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Abstract

This academic work was born as an evolution of the pre-existing BAT-MAN project
developed in the last two years by the company Brain Technologies. From it, we
took the basic concepts in order to apply them into the Cyber-physical security field.
The goal in fact is to use an observer-based approach to be able to successfully
detect an attack and, above all, identify the kind of attack the system is receiving.

Different analysis and tests have been performed, so that only the most significant
are presented in this work. The first part presents a brief dissertation of the cyber-
physical security field in general. Part II aims to the introduction of the formal
theory that explains the system developed, while in Part III an application to a
DC-motor is presented, as well as the reasoning that took us to the final concept.
Finally, Part IV concludes the work and presents a final discussion on the method.
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Chapter 1

Introduction

1.1 Why it is important to study Cyber-Physical
Security?

The concept behind this thesis work is inspired by the growing technological de-
velopment that involves an ever increasing number of devices remotely connected,
expanding an approach already implemented by the company Brain Technologies in
other applications, with the goal of applying it to the Fault and Attack detection,
with particular emphasis on distributed cyber-physical security.

With the advancement of technology, we observe more and more an increasing
fusion between informatic and physical systems, with huge impact on life and
security of human beings. This makes of primary importance the development of
defense systems able to detect extern attacks to the system, such as the one direct
to the Iranian nuclear power plants, one of the most famous cyber-attack of this
kind. In that case, a virus called Stuxnet was able to modify the speed of the nuclear
power plants centrifuges, sending in the meantime wrong data to the operators, so
to avoid its detection [1].

The cyber-physical security theme has become of great relevance in the last
decades, with a notable increase of the literature on the subject.

1.2 Brief history of cyber-physical security
Resuming the contents of [2] and [3], on which this section is based, the term cyber-
physical system was conied in 2006 to describe all this kind of system that integrates
cyber and physical worlds, but the researches and the interest in this interaction
was real strong yet many years before, starting from the ’90s. However, the origins
of this field have their basis on the computer invention. The first computer ENIAC
was built in 1946, but we have to wait until 1973 for the first real-time computations,
which laid the foundation for the cyber-physical system to born. Meanwhile, also
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the Internet started its developmente, with the first network ARPANET developed
in 1969, so that around the end of the ’90s the convergenge of communication and
computation was at complete. An important milestone in the building of complete
and useful cyber-physical system was posed around 1998 with the development of
sensors capable of sensing, communication and computation, increasing even more
the physical integration of the cyber-systems. In recent years, all this has evolved
even more, with the concept of Internet of Things and an increasing demand in for
better and more efficient energy, transportation, healtcare and water systems.

In parallel to the evolution of the cyber-physical system technology, the security
problem were studied, to make us able to detect and interrupt an intruder that could
modify the behaviour of a system. The history of cyber-physical system presents
differents cases of importante and noticeable attacks, like the most famous Stuxnet
one, and are presented graphically in figure 1.1, directly taked from [3]. A complete
report of all the different attack occurred is impossible to compile, due to the lack
of information in many cases. In fact, in the figures, as the authors claimed, only
the publicly reported attacks are presented.

Since Stuxnet, reports on cyber-physical attacks have mul-
tiplied. A history of publicly reported incidents illustrates a
remarkable variety of motives and attack approaches in
cyberspace with a direct impact in physical space. Public
spending on security of critical national infrastructures
against security threats has also increased globally and
researchers have extended the breadth of potential targets by
staging attacks against implantable medical devices, private
cars, autonomous vehicles, building automation devices, and
other cyber-physical systems. Causing physical damage or
injury with a cyber attack is now seen as a reality, not merely
a possibility.

Figure 2.3 shows a timeline of the publicly reported incidents
that were discussed in this chapter. Notable incidents con-
firmed to have been the result of a cyber security breach,
whether real-world ones or research experiments, are
highlighted with a dark background.

Figure 2.3 Historical timeline of publicly reported cyber-physical security incidents. The upper half contains
notable real-world incidents and the lower half contains notable research experiments. Confirmed cyber-physical
attacks are highlighted with a dark background.

Chapter 2 A HISTORY OF CYBER-PHYSICAL SECURITY INCIDENTS 55

Figure 1.1: Historical timeline of known CPS attacks [3]
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1.3 – State of the art of cyber-pysical security

1.3 State of the art of cyber-pysical security
As of now, the CPS security field is still not totally examined, and the researches
and studies are increasing as long as the technology advances and the intruders
achieve more and more refined methods of attacking. In tables 1.1 and 1.2, directly
taken from [4], a taxonomy of the different possible attacks that a CPS can receive
is presented. In table 1.1, the second column represents if noise has been considered
or not in the approach. Appendix A better explains some of the terms present in
the table.

According to [5] the defense of a CPS has to be performed through three different
aspects:

• Prevention
Ability to prevent attacks by providing authentication, access controls, security
policies, and network segmentation.

• Detection
Ability to detect that the CPS is receiving an attack.

• Response
The ability of the CPS to automatically reduce the impact of the attack without
human intervention.

The attacks, as well as the faults that the CPS could faces, are different and
numerous, and need a specific approach to mitigate them. Looking at the different
faults, [6] presents a good list of the different possibilities that a designer can try in
order to avoid and/or counterattacks the effects of faults:

• Data Methods and Signal Models

• Limit checking and trend checking
• Data analysis (PCA)
• Spectrum analysis and parametric models
• Pattern recognition (neural nets)

• Process Model Based Methods

• Parity equations
• State observers
• Parameter estimation
• Nonlinear models (neural nets)

• Knowledge Based Methods
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• Expert systems
• Fuzzy logic

On the other hand, looking at the attacks induced by an external intruder, we
can have different possibilities too. According to [7], the taxonomy of the attack
detection methods is divided depending on the type of controller, centralized or
distributed:

• Centralized Controllers

• Attack Detection Design
• State Estimation
• χ2 detector
• Fault Detection and Identification method
• Binary Hypothesis-Based Method
• Model-Free Detection Scheme

• Attack Detection Against Actuator and Sensor Attack
• Attack Space Search Method
• Convex Relaxation Method
• Attack Estimation Method
• Watermarking Method

• Attack Detection for Nonlinear Systems
• Iterative State Estimation
• Kalman Filter-Based Method
• Observer-Based Method

• Attack Detection in the Presence of Noise
• Modified Kalman filter

• Distributed Controllers

• Attack Detection Design
• Centralized Method
• Singular Value Decomposition
• Fault Detection and Identification Method

More informations on the state of art of CPS security can be found in [8], an
interesting paper presenting all the different threats that various CPS have to
counterattacks, that can’t be resumed here in few pages.

12
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Type of System Noise Attack Models Defense
Mechanism

Power Grid Yes False data injection
on sensors Residue detector

Control System No Attacks on Sensor
and Actuators Detection Filters

Control System No Attacks on Sensor
and Actuators

Optimization
Decoders

Control System Yes Replay Attacks χ2 detector

Wireless Network No State Attacks Output Estimator

Distributed
Network No State Attacks Combinatorial

estimator

Sensor Network Yes Dynamic False
Data Injection Residue Detector

Table 1.1: Taxonomy of CPS Security Approaches from a Control-theoretic Perspective [4]

Analysis
Perspective Highlights

Protocol
Vulnerabilities Modeling CPS protocols to detect anomalies

PLC Software Verifying PLC code and memory to prevent violations

Process Variables Predicting CPS process behavior to detect anomalies

Network
Measurements Data-driven approaches to infer CPS cyber attacks

Table 1.2: Taxonomy of CPS Security Approaches from a Cyber Security Perspective [4]
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Chapter 2

Problem Setup

In this chapter is introduced the problem we have to deal with. Before showing the
analysis and the development of the attack identification system, which is performed
in Part III, here there is a brief introduction of the general setup to which our
system aims.

2.1 Goal of the work
The system studied in this thesis is a distributed control system (DCS) composed by
different embedded system remotely connected. Because of this the communications
between different systems can be attacked and modified by an external intruder.
The objective is then be able not only to detect the attack, but also to identify
which of the communication has been attacked, or, in other words, which of the
signals the embedded systems share has been modified.

2.2 System under attack
Here we introduce the formal presentation of the problem. Our DCS system is
composed by different systems here presented:

• Plant: the real physical system;

• Load: the real physical system to which the plant is connected;

• Controller : the system able to control the plant;

• Reference generator : the system that generates the reference for the controller;

• Observers: the system that contains the observers used for the detection and
identification of the attacks;
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• Detection and Identification system (DaIS): system which performs the attack
detection and identification algorithm after having received the outputs of the
plant and of the observers;

These systems communicate between them sharing information, thus every signal
could be modified by an intruder. Let’s formalize the problem. We can model the
plant as a MIMO system of the form:ẋp(t) = Apxp(t) +Bpup(t) + Epdp(t)

yp(t) = Cpxp(t)
(2.1)

where:

• xp ∈ Rnp is the state of the plant;

• up ∈ Rrp is the known plant input;

• dp ∈ Rqp is the unknown plant input, given by the load;

• yp ∈ Rmp is the plant output;

• Ap, Bp, Ep, Cp are matrices respectively ∈ Rnp×np Rnp×rp , Rnp×qp , Rmp×np ;

The system (2.1) is controlled by a controller able to achieve the tracking of a
specified reference signal r(t):

yp,i(t) = r(t), where i represents the output signal to be controlled

The controller can be represented in state-space as:ẋc(t) = Acxc(t) +Bcuc(t),
yc(t) = Ccxc(t) +Dcuc(t),

(2.2)

where:

• xc ∈ Rnc is the state of the controller;

• uc =
C
r(t)
yp(t)

D
∈ Rrc is the controller input;

• yc = up ∈ Rmc is the controller output;

• Ac, Bc, Cc, Dc are matrices respectively ∈ Rnc×nc , Rnc×rc , Rmc×nc , Rmc×rc ;

As already stated, systems (2.1) and (2.2) represent a DCS and an external attack
could involve any different signal they receive and/or send, i.e.: yp(t), r(t), yc(t).
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To be able to detect and identify the kind of attack the system is receiving, an
observer has to be built. So, it is necessary to build the state-space representation
of the total system composed by (2.1) and (2.2) [9]:ẋtot(t) = Atotxtot(t) +Btotutot(t) + Etotdtot(t),

ytot(t) = Ctotxtot(t),
(2.3)

where:

• xtot =
C
xp(t)
xc(t)

D
∈ Rntot , with ntot = np + nc, is the state of the total system

composed by the plant and the controller;

• utot = r(t) ∈ Rrtot is the total system input;

• dtot ∈ Rqtot , with qtot = qp, as well as dtot = dp is the total system unknown
input;

• ytot =
C
yp(t)
yc(t)

D
∈ Rmtot , with mtot = mp +mc is the total system output;

• Atot, Btot, Ctot, Dtot are matrices respectively ∈ Rntot×ntot , Rntot×rtot , Rmtot×ntot ,
Rmtot×rtot ;

Figure 2.1: Model of system (2.3)

2.3 Concept of the attack identification system
Here a brief explanation of the concept of the project is presented. The methodology
takes its basis from the Fault Detection literature, and evolves them in order to
achieve the correct attack identification. Therefore, the general approach is still
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the usage of observers in order to reconstruct the nominal correct state of the
system under attack, so to check if there are differences between the observers and
system outputs. In this thesis approach, the next step is to build a bank of different
observers, each one able to reconstruct the state of the system under different
attacks. In other words, every different observer contains into its parameters the
information of one of the possible attacks, so that when that specific attack occurs,
its output produce no residual errors with respect to the system output.

Once the bank of observers is built, an algorithm able to identify the correct
attack occurring based on the different residuals each observer produce, is needed.
The design of the bank od observers and of the algorithm, as well as the reasonings
and preliminar analysis that led to the final results are explained in Part III.
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Chapter 3

Residual Computation

3.1 Observer Design
As seen in Part I, in order to detect and identify an attack, an observer is needed,
able to estimate the state xtot of system (2.3). Since (2.3) presents an unknown
input, is not possible to use a Luenberger observer, but a more advanced Unknown
Input observer has to be designed [10]:


żobs = Fobszobs + TobsBtotutot +Kobsytot,

x̂tot = zobs +Hobsytot,

yobs = Cobsx̂tot

(3.1)

where:

• zobs ∈ Rnobs , with nobs = ntot is the internal state of the observer;

• Fobs, Tobs, Kobs, Hobs are matrices to be built in order to effectively estimate
xtot. They respectively ∈ Rnobs×nobs , Rntot×ntot , Rnobs×mtot , Rntot×mtot ;

• Cobs ∈ Rmtot×ntot is needed in order to choose which states output;

A good design of the observer matrices make it able to achieve the condition

lim
t→∞

yobs(t) = ytot(t)

in a finite time. Of course, the less is t, the better, as long as other unwanted effect
arises, such as, for examples, peaks during the tranistional phases, and so on. In
order to detect an attack, the residual

e(t) = yobs(t) − ytot(t)

21



Residual Computation

has to be checked according to the following relation:|e(t)| < threshold, if system (2.3) is not under attack
|e(t)| > threshold, if system (2.3) is under attack

The threshold variable has to be chosen a-priori according to the system in order to
maximize the ratio attacks identified

attacks to (2.3) . The decision of the value is up to the designer.
This setup, however, can only detect the presence or not of an attack, but it

is not able to distinguish between the different kind of attacks, or the different
communications that have been attacked. To achieve this goal, is necessary to build
differents UIOs in order to reconstruct the correct xtot in the system, under different
attacks.

3.2 UIO for system (2.3) under attack
In the case of an attack, the UIO (3.1) has to be modified in order to achieve the
condition

lim
t→∞

yobs = ytot, under attack (3.2)

To achieve (3.2), an additional input uobs is given to the observer, representing the
model of the attack, defined a-priori:

żobs = Fobs,attzobs + Tobs,att

è
Btot Bobs,att

é utot

uobs

+Kobs,attytot,

x̂tot = zobs +Hobs,attytot,

yobs = Cobsx̂tot

(3.3)

where:

• Bobs,att ∈ Rnobs , Fobs,att, Tobs,att, Kobs,att, Hobs,att have to be constructed in order
to reflects the behaviour of the system (2.3) under attack;

3.2.1 Model of the attack
As seen, the UIO (3.3) need as input the model of the attack. This means that
we have to provide to the observer an a-priori defined signal that reproduce the
possible attack that (2.3) can receive, in terms of amplitude, kind of signal (step,
ramp, sine wave, . . . ) and frequency. Depending on the a-priori knowledge of
the designer on its system and its possible attacks, is up to him the decision of
the number and the kind of model of attack to build. Of course, a tradeoff is
needed. While a greater number of different attack model is better from an accuracy
of the attack identification system point of view, on the other hand it increases
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the computational time and the complexity of the decisional algorithm. Different
analysis and simulation can help to decide the correct number of attacks.

In this thesis work the model of attack has been set just to one kind. The reason
of that and the results this decision led to are better showed in Part III.

3.3 Bank of UIOs

In section 3.2 is shown how to construct an UIO for the system (2.3) under attack.
But to successfully identify and detect all the kinds of different attacks, a bank of
n + 1 observers is needed, where n represents the maximum number of different
communications that can be attacked, plus one additional UIO for the nominal
case. It has to be considered that also the bank of UIOs is an embedded system
that communicates remotely with (2.3), so that also its communications can be
attacked. Take further notes that the computation of the residuals and of the
decisional algorithm also takes place in another embedded system, with its own
communications, and thus with its own possible sources of attacks.

After having defined the number of different possible communication attacked n,
it is necessary to build the bank of n+ 1 UIOs, each one able to estimate correctly
the state xtot,i, where i = 1,2, . . . , n+ 1 represents the different attack that (2.3) is
receiving (when i = 1 the system is in nominal case).
The bank is here represented:

i = 1


żobs,i = Fobs,izobs,i + Tobs,iBtotutot +Kobs,iytot,

x̂tot,i = zobs,i +Hobs,iytot,

yobs,i = Cobsx̂tot,i

i = 2


żobs,i = Fobs,izobs + Tobs,i

è
Btot Bobs,i

é utot

uobs

+Kobs,iytot,

x̂tot,i = zobs,i +Hobs,iytot,

yobs,i = Cobsx̂tot,i

...

i = n+ 1


żobs,n+1 = Fobs,n+1zobs + Tobs,n+1

è
Btot Bobs,n+1

é utot

uobs

+Kobs,n+1ytot,

x̂tot,n+1 = zobs,n+1 +Hobs,n+1ytot,

yobs,n+1 = Cobsx̂tot,n+1
(3.4)
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3.4 Residuals computation
With the bank of observer (3.4) connected to the system (2.3), a total of mtot(n+ 1)
residuals has to be computed. In fact, for every n+1 observer (i.e., different possible
attack) , a total of mtot residual can be computed. The next step is to choose,
between the (n+ 1) sets of mtot residuals, which represents the attack in progress.
At every instant t, a matrix

Eres(t) =



e(t)1,1 . . . e(t)1,j . . . e(t)1,mtot

... ... ...
e(t)i,1 . . . e(t)i,j . . . e(t)i,mtot

... ... ...
e(t)n+1,1 . . . e(t)n+1,j . . . e(t)n+1,mtot

 ∈ R(n+1)×mtot

can be built, where i = 1, . . . , (n+ 1) represents the kind of attacks the system can
receive plus the nominal case, and j = 1, . . . ,mtot represents the different residual
we can compute for every ith attack, since we have mtot outputs.

Then, in order to take note of the history of the error, the integral of the square of
the residual is performed. The square operation is needed to avoid sign discordance.
This way, we transform the residuals into an increasing monotone function. The
new matrix Eres becomes:

Eres(t) =



s t
0 e(t)2

1,1 dt . . .
s t

0 e(t)2
1,j dt . . .

s t
0 e(t)2

1,mtot
dt

... ... ...s t
0 e(t)2

i,1 dt . . .
s t

0 e(t)2
i,j dt . . .

s t
0 e(t)2

i,mtot
dt

... ... ...s t
0 e(t)2

n+1,1 dt . . .
s t

0 e(t)2
n+1,j dt . . .

s t
0 e(t)2

n+1,mtot
dt


∈ R(n+1)×mtot

(3.5)
The final step consists in finding an algorithm able to detect the current attack
based on Eres(t).

3.4.1 Synthetic index
Before moving to the detection and identification algorithm, a preliminary step on
the residuals has to be done. Up to now, the residuals computation give us a matrix
with different column, each one representing the residual of one of the output on
which we compute them. With this situation, the attack identification may be more
difficult since we have mtot different index to analyze, that can give us different
information on what is going on in the system.

In order to simplify the identification algorithm, without losing the information
each jth residual gives, a syntetic index ai able to resume all that is computed. It is
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3.4 – Residuals computation

simply defined as the norm of the mtot residual for each ith observer:

ai =
ó3Ú t

0
e(t)2

i,1 dt
42

+ . . .+
3Ú t

0
e(t)2

i,j dt
42

+ . . .+ +
3Ú t

0
e(t)2

i,mtot
dt
42

This way, we can rewrite another time the matrix Eres used in the attack
identification as:

Eres(t) =



ñ
(
s t

0 e(t)2
1,1 dt)2 + . . .+ (

s t
0 e(t)2

1,j dt)2 + . . .+ (
s t

0 e(t)2
1,mtot

dt)2

...ñ
(
s t

0 e(t)2
i,1 dt)2 + . . .+ (

s t
0 e(t)2

i,j dt)2 + . . .+ (
s t

0 e(t)2
i,mtot

dt)2

...ñ
(
s t

0 e(t)2
n+1,1 dt)2 + . . .+ (

s t
0 e(t)2

n+1,j dt)2 + . . .+ (
s t

0 e(t)2
n+1,mtot

dt)2


(3.6)

where Eres ∈ R(n+1).
The next step consists in defining an algorithm able to detect and succesfully identify
the correct communication attacked. This will be explained in the next chapter.
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Chapter 4

Attack Identification

The Attack Identification process is made up of two different phases, a Detection
phase and an Identification phase.

4.1 Detection phase
The detection phase is directly taken from the basis of the Fault Detection literature,
and consists in a check on Eres,1, since when i = 1, the residuals concern the
nominal observer, i.e.: the observer designed to reconstruct the correct xtot state
when no attack is present on (2.3), integrated with the output of a system copy,i.e:
a state-space representation of (2.3). As already seen in section 3.1, the idea is to
simply check if the computed index overcome an a-priori defined threshold. The
index used for the detection, defined as Edet is computed as:

Edet = ë[Eres,1(t), Eres,copy(t)]ë

where Eres,copy(t) is the vector that contains the integrals of the errors of the system
copy with respect to the real system:

Eres,copy(t) =



s t
0(ytot,1(t) − ycopy,1(t))2 dt

...s t
0(ytot,j(t) − ycopy,j(t))2 dt

...s t
0(ytot,mtot(t) − ycopy,mtot(t))2 dt



|

Edet(t) < threshold, if system (2.3) is not under attack
Edet(t) > threshold, if system (2.3) is under attack

The definition of the threshold is up to the designer, that has to take into account
noise, model uncertainties, false alarm rates, and so on.
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If this first phase detect an attack, the second phase is triggered, which is the
core of the project. In fact, the second phase consists in the identification algorithm,
that has to correctly identify the attacked communication.

4.2 Identification phase
The identification phase is much more complex with respect to the detection one,
because we have to discern between the different possible attack that the system
can receive.

After various test and analysis on the different possible method to use, which will
be better explained in Part III, the algorithm implemented consisted in a decision
tree. Before entering in the explanation of the decision tree algorithm used for the
project, a brief introduction to what is a decision tree is presented.

4.2.1 What is a decision tree?
A decision tree is a computational intelligence model able to predict responses to
data [11], easily expressed in the form of a set of logical rules describing the decision
functions [12].

It has, as its name suggests, a tree-like structure, where the branches continues
to split up depending on the data, until we reach a leaf, i.e.: the prediction that the
decision tree is making (the output). Figure 4.1, taken from [13] shows an example
of a decision tree.

The classification process is made up of two phases: a training one, where the
decision tree model is built up on a training set, and a prediction phase, in which
the decision tree is used to predict data classes. The training set should be selected
randomly, and each data has to be labeled into a specific class. During the prediction
phase, the labels are the output of the decision tree, while the observation data
are the inputs. The second phase must be done on a different set with respect to
the training one, in order to verify the efficiency in prediction. Another important
aspect to keep in mind when designing a decision tree is the overfitting problem.
When the decision tree predicts also the noise (it takes into consideration also non
important data), it is said that it is overfitting, i.e.: the decision tree is so efficient
on the training set that it can not predict correctly others data that are not part of
that set, making it useless in a real application. To avoid overfitting it is possible to
use a χ2 test to understand which leaves and/or branches can be cut off. [14]
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Figure 4.1: Example of a decision tree [13]

4.2.2 Residuals reset and time dependency
Before moving to the decision tree design explanation, it is really important to
notice the time dependency of Eres. In fact, since the residuals are then integrated,
their value is directly dependent on the time window used to compute them. This
can nullify the usage of a decision tree to make the identification, since the data
would never be consistent between them as the values of Eres would grow constantly.

In order to solve this, a reset of the initial condition of the integral is performed
every a-priori defined time period. This way the computation of the index used for
the identification will ever be done in the same time window, thus avoiding different
values depending on the observation time. So, Eres (3.6) becomes:

Eres(t) =



ñ
(
s tf

ti
e(t)2

1,1 dt)2 + . . .+ (
s tf

ti
e(t)2

1,j dt)2 + . . .+ (
s tf

ti
e(t)2

1,mtot
dt)2

...ñ
(
s tf

ti
e(t)2

i,1 dt)2 + . . .+ (
s tf

ti
e(t)2

i,j dt)2 + . . .+ (
s tf

ti
e(t)2

i,mtot
dt)2

...ñ
(
s tf

ti
e(t)2

n,1 dt)2 + . . .+ (
s tf

ti
e(t)2

n,j dt)2 + . . .+ (
s tf

ti
e(t)2

n,mtot
dt)2


(4.1)

where ti < t < tf ; ti represents the time at which the computation of the integral
starts, while tf represents the end of the computation. This means, that in order
to make possible the utilization of the decision tree in the real world, the Eres

computation must be done every T seconds, where T = tf − ti. This way, a the end
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of the period, we end up having Eres(tf ), that will be used by the decision tree for
the identification of the attack.

All this means that is possible to identify the attack only at the end of each
period. It goes without saying, then, that the definition of the time period is really
important, and must be done after having analized the tradeoff between decision
tree accuracy, and speed of the identification system.

4.2.3 Decision tree design
As seen in 4.2.1, to design an effective decision tree able to identify the attack,
first of all we need to build a suitable training set. The training set must carefully
computed, to reach a tradeoff between an effective decision tree, and the risk of
overfitting.

The training set is computed running the system under different situations and
saving the results given by it. Before that, however, the designer of the system
has to decide what to use as data for training. In fact, in section 4.2.2 we have
analized the time dependency of Eres and its reset after T seconds. This bring us to
the question of what data utilize as training. The simplest possibility could be to
just use the last value computed, i.e.: Eres(tf ). This situatuon, however, make the
system strongly dependent on the time period decided for the residual computation.
So, other possibilities can be chosen, such as the mean of the values, the median,
or even all these grouped. In PART III, where an application to a DC-motor is
studied, the difference between these possibilities is better analyzed.

So, when the decision of the index to be utilized is made, after having saved a
sufficient number of data, the training set will be (when for example, the index
utilized is the last value of the integral at time tf ):

training set =


E|

res,1(tf )
E|

res,2(tf )
...

E|
res,ndata

(tf )

 ∈ Rndata×n (4.2)

The matrix is so composed:

• every row consists in a different simulation, thus in a different attack that the
system (2.3) is receiving;

• ndata is the number of different simulation performed to build the training set;

• every column i = 1,2, . . . , n represents the different result given by the differents
n UIOs; note that the totale number is n and not n+ 1, since the observer for
the nominal case is used for the detection phase.
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4.3 Transient initial phase
This last section is to brief remember that at t = 0, the observers will produce
residuals greater than zero due to the different initial condition, but that has not to
be seen as an indication of the presence of an attack. To overcome this, is sufficient
to start the Detection and Identification Algorithm at the end of this transient
phases. Is worth notice, however, that this phase should last very few seconds,
so this should not make any problem in a real application. Figure 4.2 shows an
example of this. The data are referred to three different UIOs, and the reset occurs
at t = 6s. It can be seen how the transient phase affects the behaviour of the errors.
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Figure 4.2: Errors behaviour example before and after the reset
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Part III

Case Study
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Chapter 5

DC motor

In this chapter will be presented the case study of a DC-motor to which the Attack
identification system is applied. In the next chapter all the analisys and reasoning
that led to the final results are showed. As said, the case studied is represented
by a DC motor controlled by a cascade of two PI controller. Here we present the
state-space representations of the different systems. In Appendix B the data used
are presented.

5.1 Plant - DC motor
The DC motor is represented by the model (2.1). We can explicit the matrices of
the system as:[15]

Ap =


−
R

L
−
Ke

L
Kt

Jm

0

 , Bp =

 1
L
0

 , Ep =

 0

−
1
Jm

 , Cp =
C
1 0
0 1

D
(5.1)

where:

• R is the resistance in the armature circuit;

• L is the inductance in the armature circuit;

• Ke is the inductive voltage constant;

• Kt is the torque constant;

• Jm is the motor inertia;
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For what concerns state, input and output we have:

xp =
C
ia
ω

D
, up =

è
ua

é
, dp =

è
Tr

é
, yp =

C
ia
ω

D
(5.2)

where:

• ia is the armature current of the DC-motor;

• ω is the angular speed of the DC-motor;

• ua is the input voltage of the DC-motor;

• Tr is the load torque;

This way, (2.1) can be explictly rewritten as:

i̇a(t)
ω̇(t)

 =


−
R

L
−
Ke

L
Kt

Jm

0


ia(t)
ω(t)

+


1
L

0

ua(t) +


0

−
1
Jm

Tr(t)

ia(t)
ω(t)

 =
1 0

0 1

ia(t)
ω(t)


(5.3)

5.1.1 Load model
The load is modeled as a system with his own inertia and friction. The equation
that describe it is:

Tr = Jlω̇ + βlω (5.4)
where:

• Jl is the load inertia;

• βl is the load friction coefficient;

5.2 Reference
The refence has been modeled as a square wave with amplitude of 75 rad

s
, offset

of 75 rad

s
, frequency of 1

5 Hz, and duty cycle of 50%, and represent the angular
speed profile we want the DC-motor to follow. To avoid overshoot it is filtered by
a low-pass filter with transfer function 1

1 + s
6
. From now on the reference angular

speed will be designed as ωr.

36



5.3 – PI controllers

0 2 4 6 8 10 12 14 16 18 20
Time [s]

-20

0

20

40

60

80

100

120

140

160

180

200

Am
pl

itu
de

Reference omega
Reference omega filtered

Figure 5.1: Angular speed reference for the DC-motor

5.3 PI controllers
The DC-motor is controlloed by two PI controllers in cascade. The first one operates
the angular speed reference tracking, outputting the armature current control input,
while the second one operates the armature current control, outputting the input
voltage of the DC-motor. It is important to notice that the current has to be
saturated into a specific range to avoid high temperature ranges in the motor. To
do so, the output of the first PI is saturated within a range of ± 2ia,n, where ia,n is
the nominal armature current. The scheme is represented by figure 5.2. The two
state space representations of the single PIs are showed below. Since the system
has a saturation, when the total controller state space has to be written, we need
to output the armature current reference, so to saturates it externally, and then
feedback it to the controller once saturated.

• PI 1 - produces the current armature referenceẋc,1 = Bc,1uc,1

yc,1 = Cc,1xc,1 +Dc,1uc,1
(5.5)
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DC motor

Figure 5.2: Simulink scheme of the controller

• xc,1 =
s

(ωr − ω);
• uc,1 = ẋc,1 = (ωr − ω);
• Bc,1 = 1;Cc,1 = Ki,1;Dc,1 = Kp,1;
• Kp,1 = proportional coefficient of PI 1;
• Ki,1 = integral coefficient of PI 1;
• yc,1 = ir, i.e: armature current that the DC-motor should have to obtain

the tracking of ωr;

• PI 2 - produce the input voltage of the DC-motor, i.e: the control inputẋc,2 = Bc,2uc,2

yc,2 = Cc,2xc,2 +Dc,2uc,2
(5.6)

• xc,2 =
s

(ir,sat − ia);
• uc,2 = ẋc,2 = (ir,sat − ia);
• Bc,2 = 1;Cc,2 = Ki,2;Dc,2 = Kp,2;
• Kp,2 = proportional coefficient of PI 2;
• Ki,2 = integral coefficient of PI 2;
• yc,2 = ua;

5.4 Total system
After having defined the state-space of the systems considered individually, it is
possible to move to the overall state-space representation, needed for the design of
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the UIOs1. ẋtot(t) = Atotxtot(t) +Btotutot(t) + Etotdtot(t)
ytot(t) = Ctotxtot(t)

(5.7)

xtot =



s
(ωr − ωm)s
(ir,sat − ia)

ia
ωms
uas
ir


, utot =

C
ωr

ir.sat

D
, dtot =

è
Tr

é
, ytot =


ia
ωms
uas
ir

 (5.8)

So, we end up with 15 different possible communication attacked, that are so defined:

• 1 - output ua of the controller; both the plant and the observer receives the
wrong value;

• 2 - input ua of the plant; it receives the wrong value, while the observer receives
the correct one.

• 3 - input
s
ua of the observer; it receives the wrong value, while the plant

receives the correct one.

• 4 - output ia of the plant; the controller, the observer and the DaIS receive
the wrong value;

• 5 - input ia of the controller; it receives the wrong value, while the observer
and the DaIS receive the correct one;

• 6 - input ia of the observer; it receives the wrong value, while the controller
and the DaIS receive the correct one;

• 7 - input ia of the DaIS ; both the controller and the receiver receive the correct
value.

• 8 - output ω of the plant; the controller, the observer and the DaIS receive the
wrong value;

• 9 - input ω of the controller; it receives the wrong value, while the observer
and the DaIS receive the correct one;.

• 10 - input ω of the observer; it receives the wrong value, while the controller
and the DaIS receive the correct one;

• 11 - input ω of the DaIS ; both the controller and the receiver receive the correct
value.

1see Appendix B for the demonstration of the matrices computation.
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• 12 - input
s
ua of the DaIS ; both the controller and the receiver receive the

correct value.

• 13 - input ωr of the controller; the observer receives the correct value;

• 14 - input ωr of the observer; the controller receives the correct value;

• 15 - input ir of the observer;

Figure 5.3: Simulink scheme of the system with the rapresentation of all the communication
attacks

5.5 UIOs
Defined the overall state-space representation it is possible to design the Unknown
Input Observer2

5.5.1 Nominal case observer
To design the observer for the nominal case it is not needed the model of the attack,
so that its state-representation is:

żobs,1 = Fobs,1zobs,1 + Tobs,iBtotutot +Kobs,1ytot,

x̂tot,1 = zobs,1 +Hobs,1ytot,

yobs,1 = Cobsx̂tot,1

2see Appendix B for the matrices computation.
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where:

yobs,1 =

 ia,obs,1
ωobs,1s
ua,obs,1


5.5.2 Attack observer
In case of the observer designed to model the attacks, it needed to input them also
the model of the attack, that in our case was a continuous signal with amplitude 30.

żobs,i = Fobs,izobs + Tobs,i

è
Btot Bobs,i

é utot

uobs

+Kobs,iytot,

x̂tot,i = zobs,i +Hobs,iytot,

yobs,i = Cobsx̂tot,i

where:

• i = ∀i ∈ {2,3, . . . ,16}

• uobs = 30

• yobs,i =

 ia,obs,i

ωobs,is
ua,obs,i


For the observer matrices computation it is possible to see [10]. For the compu-

tation of F , the eigenvalues chosen are:

λ = 3
è
−10 −10 −11 −11 −11 −12

é
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Chapter 6

Tests and analysis

After having defined the framework used for the analysis, in this chapter is analized
the tests and reasoning that led to the final setup of the identification algorithm.

6.1 Synthetic index definition
In this section the reasoning that led to the definition of a synthetic index are
showed.

It is important to notice that in these previous analysis the setup was not yet the
final one, so some of residuals and the attacks modeled are different with respect to
the definitive ones. Anyway, the reasonings that led to the final configuration are
still valid and significative.

6.1.1 Winning Model Method
In this initial setup the attacks modeled are just the first 12, and the index used in
the identification algorithm are the square and the integral of the residuals related
to current, angular speed and voltage.

The first identification concept, before moving to the more complicated decision
tree, was to check the best model at each sample time. So, each sample time the
computation of the residuals is done, and the observer related to the minimum
residual is considered the best. By doing this for a certain time sequence, we end
up having a graph that can tell us for how much time every observer has benn the
best. The winning observer for the most time is considered the observer related to
the attack that the system is receiving.

NØ
t=1

ai(t), where
ai(t) = 1, if ei(t) = min ([e1(t), . . . , en(t)])
ai(t) = 0, if ei(t) /= min ([e1(t), . . . , en(t)])

, ∀i = 1,2, . . . , n

where:
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• N = total number of time samples;

• n = total number of observers;

• ei = residual related to the ith observer;

The observer with the max ai is the observer related to the attack to identify.
However, since we have different indices (six in this case), we can have different

results for each one of that, so that we are unable to identify the correct attack.
In figure 6.1 is showed an example of this. In that case, the system is receiving
a continuous attack 2 with amplitude 100, the same modeled in the observers.
Anyway, according to the different indices, we can not tell for sure that the attack
is the attack 2.

Another problem arises when the attack the system is receiving differs from the
one modeled in the observers. In this case we may unable to identify the correct
attack in any of indices, as showed in figure 6.2, where the system receives an attack
2 with amplitude of 40, while the observers still are modeled with an attack of
amplitude 100.
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Figure 6.1: Results of the winning model method, with attack 2 with amplitude 100, as in the
attack modeled in the UIOs

In order to resume all the different possible results that this method gives, figures
6.3 and 6.4 are showed. They presents the ability to identify correctly the attack
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Figure 6.2: Results of the winning model method, with attack 2 with amplitude 40, while in the
UIOs is modeled with amplitude 100

depending on the attack amplitude (y-axis) and on the index we are using (different
colors). On the x-axis are presented the different communication attacked.

The first graph is related to the case in which the amplitude of the attack modeled
in the observer is 100, i.e.: the max value simualted in the attacks, while the second
one presents the case in which in the observers the attack is modeled with amplitude
50. The second one gives better overall result, so that is preferable to use a model
of the attacks with the lowest possible amplitude.
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Figure 6.3: Efficiency of the winning model method with varying attack amplitude and amplitude
of the model of the attack in the observers equal to 100
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Figure 6.4: Efficiency of the winning model method with varying attack amplitude and amplitude
of the model of the attack in the observers equal to 50
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6.1.2 Probability Density Function method
Since the Winning Model method did not give satisfactory results, another method
has been tried, attempting to avoid the dependency on the residuals, that give us
only indications about the amplitudes of the errors, and trying to focus also on other
aspects. To do this, a method based on the probability density function (PDF) of
the outputs has been tried. The concept is to check the difference between the PDFs
of the outputs of the system attacked and of the observers, so that the observer with
the most similar PDFs with respect to the system ones, is the one corresponding to
the attack.
The difference is computed through the Bhattacharyya distance DB, so that[16]:

DB(p, q) = 1
4 ln

A
1
4

A
σ2

p

σ2
q

+
σ2

q

σ2
p

+ 2
BB

+ 1
4

A
(µp − µq)2

σ2
p + σ2

q

B

where:

• µ = mean of the PDF ;

• σ2 = variance of the PDF ;

So, the observer with the min value of DB is considered the one related to the
attack. Varying the amplitude of the attacks, the amplitude of the models, and
looking for the different indices selected, we can produce two graphs similar to the
ones of section 6.1.1.

As before, we can not identify correctly the attack in every situations, considering
also that we have different results basing on which index we are checking. All this,
led to the definition of a synthetic index able to resume the informations of the
different indices we have.
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Figure 6.5: Efficiency of the PDFs method with varying attack amplitude and amplitude of the
model of the attack in the observers equal to 100
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Figure 6.6: Efficiency of the PDFs method with varying attack amplitude and amplitude of the
model of the attack in the observers equal to 50
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6.1.3 Norm of the residuals
As seen in the previous sections, the indices alone are not able to tell us which
attack the system is receiving, since they give us different indications. In order to
not lose their informations but making us able to have one indication of the attack
from every observer, a synthetic index is defined. Instead of looking to the residuals
of the three outputs (ia, ω, ua) as separate entities, we compute the norm of the
three residuals, as already seen in section 3.4.1:

Eres,i(t) =
ó3Ú t

0
(ia(t) − ia,i(t))2 dt

42
+
3Ú t

0
(ω(t) − ωi(t))2 dt

42
+
3Ú t

0
(ua(t) − ua,i(t))2 dt

42

With this new definition of the index used for the identification, we sticked with
the Winning Model method. The analysis of the robustness of this method with the
new index has been done, just like the previous sections, so that figure 6.7 and 6.8
shows us the results. In this new simulations, attack 13 and attack 14 have been
added to the possible attacks set.
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Figure 6.7: Efficiency of the Winning model method with varying attack amplitude and amplitude
of the model of the attack in the observers equal to 100
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Figure 6.8: Efficiency of the Winning Model method with varying attack amplitude and amplitude
of the model of the attack in the observers equal to 50

6.2 Residuals statistical analysis
Up to this point, the methods tested are not still robust enough to make them
useful in a variety of situations that could occurr in real life. So, before moving to a
better algorithm able to identify the attacks, an analysis of the residuals has been
performed, so to verify if it can be a good indicator for the identification, or it was
preferable to move to sometingh else (like for examples, PDFs).

Figure 6.9 shows the boxplot analysis of the residuals. They were produced
simulating each of the possible attacks (this time finally all the 15 attacks are
modeled) plus the nominal case, in order to check if the residuals of the corresponding
observerd did goes to zero as espected, while the others not. For each attack two
different graph were produced, the first one considering all te simulation time (100
s), while the second one considering only the observation period from the end of
the transient phase (from 5 to 100 s).

The results were satisfactory since showed that the residuals is a good indicator
of the correctness of the observer. Only in some cases there is a certain grade of
uncertainty, due to the fact that the observers produce the same outputs in these
cases. This is the situation of the nominal case and the attacks 1, 9, 13 and 14. We
will see how to deal with them in the next sections.

Another important thing that came up is the need to check the residual only
in the steady-state situations. This is due to the fact that we need some time for
the residuals to go to zero due to the different initial condition, and this is visible
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6.2 – Residuals statistical analysis

because of the integral of the residuals. That is the experimental proof of the need
of the integral reset, as showed in Part II.
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Figure 6.9: Boxplots analysis of the residuals for each observers with different attacks
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6.3 Detection phase
As seen in Part II, while the identification phase is done with the decision tree, the
detection phase is performed in a different way, using the classic approach of the
overcoming of an a-priori defined threshold. However, figure 6.9 showed us that
some of the attacks produce interchangeable results with respect to the nominal
case, and so a direct check of the residual of the "nominal" UIO would have resulted
in a difficulty of the detection of attacks 1,9,13 and 14. To overcome this, besides
the "nominal" UIO a copy of the system has been designed. For system copy is
intended a state-space system with the same state matrices already computed at
the beginning, i.e. Atot, Btot, Ctot, Dtot.

The system copy receives as input only the reference ωr, while the "nominal"
UIO receives ωr, ia, ω, ua. This way, the first one is able to detect the attacks that
the observer can’t detect, and viceversa.
Finally, the detection algorithm takes place as:ë[Eres,1(t), Eres,copy(t)]ë > treshold, if system is under attack

ë[Eres,1(t), Eres,copy(t)]ë < treshold, if system is not under attack
(6.1)

where:

• Eres,1 is the vector containing the residuals related to the "nominal" UIO;

• Eres,copy is the vector that contains the errors related to the system copy; it is
so defined:

Eres,copy(t) =


s t

0(ia(t) − ia,copy(t))2 dts t
0(ω(t) − ωcopy(t))2 dts t

0(ua(t) − ua,copy(t))2 dt


|

Since in our simulation the uncertainties in the model and the noise is not
modeled, the system is totally deterministic so the definition of the threshold is
pretty straightforward, since it just has to be greater than the value reached by the
end of the simulation time by the nominal case. However, in a real situation, it has
to been chosen carefully, in order to avoid both false positives and false negatives.
In our case, by the way, it has been set to 1000, to better show it in the graph.

Figure 6.10 shows an example of the detection algorithm, where the attacks
simulated have amplitude 50, while in the models is 30. Simulation time is set to 15
s, with a reset at 5 s in order to cancel out all the errors due to the transient phase.
It shows all the ë[Eres,1(t), Eres,copy(t)]ë for all the 15 attacks plus the nominal case.
From the graph is possible to see that all the attacks trigger the detection algorithm,
except for the attack 1, but this is not a big problem in a real situation, since it does
not affect the output of the plant, except for a transient phase at the beginning due
to the different initial condition.
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Others simulation not showed here, demonstrated that this approach gives similar
results with every other possible attack. The cons of this method is due to the fact
that we use a system copy. In fact, while the observers are able to reconstruct the
internal state of the system, the system copy can not, taking as input only ωr, so
that in any case the detection system would be interrupted, such, for examples, in
a loss in current, it would have an internal state different from the real one, thus
making it unreliable in the detection.
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Figure 6.10: Resulting graph of ë[Eres,1(t), Eres,copy(t)]ë for all the attacks

6.4 Identification phase
Now we move to the most important concept of this work, the identification algorithm.
As seen in the previous sections, a method based only on the difference between the
residuals wasn’t robust enough to make it reliable in a real case. It was necessary
to switch to a new approach, and the choice fell on a decision tree method, due to
its semplicity with respect to a more complex neural network.

6.4.1 Training sets
The first operation to do is to train the decision tree and to do so, a suitable dataset
has to be built. Since our goal is to make the identification system robust, we need
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a dataset large enough to include all the possible situations that the real system can
encounter. In a real application this would mean to do a huge number of simulation,
but for obvious computational and time reasons, we considered only a restricted
dataset, in order to understand the efficiency of this method.

Thus, the dataset was built in order to check the efficinecy of the system with
these conditions:

• Three different references;

• Two different kind of attacks, continuous and intermittent;

• Different amplitude for the attacks;

Then, the simulation data for the datasets are:

• Attack model

• Amplitude: 30;
• Kind of attack: continuous;

• 3 References

• Amplitudes: 75 - 50 - 25;

• Frequency: 1
5 Hz;

• τ of LPF : 1
6;

• Simulation time

• Total time: 25 s;
• Reset: at 5 s;
• Observation time: 5 – 25 s;

• Attacks simulated

• Continuous
• Amplitude: 50, 40, 30, 20, 10;

• Intermittent
• Amplitude: 25, 20, 15, 10, 5;

• Frequency: 1
2Hz;

• Duty Cycle: 50%;
• Offset: 25, 20, 15, 10, 5;
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To resume this, we have a total of

5 amplitude ∗ 3 references ∗ 2 kind of attacks ∗ 15 positions = 450 simulations

However, the fact that we compute the integral of the residuals, and that we have
to reset the computation every tot seconds, presents a problem regarding which
data use for the identification. So, to better analyze the most meaningful index,
four different dataset had been built, starting from the same simulations:

• Dataset 1 : it consists in the mean of the residuals along all the oservation time;

• Dataset 2 : it consists in the median of the residuals along all the oservation
time;

• Dataset 3 : it consists in the last value of the residuals; in our case it means
that we took the residuals value at time t = 25 s;

• Dataset 4 : it consists in a combination of the above three dataset, taking as
observations all the three indeces;

So, every dataset is a matrix ∈ R450×15, except for the last one, which ∈ R450×45.
We have 15 column because of the 15 observers that model the attacks. It is not
necessary to add also the "nominal" UIO because it is already used in the detection
phase. From these datasets it is possible to train four differents decision tree to test
in the next phase, in order to define the most efficient in the identification process.

6.4.2 Decision tree efficiency
The next and last step is to test the decision tree just trained. To do so a certain
number of simulation with random attacks has been performed. The frameworks is
the subsequent:

• Total simulations: 400;

• Reference: random between the three possible references with amplitude 75,
50, 25;

• Kind of attack: random between continuous and intermittent;

• Amplitude: random between 10 and 50;

• Position of attack: random between the 15 possibilities;

• Simulation time: 45 s;

• Reset time: 5 s (to eliminate the transitorial phase) and 25 s (to start a new
observation phase different from the one used for the decision trees training);
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• Time at which attack begins: random between 5 and 20 s;

For each simulation the residuals matrix has been saved. Then, the identification
process has been completed in a Matlab script, computing mean, median and last
value of the residuals. The results are presented in the next figures and tables.

Figure 6.11 shows the occurences of the different position of the attack simulated
among the 400 simulations computed, while table 6.1 points out the mean and
the standard deviation of the amplitude of the attacks simulated, to higlights the
variability of it.

Figure 6.12 show the identification rate, computed as the ratio between the
attacks identified correctly and the total number of attacks, making the comparison
between the four decision trees. From the simulations it can be noticed that the
best results are given by the decision tree trained with the median of the residuals,
while also the means give quite satisfactory results. From the graph it is possible
also to distinguish the identification rate between the two observation periods. As
expected, the identification rate is not sufficient in the first period, where the attack
begins in the middle of it, causing different results with respect to the training
data. By the way, it is however not so low to make it totally useless, meaning that
in some specific not ideal cases could be used as an indicator of the probability
of the presence of an attack. Their uses, in any case, should be restricted to the
steady-state situation, where the identification rate rises.

Figure 6.13, instead, compare the identification rate with respect to the kind
of attack, continuous or intermittent. It is evident that in any case the better
results are given in the case of a continuous attack. This could be either seen as
a good or bad result. In fact, this means that in the case of a continuous attack
the identification rate is greater than what we have seen before, so in a situation
where we can now a-priori the kind of attack that the system can receive, we can
build more powerful decision tree. On the other hand, in a more geneal setup, this
causes a less efficiency with some kind of attacks, meaning that a smart intruder
could focus on this kind of attacks to reduce their identification. However, it is
important to notice that the observers are modeled only with continuous attacks.
Unfortunately, due to computational and time reasons, weren’t made test with
others model added to the previous ones, but this could be a solution to this, with
the drawback of the need of a more powerful system to handle more observers.

Figure 6.14 compares the different identification rate with respect to the position
of the attack. It is possible to note that some attack are more identifiable than
others. In this case too, thus, the reasonings made before can be applied.

Finally, figure 6.15 compares the results with respect to the reference applied to
the system. It is possible to see that there are no significant differences, meaning
that the identification rate is not a dependant on the reference, as it is with the
position and the kind of attack.
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Figure 6.11: Position occurences in the 400 simulations done for the test

Attacks amplitudes

Mean 29.6

Standard Deviation 11.4

Kind of attack

Continuous 199

Intermittent 201

References amplitudes

75 152

50 128

25 120

Table 6.1: Resume of the random simulations characteristics
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Chapter 7

Conclusions

During this six months the problem of the identification of the communication
attacked in a distributed control system has been addressed. The solution proposed
is an evolution of an already tested algorithm by Brain Technologies based on a
banks of observers to model the different possible attacks. However, as seen, this
alone was not a solution suitable for our purpose, due to the huge number of different
possible attakcs that would require more powerful computational system. In order to
solve this, we slightly changed the "look-at-the-residual-only" approach, to improve
it with a decision tree able to make the system more robust without the need of
more observers. The final results are quite satisfactory, but still some improvement
are needed so that the system can face a variety of different situations.

7.1 Possible improvements
To enhance the identification rate of this method, different possibilities can be
tested.

• Increase the number of observers.
With this approach it is possible to model more different kind of attacks than
just the continuous one with a fixed amplitude as our case; this would provide
more informations about the possible source of attack, and a better chance
on the individuation not only of the altered communication, but also of the
kind of attack the system is receiving. On the other hand, however, this would
require more computation power in order to process the outputs of an increasing
number of observers. A possible solution could be the design of a less complex
estimation system [17].

• Improve the decision tree design.
In our project the decision tree was simply trained with the computed dataset,
without a focus on its design. Different possibilities are presented when
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improving a decision tree. In fact, it could be possibile to modify the number
of leafs and branches [18] [19], for example.

• Move to a more complex neural network.
Another possibilities could be to use a more complex neural network instead of
the decision tree. This could help to move to a more sophisticated algorithm
able to recognize also some sort of patterns between the residuals in different
attacks.[20]

7.2 Pro and Cons
Here we resume the most important aspects of this identification system.

• Pro

• Ability to identify not only the presence of the attack but also the position
on which it occurred;

• Ample room for improvement in the identification algorithm;
• With the use of a decision tree, the computational complexity of the system

is reduced, and it is dependant on the number of communnications presents
in the distributed control system;

• The method can be applied to every distributed control system;
• The design of the concept is quite simple and just need the building of the

observers and of the decision tree;
• The cost of the system is relatively low, but is dependant on the number

of possible source of attacks;

• Cons

• The identification rate is dependant on the kind of attack received;
• There is the need of a training phase of the decision tree;
• The detection of the attack can be difficult in a certain subset of attacks

that doesn’t modify the outputs;
• The detection of the attack can be difficult in case of a loss of current,

making the system copy internal state different from the real one;
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Appendix A

Terminology

Here there is an explanation of some of the term used, as well as the explanation of
some attacks that a CPS can receive.

• CPS - It stands for Cyber-physical system;

• DCS - It stands for Distributed control system;

• UIO - It stands for Unknown input observer ;

• DaIS - It stands for Detection and Identification system

• PDF - It stands for Probability Density Function

• LPF - It stands for Low-Pass Filter

• DoS attack - it stands for Denial of Service and represent an attack where the
intruder makes unavailable the resources of an informatic system, sending lot
of requests to the server; it could be thinked as a lack of information from the
sensors;

• False Data Injection Attack - an attack that can manipulate measurements
without modifying the residual; the intruder has to know the system model;

• Replay Attacks - the intruder hijacks the sensors and records their measurements,
so that he can replay them afterward to hide his attack; it is necessary that
the system is in steady-state;
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Appendix B

Case study data

In this chapter the data used in the simulations performed are presented.

B.1 DC-motor and controllers data
• DC-motor

• Nominal armature voltage: un = 280 V

• Nominal angular speed: ωn = 56π rad

s
• Nominal armature current: in = 7.2 A
• Winding equivalent resistance: R = 6.41 Ω
• Winding equivalent inductance: L = 23 × 10−3 H

• Inductive voltage constant: Ke = 1.36 V × s

rad

• Torque constant: Kt = 1.36 N ×m

A
• Motor inertia: Jm = 0.026 kg ×m2

• Load

• Friction: βl = 0.051
• Load inertia: Jl = 0.005 kg ×m2

• PIs

• Kp,1 = 80
• Ki,1 = 100
• Kp,2 = 70
• Ki,2 = 100
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B.2 Matrices computation

In this section the external inputs are written as q to avoid confusion between the
input of the single systems, that keep the u notation.
To indicate a specific entry of a matrix we use the following notation:

A(2,1) = a2,1, where A =
C
a1,1 a1,2
a2,1 a2,2

D

B.2.1 Overall state-space system

1. Controller

(a) State space representation of the two PIs

• PI 1 ẋc,1 = Bc,1uc,1

yc,1 = Cc,1xc,1 +Dc,1uc,1

• PI 2 ẋc,2 = Bc,2uc,2

yc,2 = Cc,2xc,2 +Dc,2uc,2

xc,1 =
ès

(ωr − ω)
é

; uc,1 =
è
ωr − ω

é
; yc,1 =

è
ir
é

xc,2 =
ès

(ir,sat − ia)
é

; uc,2 =
è
ir,sat − ia

é
; yc,2 =

è
ua

é

(b) Adding saturation.
To add the saturation we output yc,1 so that it can be saturated externally
and then we input the new ir,sat to the first PI. The scheme is:
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Figure B.1: PIs general scheme; qc represents the external inputs

So that the new states, input and outputs are:

xc,1 =
ès

(ωr − ω)
é

; uc,1 =
C
ωr

ω

D
; yc,1 =

è
ir
é

xc,2 =
ès

(ir,sat − ia)
é

; uc,2 =

 ir
ir,sat

ia

 ; yc,2 =
C
ua

ir

D

xc =
C s

(ωr − ω)s
(ir,sat − ia)

D
; qc =


ωr

ω
ia
ir,sat

 ; yc =
C
ua

ir

D

(c) We write the equations for the total controller state space-representation.
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• PI 1 

ẋc,1 = ωr − ω = qc1 − qc2

yc,1 = ir = Ki,1
s

(ωr − ω) +Kp,1ωr −Kp,1ω =

= Ki,1xc,1 +
è
Kp,1 −Kp,1

é ωr

ω

 =

= Ki,1xc,1 +
è
Kp,1 −Kp,1

é qc1

qc2


• PI 2 

ẋc,2 = ir,sat − ia = qc4 − qc,3

yc,2 =
ua

ir

 =
Ki,2

s
(ir,sat − ia) −Kp,2ia +Kp,2ir,sat

yc,1



=

Ki,2xc,2 −
è
−Kp,2 Kp,2

é  ia

ir,sat


yc,1



=

Ki,2xc,2 −
è
−Kp,2 Kp,2

é qc3

qc4


yc,1


Thus we can write:

Bc,1 =
è
1 −1

é
; Cc,1 =

è
Ki,1

é
; Dc,1 =

è
Kp,1 −Kp,1

é
Bc,2 =

è
1 −1

é
; Cc,2 =

è
Ki,2

é
; Dc,2 =

è
Kp,2 −Kp,2

é

(d) Considering that yc = yc,2 and xc =
C
xc,1
xc,2

D
, the total controller state-space

representation is: ẋc = Bcqc

yc = Ccxc +Dcqc

(B.1)

where:

• Bc =
C
B

(1)
c,1 B

(2)
c,1 0 0

0 0 B
(2)
c,2 B

(1)
c,2

D

• Cc =
C

0 Cc,2
Cc,1 0

D
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• Dc =
C

0 0 D
(2)
c,2 D

(1)
c,2

D
(1)
c,1 D

(2)
c,2 0 0

D

2. Total system

(a) Plant state space representation:

ẋp = Apxp +Bpup + Epdp

yp = Cpxp

xp =
C
ia
ω

D
, up =

è
ua

é
, dp =

è
Tr

é
, yp =

C
ia
ω

D

(b) Scheme
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Figure B.2: Total system general scheme; q represents the external inputs
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So that the new states, input and outputs are:

x =



s
(ωr − ω)s

(ir,sat − ia)
ia
ωs
uas
ir


; q =

 ωr

ir,sat

Tr

 ; y =


ia
ωs
uas
ir



(c) Equations.
From 

uc =


ωr

ω

ia

ir,sat

 =


q(1)

y(2)
p

y(1)
p

q(2)

 =


q(1)

x(2)
p

x(1)
p

q(2)


yc =

ua

ir

 =
 ua

y(2)
c

 =
 ua

C(2,1)
c x(1)

c +D(2,1)
c q(1) +D(2,2)

c x(2)
p



up =
ua

Tr

 =
y(1)

c

q(3)

 =
C(1,2)

c x(2)
c +D(1,3)

c x(1)
p +D(1,4)

c q(2)

q(3)


we can write

ẋ(1) = ẋ(2)
c = ωr − ω = B(1,1)

c q(1) +B(1,2)
c x(2)

p

ẋ(2) = ẋ(2)
c = ir,sat − ia = B(2,3)

c x(1)
p +B(2,4)

c q(2)

ẋ(3) = ẋ(1)
p = i̇a = A(1,1)

p x(1)
p + A(1,2)

p x(2)
p +B(1)

p (C(1,2)
c x(2)

c +D(1,3)
c x(1)

p +D(1,4)
c q(2))

ẋ(4) = ẋ(2)
p = ω̇ = A(2,1)

p x1)
p + A(2,2)

p x(2)
p + E(2)

p q(3)

ẋ(5) = y(1)
c = ua = C(1,2)

c x(2)
c +D(1,3)

c x(1)
p +D(1,4)

c q(2)

ẋ(6) = y(2)
c = ir = Cc(2,1)x(1)

c +D(2,1)
c q(1) +D(2,2)

c x(2)
p

(d) The total state-space representation of the system composed by the con-
troller and the plant is: ẋ = Ax+Bq + Ed

y = Cx
(B.2)

where:
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Case study data

• A =



0 0 0 B(1,2)
c 0 0

0 0 B(2,3)
c 0 0 0

0 B(1)
p C(1,2)

c A(1,1)
p +B(1)

p D(1,3)
c A(1,2)

p 0 0
0 0 A(2,1)

p A(2,2)
p 0 0

0 C(1,2)
c D(1,3)

c 0 0 0
C(2,1)

c 0 0 D(2,2)
c 0 0



• B =



B(1,1)
c 0
0 B(2,4)

c

0 B(1)
p D(1,4)

c

0 0
0 D(1,4)

c

D(2,1)
c 0



• E =



0
0
0
E(2)

p

0
0



• C =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


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Appendix C

Simulink schemes

Figure C.1: Overall system
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Simulink schemes

Figure C.2: System under attack

Figure C.3: DC-motor and load
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Simulink schemes

Figure C.4: Reference

Figure C.5: Controller
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Simulink schemes

Figure C.6: Bank of UIOs
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Simulink schemes

Figure C.7: Example of an UIO - UIO designed for attack 1

Figure C.8: Detection and Identification embedded system
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Simulink schemes

Figure C.9: Index computation for detection

Figure C.10: Indeces computation for identification
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