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Chapter 1

Introduction

Hypertension, or elevated blood pressure, is a serious condition since it signi�cantly
increases the risk of irreversible severe events and diseases like stroke, blindness,
and dementia. Even though hypertension is underestimated by the majority of the
population, health professionals say that it is one of the major causes of premature
deaths in the world. It is usually so underestimated because it has no symptoms;
for this reason it is called the silent killer. It is estimated that, in 2015, 1.13
billion people worldwide su�ered from hypertension (it was 594 million in 1975),
but less than 1 over 5 people had the problem under control[1]. To try to reduce
the problem, many health professionals and organizations, among which there is
also the World Health Organization (WHO), have launched important awareness
campaigns.

Figure 1.1: Prevalence of hypertension in the world [2]

According to the World Health Organization, hypertension has a higher inci-
dence in males than females (1 over 4 and 1 over 5 respectively over a billion)
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and is more frequent in low-income countries than in high-income ones (see Figure
1.1). The same organization reports a prevalence of 27% in Africa, 26% in Eastern
Mediterranean, 25% in South East Asia, 23% in Europe, 19% in Western Paci�c
and 18% in the Americas. The target is to reduce the prevalence of hypertension
by 25% (concerning the prevalence shown in 2010) by 2025.

In Europe, the 3.5% of the population with an age comprised between 25 and 34
years reported hypertensive diseases; it was the 53.3% for people aged≤ 75 years. In
2016 there were 1.68 million deaths due to diseases linked to the circulatory system
while the hospital discharge rates for patients with diseases of the circulatory system
in Italy was of 1789 over 100,000 inhabitants [3].

Figure 1.2: Wearable technologies share of the market

The only way to diagnose hypertension is to continuously monitor blood pres-
sure. In the era of advanced technology, modern digital devices can be very helpful
in measuring the patient's blood pressure throughout the day (hot just in the
o�ce) in a non-invasive and accessible way. A special mention is deserved by wear-
able technologies(including smartwatches and �tness trackers), which nowadays are
�ooding the market; these devices allow frequent monitoring of the vital signs with
minimal stress on the patient. Moreover, since these kinds of devices collect a high
number of di�erent data, they also allow to correlate variations in blood pressure
with daily stress and environmental changes [4].

It is expected that these devices will dramatically change our way of monitoring
our heart's activity and prevent cardiovascular diseases. The interest on this share
of the market is led both by researchers and by the interest of the users: the global
smartwatch market was valued at 20.64 billion dollars in 2019 and is projected to
reach 96.31 billion by 2027 [5](the statistics for years 2018 − 2022 are shown in
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Figure 1.2).
Despite the great advancements of the latest years, the research in this �eld

still has to go on, the major goal being to improve the accuracy of the vital signs
estimation.

The present work is inserted in such framework, by trying to improve the es-
timation of the blood pressure from the electocardiogram (ECG) and the photo-
plethysmogram (PPG), which can be easily recorded non-invasively with cu�-less
devices thus are suitable for continuous, a�ordable, non-invasive monitoring. Data
are collected from an on-line public database (MIMIC3) and aggregated by patient.
The algorithm is studied both by using the complete recordings of a single patient
at once and simulating a real-time acquisition of the samples. Error sources and
critical parameters are analyzed.
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Chapter 2

Background

2.1 Physiological background

2.1.1 The cardiovascular system

The cardiovascular system is an organ system composed of the heart, blood, arter-
ies, and veins and allows the circulation of blood through the vessels, allowing the
transportation of blood cells, nutrients, hormones, and oxygen to each cell of the
human body [6]. Of course, this circulation is led by the heart, which pumps the
blood into the vessels.

The circulation can be split into two main parts (Figure2.1):

� Pulmonary circulation where blood rich in carbon dioxide �ows from the right
part of the heart through the lungs to be oxygenated and goes back to the
left part of the heart.

� Systemic circulation where blood �ows from the left part of the heart through
the rest of the body to oxygenate it and retrieve carbon dioxide and goes back
to the right part of the heart.

2.1.2 The heart

The heart is a muscle and it is considered one of the most important organs. Its
size is about the one of a �st, its function is to pump blood into the vessels and it is
located in the chest between the lungs, under the sternum [7]. The heart anatomy
is shown in Figure 2.2; the muscle has four chambers: the two upper chambers
are called left and right atria (LA,RA) and the two lower chambers are called left
and right ventricles(LV,RV); left and right atria and ventricles are separated by
a wall called septum. Notice that the atria are smaller than the ventricles since
they receive blood (which in the �nal stage of the circulation has a lower pressure),
while the ventricles are larger and they are stronger pumps; in particular, the left
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Figure 2.1: Pulmonary and systemic circulation

ventricle is the strongest one, since it has to pump blood to the whole body and for
this reason its walls are thicker [8]. In normal condition, the four chambers work
coordinately to keep oxygen-rich blood �owing in the body [10]. The �ow of blood
is regulated by four valves [11]:

� The tricuspid is placed between the right atrium and ventricle.

� The pulmonary valve is placed between the right ventricle and the pulmonary
arteries, to start the pulmonary circulation.

� The mitral valve is placed between the left atrium and ventricle.

� The aortic valve is placed between the left ventricle and the aorta, to start
the systemic circulation.

The blood �ow inside the heart can be summarized in four steps:

1. The right atrium receives blood which is poor of oxygen and rich in carbon
dioxide (which comes from the systemic circulation) and pumps it to the right
ventricle through the tricuspid.

2. The right ventricle contracts to eject blood to the lungs (starting the pul-
monary circulation) through the pulmonary valve.
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Figure 2.2: Heart anatomy [12]

3. The left atrium receives blood rich in oxygen and poor in carbon dioxide
coming from the lungs ( after the pulmonary circulation) and pumps it to the
left ventricle through the mitral valve.

4. The left ventricle contracts to eject blood to the aorta (starting the systemic
circulation) through the aortic valve.

The heart walls are made up of three layers (Figure 2.3a) which, from the
inside to the outside, are: the endocardium (an epithelial layer), the myocardium
(the actual muscle layer) and the epicardium; the heart is then surrounded by the
pericardium, a membrane with a sac-shape. In the myocardium there are two kinds
of cells: muscle cells (which can contract easily) and pacemaker cells (for a small
1%) [13]. In fact, even if it is classi�ed as an involuntary muscle, the heart has the
ability to generate by itself the electric signal need for the contraction. The signal
for the contraction is generated by the Sinoatrial Node (SA, Figure 2.3b), located in
the myocardial layer at the junction of the superior caval vein and the right atrium.
This way the heart's electrical system can control the timing of the pump (the Heart
Beat); the heart receives also nerve signals from the vagus nerve; these signals can
in�uence (but not control) the heart rate. The conduction system makes �rst the
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(a) Heart walls (b) Conduction system

Figure 2.3: Heart walls and conduction system [14]

atria contract simultaneously, and then the ventricles (again simultaneously) [9]
Cardiac contraction is called systole, cardiac relaxation is called diastole [8].

A heartbeat consists of four phases [9]:

� Ventricular �lling: blood enters the ventricles passing through the atrioven-
tricular valves, making the ventricular volume rise. This happens during the
diastolic phase; after the �lling, the systolic phase begins.

� Iso-volumetric contraction: all the valves are closed and pressure inside the
heart rises while the contraction begins. When the pressure in the heart is
higher than the one in the aorta, the aortic and the pulmonary valves open.

� Ejection: blood is ejected from the aortic and the pulmonary valves. Ventric-
ular pressure continues to rise, while volume decreases.

� Iso-volumetric release: after the closure of the aortic valve, the pressure inside
the chambers decreases.

A cardiac cycle (the heart's performance between an heart beat and the following
one) lasts about 0.6− 1 second.

2.1.3 Blood Pressure - BP

Together with respiratory rate, heart rate, oxygen saturation, and body tempera-
ture, Blood Pressure (BP) is a vital sign [16] (those signs that healthcare profes-
sionals measure in order to evaluate the patient's health) and it re�ects the status
of the cardiovascular system. It is due to the heart pumping blood into the arteries
and has a cyclical path (as shown in Figure 2.4 ): it rises when the heart contracts
to eject blood into the aorta and it falls when the heart relaxes to re�ll. Blood
pressure is in�uenced by cardiac output, systemic vascular resistance, and arterial
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sti�ness (in particular it rises when at least one of these parameters rises) and varies
depending on emotional state, physical activity and health state [15] [16].

Figure 2.4: Arterial Blood Pressure [17]

Arterial blood pressure is to be distinguished from Venous Blood Pressure. The
latter, in fact, is lower than the �rst the reason being that in these vessels the blood
does not receive the heart's thrust and it is measured only in particular cases. That
is why the veins' structure is di�erent from the arteries' one: blood circulation is
helped by the presence of one-way valves, that prevent the blood from �owing in
the inverse direction. The structure of both arteries and veins is shown in Figure
2.5.

Blood pressure (BP) is associated with Arterial Blood Pressure (ABP) unless
otherwise speci�ed. Arteries are speci�cally made to sustain the pulse pressure:
their walls are thicker and made of elastic tissue that allows them to expand and
contract following each ventricular contraction. These properties of the arteries
can deteriorate due to aging or pathological reasons thus worsening the circulatory
performance [9].

Blood pressure is traditionally monitored non-invasively by auscultation (such
method is still considered the gold standard of accuracy for non-invasive methods
[16], the method is shown in Figure 2.6) and measured in mmHg (millimeters of
mercury). Figure 2.4 shows a possible output of continuous monitoring of the BP:
it has a cyclical path with a �rst part (Systole) corresponding to the pressure inside
the artery when the heart contracts and a second part (Diastole) corresponding to
the pressure inside the artery when the heart relaxes [18], separated by the Dicrotic
notch. In particular, a cycle is characterized by two points:

� Diastolic Blood Pressure (DBP): also called minimum pressure is the pressure
inside the arteries during the relaxation phase of the heart. In Figure 2.4 it is
the minimum point of the diastolic phase in the ABP and in a healthy adult
is about 80 mmHg.
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Figure 2.5: Artery and vein structure

� Systolic Blood Pressure (SBP): also called maximum pressure, is generated by
the �ow in the arteries of blood rich in oxygen during the heart's contraction
(or systole). As shown in Figure 2.4 SBP is the maximum point of the systolic
phase in the ABP and in a healthy adult is about 120 mmHg. If the cardiac
output increases, the SBP increases as well (on the contrary, the DBP doesn't
show signi�cant variations).

Moreover, there are other parameters which could be considered, such as :

� Pulse Pressure (PP): is the di�erence between the systolic and diastolic pres-
sure. Normal values are in the range of 40− 60 mmHg and tend to increase
as the patient ages [19].

� Mean Arterial Pressure (MAP): is calculated as (SBP + 2DBP )/3 is the
average blood pressure in a subject during a cardiac cycle [20].

Pressure parameters are usually indicated as SBP/DBP (120/80) mmHg. Notice
that BP is the result both of the cardiac output and of the peripheral vascular
resistance (which is in�uenced by the vessels' condition) so, for a given cardiac
output, if the peripheral resistance increases this will lead to an increased BP (both
systolic and diastolic) and conversely a lower peripheral resistance would lead to
lower BP [21][22].

Blood Pressure is subject to physiological variations, up to 20 mmHg within a
day [23]. For example, it follows a daily pattern: it is lower while the patient is
asleep and starts rising a couple of hours before he/she awakens to reach the peak
in the afternoon and start decreasing again. It could change also due to physical
activity and daily stress (which can make BP rise) or outside temperature (cold
temperatures narrow the blood vessels and hot temperatures enlarge them, causing
BP to rise and fall respectively) [23].
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Figure 2.6: BP monitoring: mercury sphygmomanometer [24]

In order to keep the blood pressure under control, clinicians suggest to: do
physical exercise, eat low-fat and low-sodium food, minimize alcohol, smoke, and
daily stress [23].

Figure 2.7: BP monitoring: arterial catheter [25]

As already said, the mercury sphygmomanometer (Figure 2.6) is the gold stan-
dard for blood pressure monitoring. Nowadays, though, mercury devices have been
substituted also in hospitals by other instruments. The preferred location of the
measurement is the brachial artery since BP varies by changing the location of the
measurement [26]. The main methods known to measure one's BP are:
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� The auscultatory method: is a non-invasive method performed when using a
sphygmomanometer since the clinician has to listen for the Korotko� sounds
(Figure 2.6) [26].

� The oscillometric method: is a non-invasive method used in automatic de-
vices, which have a sphygmomanometer cu� and observe cu� pressure oscil-
lations through an electronic pressure sensor (Figure 2.8) [27].

� Intra-arterial BP monitoring: is an invasive technique used in the Intensive
Care Unit. In this case, BP is measured directly by inserting a catheter in
an artery (Figure 2.7). This method allows continuous and very accurate
monitoring of the BP but the disadvantage is the risk to contract infections,
the formation of hematoma, blood loss [28].

Sources of error in the measurement of BP in the upper arm are:

� Patient's posture: BP is usually measured while the patient is seated or
supine. Diastolic BP is shown to change according to the posture and age (in
particular in young subjects it is 10mmHg higher while supine; the discrep-
ancy narrows for older patients) [26].

� Arm position: for example if the arm is moved from a horizontal to a vertical
position, the BP increases by about 5− 6 mmHg.

� Patient's activity: if the patient has smoked, done physical exercise of in-
gested pressor substances before the measurement, or is anxious during the
measurement or talks, the BP could be underestimated or overestimated re-
spectively.

In particular, the condition in which the patient's BP is elevated during the mea-
surement performed by a clinician due to anxiety or nervousness is called white-coat
e�ect and in such event, the measures are totally unreliable. It is shown that Am-
bulatory Blood Pressure Monitoring (ABPM), that is measuring BP at regular
intervals during the day by means of a portable device, is able to eliminate the
white-coat e�ect and also detect masked hypertension (a condition in which the
patient shows a normal BP when examined by a specialist, but abnormal BP val-
ues at home) [29].

In order to state if a device is suited for BP monitoring, it is necessary to validate
it. The US Association for the Advancement of Medical Instrumentation (AAMI),
the British Hypertension Society, the European Society of Hypertension (ESH)
Working Group on Blood Pressure Monitoring, and the International Organization
for Standardization (ISO) have collaborated to �nd a common way of validating
BP measuring devices. The outcome was that the measuring error is considered
tolerable if it is ≤ 10 mmHg and a device is accepted if the estimated probability
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(a) Arm device (b) Wrist device

Figure 2.8: BP monitoring: home devices [34]

that the error of measurement is equal or lower than 10 mmHg is of at least 85%
[30].

Studies say that automated and digital instruments have more or less the same
accuracy; in particular wrist monitors (Figure 2.8) are particularly unreliable with
respect to the gold standard mercury column manometer, while the arm monitors
have higher accuracy than wrist ones [31] [32] [33]. This higher error is due to both
a wrong positioning of the arm (in wrist devices the wrist has to be placed and
heart level) and to the accuracy of the device itself, which is sensitive to cardiac
arrhythmia and changes to the arteries in the wrist (so, for example, it is not
recommended for the elders) [34]. Nevertheless, wrist BP monitors are useful in
case the patient cannot wear the arm cu� due to particular conditions (like obesity
or breast cancer surgery).

Figure 2.9: Omron Heartguide [23]: validated BP measuring smartwatch

In 2014 clinicians found an error in automated monitors pressure readings of
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about 20 mmHg [35], while more recent articles talked about an error of 5 mmHg
compared to the mercury sphygmomanometer [36], and of 0± 7 mmHg and −1± 6
mmHg [37]. A study published in 2020 in the British Journal of general practice
[38], after validating many of the devices present in the market, concluded that
clinically validated home devices for BP monitoring with an age lower than 4 years
have an accuracy comparable to that of the professional ones (even if cu� failure
is more frequent). For the sake of completeness, the measuring error declared
by some BP monitor manufacturer was investigated. For the devices taken under
exam (all validated devices) manufacturers declare a measuring error of 0±3 mmHg
independently of the price and type (upper arm or wrist) [23] [39] [40]. For some
devices the measuring error was not found [34] [40]; in particular, it would have
been interesting to know the accuracy of Omron Heartguide (Figure 2.9), which is
the only validated smartwatch that is also able to measure BP by using a wrist cu�
[23].

2.1.4 Hypertension

Hypertension is a condition in which the subject's blood pressure is constantly
high. In this condition the heart and blood vessels are overworked; this usually
does not lead to immediate symptoms, but over the long period could damage the
cardiovascular system and lead to serious conditions [41].

Figure 2.10: Categories of BP

As stated, hypertension is not associated with short-term symptoms: patients
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report headaches, vertigo, tinnitus, or fainting episodes; these symptoms, however,
could be associated also with anxiety and stress. In the long term instead, if not
treated, hypertension could cause coronary artery disease, stroke, heart failure,
atrial �brillation, peripheral arterial disease, vision loss, chronic kidney disease,
and dementia.

In order to diagnose hypertension, continuous monitoring of blood pressure is
necessary , so for example, the American Heart Association recommends ABPM to
con�rm the diagnosis. Based on its values, blood pressure is classi�ed in various
categories as shown in Figure 2.10. Hypertension has two stages.

Stage 1 is the most common (it covers about 90−95% of the cases) and is due to
genetic and lifestyle factors (not to a speci�c disease) such as smoke, alcohol abuse,
abuse of salt and ca�eine in the diet, and overweight but also aging is a signi�cant
factor.

Stage 2 covers the 5−10% of the cases and it can be related to a speci�c disorder
such as chronic kidney disease (which is the most common cause), narrowing of
kidney arteries, an endocrine disorder.

In case the blood pressure is severely high (SBP ≥ 180 mmHg and/or DBP
≥ 120 mmHg) clinicians talk about hypertensive crisis ; in this case, some organs
could be damaged (such as the brain, kidney, heart, and lungs) and it is of vital
importance to act immediately to lower it. The symptoms, in this case, could be
confusion, drowsiness, chest pain, and breathlessness.

In most people with Stage 1 hypertension, the cardiac output remains normal,
while the total peripheral resistance is higher. Moreover, high blood pressure is
also associated with decreased venous compliance and vasoconstriction of arterioles
(arteries of smaller diameter) and high pulse pressure in older people.

2.1.5 Electrocardiogram - ECG

The electrical impulses that allow the heart beating, generate a current that can
be measured by putting some electrodes on the skin. The graph is drawn on
graph paper with time on the abscissa (a second every 25mm) and amplitude on
the ordinate (a milliVolt every 10 mm) [42]. The graph that reveals the electric
activity of the heart (that is the summation of the electric activity of each cell in
the myocardium) is the electrocardiogram (ECG). The ECG has a cyclical shape
and it can be divided into four sections (as shown in Figure 2.11a):

As we have learned, the electric impulse starts from the sinoatrial node, it then
spreads to the atria and makes them contract (this corresponds to the P wave).
The signal is delayed by about 0.1 seconds by the atrioventricular node and this
corresponds to the PR segment (this delay allows the atria to relax before the
ventricular contraction); it is then brought to the heart apex (Q point) before
the contraction (QRS complex) [8]. The ST segment represents the restoration of
the basic electric conditions, while the T wave is due to the re-polarization of the
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(a) ECG wave [42]

(b) ECG phases [8]

Figure 2.11: ECG

ventricles.

The ECG can be measured non-invasively at the skin level by placing some elec-
trodes on the chest and limbs. The ECG can appear in di�erent shapes depending
both on the heart's activity and the position of the electrodes and their number;
this is the reason why there are standard con�gurations with respect to which it
is possible to take the signal [9]. The most known con�guration is the Einthoven's
triangle where a equilateral triangle is formed by the two wrists and the left ankle
or by the two shoulders and the pubis, as shown in Figure 2.12. The electrodes are
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Figure 2.12: ECG electrodes placing [43]

placed at the vertices of the triangle and are connected to a device that measures
the voltage. Literature reports examples of incorrect treatments due to inaccurate
ECG monitoring caused by human errors (only 50% of the nurses and 20% of cardi-
ologist under study were able to correctly place the electrodes) [44]; another study
reports that the speci�city of each patient is a huge source of error in reading the
ECG [45]. Many portable ECG devices are available on the market (one of those is
shown in Figure 2.13); some of them can also connect to the patient's smartphone
to display the graph; manufacturers claim that the accuracy of the devices is the
same as the one in the hospital.

Figure 2.13: Portable ECG device [34]

The Heart Rate is the number of heartbeats per second (bpm) and it is referred
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to the ventricular beat. Normal values are between 60−100 bpm: if they are lower,
it is a case of bradycardia, if they are higher it is a case of tachycardia [46]. To
measure the heart rate it is su�cient to see the time distance between two R peaks
in seconds:

HR =
60

Rt+1 −Rt

(2.1)

where the denominator is in seconds.

2.1.6 Photoplethysmogram - PPG

A photoplethysmogram reveals the changes in blood volume in the microvascular
bed of tissue. In human beings, the microvascular blood �ow re�ects, among others,
the heart and pulmonary activity [47] [48]. It is a simple, low-cost, and non-invasive
optical method that deploys the properties of the light re�ected or transmitted by
the surface of the skin.

A typical PPG sensor contains a led, which emits low-intensity infrared light,
and a photodetector, that measures the light re�ected by the skin; in fact, the light
output by the led is absorbed by the tissues but, since the absorption by blood is
stronger than the others, the changes in blood volume can be detected (the light
re�ected is proportional to blood volume variations). Notice that the infra-red
diode is used to measure the blood �ow while to measure the absorption of oxygen
in hemoglobin it is better to use a green led, that penetrates more deeply the tissues
[49]. A scheme of the PPG sensor and a device are shown in Figure 2.14.

(a) PPG sensor scheme [51] (b) PPG device [34]

Figure 2.14: PPG devices

Since the PPG is very simple to obtain, it is widely used in wearable devices
(like smart-bands) and smartphones for the continuous and remote monitor the
heart's activity [49] [50]. Because of its features it can be used for primary health
care and remote monitoring [53].
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The amplitude of the signal (shown in Figure 2.15) is directly proportional to
the pulse pressure (the higher the peak, the stronger the pulse). PPG has two
main phases: the anacrotic phase (the rising edge) is due to the heart's systole and
it re�ects mainly the state of the heart; the catacrotic phase (the falling edge) is
caused by the diastole and it mainly re�ects the elasticity of the circulatory system.
In healthy subjects, the catacrotic phase also shows a dicrotic notch[48].

Figure 2.15: PPG waveform [52]

PPG is a very simple a low-cost method to monitor the circulatory system's
condition, but the relation between the two (PPG and blood �ow) is only qualitative
and not quantitative [48].

Some of the factors that can in�uence the PPG are the skin color (due to
the light properties), nail polish, external illumination, anemia, and the subject's
movements; moreover, it is a�ected by heartbeat, hemodynamics, and properties
of the vessels.

The quality of the signal is also in�uenced by the location of the sensor [49];
the most popular locations are:

� Wristband: it looks to be the most popular especially in wearable devices
since it is very comfortable to wear for users. However, it has its limitations
and several options have been proposed in order to improve its accuracy.

� Forehead: these kinds of sensors take advantage of the high re�ectance of the
skin in the forehead, caused by the high density of blood vessels. Another
advantage of this position is that motion artifacts are mitigated, especially
during physical activity.
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� Earlobe: lobes contain a high quantity of blood vessels and are less a�ected
by motion artifacts with respect to wrists and �ngers.

.
Elgendi (2012) [53] makes an overview of the main artifacts which a�ect the

signal; these are:

� Powerline interference: it is due to the instrumentation which probably picks
ambient noise and other artifacts. It has a high frequency (higher than 50
Hz).

� Motion artifact: may be caused by bad contact between the skin and the sen-
sor and it has a low frequency. It is associated with the patients' movements.

� Low amplitude signal: this is usually associated with the gain controller of
the sensor, but may also be caused by low blood pressure or a constriction in
the vessels supplying the skin.

� Premature ventricular contraction (PVC): this kind of arrhythmia interrupts
the normal heartbeat rhythm.

The main characteristics of the PPG wave are [53]:

� Systolic amplitude: is the height of the peak; it is directly related to blood
volume.

� Pulse width: it seems to be related to the systemic vascular resistance.

� Pulse area: is the area under the PPG curve. The ratio between the area
before the dicrotic notch and the area after the dicrotic notch is related to
the total peripheral resistance.

� Peak to peak interval: is the interval between two systolic peaks. It can be
used to detect the heart rate, as the R-R interval of the ECG.

� Pulse interval: is the interval between the beginning and the end of the wave-
form; it could be used as an alternative method to measure Heart Rate Vari-
ability (HRV).

� Large Artery Sti�ness Index: the time interval ∆T between the systolic and
the diastolic peak is shown to be directly proportional to the subject height h.
The ratio SI = h/∆T is related to the large artery sti�ness. Parameter ∆T
is inversely proportional to the patient's age, and coherently SI is directly
proportional his age, as shown in Figure 2.16.

19



Background

(a) 60 years (b) 45 years (c) 29 years

Figure 2.16: PPG waveform for patients of di�erent age [53]

Figure 2.17: Apple watch [57]

From the �rst and second derivative of the PPG, it is possible to evaluate
other indexes that are shown to be related to other characteristics of the patients'
health condition [53] [54] and that are very useful to clinicians in the diagnosis of
cardiovascular diseases [49].

Bolanos et al. [55] claim that the PPG can be used e�ectively to replace the
ECG for continuous monitoring of HRV, considering the advantages in �exibility,
portability, and convenience. This statement looks to be in contrast with the re-
sults of other authors; Pietila et al. [56] tested the accuracy of two PPG sensors
(PulseOn, PO, and Empatica E4, E4) in the evaluation of the heartbeat with re-
spect to that on an ECG during di�erent activities (sitting, standing, housework
and cycling). The absolute error was lower than 10 bpm (w.r.t. the ECG) in the
90% of the cases for both sensors and on average, during normal activities, it rose
of 2.5 bpm in PO and 3.7 bpm in E4 w.r.t. sitting. The RMSE in the measure of
HRV was 3.5± 3.9 ms for PO and 10.2± 6.7 ms for E4 during sitting, 18.0± 10.9
ms for PO and 48.7± 21.8 ms for E4 during cycling. So the accuracy is quite good
at least in the measure of HR when the quantity of movement is limited and varies
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signi�cantly by changing activity. This limitation due to motion artifact is stated
also by Castaneda [49], even if the great potential of PPG is not questioned. Bent
et al.[58] made a systematic study on the accuracy of PPG in measuring the heart
rate (the reference was again the ECG) and found no statistical inaccuracy due to
skin color, but signi�cant di�erences in when varying the device and activity type;
in particular, the sensor seems to be 30% more accurate when the subject is at rest.
In particular, their tests showed that, at rest, the most popular consumer-grade de-
vices had an error (MAE ± std) of 7.2± 5.4 bpm, while the research-grade device
had an accuracy of 13.9 ± 7.8 bpm, while during physical activity the accuracy
was of 10.2 ± 7.5 bpm and 15.9 ± 8.1 bpm (this di�erence could be due to some
biases intentionally inserted in consumer devices which are not present in research
devices). The study also reports that in the presence of a rhythmic movement (like
walking or running and interestingly also typing) the errors rise signi�cantly (the
only device which keeps the MAE low in every situation seems to be the Apple
Watch, Figure 2.17).

.

2.1.7 Pulse Transit Time - PTT

The Pulse Transit Time is the time that the blood pressure pulse takes to travel
from a site to another into the arteries. Typically, the two sites are detected by
an ECG R-wave and any critical point of the PPG, as shown in Figure 2.18; this
critical point is usually the systolic peak. PTT can be easily measured knowing the
time delay between an R-peak and the corresponding Systolic peak in the PGG:

PTT =
60

SPt −Rt

(2.2)

where the denominator is in seconds, SPt is the time in milliseconds when the
systolic point (SP) of the PPG in the cardiac cycle t is recorded, and Rt is the time
in milliseconds when the peak of the R-wave (R) of the PPG in the cardiac cycle t
is detected.

Thanks to the PTT it is possible to investigate the changes in blood pressure
and, since it can be measured non-invasively, it is suited for continuous monitoring
of the BP [59].

The relation between PTT and BP is that, being blood a �uid, it propagates
in the arteries with a certain velocity, called Pulse Wave Velocity (PWV), which
is dependent also on the elasticity of the vessels (E), arterial thickness (t), arterial
diameter (d) and blood density (ρ); notice that these characteristics are not only
patient-dependent but also vary during his life-time. Given the assumption that
the mentioned parameters don't vary signi�cantly over a short period, the PWV is
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Figure 2.18: PTT [60]

calculated as follows (Moens�Korteweg equation):

PVW =

√
gtE

ρd
(2.3)

where g = 9.81m/s2 and can be omitted (since it is constant) and, according to
Hughes equation

E = E0e
γP (2.4)

being E0 is the elastic modulus at zero pressure, γ is a coe�cient and P is the blood
pressure in mmHg. PVW and PTT are inversely proportional with coe�cient K
representing the distance traveled by blood between the two sites [59]:

PWV =
K

PTT
(2.5)

The time occurrence of the peaks of the ABP, ECG, and PPG is shown in Figure
2.19: in a cardiac cycle, the �rst peak to be recorded is the R-wave, after that
comes the SBP and last the systolic peak of the PPG.
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Figure 2.19: Time occurrence of R-wave peak, SBP and Systolic point

2.1.8 MIMIC database

MIMIC is a database included in PhysioNet, which is managed by the members
of MIT's Lab for Computational Physiology [61]. PhysioNet is a website founded
in 1999 to provide a public service to research institutions and at the same time
stimulate new investigation in the study of biomedical signals.

Figure 2.20: Physionet database interface

One of its components is PhysioBank, an archive containing digital recordings
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Figure 2.21: Waveform plot in Physionet

of physiological signals; the user interface of Physiobank is shown in Figure 2.20:
from there it is possible to choose the speci�c dataset, the records, which signals
to download, the length of the record and time and data format. Moreover, the
interface allows the user to see the wave-forms before downloading them, by choos-
ing Plot waveform in the toolbox. An example of plotted wave-forms can be seen
in Figure 2.21: all the signals contained in the record are plotted on separate lines
with the name speci�ed. In the current case, the record contains two signals of ECG
(II and V ) and the ABP; at the bottom, the starting and ending time of the record
(sharp to the millisecond) are indicated. In particular, MIMIC is a data-set that
contains data of intensive care unit from approximately 60,000 hospitalizations.

MIMIC has the great merit to provide freely a huge number of real data; despite
this, �nding a suitable signal in the dataset may be not an easy task. Many series
are only some seconds long or are not representative (see Figure 2.22): there are
many missing data, �at portions of the signal, �at peaks, and not all the recordings
have the same signals (for example some have ECG, PPG, ABP, and other signals
and some have only ECG and ABP or a di�erent combination).

It should be also noted that since the MIMIC database contains clinical data
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(a) Missing data (b) Noisy data

Figure 2.22: Example of criticalities in MIMIC signals

obtained from Intensive Care Units (ICU), all the vital signals contained in it are
in�uenced by drugs that can potentially cause abnormal variations; besides, the
average age of subjects is very high (65.8 years). As for the gender, 44.1% of
patients are female and 55.9% are males and there is no additional information on
the patient from whom the signal is recorded. These conditions may cause the data
downloaded from this site to be not representative of the total population or the
target population of a study.
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2.2 Mathematical Background

Machine learning is a set of statistical techniques that use historical data to learn
and make guesses on future or unknown events [62]. The learning can be both
supervised and unsupervised. In the �rst case, input data x are associated to a
speci�c output y, so there is an initial set D = {(xi, yi)}Ni=1, called training set.
The goal is to learn a function that best maps the input xi to the correct output
yi. In the second case, there is no known output y, and the algorithm has to �nd
the hidden structure within the set of data.

Supervised learning is usually seen in techniques like classi�cation (when the
output belongs to a discrete set) or regression (when the output belongs to a con-
tinuous set). The correctness of the output is determined during the training and
validation phases, when the prediction result is compared to the given truth. Un-
supervised learning is usually seen in techniques like clustering or dimensionality
reduction. Since no output is provided, there is no speci�c way to determine the
correctness of the algorithm.

When conducting this kind of learning, it is necessary to consider that data
are typically composed of the actual information they bring, plus some noise (this
term refers to irrelevant information or randomness in the dataset). It is vital
that the noisy component in the input dataset is as low as possible, otherwise the
underlying structure contained in the data would be covered and not recognized by
the algorithm.

(a) (b)

Figure 2.23: Bias-variance trade-o� (from [63])

Provided that the data have a su�ciently low noise, depending on how well the
input data can describe the problem, there may be the occurrence of under�tting or
over�tting. Under�tting occurs when the amount of data used to train the model
is not su�cient to catch the underlying pattern of the data, or when the model
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used is not suited to describe such pattern. The resulting prediction will have a
low variance and high bias. Over�tting, on the other hand, occurs when the model
is too complex and trained on too much data. The algorithm learns the noisy
component (not only the underlying pattern) and it is not able to detect the actual
structure of the data. The resulting prediction has low bias and high variance;
the algorithm will perform incredibly well during training and poorly on new data
(because it is not able to generalize).

We mentioned the concepts of bias and variance. A bias is a systematic error,
it is not caused by randomness, thus its e�ect is not reduced when observations
are averaged. Variance, instead, is a measure of variability, and it is an index of
how much the model is sensitive to the system's noise. A model with high bias
generalizes too much the input data, while a model with high variance does not
make enough generalization (Figure 2.23a shows the e�ects of high and low bias or
variance). According to Frotmann-Roe (2012) [63], as more parameters are added
to the model, its complexity rises and the variance grows, while the bias falls (as in
Figure 2.23b). To make a good prediction, it is crucial to balance bias and variance.

Figure 2.24: K-fold cross-validation, K = 5

Over�tting is tricky and much harder to detect than under�tting; one of the
most used techniques to avoid it, is cross-validation. Cross-validation is a technique
used to improve the ability of a model to generalize its prediction; it involves a
partitioning of the initial dataset in training and validation set. A particular case
is K-fold cross-validation: this method involves dividing the initial set in K sub-sets,
of which K-1 are used for the training, and 1 for the validation to test the model
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performance. The process is repeated K times, and each fold is used exactly once
as validation fold. Figure 2.24 shows the K-fold cross-validation functioning
when K = 5. As it is shown, each iteration yields a solution (Si); the �nal result of
the method (S) is calculated by averaging all the solutions obtained. In this way,
the �nal solution will be less in�uenced by the noise present in the data.

This work will deal with supervised learning and, speci�cally, with regression.

2.2.1 Regression

Regression is a type of supervised learning technique where the output y ∈ R.
It is used to investigate and model the relationship between a dependent variable
(which we want to predict) and one or more independent variables. The following
assumptions are made:

� Samples are representative of the population.

� The parameters used in the prediction are linearly independent.

� The dependent variable is subject to white noise, while independent variables
are not.

(a) (b)

Figure 2.25: From [62]: regression on same dataset using a polinomial of degree 1
(a) and degree 2 (b)

As shown in Figure 2.25, regression can be both linear and non-linear. In this
work, we will focus on linear regression, which is one of the most popular models
of regression.

Linear regression assumes that the dependent variable, or regressand, can be
found as a linear combination of independent variables, or regressors. It solves a
mathematical problem in the form:

y = Xw + ν (2.6)
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where y ∈ RN is the regressand, N is the number of input data, X ∈ RN×F is a
rectangular matrix of regressors containing all the parameters taken in consideration
in the model, F is the number of features considered, w ∈ RF is the optimum weight
vector (the solution of the problem) and ν is the error vector (which, by hypothesis,
has a Normal distribution and is negligible). The goal is to �nd the values of w

that minimize the Mean Square Error ||Xw−y||2
N

. All the variables are standardized
(their mean is subtracted and they are divided by their standard deviation) before
the analysis.

Ridge Regression is a linear regression technique used to analyze data that su�er
from multicollinearity (or collinearity). Multicollinearity is the existence of a near-
linear relationship among the independent variables; this can cause inaccuracies
in the parameters' estimation and thus degrade the performance of the algorithm.
Montgomery et al. [64] study the possible causes of this issue, which can be sum-
marized in:

� Bad data collection: data were gathered from just a small sub-space of the
independent variable. In this case, the dataset collected is not representative
of the population; a more accurate collection will solve the problem.

� Physical constraints : collinearity exist in the model or population, indepen-
dently from the sampling technique.

� Bad parameters choice: there is an excessive number of variables, and not all
the parameters are independent of one another.

� Outliers : extreme values should be removed before regression is applied.

In absence of collinearity, the problem in Equation 2.6 can be solved directly by
calculating the pseudoinverse of X:

ŵ = (XTX)−1XTy (2.7)

and this is the case of the Linear Least Square (LLS) method. The most signi�cant
drawbacks are that this operation has a high computational cost and it is not robust
in the case of multicollinearity. Ridge Regression can overcome these problems by
calculating the weight vector w as follows:

ŵ = (XTX + λI)−1XTy (2.8)

where I is the identity matrix and λ is a constant (if λ = 0 the problem becomes
equal to LLS). The optimum λ is the one for which the validation mean squared
error is minimum, and its value depends on the speci�c function.
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2.2.2 Error measures

We said that the correctness of a method can be stated by analyzing the error.
The error is the measure of the deviation between the predicted variable and the
observed one, but there is more than one way to measure it. In this thesis, we
will consider the Mean Absolute Error (MAE) and the Root Mean Squared Error

(RMSE).
The Mean Absolute Error (MAE) is a measure of the di�erence between two

variables quantifying the same event; it is calculated as shown in Equation 2.9,
where y is the observed variable, and ŷ is the predicted one (notice that is always
≥ 0, and low values are desirable). A characteristic of MAE is that it has the same
unit of measure as the data that are measured.

MAE =

∑N
i=1 |yi − ŷi|

N
(2.9)

The Mean Squared Error (MSE) indicates the average of the squares of the
errors, as shown in Equation 2.10, where y is the observed variable, and ŷ is the
predicted one. MSE is thus always ≥ 0, and it should be as close to zero as possible;
it has the unit of measure of the squared quantity that is measured. The squared
root of MSE is used as a measure of error as well and it is called Root Mean Squared
Error (calculated as shown in Equation 2.11); it has the same unit of measure of
the data being measured.

MSE =

∑N
i=1(yi − ŷi)2

N
(2.10)

RMSE =

√∑N
i=1(yi − ŷi)2

N
(2.11)

Since in MSE and RMSE the error is squared, these measures strongly penalize
large errors, so they are to be preferred in a situation where such deviations are
particularly undesirable. On the other hand, they are more sensitive to outliers
than MAE.
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2.3 Related works

The possibility to exploit PTT to estimate a patient's blood pressure continuously
has been already shown ever since 2000 by Chen et al. [65] who demonstrated the
possibility to make such measure with a certain accuracy thanks to a calibration of
the model which has to be repeated after some time due to the wrong assumption
that arterial sti�ness is constant in time. Mccarthy et al. (2011) [59] used this
approach to calibrate the linear algorithm with Omron M6, but the calibration had
to be done every 5 minutes. Problems related to the assumption of constant arterial
sti�ness have been found also in 2020 by El-Hajj et al. [66] who proposed to solve
it using two PPG sensors instead of one PPG and one ECG, shifting the issue to
the algorithm accuracy.

In the years, the linearity of the relationship between BP and PTT has been
proven and several models have been proposed. Among these we cite the propor-
tional model (Equation 2.12), the logarithmic model (Equation 2.13), the inverse
model (Equation 2.14) and the inverse square model (Equation 2.15).

BP = a ∗ PTT + b (2.12)

BP = a ∗ log(PTT ) + b (2.13)

BP =
a

PTT
(2.14)

BP =
a

PTT 2
+ b (2.15)

The accuracy of such models has been studied by Sharma et.al (2017) [67]; the
results showed that R2 ∈ [0.02,0.97] (R2 measures how well the observed variable is
represented in the model, it belongs to the interval [0,1], and it should be as close
to 1 as possible) and, to apply the models, it is necessary to train them over a large
range of BP values, the prediction is more successful for MAP and DBP (0± 2.12
and 0 ± 2.13 respectively) while for SBP the error increases (1.3 ± 7.02) though
staying always inside the AAMI standards.

Kachuee et al.(2017)[68] analyzed di�erent regression methods and found that
non-linear methods like the kernel method or ensemble regression (especially Ad-
aBoost) yield better performance than a linear approximation, suggesting the com-
plexity of the problem to be far higher than the one presented. Calibration-based
methods outperform calibration-free methods and methods considering many pa-
rameters extracted from the PPG signal have the same performance as the ones
considering only the pulse arrival time (PAT), which is de�ned as the time delay be-
tween the peak of the R-wave in the ECG and a systolic point of the PPG recorded
with a �nger device.

Among the noteworthy works done in the latest years, Shrimanti et al. (2016)
[69] uses the inverse linear model (Equation 2.14) evaluating PTT as the time de-
lay from the R-wave peak of the ECG and the systolic point of the PPG, using
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signals recorded from 14 healthy people in 5 di�erent positions (recumbent, seated,
standing, walking, cycling). The prediction error was highest when walking (MAE
4.4± 20.9 mmHg) or cycling (MAE 10.2± 16.0 mmHg) since these activities intro-
duce a baseline noise to the signal and highest when the patient was sitting (MAE
0.07± 5.8 mmHg).

Liang et al.(2018) [70] uses PAT and PPG features to classify BP in three
categories, namely normotension, pre-hypertension, and hypertension using data
downloaded from the MIMIC database. PPG features were shown to classify
BP categories more accurately than PAT and the combination of both PAT and
PPG features was able to improve the performance. Classi�cation of normal blood
pressure (normotension) against pre-hypertension reached a correctness of 84.34%,
normotension against hypertension reached 94.84%, while normotension plus pre-
hypertension against hypertension reached 88.49%.

Khalid et al. (2018) [71] use a single PPG signal to evaluate the patient's blood
pressure. The three most signi�cant features of the PPG are found to be pulse area,
pulse transit time, and width. Patients are classi�ed into three classes (normoten-
sive, hypotensive, and hypertensive) using three classi�cation methods: regression
tree, multiple linear regression (MLR), and support vector machine (SVM). The
best results are obtained with the regression tree; the error is −0.1± 6.5 mmHg for
SBP and −0.6± 5.2 mmHg for DBP.

Lazzazzera (2019) [72] presents a new smartwatch (CareUp) able to measure
blood pressure in real-time using two photoplethysmograms (PPG). The two signals
are acquired, �ltered, and cross-correlated to obtain PTT and HR; these data are
used as input in a linear model of the kind shown in Equation 2.16.

BP = a ∗ PTT + b ∗HR + c (2.16)

The accuracy demonstrated almost matches the AAMI requirements; in particular,
the error on DBP estimation is usually less than SBP. The procedure lasts about
45 seconds (of which 30 s are used to acquire a signal of su�cient length and 15 s
to output the estimation); the algorithm has to be calibrated on each user (though
no information about the frequency of the calibration is given).

Ding et al. (2019) [73] discuss the feasibility of exploiting PTT in continuous BP
monitoring and the main challenges of the method. In particular, they state that
non-invasive methods are not accurate enough to replace invasive measures. Among
the main challenges of PTT-based methods, they point out that DBP estimation
has a lower error than SBP (this might happen because DBP varies more slowly
in peripheral arteries than SBP). Moreover, many studies try to estimate BP only
using PTT even if this sole characteristic is not able to fully represent the problem
and lastly he remarks on the already mentioned problem of variable arterial sti�-
ness, not considered in the model and not solved even by adaptive algorithms like
adaptive Kalman �lter or recursive least square.
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Chen et al. (2019) [74] use support vector regression (SVR) on data downloaded
from the MIMIC dataset; the choice of the model is done to overcome errors caused
by the use of a traditional linear model on a non-linear problem; moreover, a
parameter optimization on the patient is performed. The algorithm is fed with 14
features related to blood pressure, which include PTT, HR, and characteristics of
the pulse waveform. The authors obtain an error of 3.27±5.52 mmHg for SBP and
1.16 ± 1.97 mmHg for DBP. The errors also meet the requirements of AAMI and
the British Hypertension Society.

Also Zhang et al.(2019) [75] use an SVR model with radial basis function (RBF)
with parameters optimization to predict blood pressure from PPG features, HR,
and PTT. The optimization is done with a 10-fold cross-validation to improve the
accuracy of the model.

33



Chapter 3

Objective and methodology

The objective of this thesis is to �nd an algorithm able to predict the patient's
blood pressure given his/her ECG and PPG. The prediction error should be lower
than 10 mmHg for 85% of the times, as indicated by the authorities for validated
medical devices. The algorithm is intended to be used for the device developed in
the SINTEC project [76], a European project that aims at developing soft, sticky,
and stretchable sensor patches to be used for the recording of vital signal and their
elaboration.

Since the SINTEC prototype hasn't been developed yet, the vital signs were
downloaded by the MIMIC III database. Among the recordings, the ones down-
loaded needed to have the following characteristics:

� Contain at least ECG, PPG, and ABP; notice that the database already
provides the signals aligned to the millisecond.

� Have few artifacts and su�ciently low noise.

� Have a length larger than 30 minutes.

All the recordings satisfying such criteria were downloaded as .csv �les and ag-
gregated for each patient as to have a single �le of a larger length. Among these
aggregated �les, only the ones with a recording duration of one hour and a half were
retained. Figure 3.1 shows a sample of dataset downloaded from MIMIC: the time
format was set to Elapsed time; the �rst row stores the names of all the signals
included in that record, while in the second row the respective units of measure are
present. Missing values are denoted with dashes.

The algorithm used was a linear regression of the type shown in Equation 2.12,
but considering also the heart rate of the subject, that is:

BP = a ∗ PTT + b ∗HR + c (3.1)
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Figure 3.1: Structure of downloaded csv �le

Considering that the prediction has to be performed separately for systolic and
diastolic pressure, Equation 3.1 becomes:{

SBP = as ∗ PTT + bs ∗HR + cs

DBP = ad ∗ PTT + bd ∗HR + cd
(3.2)

As mentioned in Section 2.1, the heart rate is found as the time delay between
two consecutive peaks of the R-wave in the ECG, and PTT is found as the time
delay between a peak of the R-wave in the ECG and a characteristic point of
the PPG, here the systolic point is considered (notice that this choice reduces the
computational load).

As mentioned in the related works, a major issue of this approach is that it re-
quires a speci�c calibration on each user. Calibration allows to adequately correlate
pulse transit time and blood pressure (both systolic and diastolic), thus �nding the
regression coe�cients as, bs, cs, ad, bd, cd of Equation 3.1. In an ideal case, calibra-
tion is performed only once, when the patient starts using the device.

The work is performed using three approaches:

� Whole �le, Figure 3.2: the signal (built as explained above) is pre-processed
and processed as a whole; training and testing of the regression are done
beat-to-beat (each cardiac cycle is evaluated separately from the others).

� Real-time simulation, Figure 3.3: the signal is subdivided into smaller seg-
ments, which are analyzed individually; training and testing of the regression
are again done beat-to-beat.

� Comparison with cu�ed measurements, Figure 3.4: the signal is subdivided
into smaller segments, which are analyzed individually; the training phase
of the regression is done beat-to-beat (because of a lack of data), but the
test phase is performed non-beat-to-beat (cardiac cycles are aggregated as
described in Section 3.3).
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Figure 3.2: Block diagram of whole �le approach

Figure 3.3: Block diagram of real-time simulation approach
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Figure 3.4: Block diagram of comparison with cu�ed measurements approach

The algorithms are fully written in Python and the main libraries used are
Numpy, Matplotlib, Scipy, and Scikitlearn.

3.1 Whole �le

The raw signals are shown in Figure 3.5; before the elaboration, a pre-processing of
the signals is needed. ECG and PPG are thus interpolated and �ltered to remove
some noise (the ABP is not �ltered, since it would impact the values of local maxima
and minima).

3.1.1 Interpolation and �ltering

The interpolation step is performed using scipy.interpolate.interp1d using a
cubic interpolation; from one original sample, 10 samples are produced. Due to the
previous step, the sampling frequency changes from the one used in MIMIC, i.e.
125 Hz, to 1250 Hz. The �ltering step was performed using the Butterworth �lter
included in Scipy (scipy.signal.butter) with order 3 and band-pass frequencies
equal to [0.5 − 45] Hz for ECG and [0.5 − 7] Hz for PPG; the Bode plots of the
digital �lter frequency response for ECG and PPG signals, are shown in Figure 3.6).
The digital �lter was applied using command scipy.signal.filtfilt because it
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was seen that it applied the �lter without shifting the signal on the x axis. The
frequencies were chosen after a visual analysis of the Power Spectral Densities,
found with scipy.signal.welch and shown in Figure 3.7; Figure 3.8 shows the
di�erence between the original signal and the �ltered one.

(a) ECG (b) PPG

(c) ABP

Figure 3.5: Segments of raw signals
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(a) ECG (b) PPG

Figure 3.6: Bode plot of digital �lter frequency response

(a) (b)

Figure 3.7: Power spectral densities of the ECG and PPG

(a) (b)

Figure 3.8: Segment of original and �ltered signal for ECG and PPG
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3.1.2 Finding local maxima

To �nd the local maxima of the signals, it is necessary to know the length of a
cardiac cycle (CC). Such length is speci�c of the patient, and in this work is found
as the average distance between the local minima of the ECG minus the standard
deviation times a coe�cient, as shown in Equation 3.3.

CC = meanCCECG
− stdCCECG

∗K (3.3)

The ECG is chosen because its maxima and minima are easily recognizable;
moreover, it is to be noticed that this step is performed to optimize the search of
local maxima and minima in the following operations (the default CC used for this
step considers that the minimum length of a cardiac cycle is of 330 ms). Mathemat-
ically, minima are found where the �rst derivative is equal to zero and the second
derivative is larger than zero, but this operation requires a high computational cost.
An alternative signi�cant point can be found where the second derivative of a func-
tion has its local maxima; nevertheless, as shown in Figure 3.9a, local minima found
as the maxima of the inverse funcion −f(x) (named as CC in the picture) achieve
a high accuracy, so points found as the maxima of the second derivative (named
as CC sec der in the picture) are discarded. Peaks of the signal are found with
function scipy.signal.find_peaks; the result of the above process is depicted in
Figure 3.9b.

(a) (b)

Figure 3.9: Finding Cardiac Cycles in ECG

Knowing the value of CC, the R-peak of ECG, the Systolic Point of PPG,
and SBP and DBP of ABP are found. As shown in Figure 3.10, such points are
taken quite accurately except for corrupted portions of the signal. To achieve such
accuracy it is necessary to set the optional parameters of function find_peaks,
namely distance between two consecutive peaks (this parameter is the length
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of a Cardiac Cycle, found in the previous step), height of the peaks height =
(hmin, hmax), and for the PPG and ABP also the width of the wave-form width =
(wmin, wmax). Such parameters are fundamental to detect artifacts in the signal
especially in the PPG, which is heavily a�ected by them (see Figure 3.11a); notice
that in MIMIC not all the recordings have the same scale, so it is necessary to
modify the parameters for each data-set. As for the ABP, the parameters are set
to cover the ranges 190− 80 for SBP and 120− 45 for DBP (so the whole range of
pressure).

(a) ECG (b) PPG

(c) ABP

Figure 3.10: Peaks in the series
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(a) (b)

Figure 3.11: Setting parameters in scipy.signal.find_peaks
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3.1.3 Finding couples (R,SP) and (SBP,DBP)

At this point, a further step is made to retain only the couples (R,SP) where both
points are present in the same cardiac cycle. This is done to avoid misalignment
errors in the case where a point (R or SP) was correctly taken and the other
is missing (if such an event occurs, the whole cycle is skipped). This process is
shown in Figure 3.12a; a systolic point is considered to belong to the same cardiac
cycle as the R-peak under exam if it occurs after the R-peak with a delay ranging
from dTepmin = 0.1 s to dTepmax = 1 s where the mentioned constants are to be
chosen depending on the distance between the ECG electrodes and PPG sensor
and also depending on the patient's age and health status. In the present case, it
was seen that [0.1,1] s was a good range to pair the correct points but, in other
cases, the range could be narrowed if target patients are younger and in better
health conditions. Figure 3.12c shows a pseudo-code implementing such a task.
Notice that in Figure 3.12c R and SP are the sets containing the timestamp of
the occurrence of the peaks (the timestamp is included in the �le downloaded
from Physionet). The same is done with SBP and DBP points in the ABP signal:
(SBP,DBP ) couples are retained only if both points were correctly taken in the
same cardiac cycle (see Figure 3.12b).
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(a) (R,SP) (b) (SBP,DBP)

(c) Pseudo-code

Figure 3.12: Cleaning couples (R,SP) and (SBP,DBP)

3.1.4 Evaluating PTT

The following step is to evaluate the PTT as the time delay between R[i] and SP [i]
in milliseconds and the HR as the time delay between R[i] and R[i+ 1]. Describing
it at a high level, the cycle that takes care of this task takes as reference an SBP
point and looks at all the R and SP points in an interval around the SBP. If it
�nds the couple (R,SP) belonging to the same cardiac cycle, it computes the PTT,
HR and saves PTT, HR, SBP, and DBP values. Figure 3.13 shows a pseudo-code
describing such process: the outer cycle scans all the SBP points and the inner
cycle the R and SP points. If a match is found, the outer cycle moves to SBPi+1

while the inner cycle starts the search or the matching couple not from j = 0 but
from j = j + 1. A match is found if the points occur in the correct order and in a
"reasonable" interval of time, that is:

1. SP occurs after SBP but no more than 1.5 seconds after it

2. R occurs after SBP but no more than 0.8 s after it

44



Objective and methodology

3. SP occurs at least 0.7 s after R

Notice that the above intervals of time are heavily in�uenced by the patient's
health condition: considering that MIMIC3 deals with patients in Intensive Care
Unit, the current values may be too high for healthy people. Moreover, the correct
order of occurrence of the three peaks should be the one shown in Figure 3.14a,
but such order was found to be inconsistent in the current data and no explanation
was found in PhysioNet on the points where the signals are recorded.

Figure 3.13: Pseudo-code of cycle �nding PTT

If the matching couple is found, PTT and HR are evaluated as shown in Equa-
tions 2.2 and 2.1 and saved along with SBP and DBP. If a matching couple is not
found for a number of times equal to Nattempts, the couple (SBP,DBP ) is dis-
carded since it has no matching (R, SP ). The value of Nattempts shall be chosen
carefully, since a too low value could cause a misalignment of the two cycles even
if there are few missing couples (SBP,DBP ) and (R, SP ), while a too high value
would enlarge the computational time in case there are long portions of missing
couples. A good compromise was found setting Nattempts = 10. Figure 3.14b
shows the output of the portion of code described above: the patient has a PTT of
680 milliseconds on average and the evaluation was done correctly for each cardiac
cycle, with only a few outliers.
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(a) (b)

Figure 3.14: (a) Time occurrence of R-wave peak, Systolic Blood Pressure, and
Systolic point; (b) Finding PTT

3.1.5 Performing regression

The output of this step is the input of linear regression, performed with ridge-
regression. The number of training samples is chosen after a study on the error
variation. According to this study, almost all the series require a number of train-
ing samples of about 150 − 200 samples and, for a larger number, the error starts
to increase, as Figure 3.15 shows. This range seems to be the same for series of
di�erent lengths and quality; this may suggest that the problem is heavily sub-
ject to over�tting and may be an advantage in the case of calibration since the
calibration phase would require less time. Nevertheless, the data available in the
current work don't allow any deeper study on this matter. This happens because
the patients from whom these signals are recorded are in a health status that is
not representative of the population. This a�ects both the quality of the signal
(in a not hospitalized subject, high and sudden variations of blood pressure are
not expected) and the validity of the mathematical expression used (Equation 3.1),
which is based on the strong assumption of constant arterial sti�ness. In particular,
the mentioned simpli�cation is also the cause of the recurrent calibration needed in
real applications but, in the present case, it is not possible to tell how much time
should elapse between one calibration and the following due to the fragmentation of
the data present in MIMIC. In a real case, the calibration should be performed by
a professional (IT-specialist, a physician, or a nurse) but the time elapsing between
a calibration and the other depends also on the performance of the device used.
Unfortunately, the prototype of the SINTEC device is still not available.
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(a) ECG (b) PPG

Figure 3.15: Study on error variation changing the number of training samples

Training is performed with K-fold cross-validation, being K = 5. The goal is
to have at least a prediction error (MAE) lower than 10 mmHg at least the 85%
of the times, as prescribed by the international organizations that validate medical
devices.
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3.2 Real-time simulation

The above process is performed also simulating a real-time acquisition of the data,
by reading the csv �le line by line. Figure 3.16 shows a pseudocode describing the
process. As shown, samples are acquired until a segment of the signal of prede�ned
length is built; such length is de�ned by LENSEGM. It is crucial to choose a suitable
value because a too short segment would enlarge the error due to the start and end
peaks of the segment and compromise the validity of the data, while a too long
segment would impact the speed at which the prediction is done.

Figure 3.16: Pseudo-code describing the simulation of real-time acquisition

After the segment is built, di�erently from when the whole signal is processed,
the quality of the segment is checked using two quality indicators: Noise to Sig-
nal Ratio (NSR) and Autocorrelation. These two indexes are calculated over the
segment of PPG because, as explained in the previous chapter, it is much more
subject to artifacts and noise. The threshold values for the quality indexes de-
pend on the length of the segment; for a segment of 1250 samples, NSR ≤ 10 and
AUTOCORR ≤ 150 (considering how Python computes them) are good values.

If the segment passes the quality check, it is processed as seen before (otherwise
it is skipped): the segment is interpolated and �ltered (with the same �lter as
before). After that, the critical points are extracted and coupled ((R, SP ) and
(SBP,DBP )) as before, and the PTT and HR are computed (again as already
described). Notice that this process is repeated not only once (as done in the �rst
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part) but for every single segment.
A further expedient is used to lower the error: when using the whole signal, the

length of a cardiac cycle used to �nd the correct distance between two consecutive
peaks is computed only once; instead, in the current approach it is adjusted for
each segment taken before the training. The adjustment is done by computing a
weighted moving average between the current value found(wcurr) and the one used
in the previous step (wprev), giving a higher weight to the previous (wcurr = 1, while
wprev is equal to the number of segments already examined).

When a NPEAK number of PTT and HR samples is acquired, the training is
performed over those samples with K-fold cross-validation (K = 5) and using ridge-
regression. The value of NPEAK is chosen considering the result of the study on
over�tting performed when considering the signal as a whole. Since the algorithm
shall work automatically, a unique value for all signals shall be found, and so the
chosen value was NPEAK = 200 samples (as explained before, the majority of the
signals were trained using about 200 samples).

After the training is performed, and the coe�cients for the regression equation
are found, all the samples of PTT and HR acquired in the subsequent segments are
used for the test, again performed with ridge-regression.

3.3 Comparison with cu�ed measurements

Up to this point, all the analysis has been performed considering each cardiac cycle
singularly.

A further experiment was done by slightly modifying the real-time simulation

algorithm to test the data not beat-to-beat, but averaging the critical values ex-
tracted from the segment under analysis (it is not done also for the training just
because of a lack of data, though it is reasonable to have a training more accurate
than the testing). For example, if, in the previous section, a segment produced 5
samples of PTT, 5 of HR, and 5 of BP; the 5 samples of PTT are averaged (the
same goes for the 5 samples of HR and the 5 of BP), and the test is done only
feeding the formula with the resulting sample of PTT and HR and comparing the
estimated BP with the BP sample.

This approach emulates the functioning of cu�-based blood pressure monitors,
that average the measure over about a minute and can yield very accurate results.
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3.4 Summary of input parameters

The following parameters are to be inserted:

� ECG, PPG, ABP: input signals.

� fs: sampling frequency.

� NPEAKS: number of samples of PTT and HR to use for training.

� LENSEGM: length of the segment to acquire.

� NSR: threshold of noise to signal ratio; this value depends on LENSEGM.

� AUTOCORR: threshold of PPG autocorrelation coe�cient; this value depends
on LENSEGM.

To customize the algorithm to a category of target patients, it is possible to
modify also other parameters:

� K: coe�cient of K-fold cross-validation; this value depends on the quantity of
samples used for the training.

� Nattempts: number of times a matching (SBP,DBP) (R,SP) is attempted;
this value depends on the quality of the signal.

� dTepmin: minimum delay between a peak of the R-wave and a peak od the
PPG belonging to the same cardiac cycle; this value depends on the charac-
teristics of the patient.

� dTepmax: maximum delay between a peak of the R-wave and a peak od
the PPG belonging to the same cardiac cycle; this value depends on the
characteristics of the patient.

� (heightRmin
, heightRmax): range of values that can be acquired by the R-wave

peak; this values depend on the characteristics of the patient.

� (heightSPmin
, heightSPmax): range of values that can be acquired by the sys-

tolic point; this values depend on the characteristics of the patient.

� (widthSPmin
, widthSPmax): width of a PPG wave not a�ected by artifacts; this

values depend on the characteristics of the patient.

� (widthBPmin
, widthBPmax): width of an ABP wave not a�ected by artifacts;

this values depend on the characteristics of the patient.
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Results

In this chapter, the results of the study described in Chapter 3 will be presented.
Patient 3002229 is taken as a representative example.

As expected the use of the MIMIC dataset created some problems because:

� Portions of data recorded in di�erent moments were pasted together, so the
�le showed some discontinuities.

� BP values in many cases are "peculiar" (i.e. particularly high or low, some
times the value increases at high speed, some other times there is a very
signi�cant variability throughout the �le) but there is no information on what
caused the anomaly (some drugs, stoke, incorrect positioning of the sensor,
motion artifact). This is a serious problem that prevents a reliable conclusion
from being reached.

� The values of ECG and PPG had di�erent scales, so it was not possible to
write an algorithm that worked automatically for all the patients (we suppose
that using the device developed by SINTEC the scale will be the same for
every patient and this problem will be automatically overcome).

Since the algorithm is based on linear regression, the linearity of the problem
has been declared. The scatter plots in Figure 4.1 4.2 show that there is no linear
correlation, and a high variability is present (the standard deviation goes up to 2
without outliers). This means that the problem, by itself, already contains a high
variability; for this reason, only points with a z-score ≤ 5 (z-score = x−µ

σ
, where

x is the parameter under analysis, µ and σ are the mean and standard deviation of
the considered parameter) were considered outliers and therefore not considered in
the prediction.

The correlation heatmap in Figure 4.3 shows the correlation coe�cient of all the
variables considered. As expected, it is a symmetric matrix and all BP measures
are highly positively correlated between themselves. Moreover, the heart rate is
positively correlated to BP but with a low coe�cient (this result was expected since
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(a) (b)

Figure 4.1: Scatter plots of data: heart rate vs blood pressure

(a) (b)

Figure 4.2: Scatter plots of data: pulse transit time vs blood pressure

many other variables in�uence the heart rate, among which is to be mentioned also
the mental state of the patient). Pulse transit time is, as expected, negatively
correlated both with blood pressure variables and heart rate. In this case, a higher
coe�cient would have been expected, but the result could be explained considering
the di�culties related to the use of the MIMIC dataset.

Figure 4.4 shows a detail of the signal recordings of patient 3002229. The
waveforms show some irregularity (especially the ECG).
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Figure 4.3: Correlation heatmap of the data

4.1 Whole �le

Figure 4.5 shows the performance of the algorithm in predicting DBP values of a
patient using the whole �le approach. In particular, Figure 4.5a shows the perfor-
mance of the training algorithm (fed with 200 samples, of which 1

5
th is used as a

validation set, due to the K-fold cross-validation). Figure 4.5b is a histogram show-
ing the prediction errors done in the training phase. The majority of the errors
falls in the range [−5,0] mmHg; overall, the threshold of 10 mmHg is not exceeded.
Figure 4.5c shows a zoom of the prediction performed in the test phase; it is no-
ticeable that the predicted values follow the real pattern, even if with a certain
discrepancy. Figure 4.5d reports the prediction errors of the test phase; the curve
has a Gaussian shape, it is centered in 0, and the threshold of 10 mmHg is exceeded
a negligible number of times (47).

Figure 4.6 shows the performance of the algorithm in predicting SBP values of
a patient. Therefore, the algorithm is able to follow the real trend, both in the
training and testing phase, even if with a discrepancy. This discrepancy is wider in
the test phase than in training, and it is larger than the one shown in Figure 4.5.
In this study, the error on SBP prediction is almost always larger than the error
on DBP prediction; this could be explained considering that SBP is more unstable
than DBP. Table 4.1 reports the numerical errors found for patient 3002229; the
error is computed using both Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) and it is reported as mean± std.

Table 4.2 reports a summary of the results obtained by the regression performed
on all the data extracted with the whole �le approach. The regression settings were
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(a) (b)

(c)

Figure 4.4: Zoom of ECG, PPG, and ABP recordings of patient 3002229, and
over�tting

SBP

patient MAE train RMSE train MAE test RMSE test
[mmHg] [mmHg] [mmHg] [mmHg]

3002229 4.3 5.4 4.9 6

DBP

patient MAE train RMSE train MAE test RMSE test
[mmHg] [mmHg] [mmHg] [mmHg]

3002229 3.3 3.9 3.5 4.5

Table 4.1: Results of whole �le for patients 3002229
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(a) Train (b) Train error

(c) Test (d) Test error

Figure 4.5: Whole �le: train and test performance on DBP values

already described in the previous chapter. These results shall be compared with the
requirements for the validation of medical devices and with the error of cu�-based
blood pressure monitors.

The �rst thing to notice is that cu�-based blood pressure monitors have a MAE
equal to 0± 3 mmHg, which is much lower than the one that is presented in Table
4.2. As for the validation of a possible device, the measuring error (only MAE shall
be considered) is above the threshold only in the �eld MAE test, which means that
it could be improved to �t the requirements. Also the standard deviation is pretty
high, especially in the SBP prediction.
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(a) Train (b) Train error

(c) Test (d) Test error

Figure 4.6: Whole �le: train and test performance on SBP values

SBP

MAE train RMSE train MAE test RMSE test
[mmHg] [mmHg] [mmHg] [mmHg]
7.5± 5.3 8.7± 5.8 11± 6.4 13.1± 7

DBP

MAE train RMSE train MAE test RMSE test
[mmHg] [mmHg] [mmHg] [mmHg]
3± 1.9 3.6± 2.3 4.6± 3.4 5.4± 3.6

Table 4.2: Results' summary of whole �le performance for all patients
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4.2 Real-time simulation

Figure 4.7 shows the performance of the real-time simulation approach in predicting
a patient's blood pressure beat-to-beat, described in Section 3.2. As explained in
the previous chapter, the training is performed always using the same amount of
training data (200 samples) since, in a real case, it would be impossible to �nd a

priori a personalized number of samples to use. The amount of data to use was
determined as explained in Chapter 3.

(a) (b)

(c) (d)

Figure 4.7: Real-time simulation: test performance on DBP and SBP values

The mentioned plots are obtained considering NPEAK = 200, LENSEGM = 10, NSR
< 13, and autocorrelation coe�cient CORR > 100; the signal quality was anyway
high, since it had NSR ≈ 3 and CORR ≈ 1000; this means that no segment of
the signal was discarded. Notice that the NSR is calculated as the sample mean
divided by the standard deviation, while the autocorrelation coe�cient is found
with np.correlate; the corresponding threshold values were chosen because, after
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an inspection, they were found to be a good quality compromise for segments of
length LENSEGM.

Figure 4.8: Prediction error varying NPEAK

Table 4.3 reports the numerical errors to compare with Table 4.1; from the
comparison, it appears that the performance in the training phase is still good, but
in the testing phase it is worse than with the whole �le procedure (MAE almost
doubles); the reason is unlikely to be an over�tting occurrence since, varying the
number of NPEAK samples, the error is fairly constant (as shown in Figure 4.8), it
decreases very little by increasing the number of train samples.

SBP

patient MAE train RMSE train MAE test RMSE test err > 10 mmHg
[mmHg] [mmHg] [mmHg] [mmHg] [-]

3002229 3.3 4.0 8.0 9.6 40%

DBP

patient MAE train RMSE train MAE test RMSE test err > 10 mmHg
[mmHg] [mmHg] [mmHg] [mmHg] [-]

3002229 2.2 3.0 5.0 6.2 7.8%

Table 4.3: Results of real-time simulation for patient 3002229

Table 4.4 shows how the error varies when changing the parameter LENSEGM;
remember that LENSEGM is just a coe�cient: the actual number of samples contained
in the segment is equal to LENSEGM ×fs, where fs is the sampling frequency. The
error in the training phase looks to be directly proportional to the parameter, while
in the testing phase it looks to be indirectly proportional. Nevertheless, the variance
is low, which suggests that the reason could be just the di�erent number of samples
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used in the respective phase; the same goes for the err > 10 mmHg �eld. The same
behavior is shown by the data of the other patients. Values lower than LENSEGM

= 10 are not reported since the number of peaks present in the segment was not
enough for the algorithm to work, thus 10×fs seems to be the minimum length; in
the �nal analysis, this minimum length was chosen to advantage the patient who,
in a real case, has to remain stationary during the acquisition.

SBP

LENSEGM MAE train RMSE train MAE test RMSE test err > 10 mmHg
[mmHg] [mmHg] [mmHg] [mmHg] [-]

10 3.3 4.0 8.0 9.6 40%
20 3.7 4.7 8.7 10.4 40%
30 3.7 4.6 8.9 10.5 42%
40 3.3 4.1 8.3 10.1 36%
50 3.7 4.7 8.7 10.3 41%
60 3.7 4.6 8.8 10.5 41%

DBP

LENSEGM MAE train RMSE train MAE test RMSE test err > 10 mmHg
[mmHg] [mmHg] [mmHg] [mmHg] [-]

10 2.2 3.0 5.0 6.2 7.8%
20 2.7 3.4 4.6 5.7 7.3%
30 2.8 3.5 3.7 4.6 2.2%
40 2.6 3.3 5.1 6.2 8.8%
50 3.0 3.6 3.9 4.8 2.8%
60 3.1 3.7 3.4 4.5 3.3%

Table 4.4: Results of real-time simulation for patient 3002229 changing LENSEGM

Table 4.5 shows a summary of the results obtained with this approach on all the
data tested. With respect to Table 4.2, an additional column reporting the percent-
age of cases where the error was larger than 10 mmHg is present. The calculation
of such parameter was possible since each test was performed independently for
each sample, as explained in Chapter 3. Notice that, even if the parameter is larger
in SBP than in DBP (coherently with the other results), it is larger than the 15%
allowed by the validation standards in both cases, and has a not negligible stan-
dard deviation. The overall performance follows the behavior already observed in
patient 3002229. In particular, Table 4.6 reports the di�erence MAEwf −MAErts
for both training and testing phase, where MAEwf is the MAE obtained with the
whole �le approach, and MAErts is the MAE obtained with the real-time simu-

lation approach; the results in the training phase are better, while in the testing
phase they are worse.
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SBP

MAE train RMSE train MAE test RMSE test err > 10 mmHg
[mmHg] [mmHg] [mmHg] [mmHg] [-]
5.8± 3.4 7.4± 4.4 13.4± 8.4 16± 9.5 47.4± 29.1%

DBP

MAE train RMSE train MAE test RMSE test err > 10 mmHg
[mmHg] [mmHg] [mmHg] [mmHg] [-]
2.4± 1.4 3.0± 1.7 6.7± 4.4 8.4± 5.7 21.4± 22.7%

Table 4.5: Results' summary of real-time simulation for all patients

MAE train SBP MAE train DBP MAE test SBP MAE test DBP
[mmHg] [mmHg] [mmHg] [mmHg]
1.7± 6.1 0.6± 2.1 −2.4± 7.4 −2.1± 5

Table 4.6: MAEwf −MAErts

4.3 Comparison with cu�ed measurements

This section reports the results obtained with the approach described in Section 3.3:
Comparison with cu�ed measurements. The values of beat-to-beat blood pressure,
pulse transit time, and heart rate are averaged over the segment and only one test is
performed for each segment (the di�erence with respect to the real-time simulation
approach is shown in Figures 3.3 and 3.4).

Figure 4.9 shows the prediction performance on the data of patient 3002229
with LENSEGM = 40 (as for the other parameters NPEAK = 200, NSR = 10, CORR
= 10000), while Table 4.7 reports the error parameters changing LENSEGM. It is
immediately noticeable that the error is incredibly low in all the parameters, it
drops signi�cantly when LENSEGM ≥ 40, and that it is never higher than 10 mmHg.
As for the training, the parameters present in Table 4.3 are still valid, for the
reasons explained in Chapter 3.

Table 4.8 reports a summary of the results obtained with the comparison with

cu�ed measurements approach for all the patients. Overall, the error is incredibly
lower when using this approach with respect to the other two examined, and it is
a bit lower when using a larger segment.
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(a) (b)

Figure 4.9: Comparison with cu�ed measurements simulation: test performance on
DBP and SBP values

SBP

LENSEGM MAE test RMSE test err > 10 mmHg
[mmHg] [mmHg] [-]

10 0.84 0.9 0%
20 0.83 0.88 0%
30 1.32 1.36 0%
40 0.39 0.48 0%
50 0.46 0.53 0%
60 0.23 0.32 0%

DBP

LENSEGM MAE test RMSE test err > 10 mmHg
[mmHg] [mmHg] [-]

10 1.29 1.36 0%
20 1.67 1.68 0%
30 1.29 1.33 0%
40 0.66 0.67 0%
50 1 1.02 0%
60 0.55 0.57 0%

Table 4.7: Results of comparison with cu�ed measurements for patient 3002229
changing LENSEGM
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SBP

LENSEGM MAE test RMSE test err > 10 mmHg
[mmHg] [mmHg] [-]

10 2.9± 2.9 3.2± 3.3 0%
40 2.4± 2.9 2.7± 3.4 0%

DBP

LENSEGM MAE test RMSE test err > 10 mmHg
[mmHg] [mmHg] [-]

10 1.3± 1.1 1.4± 1.2 0%
40 0.9± 0.9 1± 1.1 0%

Table 4.8: Results' summary of Comparison with cu�ed measurements for all pa-
tients
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4.4 Remarks

Ideally, considering that the algorithm should be as automated as possible, the
only parameters to choose should be NPEAK, LENSEGM, NSR, and CORR. Nevertheless,
considering that data from MIMIC are used, it was necessary to adjust also the
possible maximum and minimum value of the R-peak and Systolic Point, due to a
very di�erent scale in which the data are reported (in some data-sets the range of
R belongs to the interval [0.02, 1.5] and in some other case to the interval [1,3], thus
it is not possible to �nd a single range). Moreover, probably due to their health
condition, some patients have very high variability in the length of the cardiac
cycle and others do not; for this reason, it was necessary to change also parameter
K in Equation 3.3. Using a single device to record the data and limiting the target
customer to people in good or medium health conditions, this problem should be
automatically overcome.

After the analysis, most of the errors seem to be due to the conditions of the
patients from whom the data are recorded: drugs, age, diseases in�uence the rela-
tion between blood pressure and pulse transit time shown in Equation 3.1, which
is already based on the strong assumption of constant arterial sti�ness. Moreover,
some of these patients are subject to major pressure changes that make the train-
ing not valid. This statement is supported by the fact that Pulse Transit Time
measured by the algorithm has extremely high variability.

BP right PTT right BP wrong PTT wrong
[mmHg] [ms] [mmHg] [ms]

DBP 72.2± 3.2 640.8± 18.6 78.8± 8.4 648.8± 13
SBP 155.3± 2.8 613.38± 5.75 167± 11.3 649± 12.7

Table 4.9: Real values of BP and PTT of patient 3002094 divided according to the
fact that PTT led to a right or wrong BP prediction

Table 4.9 shows the real values of Blood Pressure and Pulse Transit Time of
patient 3002094 divided into right or wrong according to the fact that the BP
prediction (using the real-time simulation approach and the corresponding PTT)
had an error (MAE) lower than 10 mmHg (right) or larger (wrong). Considering
that the plots and various checks show that BP and PTT were correctly extracted
from the signals, it is noticeable that when the prediction is successful, the PTT
is in a correct range (lower for SBP and higher for DBP) and that the ranges do
not overlap for Systolic and Diastolic blood pressure. On the other hand, when the
prediction is not successful, the blood pressure variation does not correspond to a
variation in pulse transit time. In addition, notice that the standard deviation of
PTT is very large (in some cases it is > 25 ms) which brings further uncertainty in
the decision making.
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Figure 4.10: Segment of PPG signal

The cause of this high variability in the PPG is likely to be found in the pa-
tients' health condition; Figure 4.10 shows a sample of the PPG signal of patient
3002094, while other samples of signals of patient 3002229 are shown in Figure 4.4.
Remembering that the PTT is evaluated as the time di�erence, in milliseconds,
between a peak of the ECG and the peak of the PPG corresponding to the same
cardiac cycle, it is evident that, to further reduce the error, the peaks should be
more regularly distanced than they are (the irregularity seems not to be due to an
artifact).

By comparing the results obtained with the three approaches, the best result is
reached using the comparison with cu�ed measurements method, while the worst
one with the real-time simulation method. Considering the discussion above, this
suggests that the problem is too complex to be correctly described by a regression
when examining it in detail like in the beat-to-beat approach; while in the non-

beat-to-beat approach, most of the second-order e�ects internal to the problem and
summarized by parameter K in Equation 2.5, are damped.
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Chapter 5

Conclusion

In this work, we presented an algorithm able to predict a patient's blood pressure
given his ECG and PPG. By extracting some critical information (PTT and HR)
from such signals, the algorithm, thanks to the mathematical approach used, is able
to predict BP quite accurately in few seconds and with a low computational cost.
The use of the mentioned signals allows continuous monitoring of blood pressure
thanks to the fact that they can be acquired in a non-invasive and non-expensive
way; thanks to continuous monitoring of a large portion of the world population
(especially people who are generally healthy, remember that hypertension is also
called the "silent killer") a detection of hypertension is possible and thus a reduction
of incidence of Cardio Vascular Diseases. The algorithm was trained and tested
on data downloaded from MIMIC3 an on-line public database containing signals
recorded from patients in Intensive Care Unit. The results using a non-beat-to-beat
approach are compliant with the international requirements for validated medical
devices.

The approach used requires a calibration on data recorded from the patient
to predict its blood pressure and this is a disadvantage. Indeed the calibration
needs to be performed with the help of quali�ed personnel (e.g. IT-technicians or
a physician). Moreover, since the mathematical approach relies on the assumption
of constant sti�ness of the arterial walls, there may be a need to calibrate the
algorithms more the once. This possibility couldn't be investigated due to the
lack of data on a single patient and could represent a huge issue when using the
algorithm on data recorded from a speci�c device. This happens because in the
current work the error associated with the acquisition of the signal was neglected
since the data downloaded from MIMIC are recorded using very invasive methods
but, in a real case, it is expected to be signi�cant (it is not feasible to acquire data
with invasive techniques on the target consumers).

Other critical issues arise because PPG is heavily a�ected by artifacts, especially
motion artifacts (as mentioned in [67]), which will impact the performance of the
algorithm. Moreover, data recorded from MIMIC are not representative of the

65



Conclusion

target population, since they are recorded from patients in ICU: they're older than
the average target, are in critical health conditions, are administered with drugs
of various types. As a consequence, as well as the impossibility to well de�ne the
time delay constants in the algorithm, there is the issue that healthy people are not
subject to dramatic changes in BP as the ones present in MIMIC but have a more
stable trend in blood pressure.

The algorithm was written with the purpose of using it as a start for the device
developed in the SINTEC project, of which the prototype is still not present. The
future work will be to acquire new data with the prototype and use them as input
for the algorithm. There will surely be a need to modify the code, with partic-
ular focus on the �ltering part, due to the expected high noise. Moreover, there
will be the need to state the recurrence of the calibration phase and the validity
of the used formula and approach varying the acquisition conditions, i.e. the pa-
tients keeping his posture sitting, standing, walking or during physical activity, or
changing posture during time. Lastly, considering the discussion in Section 4.4, it
would be interesting to consider the potentiality of an algorithm based on classi-
�cation rather than regression since it would overcome both the question related
to the mathematical de�nition of the problem and the errors due to second order
e�ects. Classes could be linked to certain ranges of blood pressure, for example
class1 → SBP ∈ [100 − 105], class2 → SBP ∈ [105 − 110], and so on (the same
approach can be used for DBP).
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