnet that can be used for large-scale cyber
attacks. In October 2013, Adobe reported that hackers had stolen IDs and encrypted
passwords for 38 million active users: Adobe has forced to pay 1 million in legal fees
and an undisclosed amount to users to settle claims of violating the Customer Records
Act and unfair business practice 2. Therefore, one of the main objectives of IT se-
curity is the search for strategies capable of preventing the risk of threats [1]. More
specifically, the goal is to preserve confidentiality (the concealment of information or

1https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-

offline/
2https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-

the-21st-century.html

3

https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html

resources), integrity (the trustworthiness of data or resources, i.e. preventing improper
or unauthorized change) and availability (the ability to use the information or resource
desired) of any digital and information technologies [2].

The collection and analysis of accurate, concise, and high-quality information
about malicious activities is especially helpful in gaining insights about zero-day
threats and newly born botnets. Since attackers are much faster in exploiting the vul-
nerabilities than vendors are in creating and rolling out patches [3], relying only on
techniques such as Intrusion Detection Systems, Intrusion Prevention Systems, an-
tivirus and dynamic firewalls is nowadays not enough. It is indeed necessary to resort
to automatic anomaly identification tools.

In this thesis, we present a honeypot infrastructure able to contribute to the recog-
nition of new threats and botnets, as well as new attack patterns. We analyze how the
traffic hitting the infrastructure changes when we deploy different sets of honeypots
exposing different vulnerable services. Honeypots are systems that are intentionally
left vulnerable, with the final objective of luring the attacker to gain a larger insight
into his activities. We characterize the changes in traffic using as a reference baseline
the unwanted traffic hitting our Darknet, a set of advertised IP addresses that capture
these packets without answering or performing any other active request.

1.1 Motivation

Since the Internet traffic is constantly growing, also the volume of cyberattacks hitting
the networks is continuously increasing and adapting to exploit new vulnerabilities.
For this reason, advanced and automatic methods to detect and prevent them are nec-
essary. The Cisco Annual Internet Report3 confirms such trends in the traffic growth,
together with the need for more sophisticated countermeasures against cyber attackers:

• there will be 5.3 billion total Internet users (66 per cent of the global population)
by 2023, up from 3.9 billion (51 per cent of the global population) in 2018;

• the number of devices connected to IP networks will be more than three times
the global population by 2023;

3https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/

annual-internet-report/white-paper-c11-741490.html

4

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

• there will be 29.3 billion networked devices by 2023, up from 18.4 billion in
2018;

• the total number of global mobile subscribers will grow from 5.1 billion (66 per
cent of the population) in 2018 to 5.7 billion (71 per cent of the population) by
2023;

• the total number of DDoS attacks will double from 7.9 million in 2018 to 15.4
million by 2023;

• there was a 776% growth in attacks between 100 Gbps and 400 Gbps from 2018
to 2019.

It is clear that a manual inspection of the traffic is not enough anymore, but it
is necessary to develop automatic methods of network monitoring and identification
of anomalies that are able to highlight cyber-attacks. Darknets, defined as sets of IP
addresses that are advertised without answering any traffic, are one of the tools used to
collect unwanted traffic, to understand the events on the network. By analysing such
traffic, it is indeed possible to find out not only possible attacks but also anomalies
and failures. However, a clear drawback of Darknets is that they do not reply to any
request, therefore it is difficult to understand the exact behaviour of a possible attack.
Thus, the main idea of this thesis is to start replying to this type of traffic to broaden
our view on the characterization and understanding of such traffic. For this purpose,
we use honeypots, i.e., systems that mimic a target for hackers and use their intrusion
attempts to gain information about them. This is a challenging task since state-of-the-
art honeypots are not flexible: they mostly present a vertical architecture, i.e., they are
capable of reproducing a specific service protocol, often only if linked to a specific
port. For this reason, we firstly develop a smart meta-honeypot that is able not only
to accept requests on all ports but also to recognize the attacker’s protocol through
DPI (Deep Packet Inspection) and to address the input traffic to the most appropriate
protocol-specific honeypot.

It is crucial to extend the existing honeypot environment with more flexible solu-
tions, as the mapping protocol-port is not univocal anymore. We can think for instance
of a strategy used in cybersecurity called ”security through obscurity”: the main idea is
to implement secrecy as the main method of providing security to a system or compo-
nent. For example, using port 8080 instead of port 80 for web traffic. For this reason,

5

it is not uncommon to observe attacks on nonstandard ports, still hosting well-known
services. This is one of the reasons why we need to create a flexible and scalable
framework in which more honeypots collaborate with the intent of luring the attacker
for longer periods, and therefore gaining as much information as possible about at-
tacks.

1.2 Research questions

In this thesis, we want to understand the impact of different deployments on the type
of information obtained about attacks. Here we investigate whether these possible
variations impact the type of information obtained by the honeypots. More in detail,
we answer the following questions:

• What is the share of the traffic reaching the honeypots that arrives at different at-
tack phases (i.e., just probing open ports, establishing the three-way handshake,
actually sending packets or performing login attempts)? Which is the percentage
of traffic not opening a connection?

• Does the attack pattern change if we start replying to all the connection requests?

• Does the attack pattern change depending on the kind of services we expose?

• Does identifying protocols on-the-fly before replying, even when traffic reaches
non-standard ports, influence the attack patterns?

1.3 Methodology

Our methodology is based on different steps, as we see in Fig. 3.1:

1. Analysis of DPI tools, to choose the best performing DPI tool in terms of both
accuracy (how much the library is able to recognize a specific protocol without
errors) and efficiency (which is the minimum number of packets that the library
needs to provide the correct protocol).

2. Analysis of existing state-of-the-art honeypots to identify the most up-to-date
ones and consequently choose those that cover the largest number of services;

6

Deep Packet Inspection

Study of the state-of-the-art
Deep Packet Inspection Tools.

Honeypots

Study of the most famous
state-of-the-art honeypots.

Analysis of the traffic

Characterization of the
collected traffic.

Deployment

Creation of the infrastructure and
deployment on a real environment.

Figure 1.1: Steps.

3. Deployment to create the IT infrastructure and expose it to remote traffic;

4. Analysis of the collected traffic: we provide a breakdown analysis of the col-
lected traffic intending to understand a) if there is an increase in the volume of
attacks, b) if there are common patterns of the attacks, c) if a specific vulnerabil-
ity affects possible subsequent attacks.

In particular, as it is possible to see in Fig. 1.2, starting from the left we observe
the following entities: the attackers, the orchestrator, the DPIpot and the honeypots
and Darknets. The unwanted traffic reaches our infrastructure, the orchestrator is in

7

Orchestrator
Darknet

DPIpot Honeypots

Figure 1.2: Complete framework.

charge of redirecting the packets to the desired honeypot according to some specific
rules. We consider different scenarios, i.e., different configurations and deployments
of honeypots, and we compare the traffic hitting our variate deployments with the one
hitting the Darknet with the aim of spotting differences between the two systems. We
deploy different scenarios, depending on which honeypots are involved and on which
ports they are placed. We consider for example honeypot exposing Web services, DB
services, Windows Remote Desktop services, Terminal services, just to name a few,
and comparing everything against the baseline traffic reaching the Darknet. For each
scenario we evaluate if there is an impact in volume of traffic and if there exist new
common attack patterns by comparing two different situations: a) we reply only at the
transport layer with an L4-Responder, b) we reply also at the application layer with
an L7-Responder. The former establishes TCP connections by completing the sole
three-way handshake with the probing part, while for the latter task we exploit a set
of state-of-the-art honeypots. For example, when we reply at the application layer,
we use T-Pot4, the most famous and updated honeypot project. At last, we consider
an additional scenario, in which through our solution, that we named DPIpot, we are
able to identify on-the-fly the requested service and forward the packet to the most
suitable honeypot. The DPIpot is an infrastructure, developed in this thesis, that is able
to accept requests on all ports, recognize the attacker’s protocol through DPI (Deep
Packet Inspection) and forward it to the most appropriate protocol-specific honeypot.

4https://github.com/telekom-security/tpotce

8

https://github.com/telekom-security/tpotce

1.4 Organization of the thesis

This thesis work is organized as follows: in Chapter 2 we present the state-of-the-art
of DPI tools and honeypots, in Chapter 3 we present the evaluation of the DPI tools,
in Chapter 4 we present the implementation of the DPIpot, in Chapter 5 we present the
characterization of the captured traffic and in Chapter 6 we present the conclusions and
the future works.

9

Chapter 2

State of the art

In this Chapter, we enumerate and give more details on some of the previously de-
veloped solutions in the fields of Deep Packet Inspection and Honeypot development,
respectively. The final aim is to acquire a broad view of the state-of-the-art, to choose
the most suitable set of tools to support our analysis.

2.1 Deep Packet Inspection

DPI has been applied to protocol identification since the early 2000s when the usage
of well-known ports for traffic identification turned out to be unreliable. Multiple ap-
proaches have been proposed: some works rely on “shallow” packet inspection [4],
i.e., they parse only packet headers in the search for protocol fingerprints. Such tech-
niques still find practical applications, as encryption protects protocol payloads. Others
propose efficient approaches for DPI, e.g., using pattern matching [5] or finely-tailored
DPI algorithms [6]. Finally, some works rely on stateful information from multiple
flows to label traffic, e.g., leveraging the DNS to obtain the labels used to classify
encrypted traffic [7]. Many DPI tools have been introduced implementing such tech-
niques. Here we evaluate four alternatives, which have been evaluated by original
authors in [8, 9, 10, 11]. In contrast to them, we perform an independent evalua-
tion of the tools, thus providing also a validation of the authors’ results. Past works
compare DPI solutions. Authors of [12] perform an extensive benchmark covering
port-based classification, packet signature algorithms etc. In [13], authors survey ap-

10

Figure 2.1: Example of a network with an honeypot.

proaches to overcome the lack of ground truth in such studies. In some cases, manual
labelling of packet captures is used for DPI comparisons [14], while other works rely
on active measurements to enrich captures with information about underneath applica-
tions [15, 16, 17]. Closer to our analysis is the work presented in [18], where authors
also provide an independent comparison of DPI solutions. In contrast to [18], we
leave out of our evaluation proprietary tools and libraries, since the lack of source code
makes it hard to explore and explain discrepant results. We also refrain from evaluat-
ing tools no longer maintained. More importantly, we provide an updated comparison
of DPI tools considering recent and real traces, thus covering scenarios not evaluated
in the previous work, with a particular focus on modern security applications. In par-
ticular, since the goal is to use a DPI tool in a real-time scenario, we provide also
an evaluation based also on how many packets needs a tool to recognize the Layer 7
protocol and whether the tool is suitable for on-the-fly classification.

2.2 Honeypots

According to [19], a honeypot is ”a security resource whose value lies in being probed,
attacked, or compromised”. In essence, it is a resource that has no production value
or authorized activity and therefore all connections to the honeypot are suspicious by
nature: they are most likely probes, scans, or attacks. Therefore, the main advantage

11

of analysing the traffic collected by a honeypot is that the traffic is not influenced by
false positives and negatives: although the collected traffic may be little (compared
to a real production system), the majority of this traffic may be malicious. Thus, the
general objective of a honeypot is twofold: first, to distract the attackers from their
target, second, and more importantly, to gather information about attack patterns.

Nowadays, the main security mechanisms mostly used are: prevention (that in-
volves mechanisms that make the attack fail), detection (that is the process of iden-
tifying the presence of an attack), or reaction (that refers to the execution of focused
actions after the discovery of the attack). Example of prevention systems may be fire-
walls and the implementation of guidelines of cyber-security standards, for example,
a recently and constantly updated clean configuration. Examples of detection systems
may be intrusion detection systems (IDS) and intrusion prevention system (IPS). Fi-
nally, an example of reaction systems may be anti-virus (AV).

In this context, honeypots add value to each of the three strategies [3]. For what
concerns prevention, a honeypot may inhibit an attack because an attacker may be
wasting time focusing his resources to exploit a honeypot instead of the actual target.
For what concerns the detection, since all connections to the honeypot are probes, scan
or attacks, the system can provide valuable information. Finally, for what concerns the
reaction, the honeypots may help to study the attacks: indeed, the traffic collected by
the honeypot is not mixed with the not malicious one and thus it is possible to develop
strategies to counteract that type of threat.

Therefore, the main purpose of the honeypots is to collect information about in-
trusion attempts, and, in a smaller way, to distract attackers from their actual target.
However, it is important to note that honeypots should not be considered as an imple-
mentation to solve a specific problem but as a general concept: indeed, the scope of a
honeypot changes depending on where and how honeypots are deployed [3].

As reported in [3], the main advantages of honeypots are:

• Valuable Data Collection: since the collected traffic is not mixed with not mali-
cious traffic, the datasets are smaller and thus the analysis is less complex;

• Complete Detection: honeypots capture everything that is sent to them, also
unknown strategies and novel pattern attacks.

• Flexibility: honeypots are flexible, they can be used together with specific tools

12

to react to particular tasks.

Honeypots can be classified according to the following features [20]: level of in-
teraction, deployment environment, resource type, and implementation.

• Level of interaction. Depending on the level of interaction, it is possible to con-
sider three categories: low-interaction honeypots (which emulate just a subset of
services and do not provide any access to the operating system to the attacker),
medium-interaction honeypots (that provide simulated services more elaborated
than the previous category and higher interaction for the attacker but no oper-
ating system) and high-interaction honeypots (that provide the attackers a real
operating system with a large set of services installed).

• Deployment environment. There are two general categories of honeypots based
on environment: research honeypots (that are generally used by research organ-
isations, are very complex, and provide a large amount of information about
attacks) and production honeypots (that are meant to be used in companies, the
purpose is to achieve a higher security level and they are easy to use).

• Resource type. It is possible to categorize honeypots based on the direction of
interaction: server honeypots wait until the attackers initiate the communication,
on the other hand, client honeypots actively start an interaction with potential
attackers.

• Implementation. We can have physical honeypots and virtual honeypots. The
former ones employ dedicated hardware, while the latter ones use virtualized
machines.

As reported in [21], the number of cybersecurity threats and attacks is growing
exponentially and nowadays the standard security measures (access control systems,
intrusion detection systems, and firewalls) are no more effective to counteract attack-
ers. Therefore, it is necessary to analyze new threats and develop methodologies to
defend ourselves from cyber-attacks. From the first honeypot released in 2000, in the
last 20 years, honeypots have had a big impact in the IT security world, becoming
very common tools for studying how attackers penetrate security systems. Indeed, the
scientific literature is full of honeypot projects but most of all are proof-of-concepts

13

and out-of-date systems. In 2006 Nawrocki et al. [3] present an extensive overview
on honeypots software and methodologies to analyse the related data, highlighting
that, on the one hand, the most famous honeypot software are Cowrie1 (previously
Kippo), Dionea2 and Honeytrap3, while, on the other hand, the most famous long-
terms honeypot projects are the Honeynet Project (1999) and the T-Pot Project, devel-
oped from Telekom-Fruhwarnsystem (2012). These two long-term projects present a
multi-honeypot platform where low-interaction honeypot tools cooperate intending to
be able to reply to more protocols. The honeypots previously mentioned are nowadays
active and under maintenance. Tabar et al. [22] in 2020 propose a low-interaction hon-
eypot ecosystem able to emulate IoT devices to understand the attack patterns to IoT
systems. Indeed, they emphasize that IoT attacks have an increase of 600% compared
to 2016 and thus it is necessary to develop a smarter honeypot able to deal with IoT
devices. Since most honeypots are able only to receive passively attacks [3], and they
are not able to correctly identify and distinguish the various attack data and scenario,
Fan et al. [23] in 2019 propose an efficient honeypot architecture, called HoneyDOC,
based on Software Defined Networking (SDN), consisting of three modules, i.e. De-
coy, Orchestrator and Captor, to enable all-round design for high-quality attack data
capture.

In the following, we propose a brief introduction to the previously mentioned hon-
eypots:

• Cowrie is a low-interaction honeypot, the evolution of the no longer supported
medium-interaction honeypot Kippo. It can handle SSH and Telnet traffic to
observe attacker behaviour. It provides a fake file system, a fake SSH shell and
is also able to capture files from the input. Nowadays, as reported in [22], Cowrie
is used also to deal with IoT traffic, since many IoT devices still use telnet and
SSH protocols.

• Dionaea, is a-low interaction honeypot released in 2013, written in Python that
supports up to 14 different protocols (HTTP, MYSQL, SMB, MSSQL, FTP,
MQTT). It emulates various vulnerable protocols commonly found in a Win-
dows system. The main goal of Diaonea is to capture malware and worms [22].

1https://github.com/cowrie/cowrie
2https://github.com/DinoTools/dionaea
3https://github.com/honeytrap/honeytrap

14

https://github.com/cowrie/cowrie
https://github.com/DinoTools/dionaea
https://github.com/honeytrap/honeytrap

Figure 2.2: T-Pot framework.

• Honeytrap, is an open-source framework for running, monitoring and managing
honeypots. It can be used to deploy complex honeypot architectures or only to
deploy a single server. Furthermore, it is a flexible architecture: it is possible
to listen to all ports for detecting threats and collecting information, or listen
to a specific port and give predefined answers. Service emulation is not the
main focus, only some basic emulation is provided: if for a specific protocol no
emulation exists, the default answer is a single character.

• Honeynet, according to [24] it is a security-research organization dedicated to
learning the black-hat community’s tools, tactics, and motives and then sharing
any lessons learned. The organization comprises international security profes-
sionals who volunteer their time and resources to deploy honeynets that are de-
signed to be attacked. The team then analyzes the information collected from
these attacks.

• Glutton4, is the all eating honeypot, according to Muhammad Tayyab Sheikh
(CS Tayyab), written in GO Lang. It acts as a proxy between attacker and other
honeypots and provides the facility to capture, log and analyze the traffic sent
between the attacker and the honeypot. It basically listens to all the ports and
then acts according to a rule file. The decisions are based on fixed port-based
rules.

4https://github.com/mushorg/glutton

15

https://github.com/mushorg/glutton

• T-Pot5, is an all-in-one honeypot platform that takes several honeypots and puts
them all into a package with some insightful reporting. It includes dockerized
versions of 19 honeypots, for example, Cowrie, Dionaea, Glutton and Honey-
trap. T-Pot framework gathers all the logs from each honeypot and centralises
them into an elastic stack providing the user with a front-end view of all attacks
against each service. Samples of malware are also captured providing the ability
to further analyse the attacks. It is possible to observe a schematic view of T-Pot
in Fig. 2.2. Furthermore, T-Pot provides a simple dashboard interface based on
Kibana6, a data visualization dashboard for Elasticsearch7 that is a search en-
gine developed in Java providing a distributed search engine with an HTTP web
interface.

5https://github.security.telekom.com/2015/03/honeypot-tpot-concept.html
6https://github.com/elastic/kibana
7https://github.com/elastic/elasticsearch

16

https://github.security.telekom.com/2015/03/honeypot-tpot-concept.html
https://github.com/elastic/kibana
https://github.com/elastic/elasticsearch

Chapter 3

Comparison of DPI tools

3.1 Introduction

The internet is a continuously growing ecosystem composed of diverse protocols and
applications. The rise and spread of smart devices, video-conference platforms as well
as the continuous appearance of sophisticated cyber-attacks keeps changing the char-
acteristics of traffic observed in the network. Understanding protocols that are carrying
specific flows in the middle of such a variety of traffic has always been essential for
multiple applications, in particular for those supporting network security like firewalls
and IDS.

Deep Packet Inspection (DPI in short) has been the dominant approach to per-
form protocol recognition, showing effectiveness in several traffic monitoring scenar-
ios. DPI parses traffic payload searching for signatures that characterize the protocols.
Indeed, many DPI solutions do exist and still find important applications, despite the
increasing usage of encrypted protocols. DPI is particularly useful in cyber-security
scenarios, such as for intrusion detection systems, firewalls and other tools supporting
security (e.g., flexible honeypots). The timely identification of a broad range of proto-
cols remains a key first step in the security use case, calling for accurate, efficient and
up-to-date DPI solutions. Yet, previous efforts providing an independent evaluation of
DPI are already aged [18] or leverage on restricted traffic traces, which questions the
applicability of such results to practical scenarios.

In [25] we revisit the question on the quality of DPI-based protocol identifica-
tion [7, 8, 9, 10]. We select and evaluate four popular, open-source projects imple-

17

menting DPI, namely nDPI, Libprotoident, Tstat and Zeek. We first study their classi-
fication using passively captured traces, covering a wide range of scenarios, i.e., traffic
produced by IoT devices, collaborative platforms/video calls, malware, as well as pro-
duction internet traffic. Establishing a ground truth is challenging when dealing with
such diverse traces composed of dozens of protocols. We here evaluate the consistency
of the classification provided by the tools, relying on heuristics and domain knowledge
to validate the decision of each tool when finding conflicting cases.

After that, we investigate whether the DPI solutions operate consistently when ex-
posed to a limited number of packets per flow. Indeed, network applications usually
perform protocol identification on-the-fly using the initial packets of each flow, to take
timely decisions. For this, we investigate the number of packets per flow each solution
needs to reach a decision, as well as the consistency of such decisions as more traffic
is observed.

Our results show that:

• All tested solutions perform well when facing traces with well-established proto-
cols. This is particularly true for popular protocols that account for the majority
of production traffic;

• Some DPI solutions struggle when facing unusual events, such as massive scans
or malware traffic;

• All tested tools reach a final decision already after observing the first packets
with payload in a flow;

• nDPI outputs labels more often than others, and it usually agrees with the ma-
jority when tools diverge about the protocol of a flow.

To foster further research and contribute to the community, we share our code and the
instructions to build the complete datasets exploited in our experiments.1

3.2 Datasets and Methodology

Fig. 3.1 summarizes our methodology. We describe the DPI tools selected for test-
ing (Sect. 3.2.1). Then, we build up a set of traces covering different traffic scenarios

1https://smartdata.polito.it/dpi-in-practice/

18

https://smartdata.polito.it/dpi-in-practice/

Figure 3.1: Testing methodology.

(Sect. 3.2.2). Next, we process the traces with the DPI tools. As matching the ob-
tained labels requires ingenuity, we perform several steps and build up heuristics to
find discrepancies on the final classifications (Sect. 3.2.3).

3.2.1 Selection of DPI Tools

We restrict our analysis to DPI tools that perform protocol identification (e.g., HTTP,
TLS, SSH etc.), ignoring those aiming at the identification of the services generating
traffic (e.g., Google, Facebook etc.) [26, 27]. Namely, we focus on the following four
alternatives:

• nDPI [9] is an open-source DPI library written in C and based on dissectors, i.e.,
functions that detect the given protocols. It is an OpenDPI [28] fork optimized
for performance and supports more than 100 protocols.

• Libprotoident [8] is a C++ library that focuses on L7 protocols. It applies a
lightweight approach that uses just the first 4 bytes of payload. The idea is to
overcome drawbacks of DPI, i.e., computational complexity and privacy risks.
The library combines pattern matching with algorithms based on payload sizes,
port numbers and IP matching. It supports over 200 protocols.

• Zeek2 – formerly Bro [10] – is a complete framework for traffic analysis that also
allows L7 protocol recognition. It exploits a combination of protocol fingerprint
matching and protocol analyzers. It currently supports more than 70 protocols.

2https://zeek.org

19

https://zeek.org

Table 3.1: Flows exported by the different tools before the pre-processing.

Macrotrace Tool
Flows

TCP UDP

User Traffic

Tstat 681 k 1093 k
Libprotoident 678 k 1070 k
nDPI 543 k 1383 k
Zeek 804 k 1158 k

Media & Games

Tstat 15 k 16 k
Libprotoident 15 k 14 k
nDPI 10 k 21 k
Zeek 17 k 16 k

Malware

Tstat 858 k 979 k
Libprotoident 858 k 993 k
nDPI 891 k 1020 k
Zeek 1242 k 971 k

IoT

Tstat 118 k 50 k
Libprotoident 118 k 51 k
nDPI 120 k 62 k
Zeek 119 k 52 k

• Tstat [7] is a passive traffic monitoring tool that classifies traffic flows. It iden-
tifies a set of L7 protocols using payload fingerprint matching. It supports over
40 protocols.

Recall that we ignore projects no longer active. In particular, we leave L7-filter out
since it has been shown to produce unreliable results in more recent scenarios [14].
Equally, we ignore proprietary alternatives, given the intrinsic difficulty to evaluate the
root causes of conflicting results without access to source codes [9]. Finally, we do not
evaluate tshark3 as it has proofed much slower than the alternatives.

20

3.2.2 Selection and pre-processing of traces

We consider four scenarios to compare the DPI alternatives, including not only com-
mon internet protocols but also protocols encountered by security applications.

We select 421 different PCAP traces that are aggregated in four macro-categories:
(i) User, which includes ordinary browsing activity of ISP users while at home; (ii)
Media & Games [29, 30, 31] that includes conference-calls, RTC applications, mul-
timedia and gaming traffic; (iii) Malware [32], which aggregates several samples of
malware4 and security experiments;5 and IoT [33, 34], captured in different labs host-
ing a variety of IoT devices. We include both traces captured in our premises and
third-party traces available on public repositories. Traces cover multiple years and to-
tal more than 143 GB of PCAP files. For brevity, we do not provide details of each
PCAP file here, instead describing only the aggregated macrotraces. To allow others
to reproduce our results, we link the public PCAP files in our website.6

We need to match flows as defined by each DPI tool for comparing their perfor-
mance.7 However, tools employ different rules for defining and exporting flow records.
For example, each tool uses various timeouts to terminate flows that become inactive.
Equally, traffic flags (e.g., TCP FIN and RST flags) are possibly used to identify the
end of flows, releasing memory in the traffic monitor. The way such rules are imple-
mented differs and, as a consequence, tools identify and report different numbers of
flows. Thus, we need the ingenuity to compare results.

Tab. 3.1 summarizes the number of flows reported by each tool. We see major
differences, e.g., Zeek usually identifies more flows than Tstat, even when configured
with similar timeouts. This happens because of the way midstream traffic and incom-
plete flows are processed by the tools.

Most of the cases creating discrepancies are however not interesting for our analy-
sis since they usually refer to flows that carry no payload. Indeed, a lot of flows without
payload is present in particular for the Malware traces due to internet scanning traffic.
These flows cannot be evaluated with DPI. As such, we perform a pre-processing step

3https://www.wireshark.org/docs/man-pages/tshark.html
4https://www.malware-traffic-analysis.net
5https://www.netresec.com/?page=PcapFiles
6https://smartdata.polito.it/dpi-in-practice/
7We use the classic 5-tuple definition for a flow: Source IP address, destination IP address, source

port, destination port and transport protocol.

21

https://www.wireshark.org/docs/man-pages/tshark.html
https://www.malware-traffic-analysis.net
https://www.netresec.com/?page=PcapFiles
https://smartdata.polito.it/dpi-in-practice/

Table 3.2: Macrotraces characteristics with pre-processing results.

Macrotrace
Flows

Packets
TCP

UDP
Complete Ignored Original Filtered

User 440 k 241 k 1.1 M 118 M 10.1 M
Media&Games 11 k 4 k 16 k 81 M 2 M

Malware 392 k 466 k 979 k 33 M 26 M
IoT 39 k 79 k 50 k 5 M 2 M

using Tstat as a reference to keep in the final macrotraces only complete flows, i.e.,
UDP flows with payload and TCP flows with complete three-way handshake. All re-
maining flows are discarded. Whenever possible, we set the tools with similar timeout
parameters for the experiments that will follow. We next normalize results ignoring
the small percentage of flows that are not revealed by tools other than Tstat to avoid
artefacts related to the way flow are expired or terminated. At last, we keep only the
first 20 packets per flow in the final macrotraces to speed up the analysis (see column
“Filtered”). We will show later that all tested tools achieve a final protocol classifica-
tion using a small number of packets per flow. As such, this pre-processing step does
not impact results.

We report a summary of the final macrotraces in Table 3.2. We show the number
of packets and flows reported by Tstat, with the latter split as TCP and UDP. For TCP
flows, we detail the number of complete and ignored flows.

In total, our final macrotraces include more than 3 M flows, and 40 M packets after
all pre-processing steps are applied.

3.2.3 Matching flow labels

We need some ingenuity to normalize the output of the tools and compare their clas-
sifications. First, we normalize all labels, e.g., using always lower case and removing
special characters. Then, we manually verify the output strings to identify possible
synonyms used across tools. Table 3.3 reports a subset of labels that require manual
standardization. In total we manually evaluated 225 labels, replacing cases such as
those in the right column of Table 3.3 by a single common label (left column).

22

nDPI Libprotoident Zeek Tstat Reference Label0

20

40

60

80

100

P
er

ce
nt

ag
e

p2p

dns

http

sslTls

others

skype

unknown

(a) User Traffic Macrotrace

nDPI Libprotoident Zeek Tstat Reference Label0

20

40

60

80

100

P
er

ce
nt

ag
e

sslTls

dns

http

teredo

stun

others

quic

netbiosSmb

unknown

(b) Media & Games Macrotrace

nDPI Libprotoident Zeek Tstat Reference Label0

20

40

60

80

100

P
er

ce
nt

ag
e

dns

sslTls

http

others

unknown

(c) Malware Macrotrace

nDPI Libprotoident Zeek Tstat Reference Label0

20

40

60

80

100

P
er

ce
nt

ag
e

http

dns

ntp

sslTls

others

dhcp

stun

netbiosSmb

ssdp

unknown

(d) IoT Macrotrace

Figure 3.2: Percentage of labelled flows for each tool. The last bar in the plots reports percent-
ages for our reference label.

Next, we face the question of how to determine the label for each flow in absence of
ground truth. Indeed, the lack of ground truth has pushed most of the previous works
to resort to testbeds or emulated traffic that we want to avoid [13]. We thus decide
to focus on the consistency of different tools, i.e., we assume that the most common
normalized label assigned to a flow is the reference label for such flow, and calculate a
confidence score for each decision. In case of conflicts, we manually verify each case.

Table 3.4 reports examples of classification, along with the per-flow confidence
score. The easiest cases happen when there is a unanimous decision towards the same
protocol (e.g., Flow 1) or towards the unknown label (e.g., Flow 2). Both decisions
result in a score equals to 1. When at least one tool is able to recognize the protocol,
we ignore the unknown labels and pick the recognized label as the reference label. Yet,
our confidence score is lower in this case, e.g., see Flow 5. It rarely happens (e.g., Flow
6) that all tools recognize a different protocol, or there is a draw (e.g., Flow 7). Some

23

Table 3.3: Label standardization

Standardized
Label

Original
Label

p2p
p2p, edonkey, emule, ed2k, cacaoweb,
kademlia, bittorrent, torrent

netbiosSmb netbios, smb, smb2, nbns
krb krb, kerberos, spnego-krb5spnego
dns dns, llmnr, mdns
sslTls ssl, tls
skype skype, skypetcp
ldap ldap, cldap
quic quic, gquic

Table 3.4: Example of flow label constistency and score.

Flow ID
Tool Reference

Label
Score

Tstat Libprotoident nDPI Zeek
1 krb krb krb krb krb 1
2 unk unk unk unk unk 1
3 krb unk krb krb krb 0.75
4 unk unk krb krb krb 0.5
5 unk unk unk krb krb 0.25
6 unk sip unk p2p conflict 0
7 krb krb p2p p2p conflict 0

of these cases have been solved by inspecting the source code of the DPI tools, e.g.,
giving preference to labels found by pattern matching over those guessed based on port
numbers or other heuristics. The few cases we could not resolve are ignored, with a
confidence score equals to zero.

Finally, once the reference labels are defined, we calculate performance metrics for
each tool. We consider the following metrics: (i) accuracy, the percentage of flows
with label matching the reference; (ii) precision (per protocol), the percentage of such
flows that match with the reference; and (iii) recall (per protocol), the percentage of

24

such flows the tool has classified as the given protocol.

3.3 Results

We show a summary of the identified flows per tool and we summarize the classifica-
tion performance in the several scenarios. Next, we discuss the performance in terms
of the number of packets required to reach a steady classification and briefly discuss
the computational performance of tools.

3.3.1 Labelled flows per protocol

Fig. 3.2 shows a breakdown of the number of labelled flows reported by each tool. Four
plots depict results for the different macrotraces. The last bar on each plot reports the
percentage of flows given by our reference label, i.e., the label selected by the majority
of tools. Each figure reports the most common labels in order of popularity.

In the User Traffic case (top-left plot), Tstat shows the best performance, reporting
labels for around 85% of the flows. All the libraries recognize popular protocols (e.g.,
HTTP, DNS and TLS), but Libprotoident, nDPI and Zeek fail to recognize some P2P
traffic, thus leaving a larger number of flows marked as unknown. Yet, notice how
the number of unknown flows is small for the reference label – i.e., flows marked as
unknown by Tstat are recognized by others.

In the Media & Games case – Fig. 3.2(b) – all tools recognize close to 80% of
the flows. This trace is mostly composed of HTTP, DNS and TLS traffic, which are
well recognized by all tools. The reference label reports again a lower percentage of
unknown than each single tool, showing potential for achieving higher classifications
by merging the output of different tools.

The analysis of the Malware macrotrace – Fig. 3.2(c) – leads to worse numbers for
all cases. The percentage of labelled flows ranges from 66% to 70%. Here the presence
of UDP scans towards multiple ports impact results. Manual inspection shows the
presence of payload that matches the fingerprints of scan UDP attacks against certain
IoT devices. None of the tools is able to identify the protocol of this malicious traffic,
calling for specialized DPI approach in security use cases.

In the IoT case – Fig. 3.2(d) – nDPI is the best performing, labelling almost all

25

ss
lT

ls
ht

tp nt
p

dh
cp

te
re

do p2
p

st
un

sk
yp

e

ne
tb

io
sS

m
b

qu
ic

ss
dp

ot
he

rs

Protocol

25

50

75

100
S

co
re

(%
)

Figure 3.3: Average per flow confidence score for the top reference labels.

flows. Tstat is penalized by the lack of fingerprints for NTP, STUN and SSDP. All in
all, most flows in this trace are labelled by at least one tool (see the reference label
bar).

Finally, we evaluate the average confidence scores for different protocols. With
this analysis, we aim at identifying protocols for which the tools demonstrate high
consistency. Fig. 3.3 shows the average scores for flows labelled with one of the top-
20 protocols considering all four macrotraces. Common protocols such as TLS, HTTP
and NTP are recognized with an average score higher or equal to 75% (left side of
the figure). That is, such protocols are consistently identified by at least three tools on
average. As we move to less popular labels, the confidence scores reduce significantly.
Indeed, the score is reduced to around 25% for Netbios, QUIC and SSDP (right side
of the figure). In other words, only one tool outputs a label for flows carrying these
protocols, with others marking flows as unknown.

3.3.2 Classification performance

We next quantify the percentage of flows classified by each tool as well as their classifi-
cation performance in respect to the reference labels. Results are presented in Tab. 3.5.
We highlight in bold the best performing tool per trace and metric.

Consider the first-row group in the table. It reports the percentage of labelled flows,
summarizing the results presented in the previous section. As said, Tstat reports more

26

labels for the User Traffic scenario, thanks to its abilities to spot P2P flows. nDPI
instead reaches the largest percentages in the other scenarios, thanks to its capabilities
to guess labels based on multiple heuristics.

Considering accuracy (second-row group), we see numbers similar to those for
labelled flows across all scenarios. That is, the overall accuracy (with regards to the
reference labels) is driven by the percentage of unknown flows reported by each tool.
Yet, some particular cases can be noticed, such as minor differences between nDPI and
Libprotoident in the Media & Games Macrotrace. These minor mismatches arise from
cases in which one of the tools, although capable to label the given flow, disagree with
the label given by the majority. As we see in the table, these cases are rare and indeed
confirm that once tools labels a flow, the provided label is usually reliable.

Zeek wins when it comes to the average precision per protocol (third-row group),
almost always reaching 100%. That is, when Zeek recognizes a protocol, its label
matches the reference. Yet, Zeek suffers in terms of average recall (fourth-row group),
due to its limited set of labels. Libprotoident, on the other hand, reaches the highest
average recall per protocol in most scenarios, which can be explained by its large set
of labels, with over 200 protocols. nDPI shows balanced numbers for both precision
and recall per protocol. nDPI find a good number of labels (high recall) that usually
match with the reference (high precision).

3.3.3 How many packets are needed for DPI?

We analyze the performance of tools while limiting the number of packets per flow.
This test has been performed by cutting off each flow after observing its n first packets
with payload, i.e., ignoring initial TCP handshake packets. Flows composed by n or
less packets with payload are kept untouched. The goal is to evaluate the number
of packets needed to reach a final classification, and whether labels change as more
packets are observed.

Fig. 3.4 shows the accuracy for each macrotrace. Clearly, results do not change
when increasing the number of packets, and all tools reach an almost steady classifi-
cation after just one packet. Some tools (e.g., nDPI) increase accuracy further after
observing the second packet with payload, but gains are marginal. This result is partic-
ularly relevant, as DPI tools are often used for real-time identification of protocols on
security applications. Note that nDPI has average accuracy slightly superior to others,

27

Table 3.5: Summary of classification results.

Metric Library
Macrotrace

User
Traffic

Games
&

Media
Malware IoT

Labelled
Flows

Tstat 0.85 0.77 0.67 0.73
Libprotoident 0.69 0.86 0.66 0.89
nDPI 0.63 0.86 0.70 0.98
Zeek 0.40 0.78 0.66 0.89

Accuracy

Tstat 0.85 0.77 0.67 0.73
Libprotoident 0.69 0.82 0.66 0.85
nDPI 0.62 0.79 0.70 0.98
Zeek 0.40 0.78 0.66 0.89

Average
Precision

Tstat 0.99 0.87 0.98 1
Libprotoident 0.96 0.91 0.99 0.80
nDPI 0.93 0.89 1 0.99
Zeek 1 0.97 1 1

Average
Recall

Tstat 0.71 0.62 1 1
Libprotoident 1 0.89 1 0.94
nDPI 0.82 0.78 1 1
Zeek 0.66 0.62 0.97 0.79

with Libprotoident and Tstat coming next.

3.4 Benchmarking

Finally, we also controlled the performance of the tools in terms of memory fingerprint
and processing time. Here a general conclusion is hard to be reached since the tools
are delivered for different target scenarios. For example, the basic installation of Zeek
runs as multiple processes, prepared to handle several Gbps. Libprotoident and nDPI
are libraries that can also be integrated into simple demonstration programs. In our
tests, all tool, but Zeek, present similar performance figures when processing a single

28

1 2 3 4 5 6 7 8 9 10
Packets per flow

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy

nDPI

libprotoident

Zeek

Tstat

(a) User Traffic Macrotrace

1 2 3 4 5 6 7 8 9 10
Packets per flow

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy

nDPI

libprotoident

Zeek

Tstat

(b) Media & Games Macrotrace

1 2 3 4 5 6 7 8 9 10
Packets per flow

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy

nDPI

libprotoident

Zeek

Tstat

(c) Malware Macrotrace

1 2 3 4 5 6 7 8 9 10
Packets per flow

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy
nDPI

libprotoident

Zeek

Tstat

(d) IoT Macrotrace

Figure 3.4: Accuracy when increasing the number of packets per flow.

PCAP at a time.
We compute the time elapsed from the initial call of the tool until the end of the

trace processing. We also measure the peak memory occupation with the Valgrind
memory profiler. Only results related to the User Traffic macrotrace (Tab. 3.6(a)) and
the Malware macrotrace (Tab. 3.6(b)) are shown for brevity. We see that the peak mem-
ory occupation varies consistently across the traces and the libraries, Libprotoident and
Tstat being the best ones for User and Malware traces, respectively. When it comes
to the execution time, Tstat, Libprotoident and nDPI yield comparable results outper-
forming Zeek by about one order of magnitude.

The time has been calculated from when we called the library until it has finished
while the occupation memory has been calculated by using Valgrind8. Since all the
libraries are set in a shared virtual machine, to provide stable and reproducible results
we run all these benchmarking tests at night, 5 times each, and then we calculated the
95% confidence interval. In Tab. 3.6(a) it is possible to observe the results related to a

8https://valgrind.org/info/

29

https://valgrind.org/info/

Table 3.6: Peak memory occupation and processing time.

(a) User traffic

Library Memory (MB) δM Time (s) δT

Tstat 146.49 0 17.45 0.65
Libprotident 68.40 0.04 9.74 0.35
nDPI 140.67 0 18.00 0.65
Zeek 992.65 18.49 419.76 8.59

(b) Malware traffic

Library Memory (MB) δM Time (s) δT

Tstat 51.69 0 16.62 1.57
Libprotoident 56.86 0.12 6.38 0.77
nDPI 420.01 0 18.05 1.29
Zeek 273.13 26.98 212.92 6.76

preprocessed user traffic trace (2.6 GB, 4M packets, 286k flows) while in Tab. 3.6(b)
the results related to a preprocessed malware traffic trace (2.1 GB, 4M packets, 347k
flows). It turns out that Libprotoident reaches the highest performance in term of peak
memory occupation and time.

30

3.5 Outcome

We presented an evaluation of DPI solutions in several traffic scenarios, comparing the
consistency of their classifications. The tools are practically equivalent when the input
traffic is composed of popular and well-known protocols (e.g., HTTP, DNS and TLS).
When applied to complex scenarios, such as to traffic generated by Malware scans,
DPI tools struggle. We also observed discrepancies in the classification of less popular
protocols, with some protocols being supported by only one of the tools. In sum, there
is space for improving these DPI tools by extending their label sets. Interestingly, tools
reach steady-state classification after one packet, suggesting they can be exploited in
online scenarios. Indeed, for our final purpose, we chose to exploit nDPI since it
provides a good trade-off between accuracy and the number of supported protocols.

31

Chapter 4

Implementation

Orchestrator
Darknet

DPIpot Honeypots

Figure 4.1: Final configuration.

Fig. 4.1 shows the complete honeypot framework which includes DPIpot. Start-
ing from the left we observe the following entities: the attackers, the Orchestrator, the
DPIpot, the other honeypot deployments that we take into account and the Darknet
infrastructure. The attackers are the remote hosts that try to attack our exposed ser-
vices: they represent the main subject of our study. The Orchestrator is in charge of
coordinating the honeypot system, steering traffic to diverse backends based on flexible
rules. The DPIpot is a honeypot that forwards traffic to backend systems after perform-
ing DPI classification. The remaining deployments are state-of-the-art honeypots, in
our case T-Pot 1 and a Layer 4 Responder [35] that responds to SYN requests, allow-
ing the remote host to complete the three-way handshake, and stores the first packet

1https://github.com/telekom-security/tpotce

32

https://github.com/telekom-security/tpotce

with payload sent by the remote source, if any. Eventually, there is the Darknet, a set
of advertised IP addresses that capture remote packets without offering any service or
performing any active request. Note that such configuration is flexible and extensible
to any honeypot, according to the user’s needs: it is necessary to install the honey-
pot and modify a configuration file. In our case, we decided to rely on T-Pot, since it
contains a dockerized version of the most updated state-of-the-art honeypots.

The system must be able to handle different IP addresses and ports on which dif-
ferent honeypots are deployed. To create a flexible and dynamic framework, the idea
is to decouple, on one hand, the internal IP address and the port on which a honeypot
is deployed in our system and, on the other hand, the IP address and ports that are seen
from outside. In this way, it is possible to change, for example, the ports or the set of
ports to which a specific honeypot replies.

T-Pot and the other honeypots are deployed in a virtual machine for security pur-
poses: we want that the attackers exploit only our honeypots and not our entire system.

4.1 Orchestrator

The Orchestrator steers the received traffic to back-end systems in a flexible way. It is
built on top of iptables rules, a user-space utility program that allows a system admin-
istrator to configure the IP packet filter rules of the Linux kernel firewall. The filters
are organized in different tables, which contain chains of rules for how to treat network
traffic packets.2 The whole system is configured by means of a yaml file. In Listing 4.1
and Listing 4.2 it is possible to see an example of the configuration. In particular, in
Listing 4.1 it is possible to specify, for each of the deployed honeypots, the related IP
address and port on which we want to deploy them. We here depict three examples,
namely the l4responder, tpot-honeypots and dpipot. Note that in the dpipot
is also present a keyword called backend, that lists the available honeypot to which
the DPIpot, after having recognized the protocol, can forward the received packet. For
now, we are able to correctly reply to 4 protocols: SSH, HTTP, TLS and RDP. By
default, if no specific protocol is found, it redirects all the traffic to the L4-Responder.

Instead, in Listing 4.2 it is possible to see an example of the configuration file
used to set the iptable rules. For each honeypot, there are: the IP destination, i.e. the

2https://linux.die.net/man/8/iptables

33

destination IP of the incoming packet, the transport protocol and the ports on which
the honeypot is listening. Thus, for example, all the packets directed to IP x.x.x.8/29,
whatever the port is, are redirected to the l4responder that, indeed, listens on ports
0:65535, i.e. all the ports. Instead, if a packet arrives on IP x.x.x.136/29, it is redirected
to dpipot that chooses the most suitable honeypot to forward the packet according to
the results of the nDPI service.

This configuration file makes the framework flexible: it is simple to modify the
configuration of existing honeypots or adding new ones.

1 hp:

2 l4responder:

3 type: "l4responder"

4 address: "x.x.x.9"

5 port: "1313"

6 tpot-hp:

7 type: "vm"

8 image: "tpot-hp"

9 address: "x.x.x.3"

10 dpipot:

11 type: "dpi"

12 address: "x.x.x.9"

13 port: "1212"

14 backend:

15 ssh: "tpot-hp:22"

16 http: "tpot-hp:80"

17 tls: "tpot-hp:443"

18 rdp: "tpot-hp:3389"

19 default:"l4responder"

Listing 4.1: Orchestrator code: example
of honeypots.

1 iptables_rules:

2 # reply all

3 - honeypot: "l4responder"

4 interface: "bond0"

5 ip_dst: "x.x.x.8/29"

6 proto: "tcp"

7 ports: "0:65535"

8 - honeypot: "tpot-hp"

9 interface: "bond0"

10 ip_dst: "x.x.x.72/29"

11 proto: "tcp"

12 ports: "0:65535"

13 - honeypot: "dpipot"

14 interface: "bond0"

15 ip_dst: "x.x.x.136/29"

16 proto: "tcp"

17 ports: "0:65535"

Listing 4.2: Orchestrator code: example
of iptables configuration.

4.2 DPIpot

DPIpot is a honeypot that forwards the received packets to the correct honeypot, after
performing DPI classification.

From an implementation point of view, the code has been developed in Python,
with the following specific libraries: Thread, to exploit concurrent programming,

34

Proxy Honeypots

Orchestrator

nDPI
service

DPIpot

Figure 4.2: DPIpot overview.

Socket, to create virtual communication channels between nodes, and Scapy, to create
customized packets.

The tool used for DPI is nDPI, as a result of the DPI analysis presented in Chap. 3.
nDPI is used as an independent service, as we observe in Fig. 4.2: for each new flow,
the first packet is sent through to the nDPI service. nDPI performs deep packet in-
spection in real-time and outputs the protocol label. This label is compared against the
configuration file: if a suited honeypot exists for that label, a new socket towards that
honeypot is opened and all the packets belonging to that flow are redirected to it.

In the following, we present a brief scheme of the implementation.

1. For each honeypot present in the yaml configuration file in the section backend,
we instantiate a DPIProxy thread object (the light green block in Fig. 4.2). Every

35

block waits for incoming connections.

2. When a new connection arrives, a new element in the flow table is created. Si-
multaneously, also a socket is created. Three fake packets are created and sent to
the nDPI service since it always needs a three-way handshake to work correctly.
Then, when the first packet with payload arrives, it is sent to the nDPI service to
be analyzed.

3. When the nDPI service returns the label of the packet, if a suited honeypot exists,
the packet is forwarded to such backend.

The flow table is a crucial element of this infrastructure, and for this reason, it
has to be efficient: since it can grow exponentially, we have to make sure that its size
remains limited during the time. Therefore, we develop a specific function that, after a
customized time, checks for expired flows and cleans up the table.

4.3 Benchmarking

In this Section we show the performance of the DPIpot. We show the number of active
connections that the honeypot is able to simultaneously handle. We used Siege3, an
open-source regression test and benchmark utility for the HTTP protocol.

Fig. 4.3 shows how many concurrent connections DPIpot can handle compared to
an Apache webserver. To perform this test, we installed DPIpot in a closed environ-
ment, a virtual machine. In each run of the test, which lasts 1 minute, an increasing
number of concurrent users, from 1 to 150, tries to open the maximum number of
connections. The y-axis reports the rate, i.e. how many successful connections are
correctly opened in the unit of time. We observe that the performances of the DPIpot
are not so good compared to an Apache server, with a difference of three orders of mag-
nitude. This poor result is because the code, written in Python, is not yet optimized to
handle lots of contemporary users. This version of the DPIpot must be considered as a
preliminary version that will be further optimized in the future.

3https://github.com/JoeDog/siege

36

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Concurrent Users

101

102

103

104

105

R
at

e

DPIpot

Baseline

Figure 4.3: DPIpot transaction rate.

37

Chapter 5

Analysis of the captured traffic

In this Chapter we propose an analysis of the traffic captured in our final deployment,
intending to understand the impact of different deployments on the type of information
obtained, and whether these possible variations impact the type of information obtained
by the honeypots. In Section 5.1 we present our methodology: in Section 5.1.1 we
define the considered scenarios, in Section 5.1.2 we show the characteristics of the
analyzed traffic, in Sections 5.2, 5.3, 5.4 and 5.5 we present the final results. The
fundamental aim of the Chapter is to reply to the following questions:

• What is the share of the traffic reaching the honeypots that arrives at different at-
tack phases (i.e., just probing open ports, establishing the three-way handshake,
actually sending packets or performing login attempts)? Which is the percentage
of traffic not opening a connection?

• Does the attack pattern change if we start replying to all the connection requests?

• Does the attack pattern change depending on the kind of services we expose?

• Does identifying protocols on-the-fly before replying, even when traffic reaches
non-standard ports, influence the attack patterns?

5.1 Datasets and Methodology

Fig. 5.1 summarizes our methodology. We describe the different scenarios that repre-
sent different deployments. Then, we process the captured traffic and we characterize

38

Selection of the
scenarios

Preprocessing and
characterization

Analysis of the
traffic

Figure 5.1: Methodology.

the traffic. Finally, we evaluate the impact of the different deployments in terms of
volume, sources and services requested.

5.1.1 Selection of the scenarios

IP Service Ports

L4-Responder

130.192.167.8/29
130.192.167.16/29
130.192.167.24/29
130.192.167.32/29
130.192.167.40/29
130.192.167.48/29
130.192.167.56/29
130.192.167.64/29

reply all ports
web server, ports
proxy (generic and squid)
dbserver (mysql, mssql, postgres, mongodb)
remote desktop (ms rd, vnc, teamviewer, anydesk)
fileserver (netbios, CIFS) + UDP
terminal (ssh, telnet)
mail server (pop, imap, smtp)

0:65535
80,443
8080,8000,3128
3306,33060,1433,4022,135,1434,5432,27017
3389,5900,5901,5800,5801,5938,6568
135:139,445
22,2222,23,2323
25,110,143,465,993,995

L7-Responder

130.192.167.72/29
130.192.167.80/29
130.192.167.88/29
130.192.167.96/29
130.192.167.104/29
130.192.167.112/29
130.192.167.120/29
130.192.167.128/29

reply all ports
web server, ports
proxy (generic and squid)
dbserver (mysql, mssql, postgres, mongodb)
remote desktop (ms rd, vnc, teamviewer, anydesk)
fileserver (netbios, CIFS) + UDP
terminal (ssh, telnet)
mail server (pop, imap, smtp)

0:65535
80,443
8080,8000,3128
3306,33060,1433,4022,135,1434,5432,27017
3389,5900,5901,5800,5801,5938,6568
135:139,445
22,2222,23,2323
25,110,143,465,993,995

DPIpot 130.192.167.136/29 reply all ports 0:65535

Darknet 130.192.166.0/24

Figure 5.2: Final deployment.

Fig. 5.2 summarizes the different deployments of honeypots. In particular, we con-
sider four infrastructures: the L4-Responder, a level four honeypot able to complete
only the TCP three-way handshake; L7-Responder, a framework that gathers the vast
majority of nowadays state of the art honeypot; DPIpot, a honeypot that is able to iden-
tify on-the-fly the correct protocol and reply as requested by the attacker; and the Dark-
net composed by 253 IP addresses. From now on we will call T-Pot as L7-Responder

39

since we want to highlight the difference between replying only at the transport layer
or at the application layer. L4-Responder and L7-Responder are deployed on 64 IPs
each, in subgroups of 8 IPs depending on the services to which the honeypot is exposed
to. Indeed, we select 8 service scenarios according to the following scheme:

• reply to all ports;

• reply to Web Server services;

• reply to Proxy services;

• reply to DB Server services (e.g. MySQL, MSSQL, PostgreSQL, MongoDB);

• reply to Remote Desktop services (e.g. VNC, TeamViewer);

• reply to Fileserver services (e.g. NetBIOS, CIFS);

• reply to Terminal services (e.g. SSH, Telnet);

• reply to Mail Server services (e.g. POP, IMAP, SMTP).

For what concerns the DPIpot, it is deployed on 8 IPs and replies to all ports.
Indeed, in Fig. 5.2, in the column IP, it is possible to observe the same structure, and
in the column Ports, there are the ports related to the services. For example, the L4-
Responder that replies to all the ports (as it is possible to see in the last column Ports) is
deployed on 8 IP address, from 130.192.167.8 to 130.192.167.15, L7-Responder that
replies to all ports is deployed on 8 IPs from 130.192.167.72 to 130.192.167.89, and
the DPIpot is deployed on 8 IPs from 130.192.167.136 to 130.192.167.144.

5.1.2 Preprocessing and characterization

In this preliminary phase, we captured 10 days of traffic hitting our infrastructures. To
extract all the statistics, all the traffic has been processed with Tstat [11]. We extract
the flow table, filter the TCP traffic and we associate a label with the name of the
infrastructure to each flow. In total, we consider 62 M flows, 47 M of which hitting
the honeypots and 15 M hitting the Darknet. In Tab. 5.1 we observe in detail how the
flows are reaching the different infrastructures. The column Complete Flows indicates
the numbers of flows that complete the three-way handshake: note that this number

40

Table 5.1: Characterization of the infrastructure

Infrastructure Ports Flows
Complete
Flows

Packets
Received

Packets
Sent

IPs

Darknet All 15 M 0 16 M 0 253

L4-Responder

All 1 M 765 k 4 M 3 M 8
Web 513 k 10 k 589 k 46 k 8
Proxy 573 k 6 k 633 k 27 k 8
Databases 526 k 30 k 666 k 117 k 8
Remote
Desktop

642 k 124 k 1 M 279 k 8

Fileserver 587 k 128 k 1 M 476 k 8
Terminal 615 k 65 k 1 M 419 k 8
Mail 508 k 9 k 574 k 30 k 8

L7-Responder

All 13 M 13 M 109 M 107 M 8
Web 508 k 9 k 628 k 110 k 8
Proxy 568 k 6 k 645 k 35 k 8
Databases 521 k 24 k 924 k 342 k 8
Remote
Desktop

2 M 1 M 5 M 3 M 8

Fileserver 10 M 10 M 81 M 83 M 8
Terminal 1 M 672 k 14 M 11 M 8
Mail 497 k 4 k 565 k 32 k 8

DPIpot All 4 M 4 M 16 M 12 M 8

is significantly smaller than the total number of flows. Indeed, when we consider a
subset of services, we reply only on some ports; for example, when we consider Web
Services, we reply only to port 80 and 443, all the other ports behave like a Darknet:
they receive packets but they do not reply. For this reason, the number of complete
flows is only those that hit the active ports and thus this number is smaller than all the
flows that hit all the ports. The column IPs indicates the number of destination IPs
used for each infrastructure.

41

Darknet

L4-Resp
onder

L7-Resp
onder

DPIpot
0

25

50

75

100

P
er

ce
nt

ag
e

of
flo

w
s

Phase 1

Phase 2

Phase 3

Phase 4

(a) Phases percentage.

Darknet

L4-Resp
onder

L7-Resp
onder

DPIpot
0

500000

1000000

1500000

2000000

N
u

m
b

er
of

flo
w

s

Phase 1

Phase 2

Phase 3

Phase 4

(b) Phases absolute number.

L4-Resp
onder

L7-Resp
onder

DPIpot
0

25

50

75

100

P
er

ce
nt

ag
e

of
flo

w
s

Server initiated Client initiated

(c) Percentage of client-initiated or server-
initiated flows.

L4-Resp
onder

L7-Resp
onder

DPIpot
0

500000

1000000

1500000

2000000

N
u

m
b

er
of

flo
w

s

Server initiated Client initiated

(d) Absolute number of client-initiated or
server-initiated flows.

Figure 5.3: Most contacted ports in the time.

5.2 Different attack phases

In this Section, we want to understand what is the share of the traffic reaching the
honeypots that arrives to different attack phases. We define the phases as follows:

• Phase 1: only SYN;

• Phase 2: incomplete three-way handshake [SYN + SYN/ACK only];

• Phase 3: complete three-way handshake without payload;

• Phase 4: complete three-way handshake complete with payload.

42

Fig. 5.3(a) shows the percentage of flows for each phase, while Fig. 5.3(b) reports
the same information in absolute number. As expected, all the Darknet traffic is in
phase 1, since, by definition, it does not reply to any packet. For what concerns the
L4-Responder, 40% of the traffic is in phase 2 probably due to port scanning (i.e. the
attacker only wants to know whether the targeted port is open or not), 20% of the
traffic is in phase 3 and 40% of the traffic in phase 4. The traffic in phase 3 is probably
caused by server-initiated services, i.e. services that are waiting that after the three-
way handshake the server sends the first packet with payload. The traffic in phase 1
is probably due to some infrastructure failure. If we look at L7-Responder, we can
observe that the majority of the flows are in phase 4: this is behaviour is because L7-
Responder is an enhanced system that handles different honeypots and thus it is able to
correctly interact with different types of services. Also in this case, the traffic in phase 1
is probably due to some infrastructure failure. However, it is important to note that the
absolute number of flows in phase 2 and 3 are similar to the L4-Responder and DPIpot
infrastructures, as shown in Fig. 5.3(b): it can be considered a common behaviour and
it may be caused by server-initiated services. For what concerns DPIpot, we observe
that the majority of traffic is in phase 4. This means that if we reply, there is an increase
in the number of flows with payload. Indeed, in Fig.5.3(b) it is possible to see that there
is a significant increase in the absolute number of flows compared to the Darknet: the
more accurately we reply, the more traffic we observe.

Furthermore, we differentiate the phase 4 flows into 2 categories: server-initiated
and client-initiated. As explained before, server-initiated flows are those that are wait-
ing, after the three-way handshake, for the first packet from the server, while client-
initiated flows are those that send the first packet to the server. In Fig. 5.3(c) and
5.3(d), it is possible to observe this division for each infrastructure. As expected, the
L4-Responder is only client-initiated since it completes only the three-way handshake.
For what concerns L7-Responder, the majority of the flows are client-initiated, except
a 5%. In this little percentage, we found out the VNC service, which is often used for
exploits. L7-Responder, when a packet arrives on port 5900, the port related to VNC
service, uses Heralding1, a honeypot that is able to propose a credentials user interface
and to create password logs.

1https://github.com/johnnykv/heralding

43

5.3 Replying to all connections

Darknet

L4-Resp
onder

L7-Resp
onder

DPIpot

Infrastructure

0

500000

1000000

1500000

2000000

N
u

m
b

er
of

flo
w

s

(a) Number of flows for each infrastruc-
ture.

2021/03/03

2021/03/04

2021/03/05

2021/03/06

2021/03/07

2021/03/08

2021/03/09

2021/03/10

2021/03/11
0

50000

100000

150000

200000

250000

300000

N
u

m
b

er
of

flo
w

s

Darknet

L4-Responder

L7-Responder

DPIpot

(b) Time series.

Figure 5.4: General characterization

In this Section, we want to understand if the attack patterns change when we start
replying to all connections. In this scenario we consider the traffic hitting the infras-
tructures that reply to all port, as it is shown in Fig. 5.2, and we use the one hitting the
Darknet as a baseline for our comparison. Fig. 5.4(a) shows the number of flows for
each infrastructure. We see that, depending on how accurately we reply, the absolute
number of flows increases. In Fig. 5.4(b) we show a time series for 10 days of cap-
tures. It is possible to see a clear increase in volume for DPIpot during the first 8 days.
However, the time interval is still too small to observe consolidated attack patterns in
time.

In the following, we analyze the destination ports and the source Autonomous Sys-
tem (AS) to understand if it is possible to discover common attack patterns.

5.3.1 Destination port analysis

In Fig. 5.5(a) we show the CDF of the flows sorted according to the most contacted
port of the Darknet. Indeed, the Darknet red curve increases more slowly than the other
curves: this means that the distribution of traffic hitting the ports is smoothed. The L4-
Responder blue curve increases faster than the red one: some ports attract more traffic.
The DPIpot purple curve and L7-Responder green curve increase very fast: they reach

44

1 20000 30000 40000 50000 60000 70000
Port Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
flo

w
s

Darknet

L4-Responder

L7-Responder

DPIpot

(a) All ports

445 23
5555

1433 80 22
3389

6379 443
8080 81

5060
2000

8081 26
5900

8545
2323

5038
9200

Ports

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
flo

w
s Darknet

L4-Responder

L7-Responder

DPIpot

(b) Only the first 20 ports.

Figure 5.5: CDF of flows per ports in the different infrastructures.

more than 80% of the traffic with the first 100 ports. In particular, if we consider the
detailed view in Fig. 5.5(b), L7-Responder reaches 80% of the traffic with only one
port, the 445. DPIpot has a jump on port 3389 (RDP service) since we can correctly
reply to that service. In Tab. 5.2 we show the mapping between ports and services for
the 20 most contacted ports of the Darknet.

445 23
5555

1433 80 22
3389

6379 443
8080 81

5060
2000

8081 26

Port

10−1

100

101

102

103

In
cr

em
en

t

L4-Responder

L7-Responder

DPIpot

Figure 5.6: Increment with respect to the Darknet per port.

Fig. 5.6 reports a detailed view of the traffic increase on the top-15 ports compared
to the Darknet. In particular, we observe a significant increase of traffic in port 445,
22 and 3389. For example, for these services, L7-Responder has an increase greater
than 100 times the Darknet. Also DPIpot registers a comparable increase for the RDP

45

Table 5.2: Ports mapped to services.

Port Service
445 SMB
23 Telnet
5555 VPN
1433 SQL
80 HTTP
22 SSH
3389 RDP
6379 Redis
443 HTTPS
8080 HTTP
81 HTTP
5060 SIP
2000 Callbook
8081 HTTP
26 FTP
5900 VNC
8545 RPC
2323 Telnet
5038 -
9200 WSP

46

service.
The heatmap in Fig. 5.7 shows the volume of traffic reaching the top-100 port for

each of the considered time bins. Note that the ports are ordered according to the way
they reach the Darknet and the scale is logarithmic. Fig. 5.7(b) shows that if we start
replying at the transport layer, we obtain more attacks: for example, port 5900, 8291,
8728 (after 8088 in the figure) and 5901 (before 1521). It is possible to observe that
there are some vertical pattern attacks, for example on day 2021/03/05 there is a clear
attack pattern on more than 20 ports. It is possible to observe also some horizontal
pattern, for example, port 8291 is contacted each day. Fig. 5.7(c) shows that if we start
replying also at the application layer, we obtain a similar behaviour. Fig. 5.7(d) shows
that if we are able to identify the protocol on-the-fly, we observe more vertical attack
patterns compared to the other cases.

Since we want to quantify the increment of traffic with respect to the Darknet, in
Fig. 5.8 it is represented the daily increase of traffic per port, defined as follows:

δ =
heatmapx − heatmapDarknet

heatmapx + heatmapDarknet
(5.1)

where heatmapx represents the matrix associated with the heatmap of each infrastruc-
ture, while heatmapDarknet represents the one associated with the Darknet. Thus, δ is
bounded between 1 and −1: when the traffic of a honeypot infrastructure is equal to the
Darknet, δ is 0, when it is greater, δ > 0 and the graphical representation colour is red,
and when it is less, δ < 0 and the graphical representation colour is blue. By analyzing
the heatmaps, it turns out that there is a clear increase in the traffic in almost all the 100
ports. In particular, we register an increase in volume on all our infrastructures. Fur-
thermore, we observe that if we start replying, the traffic increase also on other ports:
in Fig. 5.8(a), it is clear that also other ports are contacted more than the Darknet, for
example, port 5900, 8291, 8728 (after 8088 in the figure) and 5901 (before 1521). For
what concerns L7-Responder, the pattern is similar to L4-Responder, although for the
most contacted ports the increase is greater and for the previously mentioned ports the
pattern is not continuous among days. For example, ports 8728 (after 8088) and 8291
has traffic peaks on different days. The traffic pattern of DPIpot is slightly different:
it turns out that if we start reply with the most accurate protocol we can reply with
famous protocol also on non-standard ports. For example, there is a peak on port 7777
(the one after 3400) due to RDP requests and on port 9000 due to TLS requests.

47

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

445
1433
3389
8080
2000
5900
5038
8888
2375
8088
9000
3391
7001
3392
139

2376
25

1723
3394
8291
5000
4000
3395

13389
3400
6380
631
143
995

1521
993

49152
873
554

D
es

ti
n

at
io

n
p

or
t

100

101

102

(a) Darknet

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

445
1433
3389
8080
2000
5900
5038
8888
2375
8088
9000
3391
7001
3392
139

2376
25

1723
3394
8291
5000
4000
3395

13389
3400
6380
631
143
995

1521
993

49152
873
554

D
es

ti
n

at
io

n
p

or
t

101

102

(b) L4-Responder

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

445
1433
3389
8080
2000
5900
5038
8888
2375
8088
9000
3391
7001
3392
139

2376
25

1723
3394
8291
5000
4000
3395

13389
3400
6380
631
143
995

1521
993

49152
873
554

D
es

ti
n

at
io

n
p

or
t

101

102

(c) L7-Responder

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

445
1433
3389
8080
2000
5900
5038
8888
2375
8088
9000
3391
7001
3392
139

2376
25

1723
3394
8291
5000
4000
3395

13389
3400
6380
631
143
995

1521
993

49152
873
554

D
es

ti
n

at
io

n
p

or
t

101

102

(d) DPIpot

Figure 5.7: Most contacted ports in the time.

48

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

445
1433
3389
8080
2000
5900
5038
8888
2375
8088
9000
3391
7001
3392
139

2376
25

1723
3394
8291
5000
4000
3395

13389
3400
6380
631
143
995

1521
993

49152
873
554

D
es

ti
n

at
io

n
p

or
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) L4-Responder

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

445
1433
3389
8080
2000
5900
5038
8888
2375
8088
9000
3391
7001
3392
139

2376
25

1723
3394
8291
5000
4000
3395

13389
3400
6380
631
143
995

1521
993

49152
873
554

D
es

ti
n

at
io

n
p

or
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) L7-Responder

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

445
1433
3389
8080
2000
5900
5038
8888
2375
8088
9000
3391
7001
3392
139

2376
25

1723
3394
8291
5000
4000
3395

13389
3400
6380
631
143
995

1521
993

49152
873
554

D
es

ti
n

at
io

n
p

or
t

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) DPIpot

Figure 5.8: Delta.

49

5.3.2 Source Autonomous System analysis

In this Section, we analyze the source AS.

1 2000 4000 6000 8000 10000
ASN Rank

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

flo
w

s

Darknet

L4-Responder

L7-Responder

DPIpot

Figure 5.9: CDF of flows per AS in the different infrastructures.

As it is possible to see in Fig. 5.9, most of the Darknet traffic comes from a rel-
atively small number of ASes: the first 30 ASes of the Darknet produces 80% of the
traffic. The curves related to L4-Responder, L7-Responder and DPIpot confirm, in-
stead, that the more we reply, the more sources we attract. In some cases, as in the
DPIpot one (purple curve), a few sources can produce a relevant amount of traffic: in
the figure, the first jump is due to AS59793, from Russia, the second jump is caused
AS12334, from Spain, and the third jump is due to AS262150, from Argentina.

49505
202425

44446
14061

16276
50340

43350
398324

60781
398705

398722
204655

8075
39465

4134

ASN

10−1

100

101

102

N
u

m
b

er
of

flo
w

s

L4-Responder

L7-Responder

DPIpot

Figure 5.10: Increment with respect to the Darknet per AS.

In Fig. 5.10 it is possible to observe the increment of traffic coming from different

50

ASes, sorted according the most active ASes of the Darknet. It turns out that there is a
clear increase in the traffic for almost all of the 15 Darknet most active AS.

In Fig. 5.11, we analyze the 100 most active ASes in time: also from these heatmaps,
it is possible to state that when we start replying, we receive more attacks from different
sources. For example, Fig. 5.11(a) shows the heatmap of the Darknet on a logarithmic
scale. If we look at the heatmaps of the other infrastructures, we can observe much
less blue: this means that we are receiving much more traffic than the baseline. For
example, Fig. 5.11(c) shows that if we are able to correctly reply to attackers, there is
a clear increment of traffic coming from different locations.

In Fig. 5.12 we want to quantify this increasing. As before, we define:

δ =
heatmapx − heatmapDarknet

heatmapx + heatmapDarknet
(5.2)

where heatmapx represents the matrix associated with the heatmap of each infrastruc-
ture, while heatmapDarknet represents the one associated with the Darknet. We can note
that the intensity of the red colour in Fig. 5.12(b), L7-Responder, and Fig. 5.12(c),
DPIpot, is much darker than the L4-Responder in Fig. 5.12(a), especially for L7-
Responder. For sure we observe an increase in the L4-Responder, despite it completes
only the three-way handshake. For what concerns DPIpot, we observe an increase only
for some ASes: the reason is that while with L7-Responder we cover a large set of pro-
tocols that we reply, with DPIpot, we reply accurately only with 5 protocols. However,
this result is heartening: if we increase the supported protocols of DPIpot, we expect a
behaviour similar to L7-Responder.

In conclusion, we affirm that if we start to reply, we observe a huge increment of
the traffic both when observing the destination ports and in the source AS. Moreover,
when we start replying we observe more attacks not only on the most contacted ports
of the Darknet but also on adjacent ports. Even the number of sources and their lo-
cation becomes wider. In general, we speculate that the increase of traffic depends on
how accurately we reply: we note an increasing pattern between L4-Responder, L7-
Responder and DPIpot. In particular, with DPIpot, we observe an increase of attacks
on non-standard ports with services that DPIpot is able to handle.

51

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

49505
14061
43350

398705
8075

63949
4837

38994
213371

4766
10439
45899

134771
32

9808
38365
4760

12389
49532
8452
174

48090
57043

135905
9304

267784
23969
23650
4812

213010
9299

134764
13213
35913

A
S

N

100

101

102

103

(a) Darknet

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

49505
14061
43350

398705
8075

63949
4837

38994
213371

4766
10439
45899

134771
32

9808
38365
4760

12389
49532
8452
174

48090
57043

135905
9304

267784
23969
23650
4812

213010
9299

134764
13213
35913

A
S

N

100

101

102

103

(b) L4-Responder

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

49505
14061
43350

398705
8075

63949
4837

38994
213371

4766
10439
45899

134771
32

9808
38365
4760

12389
49532
8452
174

48090
57043

135905
9304

267784
23969
23650
4812

213010
9299

134764
13213
35913

A
S

N

100

101

102

103

(c) L7-Responder

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

49505
14061
43350

398705
8075

63949
4837

38994
213371

4766
10439
45899

134771
32

9808
38365
4760

12389
49532
8452
174

48090
57043

135905
9304

267784
23969
23650
4812

213010
9299

134764
13213
35913

A
S

N

100

101

102

103

(d) DPIpot

Figure 5.11: Most contacted ASes in the time.

52

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

49505
14061
43350

398705
8075

63949
4837

38994
213371

4766
10439
45899

134771
32

9808
38365
4760

12389
49532
8452
174

48090
57043

135905
9304

267784
23969
23650
4812

213010
9299

134764
13213
35913

A
S

N

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a) L4-Responder

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

49505
14061
43350

398705
8075

63949
4837

38994
213371

4766
10439
45899

134771
32

9808
38365
4760

12389
49532
8452
174

48090
57043

135905
9304

267784
23969
23650
4812

213010
9299

134764
13213
35913

A
S

N
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) L7-Responder

20
21

-0
3-

03

20
21

-0
3-

04

20
21

-0
3-

05

20
21

-0
3-

06

20
21

-0
3-

07

20
21

-0
3-

08

20
21

-0
3-

09

20
21

-0
3-

10

20
21

-0
3-

11

Time

49505
14061
43350

398705
8075

63949
4837

38994
213371

4766
10439
45899

134771
32

9808
38365
4760

12389
49532
8452
174

48090
57043

135905
9304

267784
23969
23650
4812

213010
9299

134764
13213
35913

A
S

N

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) DPIpot

Figure 5.12: Delta.

53

Web
Serv

er
Proxy

DBser
ver

Rem
ote

Desk
top

Files
erv

er

Term
inal

Mail Serv
er

Service

100

102

104

106
N

u
m

b
er

of
flo

w
s

Darknet L4-Responder L7-Responder

Figure 5.13: Total volume per service.

5.4 Exposing different services

In this Section, we want to understand if the attack pattern changes depending on the
kind of services we expose. As explained before, we choose to consider 7 groups of
services: Web Server, Proxy, DB Server, Remote Desktop, Fileserver, Terminal and
Mail Server. We deployed them on 8 IP addresses each, as it is shown in Fig. 5.2.

Fig. 5.13 shows the absolute number of flows per service for each infrastruc-
ture. We register a significant increment either with L4-Responder, either with L7-
Responder. If we reply with the L4-Responder the absolute number of flows is compa-
rable among the different services. Instead, if we reply with L7-Responder, we observe
a larger increase for the Remote Desktop, Fileserver and Terminal services.

5.4.1 Destination port analysis

In Fig. 5.14 we observe the increments compared to the Darknet: in all the seven
different configurations the traffic is at least doubled for each service. Furthermore, we
observe that L7-Responder present a significant increase for port 445 that is 400 times

54

80 443

Port

0

1

2

3

In
cr

em
en

t

L4-Responder L7-Responder

(a) Web Server

8080
8000

3128

Port

0

1

2

3

In
cr

em
en

t

L4-Responder L7-Responder

(b) Proxy

1433
3306

5432
27017 135

4022
1434

33060

Port

0

5

In
cr

em
en

t

L4-Responder L7-Responder

(c) DBserver

3389
5900

5901
5938

5800
5801

6568

Port

0

100

200

300

In
cr

em
en

t

L4-Responder L7-Responder

(d) Remote Desktop

445 139 135 137 138 136

Port

0

200

400

In
cr

em
en

t

L4-Responder L7-Responder

(e) Fileserver

23 22
2323

2222

Port

0

50

100

150

In
cr

em
en

t

L4-Responder L7-Responder

(f) Terminal

25 465 110 143 995 993

Port

0

5

In
cr

em
en

t

L4-Responder L7-Responder

(g) Mail Server

Figure 5.14: Increment of the number of flows with respect to the Darknet per service.

55

more than the Darknet and 3389 which is almost 300 times more than the Darknet,
and port 22 that is around 150 times more than the Darknet. It is interesting to note
that in some cases, for example for Proxy services, the amount of flows of the L4-
Responder is greater than the one of L7-Responder. The reason may be that since
the L4-Responder completes only the three-way handshake, attackers try repeatedly to
contact that service. Instead, when we reply with L7-Responder, we are able to satisfy
a lower number of requests at a time.

In Fig. 5.15, it is possible to observe the increments compared to the Darknet, of
the non-active ports for each service. It turns out that there is not a significant increase
in traffic if we reply only to some services. There are some exceptions, for example,
port 1433 and 445 receive more traffic also when they are not active. Furthermore, it
is interesting to note that there is no significant increase in the traffic if we reply with a
layer seven honeypot, L7-Responder, instead of the L4-Responder.

5.4.2 Source Autonomous System analysis

For what concerns the source ASes, in Fig. 5.16 it is possible to observe the incre-
ment of traffic with respect to the Darknet. Each plot represents the most active AS
that contact a specific group of services. As expected, the increment related to AS is
coherent with the increment related to the destination port. Indeed, the increment of
traffic-related to Fileserver services, Fig. 5.16(e), that is around 500 times, is consistent
with Fig. 5.14(e), in which the increment is around 400.

In conclusion, it turns out that when we reply with different services we observe a
significant increase of traffic only on the ports with an active service.

56

445 23
5555

1433 22
3389

6379
8080 81

5060
2000

8081 26
5900

8545

Port

0

1

2

In
cr

em
en

t

L4-Responder L7-Responder

(a) Web Server

445 23
5555

1433 80 22
3389

6379 443 81
5060

2000
8081 26

5900

Port

0

1

2

In
cr

em
en

t

L4-Responder L7-Responder

(b) Proxy

445 23
5555 80 22

3389
6379 443

8080 81
5060

2000
8081 26

5900

Port

0

1

2

In
cr

em
en

t

L4-Responder L7-Responder

(c) DBserver

445 23
5555

1433 80 22
6379 443

8080 81
5060

2000
8081 26

8545

Port

0

1

2
In

cr
em

en
t

L4-Responder L7-Responder

(d) Remote Desktop

23
5555

1433 80 22
3389

6379 443
8080 81

5060
2000

8081 26
5900

Port

0.0

0.5

1.0

1.5

In
cr

em
en

t

L4-Responder L7-Responder

(e) Fileserver

445
5555

1433 80
3389

6379 443
8080 81

5060
2000

8081 26
5900

8545

Port

0

1

2

In
cr

em
en

t

L4-Responder L7-Responder

(f) Terminal

445 23
5555

1433 80 22
3389

6379 443
8080 81

5060
2000

8081 26

Port

0

1

2

In
cr

em
en

t

L4-Responder L7-Responder

(g) Mail Server

Figure 5.15: Increment in number of flows with respect to the Darknet of non-active services.

57

14061
63949

46664
202425

53667
133398

21859
15169

49505
6939

11404
37963

48090
3462

45102

ASN

0

100

200

300

400

500

In
cr

em
en

t

L4-Responder L7-Responder

(a) Web Server

14061
133398

53667
63949

37963
9009

6939
21859

398324
398722

8075
398705

39465
204655

49505

ASN

0

500

1000

1500

In
cr

em
en

t

L4-Responder L7-Responder

(b) Proxy

4134
4837

14061
37963

62904
9808

63949
4808

49505
4766

398324
4847

8151
398722

4812

ASN

0

200

400

600

In
cr

em
en

t

L4-Responder L7-Responder

(c) DBserver

14061
207812

135905
4766

39465
57043

62904
36352

38802
6939

9009
9304

24940
63949

49505

ASN

0

1000

2000

3000

4000

5000

In
cr

em
en

t

L4-Responder L7-Responder

(d) Remote Desktop

45899
7552

8048
7713

3462
4134

8452
47331

18403
12389

14061
23969

267784
9829

8151

ASN

0

200

400

600

In
cr

em
en

t

L4-Responder L7-Responder

(e) Fileserver

4837
4134

14061
9829

31898
4766

3462
53667

8075
8661

45090
63949

20001
16276

56046

ASN

0

20

40

60

80

100

In
cr

em
en

t

L4-Responder L7-Responder

(f) Terminal

14061
398324

398722
398705

202425
41436

63199
43350

10439
36351

63949 237
135905

24445
135373

ASN

0

200

400

600

In
cr

em
en

t

L4-Responder L7-Responder

(g) Mail Server

Figure 5.16: Increment in number of flows per AS with respect to the Darknet per service.

58

5.5 Identifying protocols on-the-fly

RDP
HTTP

SMBv23
TLS

Teln
et

NetB
IO

S

MsSQL-TDS
SSH

VNC

HTTP Proxy
Redis

MySQL

FTP CONTROL SIP

Cisc
oVPN

Protocols

104

106

N
u

m
b

er
of

flo
w

s

Figure 5.17: Top 15 protocols.

In this Section, we want to understand if by mean of the protocol identification on-
the-fly on non-standard ports before replying, the attack patterns changes. Fig. 5.17
shows the number of flows for the top 15 protocols: the majority of flows are RDP,
HTTP and SMB.

In Fig. 5.18 we report the absolute value and the percentage of flow per port for
each service that are now supported by DPIpot, that are RDP, HTTP, TLS AND SSH.
It is interesting to note that in 3 cases out of 4, the DPI protocol identification is useful
to attract more traffic. Indeed, if we focus on RDP service, we see in Fig. 5.18(a) that
only 25% of the RDP traffic is directed to the standard port 3389, while the remaining
65% is directed to non-standard ports. This consideration holds also for HTTP and
TLS: in this case around 10% of the traffic is directed to the standard port, while the
remaining 90% to non-standard ports. Finally, for what concerns SSH, more than 95%
of the traffic is directed to the well-known port 22.

It turns out that if we start reply with the correct protocol we observe a significant
increase in traffic not only on standard ports, but especially on non-standard ports,
depending on the target protocol.

59

3389
7777

33893
3421

3388
3366

3369
3360

3381
3377

3370
3300

3333
3380

3371

Port

0

10

20

30

P
er

ce
nt

ag
e

of
flo

w
s

(a) RDP protocol percentage.

3389
7777

33893
3421

3388
3366

3369
3360

3381
3377

3370
3300

3333
3380

3371

Port

0

200000

400000

600000

800000

N
u

m
b

er
of

flo
w

s

(b) RDP protocol

80 81
8081

9200
8088

8888
8089

60001
8280

8000
2375

9999
9090

8181
8443

Port

0.0

2.5

5.0

7.5

10.0

N
u

m
b

er
of

flo
w

s

(c) HTTP protocol percentage.

80 81
8081

9200
8088

8888
8089

60001
8280

8000
2375

9999
9090

8181
8443

Port

0

2500

5000

7500

10000

12500

N
u

m
b

er
of

flo
w

s

(d) HTTP protocol.

443
9000

8443
9001

50050
7443

9200 449 995
6443 993

10443 465
4443 990

Port

0.0

2.5

5.0

7.5

10.0

N
u

m
b

er
of

flo
w

s

(e) TLS protocol percentage.

443
9000

8443
9001

50050
7443

9200 449 995
6443 993

10443 465
4443 990

Port

0

2000

4000

6000

8000

N
u

m
b

er
of

flo
w

s

(f) TLS protocol.

22
2209

2222
8022

22222
9999

6622
8889

4422
8088

9085
9998

8086
5522

60010

Port

0

20

40

60

80

100

N
u

m
b

er
of

flo
w

s

(g) SSH protocol percentage.

22
2209

2222
8022

22222
9999

6622
8889

4422
8088

9085
9998

8086
5522

60010

Port

0

5000

10000

15000

N
u

m
b

er
of

flo
w

s

(h) SSH protocol.

Figure 5.18: Top 15 ports for each DPIpot supported service.

60

Chapter 6

Conclusions and future works

6.1 Conclusions

In this thesis, firstly, we presented an evaluation of DPI solutions in several traffic
scenarios, comparing the consistency of their classifications. The tools are practically
equivalent when the input traffic is composed of popular and well-known protocols
(e.g., HTTP, DNS and TLS). When applied to complex scenarios, such as to traffic
generated by Malware scans, DPI tools struggle. In sum, there is space for improving
these DPI tools by extending their label sets. Interestingly, tools reach steady-state
classification after one packet, suggesting they can be exploited in online scenarios.
Indeed, for our final purpose, we chose to exploit nDPI since it provides a good trade-
off between accuracy and the number of supported protocols.

Then, we evaluated the impact of different deployments on the type of information
obtained about attacks: we investigated whether these possible variations impact the
type of information obtained by the honeypots. As a main result, we record an incre-
ment in traffic when we start replying. This increment is visible both in traffic volume
and the number of remote sources reaching the infrastructure. We then observe that
often, when the attacker finds an active service, it immediately starts probing adjacent
ports.

When we expose only some services, we observe a significant increase only for
those services. Furthermore, in most of the cases, there is no significant difference
between replying at level four only or at layer seven only, except for some specific ser-
vices, like RDP. Thus, in many cases, completing the three-way handshake is enough

61

to engage more attackers.
From the analysis of the states, we conclude that in all the considered scenarios

there is a certain percentage of remote sources that only want to probe ports, and are
not interested in establishing a connection. When we start replying, there is a clear
increase of packets with payload: this type of traffic allows to gather more information
about the attackers, and better understand how the attack is configured.

The analysis of the traffic reaching DPIpot leads to other interesting observations.
We record that attacks on non-standard ports are very common for some specific ser-
vices (i.e., RDP, HTTP or TLS), and replying with the correct protocol attracts a larger
volume of attacks. For some other services, as in the SSH case, we see that the largest
part of the traffic is instead directed to standard ports, so we can infer that using DPI
does not contribute in a sensible way to the traffic patterns.

6.2 Future works

In the future, we plan to enlarge our observation window to a larger period of time,
in order to validate the exiatence of patterns in time and to have more meaningful
and stable results. We then want to extend the set of protocols supported by DPIpot
to all the 100 protocols implemented by nDPI. Furthermore, we plan to improve the
performance of DPIpot in order to support more connections simultaneously.

62

Bibliography

[1] Daniel Fraunholz, Simon Duque Anton, Christoph Lipps, Daniel Reti, Daniel
Krohmer, Frederic Pohl, Matthias Tammen, and Hans Dieter Schotten. Demysti-
fying deception technology: A survey. arXiv preprint arXiv:1804.06196, 2018.

[2] Julian Jang-Jaccard and Surya Nepal. A survey of emerging threats in cyberse-
curity. Journal of Computer and System Sciences, 80(5):973–993, 2014.

[3] Marcin Nawrocki, Matthias Wählisch, Thomas C Schmidt, Christian Keil, and
Jochen Schönfelder. A survey on honeypot software and data analysis. arXiv
preprint arXiv:1608.06249, 2016.

[4] Ajay Chaudhary and Anjali Sardana. Software based implementation methodolo-
gies for deep packet inspection. In 2011 international conference on information
science and applications, pages 1–10. IEEE, 2011.

[5] Michela Becchi, Mark Franklin, and Patrick Crowley. A workload for evaluating
deep packet inspection architectures. In 2008 IEEE International Symposium on
Workload Characterization, pages 79–89. IEEE, 2008.

[6] Sailesh Kumar, Jonathan Turner, and John Williams. Advanced algorithms for
fast and scalable deep packet inspection. In 2006 Symposium on Architecture For
Networking And Communications Systems, pages 81–92. IEEE, 2006.

[7] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi. Traffic Analysis
with Off-the-Shelf Hardware: Challenges and Lessons Learned. IEEE Commun.
Mag., 55(3):163–169, 2017.

[8] Shane Alcock and Richard Nelson. Libprotoident: traffic classification using
lightweight packet inspection. WAND Network Research Group, Tech. Rep, 2012.

63

[9] Luca Deri, Maurizio Martinelli, Tomasz Bujlow, and Alfredo Cardigliano. ndpi:
Open-source high-speed deep packet inspection. In 2014 International Wireless
Communications and Mobile Computing Conference (IWCMC), pages 617–622.
IEEE, 2014.

[10] Vern Paxson. Bro: a system for detecting network intruders in real-time. Com-
puter networks, 31(23-24):2435–2463, 1999.

[11] Marco Mellia, R Lo Cigno, and Fabio Neri. Measuring ip and tcp behavior on
edge nodes with tstat. Computer Networks, 47(1):1–21, 2005.

[12] Andrew W Moore and Konstantina Papagiannaki. Toward the accurate identifi-
cation of network applications. In International Workshop on Passive and Active
Network Measurement, pages 41–54. Springer, 2005.

[13] Jinghua Yan. A survey of traffic classification validation and ground truth col-
lection. In 2018 8th International Conference on Electronics Information and
Emergency Communication (ICEIEC), pages 255–259. IEEE, 2018.

[14] S. Alcock and R. Nelson. Measuring the accuracy of open-source payload-based
traffic classifiers using popular internet applications. In 38th Annual IEEE Con-
ference on Local Computer Networks - Workshops, pages 956–963, 2013.

[15] Géza Szabó, Dániel Orincsay, Szabolcs Malomsoky, and István Szabó. On the
validation of traffic classification algorithms. In International Conference on Pas-
sive and Active Network Measurement, pages 72–81. Springer, 2008.

[16] Francesco Gringoli, Luca Salgarelli, Maurizio Dusi, Niccolo Cascarano, Fulvio
Risso, and KC Claffy. Gt: picking up the truth from the ground for internet traffic.
ACM SIGCOMM Computer Communication Review, 39(5):12–18, 2009.

[17] Peng Lizhi, Zhang Hongli, Yang Bo, Chen Yuehui, and Wu Tong. Traffic labeller:
collecting internet traffic samples with accurate application information. China
Communications, 11(1):69–78, 2014.

[18] Tomasz Bujlow, Valentı́n Carela-Español, and Pere Barlet-Ros. Independent
comparison of popular dpi tools for traffic classification. Computer Networks,
76:75–89, 2015.

64

[19] Lance Spitzner. Honeypots: tracking hackers, volume 1. Addison-Wesley Read-
ing, 2003.

[20] Daniel Fraunholz, Marc Zimmermann, and Hans D Schotten. An adaptive hon-
eypot configuration, deployment and maintenance strategy. In 2017 19th Inter-
national Conference on Advanced Communication Technology (ICACT), pages
53–57. IEEE, 2017.

[21] Warren Cabral, Craig Valli, Leslie Sikos, and Samuel Wakeling. Review and
analysis of cowrie artefacts and their potential to be used deceptively. In 2019 In-
ternational Conference on computational science and computational intelligence
(CSCI), pages 166–171. IEEE, 2019.

[22] Armin Ziaie Tabari and Xinming Ou. A first step towards understanding real-
world attacks on iot devices. arXiv preprint arXiv:2003.01218, 2020.

[23] Wenjun Fan, Zhihui Du, Max Smith-Creasey, and David Fernandez. Honeydoc:
an efficient honeypot architecture enabling all-round design. IEEE Journal on
Selected Areas in Communications, 37(3):683–697, 2019.

[24] L. Spitzner. The honeynet project: trapping the hackers. IEEE Security Privacy,
1(2):15–23, 2003.

[25] Tommaso Rescio, Thomas Favale, Francesca Soro, Marco Mellia, and Idilio
Drago. DPI solutions in practice: benchmark and comparison. In Proceeding
of 6th International Workshop on Traffic Measurements for Cybersecurity, Vir-
tual Workshop, May 2021. 42nd IEEE Symposium on Security and Privacy.

[26] Hyunchul Kim, KC Claffy, Marina Fomenkov, Dhiman Barman, Michalis Falout-
sos, and KiYoung Lee. Internet traffic classification demystified: Myths, caveats,
and the best practices. In Proceedings of the 2008 ACM CoNEXT Conference,
CoNEXT ’08, New York, NY, USA, 2008. Association for Computing Machin-
ery.

[27] G. Aceto, A. Dainotti, W. de Donato, and A. Pescape. Portload: Taking the best
of two worlds in traffic classification. In 2010 INFOCOM IEEE Conference on
Computer Communications Workshops, pages 1–5, 2010.

65

[28] Jawad Khalife, Amjad Hajjar, and Jesús Dı́az-Verdejo. Performance of opendpi
in identifying sampled network traffic. Journal of Networks, 8(1):71, 2013.

[29] Antonio Nisticò, Dena Markudova, Martino Trevisan, Michela Meo, and Gio-
vanna Carofiglio. A comparative study of rtc applications. To appear in the
Proceedings of the 22nd IEEE International Symposium on Multimedia, 2020.

[30] Alberto Dainotti, Antonio Pescapé, and Giorgio Ventre. A packet-level charac-
terization of network traffic. In 2006 11th International Workshop on Computer-
Aided Modeling, Analysis and Design of Communication Links and Networks,
pages 38–45. IEEE, 2006.

[31] Andrea Di Domenico, Gianluca Perna, Martino Trevisan, Luca Vassio, and
Danilo Giordano. A network analysis on cloud gaming: Stadia, geforce now
and psnow. arXiv preprint arXiv:2012.06774, 2020.

[32] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward gener-
ating a new intrusion detection dataset and intrusion traffic characterization. In
ICISSP, pages 108–116, 2018.

[33] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford,
Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. Classifying iot
devices in smart environments using network traffic characteristics. IEEE Trans-
actions on Mobile Computing, 18(8):1745–1759, 2018.

[34] A Parmisano, S Garcia, and MJ Erquiaga. A labeled dataset with malicious and
benign iot network traffic. Stratosphere Laboratory: Praha, Czech Republic,
2020.

[35] Marco Mellia, Idilio Drago, and Eros Filippi. Honeyport-a scalable meta-
honeypot system for security applications, 2019.

66

	Introduction
	Motivation
	Research questions
	Methodology
	Organization of the thesis

	State of the art
	Deep Packet Inspection
	Honeypots

	Comparison of DPI tools
	Introduction
	Datasets and Methodology
	Selection of DPI Tools
	Selection and pre-processing of traces
	Matching flow labels

	Results
	Labelled flows per protocol
	Classification performance
	How many packets are needed for DPI?

	Benchmarking
	Outcome

	Implementation
	Orchestrator
	DPIpot
	Benchmarking

	Analysis of the captured traffic
	Datasets and Methodology
	Selection of the scenarios
	Preprocessing and characterization

	Different attack phases
	Replying to all connections
	Destination port analysis
	Source Autonomous System analysis

	Exposing different services
	Destination port analysis
	Source Autonomous System analysis

	Identifying protocols on-the-fly

	Conclusions and future works
	Conclusions
	Future works

