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Abstract 
 
Co-simulation has become one of the most powerful tools to test and validate large and 
complex power system scenarios avoiding the risk of harming expensive equipment and 
affecting power system reliability. In fact, co-simulation becomes specifically important to 
test and simulate innovative functionalities with complex requirements in nowadays electric 
grids and to evolve to Smart Grid concept.  

Hardware in the Loop simulation technique is mostly used for development and embedded 
system testing. HIL needs real-time simulation models to allow the artificial injection of inputs 
to the Device Under Test (DUT) and the monitoring of the DUT outputs.  But when testing 
critical devices, the co-simulation infrastructure, as well as the stability of the system, is 
fundamental to be assured to avoid problems with the connected devices, when outbound 
signals (due to an unstable system) are sent to the DUT that might cause overvoltage or 
overcurrent. 

The aim of this thesis work is to analyze the main co-simulation techniques and standards to 
evaluate the feasibility of data transmission between different Digital Real-Time Simulators 
[DRTS] exploiting high-bandwidth and low-latency protocols (e.g. Xilinx Aurora 8B/10B) to 
allow Hardware In-the-Loop (HIL) testing in co-simulation infrastructure. The communication 
latency is a very important parameter to be determined before interconnecting different 
DRTS, to run complex power system simulations, because it is considered one of the main 
numerical stability issues. In fact, latency could influence on time-domain accuracy and 
frequency-domain stability of the solution in fast time-stepped simulation.  

In this work, the time delay of communication protocols that enable DRTS interconnection is 
measured to ensure that latencies will not affect power system co-simulation results. As part 
of the analysis, this calculation has been compared with other variables to determine if their 
values affect time delay behavior of DRTS interconnection, such as the amount of data 
transmitted, and the imposed time step. 

Retards are present on PHIL systems due to the delay time from when the electrical signal is 
transmitted from the real time simulator (RTS) and passes through the power amplifiers 
(coupled in the real time simulator) until the hardware under test (HUT) actually receives the 
signal. The retard phenomenon happens also in co-simulation, but the retard is due to delays 
in the communication from one point to another.  

Based on the previous statements, the purpose of the thesis second step is to create a simple 
electrical circuit to be implemented and split it in two parts running on two DRTS. In this stage, 
a theoretical analysis was performed to stablish the parameters that ensured stability of the 
system. To state those parameters, the theoretical analysis was approached by an Interface 
Algorithm method, which through a set of non-differential equations analyzed the stability of 
delayed systems. Once established the parameters that assured the system stability, the 
simulation was performed using a single DRTS (RTDS Technology Novacor2 chassis) exploiting 
an echo link to experimentally test the behavior of the system. The performed tests on the 
DRTS showed the limitations of the real-time simulator when comparing it with respect to the 
theoretical simulations. As conclusion, it is stated the appropriate parameters regarding the 
time step and circuit specifications that must be followed to set-up a composed co-simulation 
infrastructure in DRTS.  
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1 Introduction 
 
With the increasing innovations in power electric system, the necessity of validation of the 
Power Generation and Distribution Systems is required. Most of the times, power systems 
are composed by complex systems as the Electromagnetic Transient (EMT) and AC grids that 
relies on the information and communication technology to control and monitor the system 
[1].  

In the last decade, the power industry interest is targeting on Hardware and IO testing, to 
consecutively analyse the interfaced plant model reaction which is simulated by prototypal 
models. The attention is particularly emphasized in power electronic converters and fast 
acting control and protecting systems [2] where the system model needs to be tested at the 
same time rate as the real-world physical system. In such cases, the Power Hardware in the 
loop (PHIL) becomes a necessity. PHIL allows real time simulators to be interfaced with 
prototypal setups of the devices under test (DUT) or IO. 

However, the implementation of a PHIL based model requires a previous analysis of the model 
stability, due to the communication latencies imposed by the data transmission from the 
device under test (DUT) to the rest of the system (ROS). The study of the system stability and 
the frequency domain through Interface Algorithms models have been proposed in the past 
few year [3], as the damping impedance method (DIM), ideal transformer model (IT), etc. The 
theoretical analysis aims to identify the stability limits, to narrow the critical study cases to be 
tested on the simulator. 

Some simulation models require to interface sub-systems needed to be simulated at different 
time step rates. For instance, in [4], the AC grids need a time step up to 500 microseconds, 
instead the EMT can be simulated in a range between 2 and 50 microseconds. The problem 
arises when these systems, with different simulation rates or even different time domain 
modelling (as frequency and continuous time), are needed to be interfaced.  

Another difficulty occurs when it is intended to simulate large systems. In [5], a large complex 
EMT system was needed to be simulated. In this case, the simulation timestep was not multi-
rated and the simulation domains were the same, but in such large systems, many times it is 
required to divide the system in i) a subsystem subjected to less changes and ii) another one 
that provides model changing flexibility, due to the system test complexity. 

Depending on the type of simulation intended to be performed (networking simulations, EMT 
system simulation), the simulations can be performed using three main simulator types: time-
stepped simulators, event-based simulators and real-time simulators. Normally, because of 
the characteristics of the networking traffic, the most common simulator to use in networking 
system modelling is the event-based simulator [6]. On the other hand, since the stepped time 
simulator work with a fixed time step (in the microseconds order), these simulators are well 
suited to perform EMT simulations [7]. 

The main difference between the time stepped simulator and the event-based simulators is 
the updating system state variables frequency. In the case of the event-based simulator, the 
system state variables can be updated only when an event is detected, instead in the case of 
the time-stepped simulators, the state variables can be updated on each fixed time interval. 
The real time simulator approach is quite different to the previous two, since this simulator 
type allows to perform tests as if the real process was connected. 
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The main advantage that real time simulators offer is a simulation as if the device under test 
(DUT) was connected in real world physical time to the simulator, providing an interface to 
monitor the rest of the system (ROS) behaviour and the DUT.  

The main problems of a detailed solution of many electrical systems (e.g. EMT system and AC 
systems) is the significant use of computational resources [5]. Therefore, one of the main 
solutions implemented in the last decade is the co-simulation of two real time simulators 
allowing to test large systems and maintaining, at the same time, the simulation accuracy.  

Nevertheless, in co-simulation, it persists the need of finding a method of synchronizing the 
simulation tools being used, where again, the communication latency between the involved 
parts is a fundamental key to assure the system stability thus its reliability. In order to 
determine the best suited synchronization technique, it is important to determine the time 
range on which the synchronization is needed. Some protocols like Precision time Protocol 
can synchronize the simulation network up to 100 nanoseconds but requires a PTP 
grandmaster (GPS or CDMA). Instead, other protocols, like SNTP, are less accurate (in the 
range of milliseconds) but do not require a GPS or an atomic radio. 

In recent studies, RTDS and OPAL-RT  are two real time simulators widely used to implement 
complex architectures when simulating large EMT systems [5] or even geographically 
distributed EMT systems [8]. In [5], it was implemented a co-simulated system by the 
interconnection of RTDS and OPAL-RT, instead in [8] the geographically distributed EMT 
system was implemented by using field programable gate array (FPGA) with the RTDS. In 
particular, RTDS has a flexible framework to perform system reconfiguration when modelling 
or performing control features. 

The main purpose of this thesis is to analyze the main co-simulation techniques and standards 
to determine the feasibility of a real time simulator (specifically RTDS) when interconnecting 
two different architectures through an echo full duplex link, using a low latency and high band 
protocol: Xilinx Aurora 8B/10B. The communication latency is a transcendental parameter 
since it can influence the time-domain accuracy and frequency-domain stability of the 
solution in fast time-stepped simulations. Therefore, communication latency must be 
calculated to assure that it will not perturb the power co-simulation results. 

The following subsection states the thesis motivation, the goals of this work, as well as the 
thesis document organization. 

 

1.1 Thesis Motivation 
 
In many research papers, co-simulation of hybrid systems, using different types of simulators, 
are approached as the co-simulation of an event driven simulator interfaced with a real time 
simulator. This is the case of [9], where the OPNET (an event driven simulator) was used to 
simulate the communication network, while the power system simulations were conducted 
in RTDS, a real time simulator. In [4], the co-simulation of two real time simulators DSP and 
PC is performed to achieve multi-rate simulation, using also FPGA as the simulation clock 
controller. But there is not relevant work of co-simulation of OPAL-RT and RTDS that 
determines the co-simulation capability that these two real time simulators can provide. 

Based on the previous observations, the future intention in the Energy Center of Politecnico 
di Torino is to perform co-simulation of NovaCOR RTDS from RTDS Technologies and OPAL-RT 
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OP5700. The co-simulation of these two RTSs will allow to test large and complex systems, as 
well as to evaluate system configurations when connecting the model to a device under test 
(DUT) in PHIL. The RunTimes of both DRTS are installed in a host workstation that allows set-
up and monitoring of the RTSs. 

Looking forward to accomplishing the stated future intention of the Energy Center, the main 
goal of this thesis is the determination of the latency when transmitting data from one port 
to another in a RTS. The RTS used was NovaCOR RTDS from RTDS Technologies, performing 
the communication through Aurora protocol. The connection was implemented by an echo 
full duplex link by connecting ports 23 and 24 of RTDS chassis 2, allowing bi-directional 
communication through optical fiber cable as the physical layer. The second statement that 
this thesis presents is the evaluation of RDTS capabilities and its limitations when simulating 
a communication delayed architecture based on two-parts split electrical system model.  

The structure of this thesis is organized as follows. The Technological background reviews the 
type of power system simulators, the co-simulation techniques, and the proprietary protocols 
to interface DRTSs. The State of art solution introduces relevant works related with this thesis. 
The Methodology chapter describes the methods used to develop the test cases. In the 
Analysis and accuracy stability chapter the RTDS data transmission latency time (through 
Aurora protocol using an echo link) is calculated and the simple study case is described. The 
simple study case is analyzed theoretically, regarding the system stability analysis, to continue 
afterwards with the experimental testing on the RTDS. Finally, the conclusions and the 
summary of the total work are presented in the Conclusions chapter. 
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2 Technological Background 
 

2.1 Power Systems Simulators 
 
In Power Systems simulations there might be several models that need to be simulated. These 
models include from the networking system to the electrical grid or control system. When 
performing domain specific model simulations, three main categories can be individuated. 
The classification is based on the frequency of the iterations as the event-based simulators or 
time stepped simulator. The digital real time simulators possess a different approach with 
respect to the other two simulators. The main characteristics of the mentioned simulator 
types are described in the following sub-sections. 
 

2.1.1 Event-based Simulators 
 
The main characteristic of the event-based simulators is that the iterations are seen as 
simulation events. Normally, a power system simulation is mostly implemented with a fixed 
timestep while the information network is event-driven, however, power systems can also be 
simulated as event-driven simulation where the performed iterations are seen as events. 
Network data events are always randomly distributed, since commonly are simulated as 
discrete events [6]. 

Focusing on the common use of the event-based simulators, several studies have been held 
analysing the feasibility of the simulators to accomplish network or electric grid simulations. 
OMNET++ is a discrete event simulator intended to simulate electrical networks programmed 
in C++ in a modular infrastructure. The feasibility of the OMNET++ to simulate also electrical 
grids was proved in [10], where it was concluded that the simulator can successfully perform 
simulations in these systems, despite it was not supported initially for this purpose. However, 
some disadvantages arise in the development phase since it is stated the concurrency of 
crashes while simulating. 

NS-2 is a discrete event Network simulator that is aimed for the simulation of TCP/UDP, 
routing and multicast protocols. In the application level is stated to cover HTTP protocol, 
telnet and FTP sources, etc. [11]. NS-2 is programmed in C++ in a modular fashion as well as 
OMNET++ [12]. 

OPNET Modeler is a product of PNET Technologies which is also a network simulation 
software that aims to solve network management issues [13]. This simulator is able to create 
traffic of telecommunication networks and protocol modelling [14]. 

Some authors developed simulators since stated that the documentation of the previously 
mentioned simulators to perform new simulations is incomplete and the learning process is 
time consuming and difficult. TARVOS [12] is an open source discrete simulator coded in C, 
intended for research purposes that can be customized and controlled from a high level which 
facilitates user’s simulations setup. 
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2.1.2 Time Stepped Simulators 
 
The simulator type is based on the frequency on which the algorithm solver is called. In the 
case of the time-stepped simulator, the time step is a fixed time interval equal to the step size 
and is the traditional simulation implementation. 

In [15], the  time stepped simulation efficiency is discussed, since during low density of events 
there is a waste of processing time. Therefore, [15] proposes a technique to combine the 
event-driven method with the time-stepped one to optimize the computing resources. 
Although, it is important to state that time-stepped simulations are very efficient when event 
density is high. 

Generally, the time stepped-simulators solve the differential equations in a time stepped 
manner, on which the time step is in the microseconds order [7]. In each step, the algorithm 
simulates all events that appear in that time interval [15]. This makes them very well suited 
for simulating electromagnetic transients and in general electrical models. Some simulators 
that behave the previous described way are: EMTC and PSLF [7]. 

 

2.1.3 Digital Real-time Simulators 
 
The digital real-time simulators (DRTSs) serve as a study tool to determine causes and 
solutions on complex electrical systems involving millions of dollars. DRTSs are very important 
in industries like Energy, where performing a plant test (for example smart grid application or 
control paradigms) is not only dangerous but also can damage expensive equipment.  

Real time simulation allows to perform setup tests as if a real process would be directly 
connected to the simulator via a communication system. The simulator is designed to react 
fast enough to the signals it is receiving [16]. In this way, it is possible to make decisions about 
the changes in the model and evaluate its consecutive real plant implementation.  

The real time simulators have also the advantage that real Hardware can be interface with it 
and monitor the device behaviour. When real Hardware is implicated, the concept behind it 
is Power Hardware in the Loop. The main characteristics of a real time simulator are: a 
dedicated Runtime environment orchestrated by the solver and the guarantee of a specific 
computation time that is stable [2]. 

IREQ simulator is analysed in [17], which has a hybrid digital and analogue data acquisition 
system and an online data processing system. The models were run in a real-time closed loop 
feedback system. The inputs are read from voltages and currents applied to the simulator 
dedicated hardware. This study also states that since analogue technologies still require fast 
transients in real time, the best solutions are based on hybrid models where the analogue 
components or the passive components are connected to the digital models [17]. 

In [18], it is evaluated the better choice of a time step in a digital real time simulator 
developed for relay testing with a single high-performance workstation processor that 
contains a graphical user interface in the real-time power system simulator. 

When designing a simulator, one of the main aspects to take into account is the timestep, 
because this will define the type of applications that simulator will be useful for. [18] analyses 
the many factor that affect the timestep. One of those aspects is the frequency bandwidth of 
the output signal. The bandwidth value is determined by the input wave analysis. 
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The time step simulation accuracy will also be affected by the network complexity which is 
directly influenced by the number of nodes in the network. Finally, the simulator architecture 
and the I/O subsystem requirements are aspects that might increase or decrease the timestep 
of the simulator. 

 

2.1.3.1 Opal-RT 
 
OP5700 is a real time simulator built by Opal-RT Technologies which simulation software is 
the RT-LAB. RT-LAB enables rapid prototype since it is an integrated real time software where 
control system test and HIL simulation can be performed. Opal-RT uses MATLAB (specifically 
Simulink) as a model editing tool, working as user designing front-end application [19]. 

The OP5700 architecture is divided in two main sections. In the first section the analogue and 
digital I/O modules are assembled, and the second section is composed by a multi-core FPGA 
able to run the models of the real time simulation software. The OP5700 can be connected 
through TCP/IP Ethernet to a Windows hosting computer to edit and monitor the simulations 
[20]. Figure 1 illustrates the simulator architecture. 

 
Figure 1. Opal-RT simulator architecture [20]. 

OP5700 has 8 slots of I/O boards per system. Each analog board has 16 channels and support 
up to 128 in the system. Each digital board has 32 channels per slot and support up to 256 per 
system. Regarding the connectivity, supports Ethernet and RS232. The supported 
communication protocols for Energy systems are S7, Profibus, Modbus, S7, Aurora, IEC 60870-
104, DNP3 outstation (slave) and master, ABB PS935 [20]. 
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2.1.3.2 NovaCOR RTDS 
 
NovaCor is the new generation of simulation hardware of RTDS (stands for Real Time Digital 
Simulator). The RTDS is a simulator used mainly for real time power system simulations [21]. 
The RTDS cubicles are composed by the racks that host the chassis with the processor cards 
and the IO cards fed by the correspondence power connections. Each chassis possesses a 
powerful muti-core processor designed to perform EMT simulations. The chassis also contains 
communication ports and analogue output channels [22]. 

Figure 2 shows the composition of each chassis, containing an IBM Power8 processor with 10 
cores operating at 3.5 and a first FPGA that handles real time functionality [22]. The RTDS also 
contains Workstation Interface Card (the other FPGA card) which main task is to perform 
connection between the RTDS rack and the workstation (that hosts the software able to 
perform sophisticated graphs through ethernet based connection) [23].  

 
Figure 2. Novacor system architecture diagram [22]. 

 

The maximum quantity of IO cards supported per chassis is 160. Each Novacor fiber port 
supports up to 8 IO cards and each Novacor has up to 24 GT Fiber communication ports, 
where only 20 are available for IO card connection, and ports from 21-24 are reserved for 
Aurora communication [22]. 

RSCAD is the software used for modelling the systems that is also design by RTDS 
technologies. Through this software, it is possible to develop, compile and run the models. 
The RSCAD/File manager application is the interface between the developing and running 
application of the simulator. 
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Figure 3. RSCAD file manager. 

Through the file manager, it is possible to navigate in the existing files, open and modify them. 
It is also possible to create new documents. The main application used to develop the system 
intended to be simulated, is the Draft. 

The Draft application possess a library that contains, in different classifications, the algorithms 
to develop the models. The library has two usage modes: the master and the user. The master 
is the standard library and remains unchangeable, instead the user’s library allows to 
personalize the library. The components are classified in three parts: Power System 
Component Library, Control System Component Library and the Small Time Step Component 
Library. 

RSCAD/MultiPlot is an application used to process and analyse captured results stored during 
the simulation. The RTDS Component Builder is the application that allows the user to create 
new components in both Power and Control systems. It provides an interface for drawing and 
creating new components. 

The RSCAD/RunTime is the application used to simulate the generated draft, once it is 
properly compilated. In the case options it is possible to set the simulation time and the 
update frequency. 

The supported communication protocols by RTDS are MODBUS server (slave) over TCP, DNP 
3.0 slave, IEC 60870-5-104 slave. Regarding the open protocols, IEC 61850 9-2LE or IEC 61869-
9 and Aurora are supported [24]. 

2.2 Hardware-In-the-Loop 
 
The Hardware in the Loop technique requires developing a simulation close enough to reality 
that models the plant and connects the device under test (DUT) to determine its behaviour 
by the interaction with the simulated plant. In this case, the system will read real inputs (like 
sensor signals) and generate simulated output signals that in general are commands to the 
actuators. 
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HIL can be used also to determine that the developed software, intended in the future to be 
run in the plant, won’t damage the devices and will work properly, which makes HIL a 
powerful tool to discover possible bugs or problems both in the hardware and the software. 
This feature allows the possibility to optimise the product before its production or field 
implementation. 

However, to assure the functionality of the tests performed in HIL, it is critical to demonstrate 
that the simulated environment is a sufficiently reliable representation of reality. 

The verification and validation are the steps that demonstrate the correctness and fidelity of 
the simulation. Verification is the process on which HIL simulation results are compared with 
analytical calculation results or results from independently developed simulations. Validation 
consists on demonstrating that the HIL simulation models are suitable in the operational 
environment with an acceptable accuracy [25] 

 

2.2.1 Stability and Accuracy Analysis 
 
When performing HIL simulations, [26] stated that all systems can be modelled by dividing 
them in two parts: the device under test (DUT) and the rest of the system (ROS) represented 
in Figure 4. Normally the ROS is simulated in the real time simulator and the DUT is 
implemented by real hardware connected to the ROS through the using of an Interface 
algorithm (IA). When decoupling the system, delays, errors and non-idealities appear that 
could derive in the instability or inaccuracy of the system. 

 
Figure 4. Representation of system split [26]. 

To develop and test models through the HIL simulation, the stability of the models must be 
assured. The stability of the HIL system can be analysed using the system transfer functions. 
To assure the stability, the open loop transfer function must comply with the Nyquist 
criterion. 
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Figure 5. Block diagram of a HIL system [3]. 

 

 

The transfer function from Figure 5 is shown in Equation (5): 

𝐺𝑂𝐿_𝐼𝑇𝑀 = 𝑇12𝑇𝐵𝑇22𝑇𝐹 
(1) 

2.2.2 Interface Algorithm (IA) 
 
The interface algorithm determines which is the type of signal to be transmitted and how is 
this signal being processed. In the case of the transmitted signals, the voltage, current or 
power are very often used variables. Regarding the way the signals are processed, models 
commonly use the received signals as inputs passing through logic composed of gains, low 
pass filters, lead lags, etc [3]. 

 

2.2.2.1 ITM 
 
The ideal transformer model (ITM) algorithm is considered as the simplest interface model. 
In [26], the error caused by decoupling the system is lumped in a single time delay Δt. So, the 
system is modelled as the open loop transfer function multiplied showed in Figure 6. 

 
Figure 6. Delay due to decoupling the system [3] 

From Equation (1): 

• T12=-ZS 
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• TB=1 

• TF=𝑒−𝑠Δt 

• T22=1/ZL 

 
The transfer function equations that model using the ITM IA for the voltage type: 

𝐺𝑂𝐿𝐼𝑇𝑀
=

𝑍𝑆

𝑍𝐿
𝑒−𝑠Δt 

(2) 

2.2.2.2 Shifted Impedance 
 
In [26], the shifted impedance method is stated by adding a phase shift in the voltage and 
current of the ROS. Supposing the system is of the form of Figure 6, and that all delays are 
lumped in a single time delay Δt , the open loop transfer function is described by Equation 
(3). 
 

𝐺𝑂𝐿_𝑆𝐼 =
𝑧𝑆 − 𝑧𝑆𝐹𝑇

𝑧𝐿 − 𝑧𝑆𝐹𝑇
𝑒−𝑠∆𝑡 

(3) 

The drawback of this system appears when implementing co-simulation with HIL, since adding 
a shifting impedance (𝑧𝑆𝐹𝑇) in a large power system, might result very expensive [26]. 
 

2.2.2.3 Damping Impedance (DIM) 
 
The Damping Impedance algorithm exhibits the greatest stability of the  broadly studied 
interface algorithms because of its potential of being adaptively controlled using PHIL in real 
time simulation [27]. 

The DIM IA is obtained by adding a damping impedance (z*) when the combination of the 
ITM algorithm and the PCD (partial circuit duplication) is performed. PCD is another interface 
algorithm that consist on the relaxation technique intended for large software simulations 
[3]. Figure 7 shows the implementation of the co-simulation by using DIM as an interface 
algorithm. 

 
Figure 7. Co-simulation using DIM Interface algorithm model [3]. 

The open loop transfer function of the system is shown in Equation (4). 

𝐺𝑂𝐿_𝐷𝐼𝑀 =
𝑧𝑎(𝑧𝑏 − 𝑧∗)

(𝑧𝑏 + 𝑧𝑎𝑏)(𝑧𝑎 + 𝑧𝑎𝑏 + 𝑧∗)
𝑒−𝑠∆𝑡 

(4) 
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From Equation (4), it is noticeable that when 𝑧𝑏 is equal to 𝑧∗, the magnitude of 𝐺𝑂𝐿_𝐷𝐼𝑀 
becomes zero, which assures the stability of the system and the not propagation of the error 
on the next time step. In [3], it is stated that to accomplish the equality of the impedances to 
reach a magnitude of zero is not an easy task, since normally 𝑧∗ is implemented as HIL. Even 
though, it might be a slight difference between the impendences, the method provides good 
stability and accuracy. 

 

2.3 Co-simulation Techniques 
 
A distributed simulation is a group of components constituting a simulation system 
interacting over a network that can be either local or distant [28]. The distributed simulations 
have different approaches depending on the application it is created for. Based on [29] three 
main modes of Distribution Simulation can be implemented to speed up the simulations, to 
link the several simulations, and in some cases also to improve the simulations reusability.  

Mode A implements a simulation (that might be implemented in a single computer) that is 
subdivided into different models. These subdivided simulations interact with each other via 
communications network. In Mode B, several simulations are linked by the communications 
networks as in Mode A, but in this case the models can exceed the capability of a single 
computer. The simulations, hence, can be reused by been connected to other simulations, 
reducing the cost of developing. Finally, the simulations of Mode C are sequentially run (one 
at a time) in parallel multiple computers. The simulations are coordinated by an 
experimentation manager via a communication protocol [29].  

The time of a computer set may differ, due to the different count frequencies in the hardware 
clocks. Thus, the main issue regarding the distributed simulation is the synchronization of 
software running processes on the different computers, intended as the simulation time 
across the computers involved. For this purpose, many techniques to synchronize the co-
simulation have been studied in the recent years. The main synchronization protocols are 
presented in the following sub-sections. 

 

2.3.1 Synchronization Protocols 
 

2.3.1.1 Network Time Protocol (NTP) 
 
NTP stands for Network Time Protocol which is an internet protocol used to synchronize the 
clocks of computers to a time reference. The NTP subnet architecture is hierarchical by 
stratum and the subnet must be reliable and survivable in any condition, so this means that 
NTP requires redundant time servers [30]. 
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Figure 8. NTP protocol structure [31]. 

Based on the stratum architecture (Figure 8), the synchronization flows from the primary 
servers to the secondary and going on successively towards the lowest stratum [30]. The 
primary time server is directly synchronized to a primary reference (which at the same is 
synchronized to national standards by wire or radio) [32]. NTP uses Coordinated Universal 
Time (UTC) reference time to define the system real time [31]. The secondary servers (stratum 
2) are the local-net hosts that distribute time via NTP to the remaining local-net hosts [32]. 

NTP has three principal modes of operation. The first one is client/server model, where the 
received messages by the client allows it to determine the server time with respect to local 
time and adjust the local clock accordingly [32].This paradigm is stateless and the servers does 
not need prior configuration [31].  

The second operation mode is symmetric active/passive. This mode is intended for clique 
architectures of low stratum peers that operates as mutual backups for each other. Each peer 
normally works with one or more clock references or a subnet of primary and secondary 
servers that are known to be reliable [30]. 

Finally, the third mode is the broadcast intended for few servers and a large client population. 
The working principle is a broadcast server that continuously generates messages to the 
configured clients. The clients normally respond to the first messages and then each client 
polls the server in a client/server mode, using the burst feature. A volley of several exchanges 
is performed in an interval of approximately 16 s. When the volley is over, the clients set the 
clock and computes the offset between the broadcast time and the local time. Once the offset 
is calculated, the server continuous as before but the clients no longer send messages [30].  
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Regarding the network layer protocol on NTP; IP provides data integrity. Instead, on the 
transport layer protocol, NTP uses UDP over packet switched networks to synchronize clocks 
between one-or several-time servers and clients, and at the same time provide the checksums 
on the sent messages [32]. 

The accuracies achievable by NTP depend strongly on the local-clock hardware precision, the 
rigorous on device control and the encountered process latencies [32].  

One of the main factors that can drive to frequency fluctuations is the ambient temperature 
that affects the circuit components. Different algorithms in NPT protocol are implemented to 
correct the frequency. For example, the discipline algorithm corrects the frequency once 
every second reaching to an accuracy of 100 µs, which in general is considered good 
timekeeping for local-area-networks (LANs). Better accuracy can be reached by using 
different techniques related with the clock adjustment in the kernel [30]. 

 

2.3.1.2 Simple Network Time Protocol (SNTP) 
 
SNTP stands for simple network time protocol which is basically the NPT but does not 
implement internal algorithms in some servers [31]. The SNTP is intended  for systems with 
low-end workstations that for any reason cannot justify running the full NTP implementation 
and do not have clients on their own [30].  

SNTP has the same on-wire packet format and protocol but might lack the full suite NTP 
mitigation and grooming algorithms. For instance, either the primary servers and clients can 
run SNTP because the primary servers do not accept synchronization and the clients don’t 
provide synchronization. Instead, when regarding the secondary server, since both accept and 
provide synchronization, it must conform the full NTP [30]. 

As specified in the NTP section, NTP clients communicate with several NTP servers to 
determine the correct time and also using the algorithm correction. SNTP instead, uses only 
one clock source as reference and normally adjust the local clock in one step [33]. 

Just as NTP, SNTP uses the Server/Client model. The process is initiated by the SNTP client 
which sends a SNTP request to the SNTP server. The SNTP server replies with a message 
containing the local time, then the client calculates the offset between the server and itself 
and adjust the local clock [33]. 

A study performed by Ussoli and Prytz [33] determined that it is possible to reach an accuracy 
of milliseconds when a sufficient timestamping accuracy and some intelligent offset 
calculations are implemented together. Moreover, it is specified also the necessity of using 
filtering to make smooth clock updates [33]. 

 

2.3.1.3 Precision Time Protocol (PTP) 
 
In order to synchronize independent clocks running in different nodes in a distributed control 
system, the IEEE 1588 standard specifies a protocol that performs the synchronization at a 
high degree of accuracy and precision over the communication network, from a grandmaster 
to a slave, comprising transparent clocks (TCs) and boundary clocks (BCs) [34]. In IEEE 1588, a 
clock is a node implementing PTP. [35] 
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In an ethernet based network, the synchronization packets must share the network 
bandwidth with non-synchronization packets, which causes packet delay variations. For this 
reason, the PTP standard recommends the usage of transparent and boundary clocks to 
measure and correct the time the packets spend in the queue buffer of output ports. The 
previous solution is recommended on new installations, but regarding the costs, when dealing 
with existing networks, other solutions are stated; like traffic design, priority tagging of 
synchronization traffic, etc. [36] 

PTP is based on a master-slave timing distribution among the node clocks in the system. To 
define the state or the function of each clock port, the best master clock algorithm (BMCA) is 
used, where the master-slave hierarchy is defined as well as the best master source to be 
synchronize to. The BMCA will avoid creating timing loop through valid network paths, but in 
case of device or network failure it might have to re-stablish the hierarchy and reselect a 
master. 

 
Figure 9. General scheme of the master-slave configuration ports in PTP [35]. 

Figure 9 shows a general scheme of the node port configuration in a system using PTP. A 
master port for a clock sends the packets (in the form of PTP messages) to a slave port in 
another clock. The slave ports allow the clock to be synchronized with the Grandmaster (GM) 
clock, which is the root of the hierarchy. Other than slave and master ports, a third port state 
exists, which is the passive port. Passive ports prevent timing loops or conflicting master ports 
in the same hierarchy. [35] 

The BC is normally an Ethernet switch (which handles IEEE-1588 packets) that has multiple 
PTP ports in a domain and runs BMCA [35]. It may serve as time source, be a master clock and 
may be synchronized to another clock or even be a slave clock. It acts much as an ordinary 
clock in an isolated subnet (becomes the master clock). Boundary clocks only handles PTP 
packets while the standard Ethernet switches or routers handle the rest of network traffic 
[34].“Network engineering should ensure that all clocks participating in the PTP time 
distribution are set to the same domain(s)”.  [34, pp. 12-17]. 

The TC is as well an Ethernet switch (which handles IEEE-1588 packets) that measures the 
time taken for a PTP event message to arrive. TC provides this time arrival message 
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measurement to clocks, in a correction field, and provides the original timestamp to the slave 
nodes, to allow them to determine the delay. [34] The transparent clocks in general forwards 
the information but does not process it, thus does not run BMCA. TC ports has no specific 
state and does not participate establishing PTP hierarchy [35]. 

The protocol appliances are focused on the cell/Area zone level based on the OSI reference 
model. The IEEE 1588-2002 origins contemplates operation over control local area (LANS), 
excluding the wide area networks (WANs) and administration free operation (being this the 
BMCA role). Furthermore, it is designed for minimal resource requirement in devices 
supporting PTP, thus clock filtering or averaging might not be necessary. [35] 

Regarding the main applications intended with IEEE 1588 are included: data acquisition, 
military instrumentation, industrial robots and high-speed printers [35]. The protocol targets 
to sub-microsecond accuracy by having the master clock sending multicast synchronization 
message frames containing time stamps [31]. In order to get the sub-microseconds accuracy, 
the configuration of two devices with different parameter settings must be minimum which 
recalls the device profile [37] defined by the IEEE 1588 as “Profile: The set of allowed Precision 
Time Protocol (PTP) features applicable to a device”. [34] 

 
Figure 10. Scheme of IEEE 1588 working principle using peer-to-peer [37]. 

Figure 10 shows the messages sent from the master clock to the TC and those sent from the 
TC to the slave clock. In the synchronization process the Master Clock sends 2 messages: first 
sends Sync and after Follow_up messages. Sync messages contain an estimate of the sending 
time. When Sync is received by the slave, the received time is store. The Follow_up time 
message contains the precise sending time (measured as close as possible to the physical 
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layer of the network) of the sync message. When this message is received by the slave clock, 
it is used for the calculations rather than the sending time contained in the sync message [31]. 

Since at the begging the TC works as a slave clock and then as a master, the Pdela_Req is a 
message sent from the TC/BC but also from the slave clock, after receiving the Sync message. 
The time the messages spend on the TC/BC are called residence time. When the master 
receives the Pdelay_Req, it takes note of the receipt time and responds with the Pdelay_Resp 
message that contains the receipt time of the Pdelay_req message [31]. 

Han & Crossley Conference paper [37] states the offset based on which the slave corrects its 
local clock (using the nomenclature showed in Figure 10). The offset calculation is shown in 
equations (5) and (6). 

𝑡𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑡4 − 𝑡1 − 𝑡𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 

(5) 

𝑡𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑙𝑖𝑛𝑘_𝑚𝑡 + 𝑡𝑙𝑖𝑛𝑘_𝑡𝑠 + 𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 

(6) 

Where: 

𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑡3 − 𝑡2 

(7) 

𝑡𝑙𝑖𝑛𝑘_𝑚𝑡 =
(𝑡𝑠4 − 𝑡𝑠1) − (𝑡𝑠3 − 𝑡𝑠2)

2
 

(8) 

𝑡𝑙𝑖𝑛𝑘_𝑡𝑠 =
(𝑡𝑠8 − 𝑡𝑠5) − (𝑡𝑠7 − 𝑡𝑠6)

2
 

(9) 

Many analyses take into account factors that can potentially affect the overall synchronization 
accuracy. When considering real time substations and the traffic through the network, the 
study developed by Han and Crossley [37] concluded that when testing diverse network 
topologies, using highly redundant substations; and generating the traffic (Sample Value and 
Generic Object Oriented Substations Events), PTP is able to maintain the accuracy without 
being affected by the traffic. Thus the 1 µs can be obtained with commercial devices. 

When interconnecting two or more nodes for data exchanging information, the IEEE Standard 
specifies that if the clocks (switches) “also support another protocol, such as Distributed 
Network Protocol Version 3 (DNP3) or Modbus, they may also support the mapping of the 
data available from either the clock datasets or TC datasets to provide that data via that 
supported protocol.” [34] 

 

2.3.1.4 IRIG Protocol 
 
The Inter-Range Instrumentation Group (IRIG) is a Rockwell Automation product that provides 
a synchronization accuracy range of 1 to 10 microseconds. In order to achieve this accuracy, 
the protocol implements the 1756-TIME module and coaxial wiring to reach synchronization 
through large geographical areas [38]. 
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The target appliances are related to the military area, aerospace and power utility 
instrumentation [38]. 

The main disadvantages of this protocol are related with the additional expenses of the 
specialized hardware that must be added, plus the expenses related with the licenses. 
Another disadvantage is the increased time skew due to the required added physical 
infrastructure. Table 1  summarizes the protocol characteristics mentioned in this section. 



19 
 

Table 1. Summary table of the synchronization protocols. 

Synchronization Accuracy physical 
protocol 

Transport 
protocol 

layer 

Hardware 
needed 

Appliances Topology How it works Drawbacks 

Network Time 
Protocol (NTP) 

10 ms on 
internet paths. 
1 ms in LAN.  

ETHERNET NTP uses 
UDP over 
packet 
switched 
networks. 

NTP 
server, 
radio or 
atomic 
clock. 

Manufacturing 
Zone (level 3) 
up through the 
Enterprise 
Network. 

Server-
Client 

Primary time server directly 
synchronized to a primary reference 
source. NTP generally uses time source 
like radio or atomic clock attached to 
main time server, then NTP server 
distributes the time across the 
network. 

Asymmetries on the 
network can cause bigger 
delay transmission. NTP 
enabled device will not 
synchronize to a device 
whose time is significantly 
different than others.  

Simple Network 
Time Protocol 
(SNTP) 

Milliseconds 
or tens of 
milliseconds 
range. 
Depends also 
on the 
network 
traffic. 

ETHERNET 
 

A SNTP 
server to 
use as a 
time 
reference 

Small networks 
with few or nule 
network traffic. 

Server-
Client 

The process is initiated by the SNTP 
client which sends a SNTP request to 
the SNTP server. The SNTP server 
replies with a message containing the 
local time server, calculate the offset 
between the server and itself and 
adjust the local clock (the clock of the 
SNTP client). 

SNTP relies on software 
timestamps where there 
may be considerable jitter 
due to operating systems 
scheduling. SNTP can only 
perform the 
synchronization every 16 s 
or slower. 

Precision Time 
Protocol 

10 to 100 ns 
achievable.  

ETHERNET IP PTP 
grandmas
ter: GPS 
or CDMA 

PTP is 
recommended 
to be used at 
the cell/Area 
zone level. 

Master-
Slave 

The clocks communicate with each 
other over a communication network. 
The protocol generates a master-slave 
relationship among the clocks in the 
system by determining which of the 
possible sources has better accuracy. 
All clocks derive their time from a clock 
known as the grandmaster clock. 

PTP is not routable 

IRIG protocol 1-10 
microseconds 

COAXIAL. It 
also uses 

ETHERNET 

 
1756-
TIME 
module 

Use across large 
geographic 
areas (e.g. 
Military, 
aerospace) 

Rockwell 
Automati
on 
product 

 
The expenses of additional 
HW and the increased time 
skew due to the added 
physical infrastructure 
required. 
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2.3.2 Internet Suite Communication Protocols 
 

2.3.2.1 Request Response Approach 
 

2.3.2.1.1 TCP/IP 
 
In a Local Area Network every link interface has a unique address, some ways to communicate 
through the link interface, as well as network interface, are the usage of serial port or an 
Ethernet card. The network layer ensures the data transfer between two remote computers 
within a particular Wide Area Network (WAN) [39].  

TCP and UDP belong to the transportation layer. TCP transfers data between two application 
running on individual computers on the internet. The client encapsulates the TCP segment 
into an IP datagram, which has a source IP address the "Client" and its destination is the 
"Server" IP address. In the case of UDP, UDP datagrams are also enveloped in an IP datagram 
containing, analogous to TCP, the source port and the destination port [39]. 

TCP/IP is a connection-oriented service, which means that a connection is first stablished 
between the parts (Handshaking dialogues in 4 steps) and the destination confirms the data 
receiving. The maximum acknowledgment time is of 500 ms. If any TCP segment gets lost, the 
destination asks for the retransmission of the lost data. Full duplex circuit stands for data 
simultaneously transferred in both directions independently [39]. 

 

2.3.2.1.2 UDP/IP 
 
Concerning UDP, it is a connectionless-oriented service where handshaking dialogues are not 
performed, so this protocol does not warrantee the delivery of the messages. Therefore, the 
user's program is subject to unreliability of the underlying network [39]. 

In order to select which protocol to use, it is important to determine the type of the 
application intended to deploy. UDP might be an optimal protocol when in the application is 
preferable to drop some packages but deliver on time. Instead in TCP, will always assure the 
delivery of packages even because of the acknowledgment mechanism that might result in 
retransmission. Table 2 confronts the UDP/IP and TCP/IP characteristics.  
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Table 2. Summary table of Request response protocols 

Characteristics 
Transport Layer Protocols 

TCP/IP UDP/IP 

Transmission time 
Maximum acknowledgment 
time: 500 ms 

Non acknowledgment 

Hardware needed 

In WANs need at least one 
router between 2 computers. 
The connection between two 
neighbouring routes on the 
link layer is always direct. 

 

Topology 

Connection oriented service.  
Full duplex circuit (data 
simultaneously transferred in 
both directions 
independently. 

Connectionless oriented 

Data reception 
confirmation 

The destination confirms the 
data received. If any TCP 
segment gets lost, the 
destination asks for the 
retransmission of the lost 
data. 

No confirmation is given 
for the received data. 

Handshaking 
dialogues 

four step hand shaking. Handshaking dialogues 
are not performed. This 
protocol does not 
warrantee the delivery 
of the messages. 

 

2.3.2.2 Publish Subscribe Approach 
 

2.3.2.2.1 Internet of things (IoT) 
 
Performing the synchronization via the network using HTTP REST requests is not adequate to 
use as a synchronization method because incurs on increasing the synchronization time 
inaccuracy. The first reason is because the simulators might get connected to different servers 
that defer on the exact current time. Another reason is the presence of a delay between the 
client request (in this case the simulators) and the response of the servers. The consecutive 
response would be provided in a different time than the requested one, which would increase 
the inaccuracy on the distributed simulation synchronization. 

The synchronization can be performed, as well, using a different protocol: MQTT. In this case, 
the IoT cloud server or message broker publishes the current time to the IoT device. The 
encountered disadvantage is aligned with the one found in the REST method. The time 
received from the broker is not accounting for forward and reverse one-way-delays (OWDs) 
of the packets carrying the timestamps and any response message. [40] 
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The evident problem is that every OWD contributes to synchronization inaccuracy at the 
device. Despite of the benefits of a wireless synchronization system and the fact this method 
does not need additional hardware, the accuracy is in the range of seconds, which depending 
on the application type might not be a suitable accuracy. [40] 

 

2.3.3 Proprietary Protocols 
 

2.3.3.1 SCADA 
 
The SCADA (stands for Supervisory Control and Data Acquisition) is not precisely a 
communication protocol, it actually is an acquisition system to be access in most of the cases 
remotely. 

"A SCADA system consists of a number of remote terminal units (RTUs) collecting data and 
sending that data back to a master station via a communication system. The master station 
displays the acquired data and allows the operator to perform remote control tasks" [41, p. 
4]. The connection of the SCADA network to the LAN allows anyone within the company (with 
the software to access and the credentials) to get into the database. Open source software 
exists like: Citec and WonderWare to implement SCADA systems [41]. 

 

2.3.3.2 MODBUS 
 
Modbus is a commercial communication protocol that was created initially to perform 
communication between Gould Modicon (now Schneider) programmable controllers. 
Nowadays is broadly used in automation industry to communicate electronic devices 
between each other. 

The Modbus Organization manual [42] specifies that the transmission time depends on the 
controller type hence varies between 0.5 ms to 7 ms, depending also on the amount of data 
been transmitted. Another factor to take into account is the distance of the links with delays 
within sub-milliseconds to several seconds [42]. 

Two main modes can be implemented in the transport layer. The first one is TCP/IP, which is 
based on Client/Server communication model. In TCP/IP mode, two main architectures are 
defined on the specifications of the protocol [42]. 

The first architecture is when all the devices are connected to a TCP/IP network. The second 
architecture is the Interconnection of the devices performed through a “bridge” (through 
router or gateway). This bridge performs the interconnection between the TCP/IP network 
and a serial line sub-network that allows the Serial line connections between Client and 
Servers. Figure 11 illustrates the two architecture configurations. 
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Figure 11. i) TCP/IP network architecture. ii) Serial Subnetwork of servers interconnected though a “bridge” [42]. 

The second implementation mode is over Serial Line Systems. In this mode, Client/Server is 
the model communication for the application layer. On the other hand, Master/Slaves is the 
model application in the data link layer [42].  

Many different physical interfaces can be used; the ones specified in the manual are RS485 
and RS232 [43]. RS485 needs line termination near each of the ends of the bus to minimize 
reflections: 150 ohm or 1nF capacitor. In the case of RS232, no termination is needed but it is 
recommended to be used in short lengths (less than 20 m).  

Only one device, the master, can start the queries. The slaves respond by supplying the 
requested data to the master. Two transmission modes can be implemented that conditions 
the number of bits transmitted in each sent package: RTU mode (Remote Terminal Unit) and 
ASCII transmission (American Standard Code for Information Interchange).  

 

2.3.3.3 IEC 60870-5-101/104 
 
The IEC 60870-5-101 is a protocol suitable for various network configuration including point-
to-point, point-to-multipoint, etc. At the link layer provides the choice to use balance 
(communication limited to point to point links) or unbalance communication (suitable for 
multidrop). However, the balanced mode of operation is allowed only over the full-duplex 
communication [44], [45]. 

Under IEC 60870-5-101, only point-to-point (two station) links can be balanced. Multipoint 
links must be unbalanced. It is important to state that in the balanced communication, 
collision problems can happen, which means that the two stations can transmit 
simultaneously (the master and the outstation) if a full-duplex channel is used. In the case of 
the multipoint configuration the master communicates on parallel to all outstation. Since all 
the outstations share the communication channel, only one may transmit at a time [45]. 

When the master station is transmitting a message, if a confirmation is not received from the 
outstation within a configured time-out period, it will re-transmit the message up until a 
configured number of retries [45]. 

In IEC 60870-5 standard there are two different methods of transporting messages. 
implemented in two different but closely related protocols. The first one is IEC 60870-5-101 
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(or T101) which provides bit-serial communications over low-bandwidth communications 
channels. Therefore, in the physical layer, serial interfaces are stated to perform the 
communication, as RS232 and RS485. The addressing is performed both at the link and at the 
application level [45]. 

The second method was defined much more recently with the release of the IEC 608705-104 
(or T104). IEC 60870-5-104 is an extension of IEC 60870-5-101 protocol with changes in the 
physical, transport and network layers to make the protocol suitable for the full network 
access. This means that the standard uses TCP/IP interface to be able to connect whether the 
connection between devices is performed within a LAN or a WAN (routers in different 
facilities) [44]. 

 

2.3.3.4 AURORA Protocol 
 
Based on the Aurora 8B/10B Protocol Specification (2014), Aurora is an independent protocol 
that can be used to transport standard protocols as the Ethernet and TCP/IP. This light 
weighed protocol can be used to move data point-to-point across one or more serial speed 
lanes. 

The protocol contains in its physical layer the electrical levels, the clock encoding and the 
symbol coding. Each Aurora 8B/10B lane is a full-duplex serial data connection. Figure 12 
shows the structure the protocol uses where is stated that the devices that communicate 
across the channel are called channel partners [46]. 

 

 
Figure 12. Description [46]. 

 
Aurora provides a compensating mechanism for clock rate differences between transmitter 
and receiver. This mechanism, called clock compensation, can accommodate up to a+-100 
pulses per minute (ppm) clock rate differential between the transmitter and the receiver. The 
Aurora protocol implements clock compensation periodically inserting clock compensation 
sequences into idle patterns or user data [46]. 
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2.3.3.5 DNP3 
 
DNP3 is an open communication protocol that arises from the frame format specifications in 
IEC 60870. This protocol provides interoperability between devices coming from different 
vendors and does not need protocol translation. The supported topologies are peer-peer, 
Master-Slave with multi-slave, and multiple master, multidrop and hierarchical with data 
concentrators [45] as shown in Figure 13. 

 
Figure 13. DNP3 topologies [45]. 

Regarding the physical layer, DNP3 can communicate by RS-232 C, CCIT V.24 for DTE-DCE 
signalling. The data transmission possesses 8 data bit, one of those is a start bit and a stop 
bit (bit serial asynchronous communication) [45]. 
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Table 3. Proprietary communication protocols summary table. 

Protocols Transmission time physical 
protocol 

Transport 
protocol layer 

Hardware needed Topology How it works 

SCADA The SCADA is an acquisition system to be access in most of the cases remotely. The master station displays the acquired data and allows the operator to perform 
remote control tasks. Open source software exists like: Citec and WonderWare to implement SCADA systems.  

Modbus TCP/IP Depending on the 
controller type 
varies between 0.5 
ms to 7 ms. It 
depends also on 
the amount of data 
been transmitted 
and the distance of 
the links.  

Ethernet 
cable, or serial 
cable 

TCP/IP (can be 
implemented 
together with 
serial) 

The communication 
between client and server 
MODBUS module 
requires TCP connection 
management module. 
The user application can 
manage the TCP 
connection itself. 

Client/Server. Ethernet 
TCP/IP OR Interconnection 
devices like bridge, routers 
for interconnection between 
the TCP/IP network and a 
serial line sub-network. 

 

Serial 
 

Serial cable RS485 OR RS232 RS485 (line termination 
of 150 ohm or 1nF 
capacitor) OR RS232 (no 
termination needed). To 
use on less than 20 m 
cable length. 

Client/Server (Application 
layer). Master/Slaves (Data 
Link Layer) 

Only the master can start the 
queries. The slaves respond by 
supplying the requested data to 
the master. Two transmission 
modes: 1. ASCII transmission 
Mode 2. RTU mode 

Aurora If Multilane, depending on 
the baud rate, but it is in the 
order of nanoseconds. In the 
single lane is in the order of 
picoseconds. 

Can be 
implemented 
using copper 
or optical fiber 

Full-duplex 
serial data 
connection with 
Ethernet TCP/IP 
2 or optical 
fiber. 

When implementing 
optical fiber, converting 
box is needed. 

An Aurora 8B/10B channel consists of one or more Aurora 
8B/10B lanes. Each lane is full duplex serial data connection. 
The devices that communicate across the channel are called 
data partners. 

DNP3 
 

RS-232 C, CCIT 
V.24 

DNP3 adds 
pseudo 
transport for 
transmission of 
larger data 
blocks. 

 
Peer-peer, Master-Slave with 
multi-slave, and multiple 
master, multidrop and 
hierarchical with data 
concentrators. 

The data transmission 
possesses 8 data bit, one start 
bit and one stop bit, bit serial 
asynchronous 
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2.4 Ad-hoc Interconnection 
 
The ad-hoc interconnection is an alternative of the standardized simulation frameworks, 
where the simulators are interface only between them and  possibly some adaptations have 
to be done to perform the interconnection. [16] states that ad-hoc interconnection is a very 
used practice since most proprietary simulation tool developers does not provide 
interconnection interfaces between simulation frameworks.  Also, it is important that this 
type of connection assures conciseness and efficiency.  
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3 State of Art Solution 
 
In the last decade, there has been a recent interest in accurate simulation of power electrical 
systems (e.g. EMTs, AC grids, ICT). The computing technology advancements, such as parallel 
computing, using co-simulation and digital signal processing techniques [47], has addressed 
research to different frameworks to perform rapid prototyping of power electric systems. 
Many research documents focus on the types of simulators used or developed and the 
frameworks implemented to perform co-simulations. These frameworks exploit different 
types of simulators (stepped time simulator, event driven simulator or real-time simulators) 
to implement co-simulation allowing to simulate complex and multi-rated systems.  

For instance, in [48], it is stated that Electromagnetic transient (EMT) software normally 
simulates large AC and modular multilevel converters (MMC) of multiterminal systems 
(MTDC) at the same time step rate, which means a waste of computational resources because 
the AC system does not need such a fast time step. Therefore, it is proposed to separate the 
simulation in sub-systems, the fast system MMC MTDC and the slow AC system. To interface 
the systems, a RM algorithm is developed as the coordinator, which is responsible for the 
interactive signals exchange between simulators. The communication network between the 
systems is based on shared memory techniques. 

A different approach to develop a multi-rated co-simulation is performed in [4]. In this case, 
it is interfaced a multidomain (phasor domain and continuous time) transmission line model 
by partitioning the network. The AC grids contained the shifted frequency phasor, composing 
the first subsystem that possesses the larger timestep (up to 500 microseconds) and the wind 
farms contained in the EMT is the second subsystem which can be simulated between 2-50 
microseconds. 

In [49] instead, the division of the fast and slow models was performed by exploiting a delayed 
signal and zero crossing signal (implemented by a switching system). A based real time co-
simulation is performed by using FPGA+DSP+PC, where PC and DSP are distribution real time 
simulators. The control part of the inverter is simulated in the DSP at 2 microseconds (which 
is considered the slow rate control sub-model) and as an alternative the real time simulation 
platform that works at 500 ns is the high speed subsystem (fast inverter sub-model). In this 
model, the simulation clock is mainly controlled by the FPGA. 

Another proposed technique to improve the computational efficiency when multi-rated 
simulation is needed, regarding the different domain issue, is an automatic solver for the 
selection of the time step algorithm embedded with Ordinary Differential Equations (ODEs) 
to determine the time step proposed in [50]  

In [5] a co-simulation between RTDS and FPGA was performed, but using only EMT models to 
avoid the complexities of interface design and the consequent potential interface errors. The 
larger part of the system but that requires less modification was simulated on the FPGA. 
Instead, the RTDS was used to simulate the part that needed more modifications, by utilizing 
the RTDS flexible features to simulate. In this case, the FPGA side synchronizes its 
computations with the RTDS at each timestep through a synchronization signal. The 
interconnection between the systems was done through optical fiber with the 
communication protocol Aurora. It was concluded that this is a good approach to provide an 
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efficient extension of a real time simulator (in this case by the use of RTDS) avoiding the 
interface errors in hybrid electromagnetic transient (EMT)- transient stability (TS) simulations.  

When it is intended to co-simulate independently executed simulators to interface domains, 
middleware (so-called master algorithm) are used to coordinate the communication between 
simulators. When co-simulation of different simulator types is performed, the main problem 
that arises is the synchronization between them, since most of the times the simulation of 
the network is done in an event-driven simulator and the electrical grid in a stepped-time 
simulator. 

Regarding the architecture to co-simulate power and communication systems, [1] and [51] 
classify the co-simulation platforms in three types. The first architecture category is the 
unified configuration [1], or simultaneous configuration as named in [51]. It consists on 
implementing communication system model in a power system simulation tool.  One 
simulator is selected as the master and the other one is enslaved in the master component. 
In this model type the accuracy is sacrificed on behalf of the speed. 

The second category is the non-real time distributed configuration [51]. In this model the 
coordination and synchronization between two different oriented simulators is entrusted to 
an independent component. Since this method relies on professional dedicated simulation 
tools, the accuracy of the hybrid system is maintained since the calculating method is mature. 
Studies implementing this method are being focused on how data is exchanged between 
simulators, time synchronization, etc. [1]. 

Many platforms concerning the non-real time distributed configuration have being studied. 
[52] performs a comparison study between High-Level Architecture standard (HLA) and 
MOSAIK, both are co-simulation frameworks that perform synchronization of the simulation 
models. The integration of a component in MOSAIK requires implementation of the 
component-API. HLA can synchronize a time-stepped simulator and a discrete-event one by 
letting the simulators choose the type of operation on each time step that goes forward. The 
system is based on a published-subscribe mechanism, where all the subscribed federates will 
receive the information, whether is needed or not. The stated drawback of HLA is that the 
existing simulations can be difficult to modify [7].  

Another important platform is presented in [7]. EPOCHS is an agent- based framework that 
synchronizes electric power simulator (PSCAD/EMTDC) with communication simulators (NS2) 
allowing in this way to perform research regarding electromagnetic scenarios involving 
communications. In this architecture, the run time infrastructure (RTI) is the responsible of 
synchronizing and routing communications between components since it is in charge of 
receiving synchronization messages from the simulators. However, RTI synchronizes 
simulation time clocks rather than real time clock. On the other hand, the Agent HQ is the 
component that orchestrates the execution of each agent. When all agents have executed, 
Agent HQ returns control to RTI. RTI informs NS2 and power system simulator that the time 
step is finished. 

Other broadly mentioned co-simulation platforms are Global Event-Driven Co-Simulation 
Framework (GECO) and INSPIRE. The first one uses a global event scheduler to interface the 
power system simulator and the communication network simulator, where each iteration is 
treated as a time tagged discrete event. Instead, INSPIRE performs stepped time-based 
synchronization using the HLA time management services [16]. 
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The third category is the real time distributed configuration. In this case, both simulators must 
run accurately at the same speed being both synchronized to real world clock and exchange 
real time data through protocols. But, this technique is costly and complex, and regarding 
research, it is in its initial stage [1], [51]. 

Some studies has focus their research on creating new simulator in order to fulfil the demands 
of complex applications, like [12], and also to perform co-simulations by synchronizing 
simulators based in different models as the event-based simulators and the time stepped 
simulator as [7] and [16]. 

In many other documents, like [4] , [49] and [48] by implementing different approaches, the 
aim is to solve the problem of multi-rated co-simulation. But there is lack of information 
regarding the co-simulation using communication protocols in the same simulator or in 
performing the co-simulation between two or more simulators. 

In [5], the co-simulation is performed interconnecting FPGA with a real time simulator as RTDS 
through Aurora protocol, that is a similar approach to which this thesis intends. Despite the 
fact of the similarities of the model stated in this thesis and the one performed by [5], this 
thesis aims to study the latency performing communication through the Aurora protocol and 
not to study the co-simulation as a possibility to extend the real time simulator, that was the 
main goal of [5]. Although a future scope of the Energy Center is to co-simulate large and 
complex electric systems as the EMT models of AC components like in [5], the simulators to 
be used are RT-LAB and RSCAD communicating information through the AURORA link, and 
exploit and evaluate the capabilities of the implemented framework. 

This is why this thesis proposes the first steps to co-simulate two real-time simulators, by 
analysing the delay when implementing a simple model of co-simulation in the same real-
time simulator and determining the delay when transmitting different amount of data 
through the AURORA link communication protocol. 

As a second step, this thesis analyses a simple test case with a system divided in two parts. 
The sub-systems are co-simulated in the same real-time simulator by interconnecting them 
with the communication protocol Aurora using an echo link. 

The experiment is planned to be extended to a broader scope, where the RTDS and RT-lab, 
both real time simulators, are going to be interconnected to perform co-simulations. Since 
both RTDS and RT-lab support the Aurora protocol and the protocol specification is open and 
has no implementation cost, Aurora was selected as the communication protocol to 
interconnect the simulators.  
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4 Methodology 
 
This chapter is focused on the methodology used to develop the test cases. It is explained in 
a detailed manner how the test cases were implemented and the main problems that were 
faced. Once stated the problems, the developed solutions are explained. 

 

4.1 Latency Calculation 
 
As stated in the solution of the state of art, the implementation of co-simulation interfacing 
different simulator through platforms have been widely studied, as well as the co-simulation 
dividing the systems in a real-time simulator and PHIL. But, since there is a lack of information 
of co-simulation by dividing a system in the same real-time simulator by the use of 
communication protocols or using more than one simulator, the first step is to calculate the 
latency when transmitting and receiving messages or more signals from one subsystem to 
another. 

The RTDS hardware is placed in the Energy Center of Politecnico di Torino. In the RTDS 
cubicles, the chassis are mounted. In chassis 2, the echo link implementation was performed 
by connecting through optical fiber ports 23 and 24 (because ports from 21 to 24 are Aurora 
reserved). The chassis is also connected to a workstation server, using the workstation 
interface cards in the chassis to be connected to a workstation NIC. In the workstation server, 
RTDS software and applications are installed to configure, simulate and monitoring the 
models. 

In order to reach efficient and satisfying results, different tools were used in the 
implementation of the solutions as python and the RSCAD applications and its features. Once 
the procedure to develop the experiments is stated, the results are presented and analysed. 

To have a better understanding of the system, the generated documents in the compilation 
and in the running of the test cases, it was very important to handle the Control system 
Components manual and the script reference manual. The tutorial use cases and compilation 
information contained in the manuals were also useful to develop the test cases. 

 

4.1.1 Test Case Definition 
 
The first part of this test case consisted on determining the time delay between the 
transmission and reception of sent data points using Aurora link. To reach this objective, the 
network ports 23 and 24 (of the RTDS) were connected in a closed loop using an optical fiber 
cable, as stated in the previous section. Both ports were configured to send and receive data 
as aurora link ports. 

To determine if a variation on the transmission time delay from one port to another is affected 
by the quantity of data transmitted or the timestep rate variation, this test was performed 
transmitting the smallest allowable amount of data: 2 inputs from port 23 and from port 24 
receiving 1 point, to the greatest amount of data: 128 outputs (port 23) and 128 inputs (port 
24). 
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4.1.2 RTDS 
 
As a first step, a model to measure the delay to transmit data from one point to another in 
the same real time simulator (RTDS) was created in the dft (draft document). Then through 
python, the model was replicated to create the documents needed to simulate from 2 inputs 
to 128. For each time step, 126 documents (for each .dft and sib. File types). In these 
documents the time step and the simulation time were imposed.  

The time steps selected to simulate were 7, 10, 15, 20, 25, 30, 35, 40, 45, 50 microseconds. 
The goal was to simulated from 5 microseconds up to 50 microseconds, with a difference of 
5 microseconds up to 50 microseconds, but due to the capability of the system to collect data 
equivalent to 64 MB, when trying to simulate under 7 microseconds the simulation crushed, 
so the smallest time step that was possible to simulate was 7 microseconds. 

Finally, to perform the simulation, a script code was created to automatically perform the 
simulation for each timestep. In this way, the script automatically simulated the variables 
from 2 to 128 points, for an imposed constant time step.  

The simulation time was calculated from the amount of point that the system allowed to 
simulate, since only 64 MB are available to collect data points. This procedure was performed 
experimentally, trying to simulate the maximum amount of points, until the script file didn’t 
crush. Every time the simulation crushed, all .dft and .sib files had to be adjusted with the 
appropriate simulation time for the imposed timestep, since the amount of points simulated 
had to be the same, for every timestep, in order to reach consistency in the statistical analysis. 

The script created automatically a CSV file (a excel file). This file permits to analyse the time 
delay transmitting information from one port to another for a certain imposed time step for 
the simulated number of variables (since one CSV files was created for each number of 
variables from 2 to 128, and for each time step).  The document creation can be seen as a 
matrix composed of two variables: the time step and the transmitted variable amount, so 
since 10 time steps were simulated and for each timestep 126 transmitted variable 
documents were created, the total quantity of created CSV files is 1260.  

 

4.2 Simple Case Study 
 
Once the time delay to transmit a message from one port to another is known, a simple case 
study to determine the system behaviour was set. It was intended to implement a simple 
circuit co-simulated using the aurora link connecting the network ports 23 and 24 (of the 
RTDS) in a closed loop using an optical fiber cable, as in the configuration described in the test 
case definition. 

 

4.2.1 Test Case Definition 
 
The initial model was configured as a simple AC source, connected to two resistances. Then 
the circuit was divided in two parts. The first part was composed by the AC source, the first 
resistance (ZA) and a remote-controlled current injector. The second part of the circuit 
contains a remote-controlled voltage injector, and the second resistance (ZB). The remote-
controlled current injector from the first part of the circuit was controlled by the feedback of 
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the current in the second part of the circuit, sent through an Aurora link. In a similar way, the 
remote-controlled voltage was driven by the feedback of the voltage measured after the ZA 
(VA), on the first part of the circuit, and was sent also through an Aurora link.  

 

4.2.2 Interface Algorithm for Digital Real-time Simulation 
 

4.2.2.1 ITM Stability and Accuracy Application to RDTS Co-simulation 
 
Before simulating on the real time simulator, it was necessary to determine under which 
parameters the system was stable. As a first step, it was analysed a suitable interface 
algorithm for a system with delays. The Ideal Transformer Model was selected as the interface 
algorithm to analyse the stability of the transfer function, since it is simple to deploy and 
possesses a high accuracy.  

The theoretical analysis of the system was performed through MATLAB, to determine the 
stability of the system for the whole range of impedances to be used. After determining the 
values of impedances that assured the system stability, it was proceeded to simulate on the 
RTDS. Three cases were tested on the real-time simulator. The first case was the system 
naturally coupled, the second one as the system decoupled but without using the protocol 
communication to control the remote signals, and the third case was the system decoupled 
and by controlling the remote signals using the Aurora link. 

Attention was focused on the most critical cases found on the theoretical analysis, to 
determine the behaviour of the real time simulator and perform a comparison of the 
theoretical analysis with respect to the experimental one. 

 

  



34 
 

5 Analysis of Numerical Stability and Accuracy 
 

5.1 Latency Calculation 
 
This chapter describes the procedure to perform the latency calculation when using Aurora 
protocol as a link to transmit data from one port of the simulator to another in the same real-
time simulator (RTDS). It is also determined if the amount of data transmitted influences the 
time delay of the data transmission. 
 

5.1.1 RTDS 
 
The first step of all was to create the draft document. The Aurora Link algorithm in its 
configuration window allows to set the port to be use. In this case, as stated in the 
Methodology (Test case definition sub-section), since a loop from port 23 to 24 (Figure 14) 
was implemented, the configuration of the first block was port 23. After this, the setup of the 
To Aurora Link tab and From Aurora Link tab must be completed. 

In the To Aurora Link, the minimum data amount allowing the algorithm to work is 2 variables, 
instead in the From Aurora sub-window the minimum number of variables allowable is 0. In 
both cases the maximum amount of data is 128 variables. To be able to transmit and receive 
more than 64 variables, an update must be performed and then the restart of the hardware. 

 
Figure 14. Aurora block configuration window. 

The draft document was created with 128 variables. Each variable is a timer which start 
counter is controlled by a switch, and the outputs of the timer are labelled from D1 to D128. 
The timer algorithm was used because of the facility on changing the output while time 
increases. Figure 15 illustrates the composition of the variables. 
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Figure 15. Timer activated by a switch. 

The RunTime is able to show and store data simulation by the creation of a plot and the 
consecutive adding of the points in that plot. When the simulation starts, the data is not 
shown in the graphic until the user presses the update button and the simulation time of the 
.sib document has already been passed. After the update button was pressed and the 
simulation time has been passed the data appears and only after this the user is able to save 
the data in a .csv document. 

One of the first problems found, when beginning a single timer simulation, was that the timer 
started the count before it was possible to update the graphic. When saving the data, the 
information shown at zero or close to zero was near 1.2 s, which meant that the manual user 
update was too slow and inefficient to collect the data. 

Therefore, a system that interfaced the RunTime and the Draft document was implemented 
through a switch (Figure 16). The switch at the beginning was set to 1 which resets constantly 
the timer. When the simulation started, the switch was changed from 1 to 0 allowing the 
counting to start. In the Plot RunTime the zero signal was also set as the transitions of the 
switch (any transition) simulating that the actual starting time of the simulation was the 
moment when the switch changed. 

 

 
Figure 16. Configuration of the switch on the RunTime. 

Since the objective of this test case was to determine if the delay of transmission of data 
might be affected by the number of variables or the time step, it was necessary to develop a 
method where the number of transmitted variables through the Aurora Link could be 
changed. 
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To implement the changing of the variables in the Draft, it was used the algorithm 
rtds_draft_var that allows to state a variable that will be passed through the RunTime. The 
name of the variable is set in the algorithm and then used in the Aurora configuration window. 
The numVarstoAurora enables the transmission of the set quantity. The same happens on the 
From Aurora Link sub-window.  

Figure 17 shows the configuration of the _rtds_Aurora algorithm, where the variable defined 
in the rts_draft_var must have a “$” simbol in front. 

 
Figure 17.Number of transmitted points by Aurora as a variable 

The reason why the draft was created with 128 variables is because is the maximum number 
of variables supported by the Aurora Link. The .dft document generation was done through a 
python program (APENDIX A: PYTHON CODE TO GENERATE THE .DRAFT AND .SIB 
DOCUMENTS) by studying and analysing the structure and pattern of the  .dft document. 

The program created in python generates a .dft document that contains from 2 to the number 
of variables that the user introduces. Two way of creating documents were implemented. The 
user can decide to create a document whether for each variable from 2 to the number 
introduced to the program or a single document by specifying the step between the creation 
of the documents. 

For the matters of this experiment a single .dft document was enough to perform the 
simulations. Figure 18 shows the final .dft document used to develop the simulations. 
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Figure 18. Draft containing 128 variables transmitted through Aurora Link. 

Regarding the RunTime, when performing a single simulation, three elements must be in the 
document: the switch, the plot containing the labelled points to be sent and received, and a 
slider. The slider is the interface that allows the user to change the number of variables been 
sent by the Aurora Links. 

In the plot, the timer outputs were labelled as Di (where i is a number from 1 to 128). The 
inputs to the Aurora Link 1 (port 23) were labelled as from_aurora1_i, and the inputs to 
Aurora Link 2 (port 24) were label as from_aurora2_i (where i is a number from 1 to 128). 
Both aurora blocks sent the outputs of the timers (Di) and received a labelled signal as 
detailed before. 

One important detail to state is that each time the slider number is changed, when starting 
the simulation, the system recompiles the draft, and the slider freezes until the simulation is 
finished. When the draft recompiles for a certain number of variables, the sib document is 
also changed to the number of variables for which the draft was compilated. Therefore, the 
plot switches to the number of variables even if it was created to plot a greater number of 
variables. The graphic doesn’t allow to add variables for which the draft has not been 
compiled for.  
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Figure 19. RunTime document created for 70 variables but compilated for 2. 

Figure 19 shows an example of what happens when the RunTime document has been created 
for 70 variables, but compilated for 2. The rest of the variables that are not going to be 
received by the Aurora Link disappear. This means that in the case of the variables that are 
received by the link, if for instance, there are enabled only 2 spaces by the slider, it is traduced 
by the RunTime in the number of variables that actually exist. Instead, in the case of the 
variables that are been sent, those remain in the graphic because are actually created in the 
Draft document (128 variables created).  

This is the main reason why it was not possible to perform the simulations with a single 
RunTime document, so a document for each number of variables was created. 

Through the python program it was possible also to automate the creation of the .sib file by 
analysing the script structure of a RunTime document used as a model. In this way, for 
instance, if the number of variables of the .sib document was 15 the plot contains: 

• 15 D signals. 
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• 15 signals from_aurora1_i.  

• 15 signals from_aurora2_i. 

To perform several simulations automatically, the RunTime possess a feature that allows to 
develop a script and then through the RunTime this Script is opened and run. The deployed 
script is the following: 

float result; 
string step; 
result = GetTimeStep(); 
fprintf (stdmsg,"reat time-step2 %f", result); 
 
for(int a=2;a<129;a++){ 
 SetSlider "DraftVariables : numVar" = a; 
   LoadBatch "saved_data"::itoa(a)::".sib"; 
 SetSwitch "Subsystem #1 : CTLs : Inputs : SW1" = 1; 
 Start; 
 UpdatePlots; 
 SetSwitch "Subsystem #1 : CTLs : Inputs : SW1" = 0; 
 Stop; 
 step=ftoa(result); 
 SavePlotToCSV "Subsystem 
#1","C:\Users\S264449\Documents\RSCAD\RTDS_USER\fileman\ts_50E5\TS_128\TS_"::itoa(step)::"\
CV_docs\var"::itoa(a)::"ts"::itoa(step)::".csv"; 
 fprintf (stdmsg,"successfull num var: %f", a);  
} 
 

The main algorithms used to develop the script were: GetTimeStep, LoadBatch, SetSlider, 
SetSwitch and SavePlotToCSV. The GetTimeStep allowed to verify through the RunTime 
Message Area the actual timestep been simulated. The RunTime Message Area is a very useful 
tool to monitor the simulations. Figure 20 shows how the Message Area shows the 
information. 

 
Figure 20. RunTime Message Area. 

The LoadBatch algorithm permitted to import a new RunTime document to perform the 
following steps of the simulation. In this way, it was possible to simulate and save the data 
collection of different number of variables each time. The SetSlider is the command that sets 
the number of variables to be passed to the rts_draft_var in the draft document. The 
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SetSwitch oversaw setting the switch first at 1 and then change it to 0 to start the collection 
of data. Finally, the SavePlotToCSV is the command that saves the collected data in the 
specified path. 

For each simulation, the system has a maximum memory of 64 MB, which implies a limited 
number of points to be collected on a plot. Initially, the simulation times were calculated 
based on the performed steps on the simulation. The performed steps on the simulation is at 
the same time based on the maximum time-step reached when simulating for the biggest 
number of variables and the smallest time step (128 variables and 7 µs), using equation (10). 

 

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝𝑠 =
𝑀𝑎𝑥𝑠𝑖𝑚𝑇𝑖𝑚𝑒  𝑥 𝑛𝑝

𝑇𝑠
 

(10) 

    
𝑃𝑙𝑜𝑡𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝𝑠 𝑥 3 

(11) 

 
Where 𝑛𝑝 stands for the number of variables the simulation is been performed for and 𝑇𝑠 

stands for the step time. 𝑀𝑎𝑥𝑠𝑖𝑚𝑇𝑖𝑚𝑒 is the maximum simulation time reached with the 
conditions stated before. The plotted points are computed multiplying the simulation time by 
three as stated in Equation (11). 

The system failed through the script when simulating more than 6 100 000 points. This 
happened when the amount of data to be collected was bigger than the memory available. 
The raised error was of data overflow that consequently caused the breaking of the script 
process. Several simulations iterating the number of plotted points where deployed, starting 
from 6 900 000 plotted points and decreasing the number of plotted points continuously. On 
each of these iterations the .sib documents had to be modify and created again across the 
python program using the new iteration variables. 

In order to reach simulation results with statistic congruency (simulating approximately the 
same number of steps) it was imposed a number of points of 6 000 000, which is translated 
into 2 000 000 steps. In the   
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section, SIMULATION TIME COMPUTATION table shows a table with all the simulation times 
corresponding to the imposed plotted points for each simulation case. 

Therefore, another reason why it was necessary to create a .sib document for each simulation 
was to assure the congruency across the CSV document generation steps of the different 
timestep simulations. The simulation time can only be changed through the .sib document. 
The python program (APENDIX AAPENDIX A) computes the simulation time based on the 
timestep entered by the user when running the program, and creates the .sib document with 
the corresponding simulation time. 

As stated in Latency Calculation sub-section, in the Methodology chapter, the created model 
is based on a python program that generates the necessary documents to deploy the 
simulation test case. Ten step times where tested as shown in the computation table in 
SIMULATION TIME COMPUTATION, in the APENDIX B. For each of these ten step times, it was 
necessary to create a .dft document and 128 .sib documents. 

When running the python program, four queries will arise as shown in Figure 21. The first one 
asks the type of document to be generated (draft or sib document). The second question 
concerns the quantity of elements (timers) to be considered in the document creation.  

The third query asks the step between the creation of documents. For instance, if it is 
intended to create only one .dft document of 128 timers, the answer in this query should be 
128. This feature allows to spare time when only one document is planned to be created. 
Since the Aurora block needs at least 2 points to communicate, the range was fixed from 2 to 
128 timers. 

Finally, the program asks the timestep (in microseconds) to set it in the document generation. 
From the experiments, the allowable timesteps is up to 7 µs (stating this timestep as the 
smallest). The program will take the entered data by the user and will generate the necessary 
files with the stated configuration on the model specifications. 

 
Figure 21. Generation of documents by the python program 

To perform the simulation on the RTDS server, it was created a folder for each timestep. Each 
of these folders contained another two folders: CV_docs and sim_docs (Figure 22). The 
sim_docs contained the .dft document, where it was compiled in order to have all the 
documents generated after the compiling process. The .sib documents, after been generated 
by the python program, must be place in this folder, as well as the script file. 

The CV_docs folder was created to save the collected data when the script was running. The 
script is set to search the correct path and save the .csv documents (this path can be modified 
depending on the user's needs). 
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Figure 22. Simulation folder distribution. 

Finally, from the RSCAD file manager, one of the RunTime documents in the timestep folder 
intended to be simulated, needs to be opened. In the RunTime, in order to start the script, it 
is necessary to open the script504.scr. After selecting the script, the play button must be 
pressed, and the simulations from 2 to 128 variables are performed and the data is saved 
automatically. Every time a simulation for a different timestep is to be deployed, the previous 
procedure must be repeated. 

When going through the .sib documents, a warning message appears stating that the name 
of the compiled document does not correspond to the RunTime document. This warning does 
not affect the simulation performance. 

The results obtained were a variation of the transmitted message time-delay (from one port 
to another) of two timesteps, regardless of both the simulated variables quantity and the 
imposed timestep. Figure 23 shows a histogram where are plotted the delay-time (µs), the 
number of variables and the timestep (µs). 

 
Figure 23. Time delay histogram. 

 
 
Since the number of variables does not affect the behaviour of the time delay, the 
correspondent axis was deleted from the graphic, and converted into a two-axis graphic. From 
Figure 24, it is straight forward to determine that the behaviour of the time delay is 
completely linear. 
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Figure 24. Two-axis plotting of the timestep. 

 

5.2  Simple Case Study 
 

5.2.1 ITM Stability and Accuracy Application to DRTS Co-simulation 
 
The theoretical analysis was performed using a simple circuit with two resistances, 
considering the introduced delay by the communication from one port to the another. 

The model was composed by two circuits. The first part of the circuit (Circuit A) was composed 
by a voltage generator (E) a resistance (ZA) and a current generator which was in charge of 
providing the feedback to Circuit A. Circuit B is composed by a voltage generator remotely 
controlled by the Voltage A (VA), and a resistance (ZB). The measured current iB is the feedback 
in Circuit A. Figure 25 shows the general previously described model of the system. 

 
Figure 25. General model of the delayed system implemented. 

The blue line shown in Figure 25 illustrates the delay on the data transmission. In the test case 
(Latency Calculation section), it was proved that the transmission time is two times the step 
time. 
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Figure 26 shows the equivalent block diagram of the system. 

 
Figure 26. Equivalent block diagram of the system 

In Figure 26, 𝑇𝑠 is the imposed timestep of the real time simulator. In order to analyse the 
system stability, it is necessary to analyse the open loop transfer function. The open loop 
transfer function can be reached using the block diagram shown in Figure 26, but the feedback 
connection must be neglected. Equation (12) presents the open loop transfer function. 
 

𝐺𝑂𝐿 =
𝑍𝐴

𝑍𝐵
𝑒−4𝑠𝑇𝑠  

(12) 

To analyse the system response, a variable k was introduced, where  𝑘 =
𝑍𝐴

𝑍𝐵
, which makes 

Equation (13) to become: 
𝐺𝑂𝐿 = 𝑘𝑒−4𝑠𝑇𝑠  

(13) 

The complete transfer function of the system is reached by Equations (14), (15), (16) and 
(17) as follows: 

𝑉𝐴 = 𝐸 − 𝑉𝑍𝐴  

(14) 

𝑉2
′ = 𝑉𝐴 𝑒−2𝑠𝑇𝑠  

(15) 

𝑖𝐵 =
𝑉2

′

𝑍𝐵
  →  𝑖𝐵 =

𝑉𝐴 𝑒−2𝑠𝑇𝑠

𝑍𝐵
 

(16) 

𝑖1
′ = 𝑖𝐵 𝑒−𝑠𝑇𝑠  

(17) 

Using the superposition principle, Equation (18) was reached: 
 

𝑉𝑍𝐴 = 𝑍𝐴 ∗ (𝑖1
′ + 𝑖𝐸), where 𝑖𝐸 = 0 

(18) 
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Using (14), (16), (17) and (18), Equation (19) is obtained as follows: 
 

𝐸 −
𝑉𝐴∗ 𝑒−2𝑠𝑇𝑠 𝑍𝐴 𝑒−2𝑠𝑇𝑠

𝑍𝐵
= 𝑉𝐴  →  𝑉𝐴 =

𝑍𝐵 𝐸

𝑍𝐵+𝑍𝐴∗𝑒−2𝑠𝑇𝑠
 

(19) 

Finally, the complete transfer function is obtained in Equation (20): 
 

𝑮𝑨𝑳𝑳 =
𝟏

𝟏 +
𝒁𝑨
𝒁𝑩

∗ 𝒆−𝟒𝒔𝑻𝒔

=
𝟏

𝟏 + 𝑮𝑶𝑳
 

(20) 

To analyse the system stability, the Nyquist diagram was used to determine for which values 
of k the system would be stable. Figure 27 and Figure 28 show the Nyquist diagrams when 
using a value of k bigger and smaller than 1 respectively. 
 

        
Figure 27. Nyquist diagram when k=1.1 Figure 28. Nyquist diagram when k=0.25 

The value of k reverberates directly on the size of the circle. When k is smaller than one, the 
circle tends to get narrower, instead when k tends to go further one, the circle widens. When 
k gets closer to 1, the circle gets closer to the transfer function zero solution, and when k is 
equal or bigger than one, the circle contains the zero, so the system becomes unstable. 

In each case, it was also analysed the system response and the theoretical time to reach the 
stability. 

Figure 29 and Figure 30 show the different system responses when k=0.98 and when k=0.83 
respectively, with a timestep in both cases of 50 µs. 
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Figure 29. System response when k=0.98. 

 
Figure 30. System response when k=0.83. 

          
Therefore, different cases were analysed, by varying the value of k and also varying the time 
step to determine the correlation and the affectations that these variables could have on the 
system. Table 4 shows the theoretical system response analysed graphically by the plotting 
performed through MATLAB when iterating the timestep and the different values of k. 
 
The ideal transient behaviour of all systems can be modelled with a second-degree transfer 
function when the system reference signal is a step function. To analyse the VA response with 
respect to the different timesteps and k values, the maximum overshoot and the settling time 
(ts,5%) are the main parameters to judge the signal stabilization behaviour. The ideal behaviour 
is when the overshoot is small and the settling time is fast. The output signal is considered to 
have reached the settling time when the signal oscillations doesn’t surpass the upper and 
bottom thresholds of 5% the tending to infinity output signal (y∞). 
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Table 4. Theoretical system response transient analysis 

TSTEP 
(µS) 

ZA 

(Ω) 
ZB 

(Ω) 
K 

(ZA/ ZB) 
YMAX 

(V) 
Y∞ 

(V) 
OVERSHOOT TS,5% 

(s) 
VOUT 

(V) 

500 50 500 0.1000 0.1 0.0909 0.1000 0.0040 93.02 

500 50 50.5 0.9901 0.9804 0.4975 0.9706 0.6020 65.97          

150 50 500 0.1000 0.1 0.0909 0.1000 0.0012 91.10 

150 50 200 0.2500 0.25 0.2000 0.2500 0.0018 80.33 

150 50 60 0.8333 0.8333 0.4546 0.8332 0.0102 54.90 

150 50 51 0.9804 0.9804 0.4950 0.9804 0.0912 51.00 

150 50 50.5 0.9901 1 0.4955 1.0182 0.1878 51.77          

100 50 500 0.1000 0.1 0.0909 0.1000 0.0008 90.99 

100 50 200 0.2500 0.25 0.2000 0.2500 0.0012 80.15 

100 50 60 0.8333 0.8333 0.4546 0.8332 0.0068 54.70 

100 50 51 0.9804 0.9804 0.4951 0.9804 0.0612 50.62 

100 50 50.5 0.9901 1 0.4951 1.0200 0.1212 50.50          

50 50 500 0.1000 0.1 0.0909 0.1000 0.0004 90.93 

50 50 200 0.2500 0.25 0.2000 0.2500 0.0006 80.04 

50 50 60 0.8333 0.8333 0.4545 0.8334 0.0034 54.58 

50 50 51 0.9804 0.9804 0.4951 0.9804 0.0306 50.53 

50 50 50.5 0.9901 1 0.4975 1.0100 0.0604 50.31          

5 50 500 0.1000 0.1 0.0909 0.1000 4.00E-05 90.91 

5 50 200 0.2500 0.25 0.2000 0.2500 4.00E-05 80.00 

5 50 60 0.8333 0.8333 0.4546 0.8332 3.20E-04 54.55 

5 50 51 0.9804 0.9804 0.4951 0.9804 3.00E-03 50.50 

5 50 50.5 0.9901 0.9901 0.4975 0.9902 6.01E-02 50.25          

50 60 50 1.2 

 
Looking at the obtained values in Table 4, if keeping constant the timestep, but varying k, 
when k is closer to one, both the overshoot and the settling time are bigger. In a diverse 
manner, if the timestep varies, but the k value is kept constant, when the timestep is smaller, 
the settling time also is smaller. In this last case, the overshoot barely changes. From these 
theoretical results, it is evident that the critical cases to analyse are when k is very close to 
one (ZB=50.5) and when the timestep is very big (Tstep = 500 µs). Opposite to the previous 
statement, the least critical k value is when k is smaller (ZB=500). 
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5.2.2   Power Electric Result 
 
To perform experimental analysis, three stages where set to determine the differences 
between the models. The naturally coupled system, the decoupled system but without using 
the Aurora link, and a third one also decoupled but performing the communication trough 
the Aurora link. 
 
For the first stage, the naturally coupled circuit (Circuit 1) was created as shown in Figure 31. 
The usage of nodes was implemented to graph the voltage input, the voltage in A (Va) and 
the current by the usage of the current ammeter.  
 

 
Figure 31. Circuit 1 model. 

All the components were selected from the Power System library, in the subsection of single 
phase components. Since the voltage generator algorithm constrained to specified the RMS 
voltage, the imposed input voltage was 0.7071 VRMS, to obtain a 1 Vpp in E as shown in Figure 
32. The initial phase was selected as 60 Hz and the initial phase 0 deg. Regarding the voltage 
generator resistance, since it was included already in the algorithm, a value of 0.0001 Ω was 
imposed because it is suficiently small to consider its influence negligible on the measured 
voltage on E. 
 

 
Figure 32. Setup of the voltage generator. 
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The results of the circuit illustrated in Figure 31, using the parameters: ZA=125 Ω and ZB=50 Ω 
are shown in Figure 33 simulating with a timestep of 50 µs. This figure shows the graphic of 
the input voltage (E), Va and the current of the circuit (Ia).  
 

c  
Figure 33. Result of circuit 2 when when ZA=125 Ω and ZB=50 Ω. 

Figure 34 shows the graphic of the results when ZA=50 Ω and ZB=500 Ω. 
 

 
Figure 34. Result of circuit 2 when ZA=50 Ω and ZB=500 Ω. 

The second stage consisted in dividing the circuit in two parts. For this purpose, a new 
configuration system (Circuit 2) was created as shown in Figure 35.  The first part of the circuit 
(Circuit A) where Va was exported to the second circuit (Circuit B). The measured value of Va 
is introduced in the remote-controlled voltage generator in Circuit B. The measured value of 
current (Ia) measured in Circuit B is also exported and introduced in Circuit A.  

The problem in this model is that the simulator doesn’t allow to directly connect an exported 
signal to the remote-controlled current injector algorithm. The current injection/source 
algorithm requires the input current to be a control signal. This is the reason why a gain of 1 
was used between Ia and Iin, to use Iin signal as input in the current injection/source in Circuit 
A. 
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Figure 35. Circuit 2 model. 

Even though in the case of Circuit 2 model the communication protocol is not being 
implemented, when trying to simulate the circuit with the parameters shown in Figure 35, 
ZA=125 Ω and ZB=50 Ω (which makes the system unstable), the RTDS doesn´t allow to deploy 
the simulation. This means that there is a delay in this system that makes it unstable like in 
the third circuit, but in this case the delay is neither measurable nor determinable due to the 
characteristics of the circuit on the simulator. 

Instead, when ZA=50 Ω and ZB=500 Ω, parameters that make the system stable, it possible to 
appreciate the RunTime graphed results shown in Figure 36 with a timestep of 50 µs. Figure 
37 shows the results when ZA=50 Ω and ZB=51 Ω. 

 

 
Figure 36. Result of circuit 3 when ZA=50 Ω and ZB=500 Ω. 
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Figure 37. Result of circuit 3 when ZA=50 Ω and ZB=51 Ω. 

The third stage was deployed dividing the electrical circuit in two parts. In this case the 
communication is performed using Aurora protocol. Two variables are sent/receive through 
the protocol. The first variable is the voltage (VA) that is an output of circuit A, but an input 
for Circuit B. The second variable is Ia that is an output of Circuit B and is sent through the 
protocol to feed the current injection source in Circuit A. For this purpose, it was also 
necessary to create a new configuration as shown in Figure 38. 

 
Figure 38. Decoupled system performing communication between the subsystem by the Aurora link. 

 

The configuration of the first Aurora Link, that corresponds to the data sent from Port 23 is 
shown in Figure 39. The parameter Va is sent twice because the minimum amount of data 
allowed to send is two variables. 
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Figure 39. Configuration of the Aurora Link, Port 23. 

 Figure 40 shows the configuration of the second Aurora block. 

 
Figure 40. Configuration of the Aurora Link, Port 23. 

In order to determine the RSCAD simulator behaviour, the most and least critical k values 
analysed in ITM Stability and Accuracy Application to DRTS Co-simulation section and 
different values of timesteps were tested. Table 5 shows the comparison between the 
theoretical behaviour simulated through a MATLAB model with respect the simulation on 
RTDS. In all the simulation the ZA impedance was kept constant at 50 Ω, since from the 
theoretical analysis it was concluded that what changes the wave behaviour is k. For this 
reason, by only changing ZB, k was altered. 

In the real-time simulator, when increasing the impedance of ZB, the system output tends to 
be less distorted, following in a better way the input signal. Instead when increasing the delay, 
the opposite happens (Table 5). However, if ZB is big enough, the output signal (VA) seems to 
have an acceptable shape when comparing it to the output waves with smaller timestep. This 
real time system behaviour is concordant with the theoretical one. 
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Timestep 
(µs) 

ZB_min=50.5Ω (RSCAD) ZB_min=50.5Ω (MATLAB) ZB=500 Ω (RSCAD) ZB=500 Ω (MATLAB) 

500 

 
 

 
 

250 

    
100 

    

Table 5. Comparison of the theoretical simulation versus the RTDS simulation with different time steps and impedance in Circuit  
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50 

  
 

 
5 
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Focusing on the most critical case which is when ZB is 50.5 Ω (k=0.9901), the real- time 
simulator doesn’t behave as the theoretical simulation, since the theoretical system stabilizes 
the wave after the transient, instead the real system doesn’t. The wave keeps the initial form 
the whole time. 

When the simulation starts, the transient can be appreciated since the wave does not have 
still its full amplitude. From Figure 41 it can be seen that at 0.16 s the amplitude of both VA 
and IB stops increasing and its amplitude becomes uniform over time. However, both VA and 
VB continue to be distorted (does not follow completely the shape of a sine wave).  

 
Figure 41. Simulation to determine the amplitude stability of the waves. 

 
Figure 42 shows in a closer view the shape of the waves and the gap between the voltages 
and currents A and B are appreciated. In both cases, the measured unphased gap varies 
between 0.0023 and 0.0034 seconds.  
 

 
Figure 42. Transient behaviuor when (step time of 500 µs and k=0.9901). 
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Even though the wave seems to be stable after the first 0.16 s, because keeps following a 
signal wave pattern over time, it doesn’t follow the correct sine wave shape, despite that 10 
minutes have passed. This behaviour can be seen in Figure 43. 

 
Figure 43. Signal wave shape after 10 min of simulation (step time of 500 µs and k=0.9901). 

This result conducts to the conclusion that the simulator is not feasible to perform accurate 
simulations when two factors are present. The first one is when the parameters that affect 
stability drives the system too close to the stability limit. The second one is when the step 
time is too large. 
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6 Conclusions 
 
This thesis has analysed the problems that arise when performing co-simulation. The main 
problem is always related with the synchronization of the simulators or platforms, for which 
this thesis performs an overview of the main co-simulation techniques to reach 
synchronization. It was also analysed the simulator types, since the appropriate co-simulation 
technique to implement, depends on the type of interconnected simulators.  

The selection of the communication protocol used as platform to transmit and receive 
information is also an important matter to determine when connecting different physical 
simulators. In this thesis the properties of the proprietary communication protocols were 
analysed to determine which to implement in the intended co-simulation. The analysed 
protocols were: DNP3, Modbus, IEC-104 and Aurora. This last protocol was the one selected 
to implement in the test cases, because both simulator (RTDS and OPAL-RT) on the Energy 
Center supported it has no implementation costs. 

This thesis aimed to study a co-simulation system when connecting system architecture split 
parts using the communication protocol Aurora 8B/10B with optical fiber. Looking forward to 
accomplishing this main objective, the study was divided in two parts. The first part consisted 
on determining the communication delay when transmitting and receiving information 
through the same real time simulator (RTS), using the communication protocol Aurora. The 
second part studies the stability of the co-simulated systems by the deployment of a small 
electrical system using the Aurora link to connect the two sub-systems, implemented as well 
using optical fiber in the physical layer. 

From the first case, it is concluded that the delay introduced by the use of the communication 
protocol Aurora (to transmit data from one port to another one) is of 2 times the 
implemented timestep, regardless of the quantity of transmitted signals or the imposed 
timestep. 

When studying the theoretical approach of the simple test case using the TIM IA approach, 
the system is stable when k (k=ZA/ZB) is minor than 1, and unstable for all values of k equal or 
bigger than 1. In both cases, theoretical and experimental results, when k approaches one 
(the stability limit), the signals under study (VA, VB, IA and IB) became more disturbed. 

The results obtained from the theoretical and the experimental simulations using the RTDS 
are similar, which validates the use of TIM IA model. The main encountered difference was 
that in the theoretical simulations, the output signal reached to stabilize and followed the 
sine wave shape perfectly after passing the transient time. Instead, in the real-time simulator 
(RTDS), even though the transient time had passed, the signal was still disturbed and didn’t 
follow the correct sine wave shape. 

The previous statements lead to conclude that the simulator is not able to perform accurate 
simulations when both of the following system configuration settings are present at the same 
time: i) the step time is large (500 microseconds) and ii) the parameters that influence the 
system stability approach the system to the stability limit. So, a compromise must be done 
when simulating with large time step, since to have accurate results, it is necessary to 
implement a small k. Acceptable results were found with values of k under 0.2, when imposing 
a step time of 500 microseconds. 
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When simulating with small timesteps, all the signals under study, controlled by a remote 
sent feedback (VA, VB, IA and IB) stabilized very fast and were always able to follow the correct 
sine wave shape, for all cases when k was minor than one. Furthermore, the gap between the 
signals of circuit A and B is very small, which means that the curves VA and VB are practically 
overlap. The same happens in the case of IA and IB. 

The fact that k must be smaller than one does not imply a direct problem in electrical grid 
simulation. There is always a natural decoupling (performed by transformers and breakers) 
between different voltage substations. In particular, when there is a high voltage substation 
connected, through a transformer, to low/medium voltage substation (a step-down 
substation), k minor than one is assured (as performed for the test case). Otherwise, when 
the simulation is intended to be performed in step-up substations (passing form low/medium 
voltage to high voltage substations) k is bigger than one, thus the system is not stable and co-
simulation through the stated methods in this thesis cannot be performed. 
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Appendix 
 

APENDIX A. PYTHON CODE TO GENERATE THE .DRAFT AND .SIB DOCUMENTS 
import time 
import datetime 
import math 
import sys  
 
class Class(): 
 def __init__(self): 
  self.date = datetime.datetime.now() 
 
 
 def Aurora_blocks(self,disp_max,count_vector,port,blockNum,posx,posy,num_doc): 
 
     ##################################################   TO AURORA   
##################################################################### 
 
  dict4="_rtds_Aurora.def\n  {} {} 0 0 521\n  Name:AuroraLnkX\n  Port:{}\n  Proc:1\n  
Pri:1\n  sfx:\n  enableSeqNum:No\n  seqNumBlocking:No\n  
numVarsToAURORA:$numVar\n".format(posx,posy,port,disp_max) 
  print(dict4) 
  self.f.write(dict4) 
  for i in range(1,129): 
   if i<=disp_max: 
    dict5="  out{}:D{}\n  SetTypeToAURORA{}:Float\n".format(i,i,i) 
    self.f = open(f'saved_data{num_doc}.dft','a') 
    self.f.write(dict5) 
   else: 
    dict6="  out{}:Out{}\n  SetTypeToAURORA{}:Int\n".format(i,i,i) 
    self.f = open(f'saved_data{num_doc}.dft','a') 
    self.f.write(dict6) 
 
     ##################################################   FROM AURORA   
##################################################################### 
  dict7=f"numVarsFromAURORA:$numVar\n" 
  self.f.write(dict7) 
  for i in range(1,129): 
   if i<=disp_max: 
    dict5=f"  in{i}:from_aurora{blockNum}_{i}\n  
SetTypeFrAURORA{i}:Float\n" 
    self.f = open(f'saved_data{num_doc}.dft','a') 
    self.f.write(dict5) 
 
   else: 
    dict6=f"  in{i}:in{i}\n  SetTypeFrAURORA{i}:Int\n" 
    self.f = open(f'saved_data{num_doc}.dft','a') 
    self.f.write(dict6) 
 
 def switch_mechanism(self,num_doc): 
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  switch_mechanism="rtds_sharc_ctl_SWITCH\n  432 48 0 0 7\n  Name:SW1\n  
Init:On\n  Type:INTEGER\n  VOn:1\n  VOff:0\n  Ton:ON\n  Toff:OFF\nwirelabel\n  464 48 0 0 3\n  
Name:SW\n  COL:BLUE\n  Monitor:Yes\nrtds_sharc_ctl_PLOT_UPDATE\n  464 112 0 0 2\n  Proc:1\n  
Pri:5\n wirelabel\n  432 112 0 0 3\n  Name:SW\n  COL:BLUE\n  Monitor:Yes\n" 
  self.f = open(f'saved_data{num_doc}.dft','a') 
  self.f.write(switch_mechanism) 
 
 def sib_Documents(self,disp_max,num_doc,aurora_block,SimTime): 
  initial_sib=f"RSCAD 5.011\nINFORMATION FILE: saved_data128.inf\nFILE TO 
DOWNLOAD: saved_data128\nFINISH TIME: {SimTime} SECONDS\nPRE-TRIGGER: 20%\nPLOT 
DENSITY: EVERY POINT\nMETER UPDATE FREQUENCY: 1000\n" 
 
  component_switch="COMPONENT: SWITCH\n\ 
 BOX AT (10,10), DIMENSIONS 60 x 90\n\ 
 NAME: \n\ 
 ICON: NONE\n\ 
 ICON AT: (10,10)\n\ 
 GROUP: (NONE)\n\ 
  GROUP: Subsystem #1|CTLs|Inputs\n\ 
  DESC: SW1\n\ 
 MIN: 0.0\n\ 
 MAX: 1.0\n\ 
 ON TEXT: ON\n\ 
 OFF TEXT: OFF\n\ 
 TYPE OF DATA: INT\n" 
 
  component_slider=f"COMPONENT: SLIDER\n\ 
 BOX AT (792,24), DIMENSIONS 70 x 150\n\ 
 NAME: \n\ 
 ICON: NONE\n\ 
 ICON AT: (10,10)\n\ 
 GROUP: (NONE)\n\ 
  GROUP: DraftVariables\n\ 
  DESC: numVar\n\ 
 UNITS: H\n\ 
 VALUE: 128\n" 
 
  componet_plot1="COMPONENT: PLOT\n\ 
 BOX AT (70,10), DIMENSIONS 536 x 784\n\ 
 NAME: \n\ 
 ICON: EXISTS\n\ 
 ICON AT: (70,10)\n\ 
 GROUP: (NONE)\n\ 
 MIN: 0.0\n\ 
 MAX: 1.0\n\ 
 UNLOCKED\n\ 
 NUMBER OF GRAPHS: 3\n\ 
 X RANGE: DEFAULT\n\ 
 TIME_ZERO_DESCRIPTOR: Subsystem #1|CTLs|Inputs|SW1\n\ 
 TIME_ZERO_TRANSITION_TYPE: ANY\n\ 
 X_DIGITS_OF_PRECISION: 6\n\ 
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 X_AXIS_NOTATION: FIXED\n" 
  graph1=f"  GRAPH 1: {disp_max} CURVE\n" 
  graf_specs="   Y MIN: 0.0\n\ 
   Y MAX: 1.0\n\ 
   Y LABEL:  \n\ 
   Y_AXIS_VISIBLE: true\n\ 
   Y_DIGITS_OF_PRECISION: 6\n\ 
   MAX_CURVE_LABELS: 6\n\ 
   X_GRID_LINES: 5\n\ 
   Y_GRID_LINES: 5\n\ 
   Y_AXIS_NOTATION: FIXED\n\ 
   SHOW CURVE LABELS\n\ 
   SHOW GRID LINES\n\ 
   SMART SCALE\n" 
  graph2=f"  GRAPH 2: {disp_max} CURVE\n" 
  graph3=f"  GRAPH 3: {disp_max} CURVE\n" 
 
  self.f = open(f'saved_data{num_doc}.sib','a') 
  self.f.write(initial_sib) 
  self.f.write(component_switch) 
  self.f.write(component_slider) 
  self.f.write(componet_plot1) 
  self.f.write(graph1) 
  self.f.write(graf_specs) 
 
  for i in range(1,disp_max+1): 
   curve=f"   CURVE {i}:\n\ 
    GROUP: Subsystem #1|CTLs|Vars\n\ 
    DESC: D{i}\n\ 
    COLOR: BLACK\n\ 
    LABEL: D{i}\n" 
   self.f = open(f'saved_data{num_doc}.sib','a') 
   self.f.write(curve) 
 
  self.f = open(f'saved_data{num_doc}.sib','a') 
  self.f.write(graph2) 
  self.f.write(graf_specs) 
  for i in range(1,disp_max+1): 
    curve=f"   CURVE {i}:\n\ 
    GROUP: Subsystem #1|Aurora\n\ 
    DESC: from_aurora1_{i}\n\ 
    COLOR: BLACK\n\ 
    LABEL: from_aurora1_{i}\n" 
    self.f = open(f'saved_data{num_doc}.sib','a') 
    self.f.write(curve) 
 
  self.f = open(f'saved_data{num_doc}.sib','a') 
  self.f.write(graph3) 
  self.f.write(graf_specs) 
 
  for i in range(1,disp_max+1): 
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   curve=f"   CURVE {i}:\n\ 
    GROUP: Subsystem #1|Aurora\n\ 
    DESC: from_aurora2_{i}\n\ 
    COLOR: BLACK\n\ 
    LABEL: from_aurora2_{i}\n" 
 
   self.f = open(f'saved_data{num_doc}.sib','a') 
   self.f.write(curve) 
 
  page_specs=" PAGE HEIGHT: 0.0\n\ 
 PAGE WIDTH: 0.0\n\ 
 TOP MARGIN: 0.0\n\ 
 BOTTOM MARGIN: 0.0\n\ 
 LEFT MARGIN: 0.0\n\ 
 RIGHT MARGIN: 0.0\n\ 
 GRAPH SPACING: 0.0\n" 
    
  self.f = open(f'saved_data{num_doc}.sib','a') 
  self.f.write(page_specs) 
 
 def create_Documents(self,disp_max,num_doc,SimTime,DorSib,TimeStep): 
  total_components=(disp_max*3)+2 
  count=0 
  vector_wire=[] 
  vector_TimeBlock=[] 
  vector_Constant_block=[] 
  count_vector=[] 
  vector_Capture_block=[] 
  vector_Capture_label=[] 
  vector_Switch_label=[] 
  for x in range(0,15): 
   for y in range(0,10): 
    count=count+1 
    count_vector.append(count) 
    if count>disp_max or count>128: 
     break 
    else: 
     x_wire=144+(256*x) 
     y_wire=400+(96*y) 
     wirelabel="wirelabel\n  {} {} 0 0 3\n  Name:D{}\n  COL:BLUE 
\n  Monitor:Yes\n".format(x_wire,y_wire,count) 
     vector_wire.append(wirelabel) 
 
     TimeBlock="rtds_sharc_ctl_TIME\n  {} {} 0 0 3\n  Mode:time-
step\n  Proc:1\n  Pri:2\n".format(x_wire-32,y_wire) 
     vector_TimeBlock.append(TimeBlock) 
 
     Constant_block="rtds_sharc_ctl_ICONST\n  {} {} 0 0 1\n  
Val:0\n".format(x_wire-96,y_wire-32) 
     vector_Constant_block.append(Constant_block) 
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     Switch_label="wirelabel\n  {} {} 0 0 3\n  Name:SW\n  
COL:BLUE \n  Monitor:Yes\n".format(x_wire-64,y_wire-32) 
     vector_Switch_label.append(Switch_label) 
 
     Capture_block="rtds_risc_ctl_CAPTURE\n  {} {} 0 0 3\n  
NP:10\n  Proc:1\n   Pri :27\n".format(x_wire+32,y_wire) 
     vector_Capture_block.append(Capture_block) 
 
     Capture_label="wirelabel\n  {} {} 0 0 3\n  Name:Out{}\n  
COL:BLUE \n  Monitor:Yes\n".format(x_wire+64,y_wire,count) 
     vector_Capture_label.append(Capture_label) 
 
 
  var="rtds_draft_var\n\ 
 432 208 0 0 6\n\ 
 Name :numVar\n\ 
 Type :INT\n\ 
 Value :128\n\ 
 Max :128\n\ 
 Min :2\n\ 
 Units :H\n" 
 
  if int(DorSib)==1: 
 
   Initial_text="DRAFT 5.011\nTITLE: NumDipositvosUser{}\nCREATED: {} {}, {} 
(S264449)\nLAST-MODIFIED: {} {}, {} (S264449)\nTIME-STEP: {}.0E-6\nFINISH-TIME: 0.2\nRTDS-RACK: 
1\nCOMPILE-MODE: AUTO\nDISTRIBUTION_MODE: 0\nRTDS REAL-TIME: Yes\nCURRENT-
SUBSYSTEM: 1\nDEFAULT-VIEWMODE: 3\nDEFAULT-ZOOM: 100\nDEFAULT-POINT: 0,0\nDEFAULT-
POINT-ABSOLUTE: 440,298\n1 SUBSYSTEMS\nSUBSYSTEM-TAB-NAME: SS #1\nSUBSYSTEM-CANVAS-
SIZE:3000,2000\nSUBSYSTEM-TITLE:\nSUBSYSTEM-COMMENT:\nSUBSYSTEM-PRINTMODE:     PRINT-
LAYOUT:CUSTOM    PAPER-DIMENSIONS:8.5x11\n{} 
COMPONENTS\n".format(disp_max,self.date.strftime("%b"),self.date.strftime("%d"),self.date.strftim
e("%Y"),self.date.strftime("%b"),self.date.strftime("%d"),self.date.strftime("%Y"),TimeStep,total_com
ponents) 
   self.f = open(f'saved_data{num_doc}.dft','a') 
   self.f.write(Initial_text) 
 
   for x in vector_wire: 
    self.f = open(f'saved_data{num_doc}.dft','a') 
    self.f.write(x) 
 
   for x in vector_TimeBlock: 
    self.f = open(f'saved_data{num_doc}.dft','a') 
    self.f.write(x) 
 
   for x in vector_Switch_label: 
    self.f = open(f'saved_data{num_doc}.dft','a') 
    self.f.write(x) 
 
 
   self.switch_mechanism(num_doc) 
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   self.Aurora_blocks(disp_max,count_vector,23,1,176,80,num_doc) 
   self.Aurora_blocks(disp_max,count_vector,24,2,176,240,num_doc) 
   self.f = open(f'saved_data{num_doc}.dft','a') 
   self.f.write(var) 
 
  else: 
   self.sib_Documents(disp_max,num_doc,1,SimTime) 
 
 
if __name__=="__main__": 
 C=Class() 
 DorSib=input("Type:\n1 for draft document\n2 for the sib document\n") 
 if int(DorSib)==1 or int(DorSib)==2: 
  pass 
 else: 
  print("ERROR! THE PROGRAM WILL FINISH") 
  sys.exit() 
 input1=input("Type the number of elements (in a range of 2 to 128):\n") 
 step=input("Type the step between elements in the document generation (in a range of 1 to 
127)\n")  
 TimeStep=input("Type the timeStep (units in microseconds):\n") 
  
 Num_steps=2000000 
 
 for i in range(0,int(input1)+1,int(step)): 
  if i<2: 
   pass 
  else: 
   x=Num_steps*0.000001*float(TimeStep)/int(i) 
   SimTime=round(x,2) 
   C.create_Documents(i,i,SimTime,DorSib,TimeStep) 
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APENDIX B. SIMULATION TIME COMPUTATION  
VARIABLES TIME STEP (µS) 

7 10 15 20 25 30 35 40 45 50 

2 7.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 

3 4.67 6.67 10.00 13.33 16.67 20.00 23.33 26.67 30.00 33.33 

4 3.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50 25.00 

5 2.80 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 

6 2.33 3.33 5.00 6.67 8.33 10.00 11.67 13.33 15.00 16.67 

7 2.00 2.86 4.29 5.71 7.14 8.57 10.00 11.43 12.86 14.29 

8 1.75 2.50 3.75 5.00 6.25 7.50 8.75 10.00 11.25 12.50 

9 1.56 2.22 3.33 4.44 5.56 6.67 7.78 8.89 10.00 11.11 

10 1.40 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 

11 1.27 1.82 2.73 3.64 4.55 5.45 6.36 7.27 8.18 9.09 

12 1.17 1.67 2.50 3.33 4.17 5.00 5.83 6.67 7.50 8.33 

13 1.08 1.54 2.31 3.08 3.85 4.62 5.38 6.15 6.92 7.69 

14 1.00 1.43 2.14 2.86 3.57 4.29 5.00 5.71 6.43 7.14 

15 0.93 1.33 2.00 2.67 3.33 4.00 4.67 5.33 6.00 6.67 

16 0.88 1.25 1.88 2.50 3.13 3.75 4.38 5.00 5.63 6.25 

17 0.82 1.18 1.76 2.35 2.94 3.53 4.12 4.71 5.29 5.88 

18 0.78 1.11 1.67 2.22 2.78 3.33 3.89 4.44 5.00 5.56 

19 0.74 1.05 1.58 2.11 2.63 3.16 3.68 4.21 4.74 5.26 

20 0.70 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 

21 0.67 0.95 1.43 1.90 2.38 2.86 3.33 3.81 4.29 4.76 

22 0.64 0.91 1.36 1.82 2.27 2.73 3.18 3.64 4.09 4.55 

23 0.61 0.87 1.30 1.74 2.17 2.61 3.04 3.48 3.91 4.35 

24 0.58 0.83 1.25 1.67 2.08 2.50 2.92 3.33 3.75 4.17 

25 0.56 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 

26 0.54 0.77 1.15 1.54 1.92 2.31 2.69 3.08 3.46 3.85 

27 0.52 0.74 1.11 1.48 1.85 2.22 2.59 2.96 3.33 3.70 

28 0.50 0.71 1.07 1.43 1.79 2.14 2.50 2.86 3.21 3.57 

29 0.48 0.69 1.03 1.38 1.72 2.07 2.41 2.76 3.10 3.45 

30 0.47 0.67 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 

31 0.45 0.65 0.97 1.29 1.61 1.94 2.26 2.58 2.90 3.23 

32 0.44 0.63 0.94 1.25 1.56 1.88 2.19 2.50 2.81 3.13 

33 0.42 0.61 0.91 1.21 1.52 1.82 2.12 2.42 2.73 3.03 

34 0.41 0.59 0.88 1.18 1.47 1.76 2.06 2.35 2.65 2.94 

35 0.40 0.57 0.86 1.14 1.43 1.71 2.00 2.29 2.57 2.86 

36 0.39 0.56 0.83 1.11 1.39 1.67 1.94 2.22 2.50 2.78 

37 0.38 0.54 0.81 1.08 1.35 1.62 1.89 2.16 2.43 2.70 

38 0.37 0.53 0.79 1.05 1.32 1.58 1.84 2.11 2.37 2.63 

39 0.36 0.51 0.77 1.03 1.28 1.54 1.79 2.05 2.31 2.56 

40 0.35 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 

41 0.34 0.49 0.73 0.98 1.22 1.46 1.71 1.95 2.20 2.44 

42 0.33 0.48 0.71 0.95 1.19 1.43 1.67 1.90 2.14 2.38 

43 0.33 0.47 0.70 0.93 1.16 1.40 1.63 1.86 2.09 2.33 
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44 0.32 0.45 0.68 0.91 1.14 1.36 1.59 1.82 2.05 2.27 

45 0.31 0.44 0.67 0.89 1.11 1.33 1.56 1.78 2.00 2.22 

46 0.30 0.43 0.65 0.87 1.09 1.30 1.52 1.74 1.96 2.17 

47 0.30 0.43 0.64 0.85 1.06 1.28 1.49 1.70 1.91 2.13 

48 0.29 0.42 0.63 0.83 1.04 1.25 1.46 1.67 1.88 2.08 

49 0.29 0.41 0.61 0.82 1.02 1.22 1.43 1.63 1.84 2.04 

50 0.28 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 

51 0.27 0.39 0.59 0.78 0.98 1.18 1.37 1.57 1.76 1.96 

52 0.27 0.38 0.58 0.77 0.96 1.15 1.35 1.54 1.73 1.92 

53 0.26 0.38 0.57 0.75 0.94 1.13 1.32 1.51 1.70 1.89 

54 0.26 0.37 0.56 0.74 0.93 1.11 1.30 1.48 1.67 1.85 

55 0.25 0.36 0.55 0.73 0.91 1.09 1.27 1.45 1.64 1.82 

56 0.25 0.36 0.54 0.71 0.89 1.07 1.25 1.43 1.61 1.79 

57 0.25 0.35 0.53 0.70 0.88 1.05 1.23 1.40 1.58 1.75 

58 0.24 0.34 0.52 0.69 0.86 1.03 1.21 1.38 1.55 1.72 

59 0.24 0.34 0.51 0.68 0.85 1.02 1.19 1.36 1.53 1.69 

60 0.23 0.33 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 

61 0.23 0.33 0.49 0.66 0.82 0.98 1.15 1.31 1.48 1.64 

62 0.23 0.32 0.48 0.65 0.81 0.97 1.13 1.29 1.45 1.61 

63 0.22 0.32 0.48 0.63 0.79 0.95 1.11 1.27 1.43 1.59 

64 0.22 0.31 0.47 0.63 0.78 0.94 1.09 1.25 1.41 1.56 

65 0.22 0.31 0.46 0.62 0.77 0.92 1.08 1.23 1.38 1.54 

66 0.21 0.30 0.45 0.61 0.76 0.91 1.06 1.21 1.36 1.52 

67 0.21 0.30 0.45 0.60 0.75 0.90 1.04 1.19 1.34 1.49 

68 0.21 0.29 0.44 0.59 0.74 0.88 1.03 1.18 1.32 1.47 

69 0.20 0.29 0.43 0.58 0.72 0.87 1.01 1.16 1.30 1.45 

70 0.20 0.29 0.43 0.57 0.71 0.86 1.00 1.14 1.29 1.43 

71 0.20 0.28 0.42 0.56 0.70 0.85 0.99 1.13 1.27 1.41 

72 0.19 0.28 0.42 0.56 0.69 0.83 0.97 1.11 1.25 1.39 

73 0.19 0.27 0.41 0.55 0.68 0.82 0.96 1.10 1.23 1.37 

74 0.19 0.27 0.41 0.54 0.68 0.81 0.95 1.08 1.22 1.35 

75 0.19 0.27 0.40 0.53 0.67 0.80 0.93 1.07 1.20 1.33 

76 0.18 0.26 0.39 0.53 0.66 0.79 0.92 1.05 1.18 1.32 

77 0.18 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17 1.30 

78 0.18 0.26 0.38 0.51 0.64 0.77 0.90 1.03 1.15 1.28 

79 0.18 0.25 0.38 0.51 0.63 0.76 0.89 1.01 1.14 1.27 

80 0.18 0.25 0.38 0.50 0.63 0.75 0.88 1.00 1.13 1.25 

81 0.17 0.25 0.37 0.49 0.62 0.74 0.86 0.99 1.11 1.23 

82 0.17 0.24 0.37 0.49 0.61 0.73 0.85 0.98 1.10 1.22 

83 0.17 0.24 0.36 0.48 0.60 0.72 0.84 0.96 1.08 1.20 

84 0.17 0.24 0.36 0.48 0.60 0.71 0.83 0.95 1.07 1.19 

85 0.16 0.24 0.35 0.47 0.59 0.71 0.82 0.94 1.06 1.18 

86 0.16 0.23 0.35 0.47 0.58 0.70 0.81 0.93 1.05 1.16 

87 0.16 0.23 0.34 0.46 0.57 0.69 0.80 0.92 1.03 1.15 

88 0.16 0.23 0.34 0.45 0.57 0.68 0.80 0.91 1.02 1.14 

89 0.16 0.22 0.34 0.45 0.56 0.67 0.79 0.90 1.01 1.12 
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90 0.16 0.22 0.33 0.44 0.56 0.67 0.78 0.89 1.00 1.11 

91 0.15 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99 1.10 

92 0.15 0.22 0.33 0.43 0.54 0.65 0.76 0.87 0.98 1.09 

93 0.15 0.22 0.32 0.43 0.54 0.65 0.75 0.86 0.97 1.08 

94 0.15 0.21 0.32 0.43 0.53 0.64 0.74 0.85 0.96 1.06 

95 0.15 0.21 0.32 0.42 0.53 0.63 0.74 0.84 0.95 1.05 

96 0.15 0.21 0.31 0.42 0.52 0.63 0.73 0.83 0.94 1.04 

97 0.14 0.21 0.31 0.41 0.52 0.62 0.72 0.82 0.93 1.03 

98 0.14 0.20 0.31 0.41 0.51 0.61 0.71 0.82 0.92 1.02 

99 0.14 0.20 0.30 0.40 0.51 0.61 0.71 0.81 0.91 1.01 

100 0.14 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

101 0.14 0.20 0.30 0.40 0.50 0.59 0.69 0.79 0.89 0.99 

102 0.14 0.20 0.29 0.39 0.49 0.59 0.69 0.78 0.88 0.98 

103 0.14 0.19 0.29 0.39 0.49 0.58 0.68 0.78 0.87 0.97 

104 0.13 0.19 0.29 0.38 0.48 0.58 0.67 0.77 0.87 0.96 

105 0.13 0.19 0.29 0.38 0.48 0.57 0.67 0.76 0.86 0.95 

106 0.13 0.19 0.28 0.38 0.47 0.57 0.66 0.75 0.85 0.94 

107 0.13 0.19 0.28 0.37 0.47 0.56 0.65 0.75 0.84 0.93 

108 0.13 0.19 0.28 0.37 0.46 0.56 0.65 0.74 0.83 0.93 

109 0.13 0.18 0.28 0.37 0.46 0.55 0.64 0.73 0.83 0.92 

110 0.13 0.18 0.27 0.36 0.45 0.55 0.64 0.73 0.82 0.91 

111 0.13 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 0.90 

112 0.13 0.18 0.27 0.36 0.45 0.54 0.63 0.71 0.80 0.89 

113 0.12 0.18 0.27 0.35 0.44 0.53 0.62 0.71 0.80 0.88 

114 0.12 0.18 0.26 0.35 0.44 0.53 0.61 0.70 0.79 0.88 

115 0.12 0.17 0.26 0.35 0.43 0.52 0.61 0.70 0.78 0.87 

116 0.12 0.17 0.26 0.34 0.43 0.52 0.60 0.69 0.78 0.86 

117 0.12 0.17 0.26 0.34 0.43 0.51 0.60 0.68 0.77 0.85 

118 0.12 0.17 0.25 0.34 0.42 0.51 0.59 0.68 0.76 0.85 

119 0.12 0.17 0.25 0.34 0.42 0.50 0.59 0.67 0.76 0.84 

120 0.12 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.83 

121 0.12 0.17 0.25 0.33 0.41 0.50 0.58 0.66 0.74 0.83 

122 0.11 0.16 0.25 0.33 0.41 0.49 0.57 0.66 0.74 0.82 

123 0.11 0.16 0.24 0.33 0.41 0.49 0.57 0.65 0.73 0.81 

124 0.11 0.16 0.24 0.32 0.40 0.48 0.56 0.65 0.73 0.81 

125 0.11 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 

126 0.11 0.16 0.24 0.32 0.40 0.48 0.56 0.63 0.71 0.79 

127 0.11 0.16 0.24 0.31 0.39 0.47 0.55 0.63 0.71 0.79 

128 0.12 0.16 0.23 0.31 0.39 0.47 0.55 0.63 0.70 0.78 

 
 


