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Abstract

Nowadays, Convolutional Neural Networks (CNNs) are exploited to solve

different tasks, but their increasing complexity means an increase in the

power consumption of these architectures which limits their applications.

The introduction of Spiking Neural Networks (SNNs) is an important step to

overcome this limit. They work in the same way as the behaviour of our brain

and they are organized in layers of biological neurons, which receives spikes,

elaborate them and solve the task. Spikes mean a reduction of the complexity

of the operation, due to the substitution of the Multiply and Accumulate

operation with a simple Select and Accumulate, which is traduced into a

reduction of the computational power.

The work is focused on the implementation VHDL of a convolution event-

based neural network with offline learning based on a script PyTorch, used to

recognize handwritten digits based on MNIST dataset. The architecture is

organized with a convolutional layer, which extracts the features of the input,

a max pooling layer, which reduces the noise and the image dimension, and

two layers of Izhikevich Neuron used to classify the digits from 0 to 9.

To train the architecture, a PyTorch script has been written. To describe an

event-drive convolutional neural network, PyTorch is extended with Norse

library. First, the architecture is tested with this software script, in order

to train it and to find weights of the fully connected layer and kernel of the

convolutional one and then, with the obtained values, the hardware has been

tested in order to verify the correctness of the described architecture.



1. Introduction

Figure 1.1: Biological example of a neuron [Figure from Wikipedia]

A Neural Network (NN) is a hardware, software or mathematical computa-

tional model made up of artificial neurons interconnected with each other.

The neuron model is realized starting from how the neurons in our brain

work. Each neuron processes a certain received signal and transmits it to

subsequent nodes.

These signals are real numbers and each neuron calculates a non-linear func-

tion of the sum of its inputs. The connections are called synapses and have

weights that are regulated by a learning process.

The tasks of neural networks are varied. Here are presented some of the most

important applications:

• pattern recognition (image recognition, object recognition, face identi-

fication...);
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• general game playing;

• system control (vehicle control, trajectory prediction);

• medical diagnosis.

In literature, it is possible to find different types of neural networks: from the

simplest Artificial Neural Networks (ANNs), which include only neurons and

weights, to the Convolutional Neural Networks (CNNs), analyzed in details

in section 2.1, which implement the convolution operation to extract inform-

ation, up to the modern Spiking Neural Networks, described in section 2.2,

that work with trains of spikes in order to reduce the power consumption.

To try to exploit the advantages of both classes of neural networks, it was im-

plemented a CEDNN, stand for Convolution Event-driven Neural Network,

mainly experienced for handwritten digits. As explained in the following

chapters, the architecture is implemented at the HW level in VHDL and

each component is also tested through SW scripts, generally in C.

The advantage of combining the convolution operation with the spikes is

that the convolution operation, which is expensive at the HW level due to

the multipliers present to carry out the operation, is simplified because the

spikes amplitude is always unitary, therefore the multiplier operator is simply

reduced to a multiplexer.

The excellent result of the architecture can also be seen from the offline

training, carried out through a PyTorch script, which also reaches values of

accuracy of 94% with 10 epochs and 96%, with only 20 epochs.

In the following chapters the whole implementation of the architecture is de-

scribed step by step, both as regard to the SW side and the HW side.

All the VHDL and PyTorch code are available at the Google Drive repository

https://drive.google.com/drive/folders/

1UJXRC-tboHmG7j7Mrd6joLpYhxhRds9v?usp=sharing
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2. Convolution Neural Network

and Spiking Neural Network

2.1 Convolution Neural Network

Figure 2.1: Schematic representation of a Convolution Neural Network

Convolution Neural network is a class of Neural Network mainly used for

image and video recognition and image classification. Its name derives from

the principal operation that is done in this architecture: the convolution. An

example of this architecture is represented in the Figure 2.1. As it is possible

to notice from the Figure 2.1, the basic building blocks of a CNN are:

• Convolutional Layer
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2.1. Convolution Neural Network

• Pooling Layer

• Activation function Layer

• Fully Connected Layer

2.1.1 Convolutional Layer

Convolution is an operation where the input, that can be consider as a 2D

grey-scale image with dimension (heightimage×widthimage) after passing the

layer, becomes abstracted to a feature map. In some most elaborated cases,

the image can be considered as a 3D image, where, in addition to height and

width, we consider another input channel that corresponds to the character-

istic of colour.

Each convolution layer has its own characteristics:

• a set learnable kernels K ×K defined by its hyper-parameters

• the number of input channels and output channels

• the hyperparameters like padding and stride size.

Mathematically, to described the convolution operation between two matrices,

it is necessary firstly to define what padding and stride size is:

• stride indicates the number of steps we are moving in each step of the

convolution operation;

• padding is a process of adding zeros to the input matrix symmetrically:

it is used because at the output of the convolution operation, the size

of output becomes smaller that input.

Then, to do an example, we can consider two matrices:

K(i, j); 0 ≤ (i, j) ≤ 4 (2.1)
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2.1. Convolution Neural Network

as a 5x5 convolution kernel and

I(z, q); 0 ≤ (z, q) ≤ 31 (2.2)

as the 32x32 input matrix, which represents the input image.

If we consider stride = 1 and padding = 0, at the output we have a matrix

O(d, p); 0 ≤ (d, p) ≤ 28 (2.3)

The output dimension is determined by the following formula:

[(weight− sizeKernel + 2 × padding)/stride] + 1 = (2.4)

= [(32 − 5 + 2 × 0)/1] + 1 = 28 (2.5)

Each location of the O matrix is calculated with the following formula:

O(d, p) =
K−1X

(i,j)=0

K(i, j) ∗ I(d + i, p + j) (2.6)

2.1.2 Pooling Layer

The idea of the Pooling layer is to reduce the power required to process the

data through a dimensional reduction.

In literature, there are two types of Pooling: Average Pooling and Max

Pooling. Average Pooling returns the average of all the values from the

portion of the output matrix of the convolutional layer. Instead, Max Pooling

returns the maximum value from the portion of the output matrix.

2.1.3 Fully connected layer

After the Pooling Layer, there is a defined number of Fully Connected Layers

which connect each neuron of a layer to all neurons of the next layer through
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2.2. Spiking Neural Network

different weighted connections called synapses. The flattened matrix, ob-

tained from the Pooling Layer, goes through the fully connected layers to

classify the images.

Before the layer of neurons, a layer of linear activation function can be

present: it is a linear function that maps the weighted inputs before the

neuron elaboration. The most common used activation functions are:

• ReLU function

f(x) = max(0, x) (2.7)

• Hard Sigmoid function

f(x) = max(0,min(1,
x + 1

2
) (2.8)

• Hard Sigmoid function

f(x) =


1 if x > 1

−1 if x < 1

x otherwise

(2.9)

2.2 Spiking Neural Network

Spiking Neural Networks represent a fundamental innovation in the world of

Neural Network. They are a special class of Artificial Neural Networks where

neurons exchange information via spikes, so they incorporate the concept of

time in addition to neuron and synapse that characterized the NN.

It is possible to summarize the behaviour of a spiking neural network as it is

described in the Figure 2.2.
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2.2. Spiking Neural Network

Figure 2.2: Schematic representation of spiking neuron [Image from [1]]

When spikes arrives from its pre-layer neurons into the synapse, which is the

weighted connection between the two layers, they will be multiplied by the

synaptic weight and they are summed up each other; this quantity goes into

the neuron, which makes its elaboration, and the output quantity represents

the membrane potential. If the potential overcomes a threshold, the neuron

fires, so it emits a spike.

2.2.1 Spike Encoding

In SNN, information is encoded into spikes: in literature, we can find two

types of encoding methods, rate or time coding. In Rate coding, the in-

formation is encoded by the number of spikes per second (frequency of the

spike train will be proportional to intensity) while in the Time encoding, the

information is encoded in the time of arrival of a spike (the time is inversely

proportional to the pixel’s intensity). The Figure 2.3 represents an example

on how three pixels of a grey scale image are coded into spike with the two

different techniques.
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2.2. Spiking Neural Network

Figure 2.3: Example of a Rate coding technique (on the left) and a Time
coding technique (on the right) [Image from [2]]

2.2.2 Type of Neurons

In literature, there are different types of neurons: from simpler models, as

the IF (Integrate and Fire) neuron represented into the Figure 2.2, to more

complex models as the Hodgkin-Huxkley.

In the list below, it is reported a small description of some of the most used

neurons in literature:

• IF neuron (Integrate-and-Fire): this is the simplest model of neuron,

in which the spikes are only multiplied for their weight and integrated.

If the integrated value, which corresponds to the membrane potential,

overcomes the threshold, the IF neuron fires;

• LIF neuron (Leaky-integrate-and-Fire): this model is very similar to

the previous one, but in this case the membrane potential decreases

continuously due to the leak between two input spikes;

• Hodgkin-Huxkley neuron: it is a biological plausible mathematical

model that describes the process of decreasing the absolute value of

the membrane potential of a neuron. This model is described by a set

of 10 equations, where 4 of them are nonlinear differential equations,

that approximate the electrical characteristics of the neuron;
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2.2. Spiking Neural Network

• Izhikevich neuron: this model is a simplification of the Hodgkin-Huxkley

one, because the neuron is described by a set of 2 nonlinear differen-

tial equation. So it combines the biologically plausibility of Hodgkin-

Huxley model and the computational efficiency of IF neuron.

2.2.3 Advantages

Neural networks are constantly evolving and the most important trend is to

reduce computational operation in order to maintain a good degree of neural

network complexity without increasing too much the energy consumption.

The most important advantage of the Spiking Neural Network is that the

Multiply and Accumulate operation of the CNN will be substituted by Com-

parison and Accumulate operation of the SNN, which results more efficient

in term of hardware required and power consumption.

2.2.4 Training of a Spiking Neural network

The most used technique to train the neural network is the back-propagation

of the gradient, which results not to be feasible in the SNN due to the non-

continuity of the equation of spiking neurons.

So in literature, to train SNN, different solutions are present:

• a conversion of a trained ANN into a SNN;

• an unsupervised learning technique, as the Spike Timing Dependent

Plasticity (STDP), where the weight update depends only on the rel-

ative timings of pre- and post- synaptic neuron spike;

• a supervised learning technique, as the ReSUme and Chronotron.

It is also important to underline the difference between on-chip and off-

chip learning. On-chip learning includes a dedicated hardware to train the

neural network before using it; while the off-chip learning is done by other
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2.3. SPOON architecture

architecture, in general software solution. If the architecture is a general

accelerator for machine learning, the learning of the neural network must be

on-chip to adapt to the different situation. On the other hand if the purpose is

to perform a unique machine learning task on embedded low power hardware,

an off-chip learning can be a good solution because power consumption is

reduced respect to an on-chip learning.

2.3 SPOON architecture

Figure 2.4: Building blocks of the SPOON Architecture [3]

In literature, there are a lot of architectures which combine the idea of spik-

ing and convolutional neural network in order to exploit the advantage of

the operation of the convolution with the advantage of low computing power

of the spiking neuron. An example with very good results, that it has been

analyzed in detail, is the SPOON (spiking online-learning convolutional neur-

omorphic processor) architecture [3].

The architecture, represented in the Figure 2.4, is an event-driven CNN for

adaptive edge computing with an online learning structure. The architecture
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2.3. SPOON architecture

is trained and tested with the MNIST dataset, described in the section 4.1,

and with the N-MNIST, which is a DVS camera derivation of MNIST. It

is composed by a convolution layer, which receives the data input from a

FIFO, a max pooling layer and two layers of neurons, a hidden layer com-

posed by 128 neurons and an output layer composed of 10 neurons, which

have respectively a hardtanh function layer and a hardsigmoid function layer

as activation functions. In the Table 2.1, there is a resume of the most

important characteristics of the SPOON architecture.

Topology C5×5@10− FC128− FC10
Max clock frequency 150MHz

Online-learning technique Stochastic DRTP, 8bit weigths
Offline-learning PyTorch script

Accuracy Online-learning, MNIST 92.8%
Accuracy Online-learning, N-MNIST 93.8%

Accuracy offline-learning, MNIST 97.5%

Table 2.1: Most important characteristic of SPOON architecture
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3. Description of the architecture

Figure 3.1: Building block of the implemented architecture

The idea of this thesis work is to implement CEDNN (standing for Convo-

lutional Event Driven Neural Network), which is an architecture similar to

the SPOON one, described in section 2.3, but using a more complex neuron:

the Izhikevich neuron.

Hence, the chosen architecture is organized with an event-driven convolution

layer, which receives the input data, in the form of spikes, from a FIFO, and

a Fully Connected Layer, composed by two layers of 128 and 10 Izhikevich

Neurons. The most important building blocks of the implemented architec-

ture are represented into the Figure 3.1.
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3.1. Convolutional and Max Pooling Layer

At the beginning of the work, it has been studied the input data. It has

been chosen a Spike Latency encoding, therefore the intensity information is

encoded into the arrival time of the spike. More information regarding this

encoding method is reported in chapter 4.

The architecture receives a 10-bit address, which covers the coordinates x, y

for images 32 × 32, concatenated to one bit which represents the polarity

ON/OFF.

Since Izhikevich neurons are real biological models that depend on time and

that are realized through the differential equations d/dv, it was necessary to

choose an integration time T and an integration step dt. It has been decided

to use T = 100 and dt = 1 ms. The first value is due to the fact that it

is possible to reach optimal accuracy values through the offline script with

this value; the second one derives from the timing on which the spikes are

generated.

3.1 Convolutional and Max Pooling Layer

The Convolutional layer is organized with a 10 5 × 5 programmable Kernels

with stride-1 and padding-0, followed by a Max Pooling Layer with stride-4

and padding-0. It receives the input data, organized as described before, and

elaborates them.

Consequently, as explained in section 2.1, at the output of the convolutional

layer there will be 10 matrices 28x28 and at the output of the max pooling

layer there will be 10 matrices 7x7.

Firstly, to implement the Convolutional Layer, it has been written a C code:

it is used to understand how the algorithm of the event-driven convolution

operation and of the max pooling operation work, to test the HW imple-

mentation and to compare the results. A part of this code is reported in the

Appendix A.

The code is structured with an infinite while loop, which at each cycle it

14



3.1. Convolutional and Max Pooling Layer

requires to insert the input data with the following organization:

polarity, xaddress, yaddress (3.1)

and then it computes the convolution and max pooling operations. The code

works with two matrices: a Convolutional Matrix 28 × 28, a Kernel Matrix

5 × 5 and it is organized in three main parts:

• the first is the multiplication of the polarity bit for the content of the

kernel matrix. Each obtained value is placed in a product matrix in a

overturned position with respect to both axes;

• the second is two for loops, where the product matrix, calculated into

the previous part, will be summed one-to-one with a sub-section of the

convolutional matrix. The two matrices are summed putting the point

(4, 4) of the product matrix in the position (xaddress, yaddress), received

from the input, of the convolution matrix. If there are points which

exceed the dimension of the convolution matrix, the correspond values

will be discarded;

• the third part is contained into the second for loop of the previous part

and and it is organized with two other for loops used to perform the

Max Pooling operation and to store them in another matrix;

In the Figures 3.2, 3.3, 3.4, 3.5 are reported the output of the different steps

of the C Code. The same values used in this simulation will be used to test

the VHDL code.
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3.1. Convolutional and Max Pooling Layer

Figure 3.2: First of all, the C Code generate a random matrix which contains
the Kernel

Figure 3.3: Secondly, it asks to the user to insert the input

Figure 3.4: Then, the code reports to the output the results of the convolution
operation (on the left) with the following notations: value to store, x address
of the Matrix, y address of the Matrix, Convolution Register File Address.
After the previous operation, the code prints the Convolutional Matrix (on
the right) after the computation
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3.1. Convolutional and Max Pooling Layer

Figure 3.5: At the end, the code reports to the output the result Max Pooling
Matrix and the principal loop restarts

HW implementation

At hardware level, the Convolutional layer is organized with 10 identical

”pages”. Each page, which is represented in details in the Figure 3.6, com-

putes the convolution operation between the input data and one kernel matrix

and it stores the result into a ”personal” register file, called Page Convolution

Register File. Therefore, the following description is referred to the single

page of the Convolutional Layer.

The input data, which comes from the last FIFO memory location, is broken

down into the polarity, which goes to the Convolutional Core, and the x, y

addresses, which goes to the Address Decode Block.

The Convolutional Core contains one multiplexer: polarity is the selector of

the multiplexer, while the two inputs are a sequence of 000 and the output of

the Kernel Register File which, through a multiplexer driven by a counter,

sends a single kernel location to the multiplier. This operation emulates a

multiplication between the input and the data present in the Kernel matrix.

Hence, the product between polarity and kernel is stored in an accumulation

register.

At the same moment, the Address Decoder Block receives the x, y addresses

and computes the location of the Page Convolution Register File where the

data should be stored.

The content of the accumulation register and the content of the Page Con-

volution Register File at the location calculated with the Address Decoder
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Figure 3.6: Datapath scheme of a single page of the Convolutional Layer
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block, go in the input of an adder which computes the sum and finally the

result is stored in the same location of the Page Convolution Register File.

This operation is done for each location of the Kernel Register File and for

each input received.

All these operations are controlled by a Finite State Machine, which is re-

ported in Appendix B.

After the Convolution Layer, there is the Max Pooling Layer, which receives

the output of the 10 Convolution Registers File and, with a combinatorial

block, computes the Max Pooling operation. Then, this matrix is flattened

and stored into the Max Pooling Register File.

The Max Pooling Layer is a set of 49 comparators, for each page, organ-

ized to compare in the correct way, the different location of the Convolution

Registers File following the specification of stride = 4.

HW Simulation

In order to verify the correctness of the architecture, it has been realized a

testbench for the single page Convolutional Layer to simulate on Modelsim

and to compare the results with the C code.

For the Kernel Matrix values, it has been used the random values generated

from the C code; also the polarity and the x, y address has been chosen

randomly.

These values will be used both in the C code simulation and in the VHDL

Simulation. The results of the C code simulation is reported in the Figures

3.2, 3.3, 3.4, 3.5; while, in the Figure 3.7, there is the Modelsim simulation.
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Figure 3.7: Modelsim simulation of the behaviour of the Convolution Layer

It is possible to notice that the values, which should be stored into the

Convolutional Layer, are the same as the C code so the elaboration is correct.

It can be also observed that, to elaborate a single input, the Convolutional

Layer requires 58 clock cycles.

Total Convolutional Layer

As soon as the implementation of the single page of the Convolutional Layer

has been completed, it has been realized the complete Convolutional Layer.

The block is made up of the 10 identical pages of Convolutional Layer and

the Max Pooling Block. In order to test the complete block, it has been

realized a testbench which simulates the behavior of the FIFO memory, thus

sending the data to be processed to the block with the appropriate notation.

To simplify the simulation and verification phase, the same Kernel matrix

was used for all pages of the Convolutional Layer and it is used the same

random matrix of the Figure 3.2.
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The inputs chosen are shown in the Figure 3.8.

Figure 3.8: Input used for the simulation of the Convolutional and Max Pool-
ing Layer

To compare the correctness of the results, it has been used the same input

of the VHDL code on the C Code. Finally the final Max Pooling Matrices

produced by the two codes will be compared.

The output matrix of a single page of the Convolutional Layer is reported

into the Figure 3.9, while the output of the Modelsim simulation, with the

output of the Max Pooling Matrix, is reported Appendix C.

Figure 3.9: Output matrix after Convolutional and Max Pooling operations

3.2 Fully Connected Layer

As previously stated, the Fully Connected Layer is composed of two layers

of 128 and 10 Izhikevich neurons.

Before studying at HW level how implement the Fully Connected layer and

the neurons, it has been studied the behaviour of the Izhikevich neuron to

understand its characteristics, its parameters and its functioning.
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3.2.1 Izhikevich Neuron

Theory and Mathematical model of Izhikevich neuron

Izhikevich neuron model [4] is a simple spiking model which combines the

biologically plausible of the Hodgkin-Huxley model with the computationally

efficiency of the integrate-and-fire model.

The Izhikevich neuron model consists of two differential equations:v0 = 0.04v2 + 5v + 140 − u + I

u0 = a(bv − u)
(3.2)

with the after-spike reset condition:

if v > 30mV , then

v = c

u = u + d
(3.3)

The two equations in 3.2 are differential equations which represent respect-

ively the variation of the membrane voltage v and the recovery function u

respect to the time t. The recovery function u is a negative feedback to v

which provides a better stability to v .

The value of I represents the input current, therefore the output of the pre-

vious neurons layers is contained in this variable.

In the equations, the parameter a, b, c and d represents the possible different

behaviours of the firing pattern:

• the parameter a describes the time scale of the recovery function u

• the parameter b describes the sensitivity of the recovery function u to

the sub-threshold fluctuations of the membrane potential v

• the parameter c describes the after-spike reset value of v

• the parameter d describes the after-spike reset value of u
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An example of the different behaviour of output spike, with a constant current

I = 10, changing the value of the parameters a, b, c and d is represented in

Figure 3.10.

Figure 3.10: Example of different spike firing of an Izhikevich Neuron, chan-
ging the value of a, b, c and d, with a current I = 10 [Figure from [4]]

To solve the differential equations of Izhikevich model, it has been used the

forward Euler integration method. The equations in 3.2 become:v(t + dt) = v(t) + dt(0.04v2 + 5v + 140 − u + I)

u(t + dt) = u(t) + dt[a(bv(t) − u(t))]
(3.4)

Matlab implementation

The equation in 3.4 is composed by sum and multiplication: the second

operation is too much expensive to implement in HW and so, it has been

substituted the multiplication of the equation with shift operation.

In order to evaluate the error, it has been realized a Matlab script to compare

the difference between the real model and the approximate one.

Due to the normalization used in PyTorch script described in chapter 5, all
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operations and constants of the neurons are divided by 10.

The model implemented in Matlab is reported in 3.5 and 3.6.v(n + 1) = v(n) + dt[2−8v(n)2 + 2−1v + 14 − u(n) + I]

u(n + 1) = u(n) + 2−9dt[(2−6 + 2−7)v(n) − u(n)]
(3.5)

if v(n) > 3, then

v = 6.5

u = u + 0.6
(3.6)

In the Figure 3.11, it has been reported a simulation of the approximated

model with an input current of 10.

Firstly, it has been analyzed the amplitude error: therefore, it has been

evaluated the difference between the trends of voltage in the approximated

mode and in the real model. In the Figure 3.12, it has been reported the

output graph, which show the trend of the difference.

Figure 3.11: HW approximated model of Izhikevich Neuron reported on Mat-
lab
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Figure 3.12: Difference in amplitude between HW approximation and real
model

Secondly, it has been evaluated the value of the Mean Relative Error (MRE).

As it is explained in [5], a timing evaluation is necessary due to the fact that

the information is encoding in the timing of the spikes. The MRE is defined

as:

MRE% =

Pn
i=1

tAPPROXIMATED−treal
treal

n
× 100% (3.7)

The great advantage is that with the approximation introduced in 3.5, the

MRE is zero and therefore there is no time difference between the real model

and the approximate one, but only a slight difference in amplitude.

DFG of the neuron operation

In order to understand which are and how many the arithmetic operators are

to be used in the HW implementation of the neuron, the Data Flow Graph

(DFG) was created for both the voltage and the recovery function. The DFG

of the voltage function is reported in Figure 3.13, while the recovery function

one in Figure 3.14.
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Figure 3.13: Data Flow Graph of the voltage function of the Izhikevich
Neuron

How we can notice, with this configuration, it is possible to have the result

in 4 clock cycle using:

• a multiplier, necessary to obtain the square of the voltage;

• two adders/subtractors, used for processing the voltage value;

• one adder/subtractor, used for processing the recovery value

• a series of shift operators used, as explained in the previous paragraph,

to replace multiplications

HW implementation

The datapath simply represents a hardware translation of the operations

present in the DFG and it is reported in Figure 3.15. It is composed by

a voltage core, which compute the voltage update, with two adders and a
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Figure 3.14: Data Flow Graph of the recovery function of the Izhikevich
Neuron

multiplier, and a recovery core, which compute the recovery one with an

adder.

In order to implement the HW architecture, it has been studied also the

parallelism of the data: it has been chosen a floating point representation

with 12 bit after the point, to have a precision of 2.44 × 10−4. All the

constants have therefore been converted using this format. Through the

hardware simulation it was noticed that the error introduced due to the

chosen notation does not lead to a deterioration in performance.Then, this

notation will be applied to all blocks of the architecture.

To control all the signals of the neuron, a state machine has been implemented

which is reported in Appendix D.
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Figure 3.15: Datapath scheme of the Izhikevich Neuron

Modelsim Simulation of the Neuron

In order to simulate the behaviour of the neuron, it has been realized a VHDL

testbench and the architecture is simulated with Modelsim, using a constant

28



3.2. Fully Connected Layer

current I = 10. In the Figures 3.16 and 3.17, it has been reported a piece

of the overall simulation: in 3.16, it has been represent the first cycle of the

neuron iteration, while in 3.17 it has been reported the cycle where a spike

is emitted.

Figure 3.16: Simulation Modelsim of a single cycle of Izhikevich neuron

Figure 3.17: Simulation Model of a neuron cycle where a spike is emitted

The content of the register VT is compared to the Matlab script in order

to verify the amplitude and time errors. As it is written before, the time

error, represented by the MRE by the formula 3.7, in null, so the spikes

are emitted in the same neuron cycle of both the Matlab code and the HW

implementation; obviously there is an amplitude error introduced by the

approximation due to the precision of the decimal digits, but it is considered

negligible.

Integration Neuron

For the Output Layer of neuron, it has been used used an Izhikevich Neuron

with some differences: the integration Izhikevich Neuron. Its task is to integ-

rate the dv steps generated at the output of the neurons through an adder.

The architecture and the FSM is exactly the same of the previous paragraphs;

the only difference is that the sum of the various steps dv is reported at the

end of each computation cycle.
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At the end of the integration time, the neuron with the highest value will

correspond to the digit to be recognized.

3.2.2 Pre-Synaptic Units

Before the layers of neurons, there are two pre-synaptic units: the hidden

pre-synaptic unit, before the Hidden Layer of Neurons and the output pre-

synaptic unit, before the Output Layer of Neurons. Their task is to compute

the input current of the neurons combining linearly the weights of the lay-

ers with, respectively, the output of the Max Pooling Layer, for the hidden

pre-synaptic unit, and the output spikes of the hidden layer, for the output

pre-synaptic one.

In fact, the implementation of the two pre-synaptic units is profoundly dif-

ferent.

The general equation computed by the pre-synaptic units is described in 3.8.

outpresyn,neuron−i =

# inputX
k=0

weightk,i ∗ inputk (3.8)

Hidden Pre-Synaptic Unit

The Hidden Pre-Synaptic Unit, represented in the Figure 3.19 is organized

with an array of 64 multipliers, an adder of tree and an accumulation register.

Therefore, the data at the output of the Max Pooling Register is processed

with a batch of 64, so to compute the input current of each neuron it re-

quires 8 clock cycles. To compute all the input currents for the 128 neurons,

it requires 1024 clock cycles.

The task of the Counter 3 bit is to drive the output multiplexer of the Max

Pooling Register File, which is organized concatenating 64 output location

of the register file for each input of the 8-multiplexer.

The Counter 7 bit is used to indicate which neuron the Pre-Synaptic Hidden

Unit is computing the input current for.
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Figure 3.18: Datapath of the Hidden Pre-Synaptic Unit

It has been chosen this topology in order to reduce the number of multipliers

to decrease the power consumption and the area.

The block is managed by a finite state machine, shown in Appendix E, which

generates the various control signals. In this case, we consider the weight

RAM with the different location always available, as in a Register File; if

the RAM needs one more clock cycle to make the weights available to the

output, it is necessary one more state.

To simulate the behaviour of the system, it has been realized a testbench

with 490 random input values e 490 × 128 random weights and it has been

used Modelsim to test. The output is compared to a C code realized with

31



3.2. Fully Connected Layer

the same function as the HW implemented.

Figure 3.19: Modelsim simulation of the Hidden Pre-Synaptic Unit

Once the system receives the start signal, it sends to the Max Pooling Re-

gister the address of the data to be elaborated, i.e. the output of the 3

bit counter, indicated in the Figure as ADDRESS MAX POOLING REG.

The input data will be multiplied and saved into the signal OUT MULT S ;

the signal PARTIAL SUM is the behavioural description of the final sum of

the adder tree. Finally, this signal is added to the output of the accumula-

tion register and saved in the same accumulation register: the signal which

represents the output is ACC OUT.

ReLU Activation function

f(x) = max(0, x) (3.9)

At the output of the Hidden Pre-Synaptic unit, it has been used a ReLU

activation function. The shape of the function is represented in Figure 3.20.

At HW level, the block was simply implemented in a behavioral way.
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Figure 3.20: ReLU function trend

Output Pre-Synaptic Unit

Figure 3.21: Datapath of the Output Pre-Synaptic Unit

The Output Pre-Synaptic Unit is realized in order to take the advantages

described in the subsection 2.2.3.

In the system, there are 10 Output Pre-Synaptic Unit, one for each neuron

of the output layer. The datapath of the Pre-Synaptic Unit is represented in
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the Figure 3.21.

Multipliers are replaced by multiplexer due to the fact that the output of

the neurons are sequence of spikes. Therefore, each multiplexer has in input

the corresponding weight and a sequence of zeros: if the hidden neuron,

driving the correspond multiplexer, fires, the multiplexer outputs the weight

otherwise the sequence of zeros. The output of the multiplexers is summed

through a sum tree and it becomes the input current of the output neuron.

It is possible to note that the block is totally combinatorial.

Also for the verification of this block, it has been written a C code which

generates random input for the multiplexers and random weights. Then,

the C Code calculates the sum to compare with the results of the VHDL

simulation.

It has been tested the HW implementation with Modelsim and the output

waveform is reported in Figure 3.22.

Figure 3.22: Modelsim simulation of the Output Pre-Synaptic Unit

In the Figure 3.22, it has been reported only a part of the overall simulation:
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in the signals HIDDEN STIMULI, there are the output spikes of the

neurons of the hidden layer, while in the signals OUTPUT MUX, there are

the output of the multiplexers to be summed to have the input current of

the output neurons.

3.2.3 Winner Selector

Finally, the outputs of the 10 Integration Neurons are sent to the block that

takes care of deciding which is the correct output: the Winner Selector.

The block simply compares the 10 different values together, and outputs the

neuron with the highest value.

The index of the outgoing neuron will match the digit it identifies from the

neural network.
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4. Input Data

4.1 MNIST dataset

Figure 4.1: Example of some handwritten digits from MNIST dataset

The MNIST (Mixed National Institute of Standards and Technology) dataset

[6] is a set of handwritten digits used to train and test various image pro-

cessing system, as Neural Network. It is composed by 60.000 train images

and 10.000 test images.

Original images were submitted to a preprocessing process. Firstly, the im-
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ages will normalized to fit in a 20× 20 pixel box while preserving the aspect

ratio. Then, it has been applied an anti-aliasing filter, and as a result black

and white images were effectively transformed into gray scale. Then a blank

padding was introduced to fit the images in a larger 28 × 28 pixel box, so

that the center of mass of the digit matched its centre.

An example of some figures of the dataset is represented in Figure 4.1, while

single MNIST sample belonging to the digit ”7” is in Figure 4.2.

Figure 4.2: Example of a single sample from MNIST dataset

4.2 Spike Coding

In order to convert the dataset images into spikes, it has been used an appro-

priate PyTorch function, explained in details in the section 5.3. The chosen

encoding method is the Spike Latency, present in the Norse library used for

writing the PyTorch script.

This method encodes an input value by the time the first spike occurs, there-

fore for each pixel it is possible to have at most one spike. This train of spikes

is composed by a vector with 3 location for each spikes: the timestamp (in

ms) which corresponds to the instant of time when the pulse is emitted, the
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x address and the y address, which are the pixel location of the pulse.

In the Figure 4.3, there is a Figure which represent an image of the MNIST

dataset encoded into a spikes train.

Figure 4.3: Example of Spike Coding method
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5. Offline Learning

5.1 PyTorch and Norse

PyTorch introduction

PyTorch [7] is an open source library used for machine learning based on the

Torch Library. It is used for developing and training neural network based

deep learning model.

In literature, there are different libraries to model neural network: it has

been chosen PyTorch for two reasons which make it particularly efficient for

deep learning.

First of all, it provides accelerated computation using graphical processing

units (GPUs), which a speedups of the calculation over 50x respect the same

calculation with the CPU. Secondly, PyTorch provides structures which sup-

port numerical optimization on generic mathematical expressions, which deep

learning uses for training.

Norse introduction

Norse [8] expands the PyTorch library with primitive biological components

in order to develop and train event-driven neural network. It contains neuron

models (Integrate and Fire and Leaky-Integrate-and-Fire), synapse dynamic,

encoding and decoding algorithm, dataset integrations, tasks, and examples.
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5.2 Extension of Norse: layer of Izhikevich

To implement the hidden layer and the output layer of Izhikevich neurons

implemented in HW, the Norse library has been extended with two functions:

IZHCell and IZHLinearCell.

For the implementation of the two functions, we started from the functions

LIFCell and LILinearCell, which implement respectively a LIF neuron and a

LI integrated neuron.

5.2.1 IZHCell

IZHCell is a module which computes a single euler-integration step of a

Izhikevich neuron-model without recurrence.

class izhikevich cell.IZHCell(p=IZHParameters(a=tensor(0.0020),

b=tensor(0.0200), c=tensor(-6.5000), d=tensor(0.6000),

k=tensor(-1.3000), sq=tensor(0.0040), mn=tensor(0.5000),

bias=tensor(14.), v th=tensor(3.), tau inv=tensor(31.25), method=’super’,

alpha=100), dt=0.001)

Parameters:

• p (IZHParameters) - Parameters of the IZH neuron model;

• dt (float) - Time step to use. Defaults to 0.001;

5.2.2 IZHLinearCell

The IZHLinearCell is a cell for a izhikevich-integrator with an additional

linear weighting.

class izhikevich integrator module.IZHLinearCell(hidden size,

input size, p=IZHParameters(a=tensor(0.0020), b=tensor(0.0200),

c=tensor(-6.5000), d=tensor(0.6000), k=tensor(-1.3000),
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sq=tensor(0.0040), mn=tensor(0.5000), bias=tensor(14.), v th=tensor(3.),

tau inv=tensor(31.25), method=’super’, alpha=100), dt=0.001)

Parameters:

• input size (int) - Size of the input layer;

• hidden size (int) - Size of the hidden layer;

• p (IZHParameters) - Parameters of the IZH neuron model;

• dt (float) - Time step to use. Defaults to 0.001;

5.3 Description of the code

To implement the software training, it has been realized a PyTorch code

using the library Norse and the realized extension functions. The code has

been written and tested on Google Colab.

In this chapter, it has been reported the most significant part of the code.

First of all, it has been declare some of the library that the code needs:

1 import torch

2 import numpy as np

3 import matplotlib.pyplot as plt

4 !pip install --quiet norse

Then, it has been written the following portion of code in order to download

and to extract the MNIST dataset and to adapt it to the input image 32×32.

1 import torchvision

2 BATCH_SIZE = 256

3 transform = torchvision.transforms.Compose(

4 [

5 torchvision.transforms.Resize(32),

6 torchvision.transforms.ToTensor (),

7 torchvision.transforms.Normalize ((0.1307 ,), (0.3081 ,)

),
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8 ]

9 )

10 train_data = torchvision.datasets.MNIST(

11 root=".",

12 train=True ,

13 download=True ,

14 transform=transform ,

15 )

16 train_loader = torch.utils.data.DataLoader(

17 train_data ,

18 batch_size=BATCH_SIZE ,

19 shuffle=True

20 )

21 test_loader = torch.utils.data.DataLoader(

22 torchvision.datasets.MNIST(

23 root=".",

24 train=False ,

25 transform=transform ,

26 ),

27 batch_size=BATCH_SIZE

28 )

From the Norse library, it has been used the Spike Latency Encoder, which

converts the input image of the MNIST dataset in a sequence of spikes.

1 from norse.torch import SpikeLatencyLIFEncoder

2

3 T = 100

4 example_encoder = SpikeLatencyLIFEncoder(T)

5

6 example_input = example_encoder(img)

7 example_spikes = example_input.reshape(T,32*32).to_sparse ().

coalesce ()

8 t = example_spikes.indices ()[0]

9 n = example_spikes.indices ()[1]

10

11 plt.scatter(t, n, marker=’|’, color=’black’)

12 plt.ylabel(’Input Unit’)
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13 plt.xlabel(’Time [ms]’)

14 plt.show()

Once the data is encoded into spikes, it has been described the convolutional

event-based neural network implemented in HW, using the function described

in the section 5.2. The neural network is composed by:

• torch.nn.Conv2d(1, 10, 5, 1): a Convolutional Layer with 10 program-

mable Kernel 5 × 5, with stride = 1 and padding = 1;;

• torch.nn.functional.max pool2d(z, 4, 4): a Max pooling Layer with

stride = 4 and padding = 4;

• torch.nn.Linear(490, 128, bias = False): a Fully Connected Layer, in

order to applies a linear transformation to the incoming data

• torch.nn.functional.relu(z): a layer of ReLu used as activation func-

tion

• IZHCell(p = IZHParameters(method = method, alpha = alpha)):

a layer of Izhikevich neuron used to applied to the fully connected layer

the Izhikevich neuron’s formula;

• IZHLinearCell(128, 10): a layer of integrated Izhikevich neuron to

calculate the output

1 class ConvNet(torch.nn.Module):

2 def __init__(self , num_channels=1, feature_size=32,

method="super", alpha=100):

3 super(ConvNet , self).__init__ ()

4 self.conv1 = torch.nn.Conv2d(1, 10, 5, 1, bias=False)

5 self.fc1 = torch.nn.Linear(490, 128, bias=False)

6 self.izh1 = IZHCell(p=IZHParameters(method=method ,

alpha=alpha))

7 self.out = IZHLinearCell(128, 10)

8
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9 def forward(self , x):

10 seq_length = x.shape[0]

11 batch_size = x.shape[1]

12

13 # specify the initial states

14 s0 = s1 = s2 = so = None

15

16 voltages = torch.zeros(

17 seq_length , batch_size , 10, device=x.device ,

dtype=x.dtype)

18

19 for ts in range(seq_length):

20 z = self.conv1(x[ts , :])

21 z = torch.nn.functional.max_pool2d(z, 4, 4)

22 z = z.view(-1, 490)

23 z = self.fc1(z)

24 z = torch.nn.functional.relu(z)

25 z = F.dropout(z, training=self.training)

26 z, s1 = self.izh1(z, s1)

27 v, so= self.out(z, so)

28 voltages[ts, :, :] = v

29 return voltages

30

31 conv_net=ConvNet ()

32 print(conv_net)

The last step is to setup training and test code. This code does not depend

on the fact that we are training a spiking neural network, therefore this last

part is copied from the pytorch tutorial of training of a neural network. First

of all, it has been defined the number of epochs, that is an hyperparameter

which defines the number times that the learning algorithm will work through

the entire training dataset. Hence, one epoch means that all the sample of

the dataset can update one time the internal model weights and kernels.

Then, it has been described the train and test function in order to train

and test the neural network using the 60.000 samples of the MNIST dataset.
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Finally, the functions have been called up in a for loop which depends on

the number of epochs.

1 from tqdm.notebook import tqdm , trange

2 EPOCHS = 5 # Increase this number for better performance

3

4 def train(model , device , train_loader , optimizer , epoch ,

max_epochs):

5 model.train ()

6 losses = []

7

8 for (data , target) in tqdm(train_loader , leave=False):

9 data , target = data.to(device), target.to(device)

10 optimizer.zero_grad ()

11 output = model(data)

12 loss = torch.nn.functional.nll_loss(output , target)

13 loss.backward ()

14 optimizer.step()

15 losses.append(loss.item())

16 torch.save({

17 ’state_dict ’: model.state_dict (),

18 ’optimizer ’ : optimizer.state_dict (),

19 }, ’prova.pth.tar’)

20

21 mean_loss = np.mean(losses)

22 return losses , mean_loss

23

24 def test(model , device , test_loader , epoch):

25 model.eval()

26 test_loss = 0

27 correct = 0

28 with torch.no_grad ():

29 for data , target in test_loader:

30 data , target = data.to(device), target.to(device)

31 output = model(data)

32 test_loss += torch.nn.functional.nll_loss(

33 output , target , reduction="sum"
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5.4. Results of the simulation

34 ).item() # sum up batch loss

35 pred = output.argmax(

36 dim=1, keepdim=True

37 ) # get the index of the max log -probability

38 correct += pred.eq(target.view_as(pred)).sum().

item()

39

40 test_loss /= len(test_loader.dataset)

41

42 accuracy = 100.0 * correct / len(test_loader.dataset)

43

44 return test_loss , accuracy

45

46 training_losses = []

47 mean_losses = []

48 test_losses = []

49 accuracies = []

50

51 for epoch in trange(EPOCHS):

52 training_loss , mean_loss = train(model , DEVICE ,

train_loader , optimizer , epoch , max_epochs=EPOCHS)

53 test_loss , accuracy = test(model , DEVICE , test_loader ,

epoch)

54 training_losses += training_loss

55 mean_losses.append(mean_loss)

56 test_losses.append(test_loss)

57 accuracies.append(accuracy)

58

59 print(f"final accuracy: {accuracies [-1]}")

5.4 Results of the simulation

After completing the drafting of the PyTorch code, it has been run several

times using the dataset MNIST to evaluate the different accuracy results by

modifying the number of epochs.
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5.4. Results of the simulation

In the Table 5.1, it is reported a series of 5 simulations with 5 epochs with

an integration time T = 100.

Iteration Accuracy
1 92.39%
2 92.3%
3 93.22%
4 92.79%
5 93.08%

Table 5.1: Result of Accuracy with 5 epochs

Then, it has been increased the number of epochs, testing the software with

10, 20, 50 and 100 epochs. The results are reported in Table 5.2

Number of epochs Accuracy
10 94.96%
20 96.63%
50 97.4%
100 97.55%

Table 5.2: Result of Accuracy increasing the number of epochs

It is possible to note that already with 5 epochs, the resulting accuracy is

acceptable. Increasing the number of epochs, also the accuracy improved,

reaching the optimum values of 97.4% with 50 epochs and 97.55% with 100

epochs. In the Table 5.3, it is possible to find the accuracy of other similar

Convolutional Spiking Neural Network, with different configuration, which

used an offline training.

Model Accuracy
Diehl [9] (2015) 99.10%
Neil [10] (2016) 95.72%

Garbin [11] (2014) 94.00%
Frenkel [3] (2020) 97.5%

Table 5.3: Accuracy of other similar architecture

The accuracy of the implemented neural network is similar and acceptable
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5.4. Results of the simulation

compared to the other one found in literature.

In the Figure 5.1, three test simulations of the PyTorch script are shown. On

the left side there is the image to be decoded, with its correct label, while

on the right side there is the trend, as a function of time, of the 10 output

integration neurons: the result of the decoding corresponds to the neuron

with a higher integration value.

Figure 5.1: Example of some simulations of the PyTorch code
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6. HW Simulation and Synthesis

6.1 Modelsim Simulation

Figure 6.1: Datapath of the whole architecture

After completing the offline script, the whole architecture was implemented,

combining the various blocks created in chapter 3, and was tested through

Modelsim.

The overall architecture is represented in Figure 6.1; detailed control signals

and detailed signal of the blocks are not shown for clarity.
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6.1. Modelsim Simulation

The FIFO memory is modeled through a text file containing the input signals

and a VHDL read function. The input data in the file is organized using this

format: polarity, arrival time, x address, y address.

The integration time is counted by a counter and it is used with the arrival

time to drive the whole architecture.

All the control signals, used to drive the start and the other control signals

of the other blocks of the architecture, are generated though a Finite State

Machine which is reported in Appendix F.

To test the architecture, it has been used Modelsim and to compare the

output of the different blocks, it has been modified the PyTorch script im-

plemented in chapter 5 in order to load a file containing the neural network

model (i.e. its kernels and weights) and to print the output of different layers

of the architecture.

In the Appendix G, it has been reported a Modelsim simulation of the whole

architecture, described step by step. In the following, it has been reported

only the final results of the architecture with some considerations.

The input used for this simulation is the sample 1521 of the dataset MNIST;

it represents the digit 1 and it is reported in Figure 6.2. In the Figure 6.3, it

Figure 6.2: Digit example chooses for the reported simulation

has been reported the final part of the simulation: the signals into the Figure
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6.1. Modelsim Simulation

represents the 10 output value of the Izhikevich integrated neurons.

Figure 6.3: Simulation of a part of the Final part of the whole architecture

Exactly as expected, the value of the signal OUTPUT VALUE1, which rep-

resents the output of the neuron 1, has the highest value: this means that

the neural network correctly identifies the input digit.

In the Table 6.1, it has been reported the final value of the 10 output neuron

in PyTorch anche in Modelsim simulations. The values of the Modelsim sim-

ulation are normalized respect 2−12.

Neuron PyTorch results Modelsim results
0 21.603 20.517
1 31.3439 33.053
2 24.4150 23.586
3 20.1959 20.876
4 21.4549 24.278
5 21.0834 17.605
6 21.5325 18.608
7 23.4512 24.649
8 20.7712 20.719
9 20.9425 20.873

Table 6.1: Comparison between the PyTorch output and the Modelsim output

As expected, the values are very similar, but not perfectly equal: this error is

due to the various approximations that the hardware inevitably introduces.

The architecture has been tested with several input digits and has always

worked correctly: in future works, we could look for an efficient way to test

the HW architecture with all 60000 samples present in the MNIST data-

set and evaluate their accuracy, comparing to the value obtained from the

PyTorch script.
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6.2. Synthesis

6.2 Synthesis

Finally, at the design level, a synthesis of the different blocks that make up

the architecture was carried out to study timing, power and area. Due to

the complexity of the overall architecture, it has been divided into blocks.

The synthesis was carried out through Synopsys and the results are reported

in the following sections.

6.2.1 UMC65

The chosen technology is UMC’s 65nm Low-K Low leakage RVT process.

The choice fell on this typology since, being the architecture organized in

blocks that do not work simultaneously, but in succession, it is preferable to

use a low leakage technology, so that the leakage current, and therefore the

static power, in the blocks off is nothing.

In the Table 6.2, it has been reported the physical specification of for the

standard cell library of the UMC65.

Characteristic Specification
Cell height 1.8µm

Drawn gate lenght 0.06µm
Vertical routing track 9 tracks

Vertical pin grid 0.2µm
Horizontal pin grid 0.2µm

POWER/GND rail width 0.3µm

Table 6.2: Physical specifications

6.2.2 Neuron

In the Table 6.3, it has been reported the characteristics of a single neuron,

synthesized with Synopsys.
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6.2. Synthesis

Minimum Clock Period 3.7ns
Max Clock Frequency 270.27MHz
Combinational area 9866.52

Non Combinational area 2601.00
Buf/Inv area 1098.72

Table 6.3: Synthesis of a single neuron

6.2.3 Convolutional and Max Pooling Layer

In the Table 6.4, it has been reported the characteristics of a a single page

of the Convolutional Layer, including its register File of 784 locations, the

49 Max Pooling operators and the correspond locations of the Max Pooling

Register File.

Minimum Clock Period 6.37ns
Max Clock Frequency 156.98MHz
Combinational area 249485.04

Non Combinational area 252666.00
Buf/Inv area 38219.76

Table 6.4: Synthesis of the Convolutional and Max Pooling Layer

6.2.4 Pre-Synaptic Unit

In the Table 6.5, it has been reported the synthesis of the Hidden Pre-

Synaptic Unit, without considering the weight RAM.

Minimum Clock Period 2.14ns
Max clock Frequency 467.29MHz
Combinational area 235204.19

Non Combinational area 1414.08
Buf/Inv area 8701.92

Table 6.5: Synthesis of the Hidden Pre-Synaptic Unit
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6.2. Synthesis

6.2.5 Final Consideration

From the Tables in the previous sections, it can be seen that the bottleneck

of the architecture area is represented by the area of the Convolutional Layer

and the Hidden Pre-Synaptic Unit.

As far as the Convolutional Layer is concerned, the elevated area is justified

by the fact that different Register File locations are also considered inside this

synthesis, both of the Convolutional Layer and of the Max Pooling Layer;

instead in the Hidden Pre-Synaptic unit, where the RAM containing the

weights is not considered, the excessive area value is given by the presence

of the array of 64 multipliers.

For a possible implementation on a FPGA, it is necessary to carefully evaluate

the available area and the size of the integrated RAM: one possibility could

be to use the integrated RAM both to store the different weights, and to

store the outputs of the Max Pooling Register Block and the Convolutional

Layer, replacing the register files now present.
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7. Conclusion

In this thesis, it has been shown the potential of combining spiking neural

network with Izhikevich Neuron, with the convolution operation. The ex-

cellent final result of the accuracy demonstrates how the Izhikevich neurons

can be interfaced with the convolution operation without deteriorating the

performance.

The next step will be to make the architecture more efficient in terms of

power, area and speed: a possible idea is to work on the optimization of the

Hidden Pre-Synaptic unit by using more efficient multipliers such as those

based on Dadda-tree architectures. Another possibility could be to use the

neurons also within the Convolutional Layer, in order to pass in the latter

from a frame-based approach to a totally spike-base approach: this would

lead to the Hidden Pre-Synaptic unit to eliminate totally the multipliers by

replacing them with multiplexers, as done for the Output Pre-Synaptic Unit.

Finally, it might be interesting to study the accuracy of the architecture us-

ing the N-MNIST dataset, which is the spiking translation of the MNIST,

and testing everything with a DVS camera.
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A. Convolution C Code

1 for(i=k-1; i>=0; i--){

2 for(j=k-1; j>=0; j--){

3 kernel_product[i][j]= polarity*kernel[q][w];

4 w++;

5 }

6 } ......

7 for (i=0; i<k; i++){

8 for(j=0; j<k; j++){

9 if((x-j)>=0 && (y-i)>=0 && (x-j)<N-k+1 && (x-i)<N-k+1){

10 acc=timestamp*kernel[i][j];

11 convolutional_matrix[y-i][x-j]= convolutional_matrix[y

-i][x-j]+acc;

12 address =(y-i)*28+(x-j);

13 for(z=0; z<4; z++)

14 for(t=0; t<4; t++){

15 if(part_max_pooling <convolutional_matrix [((y-

i)/4)*4+z][((x-j)/4)*4+t]){

16 part_max_pooling=convolutional_matrix [((y

-i)/4)*4+z][((x-j)/4)*4+t];

17 }

18 }

19 }

20 max_pooling_matrix [((y-i)/4)][((x-j)/4)]=

part_max_pooling;

21 }

22 } }

57



B. FSM Convolutional Layer

Figure B.1: FSM of the Convolutional Layer
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Figure B.2: Detailed FSM of the Convolutional Layer
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C. Modelsim Simulation Conv.Layer

Figure C.1: Modelsim simulation Convolutional and Max Pooling Layer
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D. FSM Izhikevich Neuron

Figure D.1: FSM of the HW implementation of the Izhikevich Neuron
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Figure D.2: Detailed FSM of the HW implementation of the Izhikevich
Neuron
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E. FSM Hidden Pre-Synaptic Unit

Figure E.1: FSM of the Hidden Pre-Synaptic Unit
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Figure E.2: Detailed FSM of the Hidden Pre-Synaptic Unit
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F. FSM CEDNN

Figure F.1: FSM of the whole architecture
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Figure F.2: Detailed FSM of the whole architecture
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G. CEDNN Simulation

In Figure G.1, it has been represented a part of the Convolution operation

of the whole architecture. It receives the x and y addresses, from the FIFO,

and taking data from the Convolutional Register File, calculates the convo-

lution results and store them into the Convolution Register File. In all the

simulations, the variable STATO refers to the current state of the FSM of

the whole architecture, reported in Appendix F.

Figure G.1: Simulation of the Convolutional Layer in the whole architecture
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In Figure G.2, it has been represented the Max Pooling operation. In a com-

binatorial way, it is applied the max pooling operation to the data at the

output of the Convolutional Register File.

Figure G.2: Simulation of the Max Pooling Layer in the whole architecture

In Figures G.3 and G.4, it has been represented a part of the simulation of

the Pre-Synaptic Layer. It receives the 490 data at the output of the Max

Pooling register, it processes them with the respective weight and the final

output becomes the input current of the neuron. Specifically, the Figure G.3

shows the calculation of the input current of neuron 0, which becomes zero

due to the block of ReLU; while, in the Figure G.4, the calculation of the

input current to neuron 1 is represented, which is different from 0 as it is a

positive value.
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Figure G.3: Simulation of the Pre Synaptic Layer in the whole architecture

Figure G.4: Simulation of the Pre Synaptic Layer in the whole architecture

As soon as the Hidden Pre-Synaptic unit has calculated the input currents

to all neurons, the 128 hidden neurons start its computation cycle. In the

Figure G.5, it has been reported the trend of the VT variable of the first 5

neurons over several computation cycles, with the respective input currents

and the emitted output spikes.

Figure G.5: Simulation of a part of the Hidden Layer in the whole architec-
ture

After the computation cycle of the hidden neurons, the processing of the

Output Layer starts . Firstly, the output current of the 10 neurons is com-

puted with the Output Pre-Synaptic Unit, as it is explained in the previous

69



chapter. Then, the 10 output neurons start its computation cycle. In the

Figure G.6, it has been reported the trend of 5 output neurons, with the in-

put spikes received from the hidden layer and the respective current values.

Figure G.6: Simulation of a part of the Output Layer in the whole architecture

Finally, when the value of the counter arrives to the integration time, the

neural network makes its decision: through the Winner Selector, it controls

the outputs of the 10 Integration Neurons and it concludes which the de-

coded digit is. In the Figure G.7, it has been represented the evolution of

the output of the integration neurons in the last computational cycles and

the final decision of the neural network, which is stored into the Winner Re-

gister, represented by the signal WINNER DIGIT. The Winner Register is

reset with the value 15, so that it is not a possible output of the architecture.

Figure G.7: Simulation of a part of the Final part of the whole architecture
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mi hanno concesso, per la pazienza che hanno avuto e per il supporto dato

in questo momento conclusivo della mia carriera accademica.


	Introduction
	Convolution Neural Network and Spiking Neural Network
	Convolution Neural Network
	Convolutional Layer
	Pooling Layer
	Fully connected layer

	Spiking Neural Network
	Spike Encoding
	Type of Neurons
	Advantages
	Training of a Spiking Neural network

	SPOON architecture

	Description of the architecture
	Convolutional and Max Pooling Layer
	Fully Connected Layer
	Izhikevich Neuron
	Pre-Synaptic Units
	Winner Selector


	Input Data
	MNIST dataset
	Spike Coding

	Offline Learning
	PyTorch and Norse
	Extension of Norse: layer of Izhikevich
	IZHCell
	IZHLinearCell

	Description of the code
	Results of the simulation

	HW Simulation and Synthesis
	Modelsim Simulation
	Synthesis
	UMC65
	Neuron
	Convolutional and Max Pooling Layer
	Pre-Synaptic Unit
	Final Consideration


	Conclusion
	Convolution C Code
	FSM Convolutional Layer
	Modelsim Simulation Conv.Layer
	FSM Izhikevich Neuron
	FSM Hidden Pre-Synaptic Unit
	FSM CEDNN
	CEDNN Simulation

