
POLITECNICO DI TORINO

Master of Science Degree in
Mechatronic Engineering

Real-Time State Estimation of a
Two-Wheeled Inverted Pendulum Robot

for Motion and Navigation Control

Master's thesis

Author: Federico Casali
Examiner: Prof. Alessandro Rizzo
Supervisor: Ing. Dustin Lehmann

Academic Year 2020/2021

Abstract

Robotic systems appear in a wide varieaty of fields including manufactury, space explo-
ration, laboratory research and surgery. The spread of robotic technology in this wide
range of applications has been motivated by their capability to perform jobs more ac-
curate, more reliable and, last but not least, the possibility of eliminating harmful task
for humans. The complex environments where robotic systems are employed require
them to be able to adapt an learn. To develop different motion learning strategies and
evaluate them in real-world applications, a robotic testbed has been developed capable
of performing dynamic maneuvers. An autonomous sytem relies on its perception of its
own status and the environment to make decisions and compute new actions. Therefore,
a key aspect in making a robot really autonomous is the state estimation problem.

The investigated robotic system is a Two-wheeled inverted pendulum robot (TWIPR),
with instable and complex dynamics. In order to develop control strategies to stabilize
the system and enable motion control of the orientation, velocity and position one needs
a reliable, accurate and real-time capable estimation of the system’s motion states. In
order to estimate all dynamic states of the system, the robotic testbed is equipped with
different sensors, such as inertial measurement units (IMUs), odometry sensors and an
optical motion capture system.

The estimation problem can be separated into the rotational and the translational states.
Tracking of the robot’s orientation (more specifically it’s inclination) is a key aspect for
the state-feedback controller that stabilizes the system. We therefore implement a fast,
accurate and magnetometer-free estimation algorithm based on an extended Kalman
filter (EKF) to track the robot’s inclination to enable a high-frequency attitude con-
troller. The translational states such as the robot’s velocity and position are used for
motion and navigational control in upcoming learning experiments. The multitude of
different sensors providing information on the motion states and the inherent challenges
of localization tasks and non-linearities in such require the use of a particle filter-based
approach. This type of filter makes no assumptions on the shape of uncertainties of
the different information sources and can track different hypothesis of the motion states
simultaneously. This makes such a filter ideal to deal with competing information, high
uncertainties, non-linearities and temporal loss of information sources. This last scenario
is often encountered if the main source of localization information is prone to occlusion
such at is the case with the optical motion capture system.

The estimation algorithms are tested in simulations. The main objective of the sim-
ulational studies is to identify optimal filter parameters for different scenarios and to
identify the method’s sensitivity to different sources of error and uncertainties. For this,
simulational models for the sensors and the robot are identified and implemented.

Contents

List of Tables III

List of Figures IV

1 Introduction 2
1.1 Motivation . 2
1.2 Objective of the thesis . 4
1.3 Structure . 4

2 System Characteristics 5
2.1 The TWIPR . 5

2.1.1 Notations and Coordinate Systems 5
2.1.2 System Dynamics . 6
2.1.3 Feedback Controller . 8

2.2 Sensors . 10
2.2.1 Inertial Measurements Unit . 10
2.2.2 Encoders . 13
2.2.3 Motion Capture System . 13

2.3 Error Characteristics . 14
2.3.1 Accelerometers and Gyroscopes . 15
2.3.2 Odometry . 19

3 Orientation Estimation 23
3.1 Probabilistic Models . 23
3.2 Mathematical Representation of Orientations and Rotations 25

3.2.1 Rotation Matrices . 25
3.2.2 Euler Angles . 25
3.2.3 Unit Quaternions . 26
3.2.4 Heading and Inclination . 26

3.3 Basics of Orientation Estimation . 27
3.4 Sensor Fusion . 28

3.4.1 Extended Kalman Filter . 28

4 Position Estimation 32
4.1 Relative Tracking . 32

I

Contents

4.2 Absolute Localization . 34
4.3 Nonlinear Filtering . 37

4.3.1 State Space Model . 37
4.3.2 Bayesian Filtering . 39
4.3.3 The Particle Filter . 39

4.4 Slip Detection . 48

5 Simulation-based Evaluation 50
5.1 Introduction . 50
5.2 Error Metrics . 50
5.3 Simulation Setup . 52
5.4 Methods for Orientation Estimation . 52

5.4.1 Initial Parameters . 53
5.4.2 Object moving freely in space . 54
5.4.3 Robotic motion . 58

5.5 Methods for Position Estimation . 59
5.5.1 Odometry . 60
5.5.2 Inertial Navigation . 62
5.5.3 Complementary Filters . 63
5.5.4 The Particle Filter . 65
5.5.5 Straight Path . 69
5.5.6 Curved Path . 73

6 Conclusion 78
6.1 Summary . 78
6.2 Future Work . 79

Appendices 82

A Sensor measurement models 83
A.1 Accelerometer . 83
A.2 Gyroscope . 85
A.3 Encoders . 85

B UMBmark procedure for systematic calibration 86

II

List of Tables

List of Tables

2.1 Parameters of the mechanical system. 8
2.2 Specifications of different commercial IMUs. 19

5.1 Simulations of an object moving freely in space. 55
5.2 Simulations for orientation method . 57
5.3 Inclination estimate errors using the proposed orientation estimation meth-

ods on simulations of the robot moving. 59

III

Contents

List of Figures

1.1 A TWIPR . 3

2.1 Reference frames . 6
2.2 Mechanical symplification o a TWIPR and its degrees of freedom. 7
2.3 Inner-loop control with state feedback. 9
2.4 Outer-loop control with PID controllers. 10
2.5 IMUs and encoders mounted on the robot. 10
2.6 A MEMS accelerometer [10]. 11
2.7 A MEMS gyroscope [10]. 12
2.8 Encoder channels . 13
2.9 Motion capture system layout and workspace. 14
2.10 Scaling errors: measured signal over the true signal. 15
2.11 Example of non-orthogonality (left) and of misalignment between the gy-

roscope and the accelerometer. 16
2.12 IMU . 20

3.1 Euler angles. 26
3.2 Heading and inclination angles. 27

4.1 Trilateration problem (left) vs triangulation problem (right). 34
4.2 A Global Positioning System and its fundamental agents [14]. 35
4.3 Known map of the environment (left) and sensed objects by the robot

(right). 36
4.4 Position estimation with added random noise 41
4.5 System update with additive noise . 42
4.6 System update with additive noise . 43
4.7 Relative likelihood of each particle . 44
4.8 Comparison of different resampling algorithms. 46

5.1 Effect of the measurement noise covariance in the estimate 54
5.2 Inclination and heading errors for a simulation from scenario S6. 56
5.3 Sensor readings for simulation S2 (left) and simulation S4 (right). 56
5.4 Inclination estimate and error for simulations S2 and S4. 57
5.5 Comparison between the standard EKF and the EKF with variable mea-

surement covariance matrix. 57
5.6 Pitch angle estimation of the TWIPR when moving back and forth. 59
5.7 Position error due to different wheelbase than assumed. In this case, the

difference between actual and nominal wheelbase is 1 cm. Nominal square
path in red, actual travelled path in blue. 61

5.8 Position error due to unequal wheel radius. In this case, the difference in
radius is 0.3 mm. Nominal square path in red, actual travelled path in blue. 62

IV

List of Figures

5.9 Comparison between the translational velocity computed from odometry
and from inertial navigation. 63

5.10 Comparison between the position estimate using different heading estimates. 64
5.11 Particles distribution with different amounts of heading noise added. The

red line represents the true position of the robot, and the yellow one rep-
resents the estimated position. 65

5.12 Particles distribution with different amounts of velocity noise added. The
red line represents the true position of the robot, and the yellow one rep-
resents the estimated position. 66

5.13 Standard deviation of the particles defined in (5.9) and in (5.10) 67
5.14 Computation of the particles weight using the probability density function

of the motion capture system. 68
5.15 Heading angle estimated from the EKF and from the particle filter, with

absolute position measurements becoming available at t = 20 sec. 69
5.16 Simulation scenario: driving through a straight tunnel. 70
5.17 Relation between the unequal wheel radius and the distance traveled through

a tunnel of 50 cm width before collision with a wall, considering that the
robot is given only translational velocity command (labeled as "No Con-
trol"), and when a heading proportional controller is used to correct the
effects of the unequal wheel diameter based on inertial heading estimation
(labeled as "With Control"). 71

5.18 Position estimation comparison using the complementary filter to compute
the heading rate with a coefficient of 0.5. The red dashed lines represent
the width of the robot. 72

5.19 Simulation scenario: driving through an eight-shaped path. 73
5.20 Real and estimated position of the robot traversing a curved path, using

odometry to estimate the heading rate in the particle filter. 74
5.21 Tracking error over time during the curved path simulation, using odom-

etry and IMU data to estimate heading. 75
5.22 Particles distribution and weights before (left) and after(right) the mo-

tion capture system registers a position measurement. The weights are
represented by the particles transparency. 76

A.1 Accelerations experienced by the robot . 84

B.1 Typical results from running UMBmark with an uncalibrated vehicle. . . . 87

V

Chapter 1

Introduction

In this chapter, the topic of the thesis is introduced briefly. The problem, the main
objectives and a short description of the general structure of the thesis are given, to
serve as an overview.

1.1 Motivation

The span of robotic system applications can be very broad, including but not limited to
communication and entertainment, manufactury and assembly, lifestyle support robots,
rescue, transportation, medicine, etc. Robots are seen as machines that are able to
interact and modify the environment in which they operate. This means that they must
deal with technological fields and issues of various complexities, so it is important for
them to be able to adapt and learn. Robots operate by carrying out actions conditioned
by the data that they acquire through sensors on its own status and the surroundings,
as well as by intrinsic rules of behaviour programmed in them.

The task of connecting perception to action is entrusted to the control system. This
provides the robot with a certain degree of autonomy to make decisions in order to
accomplish pre-established goals. This is particularly important in the case of mobile
robots since the environments in which they operate are likely to be unknown and of
complex nature. When a robot is moving to a certain location, it can encounter obstacles
in its path, whether they are known in advance or not. Thus, it needs to be able to detect
those obstacles and take actions to avoid collisions that may cause damage to the robot,
the obstacle and, more important, injuries to humans.

A key aspect to make a robot autonomous comes from the capability of perception. This
is entrusted to the sensory system which can aquire information on certain inner and
outer variables. However, some important states that define the robot’s own status may
be hidden or not directly measurable. Furthermore, sensory data is usually corrupted

2

1.1 Motivation

by noise and disturbances and could lead to wrong conclusions. This is why a reliable,
accurate and real-time capable estimation of the system’s motion states is necessary.

To develop different motion learning strategies and evaluate them in real-world applica-
tions, a robotic testbed has been developed capable of performing dynamic maneuvers.
The investigated robotic system is a Two-wheeled inverted pendulum robot (TWIPR),
shown in the figure below, with instable and complex dynamics. In order to develop
control strategies to stabilize the system and enable motion control of the orientation,
velocity and position one needs a reliable, accurate and real-time capable estimation of
the system’s motion states. In order to estimate all dynamic states of the system, the
robotic testbed is equipped with different sensors, such as inertial measurement units
(IMUs), odometry sensors and an optical motion capture system.

Figure 1.1: A TWIPR

Inertial Measurement Units (IMUs) have the advantage of low-cost, wide field of appli-
cation and they require no direct interaction with the object of interest. Therefore, they
are used in a wide variety of robotic applications. The principle of orientation estimation
with inertial sensors relies on the measurement of the angular velocity, the acceleration
and the magnetic field strength and a fusion algorithm.

Due to the large number of application areas in which the use of inertial sensors for
orientation and position estimation is involved, there is a large amount of literature
about it. Usually, the estimation problems are nonlinear and there are many different
parametrizations of orientation that can be considered depending on their properties.
Therefore, it is important to carefully select the most suitable model and algorithms to
improve the accuracy of the estimates.

Odometry is also commonly employed in mobile robots for position estimation. They
provide an accurate measurement of the translational velocity and the heading of the
robot. Although wheel odometry is the simplest technique available for position esti-

3

Introduction

mation, it is quite sensible to systematic and non-systematic errors affecting the entire
drivetrain system, specially to wheel slippage, which is very likely in differential-drive
robots like the TWIPR.

1.2 Objective of the thesis

The objective of this thesis is to study the dynamics of the TWIPR and how they affect
the sensorial data regarding state estimation. This will be used to derive robust methods
for the inertial orientation and position estimation of this particular differential-drive
mobile robot. The algorithms derived are aimed to minimize the overall tracking error
between the true and estimated states by exploiting the dynamic properties of the robot.
The algorithms will be studied on simulations aimed to real-world application. Here,
different assumptions made during the derivation of the system dynamics or the filtering
algorithms will be dropped to see how the estimation problem is affected.

1.3 Structure

To obtain accurate position and orientation estimates using inertial sensors in combi-
nation with additional measurements or models, a number of important things need to
be considered. First, an introduction to the system under study is given, where both
the robot and the sensors used will be presented. In addition, the quantities measured
by the inertial sensor and the information provided by odometry need to be accurately
described and the sources of error need to be characterized. This is the topic of Chapter
2.

In Chapter 3 we will discuss different parametrizations of orientation. This will highlight
the challenges in parametrizing and estimating orientations and show that the orientation
estimation problem is inherently nonlinear. Then, some basic principles of orientation
estimation with inertial sensors will be introduced, together with different algorithms.

The position estimation problem will be addressed in Chapter 4. Here, an overview on
relative and absolute localization techniques is given. Then, we analyse odometry and
inertial navigation to identify their strenghts and weaknesess. Finally, the problem of
nonlinear filtering is introduced where the particle filter is presented and all its steps
explained in detail.

Simulations are pefromed in Chapter 5 to analyze the proposed methods. The entire
chapter is divided into the orientation estimation methods and the position estimation
methods.

4

Chapter 2

System Characteristics

In this chapter the main aspects of the two-wheeled inverted-pendulum robot (TWIPR)
are introduced, as well as its dynamic model. The theory given here only serves as a
short introduction since it is not the main focus of this thesis. In the second section, the
utilized sensors are introduced and the error characteristics are studied.

2.1 The TWIPR

A two-wheeled inverted pendulum robot belongs to the class of nonlinear systems, and
it consists of an inverted-pendulum body on two wheels. This kind of robotic systems
are challenging, have complex dynamics and are very interesting for research related
to systems with underactuated dynamycs, so it is widley used as testbed for learning
problems. Furthermore, a TWIP robot is an under-actuated system, which makes it a
prospective robot as an educational device for teaching or a research platform for testing
advanced control methods.

The TWIPR has drawn much attention for the past decade because of its compact design,
its zero radius turning ability, and its agility in narrow spaces and crowded conditions.
Different devices with this kind are beeing used as personal transporters, such as the
Segway, the self-balancing scooter and the self-balancing unicycle.

2.1.1 Notations and Coordinate Systems

The coordinate systems are denoted by manuscrit letters. The coordinate system axes of
frame A are denoted as xA , yA and zA . Left subscripts denote the coordinates system
in which a vector is described, left superscripts denote the coordinate system a point is
belonging to. In order to discuss the system dynamics and the quantities measured by
the accelerometer and gyroscope, a number of coordinate frames need to be introduced

5

System Characteristics

IMU IMUxS

yS

xC

zC zB

xC

zC

xN

zN

xB

θ

Figure 2.1: Reference frames

The Earth’s frame E has vertical z -axis and a north-bound x -axis.

The Newtonian reference frame N is a fixed frame in which we want to navigate. We
are interested in the position and orientation of the robot with respect to this frame.

The chassis frame C is attached to the body, but it’s vertical axis remains parallel to the
global vertical axis; in other words, this frame rotates with the body when its heading
changes, but not when its elevation does.

The body frame B is the coordinate frame attached to the body. Depending on how the
IMU is mounted on the body, the orientation of this frame can coincide with the sensor
frame or not, and their origins can also differ.

The sensor frame S is the coordinate frame of the IMU. All the inertial measurements
acquired are given in this frame.

2.1.2 System Dynamics

From a modelling point of view, the robot can be seen as two wheels W and a body B
forming the inverted pendulum, as shown in Figure 2.2. The whole body of the robot
moves together by straight motion and yaw rotation and the inverted pendulum has
additional pitch motion. The pitch angle of the pendulum is denoted by θ ∈ [−90◦, 90◦]
and the yaw angle of the robot is denoted by ψ ∈ [0◦, 360◦]. Assuming that there is no

6

2.1 The TWIPR

ψ

θ

nx

ny

Cy = By
Cx

WR

WL

nx

nz
Cz

Cx

Bx

ByB

W

s

Figure 2.2: Mechanical symplification o a TWIPR and its degrees of freedom.

slip on the ground, the resulting equations of motion are given by

M(q)q̈ + C(q, q̇)q̇ +Dq̇ +G(q) = Bτ (2.1)

Where inertia matrix M ∈ R3×3, centrifugal and Coriolis matrix C ∈ R3×3, damping
matrix D ∈ R3×3, gravity vector G ∈ R3, input matrix B ∈ R3×2, input vector τ ∈ R2,
and generalized coordinates q ∈ R3 have the following forms

M =

a11 a12 0

a21 a22 0

0 0 a33

 , C =

 0 c12 c13

0 0 c23

c31 c32 c33

 , q =

sθ
ψ

 ,

D =

d11 d12 0

d21 d22 0

0 0 d33

 , B =

 1/r 1/r

−1 −1

−d/2r d/2r

 , τ =

[
τL

τR

]
,

G =
[
0 −mBlg sin(θ) 0

]T
These equations of motion are derived in [1]. The elements of the matrices above are
listed below, and they depend on the parameters in Table 2.1.

a11 = mB + 2mW + 2J/r2

a12 = a21 = mBl cos θ

a22 = I2 +mBl
2

a33 = I3 + 2K + (mW + J/r2)d2/2− (I3 − I1 −mBl
2)s2θ

c12 = −mBlθ̇ sin θ

c13 = −mBlψ̇ sin θ

c23 = (I3 − I1 −mBl
2)ψ̇ sin θ cos θ

c31 = mBlψ̇ sin θ

7

System Characteristics

c32 = −(I3 − I1 −mBl
2)ψ̇ sin θ cos θ

c33 = −(I3 − I1 −mBl
2)θ̇ sin θ cos θ

d11 = 2cα/r
2

d12 = d21 = −2c− α/r
d22 = 2cα

d33 = (d2/2r2)cα

Parameter Value Description

mB – mass of the pendulum body
mW – mass of a wheel

l – distance between the wheel axis and the pendu-
lum’s center of gravity

r – wheel radius
d – distance between the two wheels

J – moment of inertia of a wheel with respect to the
reference frame C in the direction of c2

K – moment of inertia of a wheel with respect to the
reference frame C in the direction of c3

I1 –
moment of inertia of the pendulum’s body with
respect to the reference frame B in the direction
of b1

I2 –
moment of inertia of the pendulum’s body with
respect to the reference frame B in the direction
of b2

I3 –
moment of inertia of the pendulum’s body with
respect to the reference frame B in the direction
of b3

cα – viscous friction coefficient

Table 2.1: Parameters of the mechanical system.

2.1.3 Feedback Controller

A lot of research has been done on control of TWIPR in past few decades. As in [3]
a method based on adaptive fuzzy control has been proposed. The simulation results
showed that the method was able to control the system for larger initial angles and also
improves the stability. In [4] a method using reinforcement learning and fuzzy neural

8

2.1 The TWIPR

networks has been presented. The method not only controls the task of continuous
states and actions but also maintain the balance of the robot in short time. In [5] authors
designed a pole placement feedback controller and fuzzy logic controller for stabilizing a
two-wheeled self-balancing robot. The system structure model was built using the kinetic
equations based on Newton dynamics mechanics theory. The simulation results indicated
better dynamics performance of fuzzy controller as compared to other controller. In [6]
a balance control of two-wheeled robot by fuzzy and PID control has been studied. The
study implemented the control circuit to a real robot model. In [7] a fuzzy gaussian neural
network (FGNN) controller for controlling the speed and azimuth of mobile robot driven
by two independent wheels has been proposed. The learning controller consisted of two
FGNNs based on independent reasoning and connection weights. In [8] three different
controllers i.e. fuzzy logic controller, linear quadratic controller and PID controller were
implemented and compared on a real time TWIPR.

The robotic testbed in which the methods proposed here will be evaluated makes use
of a state feedback with eigenvector assignment like shown in Figure 2.3 that allows the
robot to reach a region of attraction of 90◦ for the pitch angle, and high maneuverability.
The input to the TWIPR and the state are defined as

u =
[
MR ML

]T
(2.2)

x =
[
s ṡ θ θ̇ ψ ψ̇

]T
(2.3)

where MR, ML are the motors torque.

K

u x

Figure 2.3: Inner-loop control with state feedback.

The design ofK allows to stabilize the system, decouple ψ and θ, and ensure performance
requirements established before.

In addition to the previous inner-loop control, the robot also counts with an outer-loop
to perform translational and steering velocity control using PID controllers (see Figure
2.4).

9

System Characteristics

K

u x
PID

PIDẋcmd

ψ̇cmd

Encoder ẋ

ψ̇Encoder

Figure 2.4: Outer-loop control with PID controllers.

2.2 Sensors

In this section the different sensors equipped by the robot are introduced, as well as
other external sensors that will be used for state estimation purposes. Furthermore,
their measurements error characteristics are presented.

Encoders

l

IMU

Figure 2.5: IMUs and encoders mounted on the robot.

2.2.1 Inertial Measurements Unit

Inertial measurement units are electronic devices that combine different sensors (usually
accelerometers, gyroscopes and magnetometers) to provide useful information that we can
use for orientation and position tracking purposes. Thanks to their small size, low prize,
and the ability to provide measurements without line of sight or mechanical interaction,
they are beeing used in a widley variety of application, ranging from automotive to
medical applications.

Only accelerometers and gyroscopes will be covered here because magnetometers will not

10

2.2 Sensors

be used for estimation purposes due to the disturbance in the magnetic field present on
close electronics (like the motors) and indoor environments [9].

Accelerometer

Accelerometers manufactured using MEMS techniques measure the proper acceleration,
typically, by measuring the displacement of a supported mass that bends when the device
is accelerated. Proper acceleration refers to the one the device experiences relative to
free fall.

m

a(t)

a(t)

∆x(t)

∆x(t)

Figure 2.6: A MEMS accelerometer [10].

The specic force f ∈ R3 is measured in the sensor frame S at equidistance time instants
tk with sample time ts.This specific force can be expressed as

fS (t) = RNS (aN ii(t)− gN (t)) (2.4)

where g ∈ R3 denotes the gravity vector and aN ii ∈ R3 denotes the linear acceleration of
the sensor expressed in the navigation frame. The subscripts ii indicate that the differ-
entiation is performed in the inertial frame. For navigation purposes, we are interested
in the position of the sensor in the navigation frame pN ∈ R3 and its derivatives as
performed in the navigation frame. Assuming again that the navigation frame is fixed
to the earth frame, it is possible to express aN ii in terms of aN nn as

aN ii(t) = aN nn(t) + 2 ωN e(t)× vN n(t) + ωN e(t)× ωN e(t)× pN (t) (2.5)

where ωN e ∈ R3 is the angular velocity of the earth with respect to a stationary frame,
expressed in the navigation frame; and aN nn is the acceleration required for navigation
purposes. The term ωN e× ωN e× pN is known as the centrifugal acceleration and 2 ωN e×
vN n is known as the Coriolis acceleration. The full derivation of this relation is derived

in [2]. The centrifugal acceleration is typically absorbed in the gravity vector, while the
magnitude of the Coriolis acceleration can be neglected for beeing to small compared to
the measured accelerations.

11

System Characteristics

Gyroscope

MEMS gyroscopes make use of the Coriolis effect, which states that in a reference frame
rotating at angular velocity ω(t) ∈ R3, a mass m moving with velocity v(t) ∈ R3 ex-
periences a force Fc(t) = 2m(v(t) × ω(t)) These gyroscopes use a vibrating structure
to measure the Coriolis effect by exploiting the fact that vibrating structures tend to
continue vibrating in their own plane even if their support rotates. Thus, when the gy-
roscope is rotated, a secondary vibration is induced along the perpendicular sense axis
due to the Coriolis force. The angular velocity can be determined by measuring this sec-
ondary rotation; the absolute value will be given by the oscillation amplitude, while the
direction of rotation can be obtained from the phase difference between both oscillations.

m

g(t)

Fc(t) Fc(t)

v(t)

v(t)

Figure 2.7: A MEMS gyroscope [10].

The gyroscope measurement ωS total expresses the angular velocity of the sensor frame
with respect to the inertial frame, expressed in the former one. This velocity is composed
of:

ωS total(t) = RNS (ωN e(t) + ωN tr(t)) + ωN nv(t) (2.6)

where RNS is the rotation matrix from the navigation frame to the sensor frame. The
angular velocity of the earth frame with respect to the inertial frame is denoted by ωN e.
This earth rate is approximately 7.29 · 10−5 rad/s and the rotation is about the earth’s
own z -axis. The term ωN tr represents the transport rate, which is non-zero whenever
the navigation frame is not defined stationary with respect to the earth. The angular
velocity required for navigation purposes, i.e. the navigation rate, is denoted by ωN nv and
is the one needed to determine the orientation of the body with respect to the navigation
frame.

Since the robot (and thus the sensor) will not travel over significant distances, the navi-
gation frame N can be assumed stationary and with it, the transport rate is zero. Also,

12

2.2 Sensors

the magnitud of the earth rate is small compared to the actual rotations that the robot
will experience; therefore, it can be neglected.

2.2.2 Encoders

Incremental encoders measure changes in position and the direction of movement of a
rotary device to which is attached. It has two quadrature-encoded outputs, A and B,
which generate pulses when the device is rotated. The direction of motion is indicated by

A

B

Phase 1 2 3 4 1 2 3 4 1 2 3 4 1

Figure 2.8: Encoder channels

the phase difference between both channels, being positive for one direction and negative
for the other; and the angular velocity of the rotatory device is directly proportional to
the frequency of the pulses emitted. An absolute position of the encoder can be obtained
by using an up/down counter to count incremental position changes. The cumulative
count gives the distance traveled since the tracking began, so the initial position of the
device must be known prior to the beginning of the tracking. Every signal edge on
channel A or B is an indication of a position change. Since each square-wave cycle on
A or B contains four signal edges, the resolution of the encoder is one-fourth of the
displacement represented by a full cycle. In the case of our robot, each wheel is equipped
with incremental encoders that produce 1024 pulses per revolution. Multiplying this by
the gear ratio τG = 5175

247 gives the number of pulses per wheel revolution. The encoder
will then have a cycle resolution of 2π/(1024τG), so the encoder resolution is

Res =
2π

1024τG

1

4
=

π

2048τG
= 0.000073rad (2.7)

2.2.3 Motion Capture System

Motion capture systems utilize data captured from camera sensors to triangulate the
3D position of an object between two or more cameras calibrated to provide overlapping
projections. Data acquisition is traditionally implemented using special markers attached

13

System Characteristics

to the object. Tracking a large number of markers or expanding the capture area is
accomplished by the addition of more cameras. These systems produce data with three
degrees of freedom for each marker, and rotational information must be inferred from the
relative orientation of three or more markers. The software available in the lab gives the
possibility to group markers to form a rigid body (minimum 3 markers), which allows to
track also the body’s’ orientation.

Cameras

Agents

Obstacles

Objects of
interest

2.5 m

5 m

Figure 2.9: Motion capture system layout and workspace.

The optical motion capture system used for validation is an OPTITRACKFLEX13 sys-
tem [11]. It uses 10 infrared cameras, distributed at the ceiling of the measuring space.
The cameras have a resolution of 1280× 1024 px, recording at a frame rate of 120 FPS.
The software used for capturing and recording the marker positions is Motive 2.0 by
OptiTrack. The cameras are calibrated at the beginning of each set of measurements.
After thorough calibration, a mean position error (RMS) of 0.3 mm for each marker can
be obtained. The coordinate system is calibrated by a calibration square, which can
be adjusted in order for the vertical axis to coincide with the global vertical axis. The
TWIPR uses active markers mounted on the top, which are special LEDs manufactured
by OptiTrack, designed specifically to work with their cameras.

2.3 Error Characteristics

In this section the errors affecting the measurements of the sensors defined in the previous
section are studied.

Typical sources of error affecting the measured signal in IMU sensors can be classified
into calibration errors and non-calibration errors. The first ones can be eliminated with
a proper calibration process, but the second ones will always be present and must be
dealt with.

Regarding the encoders, since they are part of the entire drivetrain system, we are inter-
ested in the system as a whole, and not just the sensors.

14

2.3 Error Characteristics

2.3.1 Accelerometers and Gyroscopes

Scaling Errors

This type of errors is given by the ratio between the true value and the measured one.
They can be removed by introducing multiplicative gains for the measured signal, which
can be determined by measuring known values. A scaling error in the accelerometer of
3% can cause a 1.72◦ error in the inclination angle estimation.

Linearity is a further consideration for scale factor. In case that the scaling values depend
on the real signal, then a nonlinear relation exists. With these two errors, the difference
between the true signal and the measured signal can be described by

ymeasured =

sx 0 0

0 sy 0

0 0 sz

 ytrue (2.8)

where sx, sy and sz are constant if there is linearity, or a function of the true signal if
there is a non linear relation.

True signal

M
ea

su
re

d
si

gn
al

No scaling errors

Scaling error

Nonlinearity

Figure 2.10: Scaling errors: measured signal over the true signal.

15

System Characteristics

These kind of errors are more prone to appear in accelerometers, in gyroscope we seldomly
have scaling errors.

Non-orthogonality and Misalignment

non-orthogonality C refers to the measurement axes not being pairwise orthogonal to
each other, which leads to a correlation between sensors. Misalignment m happens when
the axes of the gyroscope do not coincide with the ones of the accelerometer. Introducing
these errors into (2.8) leads to

ymeasured = C

 sx mxy mxz

myx sy myz

mzx mzy sz

 ytrue (2.9)

π
2

εy

gyrz

gyry

gyrx

gyrz

gyrx

gyry

accz

accy

accx

Figure 2.11: Example of non-orthogonality (left) and of misalignment between the gyro-
scope and the accelerometer.

To determine the orthogonality error of accelerometer axis pairs, the static response of
each axis to gravity is measured as the accelerometer is rotated through the space of all
possible 90° orientations. This can be done using either a precision gimbal mount or on
a known orthogonal surface.

Bias

The bias of a sensor is the offset of its output signal from the true value (in m/s2 for the
accelerometer and in ◦/s for the gyroscope). A constant bias error of ε, when integrated,
causes an error which grows linearly with time θ(t) = ε t; and when double integrated,
causes an error which grows quadratically with time θ(t) = ε t

2

2 The bias error can be
estimated by taking a long-term average of the sensor output while it is measuring a true
value of zero.

16

2.3 Error Characteristics

However, the complete bias is composed of what can be considered as a constant part
and a variable one, denoted as turn-on bias. The latter one is much smaller than the
former one, so a calibration based on a long measurement can be used to estimate it and
apply corrections. But every time the sensor is powered-up, the turn-on bias changes,
so if an even more precise calibration is wanted, it would be necessary to estimate this
bias every time the sensor is powered-up. Typical order of magnitude: 1 ◦/s for MEMS
gyroscopes and 0.1m/s2 for MEMS accelerometers.

Adding this error to (2.9) gives

ymeasured = C

 sx mxy mxz

myx sy myz

mzx mzy sz

 ytrue +

bxby
bz

 (2.10)

This equation contains all deterministic errors that can be eliminated by calibration
measurements with a reference measurement system (e.g. actuated gimbals). With the
given dataset, all calibration parameters can be obtained by solving the optimization
problem

argmin
C,s,m,b

N�1∑
i

ymeasured(ti)−C

 sx mxy mxz

myx sy myz

mzx mzy sz

 ytrue −

bxby
bz




2

(2.11)

Thermo-Mechanical White Noise

The output of an IMU will be perturbed by some thermo-mechanical noise which fluctu-
ates at a rate much greater than the sampling rate of the sensor. As a result, the samples
obtained from the sensor are perturbed by a white noise sequence, which is simply a se-
quence of zero-mean uncorrelated random variables. In this case each random variable
is identically distributed and has a finite variance σ2. To see what effect this noise has
on the integrated signal, let Ni be the ith random variable in the white noise sequence.
Each Ni is identically distributed with mean E(Ni) = E(N) = 0 and finite variance
V ar(Ni) = V ar(N) = σ2. By the definition of a white sequence Cov(Ni, Nj) = 0 for all
i 6= j. The result of integrating the white noise signal ε(t) over a timespan t = nTs is:

t∫
0

ε(τ)dτ = Ts

n∑
i=1

Ni (2.12)

where n is the number of samples received from the device during the period and Ts
is the time between successive samples. Using the standard formulae E(aX + bY) =

17

System Characteristics

aE(X) + bE(Y) and V ar(aX + bY) = a2V ar(X) + b2V ar(Y) + 2abCov(X,Y) (where a
and b are constants and X and Y are random variables) it follows that:

E(

t∫
0

ε(τ)dτ) = Ts nE(N) = 0 (2.13)

V ar(

t∫
0

ε(τ)dτ) = Ts
2 nV ar(N) = Ts nσ

2 (2.14)

Hence the noise introduces a zero-mean random walk error into the integrated signal,
whose standard deviation

σs(t) = σ
√
Ts t (2.15)

grows proportionally to the square root of time.

The result of double integrating the signal ε(t) is:

t∫
0

t∫
0

ε(τ)dτdτ = δt

n∑
i=1

Ts

i∑
j=1

Nj = Ts
2

n∑
i=1

(n− i+ 1)Ni (2.16)

The expected error of the double integrated signal and its variance are:

E(

t∫
0

t∫
0

ε(τ)dτdτ) = Ts
2

n∑
i=1

(n− i+ 1)E(Ni) = 0 (2.17)

V ar(

t∫
0

t∫
0

ε(τ)dτdτ) = Ts
4

n∑
i=1

(n− i+ 1)2V ar(Ni) ≈
1

3
Ts t

3 σ2 (2.18)

Thus, this introduces a second order zero-mean random walk with standard deviation
that grows proportionally to t3/2:

σs(t) = σ t3/2
√
Ts
3

(2.19)

Bias Stability

Flicker noise present in MEMS cause the bias to change over time. A bias stability
measurement describes how the bias of a device may change over a specified period
of time, typically around 100 seconds, in fixed conditions (usually including constant
temperature). Under the random walk model bias stability can be interpreted as follows;
If Bt is the known bias at time t, then a 1σ bias stability of 0.01◦/h over 100 seconds

18

2.3 Error Characteristics

means that the bias at time (t+ 100) seconds is a random variable with expected value
Bt and standard deviation 0.01◦/h.

As we are interested in how this error affects the orientation obtained from integrating the
rate gyro signal, or the position and velocity obtained from integrating the accelerometer
signal. If we assume the bias random walk model, then for the gyroscope the result of
integrating the bias fluctuations is a second-order random walk in angle whose uncertainty
grows proportionally to the square root of time; and for the accelerometer, a second order
random walk in velocity whose uncertainty grows proportionally to t3/2, and a third order
random walk in position which grows proportionally to t5/2. In reality bias fluctuations
do not really behave as a random walk. If they did then the uncertainty in the bias of
a device would grow without bound as the timespan increased. In practice the bias is
constrained to be within some range, and therefore the random walk model is only a
good approximation to the true process for short periods of time.

Parameter ISM6DSOX MPU9250

Linear acceleration zero-g level off-
set accuracy ±20mg ±80mg

Linear acceleration zero-g level
change vs. temperature ±0.1mg/◦C ±1.5mg/◦C

Acceleration noise density 110µg/
√
Hz 300µg/

√
Hz

Angular rate zero-rate level ±1 dps ±5 dps
Angular rate typical zero-rate level
change vs. temperature ±0.01 dps/◦C ±0.24 dps/◦C

Rate noise density 3.8mdps/
√
Hz 10mdps/

√
Hz

Table 2.2: Specifications of different commercial IMUs.

2.3.2 Odometry

Since encoder readings are used together with information on the robot characteristics
for odometry or dead-reckoning purposes, instead of referring to the actual errors afecting
an encoder measurement, a description of all types of error that generate inaccuracies in
the translation of wheel encoder readings into linear motion will be given.

Odometry is based on the assumption that wheel revolutions can be translated into
linear displacement relative to the floor. This assumption looses validity in cases of
wheel skiddage or slippage. But apart from this extreme cases, there are other sources
of error than can be classified into systematic and non-systematic errors:

19

System Characteristics

Systematic Errors:

• Unequal wheel diameters.

• Average of actual wheel diameters dif-
fers from nominal wheel diameter.

• Actual wheelbase differs from nomi-
nal wheelbase.

• Misalignment of wheels.

• Finite encoder resolution.

• Finite encoder sampling rate.

Non-Systematic Errors:

• Travel over uneven floors.

• Travel over unexpected objects on the
floor.

• Wheel-slippage.

Systematic errors are particularly grave because they accumulate constantly, but it is
possible to perform some tests to measure them and apply corrections [12]. The problem
with non-systematic errors is that they are unpredictable and can cause large position
errors.

To transform the encoder measurements from angular velocities to a translational velocity
v and a steering velocity ψ̇, it is necessary to use some information on the dimensions of
the robot; that is, the wheel radius r and the wheelbase b

v(t) =
r(ωR(t) + ωL(t))

2
(2.20)

ψ̇(t) =
r(ωR(t)− ωL(t))

d
(2.21)

For modelling purposes, the contact point between the wheels and the ground is located
at the middle of the wheels width, because it is assumed that the wheels axis are coaxial.
However, in real-applications the drivetrain may suffer some elastic deformation under
load, like shown in Figure 2.12. This causes a change in the actual wheelbase of the
robot, reducing it from the nominal value.

Nominal Actual

Load Load

Figure 2.12: Actual and nominal wheelbase of the TWIPR.

20

2.3 Error Characteristics

Out of equations (2.20) and (2.21), only the latter makes use of the wheelbase, and so
the estimated velocity is not affected by this error, only the heading rate. If we define
the wheelbase ratio as

Ed =
dactual

dnominal
(2.22)

and introduce it into (2.21) we get

ψ̇(t) =
r(ωR(t)− ωL(t))

Eddnominal
(2.23)

This shows that the result of having a wheelbase error is a scaling factor, which increases
or decreases the amount of heading rate depending on whether Ed is larger or smaller
than 1.

To study the effects of unequal wheel diameter, let’s consider the case where both wheels
are given the same rotational speed, what would be the case for example if we want
the robot to traverse a straight path. Starting from equations (2.20) and (2.21) but
introducing different radius for each wheel we get

v(t) =
rRωR(t) + rLωL(t)

2
(2.24)

ψ̇(t) =
rRωR(t)− rLωL(t)

d
(2.25)

Now, rearranging both equations to write each wheel angular velocity as a function of
the rest of the variables yields

ωR(t) =
v

rR
+
ψ̇d

2rR
(2.26)

ωL(t) =
v

rL
− ψ̇d

2rL
(2.27)

If both wheels are rotating at the same speed, we can say that the right-side of equation
(2.26) is equal to the right-side of equation (2.27), so

v

rR
+
ψ̇d

2rR
=

v

rL
− ψ̇d

2rL
(2.28)

rearranging things to put all radius variables on one side of the equation

rR
rL

=
2v + ψ̇d

2v − ψ̇d
(2.29)

21

System Characteristics

The left-side of the above equation is defined as the wheel radius ratio Er. Using this
definition, we can know solve the equation for ψ̇

ψ̇Er =
2v(Er − 1)

d(Er + 1)
(2.30)

Note that this result is only valid when both wheels are rotating at the same speed.
Nevertheless, this is just to show the effect of unequal wheel diameter in a common
situation as it is driving in a straght line.

Equation (2.30) shows that if both wheels have the same radius, that is Er = 1, then
there is no steering rate when both wheels rotate at the same speed. But as soon as
they are different, there is a resulting change in the heading. If the right wheel is larger,
then the robot will start steering to the left, and if the left wheel is larger, it will steer to
the right. Therefore, instead of following a straight path, the robot with unequal wheel
diameters will follow a curved path.

22

Chapter 3

Orientation Estimation

Real-time tracking of rigid bodies orientation plays an important role in robotics appli-
cations. Extensive research has been conducted to investigate full 3-degree-of-freedom
(3-DOF) orientation tracking using IMU data and combining it in different ways to en-
hance the advantages of each individual sensor. One common approach is to integrate
the gyroscope measurements to obtain information about the orientation of the sensor;
however, this alone is prone to drift because of the noise and bias affecting the mea-
surements. Another way of estimating orientation is through vector observation, which
provides an orientation estimate relative to an Earth-fixed frame by measuring at least
two vectors of local frame and comparing these vectors with the known positions of vec-
tors in an Earth-fixed frame. The most spread vector observation algorithms are FGA,
QUEST and TRIAD. However, these approaches use the magnetic field measurement to
estimate the orientation with respect to a vertical axis (yaw o heading). Unfortunately,
indoor environments are usually affected by a variety of magnetic fields coming from
different appliances, and even if this was not the case, also the robot itself generates
magnetic noise due to its motors. For these reasons, the magnetometer cannot be used
to determine the heading.

To overcome the problems that both approaches have, sensor fusion algorithms must be
applied to combine the advantages of each approach and thus, improve the estimate.

3.1 Probabilistic Models

In this section it is introduced the concept of probabilistic modeling, which constitute the
core of estimation algorithms. Also, notations used in this work will be presented. Models
are useful descriptions of a system dynamics, whether it is a mobile robot or a sensor.
These models will allow to develop a simulation environment to test the algorithms
before being validated on the true system, and will be used in combination with the
measurements to estimate a state.

23

Orientation Estimation

The main goal here is to infer information about the states xt ∈ Rn for t = 1, . . . , N ,
using the probabilistic models and the available measurements yt ∈ Rq for t = 1, . . . , N .
This can be expressed in terms of a conditional probability distribution

p(xt|yt)

In the estimation problem, the idea is to obtain point estimates x̂t and to know how
certain we are about them. When the distribution is Gaussian, it is entirely described
by its mean and covariance.

when all measurements y1:N are used to obtain the posterior distribution of x1:N , we have
a smoothening problem. This is generally possible to perform offline because it is nec-
essary to wait until all the measurements are collected before computing the conditional
probability distribution. In our case, we are interested in using all measurements up to
and including time t to estimate the state xt, which is referred as a filtering problem.

Now we will make a fundamental assumption to our application, and that is that our
models are Markovian and thus, all information up to the time t is contained in the
state xt. Using Bayes’ rule and the Markov property, the conditional distribution can be
decomposed as

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) (3.1)

where

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (3.2)

The dynamics of the system state can be modeled by means of the possibly nonlinear
function f(·) as

xt+1 = f(xt,ut,wt) (3.3)

Where ut ∈ Rp is an input to the system and wt reflects the uncertainty of the dynamic
model, and it is referred to as process noise.

The information provided by the measurements can be modeled by the possible nonlinear
function h(·) as

yt = h(xt, et) (3.4)

Where et is the equivalent to wt, but is referred to as measurement noise. The combina-
tion of both equations forms a state space model and it is the basis of many estimation
algorithms, such as the Kalman Filter.

24

3.2 Mathematical Representation of Orientations and Rotations

3.2 Mathematical Representation of Orientations and
Rotations

First of all, it is necessary to properly define and distinguish two commonly confused
terms: orientations and rotations. The former is a state of some rigid body with respect
to a reference frame; while the latter is a process that changes this state.

Euler’s rotation theorem states that every sequence of rotations can be described by a
rotation axis j and a rotation angle α. This is known as the axis-angle representation.
Other more commonly used representations include rotation matrices, Euler angles and
Quaternions.

3.2.1 Rotation Matrices

Consider two coordinate systems A and B. The rotation matrix that transforms an
arbitrary vector pA from system A to system B is the unique matrix RAB that satisfies

pB = RAB pA ∀ pA ∈ <3 (3.5)

Every rotation matrix corresponds to exactly one orientation and vice versa. Conse-
quently, every rotation matrix corresponds to two different rotations (both of which lead
to the same orientation).

3.2.2 Euler Angles

Every orientation can be produced by a concatenation of three rotations around major
coordinate axes and can hence be described by the corresponding three angles. The three
elemental rotations may be extrinsic (rotations about the axes of the original coordinate
system), or intrinsic (rotations about the axes of the rotating coordinate system, attached
to the moving body, which changes its orientation after each elemental rotation). The
most commonly employed convention is z-y-x, which first rotates an angle ψ around
the z-axis, subsequently an angle θ around the y-axis and finally an angle φ around the
x-axis.

Using Euler angles to describe orientations can present some singularities. Considering
the previous intrinsic convention z-y-x, if the second angle is set to θ = 90◦, then a
rotation around x-axis is indifferent from a rotation around z-axis. Thus, the orientation
can be represented by an infinite number of Euler angles. This singularity is also known
as gimbal lock.

25

Orientation Estimation

z

y
x

z

y
x

z

y
x

ψ x′

y′

z′

y′

θ
z′

x′

φ

y′

x′

z′

Figure 3.1: Euler angles.

3.2.3 Unit Quaternions

A commonly used parametrization of orientation is that of unit quaternions. This rep-
resentation has the advantage of avoiding gimbal lock problems that arise when using
Euler angles. A unit quaternion is defined as a complex number with 3 imaginary parts,
according to

q = q0 + q1i + q2j + q3k q0, q1, q2, q3 ∈ R ‖q‖2 = 1 (3.6)

The imaginary part is called the vector part, while q0 is the real part. This does not
represent a unique description of an orientation since −q represents the same orienta-
tion as q. Because any arbitrary rotation can be described by only three independent
parameters, the four parameters of the unit quaternion are constrained by the relation

q0
2 + q1

2 + q2
2 + q3

2 = 1 (3.7)

According to Euler’s rotation theorem, any rotation or sequence of rotations of a rigid
body or coordinate system about a fixed point is equivalent to a single rotation by a
given angle θ about a fixed axis that runs through the fixed point. Then, a rotation of
θ around an axis defined by a unit vector u = uxi + uyj + uzk can be represented by a
quaternion using Euler’s formula

q = cos
θ

2
+ (uxi + uyj + uzk) sin

θ

2
(3.8)

Applying a rotation to a vector p can be achieved by evaluating the conjugation of p by
q, considering p as a quaternion with zero real part

p′ = qpq−1 (3.9)

where q−1 = cos θ2 − (uxi + uyj + uzk) sin θ
2 is the inverse of q.

3.2.4 Heading and Inclination

Orientations can also be decomposed into a heading and inclination. The heading angle
Ψ describes the orientation of the body in the horizontal plane; and the inclination angle
Θ is the angle between the local z-axis and the vertical z-axis of the reference frame.

26

3.3 Basics of Orientation Estimation

Ψ

Θ

zε

yε

xε

xB

yB

zB

Figure 3.2: Heading and inclination angles.

With this representations, almos every quaternion can be described by

q =

Ψ @

0

0

0


⊗ (Θ @ k), k ⊥

0

0

1

 (3.10)

This angles can be obtained from a given quaternion q =
[
w x y z

]T
by first com-

puting the heading as
Ψ = 2 atan2(z, w) (3.11)

and the inclination is computed using the residual quaternion defined as

qres =

Ψ @

0

0

1



−1

⊗ q (3.12)

with qres =
[
wres xres yres zres

]T
. Then, the inclination is computed as

Θ = 2 arccos(wres) (3.13)

3.3 Basics of Orientation Estimation

A simple way to estimate the orientation of a body is to integrate the angular rate from
an initial known orientation. Thus, we will use as dynamic model of the system to predict

27

Orientation Estimation

the current orientation the strapdown integration of the gyroscope measurement given
by

qSN k = qSN k−1 ⊗

[
cos(1

2‖gk‖Ts)
sin(1

2‖gk‖Ts)
gk
‖gk‖

]
(3.14)

This gives good results even when the body experiences rapid moves. However, due to
the noise and bias affecting the gyroscope measurements, their integration will lead to
drift which will increase over time.

Another way to estimate orientation is by vector observation, which provides an orien-
tation estimate relative to a fixed frame by measuring a vector on a local frame and
comparing it with the known position of the vector in a fixed frame. This can be applied
to gravity and Earth’s magnetic field. Assuming that the body is not experiencing other
accelerations, the measured acceleration should be equal to the gravitational acceleration
transformed to the sensor frame:

ak = qk
−1 ⊗

[
0 0 g

]T
⊗ qk + wk (3.15)

This is useful to determine the inclination of the body, but it does not affect the heading
of the estimate. As said before, this approach relies on the assumption that the body is
not experiencing any other acceleration than the gravitational one. This assumption will
not hold whenever its velocity changes and will lead to wrong estimates.

3.4 Sensor Fusion

Sensor fusion is about combining information from different sensor sources. It has become
a synonym for state estimation, which can be interpreted as a special case of parameter
estimation where the parameters are the state of the system under consideration.

To produce a more accurate orientation estimate, the orientations estimated by angular
rate integration and vector observation should be fused to compensate disadvantages of
each other.

3.4.1 Extended Kalman Filter

Since we are working with quaternions, and their multiplication is highly nonlinear, to
fuse the information from the different sensors, we propose an Extended Kalman Filter.
Assuming that the measurement noise is additive and that both the process and the
measurement noise are zero-mean Gaussian with constant covariance, the state space

28

3.4 Sensor Fusion

model is given by

xk = f(xk−1,uk) + wk (3.16)
yk = h(xk) + ek (3.17)

where k is the sample index, xk ∈ R4 is the state of the system, uk ∈ R3 the input
and yk ∈ R3 the measurements. wk ∼ N(0,W) ∀k represents the system noise, and
ek ∼ N(0, E) ∀k the measurement noise. In this application, we define the state, the
input, and the measurements as

xk = qSN k =
[
q0,k q1,k q2,k q3,k

]T
(3.18)

uk = gk =
[
gx,k gy,k gz,k

]T
(3.19)

yk = ak =
[
ax,k ay,k az,k

]T
(3.20)

With these definitions, the nonlinear system for the orientation dynamics is

xk = f(xk−1,uk) + wk = xk−1 ⊗

[
cos(1

2‖uk‖Ts)
sin(1

2‖uk‖Ts)
uk
‖uk‖

]
+ wk (3.21)

yk = h(xk) + ek = xk
−1 ⊗

[
0 0 g

]T
⊗ xk + ek (3.22)

To ensure faster convergence it is wise to choose an initial orientation x0 that is close
to the true orientation; otherwise it can be randomly chosen or it can be set to the
identity quaternion. If the orientation is known, then it can be used along with its
corresponding covariance matrix; if not, a zero state (identity quaternion) is assumed
with a high covariance matrix.

Then, for each time step, the following operations have to be performed:

1. Compute the partial derivative matrix:

Fk−1 =
∂f(xk−1,uk)

xk−1
(3.23)

2. Perform the time update of the state estimate and estimation-error covariance:

x̂−k = f(x̂k−1,uk) (3.24)

P−k = Fk−1P
+
k−1F

T
k−1 + W (3.25)

3. Compute the partial derivative matrix:

Hk =
∂h(xk)

xk
(3.26)

29

Orientation Estimation

4. Perform the measurement update of the state estimate and estimation-error covari-
ance:

Kk = P−kH
T
k (HkP

−
kH

T
k + E)−1 (3.27)

x̂+
k = x̂−k + Kk(yk − h(x̂−k)) (3.28)

P+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkEKT
k (3.29)

This approach only uses the accelerometer readings to correct the state estimate, which
can only provide information about the inclination of the body, but not about its heading.

The Kalman Filter requires the statistics of the process and the measurement noise to be
known in advance. This are the “tuning” parameters and they have to be carefully chosen
in order to obtain appropriate results. These parameters are the initial state covariance
P0 (and the initial state x0), the process noise covariance W and the measurement noise
covariance E.

Initial State Covariance The estimation error-covariance P0 represents the amount
of uncertainty of the initial state chosen, and thus it controls the handover from the
initial transient to the state process noise covariance for steady state filter behavior. If
P0 is set equal to zero (for a very confident choice for the initial estimates) then the filter
ignores and does not make use of the measurements to correct the prediction. If P0 is
extremely large (a pessimistic choice for the initial values), then the filter weights the
measurements much more and provides very little weightage or ignores the state model
values leading to large fluctuations in the state and parameter estimates along with large
final uncertainty.

System Noise Covariance In principle, W should reflect the uncertainty in the as-
sumed state model or any unmodelled feature of the state or even unknown random state
input. TheW along with the initial P0 plays a very important role in the filter operation,
since choosing proper values for them can reduce significantly the chances of divergence.
The value of W should be small enough to retain the information from the measurement
but not large to increase the uncertainty so that the filter estimates become useless. A
large value of W will lead to a short transient with large steady state uncertainty of the
estimates and vice versa for small W

Measurement Noise Covariance Usually, a good initial estimate for E can be ob-
tained from the calibration of the measuring instrument and generally it is assumed to
be constant.

The Extended Kalman Filter presented above can be improved by making the measure-
ment noise covariance non-constant. Since the measurement update step makes use of

30

3.4 Sensor Fusion

vector observation to correct the system update estimate, it is based on the assumption
that the accelerometer is measuring, on average over a small timespan, only gravity to
work properly. Therefore, when the object of interest is subject to additional linear ac-
celeration, e.g. perfoming some maneouver, the measurement update may yield wrong
results, so a possible way to work around this is to increase the diagonal values of the
measurement covariance matrix Eii whenever the norm of the acceleration is different
from the magnitude of gravity (with some tolerance)

Eii(a) =

{
103, for glb ≤ ‖a‖2 ≤ gub
106, for ‖a‖2 ≤ glb or gub ≤ ‖a‖2

, for i = 1, 2, 3 (3.30)

where glb and gub denote the lower and upper bounds for the magnitude of the gravity.
Note that the values chosen for the elements on the diagonal are just an example to show
that different values are used depending on the norm of the acceleration. The actual
values used will be evaluated in simulations, as well as the bounds mentioned before.

In practice, this approach can be problematic in certain cases because during acceleration
the norm of the acceleration could be around 9.8 m/s2 but in a different direction than
gravity due to different accelerations overlapping. Therefore, it would be better to adapt
the measurement covariance matrix by keeping track of the norm of the acceleration for
some small timespan.

Another possible solution that can be applied to our case, that is, to the orientation esti-
mation problem of the TWIPR, is to vary the measurement covariance matrix according
to the magnitude of the pitch angular velocity. Exploiting the dynamic properties of the
robot, we know that whenever it needs to attain some translational acceleration, it must
also perform some pitch motion for stability purposes (pitch forward to move forward,
pitch bacwards to move backwards). This pitch motion also generates rotational accel-
erations that are measured by the IMU because it is not located along the wheel’s axis.
So it can be safely assumed that whenever the IMU experiences accelerations other than
gravity, it also measures pitch angular velocity. And due to the location of the IMU on
the robot, one of the gyroscope’s axis will only measure pitch motion, while the other
two will handle heading and roll rate. With that said, the proposed method to vary the
measurement covariance matrix is similar to the previous one, but with dependence on
the mentioned gyroscope measurement

Eii(g) =

{
103, for |gy| ≤ gth

106, for |gy| ≥ gth
, for i = 1, 2, 3 (3.31)

where gth is a threshold that will be tuned on the simulations. It is also possible to
make it a continuous function, where the values of the measurement covariance matrix
increasing proportionally to the mentioned gyroscope measurement.

31

Chapter 4

Position Estimation

Existing techniques for estimating the position of a mobile robot can be divided into
two classes: relative tracking techniques and global localizaiton techiques. When using
the former, the error tends to grow with time so it cannot be used for long distances.
The kinematic model may have some inaccuracies, encoders have limited precision, IMUs
are corrupted by noise and there are external sources affecting the motion that are not
observable by the sensors (e.g. wheel-slippage, uneven floor).

In case of global localization, integration of noisy data is not required and thus there is no
accumulation of error with time or distance traveled. The problem comes with the type
of sensor used. For outdoor navigation, GPS is the most widley used, but this suffers
from signal blockage, interference and insufficient accuracy for stand-alone navigation
systems. In the case of indoor applications, it is possible to get very accurate systems
with high sampling rates, but they can be costly and the workplace is limited.

Nonlinear object tracking from noisy measurements is a challenging task of mobile
robotics, especially under dynamic environments. This can be tackled by different filter-
ing methods such as Kalman filters and Bayesian filtering. Most object tracking problems
are nonlinear systems with non-Gaussian noise, so in this project the particle filter is pro-
posed to handle the position estimation problem. This type of Sequential Monte Carlo
(SMC) methods has shown remarkable versatility and enhanced performance with respect
to other choices, such as Kalman filter like methods.

4.1 Relative Tracking

In this section, an overview on techniques used in mobile robot relative positioning (also
called dead-reckoning) is given. These methods make use of on-board sensors and a
kinematic model to move from a given state in time to the next one.

32

4.1 Relative Tracking

In the case of differentially driven robots, like the TWIPR, the kinematic model that
links the transition from the pose at a given instant in time, and the pose after a given
time-step Ts is given by

px(t+ Ts) = px(t) + vTs cosψ(t)

py(t+ Ts) = py(t) + vTs sinψ(t)

ψ(t+ Ts) = ψ(t) + Tsψ̇

where Ts is the sampling time, v represents the translational velocity of the robot and ψ̇
is the steering rate, both of which are inputs to the system. Both inputs can be computed
from the mentioned on-board sensors, leading to odometry (if encoders are used) and
inertial navigation (if IMUs are used).

Odometry Odometry is based on simple equations to compute the translational veloc-
ity and heading rate from encoder measuremetns. However, these equations are based on
the assumption of pure rolling motion of the wheels, which hold true when the relative
velocity between the contact point of the wheel and the floor is zero. Given the angular
velocity of the left and right wheels, the velocity and heading rate can be calculated by

v(t) =
rRωR(t) + rLωL(t)

2
ψ̇(t) =

rRωR(t)− rLωL(t)

d
(4.1)

where the three major odometry parameters are the radius of its right and left wheels, rR
and rL respectively and the distance d between its wheels. If some of these parameters
are not known accurately or there is some uncertainty, then determining v and ψ̇ with
these formulas can be erroneous.

Inertial State Estimation Inertial estimation uses gyroscopes and accelerometers
to measure rate of rotation and acceleration, which then are integrated once to obtain
orientation and velocity, respectively

vimu(t) = v(t− 1) + aT (t)Ts ψ̇(t) = g(t)Ts (4.2)

where aT denotes the translational part of the acceleration, g is the gyroscope measure-
ment and Ts is the sampling time. Inertial navigation systems have the advantage that
they are self-contained. On the downside, inertial sensor data drifts with time because
of the need to integrate rate data to yield position; any small constant error increases
without bound after integration. Inertial sensors are thus unsuitable for accurate po-
sitioning over an extended period of time.The errors affecting the IMUs measurements
were already described in Section 2.3.

33

Position Estimation

4.2 Absolute Localization

There is no universal classification of absolute localization methods, but the most com-
mon ones used in robotic applications are active beacons, GPS, landmark recognition and
motion capture systems. A detailed description of different indoor localization techniques
can be found in [13].

Active Beacons This method computes the absolute position of a body from mea-
suring the direction of incidence of three or more actively transmitted beacons. this
approach allows high sampling rates and yields high reliability, but it does also incur
high costs in installation and maintenance. The transmitters, usually using light or radio
frequencies, must be located at known sites in the environment, and the accuracy of the
positioning estimate depends on the accuracy on the beacons location.

b 1

b
2

b3(x, y)

B1

B3

B2

B1

B3

B2

x

y

ψ (unknown)
λ1

λ2

λ3

x x

y y

Figure 4.1: Trilateration problem (left) vs triangulation problem (right).

One can distinguish between two different types of active beacon systems: trilateration
and triangulation. The former one involves the determination of a vehicle’s position
based on distance measurements to known beacon sources; while in the latter a rotating
sensor on board the vehicle registers the angles at which it “sees” the transmitter beacons
relative to the vehicle’s longitudinal axis. From these three measurements the unknown
coordinates and the unknown vehicle orientation can be computed.

Global Positioning Systems Satellite Navigation is based on a global network of
satellites that transmit radio signals in medium earth orbit. These satellites emit signals
to receivers that, using trilateration methods, can compute their position by measuring
the travel time of the satellites signals. The GPS receiver calculates its own position

34

4.2 Absolute Localization

and time based on data received from multiple GPS satellites. Each satellite carries an
accurate record of its position and time, and transmits that data to the receiver.

Monitor Stations

Master Station

User

Satellites

Figure 4.2: A Global Positioning System and its fundamental agents [14].

Although conceptually very simple, this methodology introduces at some technical chal-
lenges like time synchronization between individual satellites and GPS receivers; precise
real-time location of satellite position; and accurate measurement of signal propagation
time. The first of these problems is addressed through the use of atomic clocks. The
precise real-time location of satellite position is determined by a number of widely dis-
tributed tracking and telemetry stations at surveyed locations around the world.

GPS accuracy in commercial use is typically between 15 m and 40 m. This varies de-
pending on surroundings, devices used, weather and many other factors. The problems
associated with using GPS for mobile robot navigation include blockage of signals due
to path interference, insufficient position accuacy to be used alone.

Landmark Recognition In this method distinctive landmarks that a robot can rec-
ognize from its sensory input, are placed at known locations in the environment. The
main task in localization is then to recognize the landmarks reliably and to calculate the
robot’s position. This means that more processing is necessary than with active beacon
systems. In many cases onboard computers cannot process landmark algorithms quickly
enough for real-time motion. Positioning accuracy depends on the geometry of the robot
and the landmarks but is typically within a few centimeters.

Landmarks can be natural if they are objects or features that are already in the envi-
ronment, or artificial if they are specially designed to be placed in the environment with
the sole purpose of enabling robot navigation. The most obvious sensor to be used for

35

Position Estimation

landmark recognition is computer vision, but range sensors can also be used to detect
distinct signatures, such as those of a corner or an edge, or of long straight walls.

The basic components of a landmark positioning system include a sensor to detect the
landmarks, a method to match the features observed with the known landmarks, and a
method to compute the localization from the matches.

Model Matching In this method information acquired from the robot’s onboard sen-
sors is used to create a map of its local environment. Then, it is compared to a map or
world model of the environment. If features from the sensor-based map and the world
model map match, then the vehicle’s absolute location can be estimated. Usually, model
matching is used in combination with other relative and absolute tracking methods, where
GPS and dead-reckoning are the most commonly used ones for map relative localization
of a vehicle.

Robot

Figure 4.3: Known map of the environment (left) and sensed objects by the robot (right).

Model matching positioning methods can be used to generate an updated map of the
environment, and so allows a robot to learn it and react accordingly. The problem with
these methods is that they require a large processing power, and so their application is
usually limited to relatively simple environments.

Optical Systems This kind of systems utilize data captured from image sensors to
triangulate the position of an object, between two or more cameras calibrated to provide
overlapping projections. Special markers (passive or active) are usually attached to the

36

4.3 Nonlinear Filtering

object to make it easier for the sensors to locate the object. Passive markers are typically
rubber balls covered with a retroreflective material to reflect light that is generated near
the cameras lens; while active markers are powered to emit their own light, instead of
reflecting the one generated by the cameras.

Markerless configurations are also possible thanks to the development of computer vi-
sion techniques. High resolution images of the target being tracked can provide more
information than just motion data, but they require more computational power to do so.

The motion capture system described in Section 2.2.3 is an optical system.

4.3 Nonlinear Filtering

Nonlinear filtering can be a difficult and complex subject. It is certainly not as well
understood as linear filtering. There is still a lot of room for advances and improvement
in nonlinear estimation techniques. However, some nonlinear estimation methods have
become widespread. These techniques include nonlinear extensions of the Kalman filter,
unscented filtering, and particle filtering.

4.3.1 State Space Model

The most common way of describing a dynamic system is by its state space-representation
model, which relates a state xk ∈ R3 to the observations yk ∈ R2:

xk+1 = f(xk,uk,wk) (4.3)
yk = h(xk, ek) (4.4)

The first equation is known as the state equation, where k denotes the time index, f(·)
is a known, possibly nonlinear function, uk ∈ R2 is the input of the system and wk is
a stochastic process noise. The second equation is referred to as the output equation,
where h(·) is a known, possibly nonlinear function, and ek is a stochastic measurement
noise. Both process and measurement noise are assumed with known pdf p and mutually
independent.

wk ∼ pwk ek ∼ pek

State Equation

The TWIPR is a non-holonomic differential drive mobile robot. The robot origin is cen-
tered between the two differentially driven wheels. The state of interest for the position

37

Position Estimation

estimation algorithm is:

x =
[
px py Ψ

]T
(4.5)

Where px, py refer to the origin coordinates, and Ψ refers to the heading. The following
system model describes the transition for each state:

px,k = px,k−1 + vTs cos Ψk−1 (4.6)
py,k = py,k−1 + vTs sin Ψk−1 (4.7)

Ψk = Ψk−1 + Ψ̇ (4.8)

where v ∈ R and Ψ̇ ∈ R are inputs to the system.

To estimate the velocity of the TWIPR, odometry and inertial data will be fused using
a complementary filter as

v(t) = αvimu,x(t) + (1− α)venc(t) (4.9)

where venc denotes the velocity computed by odometry and vimu,x denotes the x compo-
nent of the velocity obtained from inertial measurements as defined in equations (4.1)
and (4.2), respectively.

Just as done with the velocity, the heading rate will also be estimated using the same
complementary filter

Ψ̇(t) = αΨ̇imu,z(t) + (1− α)Ψ̇enc(t) (4.10)

where Ψenc denotes the heading computed from odometry and Ψimu,z denotes the z
component of the heading rate obtained from inertial measurements, using equations
(4.1) and (4.2), respectively.

Update Equation

Each sensor used on the robot has a corresponding measurement model h(x) which
describes the measurement’s sensitivity to the robot state. Measurement updates will
be applied sequentially Because the TWIPR uses multiple asynchronous sensors, so we
want to update the state as soon as new data arrives.

Motion Capture Measurements

The OptiTrack system gives an absolute measurement of the position of the robot with
high accuracy. These measurements can be compared directly with the state of the robot,

38

4.3 Nonlinear Filtering

thus, the measurement update equations are[
px

py

]
OptiTrack

=

[
px

py

]
state

But we are interested in computing the relative likelihood qi of each particle conditioned
on the measurements. To this end, we will evaluate the distance d between the parti-
cles and the position given by these measurements and assign weights to each particle
according to it.

d =

∥∥∥∥∥
[
px

py

]
OptiTrack

−

[
px

py

]
state

∥∥∥∥∥
If the distance is small, a big weight will be assigned to the particle, but if it is large it
will get a small weight.

4.3.2 Bayesian Filtering

The Bayesian approach to nonlinear filtering is to compute or approximate the conditional
pdf of the state given the observations, which is given by the general Bayesian update
recursion:

p(xk+1|y1:k) =

∫
p(xk+1|xk)p(xk|y1:k)dxk (4.11)

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(4.12)

These two equations correspond to a time update and a measurement update equation,
respectively. The primary output of this filtering algorithm is the posterior distribution,
from which statistical measures can be extracted. Analytical solutions to these equations
are available only for a few special cases. In particular, if f(·) and h(·) are linear, and
x0, wk, and ek are additive, independent, and Gaussian, then the solution is the Kalman
filter. For nonlinear or non-Gaussian models there is in general no finite- dimensional
representation of the posterior distributions. That is why numerical approximations are
needed.

4.3.3 The Particle Filter

The particle filter estimates a posterior probability density over the state space condi-
tioned on the data collected so far. It is a way to numerically implement the Bayesian

39

Position Estimation

estimator which uses a set of particles Sk with associated weight qi ∈ R to represent or
approximate the posterior distribution.

S =
{
xik, q

i
k

}Ns

i=1
(4.13)

The aim is to evaluate the posterior probability function p(xk|y1:k) and then obtain an
estimation of xk. Usually, this process involves the following steps:

1. Perform the time propagation using the known system dynamics f(xk−1,uk) to
propagate each particle from xnk−1 to xnk . In addition, random noise is stochastically
added to the states when calculating the updated state estimates xnk . This random
sampling represents the system noise and increases the overall distribution of the
particles.

2. Compute the relative likelihood qi of each particle xnk conditioned on the measure-
ment yk. This is done by evaluating the pdf p(yk|xnk) on the basis of the nonlinear
measurement equation and the pdf of the measurement noise.

3. Scale the relative likelihoods obtained in the previous step so that the sum of all
the likelihoods is equal to one.

4. This is called the resampling step, and it will be discussed further because it is a
critical step but, as we will see, it is not necessary to perform it every time.

5. Compute any desired statistical measure of the resulting pdf p(xk|yk). Generally,
we are interested in the mean and the variance.

Particle Propagation

As stated in the first step of the particle filter algorithm, noise should be added to the
states to improve the overall distribution of the particles. However, adding random noise
to each state independently will not yield the desired result. Given that the particles
represent a possible state of the robot, they should be “realistic”. What is meant by this
is that the particle propagation in space must be consistent with its own velocity and
heading. The system update equations perfectly describes the motion of the robot, the
only sources of uncertainty in it come from the velocity and the heading, so noise should
be added to represent this uncertainties.

If we just add random noise to each state, the estimate we get is like the one on Figure
4.4a. As we can see, the estimated path is not smooth and thus, not very accurate.

With this taken into account, the idea is to add random noise to the actual sources of
uncertainty in our model, which are the velocity and the heading, and then propagate

40

4.3 Nonlinear Filtering

Algorithm 4.3.1 Standard Particle Filter Algorithm
1. Initialization

Draw Ns particles xi0 ∼ px0 , i = 1 : Ns

Set all weights qi = 1/Ns, i = 1 : Ns

Time index t = 1
2. System Update

Evolve particles based on the system model
xit = f(xit−1,ut), i = 1 : Ns

3. Measurement Update
Obtain measurements yk and update the weights by the likelihood:
qi = p(yk|xik), i = 1 : Ns

Normalize weights qi = qi∑Ns
j=1(qj)

4. Resample
Compute effective number of Samples Neff = 1∑Ns

i=1(qi)2

if Neff < Nth then
Resample particles [{x̃nt }

Ns
n=1] = Resample[{xit, qit}Mi=1, Ns]

end if
5. Loop

Increment time index t = t+ 1
Go to Step 2

(a) Random noise added to the position (b) Noise added to the velocity and the heading

Figure 4.4: Position estimation with added random noise

41

Position Estimation

(a) Noise added to the velocity (b) Noise added to the heading

Figure 4.5: System update with additive noise

the particles.

px,k = px,k−1 + (v + w1k)Ts cos Ψk−1

py,k = py,k−1 + (v + w1k)Ts sin Ψk−1

Ψk = Ψk−1 + Ψ̇Ts + w2k

(4.14)

The uncertainty in the velocity generates a particle distribution along the direction of
movement, while the uncertainty in the heading generates that distribution along the
direction normal to the previous one, like shown in Figure 4.5. The combination of these
two results in an ellipse-shaped set of particles (Figure 4.6).

The shape of the ellipse will depend on the amount of uncertainty on each variable. The
uncertainty on the velocity will depend on mostly on two factors: the velocity of the
robot and the presence of slipping. The first one means that while the robot is driving
at low speed, the encoder measurements are more reliable and accurate, but when the
robot increases its speed, the accuracy reduces a little. The second one has to do with
the fact that when slipping is detected, the velocity used to propagate the particles is
obtained from the accelerometer, and this is not so accurate due to all the disturbances,
thus there is an increased uncertainty. Besides these two factors, time also affects the
distribution. The longer we propagate the particles without any measurement to compute
their conditional probability and perform resampling, the greater the uncertainty will get.

The uncertainty on the heading will mostly depend on time and the possibility to update
the heading of the robot with some given measurement

42

4.3 Nonlinear Filtering

Figure 4.6: System update with additive noise

Relative Likelihood

In this step, we use the information of the available sensors to determine how likely is
each propagated particle to be the unknown real state that we are aiming to estimate.
This is important because it helps us (together with the resampling step) to remove the
particles that are less likely and concentrate them into the more likely areas.

Since we know the measurement equation, the simplest way of doing this is to compute
the relative likelihood qi that the measurement is equal to a specific measurement y∗,
given the premise that xk is equal to the particle xik:

qi = P [(yk = y∗)|(xk = xik)] (4.15)

qi = P [ek = y∗ − h(xik)] (4.16)

Where ek is the measurement noise, which is assumed to be a zero-mean random gaussian
noise with standard deviation that can be approximated. First of all, given that we are
aiming to estimate the robots position in the environment, the most useful measurement
to do so is the one coming from the motion capture system, since it provides absolute
position measurements.

Each particle has a position and a weight which estimates how well it matches the
measurement. Normalizing the weights so they sum to one turns them into a probability
distribution. The particles that are closest to the robot will generally have a higher

43

Position Estimation

Figure 4.7: Relative likelihood of each particle

weight than the ones far from the robot. The weight of the particle is computed as the
probability that it matches the Gaussian of the sensor error model. The further the
particle from the measured distance the less likely it is to be a good representation, like
In Figure 4.7.

Another useful measurement to update the particles comes from the distance sensors,
like the ones located at each side of the robot. Consider for example the case when the
robot is driving on a straight line. At some moment, the distance sensor located at it´s
left side detects an object nearby. If we know the location of that object, we can use this
information to update the particles and generate knew weights that take into account
this information (see Figure 4.6).

Resampling

The resampling step is an important part of the filter that is used to deal with the
problem of degeneracy of the algorithm, that is, to avoid all relative weights from tending
to zero except for one that tends to one. A relative weight of one is not an indicator of
how close a state is to the true one since this is only a relative weight. It merely says
that one sequence in the whole particles set is much more likely than all of the other
ones. Resampling solves this problem but creates another because the random sampling
increases uncertainty and is computationally expensive. It is therefore of interest to
start the resampling process only when it is really needed. An indicator of the degree of
degeneracy is the effective number of samples, defined in terms of the coefficient of the

44

4.3 Nonlinear Filtering

variance of the weights as

Neff =
Ns

1 +N2
s V ar(qi)

(4.17)

The effective number of particles is thus equal to the total number of particles when all
weights are equal, and it is equal to 1 when qi = 1 with probability 1/Ns and qi = 0 with
probability (Ns − 1)/Ns. A computable approximation of the previous equation is given
by

Neff =
1∑Ns

i=1(qi)2
(4.18)

If the effective number of particles is less than a given threshold Neff < Nth, it means
that resampling should take place. We will choose this threshold as a percentage of the
total number of particles used.

Another trick that can be used to prevent the problem of degeneracy (and thus, avoid
resampling too often), is called “roughening”, which is based on increasing the random
noise to each particle in the time propagation step, which is similar to adding artificial
noise to the Kalman filter.

The computational effort of the particle filter is often a bottleneck to its implementation.
The estimation error in a particle filter converges to zero as the number of particles
approaches infinity, but also does the computational effort, so a tradeoff between them
has to be selected in order to achieve good performance. Consequently, resampling has
been extensively researched, and, as a result, various resampling schemes have been
proposed in [15]–[18]. A detailed classification of resampling algorithms with qualitative
comparison of them can be found in [19].

The most commonly used methods are described below and pseudocodes for selected
algorithms are provided. The pseudocodes are presented in a simple and unified way but
not in forms that optimize the implementation of the algorithms.

Multinomial Resampling The idea behind this algorithm is simple. First, compute
the cumulative sum of the normalized weights. Then, generate random numbers from
the uniform distribution on (0, 1] and use binary search to find its position inside the
cumulative sum array. Since the sampling of each particle is random, the upper and lower
limits of the number of times a given particle is resampled are zero (not sampled) and
Ns(sampled Ns times), respectively. This yields the maximum variance of the resampled
particles.

Residual Resampling Residual resampling consists of two stages. In the first one, the
normalized weights are multiplied by the number of samples, and then the integer value

45

Position Estimation

of each weight (N i
t) is used to define how many samples of that particle will be taken.

This ensures that all higher weight particles are chosen at least once. The total number
of replicated particles in this stage is Nt =

∑Ns
i=1Nsqi. Since this number may not be

equal to the number of samples, to select the remaining samples we use the residual of
the weights:

rit = qit −
N i
t

Ns

Then the particles are drawn according to the residual weights and by using multinomial
resampling (or another random sampling method).

Stratified Resampling This scheme aims to make selections relatively uniformly
across the particles. It works by dividing the cumulative sum into Ns equal sections,
and then selects one particle randomly from each section. This guarantees that each
sample is between 0 and 2/Ns apart. The upper and lower limits of the times the i-th
particle is resampled aremax(Floor[Nsqi]−1, 0) and Floor[Nsqi]+2 respectively; where
Floor[·] returns the integer part of the number passed to the function.

Systematic Resampling As with stratified resampling the space is divided into Ns

divisions. We then choose a random offset to use for all of the divisions, ensuring that
each sample is exactly 1/Ns apart. The upper and lower limits of the times the i-th
particle is resampled are Floor[Nsqi] and Floor[Nsqi] + 1.

In order to compare all these methods, lets consider a simple example. Assuming a num-
ber of samplesNs = 7 and their corresponding weights beeing (0.1, 0.2, 0.3, 0.4, 0.2, 0.3, 0.1).
If we perform resampling to this set using the four previous methods, we would obtain
something like Figure 4.8.

Systematic Resampling

Stratified Resampling

Residual Resampling

Multinomial Resampling

Figure 4.8: Comparison of different resampling algorithms.

The performance of the multinomial resampling is quite bad. There is a very large weight

46

4.3 Nonlinear Filtering

that was not sampled at all. The largest weight only got one resample, yet the smallest
weight was sample was sampled twice.

The residual resampling algorithm does excellently at what it tries to do: ensure all the
largest weights are resampled multiple times. Nevertheless, It does not distribute evenly
the samples across the particles and many reasonably large weights are not resampled at
all.

Systematic sampling does an excellent job of ensuring we sample from all parts of the
particle space while ensuring larger weights are proportionality resampled more often.
Stratified resampling is not quite as uniform as systematic resampling, but it is a bit
better at ensuring the higher weights get resampled more.

Algorithm 4.3.2 Multinomial Resampling
[{x̃n

t }Ns
n=1] = Multinomial[{xi

t, q
i
t}Mi=1, Ns]

Qi
t = CumulativeSum({qit}Ns

i=1)
n = 0
while n <= Ns do

u ∼ U(0, N]
m = 1
while Qi

t <= u do
m = m+ 1

end while
n = n+ 1
x̃n
t = xm

t

end while

Algorithm 4.3.3 Systematic Resampling
[{x̃n

t }Ns
n=1] = Systematic[{xi

t, q
i
t}Mi=1, Ns]

Qi
t = CumulativeSum({qit}Ns

i=1)
n = 0
m = 1
u0 ∼ U(0, 1/N]
while n <= Ns do

u = u0 + n/N
while Qi

t <= u do
m = m+ 1

end while
n = n+ 1
x̃n
t = xm

t

end while

47

Position Estimation

Algorithm 4.3.4 Stratified Resampling
[{x̃n

t }Ns
n=1] = Stratified[{xi

t, q
i
t}Mi=1, Ns]

Qi
t = CumulativeSum({qit}Ns

i=1)
n = 0
m = 1
while n <= Ns do

u0 ∼ U(0, 1/N]
u = u0 + n/N
while Qi

t <= u do
m = m+ 1

end while
n = n+ 1
x̃n
t = xm

t

end while

Algorithm 4.3.5 Residual Resampling
[{x̃n

t }Ns
n=1] = Residual[{xi

t, q
i
t}Mi=1, Ns]

j = 0
for i = 1 : Ns do

N i
t = Floor(Ns × qit)

rit = qit −N i
t/Ns

for k = 1 : N i
t do

j = j + 1
x̃j
t = xi

t

end for
end for
Nr = N − j
for i = 1 : Ns do

rit = rit ×Ns/(Ns −Nr)
end for
[{x̃n

t }Ns
n=Nr+1] = Multinomial[{xi

t, r
i
t}Ns

i=1, Ns −Nr]

4.4 Slip Detection

Wheel encoders provide a precise and inexpensive measurement of wheel rotation. When
used on a mobile robot, encoders measure rotational distance which is directly propor-
tional to each wheel’s angular velocity and (assuming no odometry errors or wheel slip)
translational velocity.

Odometry errors are referred to in literature as either systematic or non-systematic errors.
A systematic error typically results from incorrectly calibrated odometry parameters: the
encoder ticks-per-meter conversion, wheel diameter, or the distance between the wheels.
A non-systematic error, on the other hand, represents error from the robot environment:
wheel slip, wheel skid, external forces, etc.

It is important to avoid feeding the filter with incorrect information, otherwise the es-
timated state will not be accurate. To this end, we need to derive a way to detect
non-systematic errors, and thus neglect the encoder readings when they are not reliable.
In particular, we are interested in detecting slipping and skidding as they are the main
source of non-systematic errors in our application.

There are two possible situations to be identified: slipping (or skidding) occurring in just
one of the two wheels, or in both wheels at the same time. One way to identify slipping
is to compare the encoder readings with those of the gyroscope. In the case of the first
scenario, de difference between both encoder readings is related with the heading angular

48

4.4 Slip Detection

velocity of the robot by

ψ̇ =
r(ωR − ωL)

d

By transforming the gyroscope measurement from the sensor frame to the navigation
frame, we can then compare the z-axis measurement with the information coming from
the encoders. If no slippage occurred, then one can expect good correspondence between
the rate-of-turn derived from the encoders and the gyroscope. Poor correspondence
suggests wheel slippage.

Unfortunately, this method is not useful when both wheels are slipping, especially when
they are spinning at almost the same speed. This second scenario can be dealt with by
comparing the linear velocity of the robot computed by updating the robots’ velocity with
inertial measurements, with the one obtained from the encoder measurements, which is
given by

v =
r(ωR + ωL)

2

When both wheels are slipping, the velocity computed from the encoder measurements
will be much greater than the one obtained from the system update using the accelerom-
eter measurements.

In both cases, a threshold must be selected to specify when slipping is happening or not.

49

Chapter 5

Simulation-based Evaluation

5.1 Introduction

In this chapter, the methods developed in the previous sections will be tested in simula-
tions. The parameters of these methods will be studied in order to come up with the best
combination for real applications. The simulations will also allow to study the influence
of the disturbances on the accuracy of the estimation.

5.2 Error Metrics

In order to verify the methods and to quantify the accuracy, error metrics have to be
defined which quantify the performance of the methods.

The method used to calculate point distance largely determines the overall properties
of the performance metric [20]. Most commonly used methods are based on subtraction
and include: the error E, the absolute error AE, and squared error SE:

E(t) = A(t)− P (t) (5.1)
AE(t) = |A(t)− P (t)| (5.2)

SE(t) = (A(t)− P (t))2 (5.3)

with A and P denoting the actual and estimated values respectively.

The standard error can be used to determine whether the estimation method tends to
overestimate or underestimate actual values, i.e. biased. The problem with this is that
the positive and negative errors will be cancelling each other, meaning that the result of
calculating the performance metric may yield zero demonstrating a falsely high accuracy.
For this reason, the absolute error will be also used to provide a measure of average error.

50

5.2 Error Metrics

Finally, squared error has the property penalizing extreme errors or being susceptible to
outliers.

Since we do not have a way to correct the heading, the complete orientation will be
divided into heading Ψ and inclination Θ. For each one of them, the mean error ME
and mean absolute error MAE defined before are

MEΘ =
1

N

N∑
t=1

Θ(t)− Θ̂(t) MEΨ =
1

N

N∑
t=1

Ψ(t)− Ψ̂(t) (5.4)

MAEΘ =
1

N

N∑
t=1

|Θ(t)− Θ̂(t)| MAEΨ =
1

N

N∑
t=1

|Ψ(t)− Ψ̂(t)| (5.5)

Regarding the position estimation problem, given that the robot is driving in a plane
with two coordinates, measuring the error in each of them individually does not provide
a good estimate on how far the estimated position is from the real one. Thus, both of
them will be combined to give the distance between the two positions:

Ep(t) =

√
(x(t)− x̂(t))2 + (y(t)− ŷ(t))2 (5.6)

and just as done with the orientation, the mean value of the position error during the
time of ineterest will be computed

MEp =
1

N

N∑
t=1

Ep(t) (5.7)

To evaluate the uncertainty of the estimate, i.e. the particles distribution, a standar
deviation will be calculated. While the standard deviation of the x and y coordinates
provides some information about the dispersion of the particles, there is a problem with it:
it does not provide a single summary statistic of the dispersion, is actually two separate
statistics. A measure which overcomes this problem is the standard distance deviation
d, which is the standard deviation of the distance of each particle from the weighted
estimate. First, the distance is computed as

di(t) =

√
(xi(t)− x̂(t))2 + (yi(t)− ŷ(t))2 for i = 1, ..., Ns (5.8)

Then, the standar deviation σp is computed as follows

σp(t) =

√√√√ 1

Ns − 2

Ns∑
i=1

(di(t))2 (5.9)

Note that 2 is subtracted from the number of points to produce an unbiased estimate
since there are two constants from which the distance along each axis is measured (x̂ and
ŷ).

51

Simulation-based Evaluation

Also a standard deviation of the particles heading σΨ is be defined as

σΨ(t) =

√√√√ 1

Ns − 1

Ns∑
i=1

(Ψi(t)− Ψ̂)2 (5.10)

5.3 Simulation Setup

The purpose of this section is to give an overview of the simulation environment, its
limitations and how real-application disturbances are taken into account.

The robotic motion is simulated in Python using the dynamic equations and control
scheme from Chapter 2. As a remainder, this model was derived considering that both
wheel-radius are equal, the distance between the wheels, i.e. the distance between the
wheels contact points on the ground is perfectly known; both wheels are perfectly aligned
along one common axis and that the robot is unnable to experience roll rotations or wheel-
slip. It is also assumed that both motors actuating each wheel are exactly equal, and
thus it is possible to make each wheel rotate at the same speed and provide the same
torque.

The simulated robot takes linear and steering velocity commands as inputs, and returns
the state defined in Section 2.1.2 and its time derivatives

x =
[
s ṡ θ θ̇ ψ ψ̇

]T
(5.11)

This is then used to compute the sensors measurements using the models described in
Appendix A. The parameters of the error characteristics used to simulate the sensors
are the ones listed on Table 2.2 for the MPU9250. Finally, these sensorial data is feeded
to the different estimation methods described in Chapter 3 and Chapter 4 to track the
robots position and orientation.

5.4 Methods for Orientation Estimation

In chapter Chapter 3 the Extended Kalman Filter was presented to be used in our
application, and some information about the initial state and covariance, system noise
and measurement noise covariances was given. But before we start giving values to these
parameters, first a closer look to the problem at hand is given.

The set of orientations that the TWIPR can experience include pitch angles from −90◦

to 90◦, and the full 360◦ for heading. In normal conditions, we consider that the robot

52

5.4 Methods for Orientation Estimation

is unable to experience roll rotations because that would mean that one of the wheels
looses contact with the ground and the whole stability of the robot is compromised.
Furthermore, the dynamic equations used to build the simulation environment do not
consider this posibility, and thus we can safely assume that in every simulation, the roll
angle will be φ = 0◦.

5.4.1 Initial Parameters

A common practice is to use the identiy quaternion as initial orientation, and let the
estimate converge to its true value, which takes just a few seconds. But in our application,
we know the actual inclination of the robot when it is initialized, because it only has
two stable orientations when powered down: laying down or standing perfectly straight.
Therefore, to define its initial orientations the first accelerometer measurement (after
proper calibration) will be used to compute the robot inclination. Regarding the heading,
since there is no absolute measurement to obtain it from, it will just be assumed to be
zero or its true value will be set using the motion capture system.

Once the initial orientation is known, the initial state covariance is given low values,
denoting that we are certain about the initial state

P0 =


10−2 0 0 0

0 10−2 0 0

0 0 10−2 0

0 0 0 10−2

 (5.12)

For the system and measurement noise covariances, we know that the accelerometer
measurements are more noisy than the gyroscope measurements. Furthermore, during
motion, the accelerometer does not provide accurate information on the attitude of the
sensor.

Using the simulations it is possible to test how the estimate is affected by changing
the values in the covariance matrices. Figure 5.1 shows the pitch angle estimation with
different values for the measurement covariance, where the robot was given only a con-
stant forward velocity command. Pitch motion is mainly experienced when the TWIPR
changes its velocity. The purpose of giving it a constant velocity command is to check
the algorithm performance in presence of rapid movements (where the estimate should
rely more on the gyroscope measurements) and how well does the measurement update
correct the drift caused by the gyroscope bias using the accelerometer data.

For the value of W = 105 the estimate performs poorly when the pitch angle changes
rapidly. On the contrary, for W = 108 the estimate is good at the begining but then
the effects of the bias corrupts the estimate and it is not corrected by the measurement

53

Simulation-based Evaluation

0 5 10 15 20 25 30 35

0

10

20

30

40

50

θ(
t)

0 5 10 15 20 25 30 35
time [s]

0

1

2

3

ε θ
(t

)

W = 105

W = 106

W = 107

W = 108

Figure 5.1: Effect of the measurement noise covariance in the estimate

update. Between the remaining two options, it is preferred the one with W = 106 since
it tracks better the pitch angle during rapid movements and that is the moment where
it is more critical to know the angle for stability control purposes. Therefore we choose
for the covariances W and E

W =


0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

 E =

106 0 0

0 106 0

0 0 106

 (5.13)

5.4.2 Object moving freely in space

To perform a more exhaustive test on the Extended Kalman Filter, testing will be made
on IMU measurements simulated from an object moving freely in space, without any
restrictions on movement. Differents scenarios will be simulated, all of them listed on
Table 5.1.

54

5.4 Methods for Orientation Estimation

ID Time Description

S1 60 s slow rotation movements without translation
S2 60 s medium-speed rotation movements without translation
S3 60 s fast rotation movements without translation
S4 60 s medium translation without rotation
S5 60 s slow arbitrary motions
S6 60 s medium-speed arbitrary motions

Table 5.1: Simulations of an object moving freely in space.

In Figure 5.2 is presented the inclination and heading estimate errors from one simulation
S6. The heading estimate drift over time because there is no method to correct it. This
can be seen in the mean error for both estimates

MEΘ = 0.0089◦ MEΨ = 1.15◦

The mean error for inclination is close to zero, which indicates that the estimate is
unbiased. In the case of the heading, the error is much larger, indicating that the estimate
is, in this case, underestimated, i.e. biased. Usually magnetometer measurements are
used to correct heading, but the problem of employing them were already discussed. The
heading estimate uses only gyroscope measurements, therefore this problem will appear
in every simulation. Thus, only the inclination error will be analyzed here, and the
heading estimate will be adressed again in the position estimate section because it is
mostly relevant for navigation purposes only.

Figure 5.3 shows the gyroscope and accelerometer measurements from the simulation S2
and simulation S4; and in Figure 5.4 it is represented the inclination estimate of the same
simulations. It can be seen that when there is only rotations taking place, the estimate
is much more accurate than the one with translational movement. The reason for this
is that the measurements from the acceleration can only correct the inclination estimate
when they are measuring only gravity. When other sources of acceleraion appear, then the
method cannot get the direction of gravity and thus, the estimate is affected negatively.

A possible way to deal with this problem is to make the measurement covariance matrix
E be variable over time, depending on the norm of the acceleration. This means that
whenever the norm of the acceleration is different from gravity (with a given tolerance),
matrix E should be increased to reflect that the measurement is less reliable so that the
method can trust more on the gyroscope for that moment.

Figure 5.5 shows a comparison between the inclination estimate with the standard EKF
with a constant measurement covariance matrix and with the same matrix varying de-
pending on the norm of the acceleration measurement, as proposed in Section 3.4.1.

55

Simulation-based Evaluation

0 10 20 30 40 50 60
-5

0

5

In
cl

in
at

io
n

er
ro

r
[d

eg
]

0 10 20 30 40 50 60

Time t [s]

-10

-5

0

5

10

he
ad

in
g

er
ro

r
[d

eg
]

Figure 5.2: Inclination and heading errors for a simulation from scenario S6.

0 10 20 30 40 50 60
-1000

-500

0

500

1000

0 10 20 30 40 50 60
-10

-5

0

5

10

Time [s]

ac
c

[m
/s

2
]

g
yr

 [
d
p
s]

0 10 20 30 40 50 60
-100

0

100

200

300

0 10 20 30 40 50 60
-5

0

5

10

15

Time [s]

ac
c

[m
/s

2
]

g
yr

 [
d
p
s]

Figure 5.3: Sensor readings for simulation S2 (left) and simulation S4 (right).

To evaluate the accuracy of the estimation, 100 trials were performed for every simulation
scenario, and the statistical values of the inclination mean absolute error are presented
in Table 5.2.

56

5.4 Methods for Orientation Estimation

0 10 20 30 40 50 60
0

50

100

150

0 10 20 30 40 50 60

-1

-0.5

0

0.5

1

Time [s]

In
cl

in
at

io
n
 [

d
eg

]
E
rr

or
 [

d
eg

]

0 10 20 30 40 50 60
0

5

10

15

20

25

0 10 20 30 40 50 60
-10

-5

0

5

Time [s]

E
rr

or
 [

d
eg

]
In

cl
in

at
io

n
 [

d
eg

]

Real

Estimated

Figure 5.4: Inclination estimate and error for simulations S2 and S4.

0 10 20 30 40 50 60
0

50

100

150
True
EKF
EKF w/correction

0 10 20 30 40 50 60
-20

-10

0

10

20
EKF
EKF w/correction

Time [s]

E
rr

or
 [

d
eg

]
In

cl
in

at
io

n
 [

d
eg

]

0 10 20 30 40 50 60
0

100

200

300

0 10 20 30 40 50 60

0

10

20

30

40
EKF
EKF with acc correction

Time [s]

E
rr

or
 [

d
eg

]
H

ea
d
in

g
 [

d
eg

]

Figure 5.5: Comparison between the standard EKF and the EKF with variable measure-
ment covariance matrix.

EKF EKF 2

ID MAEΘ Max MAEΘ Max

S1 0.9◦ ± 0.6◦ 2.7◦ 0.8◦ ± 0.6◦ 2.9◦

S2 0.8◦ ± 0.6◦ 3.1◦ 0.8◦ ± 0.6◦ 3◦

S3 0.9◦ ± 0.6◦ 2.8◦ 0◦ ± 0◦ 0◦

S4 2.4◦ ± 1.8◦ 10.3◦ 1.9◦ ± 1.5◦ 7.7◦

S5 1.2◦ ± 0.9◦ 4.6◦ 1◦ ± 0.8◦ 4.2◦

S6 2.5◦ ± 1.9◦ 8.3◦ 2◦ ± 1.6◦ 7.6◦

Table 5.2: Simulations for orientation method

57

Simulation-based Evaluation

The EKF is able to track the inclination of the body well within 4.2◦, with a mean error
less than 2◦ for slow rotations and translations. However, the EKF does not perform
well for faster motions, showing errors in inclination up to 7.6◦. In all cases, the method
with the variable measurement covariance matrix shows better results, specially when
the translational movement is increased.

In the case of rotation-only simulations, the inclination error is not very different between
the slow, medium and fast rotations. This is due to the gyroscope being able to track
this angular velocities quite well, and also because the simulations considers that there
is actually no translation happening. In reality this cannot be done easily. Rotation are
likely to produce accelerations other than gravity because it is not possible to perfectly
make an object rotate around the accelerometer axes.

5.4.3 Robotic motion

The robot does not have the possibility to move with the freedom that the object under
study in the previous section did. For instace, it cannot experience rotations around the
axis of movement (roll rotations) and the pitch angle range of motion goes from roughly
−90◦ to 90◦ because it is limited by the ground. The only completely free degree of
freedom is the heading.

In reality, the robot could experience some roll rotation depending on how well it is
balanced and the aggresiveness of the maneuver that may experience. This of course is not
desired since it leads to instability and possible overturn. In the simulation environment,
this is not considered in the dynamic equations and so it can be assumed that the
inclination angle es exactly equal to the pitch angle.

In order to move forward, the TWIPR tilts its body forward, and backward in order to
drive backwards. Figure 5.6 shows the estimated pitch angle with the EKF in blue and
the given ground truth in red for the robot moving back and forth. The method was
able to track the pitch angle with a MAE of 2.9◦ and a maximum error of 4.8◦, with the
highest errors taking place on the peaks. Making the measurement covariance matrix
variable depending on the norm of the accelerations improves the estimate, but only a
little, so it is still a large error, as shown in Table 5.3. This also shows the resulting
metrics using the proposed method that uses the gyroscope measurement to modify the
measurement covariance matrix and it clearly improves much more the estimate. The
filtering algorithm is able to track the inclination with a mean absolute error less than
2◦, considering fast dynamic movements.

58

5.5 Methods for Position Estimation

0 10 20 30 40 50
time [s]

-40

-20

0

20

40

θ(
t)

[◦
]

Real
EKF

Figure 5.6: Pitch angle estimation of the TWIPR when moving back and forth.

EKF EKF w/ E(‖a‖) EKF w/ E(|gθ|)

Motion MAEΘ Max MAEΘ Max MAEΘ Max

Back and forth 2.9◦ 4.8◦ 2.6◦ 4.3◦ 1.7◦ 2.5◦

Back and forth
and steering 3◦ 5.3◦ 2.7◦ 4.5◦ 2◦ 3.6◦

Table 5.3: Inclination estimate errors using the proposed orientation estimation methods
on simulations of the robot moving.

When steering velocity is added to the previous motion, the results are almost the same,
with an increase on the maximum error.

5.5 Methods for Position Estimation

The particle filter to be implemented in this simulation needs some variables to be se-
lected. Given that the position estimation algorithm is required to run in real-time, the

59

Simulation-based Evaluation

number of particles will be set to Ns = 200. The threshold for the resampling step will
be set to 0.5.

First, navigation by odometry is investigated. Here, the systematic-errors will be evalu-
ated on how they affect the estimate, and some insight on wheel-slip detection is given.
Then, inertial navigation is compared to odometry regarding velocity estimation. Fi-
nally, both methods are combined using the complementary filter described in Section
4.3.1 and the particle filter is evaluated.

5.5.1 Odometry

Odometry can be used to keep track of the robot translational velocity and steering
velocity. Depending on the severity of the systematic and non-systematic errors discussed
in Section 2.3.2, the information provided by odometry can be helpful or not. In the
following, some of these sources of error will be studied individually in simulations to
see how they affect the estimate. Depending on the magnitud of the errors, the encoder
data could be useful for estimation purposes or not. However, it is not possible to know
in advance these errors, so a calibration phase must be performed on the robot to try to
reduce them as much as possible, and then it can be decided if it is worth using odometry
data or not.

Borenstein and Feng introduced the bidirectional square-path experiment [12] to eviden-
ciate systematic errors in differentially driven robots. Basically, it consists in making
the robot follow a square path in both clockwise and counterclockwise direction, and
measuring the error in the position at the end. Once this errors are noticed, they can be
properly calibrated into software to reduce them.

Two new error characteristics are defined to represent odometry errors in orientation:
Type A and Type B. A Type A is defined as an orientation error that reduces (or
increases) the total amount of rotation of the robot during the square-path experiment
in both cw and ccw direction. By contrast, Type B is defined as an orientation error that
reduces (or increases) the total amount of rotation of the robot during the square-path
experiment in one direction, but increases (or reduces) the amount of rotation when going
in the other direction.

Actual wheelbase different from nominal

Figure 5.7 shows a simulation where the robot turned four times for a nominal amount
of 90◦ per turn. However, because the actual wheelbase of the vehicle was smaller than
the nominal value used in the odometry computations, the estimation actually turned
less degrees in each corner of the square path. One can thus observe that in both the

60

5.5 Methods for Position Estimation

clockwise and the counterclockwise simulation, the estimation ends up turning less than
the actual amount. Therefore, the orientation error is of Type A.

0.0 0.5 1.0 1.5 2.0 2.5
x [m]

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

y
[m

]

Real
Odometry

0.0 0.5 1.0 1.5 2.0 2.5
x [m]

0.0

0.5

1.0

1.5

2.0

2.5

y
[m

]

Real
Odometry

Figure 5.7: Position error due to different wheelbase than assumed. In this case, the
difference between actual and nominal wheelbase is 1 cm. Nominal square
path in red, actual travelled path in blue.

This error in wheelbase only affects how much the robots turns, but it has no effect on
the translational velocity. This means encoders can be used to estimate velocity even
though the wheelbase has not been properly calibrated.

Unequal wheel diameters

The same simulation as before is used in this case too evaluate the effect of unequal wheel
diameters in the overall position of the robot.

In Figure 5.8 the trajectory of the robot with unequal wheel diameters is shown. This
error expresses itself in a curved path that adds to the overall orientation at the end of
the run in counterclockwise direction, but it reduces the overall rotation in the clockwise
direction. Therefore, the orientation error is of Type B. Even though the difference
between the diameters is around half a milimeter, the error in the position at the end
becomes quite large.

This difference in wheel radius also affects the heading estimate coming from odometry.
A 0.1 mm error in radius causes a heading rate of 0.36 ◦/s when travelling at 1 m/s.

The error in velocity is less than 0.1%, so it is possible to use encoder data to accurately
estimate velocity even though the error in radius is large.

61

Simulation-based Evaluation

0.0 0.5 1.0 1.5 2.0 2.5
x [m]

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

y
[m

]

0.0 0.5 1.0 1.5 2.0 2.5
x [m]

0.0

0.5

1.0

1.5

2.0

2.5

y
[m

]

Figure 5.8: Position error due to unequal wheel radius. In this case, the difference in
radius is 0.3 mm. Nominal square path in red, actual travelled path in blue.

Wheel-slippage

Wheel-slip is common when using differential drive mobile robots, specially in inverted-
pendulum ones, like the TWIPR, because rapid accelerations may be needed to maintain
stability and prevent the robot from falling. This non-systematic error is one of the
most difficult to deal with. When slipping occurs, the encoder attached to the wheel in
question will measure a really large angular velocity, and if this information is used in
the estimation algorithms, the results will be erroneous.

Simulating wheel-slippage in the TWIPR is extremely complicated and beyond the scope
of this thesis.

5.5.2 Inertial Navigation

An inertial navigation system directly measures linear acceleration and angular velocity
and uses them to calculate the pose of the robot. The acceleration measured in the
IMU reference frame can be converted to the navigation frame, and using the estimated
inclination and heading, the gravitational and rotational acceleration part can be sub-
stracted to obtain only the translational part, which is the one responsible for the change
in velocity and position of the robot. Unfortunately, this comes with errors since the
measurements are noisy and the estimated orientation is not perfectly accurate.

The advantage of using an inertial sensor is that it is self-contained, no external motion
information is needed for positioning, and its ability to provide fast, low-latency dynamic

62

5.5 Methods for Position Estimation

measurements. Even though very small errors in the rate information can cause an un-
bounded growth in the error of integrated measurements, it is a good option for moments
when odometry cannot be trusted.

0 2 4 6 8 10
Time t [s]

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

v(
t)

[m
/s
]

Real
Odometry
IMU

Figure 5.9: Comparison between the translational velocity computed from odometry and
from inertial navigation.

In Figure 5.9 is represented the velocity estimation computed from integrating the ac-
celerometer measurement as explained before. The estimate is not very accurate in the
long-term compared with odometry. However, the important advantage of inertial nav-
itagion is that the information provided by the IMUs is always available and the error
characteristics corrupting are known. They can provide a good short-term estimate when
odometry is not reliable, like in cases when wheel-slip is very likely to take place.

5.5.3 Complementary Filters

As discussed in the previous sections, both odometry and inertial navigation have their
advantages and disadvantages, and the position estimates obtained are subjected to them.
That is why it is important to combine them to get a better estimate of the translational
velocity and the heading rate.

63

Simulation-based Evaluation

In the case of translational velocity, the systematic-errors on odometry do not cause much
error in the estimate, so the complementary filter should rely more on odometry than
inertial sensors, whenever possible (that is, when there is no risk of wheel-slip). On the
contrary, the heading rate computed from inertial sensors suffers from bias and noise,
while the one computed from odometry is sensitive to the systematic and nonsystematic-
errors. This is a case when combining both corrupted pieces of information can yield
better results than relying on only one of them.

0 1 2 3 4 5
x [m]

0

1

2

3

4

5

6

7

y
[m

]

Real
Filter
Odometry
IMU

Figure 5.10: Comparison between the position estimate using different heading estimates.

Figure 5.10 shows the position of the robot after some motion computed using differ-
ent heading estimates. This simulation was performed considering the right wheel to
have a radius 0.1 mm larger than the left one, and a wheelbase 3 mm shorter than the
assumed one. The coefficient of the filters in (4.9) and (4.10) were set to 0.5. In this
case, the inertial navigation information helps to correct the heading drift caused by the
systematic-errors in odometry.

The value of the coefficient must be tuned in the experimental evaluation. It is difficult
to predict how well the systematic-errors of odometry can be calibrated, and there are
also other sources of error than were not considered in simulations. Depending on the
results obtained from experiments, the complementary filter coefficient α will be tuned
to rely more on odometry or in inertial navigation.

64

5.5 Methods for Position Estimation

5.5.4 The Particle Filter

Now that the advantages and disadvantages of using odometry and inertial navigation
to keep track of the robot position are known, sensor fusion can be applied to enhance
each method’s strenghts and improve the estimate.

As defined in Section 4.3.3, the sources of uncertainty inside the state equation are the
velocity and the heading. Thus, to keep track of this uncertainty it necessary to feed
adequate noise to the particle propagation step so that it is not under or overestimated.

Particles Distribution

For the purpose of this analysis, the simulations will be made with the robot moving in
a straight line with constant velocity. This way, the standar deviation of the particles
in the direction of movement can be assumed to be directly proportional only to the
velocity uncertainty; and the deviation across the direction normal to the previous can
be assumed as directly proportional to the heading uncertainty.

First, the heading noise is evaluated. Figure 5.11 shows the particles distribution obtained
by considering different amounts of heading noise. In Figure 5.11a, the real position is at
the border of the particles cloud, so there are not many samples around to account for
that position. If the real uncertainty was a little larger then the point will definitely not
be considered as a possible position and, without particles nearby, the estimate may take
longer to converge once the measurements are available, or it might even diverge. In the
case of Figure 5.11c, the uncertainty is highly overestimated and thus, the algorithm will
assume that the uncertainty of the estimate is much worse that it actually is. Finally,
the result of Figure 5.11b seems to represent more accurately the actual situation.

x [m]

y
[m

]

(a) σψ = 0.0005

x [m]

y
[m

]

(b) σψ = 0.001

x [m]

y
[m

]

(c) σψ = 0.005

Figure 5.11: Particles distribution with different amounts of heading noise added. The
red line represents the true position of the robot, and the yellow one repre-
sents the estimated position.

65

Simulation-based Evaluation

In Figure 5.12 the same procedure as before is applied but to the velocity uncertainty
instead of the heading.

x [m]

y
[m

]

(a) σv = 0.01

x [m]

y
[m

]

(b) σv = 0.03

x [m]

y
[m

]

(c) σv = 0.05

Figure 5.12: Particles distribution with different amounts of velocity noise added. The
red line represents the true position of the robot, and the yellow one repre-
sents the estimated position.

There is a special case when the robot is not moving, or doing it very slowly. If the
encoders read a null velocity, then for sure the robot is not moving. There is no reason
to add noise to the velocity to propagate the particles. If we do so, the uncertainty
will continue to increse even though it is known that the robot is not actually moving.
Nevertheless, even when the robot is not moving, it could be turning, so the system
update must continue to be executed at every time step. To adress this issue, boolean
logic is added to set the velocity noise to zero whenever the absolute value of the velocity
is lower than a threshold.

Figure 5.13 shows the standard deviation of the particles when the robot is moving
forward and stopping for some seconds to turn, and then continue moving forward. It can
be seen that there are some intervals where the particles standard deviation σp remains
constant, which coincides with the intervals when the robot is not moving forward, but at
that same time the heading uncertainty continues to grow because the robot is turning.
The same goes for the case when the robot is neither moving forward nor turning, but
the heading uncertainty also ceases to increase.

Relative Likelihood

One way to compute the relative likelihood of the particles once a measurement is avail-
able is to use the normal probability density function (pdf).

The motion capture system can give absolute position measurements with a certain
accuracy. Assuming that the error affecting that measurement is Gaussian, it is possible
to compute the particles weights using this normal pdf. First, the distance between

66

5.5 Methods for Position Estimation

0.000

0.002

0.004

0.006

0.008

0.010

σ
p
(t

)
[m

]

0 5 10 15 20 25 30 35
time t [s]

0.00

0.02

0.04

0.06

σ
Ψ

(t
)
[◦
]

Figure 5.13: Standard deviation of the particles defined in (5.9) and in (5.10)

a particle and the measurement y is computed. Then using the pdf each particle is
evaluated and given a weight according to how far is from the measurement, like depicted
in Figure 5.14. Those particles closer to the measurement will get high weights (larger
circles) than those far from it (smaller circles). The standard deviation of this pdf depends
on the accuracy of the measurements.

In the case that the amount of noise added to the system update step discussed in the
previous section is not enough, and the real position of the robot gets away of the cloud
of particles, once the measurement are available the particles will slowly converge to the
real position; at least theoretically. In practice, the weights assigned to the particles
far away from the measurement are limited by numerical problems. Each weight is
represented by a certain amount of bits, so when the measurement update is computed,
the computer may not distinguish from a weight around 10−10 and another around 10−11.
Both particles will then get the same weight even though one of them is slightly more
likely than the other.

To avoid this problem, it is important to properly calibrate the amount of noise feeded
to the particles propagation step in (4.14) so that to ensure that the real position of the
robot is contained within the cloud of particles.

67

Simulation-based Evaluation

y 1σ 2σ 3σ-1σ-2σ-3σ

Computation of weights qi

Particles before measurement update

Particles after measurement update

Figure 5.14: Computation of the particles weight using the probability density function
of the motion capture system.

Heading Correction

It was already mentioned that each particle represents a possible state of the robot. That
means that each of them show the position of the robot with different headings. The
interesting part in this comes when absolute position measurements become available.
By using this measurements, the particles closer to the measurement will get more weight
than the others, and since those same particles are closer to the actual position because
their heading is more accurate than the others, then it is possible to correct the heading
this way.

Figure 5.15 shows the estimated heading angle of the TWIPR moving on a straight
line. The EKF estimate drift over time as explained in Section 5.4, but the particle
filter estimate shows some improvements. First of all, the estimate drifts slower because
the algorithm makes use also of the encoders to estimate the heading (just in the case
where the systematic-errors are calibrated accurately, and there is no large issued related
with non-systematic ones), and thus the negative effects of gyroscope intregration can be
reduced. Second, when the position measurements from the motion capture system begin
to be feeded to the filter at t = 20 sec, it can be seen how the estimate corrects itself,

68

5.5 Methods for Position Estimation

0 5 10 15 20 25 30 35 40
time [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ψ
(t

)
[◦
]

Real
EKF
PF

Figure 5.15: Heading angle estimated from the EKF and from the particle filter, with
absolute position measurements becoming available at t = 20 sec.

for the reasons explained before. Simulations showed that with these measurements, the
heading angle error can be kept below 1 degree.

This result also depends on what was stated in the previous section regarding the particles
distribution. If the real position of the robot is not near the cloud of particles, then
it means that none of the particles is considering a heading close to the real one. The
position can be corrected by shifting the particles near the measurement, but the heading
cannot. So in order to be able to correct the heading, the real state of the robot must be
contained within the ranges that the cloud of particles is considering, that way at least
some of the state hypothesis represented by the particles will be close to the real one.

5.5.5 Straight Path

One of the proposed learning experiments that the TWIPR will be put through is driving
through a straight tunnel (see Figure 5.16). This means that the robot will not count
with absolute position measurements and must rely on its relative tracking capabilities to
estimate its position and avoid collisions with the tunnel walls. This is a scenario where
the systematic-errors of the drivetrain play a major role, so it is necessary to study the

69

Simulation-based Evaluation

relationship between the amount of uncertainty in the drivetrain dimensions and the
deviation from the straight path.

Crash

Figure 5.16: Simulation scenario: driving through a straight tunnel.

The robot is controlled by translational and rotational velocity commands. In this sce-
nario, only translational velocity is given to make it move forward and across the tunnel.
But even if both motors make the wheels rotate at the exact same angular velocity, the
difference in wheel diameter will cause the robot to drift from the nominal path. In
Section 5.5.1 it was established that the wheelbase error does not affect the position de-
viation from the desired path. It is the difference between the wheels radius that causes
the robot to move through a curved path instead of the desired straight one.

To further analyze this, we will consider for this straight-tunnel simulation scenario a
tunnel width of 50 cm. The robot has a wheelbase of 0.28 cm and a total width of 0.325
m, so that gives a 8.7 cm space between the robot and a wall, considering that the robot
starts exactly at the center of the tunnel.

Figure 5.17 shows the relation between the distance that the robot travels through the
tunnel before making contact with one of the walls, and the difference between both
wheels radius. This relation has been obtained by giving the robot only a translational
velocity command, and considering that as a result, each motor actuating the wheels
is able to generate exactly the same rotational speed on its axis, at each time instant.
As expected, the relation is inversely proportional. With both wheels rotating at the
same speed, due to one of them beeing larger than the other in diameter, the resulting
trajectory traversed by the robot is curved. The interesting part is that even what may
seem as a small error of 1 mm can cause the robot to only be able to travel 1.65 m before
crashing into a wall.

Nevertheless, this is where the position estimation algorithm and sensor fusion can help
avoid this outcome, or at least extend the distance travelled. Even though odometry
will indicate that the robot is moving on a straight line, the heading rate caused by the

70

5.5 Methods for Position Estimation

0.2 0.4 0.6 0.8 1.0
wheel radius difference [mm]

2

3

4

5

6

7

D
is
ta
nc
e
be
fo
re

co
lli
si
on

[m
]

No Control
With Control

Figure 5.17: Relation between the unequal wheel radius and the distance traveled through
a tunnel of 50 cm width before collision with a wall, considering that the
robot is given only translational velocity command (labeled as "No Con-
trol"), and when a heading proportional controller is used to correct the
effects of the unequal wheel diameter based on inertial heading estimation
(labeled as "With Control").

unequal wheel radius will be detected by the gyroscope, so the complementary filter used
to compute the heading rate of the robot will come up with a combination between those
two sources of information.

Figure 5.18 shows the particle filter estimation, which uses the heading rate computed by
the complementary filter. It can be seen that it can detect the deviation from the desired
path. If the coefficient of the filter is tuned to trust more on the IMU data, then the
particle filter estimate will be closer to the real position. This is just to show qualitatively
the advantages of sensor fusion algorithms. In a real application, several experiments
must be performed to compensate the systematic-errors and then to determine which
sensorial data is more reliable and adjust the complementary filter coefficients.

This position estimate can be used to correct the trajectory of the robot and thus, extend
the distance travelled before collision or, if possible, avoid it at all. Figure 5.17 also shows
the resulting tunnel length travelled before collision, if a simple proportional controller

71

Simulation-based Evaluation

-1 0 1 2 3 4 5
x [m]

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

y
[m

]

Real
PF
Odometry

Figure 5.18: Position estimation comparison using the complementary filter to compute
the heading rate with a coefficient of 0.5. The red dashed lines represent the
width of the robot.

to correct the heading of the robot is used. As the curve shows, in this case it does
not matter the amount of unequal wheel radius because the control strategy relies on
the heading estimated by IMU data. The change in heading caused by this radius error
will be measured by the gyroscope, but what limits the distance travelled is the drift in
the heading estimate caused by the strap-down integration of the noisy measurements.
Eventually, the estimated state will drift from the real one, casuing the robot to crash.
However, simulations indicate that the robot would be able to traverse 4 meters before
crashing.

As a final remark on this experiment, it is important to note that while the error in radius
is large, IMU data can help the robot travel longer straight distances without absolute
position measurements; but if the error in radius is small, it is actually odometry the
one that could improve this aspect. Therefore, no definitive conclusion can be derived
regarding which method will yield the best result. Only after proper calibration and
experiments can we begin to start answering this question.

Even though it was said at the beginning of this section that the wheelbase error does not
affect the position of the robot when moving on a straight path, it does affect the odom-

72

5.5 Methods for Position Estimation

etry computations, specially the heading rate. Since this is used by the complementary
filter, reducing the wheelbase error will improve the particle filter estimate.

5.5.6 Curved Path

Now a more challenging scenario will be studied in which the robot will follow an eight-
shape path (see Figure 5.19), where in some parts of it, the motion capture system
measurements will not be available due to oclusion. The idea is to simulate a situation
where the robot looses the absolute position measurements, which can happen when it
leaves the range of the cameras, or when it enters a tunnel, or simply when something
is blocking the line of sight of the cammeras. When this happens, the robot must rely
on the other sensors to keep track of its position and continue to follow the desired path
and avoid collisions.

ccw rotation

cw rotation

Mocap obstruction zones

Figure 5.19: Simulation scenario: driving through an eight-shaped path.

The eight-shaped path was chosen to make the robot drive through a curved path both
in clockwise and counterclockwise direction to avoid the problems mentioned in Section
5.5.1. In that section, it was shown that depending on the direction of rotation, Type A

73

Simulation-based Evaluation

and Type B errors can add up or compensate each other.

For this simulation, the right wheel will be considered larger in diameter than the left
wheel, and the real wheelbase will be smaller than assumed. This means that during the
ccw rotation, the systematic-errors in odometry will add up, but they will compensate
each other during cw rotation. Therefore, the larger deviation from the real path should
occur during the ccw rotation. The robot will be given constant velocity commands for
both parts of the path (the ccw and the cw), where the translational velocity will be set
to 1 m/s.

-4 -3 -2 -1 0 1 2 3 4
x [m]

-4

-3

-2

-1

0

1

2

3

4

y
[m

]

Real
Estimated

Figure 5.20: Real and estimated position of the robot traversing a curved path, using
odometry to estimate the heading rate in the particle filter.

Figure 5.20 shows the results of the mentioned simulation. It is important to note that the
real path travelled by the robot is not exactly the eight-shaped one described before. This
is because the dynamic equations used to simulate the motion were derived considering
both wheels exactly equal; thus, the effect of unequal radius is added afterwards to modify
the resulting heading of the robot.

Figure 5.21 shows the tracking error Ep over time, and indeed the deviation from the
real position is larger during the ccw rotation, for the reasons mentioned before. This
is another case where the advantages of sensor fusion can be exploided to reduce the

74

5.5 Methods for Position Estimation

impact of these systematic errors in the estimation performance. The same figure shows
also the tracking error if IMU data is used to estimate heading instead of odometry, and
clearly the tracking error is reduced significantly.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time [s]

0.00

0.05

0.10

0.15

0.20

0.25

E
p
(t

)
[m

]

IMU
Odometry

Figure 5.21: Tracking error over time during the curved path simulation, using odometry
and IMU data to estimate heading.

This leads to wonder if odometry data is really useful for heading computation. Simu-
lations show that even very small dimensional errors in the drivetrain can cause large
deviations in the estimate in a relative short time. IMU data also causes drifts but at
a much slower rate. These results tend to indicate that using odometry will only make
the estimate worst. So far only unequal wheel radius and wheelbase difference has been
addressed, and there are many other sources of uncertainty related to the drivetrain such
as misalignment between both wheels axis, misalignment between the motor axis and the
wheel axis, frictions, wheel-slip and uneven floor.

In the end, it will depend on how well can the systematic-errors be calibrated; on the
magnitude and frequency of nonsystematic-errors, and on how noisy the IMU data is.
All of these must be studyied in experiments to decide the most suitable coefficient for
the complementary filters.

Nevertheless, it is the belief of the author of this thesis that using only IMU data to
compute the heading rate during motion will yield the best results. Odometry should

75

Simulation-based Evaluation

be used for this also, but only to detect when the robot is not moving at all, so that
the drift resulting from the strapdown integration of the gyroscope can be reduced or
eliminated. On the contrary, to estimate the translational velocity, odometry is more
accurate than the IMU (assuming no wheel-slip), but including information from the
latter in some degree will not cause significant errors in the estimate. In conclusion, the
best possible results can be obtained by making use of adaptive complementary filters,
which can modify their coefficients when certain conditions are met.

To continue with the analysis, now we are going to address the particles distribution.
Figure 5.22 shows the particles distribution after some time without any mocap data to
perform measurement updates. The time instant corresponds to a moment during the
ccw rotation. The main interest here is to see if the distribution is representative of the
real phenomena. Each particle represents a state hypothesis, that is, a certain position
and heading obtained after considering different heading rates and translational velocity,
as proposed in Section 4.3.3.

x

y

Real
Estimated
Particle

x

y

Figure 5.22: Particles distribution and weights before (left) and after(right) the motion
capture system registers a position measurement. The weights are repre-
sented by the particles transparency.

The robot is moving through a curved path. An hypothesis considering a larger heading
rate than the real one would lead to a curved path with higher curvature; while a smaller
heading rate would lead to a curved path with smaller curvature. What is shown in
Figure 5.22 represents exactly this point. If the estimated velocity is more accurate than
the heading rate, as it was shown in previous sections that it is, then all particles can
be considered travelling at almost the same speed; therefore, those particles considering
a larger heading rate, and so traversing a curved path with higher curvature will be
"ahead" than those with smaller heading rate. It was said that due to odometry errors,

76

5.5 Methods for Position Estimation

the estimated heading rate was smaller than the real one, and that is why the estimated
path follows a curved path with a higher radius of curvature than the real position.
If the amount of noise feeded to the particle propagation step is adecuate, the particles
distribution will include the real position of the robot inside it. This is important because
when a position measurement arrives, it can quickly update the estimates and correct
the heading as shown in the right figure.

77

Chapter 6

Conclusion

6.1 Summary

The methods derived in this thesis can be divided in two parts. The first part focuses on
the the orientation estimation of the mobile robot; while the second part focuses on the
navigation problem, which includes the position and velocity.

Estimating the inclination of the robot is a key aspect for the state-feedback controller
that stabilizes the system. The proposed method to do so needs to be fast, accurate
and magnetometer-free, so an Extended Kalman Filter based estimation algorithm is
implemented. The basic algorithm showed that it was able to track the inclination with
errors less than 5◦; and the proposed method that exploits the dynamics of the system
to make the measurement covariance matrix variable over time improved the estimation,
reaching maximum errors of 3.6◦ and a mean-absolute-error below 2◦.

The advantage of this method comes also by its easines to be executed that allows to
execute it at a high rate. Given the importance of the pitch angle estimate for the
stability control of the robot, it is necesarry to update it rapidly, and with this algorithm
it is possible to do it as fast as new measurements are available, up to 1000 Hz, depending
on the hardware.

Regarding the navigation problem, the simulation analysis performed revealed interesting
results. Usually, odometry has been the main source of information to keep track of a
mobile robots’ trajectory. Here it has been shown how the systematic-errors that are
inherent to any drivetrain system can rapidly drift from the real position, even for what
may seem to be very small errors in dimensional variables. Therefore, this thesis showed
how the use of IMUs could improve the position tracking problem, specially when it
comes to heading estimation.

Nevertheless, both approaches (odometry and inertial estimation) have their own advan-

78

6.2 Future Work

tages and disadvantages. Thus, applying sensor fusion methods to combine both sources
of information has proved to yield the best results. It is difficult to know in advance the
severity of all the sources of error, and if they can be calibrated or not. This means that
a method that yieds good results for one application may prove not useful for another.
So instead of choosing between odometry and inertial navigation, given the tecnological
advances in MEMS IMUs which have made them more accurate and low-cost, it is now
possible to use both of them together using sensor fusion algorithms.

The particle filter can provide a good estimate of the possible position and heading of the
robot. The particles distribution is consistent with the soruces of uncertainty affecting
the systems’ equations of motion, namely the velocity and the heading. The algorithm
allows to consider several hypothesis which then can be evaluated when a measurement
is available and thus, correct the estimate in the process.

The next step would be to perform an experimental evaluation to assess if indeed IMU
data could yield better results than odometry when it comes to heading estimation.

6.2 Future Work

All the results obtained in this thesis come with some limitations. Simulations are useful
to get a first overlook to the real problem, but they are often based on many assumptions
and this thesis is not the exception.

To begin with, the simulation of the robot comes from a model which does not consider the
possibility of wheel-slip or a wheel loosing contact with the floor. This kind of problems
are really difficult to simulate, and given the dynamics of the robot, it is actually likely
to happen in a real application. This is usually addressed by limiting the torque of each
wheel or adjusting the type of floor to increase the friction between the wheels and the
floor, but it cannot be guaranteed that wheel-slip will not take place. This issue must
be taken into account because all information computed from encoder measurements
becomes useless when wheel-slip happens, and it could quickly lead to high estimate
errors.

IMU data was simulated including bias, white noise and bias instability, but no misalign-
ment or non-orthogonality errors were considered. Furthermore, it was assumed that the
exact position of the inertial sensors’ axis origin was known, which in a real application
it will not be that accurately known. Also the axis of the IMU were considered parallel
to the axis of the body frame, but in the real robot there may be some inaccuracies when
mounting the IMU and thus, both reference frame could have some unknown deviation.
Nevertheless, misalignment and non-orthogonality are well calibrated during the man-
ufacturing process, and the errors that this can introduce are constant so they can be
calibrated easily. The IMU model derived for the simulations is quite sofisticated, so the

79

Conclusion

main source for differences between simulations and experiments will not come frome the
mentioned model.

Regarding the drivetrain, many assumptions are made. The two motors actuating each
wheel are considered equal, but in reality they will most likely not be able to provide the
exact same torque or angular velocity under the same input. Both wheels may not be
colinear and there is also some play between the motor axis and the wheel axis to which
it is attached. The wheels, as all objects, are subjected to elastic deformations under
different loads, both static and dynamic. They also do not have a constant radius across
their circumference, so even if properly calibrated, the resulting wheel radius will only
be an average value. All of these uncertainties are inherent of every drivetrain system,
so no matter how accurate the encoders used are, these errors will play their part on the
estimation accuracy.

Finally, the particle filter presented here has one issue that needs to be adressed. In
a certain situation when the position measurements are not available to update the
predictions, the uncertainty starts to grow, and so does the distribution of the particles
according to the amount of noise feeded to the system update step. But if this noise
is underestimated, the real position of the robot could get far away from the cloud of
particles representing the belief on the position. Theoretically, when the measurements
are reintroduced after this moment of oclusion, the particles will converge to the real
position given by the measurements. Unfortunatelly, due to numerical limitations of the
operating system this is not the case. When the particles are far away from the real
position, the weights given to them by the current measurement update step will assign
really small values, and since this weight is represented by a finite amount of bits, the
computer may not distinguish between such small numbers, it will asign them the same
lowest number that it can recognize. Therefore, all particles could end up with the same
weight, even though some of them are a little more likely than the others.

The approach proposed here is simply to try to ensure that enough noise is beeing
introduced in the system update step so that the real position of the robot is more likely
to be accounted for. This solution also helps in correcting the heading estimate when the
measurements are used. However, it is difficult to determine how much noise is adecuate,
because overestimating it could be as unfavourable as underestimating it.

A possible solution could be to just shift the particles to the measured position whenever
it is detected that after the measurement update, all particles remained with the same
weights. The problem with this approach is that while the estimated position will get
corrected, the heading will not. Furthermore, it will actually estimate that the real
heading is the one of the particle that was closer to the measurement after the position
shift, which most likely will not be the right heading.

Another solution could be to increase the standard deviation of the probability density
function used to compute the weights in Section 5.5.4 so that it can assign different

80

6.2 Future Work

values to each particle and bring them to an eventual convergence. Afterwards, this
standard deviation should be reduced accordingly when the estimate gets closer to the
real position.

81

Appendices

82

Appendix A

Sensor measurement models

In this annex, measurement models for the sensors used in the TWIPR are be presented.
This models were used to perform simulation anaylisis.

A.1 Accelerometer

With all the considerations and assumptions discussed in Section 2.2.1 and the error
characteristics presented in Section 2.3, the accelerometer measurement model simplifies
to

ya(t) = RNS (aN nn(t)− gN) + ba(t) + ηa(t) (A.1)

For simplification, the terms aN nn(t)− gN will be unified in one single acceleration aN .

The acceleration aS represents the true value that the sensor is measuring. In this case,
the acceleration that the sensor experiences during motion of the robot is given by the
sum of a translational acceleration and an acceleration due to rotations. All of these
components can be obtained from the true state of the robot in the global reference
frame and must be transformed to the IMU reference frame.

The gravity vector is constant in the global coordinates and in the opposite direction to
the z axis. In a steady situation, without any movement of the object, the influence of
gravity can be expressed as:

gS = RNS gN = RNS

0

0

g

 (A.2)

Measurements are affected also by linear acceleration. Considering that the translational
acceleration obtained by the motion of the wheels is given only in the x direction in the

83

Sensor measurement models

IMU

g

θ

at

an
aRr

zb

xc

zc

xb

aL

Figure A.1: Accelerations experienced by the robot

navigation reference frame:

aS L = RCS aC L = RCS

ax,L0

0

 (A.3)

However, to compute the acceleration during the movement of the object, we should also
analyze rotation dynamics. The rotation axis of the object is translocated as compared
to the rotation axis of the sensor by a vector r (having rx, ry and rz as components).
As the result of rotation dynamics, the centrifugal and tangential accelerations should
be taken into consideration:

aS R = RCS aC R = RCS (aC t + aC n) (A.4)

Where the tangential acceleration is given by:

aC t = ω̇C × rC (A.5)

And the normal accelerations are given by:

aC n = ωC × vC = ωC × ωC × rC (A.6)

Summing up all these contributions, we get the following measured accelerations:

aS = − gS + aS L + aS R (A.7)

84

A.2 Gyroscope

A.2 Gyroscope

With all the considerations discussed in Section 2.2.1 and the error characteristics from
Section 2.3, the gyroscope measurement model simplifies to

yω(t) = ωnv(t) + bω(t) + ηω(t) (A.8)

and the left subindex denoting the sensor frame s has been omitted for clarification.

When simulating the robot, the navigation rate can be obtained from the true state of
the robot by transforming the angular velocities φ̇ ,θ̇ and ψ̇ from the Euler intrinsic “zyx”
convention in which are given, to the sensor reference frame S.

First, we compute the orientation of the body by following the convention, first a rotation
ψ about the z-axis and then a rotation θ about the new y-axis.

qBN k(t) = qBN ψ(t)⊗ qBN θ(t) (A.9)

With this orientation, and the orientation of the previous time step, we can get the
relative orientation dq(t) as

dqB
N (t) = qB ∗N k−1(t)⊗ qBN k(t) (A.10)

Finally, the angular velocity, in the global reference frame, comes from this relative
orientation with the following formula:

ωN nv(t) =
A(dq(t))V (dq(t))

Ts
(A.11)

Now it is only necessary to transform it to the sensor reference frame.

ωS (t) = qNS (t)⊗ ωN nv(t)⊗ qN ∗S (t) (A.12)

A.3 Encoders

The encoder measurements can be derived from the relationship between the rotational
speed of each wheel, the velocity of the robot and the steering velocity

ẋ =
r(ωR + ωL)

2
ψ̇ =

r(ωR − ωL)

d

Where r is the wheel radius and d is the distance between the wheels. By combining
these two equations we can obtain an expression for each wheel:

ωR =
ẋ

r
+
ψ̇d

2r
ωL =

ẋ

r
− ψ̇d

2r

85

Appendix B

UMBmark procedure for systematic
calibration

Borenstein and Feng [12] have developed a procedure for the measurement and correction
of systematic odometry errors. This method is called the University of Michigan Bench-
mark test (UMBmark), and it requires the robot to traverse a square path. The robot
does not need to be programmed to track the path and reach the exact initial position at
the end because this test aims at determining the odometry errors and not control errors.
Under ideal conditions, the robot would return to the starting position, but due to errors
it will end its path in a different location, near the initial one. In the end, the absolute
measurements of position and orientation must be compared to the ones obtained from
odometry.

Since performing the test in only one direction may conceal two mutually compensating
odometry errors, the experiment must be performed both in clockwise and counterclock-
wise direction, at least 5 times each.

The result of the experiment could look similar to the one shown in Figure B.1. From
this experiment, two things can be noted: the stopping positions after cw and ccw runs
are clustered in two distinct areas; and the distribution within the cw and ccw clusters
are the result of nonsystematic errors.

The coordinates of the centers of gravity of the clusters are computed as

xcg,cw/ccw =
1

N

N∑
i=1

xiabs − xiod (B.1)

ycg,cw/ccw =
1

N

N∑
i=1

yiabs − yiod (B.2)

where n is the number of times the experiment was performed in each direction.

86

y c
g
,c
c
w

xcg,ccw

ccw cluster

x [mm]

y [mm]

xcg,cw

y c
g
,c
w

cw cluster

Starting
Point

50

50

100 150 200 250

-50

-100

100

Figure B.1: Typical results from running UMBmark with an uncalibrated vehicle.

In this case, Type A errors are caused mainly by an error in the nominal wheelbase. This
causes more or less turning at each corner of the square path. The amount of erroneous
rotation in each nominal 90-degree turn is denoted as α. Type B errors are mostly caused
by difference in wheel radius. As a result, the robot experiences a curved path instead
of a straight one. The incremental orientation error at the end of each leg of the square
path is denoted as β.

These two orientation errors can be computed from the results of the experiment by

α =
xcg,cw + xcg,ccw

−4L
(B.3)

β =
xcg,cw − xcg,ccw

−4L
(B.4)

the radius of curvature R of the curved path can be found as

R =
L/2

sinβ/2
(B.5)

this radius can be used to determine the ratio between the two wheel diameters Ed that
caused the robot to travel on a curved, instead of a straight path

Ed =
rR
rL

=
R+ b/2

R− b/2
(B.6)

87

UMBmark procedure for systematic calibration

The wheelbase error Eb is directly proportional to the actual amount of rotation, so it
can be computed from the proportion

bactual
90◦

=
bnominal
90◦ − α

(B.7)

so that
bactual =

90◦

90◦ − α
bnominal (B.8)

Once Eb and Ed are computed, it is straightforward to use their values as compensation
factors in the controller software.

88

References

[1] S. Kim and S. Kwon, Dynamic Modelling of a Two-wheeled Inverted Pendulum Bal-
ancing Mobile Robot. International Journal of Control, Automation and Systems, vol.
13, August 2015.

[2] J. D. Hol., Sensor Fusion and Calibration of Inertial Sensors, Vision, Ultra-Wideband
and GPS. Dissertation no. 1368, Linköping University, Linköping, Sweden, June 2011.

[3] X. Ruan, J. Chen, J. Cai and L. Dai, Balancing Control of the Two-Wheeled Up-
standing Robot Using Adaptive Fuzzy Control Method. Proc. of IEEE International
Conference on Intelligent Computing and Intelligent Systems, Shanghai, November
2009.

[4] X. Ruan, J. Cai and J. Chan, Learning to control two-wheeled self-balancing robot
using reinforcement learning rules and fuzzy neural networks. Proc. of IEEE 4th In-
ternational Conference on Natural Computation, Jinan, October 2008.

[5] J. Wu and W. Zhang, Design of fuzzy logic controller for two-wheeled selfbalancing
robot. Proc. of 6th International Forum on Strategic Technology (IFOST), Harbin,
August 2011.

[6] Y. H. Wen, Y. S. Lin and Y. G. Leu, Design and implementation of the balance of
two-wheeled robots. Proc. of IEEE International Conference on Advanced Robotics
and Intelligent Systems (ARIS), Tainan, June 2013.

[7] K. Watanabe, J. Tang, M. Nakamura, S. Koga and T. Fukuda, Mobile robot control
using fuzzy gaussian neural networks. Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Yokohama, July 1993.

[8] A. A. Bature, S. Buyamin, M. N. Ahmad and M. Muhammad, A comparison of
controllers for balancing two wheeled inverted pendulum robot. International Journal
of Mechanical and Mechatronics Engineering (IJMME-IJENS), vol. 14, 2014.

[9] Y. Shu, C. Bo, G. Shen, C. Zhao, L. Li and F. Zhao, Magicol: Indoor Localization
Using Pervasive Magnetic Field and Opportunistic WiFi Sensing. IEEE Journal on
Selected Areas in Communications, vol. 33, no. 7, pp. 1443-1457, July 2015

89

References

[10] T. Seel, Learning control and inertial realtime gait analysis in biomedical ap-
plications: improving diagnosis and treatment by automatic adaption and feed-
back control Doctoral Thesis. Berlin: Technische Universität Berlin, 2016. doi:
10.14279/depositonce- 4973. url: http://dx.doi.org/10.14279/depositonce-4973 (cit.
a p. 33)

[11] Optitrack, Flex13, 2019. https://optitrack.com/products/flex-13/.

[12] J. Borenstein and L. Feng, UMBmark: A Benchmark Test for Measuring Dead-
reckoning Errors in Mobile Robots. 1995 SPIE Conference on Mobile Robots, Philadel-
phia, PA, October 1995.

[13] F. Zafari, A. Gkelias, and Kin K. Leung A Survey of Indoor Localization Systems
and Technologies. IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp.
2568-2599, thirdquarter 2019

[14] J. Borenstein, H. R. Everett, and L. Feng Where am I? Sensors and Methods for
Mobile Robot Positioning. University of Michigan, April 1996.

[15] G. Kitagawa, Monte Carlo filter and smoother and non-Gaussian nonlinear state
space models. Journal of Computational and Graphical Statistics, vol. 5, March 1996.

[16] J. Carpenter, P. Clifford, and P. Fearnhead, An improved particle filter for nonlinear
problems. IEE Proceedings, Radar, Sonar and Navigation, vol. 146, April 1999.

[17] J. Liu and R. Chen, Sequential Monte-Carlo methods for dynamic systems. Journal
of the American Statistical Association, vol. 93, September 1998.

[18] E. R. Beadle and P. M. Djurić, A fast-weighted Bayesian bootstrap filter for nonlinear
model state estimation. IEEE Transactions on Aerospace and Electronic Systems, vol.
33, January 1997.

[19] Tiancheng Li, Miodrag Bolić, and Petar M. Djurić, Resampling Methods for Parti-
cle Filtering: Classification, Implementation and Strategies. IEEE Signal Processing
Magazine, April 2015.

[20] A. Botchkarev, Performance Metrics (Error Measures) in Machine Learning Regres-
sion, Forecasting and Prognostics: Properties and Typology Interdisciplinary Journal
of Information, Knowledge, and Management, 2019.

90

https://optitrack.com/products/flex-13/

	List of Tables
	List of Figures
	Introduction
	Motivation
	Objective of the thesis
	Structure

	System Characteristics
	The TWIPR
	Notations and Coordinate Systems
	System Dynamics
	Feedback Controller

	Sensors
	Inertial Measurements Unit
	Encoders
	Motion Capture System

	Error Characteristics
	Accelerometers and Gyroscopes
	Odometry

	Orientation Estimation
	Probabilistic Models
	Mathematical Representation of Orientations and Rotations
	Rotation Matrices
	Euler Angles
	Unit Quaternions
	Heading and Inclination

	Basics of Orientation Estimation
	Sensor Fusion
	Extended Kalman Filter

	Position Estimation
	Relative Tracking
	Absolute Localization
	Nonlinear Filtering
	State Space Model
	Bayesian Filtering
	The Particle Filter

	Slip Detection

	Simulation-based Evaluation
	Introduction
	Error Metrics
	Simulation Setup
	Methods for Orientation Estimation
	Initial Parameters
	Object moving freely in space
	Robotic motion

	Methods for Position Estimation
	Odometry
	Inertial Navigation
	Complementary Filters
	The Particle Filter
	Straight Path
	Curved Path

	Conclusion
	Summary
	Future Work

	Appendices
	Sensor measurement models
	Accelerometer
	Gyroscope
	Encoders

	UMBmark procedure for systematic calibration

