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Abstract

Can Artificial Intelligence (AI) make Art? Researchers and artists are posing this question. In the
last decade, the development of AI technologies has created genuine opportunities for artists, who
are venturing into this world as experimenters or, perhaps, as pioneers. Like other innovations in
the artistic field, the introduction of AI-related technologies is subject to a variety of criticisms
and debates; among them, the legitimate doubt regarding whether an emotionless entity can make
an effective contribution to a field in which the emotional sphere has a central role. In this regard,
our thesis work has the objective to propose an AI system that generates paintings expressing
human emotions.

We designed a Brain-Computer Interface in which brain waves associated with different emo-
tions are recorded in electroencephalographic (EEG) signals. The system relies on recent and
state-of-the-art deep learning technologies, and it is divided into two main components. The first
component is devoted to the automatic recognition of emotions in the EEG signals through a
graph neural network, and it is trained on both a public EEG dataset and on signals we recorded
with a commercial device. The second component is devoted to translating such emotions into
original paintings, utilizing a generative adversarial network.

The resulting paintings represent emotional states relying not only on stylistic features but also
on expressive content and shapes. They represent, therefore, a promising opportunity for the
employment of this technology in artistic applications. The AI system proposed and tested in
this work is not only conceived as a mere technical tool, but also a creative actor. Through its
interaction with a human, it succeeds in capturing and expressing the power and complexity of
our emotional sphere.
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Abstract (IT)

L’intelligenza artificiale (IA) può fare arte? Ricercatori e artisti si pongono questa domanda.
Nell’ultimo decennio, lo sviluppo delle tecnologie IA ha creato vere e proprie opportunità per gli
artisti che si stanno avventurando in questo mondo come sperimentatori o, forse, come pionieri.
Come altre innovazioni in campo artistico, l’introduzione di tecnologie legate all’IA è soggetta
a diverse critiche e dibattiti; tra questi, il legittimo dubbio che un’entità senza emozioni possa
dare un efficace contributo in un campo in cui la sfera emotiva ha un ruolo centrale. A questo
proposito, il nostro lavoro di tesi ha l’obiettivo di proporre un sistema di IA che generi quadri
esprimenti emozioni umane.

Abbiamo progettato un’interfaccia cervello-computer in cui le onde cerebrali associate a diverse
emozioni sono registrate come segnali dell’elettroencefalografici (EEG). Il sistema si basa su tec-
nologie di deep learning recenti e all’avanguardia, ed è diviso in due componenti principali. Il
primo componente è dedicato al riconoscimento automatico delle emozioni nei segnali EEG at-
traverso una rete neurale a grafo, ed è addestrato sia su un dataset EEG pubblico, sia su segnali
che abbiamo registrato con un dispositivo commerciale. Il secondo componente è dedicato alla
traduzione di tali emozioni in dipinti originali, utilizzando una rete generativa avversaria (GAN).

I dipinti risultanti rappresentano stati emotivi basandosi non solo su caratteristiche stilistiche
ma anche su contenuti e forme espressive. Rappresentano, quindi, una promettente opportunità
per l’impiego di questa tecnologia in applicazioni artistiche. Il sistema di IA proposto e testato
in questo lavoro non è solo concepito come un semplice strumento tecnico, ma anche un attore
creativo. Attraverso la sua interazione con un umano, riesce a catturare ed esprimere la potenza
e la complessità della nostra sfera emotiva.
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Résumé

L’intelligence artificielle (IA) peut-elle faire de l’art? Les chercheurs et les artistes posent cette
question. Au cours de la dernière décennie, le développement des technologies de l’IA a créé de
véritables opportunités pour les artistes, qui s’aventurent dans ce monde en tant qu’expérimentateurs
ou, peut-être, en tant que pionniers. Comme d’autres innovations dans le domaine artistique,
l’introduction des technologies liées à l’IA fait l’objet de diverses critiques et débats, parmi lesquels
le doute légitime quant à la possibilité pour une entité sans émotion d’apporter une contribution
efficace dans un domaine où la sphère émotionnelle joue un rôle central. À cet égard, notre tra-
vail de thèse a pour objectif de proposer un système d’IA qui génère des peintures exprimant les
émotions humaines.

Nous avons conçu une interface cerveau-ordinateur dans laquelle les ondes cérébrales associées
à différentes émotions sont enregistrées dans des signaux d’électroencéphalogramme (EEG). Le
système s’appuie sur des technologies d’apprentissage approfondi récentes et de pointe, et il est
divisé en deux composantes principales. La première composante est consacrée à la reconnais-
sance automatique des émotions dans les signaux EEG par un réseau neuronal graphique, et elle
est formée à la fois sur un ensemble de données EEG publiques et sur les signaux que nous avons
enregistrés avec un appareil commercial. Le second volet est consacré à la traduction de ces
émotions en peintures originales, en utilisant un réseau générateur d’opposition.

Les peintures qui en résultent représentent des états émotionnels reposant non seulement sur des
caractéristiques stylistiques, mais aussi sur des contenus et des formes expressives. Ils représentent
donc une opportunité prometteuse pour l’emploi de cette technologie dans des applications artis-
tiques. Enfin, nous soulignons que le système d’IA proposé et testé dans ce travail n’est pas
seulement conçu comme un simple outil technique, mais aussi comme un acteur créatif. Par son
interaction avec un humain, il réussit à capturer et à exprimer la puissance et la complexité de
notre sphère émotionnelle.
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Chapter 1

Introduction

In the middle of the 19th century, Charles Babbage was working on the Analytical Engine, a
general-purpose computing device. While the people of the epoch seemed not to understand the
potentialities of this machine, the mathematician Ada Lovelace was able to grasp and to foresee
them, putting the primordial basics for the development of modern computers. She was the first
programmer of history, although general-purpose computers were developed one century after.
Her contribution to the development of this technology is widely and commonly recognized. How-
ever, it is not so common that people reflect on the key elements that allowed her to be such a
brilliant mind. Today, we still have a lot to learn from her personality, her story and her thoughts.

Ada Lovelace was the daughter of Lord Byron, the most renowned English Romantic poet. She
never got to know her father, who departed from the family when she was only one year old.
Ada’s mother tried to deviate her daughter from the world of the famous and acclaimed poet,
giving her a deep education in mathematics, science and logic. [2] Despite this effort, Ada was
still the daughter of her father and, most of all, she was a daughter of the Romantic age. In that
epoch, people gave value to ideals and emotions above everything. [3] The poetry, the literature,
the art and the music of this period are characterized by examples of artists investigating their
inner feelings, raising the purity of their souls and thoughts. It is probably not a coincidence
if Ada Lovelace defined herself as a Poetical Scientist [4], despite the tendency of the period to
see rationality and artistic creativity as two irreconcilable qualities. When it came to the under-
standing of the potentialities and implications of the Analytical Engine, imagination was the key
element that allowed her to be the pioneer we celebrate nowadays. [5].

The Analytical Engine might act upon other things besides number, were objects found
whose mutual fundamental relations could be expressed by those of the abstract science
of operations. Supposing, for instance, that the fundamental relations of pitched
sounds in the science of harmony and of musical composition were susceptible of such
expression and adaptations, the engine might compose elaborate and scientific pieces
of music of any degree of complexity or extent (Ada Lovelace [6])

This quotation witness that Ada Lovelace, about 200 years ago, could imagine something still
debated and debatable nowadays: the possibility of a machine to make art. Recent advances
in Artificial Intelligence technologies allow us to speculate and enrich this debate, exploring and
putting into practice what Ada could only imagine.

Artificial Intelligence is having an enormous impact on the culture and the artistic identity of
our society. Studying such a phenomenon and trying to understand its effect on both the global
and the individual consciousness is a rather hard task: AI comes, indeed, with controversial ques-
tions, either related to Ethics or the unpredictability of our future. In a context in which the
human intervention is progressively substituted by software, a program, or a machine, the society
itself is demonstrating to have a higher interest and urgency to answer anthropological questions,
putting a shred of increasing evidence on what are differences between Human and Artificial In-
telligence and how the two should interact in the same social gear.
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Introduction

When we ask ourselves what humans have that machines are not supposed to understand, the
most simplistic answer is: emotions and imagination. Those factors that allowed Ada Lovelace to
be the first computer programmer are, apparently, also the two factors that will always draw the
line between what belongs to the domain of humans and what, instead, belongs to the domain
of machines. However, one of the many lessons we learn from Ada’s story is that drawing lines
can be limiting. When looking at an artwork (whether it is a painting, a piece of music, or a
poem) our common sense brings us to speculate around the emotional sphere of the author or the
epoch in which the work has been produced. We are used to wondering about the feelings at the
basis of an artwork, the socio-economical condition in which it was conceived, the meaning of the
artwork itself, the meaning it has to other people, and the emotions it conveys. Conversely, these
thoughts are often set aside when considering new scientific and technological inventions, although
they are also driven by human emotions and needs. It is thanks to their curiosity, maybe fear,
frustration, or passion that the world’s most famous scientists have devoted their energies and
lives to a specific field and not to another, leading to an invention and not to another, shaping the
world in a certain way and not in another. Despite this evidence, emotions are often marginalized
and set apart in the scientific debate and research. [7] One of the aims of this thesis work is to
re-assess the value of human emotions, not only when it comes to artistic expression, but also in
the context of Engineering work.

Instead of merely accepting the absence of emotions as an impossibility for machines to pro-
duce artistic content, this thesis work aims at the enhancement of machines’ possibilities and
the enhancement of human possibilities by their reciprocal interaction. We intend to propose a
system in which these two actors (humans and machines) can interact to reach a common goal:
the artistic expression of inner feelings. In a context in which machines cannot feel the emotions,
the human agent becomes the provider of the emotions, transmitting some information that the
machine recognizes as such. The machine, in turn, interprets this information and expresses it
through a painting. The final goal of this system is its application in art installations that spur
users to speculate on the strength of their emotions and mental states.

Understanding the contribution of the human agent to the machine is simple, as it consists of
inputting a piece of information that the machine, by default, cannot produce. One could argue,
instead, what is the contribution that the machine is giving in return to the human agent. Aren’t
humans able to express their emotions by themselves? Do they need the help of a machine? To
answer these doubts, we should wonder if we can purely communicate our inner feelings or we
always apply an abstraction over them, even when speaking.

first, all languages have a general undifferentiated word for FEEL (covering both
thought-related and non-thought-related kinds of feelings), and that, second, all lan-
guages have some words for some particular kinds of thought-related feelings (e.g.
afraid and guilty in English and toska in Russian). The meaning of such words are
language-specific and, generally speaking, do not match across languages and cul-
tures. (Anna Wierzbicka, Emotions Across Languages and Cultures: Diversity and
Universals [8])

Language is, for example, a non-universal abstraction. In the same way, also other forms of human
expression can be influenced by our culture and background. While re-interpreting our emotions,
the machine also leverages an abstraction. However, this abstraction would not follow the same
rules that we, as humans, apply. It does not mean that it is a better abstraction, but maybe it can
produce something original that we could never produce if not by interacting with the machine.

This Master’s thesis explores the potentialities of Artificial Intelligence in fields that are nat-
urally associated with ”human intelligence”. Being able to recognize emotions and communicate
them to other individuals is historically seen as a distinctive characteristic of humans with respect
to other animals and machines. In this thesis, we investigate, on the contrary, how an AI can
recognize human emotions and translate them into paintings. We are not claiming the possibility
of machines to feel emotions, or their ability to make Art autonomously, without the interplay
and the collaboration with a human. We explore the grey area between what is human and what
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is artificial, suggesting the idea of AI as a creative technology that can enhance culture and art
creation in this historical epoch. Furthermore, such a project represents an empowering possibil-
ity for people affected by disabilities. A human being can present physical or mental conditions
that prevent them from embracing art as a form of expression. In this sense, the interaction with
a machine contributes to the establishment of artistic norms that are more inclusive and more
equitable by design and that can therapeutically enhance the well-being of these patients.

To approach and to investigate the possibilities of creating emotional artworks with Artificial
Intelligence, this thesis is focused on the understanding of a diverse set of necessary components,
allowing their interplay. We investigate the variety of tools that enable automatic emotion recog-
nition, specifically focusing on brain signals (EEGs) and we explore the deep learning technologies
capable of generating artistic content. During the process that leads through this work, several
questions emerge. To what extent can a machine understand emotions? In what technological
ways can emotions be communicated from a human to an algorithm? What is the abstraction that
the machine applies to our emotions? How different is it from the way we can express ourselves?
Is it more universal, or does it suffer from the same cultural bias?

Finding a precise answer to all these questions is beyond the scope of this thesis work. We
intend, instead, to provide the basics and the practical examples to speculate on these issues.
The main challenge of this work is to combine different research areas, creating a harmonic and
synergic system that provides new insights on the potentialities of Artificial Intelligence in the
Arts. More specifically, we will address the following questions:

• How to design a system that generates paintings from emotions detected in EEG signals?
What are the main components in this system and what are their characteristics?

• How can we ensure that the generated paintings are diverse and heterogeneous? How do we
attempt to represent the complexity of human emotions?

• Is it possible to generate these paintings even with an EEG recording device that is simpler
and cheaper than the ones for medical purposes?

11



Chapter 2

Background and State of the Art

This thesis is a cross-disciplinary experimental work, involving different research areas. To have
a full overview of the context in which the project is developed, we introduce the background
knowledge and the state of the art of each area.

The core of this thesis work is to implement an artistically-oriented interface between human
brains and machines. Therefore, we can conceptually divide the topics in this chapter into two
main sections:

• In the first section, we introduce the field of Affective Computing and the different challenges
of emotion recognition. We then focus on emotion recognition based on brain signals, giving
an overview of the brain, of the available technologies that allow us to record the activity
of this organ, and the diverse ways in which the human brain and machines can interact.
After this background on the research area, we give a detailed overview on the state of the
art, specifically focusing on a publicly available dataset and the deep learning models that
reach the best accuracy on this dataset.

• The second conceptual section of this chapter is, instead, devoted to analyzing and intro-
ducing the landscape of Artificial Intelligence models applied to Arts. In particular, we
focus on GANs (Generative Adversarial Networks) and Neural Style Transfer (Neural Style
Transfer). We will discuss their potentialities in the field of Arts, as well as the most relevant
technological innovations related to them.

The work, study and research at the base of this thesis work require an effort in understanding
the main challenges and opportunities of both fields.

2.1 Affective Computing: background

Affective Computing is a field of study that concerns the understanding and development of sys-
tems that work with human emotions and respond to them. It is hard to determine with precision
when this research area started to develop, but many researchers agree that the famous paper
and book Affective Computing, by Picard [7], had a relevant impact on its development.

The main characteristic of Affective Computing is the idea of developing the emotive or affective
capabilities of a machine. This research field comprises four different branches [9]:

• emotion expression: this field concerns studies related to how a machine can express emo-
tions, with simulated face expressions, speech intonation, or word choices;

• emotion recognition: in this case, the aim is to recognize the emotions of the users and, if
needed, to adapt the response of the machine accordingly;
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• emotion manipulation: this branch tries to investigate in which ways the interaction of a
machine can influence the affective state of a human;

• emotion synthesis: this is the most complex branch, devoted to understanding how machines
could feel and synthesize emotions.

In this thesis work, we are focusing on the field of emotion recognition. Emotion recognition em-
ploys some passive sensors that can collect data of users while they are feeling specific emotions.
The data is then processed with machine learning techniques to find some meaningful patterns. In
this field, researchers usually work with data containing labels. These labels explicitly associate
the data with the emotions felt by the human when the recording took place.

Some decades ago, an art installation based on emotion recognition from an Artificial Intelli-
gence system could have sounded unrealistic. Nowadays, on the contrary, the efforts made by
researchers in the fields of human-computer interactions and, specifically, in Brain-Computer
Interfaces (BCIs) and affecting computing make this work a real possibility.

2.1.1 Emotions formalization

When it comes to emotion recognition, one of the trickiest problems is the formalization of emo-
tions themselves. [10] Despite the intensive research and study, it is still hard to define what
emotions are because of their personal and complex nature. Emotions manifest in our body in
several ways, both externally with facial expressions, voice intonation, posture, or body language,
or causing inner phenomena detectable with physiological signals.

When building an emotion recognition system, it is crucial to decide the data modality (or multi-
ple ones) on which to focus. Researchers in this field also need to determine how to formalize the
emotions in their system. Emotion formalization is challenging because of the vague, subjective,
and invisible nature of these inner phenomena that we experience. Historically, psychologists have
adopted two different paradigms for categorizing emotions, a discrete and a continuous one. The
discrete paradigm utilizes a finite set of basic emotions (happiness, sadness, fear, anger, disgust
and surprise). [11] When combined, these basic emotions can create other more complex feelings,
such as anxiety and frustration. The continuous model, instead, allows visualizing an emotion
as a point in a multi-dimensional space. Each dimension represents a distinctive characteristic
of emotions. The most popular model is the Valence-Arousal one (Russell) [12], shown in Figure
2.1. The valence dimension allows distinguishing positive and negative emotions, while the arousal
dimension refers to the excitement level. In this model, sadness and amusement are two opposite
emotions: sadness has negative valence and low arousal; amusement, on the contrary, is a posi-
tive emotion with high arousal. In the same way, fear and calmness are opposite emotions (fear
having negative valence and high arousal, happiness having positive valence and negative arousal).

To have a more precise distinction between different emotions, it is also possible to adopt a
three-dimensional model. Russell himself proposed, together with Mehrabian [13], a 3D model in
which the third dimension is called ”dominance”. This dimension refers to how much emotion
takes control of individuals. To give an example, we can mention that emotions like anxiety and
fear overlap in the 2D Valence-Arousal model (Figure 2.1), but they take different positions when
considering their dominance.

2.1.2 Emotions recognition

Emotions are conscious or unconscious psycho-physiological phenomena that arise for several
reasons. They can derive from the perception of objects, people, and situations or the personal
characteristics of a subject, like a background, history, or temperament. Emotions have so many
effects and consequences on our bodies that their recognition can employ different data modalities.
Machine Learning models can recognize emotions according to external and controllable factors,
such as facial expressions, speech intonation, and word choice. In this sense, the models base
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Figure 2.1. 2-D valence-arousal model, image source: [14]

their recognition on factors that we, as humans, also consider when trying to understand how
someone else feels. On the other side, Machine Learning models can also rely on more internal
physiological signals, such as the heart rate and brain signals. What is interesting about these
inner phenomena is that they can hardly be controlled or inhibited by individuals. They express,
therefore, emotions in a more unfiltered way. In this thesis work, we do not intend to discuss the
best data modality for emotion recognition in humans (but we refer the reader to reviews on this
topic [14] [15]).

2.1.3 Emotion-eliciting paradigms

Regardless of the chosen modality, the first ingredient to train a model for emotion recognition is
to have a dataset. In this field, we usually operate in the context of supervised machine learning;
therefore, the used datasets contain samples labeled with emotions. The type of samples depends
on the chosen data modality, and they are collected either in a laboratory or in-the-wild. [16]
Data are easier to record in a laboratory, but, when they are collected in-the-wild, they allow the
development of models and devices that adapt to human emotional responses to real-life scenar-
ios. In this project, the application context is rather static, and we will refer to the recording
methodologies in laboratory settings.

Depending on the utilized data modality, the collection of data for emotion recognition can follow
different approaches. For example, if a model relies on facial expression or speech intonation, it
is common to ask actors to fake an emotion in front of a camera. [17] It is a fast and easy way
to build a dataset, but often criticized: regardless of the acting quality, there are always some
non-negligible differences between a faked emotion and a real one. [18] On the contrary, when
emotion recognition is performed based on physiological signals, the involved subjects need to feel
the emotions.

Psychologists have studied different paradigms to elicit emotions in a laboratory context. A
possible approach is to ask the subjects to describe some emotional memories of their lives. [19]
This introspective approach can generate stronger feelings, but, in some cases, it is hard to per-
form. An alternative is to present some multimedia content to the subjects, such as static images,
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sounds, music, or video clips. [20] [21] More recently, some researchers have also experimented
with videogames [22] or Virtual-Reality [23] experiences. The main idea is to present these
emotion-eliciting stimuli to different subjects and to record their brain signals in the meanwhile.
It is, unfortunately, common that a stimulus elicits an uncertain emotion. When this happens,
the subjects provide this information by filling a self-assessment soon after being exposed to each
stimulus; the self-assessment allows discarding some non-reliable recordings. For more informa-
tion about emotion elicitation paradigms and existing elicitation datasets and techniques, we refer
the reader to [16].

2.2 EEG-based emotion recognition

EEG-based emotion recognition is a rather old research field, but it still has not reached a com-
plete maturity level. We introduce this topic by referring to a review written ten years ago.
[24] The author of this review analyzes and explains the main issues and limitations of emotion
recognition based on EEG signals. In the last decade, some of them have been fully or partially
overcome. However, this review is a good starting point to understand the possible problems to
face when dealing with this research area.

The first issue that the authors of this paper identify is the time constraint. Apparently, un-
til ten years ago, most EEG-based emotion recognition models were meant to work off-line, and
could not adapt to real-time applications. This issue was due not only to the signal recording but
also to the feature extraction. Having to extract features inevitably caused a delay. Although the
time constraints remain an issue to consider when working in this area, it is also true that several
real-time applications have been developed in the last years, such as [25] [26].

The second considered issue is accuracy, as the authors point out that models tend to decrease
their performance when the number of emotions to recognize increases. This issue is still not
solved: nowadays, the state of the art datasets only involve a restricted number of emotions
(more details in the following sections).

A third issue regards the number of electrodes needed in the recorded device. Despite many
attempts to utilize fewer electrodes, most of the works ten years ago still involved recording de-
vices made of many electrodes. This problem is also current: some authors have tried to utilize
smaller recording devices [27], but in those cases, the number of recognized emotions is even lower.

Ten years ago, the authors of this review reported the absence of a benchmark of EEG databases
for emotion recognition, and they suggested that more stimuli databases should be publicly avail-
able to the research community. Despite the efforts, the availability of these databases is still
limited and often researchers record the dataset themselves to develop models.

The authors of the review also highlighted that EEG signals are chaotic and non-linear and
this creates difficulties to apply them to different contexts. Some deeper analyses have been made
in this sense, leading also to the introduction of a new feature extractor that better synthesizes
the information contained in EEG signals (more details in Chapter 4).

Last but not least, one of the main difficulties that the authors identified in the utilization of
EEG signals for emotion recognition is the high complexity of the brain as an organ, which is still
not understood enough from many points of view. We, therefore, proceed in our discussion on
EEG-based emotion recognition giving a humble and very synthetic overview of the brain.

2.2.1 Brain structure and functionalities

The brain is probably the most mysterious and fascinating organ of our body. It is the center of
our cognitive processes, as well as our actions, movements and emotions. It is where we store our
memories, what we learn, what we think, what we experience. In a way, it is possible to say that
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the brain comprises all the factors that define who we are, how we behave and how we perceive
ourselves and others; in other words, it is the casket of our individuality, the most important organ
to keep healthy to preserve the existence of a human being. Despite the enormous importance of
the brain, there are still many things that researchers can hardly understand about this organ.
The brain is composed of cells called neurons; neurons are the most important inspiration for AI
technologies. These cells are allowed to communicate and send electrical impulses through their
extensions, creating synapses to exchange chemical substances.

Describing the complex anatomy of this organ is out of the scope of this thesis work. How-
ever, it is still interesting to analyze some of the basic concepts that allow the brain to be such a
functional and relevant organ for our lives. First of all, we must underline that the brain reaches
the body through the nervous system, creating a complex network with bi-directional links (the
information flows from the brain to the body and vice-versa). In the lower part of the head, closer
to the nervous system, we find two areas, called the brain stem and cerebellum. The cerebral
cortex, located just above the cerebellum and the brain stem, is what we commonly think of when
we imagine the brain itself. To better visualize these concepts, we refer the reader to Figure 2.2
and the relative article. [28] The cerebral cortex is composed of two hemispheres. Some popular

Figure 2.2. Anatomy of the brain. Image source: [28]

studies suggest that the two hemispheres are devoted to different functionalities: in particular,
the right side is supposed to be the center of creative and artistic functions and thoughts, while
the left side is supposed to be the main actor when we accomplish logical and analytical tasks.
Apart from this difference, it is possible to say that functions-wise the two parts of the brain are
equivalent. When it comes to emotions, many authors argue that the two hemispheres play dif-
ferent roles. [29] This asymmetry has recently been taken into account by researchers developing
models for emotion recognition based on brain signals (more details about this in the following
sections).

Each hemisphere of the brain is, in turn, divided into lobes: occipital, parietal, temporal and
frontal (their positions are visible in Figure 2.2). While researchers consider occipital, parietal
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and temporal lobes simple to understand and describe, the frontal lobe is, on the contrary, the
most complex part of our brain. It is the area responsible for higher cognitive functions, such
as abstract thinking, motion control, planning, and physiological reactions related to emotions
and needs. We furthermore highlight that the temporal lobe seems to play a role in processing
information related to the emotions stuck in our memory. [30]

2.2.2 Electroencephalography (EEG) and Brain-Computer Interfaces
(BCIs)

To accomplish each task in our everyday life, neurons in the brain create an ionic current between
themselves, whose voltage fluctuations can be monitored and recorded through electroencephalog-
raphy (EEG). This method requires the application of electrodes on the scalp. These electrodes
measure the differences in electrical potentials between different sites of the brain. EEG waves
allow making diagnoses on several brain disorders, such as epilepsy, tumors, depression, strokes,
sleep disorders, brain damage, or inflammation. Interestingly, these waves also allow analyzing
the normal functioning of the brain activity. [31] This discovery has lead to an increased interest
in the development of Brain-Computer Interfaces (BCIs).

Many people consider the discovery of electrical current among brain cells as the origin of BCIs,
although the term appeared for the first time only 50 years later. [32] This term refers to the
possibility of creating a system that allows the human brain and a computer to communicate. The
year 1988, in particular, is a crucial moment for the development of these technologies. In that
year, Farwell and Donghin invented the P-300 speller. [33] This BCI could allow people to spell
letters just using their brains. At that moment, it became clear to many researchers that BCIs
had enormous potential, as they could, for example, allow paralyzed patients to communicate.
At the end of the last century, the field developed even broader, seeing a massive introduction
of machine learning techniques. [34] [35] [36] [37] BCIs are now employed in a wide range of
applications, including stroke rehabilitation, gaming, assistive technologies, and art.

In the artistic field, the interest started to grow when artists understood the possibility of creating
performances in which the machine and the brain of a performer could exploit a neurofeedback
loop. [38] Nowadays, artistic applications often include affective BCIs, based on the understand-
ing of affective states [39], a sub-category of passive BCIs. With the term ”passive”, researchers
refer to the idea of a BCI that monitors the brain. On the contrary, active BCIs take active action
on the inputs from the interacting user. For further understanding about the history of BCIs, we
refer the reader to [40] and its references.

The electrical activity detected in the brain is influenced by other activities, of the body and
the environment. [41] EEG signals are, in fact, particularly noisy, and they contain artifacts (gen-
erally distinguishable and easy to remove). Given the strong dependency on external factors, the
EEG signals are also unstable and non-stationary. The frequency associated with these signals is
in the range of 0.5-100Hz. Researchers divide the frequency into five bands (delta, theta, alpha,
beta, and gamma), all associated with different functions of human cognition. Figure 2.3 reports
an example of waveforms in the five frequency bands.

2.2.3 EEG-recording devices: an overview

The possibility of recognizing emotions with EEG also depends on the signal quality and, therefore,
on the EEG recording device. The more complex the device, the higher is the quality of the signals
and the chances to obtain good results. Several sophisticated devices are available on the market,
whose numbers of electrodes can grow up to 256. Such devices, designed for medical applications,
are far from the application context explored in this thesis. Despite the signal quality, they are
hard to employ, and they require a long set-up time. For this reason, we need to focus the attention
on devices that ensure a good balance between the reliability of the signals and user-friendliness.
The most popular options in this field are:
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Figure 2.3. Examples of waveforms of the 5 different bands. Image source: [14]

• MUSE headband1, used in experiments that combine virtual reality and EEG [27] [42]
[43]. This device is small and transportable, but it contains only four channels; all of the
aforementioned works manage only to distinguish between good and bad emotions.

• Emotiv Epoc+ headset2 (from 5 to 14 channels available). It is probably the most popular
commercial device (not for medical purposes), utilized by several authors in the literature
[25] [24] [44] [45]. The drawback is that it employs wet electrodes, which are not adaptable
to all kinds of hair and that require effort for the set-up.

• The open-source products of OpenBCI3 (from 8 to 16 channels) represent a user-friendly
opportunity for whoever wants to develop a project in this field. The range of possibilities
is quite wide, with different products accomplishing different purposes.

Open-BCI headband with Cyton board

The OpenBCI headband kit4 (depicted in Figure 2.4) is a good option for this thesis work, consid-
ering that it provides a good balance between user-friendliness and signal quality. The headband
is easy to attach to the scalp, and it does not require the utilization of wet electrodes and saline
solution. With the dry comb electrodes, this headband is easily adaptable to all types of hair.

The headband kit provides eight electrodes: three are flat and allow measurements in the frontal
cortex area (F7, AF7, Fp1, Fp2, AF8, or F8), while the reaming five comb electrodes allow mea-
surements in FT7/FT8, T7/T8, TP7/TP8, P7/P8, PO7/PO8, O1/O2, and Oz (see Figure 2.5 to
understand the geometry). This product can be paired with the Cyton biosensing board 5. In
each channel of this board, the data is sampled at a frequency of 250Hz. It can either record EEG
waves or monitor muscles and heart activity (depending on the connected sensors). The Cyton
board has a high level of user-friendliness and flexibility, as it can be employed by people having
very little knowledge of electronics, and it is compatible with several applications and tools.

1https://choosemuse.com/

2https://www.emotiv.com/epoc/

3https://openbci.com/

4for more info on the Open BCI headband kit, please refer to https://shop.openbci.com/products/openbci-
eeg-headband-kit?variant=8120393760782

5for more info on the Cyton biosensing board, please refer to https://shop.openbci.com/collections/
frontpage/products/cyton-biosensing-board-8-channel?variant=38958638542
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Figure 2.4. OpenBCI headband kit. Image source: OpenBCI website (provided as a footnote)

Figure 2.5. Electrodes disposition, image source: OpenBCI website (provided as a footnote)

2.3 EEG datasets: State of the Art

DEAP dataset

The DEAP dataset [46] is one of the most utilized datasets in this field. The labeled emotions
follow the valence-arousal-dominance model. The values of the three dimensions are stated by the
involved subjects, after being exposed to the stimuli. The experiment has been carried out on 32
different people, using 40 selected music videos as elicitation stimuli. The stimuli selection was
semi-automatic. The authors of the dataset have utilized an online tool to filter music pieces that
could evoke specific emotions in the four quadrants of the valence-arousal plane (high valence high
arousal, high valence low arousal, low valence high arousal, low valence low arousal). An extract
of one-minute duration has been selected and shared on an online platform. Some volunteers
have evaluated the videos so that the authors of the dataset could consider only the 40 music
videos that seemed to have the most coherent reactions from different volunteers. In the case of
this dataset, the EEG recording device has 32 electrodes. After every video, the subjects filled a
self-assessment of the value of valence-arousal-dominance they have felt during the 1-minute-long
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extract they have watched.

Given the labels defined in a continuous space, this dataset has been studied by several researchers
in the field.

SEED and SEED-IV dataset

SEED and SEED-IV are two other popular datasets that, differently from DEAP, consider the
emotions following the discrete formalization method. SEED-IV [47], in particular, has been
created to show that it is possible to perform emotion recognition using a fewer number of elec-
trodes. The authors recorded the signals using two kinds of devices: a very sophisticated one
(made of 62 channels) and a lighter one (made of 6 channels and eye-tracking). The selected
stimuli are 72 emotion-eliciting videos. These videos are short, they have a plot that is open and
closed throughout the duration of the video, they do not need explanations to be understood, and
they elicit a single, distinct emotion. Some volunteers have ranked these videos according to the
valence-arousal model. This ranking allowed the authors of the dataset to select only the videos
with more consistent answers. In the SEED-IV dataset, the considered emotions are four: happi-
ness, fear, sadness, neutral. The subjects involved in this dataset are 15, exposed to the stimuli
on three different days (called sessions). During each session, every subject watches 24 different
videos (6 for emotion), for a total of 72 selected stimuli. After each trial, the subjects make a
self-assessment of the emotion they have felt, using the PANAS scale [48]. If the elicited emo-
tion was not strong enough or was different from the intended one, the recorded signal is discarded.

The authors of SEED-IV also show that fewer electrodes and eye-tracking are enough to de-
tect emotions. Based on their previous studies, the authors select six temporal and symmetrical
electrodes, placed over the ears, namely FT7, FT8, T7, T8, TP7, and TP8 of the international
System, see Figure 2.5.

2.3.1 An introduction to deep learning

With the advent and development of deep learning, many research fields have progressed fastly in
unimaginable directions. Emotion recognition is one of these fields: the best performing models
nowadays are based on deep learning architectures. In this introduction, we do not deepen too
much into the basic details of neural networks (for this, we refer the reader to deep learning
textbooks like [49] [50]), but we briefly describe some basic notions that are fundamental to have
an understanding of the state of the art models on the SEED-IV dataset.

Neural Networks are the basis of Deep Learning. The story of Neural Networks began between
1950-1960 when Rosenblatt developed the perceptron [51], the first kind of artificial neuron that
was proposed. The main characteristic of a perceptron is to output a binary value when given
several binary inputs. The perceptron multiplies the inputs by different weights (real numbers),
computes their sum, and compares the result to a certain threshold, better known as bias. If the
weighted sum is lower than this threshold, the output is a 0; otherwise, it is 1. We provide a simple
visualization of a perceptron in Figure 2.6. Utilizing one single neuron, the amount of possible
operations is limited. To increase the computational power, the neurons are combined, forming
a network. In this sense, neurons and Neural Networks are biologically-inspired paradigms, as
their connections try to emulate the synapses between the neuronal cells in the brain. A simple
scheme of a neural network is depicted in Figure 2.7. In this scheme, we can distinguish layers of
neurons. The first one is called input layer, the last one is the output layer, while the ones in the
middle are known as hidden layers. Networks that are composed of several hidden layers are the
basis of deep learning.

In modern works, the perceptron is employed rarely. It is often substituted by the sigmoid
neuron. For further details on this kind of neurons, the reasons why it is preferable, and its
characteristics, we refer the reader to Chapter 1 of [50].
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Figure 2.6. A perceptron. The value of the output is either 0 or 1 depending on the relationship
between the weighted sum of the inputs and a chosen threshold value (-b).

Figure 2.7. A simple scheme of a Neural Network

While we do not deepen into the training details of how Neural Networks, their cost functions, the
backpropagation algorithm, and the related issues (please refer to [49] and [50] for more on this),
we focus on some important topics that help us in our discussion. Although Neural Networks
can compute any function (see the universality problem in Chapter 4 of [50]), different types of
Neural Networks have been developed in the years, adapting to different needs, problems, and
scenarios. In this paragraph, we briefly introduce the Convolutional Neural Networks (CNNs),
the Recurrent Neural Networks (RNNs), and the Graph Neural Networks (GNNs).

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [52] are the basic paradigm on which deep learning meth-
ods rely in the context of image processing and computer vision. To understand the main idea
at the base of their functioning, we need to introduce the key concept of filter. Given an input
image, a filter is a matrix of weights that is convoluted6 over the image. Thanks to the convolu-
tion operation, the filter extracts relevant information on specific areas of the image, called local
receptive fields. For every receptive field, there is a neuron in the next layer. The activation of
this neuron depends on the result of the convolution between the receptive field and the filter.
Different filters can be applied to the same image, creating different representations (called feature
maps). We provide a simple scheme of a Convolutional Neural Network in Figure 2.8 When a
filter is convoluted on an image, the purpose of the filter is to find specific features in different
parts of the image. To do so, the filter utilizes specific parameters (weights and biases) that are
shared between the neurons of the following hidden layer (meaning that they are applied to all
the local receptive fields).

Another form of a layer that is employed in CNNs is the pooling layer, usually applied soon
after the convolutional one. The pooling layer creates a more synthetic version of the feature

6for more information about the convolution operation please refer to https://en.wikipedia.org/wiki/
Convolution
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Figure 2.8. A simple scheme of a Convolutional Neural Network

maps. In Figure 2.8, for example, three different filters are applied to an input image, creating
three different feature maps at the next layer. Consequently, each of these feature maps is com-
pressed into smaller ones by pooling. To understand more about CNNs, we refer the reader to
Chapter 6 of [50].

The study of Convolutional Neural Networks was raised from studies concerning biological neu-
rons in the visual cortex. The initial focus was on the understanding of the role of single neurons
in the cortex, but thanks to CNNs, scientists have been able to focus on a more general view of
how visual tasks are performed in our brain. The experiments with CNNs bring an advantage
to the biological studies concerning the brain. At the same time, these studies are the basis for
the development of CNN models. The development of these two fields is very often brought in
parallel, by reciprocal interaction. [53]

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a specific kind of neural networks, optimized for retriev-
ing information in sequential data (language processing, audio signals, time series). The core idea
at the basis of their functioning is the introduction of a loop, visible in Figure 2.9. This picture
shows, on the left, a rolled version of an RNN and, on the right, the corresponding unrolled
version. The application of this loop allows the network to process data whose appearance order

Figure 2.9. A simple scheme of a Recurrent Neural Network

is, for some reason, informative. In the unrolled version, we can see that the RNN appears as a
sequence of normal neural networks. These neural networks share the same parameters. From
the representation on the right we understand that, at each time instant, the output depends on
the input at the same time instant, but also on some information coming from the hidden layer of
the previous instant. In this way, the RNN allows exploiting information about the order of the
data in the input. For more about RNNs, their functioning, their issues, and some more advanced
versions, we refer the reader to [54].

The possibility of RNNs to preserve the memory of past states has made them a good model
to understand and describe the functioning of human brain responses to stimuli. [55]
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Graph Neural Networks

A Graph Neural Network (GNN) is a specific neural network that directly operates on a graph
data structure. We define a graph as a data structure that consists of vertices (or nodes) and
edges (or arcs). A simple scheme is provided in Figure 2.10. The set of nodes of a graph are

Figure 2.10. A simple scheme of a graph

expressed through a feature matrix X ∈ Rnxd (n being the number of nodes, d being the number
of features). The edges are, instead, represented by the adjacency matrix A ∈ Rnxn. A graph
neural network aims to create an output representation of X, defined as Z ∈ Rnxd′ .

From a layer l+1 and the previous layer l, we can express the feature transformation in the
following way:

H l+1 = f(H l, A), (2.1)

where, H0 = X and HL = Z. [56] This formula provides the most general definition of a graph
neural network. In the literature, many studies have been made by modifying the nature of the
function f according to the needs of specific problems, developing different kinds of GNNs, such
as graph convolutional networks (GCN) [57]. Graph Neural Networks are employed in different
circumstances and different fields. They are particularly useful when the nodes of the graph are
samples that have to be classified or when the classification concerns a phenomenon that can be
synthesized as a graph. [58] In the case of EEG, GNNs are useful to visualize as a graph the
disposition of the electrodes over the scalp of a patient.

2.3.2 State of the Art models on SEED-IV dataset

The work ”EEG-Based Emotion Recognition Using Regularized Graph Neural Network (RGNN)”
[56] is the state of the art for emotion-recognition on the SEED-IV dataset. The authors of RGNN
compare their performance with other deep learning models that reach excellent results on the
SEED-IV dataset. Among them, BiHDM [59], BiDANN-S [60], DAN [61], DGCNN [62]. While
we will describe RGNN in detail, we provide some notions about the other relevant architectures
on this dataset.

The authors of DAN (Deep Adaptation Network) have proposed a method to fight the prob-
lem of inter-subject variability when dealing with EEG signals. One of the main issues when
training models on EEG signals is that the signals from each person are different and the models
do not understand the common patterns among them. This method, by smoothing the differ-
ences between different subjects, improved the performance of baseline architectures on SEED
and SEED-IV datasets.

BiHDM (Bi-hemispheric Discrepancy Model) exploits the asymmetry of the brain in the synthesis
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of emotions. This framework employs four RNNs that move spatially on the different channels of
the signals, maintaining the information related to the position from which each information is
taken. An additional sub-network is employed for better understanding the discrepancies between
the two hemispheres and for extracting the features needed for the classification. This framework
also includes the implementation of an adversarial domain discriminator7, to perform subject-
independent classifications.

The BiDANN (Bi-hemispheric Domain Adversarial Neural Network) model is based on the asym-
metry between hemispheres. This information is extracted thanks to the employment of a global
and two local domain discriminators. The local ones are used adversarially8 to learn features
for each hemisphere. The authors of this paper also propose an improved version that allows
distinguishing emotions in a subject-independent context.

The DGCNN (Dynamical Graph Convolutional Neural Network) employs a graph neural network
to process the information from different channels to learn their existing correlations dynamically.
These correlations are represented through an adjacency matrix.

The RGNN, state of the art model on this dataset, leverages many of the findings at the base of
the previous methods and succeeds in overcoming some of their limitations.

2.4 RGNN: Regularized Graph Neural Networks

The RGNN is based on a specific graph network architecture, known as Simple Convolutional
Graph Network (SGC) [63]. The main characteristic of SGCs is to be simpler than normal GCNs.
In particular, they do not contain non-linearities between convolutional layers, and their linear
feature transformation is followed by logistic regression. The authors of RGNN have decided to
extend SGCs to model EEG signals because SGCs have shown to perform much faster than other
networks, reaching a similar accuracy.

RGNN architecture is depicted in Figure 2.11, and it is conceptualized based on the following
premises:

• The brain signals related to emotions also have some spatial characteristics and asymmetries.
Considering the position of the electrodes in the EEG device helps improve the accuracy of
learning models.

• Brain signals vary across different subjects. Therefore, it is arduous to implement a model
that can generalize in subject-independent settings.

• In datasets for emotion recognition, the subjects are usually exposed to stimuli that should
induce a specific emotion. However, in these settings, users may not generate the pure
elicited emotion, and the labels contain some noise.

The architecture of the RGNN addresses the first problem, by providing a model that takes as
input a graph data structure based on the topology of the electrodes in the EEG recording device.
On the other hand, the two other cited problems (inter-subject variability and noisy labels) are
faced by adding two regularizers - respectively called node-wise adversarial training (NodeDAT)
method and emotion-aware Distribution Learning (EmotionDL).

The architecture of RGNN exploits the topology of the electrodes in the EEG recording de-
vice by adopting a biologically-inspired approach, with an adjacency matrix that considers the
co-operation between the different electrodes. The adjacency matrix, A, is essential for graph

7The concept of Adversarial Domain Discriminator will be explained in Section 2.4.2

8The concept of adversarial training will be explained in Section 2.6
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Figure 2.11. RGNN general architecture. CE = cross-entropy loss. KL = Kullback-Leibler
divergence. FC = fully-connected layer. GRL = gradient reversal layer. Image source [56]

representation learning. Each entry i,j is a learnable parameter that quantifies the power of the
connection between channels (electrodes) (i,j). When the recording device contains many chan-
nels, the model has a high number of parameters, leading to the very well-known problem of
over-fitting, especially in a context like this, in which it is difficult to collect a huge amount of
data. To reduce the possibilities of over-fitting, matrix A is designed symmetrical and, therefore,

it contains n(n+1)
2 parameters. If we did not apply this condition, the number of parameters would

have instead been equal to n2.

By some studies in the literature [64], it appears that the connections among EEG channels
are stronger when the electrodes are closer. Therefore, each entry Ai,j is initialized as follows:

Ai,j = min(1,
δ

d2ij
) (2.2)

In this formula, dij represents the physical distance between channels i and j, while δ > 0 is a
calibration constant. The value of the calibration constant relies on the studies of [65]. Its value
should allow around 20% of the entries of A are non-negligible: for this reason, δ = 5.

Prior studies on brain activities related to emotions [29] have shown that the left and right
hemispheres asymmetry can be exploited to predict the valence and arousal of emotions, and it
is not enough to consider the connections between the channels based solely on their distances.
Some global connections are added to the matrix to consider also the asymmetrical properties of
neural activity. The global channel pairs are (FP1, FP2), (AF3, AF4), (F5, F6), (FC5, FC6),
(C5, C6), (CP5, CP6), (P5, P6), (PO5, PO6) and (O1, O2). They can be identified in Figure 2.5.

The connection between these pairs is treated as:

Ai,j = Ai,j − 1. (2.3)

The entries of the matrix are converted to their absolute value. The higher the value, the stronger
the connection between two electrodes.

The authors consider two different scenarios: subject-dependent and subject-independent emotion
recognition. In the first case, the model is trained and validated on signals of the same subject;
in the second case, instead, the model is trained on signals of different subjects and validated on
a new subject. In the subject-dependent scenario, the data from the same subject compose both
the training and validation sets. In the subject-independent scenario, the model is trained on 14
subjects and tested on the remaining subject.
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Before applying learning algorithms to EEG data, it is necessary to utilize some techniques for
feature extraction. The SEED-IV dataset contains not only the raw EEG recordings but also
the features extracted with power spectral density (PSD) and differential entropy (DE) [66] [67]
[68]. The features, extracted on the five different EEG bands (shown in Figure 2.3), can be either
considered separately or combined. The input dimension of the model is [5x62xt], where 5 is the
number of bands, 62 is the number of channels and t is the duration of a single trial (variable).

2.4.1 Emotion Distribution Learning

The subjects involved with the data collection may not always feel the emotion intended by the
stimuli, and the labels become noisy. This characteristic harms the classification accuracy of any
model. The EmotionDL tries to compensate for this issue, converting the labels to a distribution.
This conversion is dataset-dependent, the following equation summarises it in the case of the
SEED-IV dataset.

Ŷi =


(1− 3ε
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ε
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ε
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ε
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3ε
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ε
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(2.4)

This conversion can also be seen as a transition matrix, based on how probable it is that a certain
emotion can be confused for another one. The labels 0, 1, 2, 3 correspond respectively to neutral,
sad, fear, and happy. For example, the transition matrix tells us is that it is unlikely that sad
stimuli make a subject happy and vice-versa. The ε is a tunable parameter, in the range [0, 1].

Given the conversion of labels to distributions, the model is optimized by minimizing the Kullback-
Leibler (KL) divergence between the distribution of the label and the output probability distri-
bution:

φ′ =

N∑
i=1

K(p(Y |Xi, θ), Ŷi + α||A|| (2.5)

An L1 regularization factor is added to the KL loss: it is composed of a tunable parameter α and
the norm of the adjacency matrix.

2.4.2 Node-wise Domain Adversarial Training

When it comes to applying deep learning models for emotion recognition, one of the biggest issues
is the inter-subject variability of the signals: the produced waves are different for every individual.
The consequence is that the EEG recorded from a subject cannot be used as a training set if the
model is tested on another subject. The correlation between the data in the training and test set
would be low. For this reason, deep learning models applied to EEG waves are often trained in a
subject-dependent fashion. Inter-subject variability is particularly problematic with deep learning
models, that usually need a great number of samples in order not to overfit. In the context of
emotion recognition, it is complicated to collect enough data for each subject. As explained in
the previous section, the labels are already quite noisy. If the task is performed multiple times by
the same subject, the labels risk being not reliable at all.

To reach better results in a subject-independent scenario, the authors of RGNN propose the Node-
wise Domain Adversarial Training (NodeDAT). The paper shows that, in this way, RGNN can beat
all the state-of-the-art models, with an accuracy of 73.84% on the SEED-IV subject-independent
classification. NodeDAT aims to reduce the discrepancies between the samples from different sub-
jects. Data from 14 subjects are divided into domain-training samples (S) and domain-validation
samples (T), having the same number of samples, N. A domain classifier tries to classify the sam-
ples as belonging to one domain or the other. In the meantime, during the training, the model
tries to fool the domain-classifier. The latter optimizes two binary cross-entropy losses, formulazid
as follows:

φD = −
N∑
i=1

n∑
j=1

(log(pj(0|XS
i , θD)) + log(pj(1|XT

i , θD))) (2.6)
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where:
(pj(0|XS

i , θD) = softmax0(σ(ZSij)W
D), (2.7)

(pj(0|XT
i , θD) = softmax1(σ(ZTij)W

D); (2.8)

θD are the parameters of the classifier; 0 and 1 denote the two domains (train and validation,

respectively); Z
{S,T}
ij is the representation of Z

{S,T}
i at the jth node; WD is the matrix of the

parameters in the classifier.

The authors of the paper include a gradient reversal layer (GRL) to confuse the domain classifier
and try to diminish the discrepancies between a domain and the other. In the forward pass, the
GRL is simply an identity layer. On the contrary, during the backward pass, the GRL reverses
the gradients of the domain classifier and scales them by a factor β. This value of this factor
increases from 0 to 1 during the training process, following this rule:

β =
2

1 + exp−10p
, (2.9)

where p represents the progression of the training. β is therefore smaller in the first stages and
becomes bigger as the training proceeds. In this way, the first inputs (which could be noisy) are
given less importance than later ones.

The total loss on which the model is optimized in a subject-independent scenario is the sum-
mation of the regularized KL divergence and the domain classifier loss:

φ = φD + φ′ (2.10)

2.4.3 Training process

Following the methodology utilized in the compared papers, the authors of the RGNN train the
model using a LOSO (leave-one-subject-out) cross validation procedure. While the number of
convolutional layers is set to 2, the dropout rate of the fully-connected layer is set to 0.7 and the
batch size is set to 16, there are several parameters to be tuned to perform an optimal training:
the output feature dimension, the noise level ε for the EmotionDL, the learning rate η in the
Adam Optimizer, the L1 regularization factor α in φ′, the L2 regularization factor (weight decay
of the Adam Optimizer). The need of tuning such a great number of parameters harms the
reproducibility of the experiments with this architecture.

2.5 Art and Artificial Intelligence: background

A new artist figure, the so-called AI artist [69], is starting to develop in recent years. An AI artist
is an artist that utilizes AI as a creative tool for their artworks, getting inspiration from it or
developing a reflection around AI-related topics. To get an overview of what being an AI Artist
means nowadays, it is interesting to shortly investigate the personalities, main inspirations, and
works of some of the most relevant and affirmed AI Artists. Memo Akten9 is an artist and AI
researcher based in London. The main topic and inspirations behind his works are the specula-
tion and reflection around the spirituality and the nature of life and human beings. In his works,
he uses AI technologies to understand and represent the human vision of the world. Another
influential figure is Professor Ahmed Elgammal10, founder and director of the Art and Artificial
Intelligence Laboratory at Rutgers University. Prof. Ahmed Elgammal gave a great contribution
to this field with the paper ”CAN: Creative Adversarial Networks, Generating ”Art” by Learning
About Styles and Deviating from Style Norms” [70] (more details on this in the following sections).

9http://www.memo.tv/

10https://sites.rutgers.edu/ahmed-elgammal/
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The landscape of interests and application contexts of the different AI Artists is heterogeneous
and variegated: it includes the majestic architectural installations of Refik Anadol11, the mes-
merizing paintings of Daniel Ambrosi12, the dance choreographies of Wayne McGregor13, the
mysterious sculptures of Scott Eaton14, the biological intersections of Sofia Crespo15 and more.
AI is developing further as a tool to enhance human creativity; artists in different fields are hav-
ing the possibility to experiment and create new forms of artistic expression. Although some Art
historians and Art critics are still resilient to accepting the intersection between AI and Art, the
collective effort of these artists and several researchers is clear evidence of a new artistic sensibility
that is being progressively more accepted and explored.

Artificial Intelligence is a technology that is having an impact on different aspects of our so-
ciety. Researchers and scientists in technical and non-technical areas are working to fight the
negative impacts that a massive and non-regulated usage of AI technologies could have on our
everyday lives. Particularly remarkable in this sense is the work of the artist and MIT researcher
Joy Boulawmini16. Her work focuses on exploring the risks related to algorithmic biases in AI
systems, and her mission is to contribute to the development of this technology more equitably.

2.6 Generative Adversarial Networks (GANs)

Machine learning models can be supervised or unsupervised, discriminative or generative. Su-
pervised models need data with labels, unsupervised ones work with data that do not contain
explicit labels. An example of a supervised learning task is classification. When we want to per-
form classification, we deal with data x that are assigned to labels y. In this case, the model aims
to find a discriminant function f(x) that maps x to the label; this kind of model is discrimina-
tive. On the contrary, some unsupervised models, while looking for patterns inside the inputted
dataset, learn how to summarize the distribution from which the data are drawn. These models
are generative, meaning that they can also generate new data belonging to the learned distribution.

Among deep learning models, one of the most popular generative ones are generative adver-
sarial networks (GANs). The latter has had a remarkable impact on different fields, including
arts and content generation. They were introduced in 2014 by Ian Goodfellow et al.[71] and, to
be more precise, they represent a model architecture that not always has to involve deep learning
models, but that very often does. After their introduction, the interest by other researchers was
massive, and many developed some extensions or modified versions that could also improve its
generative potentialities.

A GAN model aims to understand the distribution of an inputted dataset and to generate new
samples ideally taken from the same distribution. The peculiarity consists in dividing the problem
into two sub-tasks, accomplished by different models: a generator and a discriminator. Expressing
the concept in simple terms, the two models play a game in which they are one the opponent of the
other. While the generator tries to output some samples that are plausibly taken from the same
distribution of the input dataset; the discriminator, on the contrary, has the task of distinguishing
the real samples (from the dataset) from the fake ones (output of the generator). They both try
to minimize their losses, respectively Lg and Ld. Each of the two models has control over their
parameters, but the value of their loss also depends on the parameters of the opponent. For this
reason, the training of a GAN model cannot be considered as a simple optimization problem, as

11https://refikanadol.com/

12https://www.danielambrosi.com/

13https://waynemcgregor.com/

14http://www.scott-eaton.com/

15https://sofiacrespo.com/

16https://www.poetofcode.com/
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the solution consists of reaching the Nash equilibrium [72], similar to what happens in a chess
match between two opponents.

The input to the generator model is a random vector from a Gaussian distribution, and it gen-
erates vectors in a latent space. The latent space in a GAN provides a compression version of
some concepts observed in the inputted dataset. The generator provides the vectors in the latent
space with a meaning, that allows the mapping to newly generated outputs. The aim of the
discriminator is much simpler, as it only involves a binary classification task. The most popular
application field of GANs is computer vision. Often in this context, the performance of a GAN
can be assessed qualitatively, by just looking at the generated images, but some metrics have also
been proposed by authors and researchers (more details in Chapter 5).

The training of the two models happens simultaneously, the GAN model is said to converge
when the discriminator is not able to distinguish the real samples from the fake ones. A peculiar
property of GANs is that, although they perform an unsupervised learning problem, their training
follows a supervised paradigm. At each update of the architecture, the discriminator gets better
at distinguishing the real and the fake samples, while the generator gets better at fooling the
discriminator. The mathematical definition of the losses is a discussed topic in research. Among
the different proposed options, one of the most accepted is the non-saturating logistic loss. In this
scenario, the discriminator is trained with a standard binary cross-entropy loss with a sigmoid
output (classifying as 1s the real samples x and as 0s the fake samples z ), while the generator
simple reverses the discriminator loss (see Equations 2.11 and 2.12)

Ld = −Ex∼pdata logD(x)− Ez(1− logD(G(z))) (2.11)

Lg = Ez(1− logD(G(z))) (2.12)

More recent studies have brought to the conclusion that this loss may not be the best solution,
as it can lead to the vanishing gradient problem in the generator training. For reading more
about the discussion on this topic, we refer the reader to more specific works on this topic. [71] A
general picture of a GAN architecture can be visualized in figure 2.1217. GAN models can also be

Figure 2.12. Architecture of GAN. Image source provided as a footnote.

trained in their conditional versions. This means that they are given some additional information
that creates different generation processes in the generator, according to labels or information

17image source: https://steggie3.github.io/projects/gander.html
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coming from other data. A simple example of a conditional GAN (trained on handwritten digits)
is shown in Figure 2.1318.

Figure 2.13. Conditional GAN training on handwritten digits. Image source provided as a footnote.

2.6.1 State of the Art

Every application context of GANs can boast the development of high-performing variants of
this architecture. In the case of this project, we are focusing on the application of GANs to
visual arts. In the following sections, we will describe two models that represent interesting
possibilities for visual arts. The first one, Creative Adversarial Networks, tries to reduce the
creative limits of GANs, introducing a more artistic factor to the generation of paintings. The
second one, StyleGAN2, is considered the state of the art because of the high-quality of the images
it generates.

2.6.2 CAN: Creative Adversarial Networks

The title of the paper describing this model sounds already like a premonition of something in-
novative, CAN: Creative Adversarial Networks Generating ”Art” by Learning About Styles and
Deviating from Style Norms [70]. The main objective of this work is to answer the question: can
GANs be creative? One of the biggest limitations of GANs applied in the context of visual arts
is that the generator does not make any effort in trying to produce something new. Humans, as
GANs, are exposed to works from other people, and they learn from them. However, we consider
a human to be an artist when they invent something new. In the same way, a creative GAN
should not imitate the paintings in a dataset.

The main objective of a CAN is to generate a novel work, which is not too far from the ex-
isting style norms (otherwise, the discriminator would recognize that they are fake). In the CAN
training, the dataset is labeled with style epochs to which they belong. The labels distinguish the
paintings among different styles. On the contrary, the generator does not see the original paintings
and has to learn how to generate them by receiving inputs from the discriminator (as it happens
in the GANs). However, in CANs, the generator retrieves two different kinds of information from
the discriminator: one is the typical adversarial loss regarding the distinction between real and
fake samples; the second is a metric of how easily the discriminator can recognize the style of the
generated painting. The generator has to beat the discriminator on two different levels: if the
discriminator believes that the generated images are pieces of art, but it can easily classify them
into a known style, then the generator has to change its parameters to increase the ambiguity
of its style, i.e. to deviate from the known norms. A synthesis of the architecture is depicted in
Figure 2.14: two losses are added to a normal GAN: style classification loss and style ambiguity
loss. From the picture, we can see that the basic adversarial loss and the style classification loss

18image source: https://cfml.se/blog/cgans/
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are propagated for the discriminator training, while the generator backpropagation is based on the
basic adversarial loss and the style ambiguity loss. Figure 2.15 reports some paintings generated
by a CAN.

Figure 2.14. Architecture of CAN, image source: [70]

Figure 2.15. Some paintings generated by a CAN, image source: [70]
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2.6.3 StyleGAN2 and StyleGAN2ADA

Among the invented GAN models, the StyleGAN2 [73] is often considered the State of the Art,
as it can generate high-quality photorealistic images. Figure 2.16.19 reports an example of the
astonishing results that this model can obtain. StyleGAN [74] has been released at the beginning

Figure 2.16. An application of StyleGAN2: Davinci’s Monalisa photorealistic portrait as an adult
and as a child. Image source provided as a footnote.

of 2019 by NVIDIA researchers. The novelty introduced is in the redesign of the generator archi-
tecture. The main issue of previous GAN models was the hard interpretability of the generator
and its results. On the contrary, the generator of the StyleGAN allows us to control the generation
process of new images. At the end of 2019, the authors of StyleGAN enhanced their network,
publishing StyleGAN2 [73]. The main improvement has been made in redesigning the generator
normalization and by introducing a new regularization technique. This has specifically improved
the quality of the conditional image generation.

The architecture of StyleGAN2 is depicted in Figure 2.17, which shows that the generator is
composed of two distinct networks, a mapping and a synthesis one. While the role of the synthe-
sis network is to generate the images, the role of the mapping network needs some premises before
being explained. The general idea at the basis of StyleGAN2 is to start from constant input and
”simply” adjusting the style of the generated image at each convolutional layer. This process
is possible by separating high-level attributes from stochastic variations. To better understand
the criteria at the base of this model, it is useful to visualize them in a practical scenario. For
example, we want to train the StyleGAN2 for human face generation. In this case, the high-level
attributes are the features describing the identity of a person, while the variations are the small
details. During the generation process, the main attributes are controlled by a latent vector, but
the stochastic details are the result of the introduction of some additional uncorrelated Gaussian
noise at each convolutional layer. When instantiating the model, we define the size of the latent
space (by default, it is equal to 512). This size means that we allow the model to find and manip-
ulate 512 different characteristics of a human face (maybe gender, the shape of the eyes, colors,
etc.). Figure 2.17 also shows that StyleGAN2 utilizes two different latent spaces, indicated as Z
and W. Now, let us imagine that the dataset we utilize for face generation is somehow biased
towards women with glasses. It contains pictures of men that wear glasses and men that do not
wear them, but, on the contrary, none of our pictures show women with glasses. Learning from
this dataset, the StyleGAN2 will deduce that women with glasses are unrealistic, i.e. they do not
exist. Specifically, they do not exist in the latent space Z because, in this space, the different
characteristics identified by the network in the dataset may not be independent one from the
other. Because of this dependency between the different facial features in Z, only plausible faces
are represented in Z. Being a man and wearing glasses are two features that cannot be separated
from each other in this space.

19image source: https://pythonawesome.com/simple-encoder-generator-and-face-modificator-with-
stylegan2/
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Figure 2.17. General architecture of StyleGAN2, image source [73]

When the mapping network acts on Z, it generates the second latent space, called W. The practi-
cal difference is that, in W, the constraint of having only realistic samples is loosened, and women
with glasses can exist. The features described by this latent space are all independent. This is
what we referred to at the beginning when explaining that the main advantage of StyleGAN2
over other GAN models is that it enables a higher control the generation. More precisely, it is
possible to say that the latent space W owns the disentanglement property, which consists of the
possibility of a latent space to be divided into linear subspaces. In the case of StyleGAN2, each
subspace has the power of controlling a single factor of variation in the generation of new images
(the characteristics/style aforementioned). The disentanglement property of the latent space W is
one of the reasons why StyleGAN2 has become so popular. Thanks to this property, it is possible
to move from a sample to the other in W, creating videos in which images get deformed smoothly.20

To the best of our knowledge, StyleGAN2 has remained state-of-the-art throughout 2020, with
the main drawback of being difficult to apply in many contexts, as it needs a large amount of
data to be trained correctly and converge to its spectacular results. However, in October 2020,
the authors have considered implementing an adaptive discriminator augmentation, creating a
new model called StyleGAN2ADA. [75] In general, when deep models are trained with a small
quantity of data, they tend to overfit. When dealing with GANs, if the discriminator overfits, the
generator will not produce interesting images. In most cases, a good way to solve overfitting is to
perform data augmentation. With images, the data augmentation consists of flipping, cropping,
adding noise, etc. Unfortunately, data augmentation cannot be directly applied to GANs because
the generated images may contain the performed augmentations. For example, if we tried to aug-
ment a dataset by adding noise or changing the colors, the generator would also produce images
with noise and with different colors. The new technique proposed by the authors of StyleGAN2
is to perform an Adaptive Discriminator Augmentation (ADA) so that the discriminator does
not overfit with small datasets and, at the same time, the augmentations do not leak into the

20a video example: https://www.youtube.com/watch?v=6E1 dgYlifc
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generation of new images.

The concept of Discriminator Augmentation allows the discriminator to see images (both the
real and the fake ones) through a pair of glasses that distort them (performing augmentation
techniques). To make the augmentations not leaky, the discriminator must be shown some orig-
inal images too. The augmentations are, therefore, performed with a probability p < 1. The
authors of StyleGAN2ADA start from the assumption that having a diverse set of augmentations
can be beneficial for the purpose; for this reason, they consider 18 differentiable transformations,
applied in a pre-defined order and with probability p. When this probability remains low, the gen-
erator can still produce images that do not contain the transformations. During the experiments,
the authors have noticed that having a fixed value for the augmentation probability can lead to
several problems; in some cases, the augmentations can become leaky; in other cases, the over-
fitting is reduced with the cost of a much slowlier convergence rate. The augmentation proposed
by the authors is, therefore, adaptive. The value of the probability p is changed dynamically,
according to the level of overfitting experienced by the model, quantifiable with two different
proposed heuristics. One of them, defined as rv, behaves according to the following formula:

rv =
E(Dtrain)− E(Dvalidation)

E(Dtrain)− E(Dgenerated)
(2.13)

When the distribution of generated set and the validation one behave in the same way, the
numerator and the denominator are equal, the value of the heuristic is equal to 1, and there is
strong overfitting. On the contrary, when the model behaves equally on the validation set and
on the training set, the numerator is 0, the value of the heuristic is 0, and there is no overfitting.
However, the possibility of dividing the dataset into train and validation is not always feasible
when the dataset is small. Since the authors are explicitly coping with this situation, they propose
an alternative to rv, defined as rt and mathematically formalized as:

rt = E(sign(Dtrain)) (2.14)

This heuristic provides an estimation of the portion of training images that the discriminator
recognizes as reals. If its value is too high, then the discriminator is winning over the generator,
and the augmentation rate has to become higher, to prevent the risk of overfitting. If its value
is too low, it means that the discriminator sees too many original images with the deformations,
and it cannot recognize them as reals. In such a situation, the probability of augmentation has
to become lower. In the implementation of StyleGAN2ADA, the initial value of p is set to 0, and
it is adapted once every 4 mini-batches, according to the value of rt.

2.7 Neural Style Transfer

Neural Style Transfer is one of the most popular applications of deep learning in the field of Art.
The idea consists in transferring the style of an image (for example, a painting), to the content of
another image (for example, a photograph). An example is provided in Figure 2.21 and explained
in the following sections. Given the popularity of this topic, several sources are available to under-
stand the theory behind it or how to implement them practically [76] [77] [78]. In this Chapter,
we describe the general characteristics of Neural Style Transfer techniques, without deepening
any model specifically (for this, we suggest this technical review [79] comparing different models
with open-source code).

The popularity of neural style transfer dates back to 2016, the year in which the application
Prisma21 was distributed on AppStore and GooglePlay. The success of this application is at-
tributed to the novelty it introduced: for the first time, users could apply filters on their photos
that did not only modify the color space, but that also acted on the content.

21https://play.google.com/store/apps/details?id=com.neuralprisma&hl=en US&gl=US
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There are different approaches to perform Neural Style Transfer, but the general idea is based
on the fact that computer vision algorithms allow separating the style and the content of images.
In an NST algorithm, the loss to minimize is a weighted sum of a content loss and a style loss.
The content loss measures how much the output image of the network has kept the content of
the initial image on which the new style is applied. On the other hand, the style loss is used as a
metric to understand whether the new style is applied correctly.

A general NST architecture includes a pre-trained feature extractor and a transfer network. The
first network allows computing the loss, as it is through its extracted features that the network
can compare the style and the content of different images. It is the transfer network (usually
following the encoder-decoder paradigm) that applies the style to the image. The training of such
a model can be summarized in three different steps:

• Some styling images are processed by the pre-trained feature extractor so that their style
features are saved.

• Some content images are processed by the same feature extractor, but in their case, the
extractor saves their content features. The same images are passed to the translated network,
which generates the stylized images.

• The output of the previous step (stylized images) are processed by the pre-trained feature
extractor, to allow the computation of both the content and the style losses. Based on these
losses, the weights of the translator images are updated.

A synthetic and general image of a Neural Style Transfer system is provided in Figure 2.18.22

Figure 2.18. General architecture of a Neural Style Transfer model. Image source
provided as a footnote.

2.7.1 State of the Art

Researchers have adopted different approaches to developing NST technologies, including GANs
[80]. Regardless of the adopted approach, one of the biggest limitations of Neural Style Transfer
models is that good performance is only obtained on low-resolution images. In the following
section, we describe the Block Shuffle method [81]. This method enlarges the range of possible
applications, allowing an NST model to be also employable for Virtual Reality and other contexts
in which the utilized images have higher resolutions.

22image source: https://medium.com/machine-learning-algorithms/image-style-transfer-740d08f8c1bd
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2.7.2 Block Shuffle

The core idea of this model is to add pre and post-processing steps to any baseline Style Transfer
architecture. These steps allow dividing a high-memory single task into multiple tasks that have
lower memory consumption - reaching good results with much higher resolutions with respect
to the baseline implementation. As explained in a previous section, Fast Style Transfer methods
utilize feed-forward neural networks to understand and learn the artistic style from a painting and
then applying it to a given input image. These methods include a feed-forward neural network
used for the image transformation and a pre-trained network used for the loss calculation. In the
baseline implementation utilized in the paper [81], the loss network is a VGG-19 pre-trained on
ImageNet [82], while the transformation network is a 16-layer deep residual network. A scheme
of the architecture is depicted in Figure 2.19.

Figure 2.19. Baseline architecture, image source [81]

In the baseline Style transfer architecture, the loss function combines three different kinds of
losses:

• Style loss: measures the consistency between the output image and the style image. It takes the
feature maps of some of the residual layers and computes the Gram matrix23

Content loss: measures the consistency between the output image and the input image. In this
case, the feature map of one of the residual layers is used to compute the Euclidean distance:

Lc(ŷ, yc) =
1

ClWlHl
||Fl(ŷ)− Fl(yc)||2 (2.16)

Total variation loss: this loss promotes the model to create a smooth image. It is computed
pixel-by-pixel:

Ltv(x) =
∑
i,j

|xi+1,j − xi,j |+ |xi,j+1 − xi,j | (2.17)

The general loss in a weighted sum of these three terms:

L(ŷ, yc, ys) = λsLs(ŷ, ys) + λcLc(ŷ, yc) + λtvLtv(ŷ) (2.18)

As previously stated, the block shuffle method takes advantage of the already existing archi-
tecture and adds some pre-processing and post-processing steps, as summarized in Figure 2.20.

The method is divided into the following steps:

23https://en.wikipedia.org/wiki/Gramianmatrixofbothimages.Thelossisexpressedinthisform : Ls(ŷ, ys) =∑
l∈layers ||G(Fl(ŷ))−G(Fl(ys))||2(2.15)
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Figure 2.20. Block shuffle method, image source [81]

• Pre-processing: the high-resolution image is provided with a padding region, and it is then
cut into overlapping squared blocks of the same size. All the blocks are numbered, shuffled,
and then randomly concatenated together in sub-images. The sub-images have the maxi-
mum size that can be stylized (depends on the baseline architecture). The baseline Style
Transfer technique is applied to all the sub-images separately.

• Post-processing: the stylized sub-images are, in turn, divided into blocks. For each block, a
padding region of 8 pixels is removed. The image blocks are sorted and stitched together.
In the overlapping regions, the value of the pixel is calculated using a weighted average.
The padding added in the pre-processing is removed to restore the initial size of the input
image. Finally, noise is smoothed by utilizing four bilateral filters.

In Figure 2.21 a high-resolution example of Style Transfer with Block Shuffle method. For practical
reasons, the images have been resized before the insertion in this thesis document. However, the
Style Transfer has been applied to the full-size image. Block Shuffle has allowed the style to be
transferred with a high resolution on all the images, creating a refined yet homogeneous picture.
The final result looks like a painting. In lower-resolution trials, the style was transferred more
roughly, creating the effect of a painting with big brush-strokes. In this case, instead, the level of
detail is so high that it could be associated with Pointillism artworks.
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Figure 2.21. Example of Style Transfer on a high-resolution image 16.000x8.000 pixels.
On the top left the styling image, on the top right, the content image (source: Flickr), on
the bottom the stylized image.
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Chapter 3

Design & Related Works

This work aims at the implementation of a deep neural network architecture that generates a
painting from an inputted EEG wave. The generated painting is supposed to represent the emo-
tion of the respective brain signal. To train such an architecture, two different datasets need
to be employed. One of them is composed of recorded EEG waves, and the other is composed
of paintings. Both the datasets have labels in the same semantic space: emotions. In the first
case, the labels represent the emotion felt by the subject when the EEG was recorded; in the
second case, the labels represent the emotion evoked by the painting. More details about these
two datasets are described in the next Chapter.

The complexity of designing this project is distributed on different levels, which we can ana-
lyze going backward from the output (the paintings) to the input (the EEG waves). To sustain
the explanation, we provide a conceptual pipeline in Figure 3.1. The output paintings should
visually express the same emotion encoded in the inputted EEG wave. However, there are no
general laws that define this property in a painting. The emotions evoked by an artwork are often
the product of the sensibility and experience of the spectator. As a consequence, it is not possible
to provide an objective metric stating whether the paintings are representing the given emotions,
and we will have to assess the performance of our model qualitatively (rather than quantitatively).
Going backward in the model, we need to mention that the implementation of generative adver-
sarial networks (GANs) usually requires large datasets. However, given the nature of this project,
the available datasets will not be particularly large, as the data collection process requires the
co-operation of individuals. In particular, in the case of a painting, to draw a statistically valid
conclusion on the evoked emotions, it is necessary that the painting itself is shown to several
subjects and annotated by them. Finally, it is important to remember that emotion recognition
in EEG waves is a hot research topic, still far from being solved. As explained in the previous
Chapter, some models provide a high classification performance on some specific datasets. How-
ever, the problem of EEG-based emotion recognition is still not generalized: many variables have
a non-negligible impact on the classification accuracy, such as the utilized recording device, the
considered emotions, or the environment in which the recordings are performed.

From this premise, we understand the highly experimental nature of this work. We consider
all the mentioned challenges to make the design choices at the base of our model architecture.
To the best of our knowledge, no one has ever attempted to do something similar. Each block
of the architecture we propose is dedicated to the accomplishment of a single, independent task.
Among them, it is possible to imagine the architecture as divided into two main parts: one part is
dedicated to the processing and classification of the emotions in the EEG signals, the other part
is dedicated to the generation of images.
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Figure 3.1. General pipeline of this project, from input datasets to output

3.1 Conditional image generation with StyleGAN2ADA

When choosing the best option for the Generator and Discriminator architectures, we must con-
sider that we work with paintings labeled according to the emotion they convey. Even having
access to a large amount of paintings, the labeling process has to be performed by humans, and,
therefore, the architectures we select must be able to adapt to a scenario in which not much data
is available. As explained in the previous Chapter, the extension of Stylegan2, known as Style-
GAN2ADA [75] is optimized for this purpose. For this reason, it is included in our architecture.

When a GAN is trained to generate different images according to labels, it is defined as ”condi-
tional”. In this project, our architecture must be conditional, and the labels are defined by the
inputted brain signals. The official implementation of StyleGAN2 is distributed in TensorFlow,
and it includes the options to work conditionally. For consistency reasons with other parts of this
project, we prefer to utilize an un-official Pytorch implementation1 of StyleGAN2. Unfortunately,
the Pytorch implementations of StyleGAN2 on Github do not contain the conditional option and,
before digging into the design of our architecture, we implement it.

For both the Generator and the Discriminator, the labels (considered in their one-hot encod-
ing) are projected to the feature map size (512 by default) and then normalized. The projected
label is concatenated to the latent vector and then passed to the mapping network of the Gen-
erator. In the Discriminator, the labels are also projected and normalized. In its case, they are
used as a weighted mask for the network: before the output, the Discriminator’s weights are mul-
tiplied by the projected label. Our implementation is available in a forked Github repository2;
the code has been checked by the author of the relative Pytorch implementation, who confirmed3

its correctness.

1https://github.com/rosinality/stylegan2-pytorch

2https://github.com/PieraRiccio/stylegan2-pytorch

3https://github.com/rosinality/stylegan2-pytorch/issues/166
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3.2 EEG Encoder

The inputted information in the Generator derives from EEG signals and allows the StyleGAN2
to be trained conditionally. The simple EEG signals would not be enough to make this happen,
as the Generator is not trained to distinguish different kinds of emotions from brain signals. For
this reason, the Generator must receive synthetic representations of the signals, the latent vectors.
To generate these vectors, the EEG signals must be first processed by an Encoder. As a starting
point for our architecture, we consider the SEED-IV dataset, and our Encoder is based on RGNN
(state of the art on this dataset, as explained in the previous Chapter).

In theory, the RGNN and the StyleGAN2 could be trained simultaneously. In practice, this
can be disadvantageous for the RGNN. The latter has a simple architecture and one of its epochs
is much faster than the epochs of StyleGAN2. Besides, it is important to consider that RGNN
requires many epochs before reaching a satisfying accuracy. For these reasons, we intend to train
the EEG Encoder separately.

As shown in Figure 2.11, the architecture of the RGNN contains a final linear layer, which performs
classification based on the latent vectors of the EEG signals. The conditioning of StyleGAN2 is
easier and more effective if the input to the Generator is the result of this linear layer (i.e. the class
to which each signal is predicted to belong). However, in this way, the generated paintings risk
becoming flatter and more similar to each other. We believe that human feelings are much more
complex than simple labels, and it is common to experience the same emotion but with different
textures or different intensities. One of the thrusts of this project is representing the richness of
the human emotional sphere. Therefore, we decide to input to the Generator more complex latent
vectors. They are harder to interpret, but more informative of the state experienced by a human
being when the signal was recorded.

3.3 Extra losses

Performing the conditioning based on the latent vectors of EEG signals could make the process
slower. For this reason, we decide to integrate two other kinds of losses in our architecture. We
refer to them as ”extra” losses, as they can be helpful in some experiments, but they are omitted
in ideal situations.

Auxiliary Classification Loss

The first extra loss is obtained by integrating an auxiliary emotion classifier. This classifier is an
architecture that learns how to classify emotions in the dataset of paintings. In our project, it
is pre-trained on our available dataset. When a new image is generated, this classifier provides
an interesting metric to understand whether the generated image evokes the same emotion as the
inputted EEG wave. Classifying the emotions in a painting is ”vague” and subjective: different
humans can accomplish it in different ways. The classifier is trained on data with labels (super-
vised learning), but the labels do not represent an objective ground-truth. Besides, sometimes a
single painting can evoke more than one emotion, but the classifier tries to label them in a single
class. This will, of course, harm the classification accuracy, but in the context of this project the
classifier is just providing an extra loss and, therefore, it is not crucial that it performs a perfect
classification.

Given this premise, we decide to keep the architecture of the classifier as simple as possible
and we opt for testing some pre-trained architectures for image classification, performing transfer
learning. Thanks to transfer learning, we can exploit what is learned in a first setting to improve
the generalization in a second setting, assuming that the representation of the data in the first
setting can be relevant for learning in the second setting. Transfer learning techniques allow us to
start learning from a better ”initial condition” and the model experiences faster convergence and
better generalization. It can be utilized when the first setting is composed of many samples, while
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the second is not. [49]. In the field of image classification, many architectures have become de
facto standards. Thanks to transfer learning, we will select one of these architectures, pre-trained
on ImageNet dataset [82] (more details on this choice in the next Chapter).

Auxiliary Style Loss

A second extra loss that can be added to this model is provided by comparing the style of a
generated image with the style of a real image with the same label as the inputted EEG wave.
The more similar they are, the lower the style loss is. Also in this case, we provide this option as
an ”auxiliary” and we decide to utilize a pre-trained VGG-19 [83] network for this purpose.

3.4 Final architecture

The architecture of our model is depicted in Figures 3.2 and 3.3. The first picture is the shape
of the architecture when trained on a single subject (the NodeDAT is not present in the RGNN),
while the second applies when the model is trained on different subjects and the NodeDAT reg-
ularizer must be included. The Encoder of RGNN (block E) outputs the latent vectors of the
EEG signals (denoted as vi and v∗i ), which are given as input to the mapping network of Style-
GAN2ADA. During the training of RGNN (performed separately), the latent vectors are also
given as input to block C (classifier), which performs the classification of the EEG waves and
provides the computation of Kullback-Leibler loss (defined in the previous Chapter).

The Generator of the StyleGAN2 is composed of two blocks: the mapping and the synthesis.
The generated output is denoted as mi. The Discriminator (block D) tries to distinguish it from
a real panting (yi in the pictures), providing the calculation of the adversarial loss. In addition,
mi can also be used to compute the two auxiliary losses (classification and style), shaded in the
pictures.

3.5 Related works and discussion

Related works can be considered from two perspectives: the application field and the technology.
In the analysis of the related works, we explore both artistic works and technical articles. In the
first case, we think it is worth mentioning some examples of EEG Art. The term EEG Art refers
to the implementation of brain-computer interfaces for the production of artistic content. Many
examples consider the application as a powerful tool for enhancing impaired patients or patients
with disabilities. In some cases, these people are not able to hold pens or brushes in their hands.
Art should not have any physical or cognitive requirements, and artistic expression should be
open to everyone.

Mind Art4 is an Art project that allowed impaired patients to control the explosion of colored
paint on a canvas, just through their brain waves. In the Cognichrome5, instead, a robotic hand
translates the users’ feeling to paintings (creating feedback between the artwork and the EEG
waves of the user). In recent years, artists and researchers developed several projects to enable
people to paint from EEG waves. These efforts have also led to the distribution of commercial
mobile applications, as in the case of NeuroSky6.

Another relevant application field is development of interactive installations that can, for ex-
ample, enhance the experience of visitors in museum. Interesting in this sense is the recent work

4https://www.vice.com/en/article/kbnbnm/this-art-project-lets-anyone-paint-with-brainwaves

5http://www.cognichrome.com/

6http://neurosky.com/2015/11/beautiful-brainwaves-creating-eeg-art/
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Figure 3.2. Subject-dependent training.

Figure 3.3. Subject-independent training

Figure 3.4. General architecture of our model when trained on a single subject and when
trained on different subjects.

Paint with Your Mind: Designing EEG-based Interactive Installation for Traditional Chinese Art-
works [84]. The aim of this installation is to spur visitors to get more engaged with a proposed
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artwork, namely Court Ladies Preparing Newly Woven Silk by Xuan Zhang. To obtain this ef-
fect, the visitors do not see the painting directly, but they are firstly proposed a sketch of it, then
the sketch is colored and finally the characters in the paintings start moving. The speed of the
sketching and the coloring, and the number of characters that can move is related to the detected
level of attention in the visitors (revealed with a commercial EEG device). An explicative sketch
from the paper is shown in Figure 3.5. Despite the interesting and useful application proposed

Figure 3.5. An explicative sketch proposed in the work Paint with Your Mind: Designing
EEG-based Interactive Installation for Traditional Chinese Artworks. Image source: [84]

in this work, we highlight that this installation technically relies only on the attention level of
the participants, and the system proposes the same content, but simply with a different speed. It
is, therefore, a good example in terms of the possibilities of BCIs in the world of entertainment,
culture, and art, but it is technically less ambitious than the work we are proposing in this thesis.

The Art of Feeling7 is a relevant Art project for our discussion, being focused on EEG emotion
recognition and translation to paintings. The users focus on some memories of their lives. Based
on the identified emotions in their EEG waves, the machine generates abstract paintings. These
paintings take inspiration from bird swarms; some examples are shown in Figure 3.6. Although
these images are powerful, it is crucial to notice the low inter-paintings variability. The style does
not change in the samples, and the representation of emotions is performed only through colors.
In the model we are proposing, the employment of StyleGAN2 has the objective of generating
highly heterogeneous paintings and to provide a more faithful and sophisticated representation of
human emotions.

Moving the discussion towards technical articles that are closer to our aim, we consider works in

Figure 3.6. Three examples of The Art of Feeling, by random quark, image source: official website
of the project (provided as a foonote)

which the authors have tried to produce portraits of people that could also reflect an emotional
state. The classical portraits and self-portraits painted by famous artists have the power of rep-
resenting the outer looks of the people while also considering the inner emotional states. We are
now going to present and discuss two different articles on this topic.

The first article is A Creative Artificial Intelligence System to Investigate User Experience, Affect,
Emotion and Creativity [85]. The authors of this paper intend to create a stronger realization of

7http://randomquark.com/case-studies/mindswarms.html
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self-expression while taking a self-portrait with a camera (also known as selfie). In this project,
users can visualize their selfies with different styles according to the emotions they select, as
depicted in Figure 3.7. While this project proposes a valuable application of AI technologies to

Figure 3.7. In the proposed application, a woman takes a selfie and then selects an emotion. The
selfie is translated with different styles according to the selected emotion. Image source: [85]

emotional self-portraits, we must highlight that the technical implementation presents some limi-
tations. The applied styles related to each emotion are a fixed palette of colors. These colors are
the result of an exhaustive interview on several subjects. Despite the reliability of this process,
it removes any factor of subjectivity in the final result. The interaction between the user and
the application is limited to taking the selfie and selecting an emotion. On the contrary, in our
project, we do not suggest any explicit mapping between emotions and the generated paintings,
as we leave this mapping to the technology we are implementing. The interaction between a user
and the technology is much deeper in our case: we allow the user to transmit a brain signal and
to see how a machine interprets it. The mapping between the emotion in the signal and the final
results is not explicit for the user: it represents their emotions from an inner perspective.

The second article we present is Emotionally aware automated portrait painting [86]. This work
approaches the same problem but with a different technique. The emotional portraits are gen-
erated after a step of emotion recognition, so the users do not select the style they want to see
in their portrait. Given a recorded video of a subject, an algorithm automatically recognizes the
expressed emotions and selects the frames in which it is more evident. These frames are extracted
and re-rendered according to some pre-defined styles that the authors have assigned to each emo-
tion. An example of the results is shown in Figure 3.8. In this project, the authors pre-select the
styles, and the final results lack subjectivity. The automatic recognition is a step further with
respect to the previous work [85], but it is important to highlight that emotions can be faked
when the recognition is based on facial expressions.

The two presented projects are relevant for our project since they create the basis for a sys-
tem that generates emotional paintings. However, the interaction between the machine and the
user is limited, and the resulting images are far from being a representation of inner feelings.

From a technological perspective, the core of our project is a conditional GAN with external
data (EEG signals). In this regard, we relate our work to Crossing you in Style: cross-modal style
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Figure 3.8. Paintings realized in the project Emotionally aware automated portrait
painting. Image source: [86]

transfer from music to visual arts [87]. Although this project involves another field of application,
its basic architecture is conceptually similar to ours. The authors built a model that generates
paintings related to the composition epoch of an inputted piece of music. The generated paintings
are utilized as styling images in a Style Transfer technique. The idea is to create a bridge between
music and visual arts, trying to imagine how we could visualize some pieces according to the era
in which they are composed. The authors argue that Style Transfer techniques usually operate
within a unique data modality (images to images, music to music, etc.). On the contrary, when
human artists create or interpret an artwork, they can also work with the interplay of different
data modalities, projecting their ideas on several media: a novel can become a movie, a movie
itself is made up of images, text, sound, and acting. Even when a piece of art is restricted to
a single expressive medium, the artist may have taken inspiration from other kinds of stimuli.
Figure 3.9 reports some results of their paper. The authors relate music pieces and paintings

Figure 3.9. Some of the generated paintings shown in the paper ”Crossing You in Style: Cross–
modal Style Transfer from Music to Visual Arts. Image source: [87]
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according to the historical epoch in which they have been conceived. Ideally, music composed in a
certain decade should generate a painting that stylistically resembles artworks of the same years.
Although this idea is interesting, it has several limitations, identified by the authors themselves.
The conditions to pair an image and a music piece are highly arbitrary in the human mind, as
they depend on a subjective factor of interpretation. The links between different pieces of art are
more complex and unpredictable than the shared label mechanism. Sometimes, they depend on
personal experience, memories, education, or cultural heritage. Relating the music pieces and the
paintings just because of their epochs is not only reductive for how the human mind really works
but is also, to some extent, unrealistic. In this sense, our thesis work is making a step further,
using a domain of labels (the emotions) that are highly harder to define but undoubtedly more
representative of the processes at the base of human creativity and inspiration-seeking.
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Chapter 4

Datasets preparation and
Explorative Data Analysis

Our model needs two different datasets, in which the samples are labeled in the same semantic
space (emotions). One dataset is a collection of paintings, and their labels correspond to the emo-
tions they evoke; the other is a collection of recorded EEG signals in which the labels represent
the emotion that people felt during the recording.

We perform two different experiments:

• The first experiment consists of generating paintings from the signals of a subject in the
SEED-IV dataset (described in Chapter 2). For this reason, we need to employ a dataset of
paintings with four different classes.

• In the second experiment, we train the model on EEG signals that we record. In this case,
we work with three classes, and the dataset of paintings is adapted accordingly.

This chapter analyzes the pre-processing steps applied to both datasets. The first paragraph
describes the performance obtained by RGNN on the SEED-IV dataset. The second paragraph
illustrates the methodology at the base of the recording process, the feature extraction, and
the results obtained testing RGNN on our EEG signals. In the third paragraph, we describe
the creation of the 4-classes paintings dataset, including a qualitative exploratory data analysis,
elimination of some outliers, data augmentation to fight class imbalance, and the performance
of the auxiliary classifier (see Chapter 3 for more details). We conclude by describing the same
experiment on the 3-class version of the paintings dataset.

4.1 SEED-IV

We have re-trained the RGNN on the SEED-IV dataset. As explained in Chapter 2, the authors of
RGNN have performed extensive hyper-parameter tuning to reach state of the art results. Unfor-
tunately, the authours of the paper could not provide the optimal values for each parameter. Such
a large number of parameters and the short amount of time make the hyper-parameter tuning
rather ambitious in the context of this project. Having a low classification accuracy inevitably
harms the performance of the entire pipeline. At the same time, having the highest classification
accuracy is not the scope of this thesis work; therefore, we intend to train the pipeline, settling
for a lower performance of the RGNN on the SEED-IV dataset.

In the subject-dependent scenario (Figure 3.2), the RGNN still reaches a satisfying performance.
In particular, we train the pipeline on subject 15, on which the RGNN training and validation
accuracies are respectively equal to 97% and 81%. In the subject-independent scenario (Figure
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3.3), instead, the lack of hyper-parameter tuning makes the experiment unfeasible, as the accu-
racy is only around the 50%. With such a low accuracy, the GAN would receive latent vectors
that correctly reflect the class of the signals only half of the time. The wrong latent vectors would
cause an obvious difficulty in generating paintings for different classes.

4.2 Recorded EEG signals

In this paragraph, we describe the steps needed to perform EEG recordings, including the inves-
tigation of emotion elicitation stimuli, the selection of some signals, and the feature extraction.
The utilized device is the OpenBCI headband with eight dry comb electrodes and Cyton board
(described in Chapter 2).

4.2.1 Emotion eliciting stimuli

Before performing the recordings with our device, we have considered different available options
for emotion elicitation. The IAPS [88] database is an open-access image collection, used in several
studies in this field. [89] [90] [91] [92] Despite its popularity, we figured that static images may not
be the most powerful way to elicit emotions. The same reasoning is applied to the sound database
IADS [93], which contains sound-based emotional stimuli. Unfortunately, also these sounds do
not seem to be the best option for our purposes. Many researchers in the literature (including
the authors of DEAP and SEED-IV datasets) utilize movie scenes as stimuli, so we decide to
consider this option more deeply. We considered LIRIS-ACCEDE dataset [94], which is rich in
video samples annotated with continuous labels. The pieces in this dataset are rather short (a
few tens of seconds); on the contrary, other authors utilize video stimuli whose average duration
is around 2 minutes. When watching an emotion-eliciting movie, the plot helps the subject get
more involved with the depicted situation. Given these considerations, we decide to base our
experiments on the open-access datasets E-Movie [95], and FilmStim [96], which contain rather
long movie extracts. In E-Movie, both discrete and continuous labels are provided; the proposed
movie scenes are in Italian. FilmStim, instead, contains around 60 movie scenes belonging to 6
different emotional classes. The majority of these movies are available in English; part of them
is in French. A discussion regarding the cultural and language barrier of this kind of datasets in
provided in Chapter 7.

4.2.2 Recording process and feature extraction

The combination of the Cyton board and the 8-channels OpenBCI headset provides a device not
intended for medical purposes. Among the different possible configurations of the electrodes, we
decide to record channels Fpz, AF7, AF8, T7, T8, P7, P8, and Oz (see Figure 2.5 to understand
the positions). This choice is made following two criteria: on one hand, it is partially based on
the results of the SEED-IV paper regarding six electrodes positions that seem more relevant for
emotions recognition [47]; on the other hand, we have consulted an expert in the field that has
suggested this configuration.

The recorded raw signals need to be processed before applying emotion recognition techniques.
In our case, we perform feature extraction. In 2013, differential entropy [68] was introduced as a
new EEG feature. The related study and experiments show that it is much more effective than
other features when it comes to emotion recognition. Given X (Gaussian distribution N (µ, σ2)),
the differential entropy is defined as:
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This feature is computed separately on each of the five frequency bands of EEG signals. The
experiments in this paper also confirm that the gamma band is the most relevant in emotion
recognition problems. In our experiment, we perform the feature extraction with differential en-
tropy on 4-seconds long non-overlapping time windows, following the same procedure suggested
by the authors of the SEED-IV dataset.

The encoder of our architecture is based on the RGNN classifier. The two provided regular-
izers are the Emotion Distribution Learning and the Node domain adversarial training (described
in Chapter 2). The NodeDAT is used to reduce the inter-subject variability of EEG signals. It
is not included in our current experiments as we are performing subject-dependent experiments.
The EmotionDL regularizer consists of dealing with noisy labels, considering that some emotions
are not elicited precisely. The labels are transformed into distributions, according to the similarity
between emotions. For example, it is unlikely that a stimulus that should induce fear also gener-
ates happiness; on the contrary, it may generate a sad feeling. The EmotionDL regularizer has to
be adapted to every dataset, according to the considered emotions. In the first experiments, we
are implementing RGNN without the EmotionDL regularizer.

The authors of RGNN have computed the adjacency matrix based on the official sheet of the
recording device used for the SEED-IV dataset. In our work, instead, the matrix is computed by
manually measuring the distances between the electrodes in the headband. Although this is not
particularly precise, we believe it should be a good approximation.

Given the emotion elicitation datasets that we are utilizing, the most populated classes in our
recordings are fear, anger, disgust, sadness, amusement, and happiness. We group these feelings
in three classes, following this rationale:

• The emotions fear, anger and disgust all have negative valence and rather high arousal. We
form, therefore, a single class of negative-aroused emotions.

• The emotions amusement and happiness are paired together in a single class of positive
emotions.

• The emotion sadness has negative valence and low arousal. This class is already highly
populated, and it is not paired with other emotions in this experiment.

In the following section, we will assess the quality of the recorded signals by describing the
experiments with the RGNN classifier. The inputted signals in the RGNN will have a dimension
of (8, 5, t); where 8 is the number of channels, 5 is the number of frequency bands, and t represents
the temporal axis (i.e. how many features have been extracted with differential entropy).

4.2.3 Test subject

The subject is a 24-year-old woman, healthy and right-handed. During the recordings, she sits in
a comfortable chair, the lights are not intense, the volume of the movies is not too high. Every
kind of un-needed movement is strongly discouraged (as it can create artifacts in the recorded
EEG signal). At the end of every movie, she performs a self-assessment of the felt emotion, and
the recorded signal is labeled according to this assessment. This assessment allows deciding which
recordings must be discarded from the analysis. In the cases in which her emotions (or the in-
tensity) change during the movie, the subject is asked to mark the playing time in which she has
felt stronger emotions.

We take into consideration 12 recordings for each class and we divide them into 12 folds to
perform cross-validation. In each fold, 10 recordings are in the training set and 2 are in the
validation set. Given the relatively small size of this dataset, we perform a slight data augmenta-
tion: instead of extracting features on 4-seconds non-overlapping windows, we extract double the
features by allowing two adjacent windows to overlap for 2 seconds.
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The first experiment consists of implementing a 3-class classifier with RGNN. At this first at-
tempt, the mean accuracy is around 0.50 with a standard deviation of 0.15. Being above 0.33
means that the classifier is not a dummy classifier, but this classification accuracy may be limiting
our project. To improve it, we investigate the performance of the classifier when trying to dis-
tinguish only between couples of emotions. We perform 12-fold cross-validation on every couple
of emotions, repeating the experiment several times to avoid biases due to the initialization of
the weights. In all cases, the reached accuracy is around 0.75 with a standard deviation (across
folds) that varies from 0.03 to 0.06. Given the possibility of RGNN to distinguish one emotion
from the other ones separately, we implement an ensemble. We consider three different RGNN
classifiers: one is trained on samples of sadness and negative-aroused, one on negative-aroused
and positive, and one on sadness and positive. We perform the training and validation on each fold.

For each signal in the validation set, each classifier provides two numbers, referring to the pre-
diction probability of belonging to one of the two classes on which it is trained. Every signal is,
therefore, associated with six prediction values (two for each class). The prediction values are
summed together, and the winning class is the final prediction of the ensemble. Given a signal
belonging to the positive class, we expect that both the classifiers trained on this class will rec-
ognize it with a probability roughly equal to 0.75. On the other hand, when the signal is given
to the classifier of sadness/fear, there are no chances that this classifier will understand that the
signal belongs to an unknown class. We expect the classifier to be rather confused and to assign
relatively low prediction values on both sadness and fear. As a result, when all these predictions
are summed together, the positive prediction is supposed to stand out more clearly with respect
to the other two.

The performance of this ensemble throughout the 12 folds is more convincing than a single 3-class
classifier: it reaches, in fact, a cross-validation accuracy of 0.79 and standard deviation of 0.15,
over different trials. To train the entire pipeline, we select the folder in which the training and
validation accuracy are more similar. To make some predictions on the conditioning process, we
visualize the training and validation confusion matrices on this fold, reported in Figure 4.1. In
these images, class 0 corresponds to sadness, class 1 corresponds to negative-aroused and class
2 corresponds to positive. We must highlight that, among the other folds, there were some with

Figure 4.1. Training and confusion matrix of the RGNN on the selected fold for training Style-
GAN2ADA on the recorded signals of the test subject.

higher validation accuracy and lower training accuracy. We have discarded these folds because, in
our case, it is fundamental that the StyleGAN2ADA, during training, receives meaningful latent
vectors that allow a good conditioning process. In the case of this fold, the confusion matrix
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on the training set is characterized by a quite balanced performance on the three classes. There
could be a bit of confusion between class 1 and class 2, but the overall performance is quite
satisfying. We could have also opted for a fold on which the training accuracy was higher than
this, but those folds are more likely to experience overfitting. In our context, we plan to train a
system that can be adapted to new EEG signals from the test subject, and overfitting is therefore
harmful. We decided to work with this fold since it offers a good trade-off between low overfitting
and performance on the training set.

4.3 WikiArt Emotions Dataset

Art is a practice that has a strong bond with the human emotional sphere. When discussing a
painting, it is often possible to wonder about the emotional state of the artist or the emotion it
evokes. In this work, we focus on the emotions evoked by the paintings in the people looking at
them.

The utilized dataset is the WikiArt Emotions Dataset [97], publicly available online, that contains
thousands of pieces of art (and mainly paintings) labeled with emotions by people. The images
are originally taken from WikiArt.org [98], a large collection of art pieces (more than 150.000 in
2018), belonging to 10 art styles and 168 style categories. The authors of the WikiArt Emotions
Dataset have selected pieces belonging to four main styles: Modern Art, Post-Renaissance Art,
Renaissance Art, and Contemporary Art. Given the high variability of the mentioned styles, the
dataset results to be interestingly heterogeneous.

Labeling process

The authors of this dataset have organized the labeling process in a rigorous way. The mechanism
behind how art can evoke emotions is elusive, hard to understand, and subjective. They have
decided to be as clear as possible with the people involved, trying to get coherent answers from
the different individuals. The pieces of art are classified into three different settings: either by
only looking at the image, either by only reading the title or by looking at the image and reading
the title. If a certain percentage of people agreed on the same label, the latter is assigned to the
piece of art. This percentage is variable, but we opt for the 40% threshold (as suggested by the
authors). The resulting dataset is not fully utilized in our work, but it is filtered according to two
criteria:

• only paintings are considered - they are, fortunately, the majority of the pieces of art in the
dataset;

• We decide to give more relevance to the emotional response caused by the exposition to visual
content, rather than the title of the paintings. Therefore the considered labels represent the
answer of users when only looking at the image.

Class selection

The authors of the dataset have selected a finite set of emotions to present to the users when they
see an image - although still allowing them to insert other emotions. The proposed emotions have
been selected after studying the psychology literature on basic emotions [99] [100] and emotions
elicited by art [101] [102] [103]. We report them in the same way they are described in the original
paper. [97]

• Positive:

gratitude, thankfulness, or indebtedness

happiness, calmness, pleasure, or ecstasy

humility, modesty, unpretentiousness, or simplicity
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love or affection

optimism, hopefulness, or confidence

trust, admiration, respect, dignity, or honor

• Negative

anger, annoyance, or rage

arrogance, vanity, hubris, or conceit

disgust, dislike, indifference, or hate

fear, anxiety, vulnerability, or terror

pessimism, cynicism, or lack of confidence

regret, guilt, or remorse

sadness, pensiveness, loneliness, or grief

shame, humiliation, or disgrace

• Other or Mixed

agreeableness, acceptance, submission, or compliance

anticipation, interest, curiosity, suspicion, or vigilance

disagreeableness, defiance, conflict, or strife

surprise, surrealism, amazement, or confusion

shyness, self-consciousness, reserve, or reticence

neutral

Utilizing all these classes is far beyond the scope of this project: as it is important to have a
matching between the EEG waves and the paintings, we must consider that the emotions that
can be recognized with EEG waves are a much more limited finite set. Deep learning models
usually rely on the utilization of datasets containing several samples. For this reason, the first
approach for selecting some of the available classes is to have a look at the distribution of the
images and to select the most populated emotions. In this dataset, the most populated classes
correspond to fear, happiness, love, and sadness.

Exploratory data analysis: the love case

This work aims to generate paintings that represent EEG waves. We expect the generated images
to represent the emotional state mainly with elements related to style and colors (rather than
with the content - which would be harder). From this simple consideration, it follows the intu-
ition that having a general look at the images can be the first step of the exploratory data analysis.

Sadness, happiness and fear seem to have a stylistic visual consistency among their samples,
while the images in the love class are very diverse: they are related because of the content, rather
than the colors and the style. Most of them are images of women figures, portrayed in different
situations (in daily life, in front of dark backgrounds, etc.). Besides, love could be highly more
difficult to detect with EEG waves (it is not present in the most popular EEG emotion datasets,
like SEED, SEED-IV, or DEAP). For these reasons, this class is not taken into account. The
anger class, on the contrary, is much less populated, but all its paintings are consistent from a
stylistic point of view. Looking at the dataset, it is also possible to notice that some classes are
very similar between them, so they are unified to have more samples. For example, the images
in shame do not differ too much with respect to the ones in fear ; other similar couples of classes
are anger and disgust, happiness and optimism, as well as sadness and pessimism.
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The happiness case: dealing with outliers

Among all the available classes, happiness-optimism is the most populated one. While most of its
samples are consistent in style (with bright or vivid colors), some are classified as happy even if
they have a dark and bleak color palette. In the cases of these paintings, the content is generally
the key: they represent people smiling but in very dark backgrounds. These images could be
highly misleading, as we expect the generator to produce images that evoke emotions mainly by
their style. We interpret these paintings as outliers and we remove them from the dataset. The
outliers cleaning is, in this case, realized with a method that is both automatic and manual. First
of all, some outliers are identified and processed with an algorithm1. This algorithm is used to
find the main color palette of the paintings. An example is provided in Figure 4.4. This algorithm
is based on KMeans. KMeans is a clustering technique and, as such, it is an unsupervised learning
method that attempts to group data in different clusters, so that the samples in the same cluster
share some characteristics. Taking x as an image that is considered to be an outlier (for example,
the painting in figure 4.4a), KMeans is used to group the pixels with similar colors and the result
is a matrix with the three RGB (red-gree-blue) values of the N (parameter to fix) most relevant
colors. As shown in figure 4.4b, these relevant colors can be also visualized in a pie-chart. The
same clustering technique is applied to all the other images in the happiness-optimism class. The
resulting matrices and the matrix resulting from the outlier painting x are approximated and
intersected: for every other image in the class, it is possible to find how many of its most relevant
colors are similar to the relevant colors of x. This method allows creating a sorted list of the
paintings that have more colors in common with x and that are, therefore, more likely to be
outliers themselves. The first M (fixable variable) paintings in this sorted list are shown, one at a
time, to a human, which discerns and decides whether the proposed painting is an outlier or not.
The process is repeated using different outlier images x, until the dataset results to be cleaned.

Data augmentation

Despite the first pre-processing steps, the dataset still presents class imbalance. This issue can
harm the performance of the GAN and, at the same time, it can harm the performance of the
auxiliary classifier. Even after eliminating some of the outliers in the happiness class, the latter
is still much more populated than the others. In particular, while happiness-optimism presents
around 700 samples, the anger-disgust class is only populated by 65 samples. Such a huge lack of
balance will affect the predictive reliability of the classification models: they will tend to assign
the output class only the most frequent classes and ignore the infrequent ones. As a consequence,
a low predictive accuracy would be obtained for the infrequent classes.

One possible way to try to overcome this problem is by performing data augmentation. Data
augmentation is easy to realize with images because simple transformations (like flipping or crop-
ping) can produce new and informative samples. As explained before, we are supposing that our
model will try to evoke the emotions mainly with some stylistic features, rather than learning how
to generate ”happy” or ”sad” shapes and content. For these reasons, a possible way to exploit
data augmentation is to crop the big images (in this dataset, all the paintings have different res-
olutions) in four equal parts. The threshold to distinguish big images is arbitrary and it is set to
600 pixels in height and width. In the case of anger-disgust class, the process is repeated multiple
times, until there are no more images that are big enough to be split.

The happiness-optimism class is the only one that is not augmented.

Duplicates elimination

While asking people to label the paintings, the authors of the dataset have allowed each person
to select different emotions for every painting. Some paintings appear in more than one class (we

1https://github.com/kb22/Color-Identification-using-Machine-Learning
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Figure 4.2. Adam and Eve, painting in the WikiArt dataset.

Figure 4.3. Color Palette of Adam and Eve painting

Figure 4.4. Color palette of an example outlier in the happiness class

refer to them as duplicates). In this work, we are trying to build a classifier that does not label
the samples with more than one class; for this reason, we keep each duplicate only in the least
populated class in which it appears (and we eliminate it from all the other classes).

4.3.1 Final characteristics of the dataset (4-classes case)

After all these pre-processing steps, we propose two different versions of this dataset. The first is
paired with the SEED-IV dataset and contains the following classes:

• anger-disgust : 549 images
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• fear-shame: 824 images

• happiness-optimism: 699 images

• sadness-pessimism: 588 images

A high-level view of the stylistic characteristics of the images in this dataset is provided in the grids
in Figure 4.5. Happiness-optimism and anger-disgust stand out quite easily from the dataset: one

Figure 4.5. Grids showing the images in the four-classes version of the dataset, divided ac-
cording to their labels. Top-left is anger-disgust, top-right fear-shame, bottom-left happiness-
optimism, bottom-right sadness-pessimism

has the brightest and most heterogeneous colors, the other instead presents a lot of red and dark
shades. On the contrary, sadness-pessimism and fear-shame have quite similar images: the only
appearing difference between the two sets is that sadness-pessimism contains more blue shades.
It could be possible to argue that StyleGAN2ADA will never generate visibly different paintings
for these two classes, as they are so similar. However, given the experimental nature of our work,
we decide to keep the dataset as it is. It indeed creates non-ideal conditions for the results of
the work to be visible, but we believe that it is interesting to see how StyleGAN2 works in a
situation in which the differences between images belonging to different labels are not so evident.
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In addition, we believe it is important to limit the manipulations on the paintings dataset. We
may not reach the best results in terms of visual appearance, but we would be more respectful
towards the work made by the authors of the WikiArt Emotions dataset and more consistent with
the answers provided by all the people that took part in their experiment.

4.3.2 Auxiliary classifier (4-classes)

In Chapter 3, we mentioned the existence of two extra losses in our architecture. One of them is
an auxiliary classification loss, which tries to understand whether the generated paintings belong
to the same class as the inputted EEG signals.

As previously explained, transfer learning allows us to utilize some popular architectures for
image classification, pre-trained on the ImageNet dataset, which contains many more samples
than our dataset. The learned representation from ImageNet is used as a starting point to distin-
guish the emotions in the paintings of our dataset and, thanks to this technique, few epochs are
enough to reach a good convergence level.

To better understand the performance of the classifiers, it is important to get an idea about
which classes are classified correctly and which are not. One way to do this is by visualizing
confusion matrices. After some preliminary tests (not reported in this thesis), we decide to work
with AlexNet [104]. The confusion matrix on the four-classes dataset can be visualized in Fig-
ure 4.6. In the figure, class 0 corresponds to anger-disgust, class 1 to fear-shame, class 2 to
happiness-optimism and class 3 to sadness-pessimism.

Figure 4.6. Confusion matrices summarizing the results obtained by AlexNet on the four-classes
version of the dataset. On the left, the confusion matrix is evaluated on the traning set (80% of
the dataset), on the right it is evaluated on the validation set (the remaining 20% of the dataset).

Class 2 (happiness-optimism) is the one classified more easily. Considering that it is the only
positive class present in the dataset, it is reasonable to imagine that its paintings are more easily
recognizable. What is more, this is the only class in which the outliers have been deleted. Class
0 (namely anger-disgust) was chosen to be in the dataset not for the high number of samples
but for the stylistic consistency of the few images it contained. The classification accuracy of its
samples is indeed quite high. Many of the samples classified as sadness-pessimism belong to class
fear-shame and vice-versa, confirming the already-mentioned similarity between the paintings of
these two classes. This similarity is simply considered as a matter-of-fact, as the low accuracy
was already expected: when the dataset was created, the people were allowed to select more than
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one emotion per painting. In this way, some classes had many paintings in common and that this
would have indeed had an effect on the final accuracy of the classification. We also want to remind
that the auxiliary classifier will only provide an extra loss in the training of our architecture. For
this reason, it is not crucial that all the paintings are classified correctly.

4.3.3 Final characteristics of the dataset (3-classes case)

The second version, paired with the recorded signals using OpenBCI headband, is made of the
following classes:

• fear-shame-anger-disgust : 777 images

• happiness-optimism: 699 images

• sadness-pessimism: 588 images

A high-level perspective of the images in this dataset is provided in Figure 4.7. In this case, all
the classes present unique features and look quite distinguishable. Unifying these classes is not
only meaningful in terms of style, but also in terms of emotions: happiness and optimism are both
positive feelings, with a rather high level of arousal; sadness and pessimism are both negative and
low aroused; anger disgust, as well as fear and shame, are all negative feelings but highly aroused.

Figure 4.7. Grids showing the images in the three-classes version of the dataset, divided
according to their labels. On the left, anger-disgust-fear-shame, in the center sadness-
pessimism, on the right, happiness-optimism.

4.3.4 Auxiliary classifier (3-classes)

The same experiment with the Auxiliary Classifier (pre-trained Alexnet) is repeated on the three-
class version of the dataset. The training and validation confusion matrices are reported in
Figure 4.8. In this case, class 0 corresponds to fear-shame-anger-disgust, class 1 to happiness-
optimism and class 2 to sadness-pessimism. In Figure 4.7 we highlighted that each class presents
unique characteristics. This property helps the classifier, which in this case can reach a higher
performance. Even in the validation set, only a small percentage of every class is misclassified.
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Figure 4.8. Accuracy of AlexNet on the three-classes version of the dataset. On the left, the
confusion matrix evaluated on the traning set (80% of the dataset), on the right, the confusion
matrix evaluated on the validation set (the remaining 20% of the dataset).
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Chapter 5

Experiments and Results

In this Chapter we give an overview of the most relevant experiments carried out in this thesis
work, while also presenting the obtained results. We will assess the quality of the generated
paintings from two points of view:

• We compute the Frechet Inception Distance metric (explained in the following paragraph)
to assess the similarity between the generated paintings and the original ones.

• We generated grids of paintings and we compare them with the grids of the paintings in
the dataset. In this way, we can have a high-level view on the conditioning power of the
pipeline.

The training is performed in two different scenarii, using different EEG signals. In the first case,
the available classes (in both the EEG and the painting datasets) are four. In the second case,
we work in a 3-classes scenario.

5.0.1 The FID Metric

As explained in Chapter 2, GANs do not converge to a single solution, but they reach a Nash
equilibrium. For this reason, looking at the discriminator and generator losses is not as mean-
ingful. The Frechet Inception Distance (FID) metric was introduced for this purpose [105]. This
metric provides a statistically comparison between the generated images and the original ones.
Therefore, it allows to assess the quality of the generation process.

The FID metric utilizes 2048 features extracted with the second-last layer of Inception v3 model
[106]. The features are extracted on both the dataset and a set of generated images. Once these
features are extracted, it is possible to compute their mean and variance and model two Gaussian
distributions, one for the real images and one for the generated ones. The FID metric consists in
computing the Frechet (or Wasserstein-2) distance between these two distributions. We cite the
formula from the paper [105]:

d2 = ||µ1 − µ2||2 + Tr(σ1 + σ2 − 2 ∗
√

(σ1 ∗ σ2)) (5.1)

In this equation, µ1 and µ2 represent the means of the two distributions, σ1 and σ2 are, instead,
their covariance matrices, Tr stands for Trace, i.e. the sum over the main-diagonal elements of
a square matrix. Some technical details on the implementation of this metric are available here:
[107].

When the generated paintings are more similar to the original ones, the value of this metric
is lower. The authors of StyleGAN2ADA utilize the same metric for the experiments reported in
their paper [75], even in an experiment generating painting portraits.
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5.1 Experiment on SEED-IV (subject 15)

The first experiment concerns the utilization of the SEED-IV dataset. We train the pipeline in a
subject-dependent fashion, choosing to work with subject 15, which has the highest accuracy on
the training (97%) and the validation (81%) sets (using our non-tuned version of RGNN classifier).

As explained in the previous Chapter, the signals in this datasets are labeled in four different
classes: happiness, sadness, fear and neutral. The corresponding paintings dataset contains the
following classes: happiness-optimism, sadnesss-pessimism, fear-shame and anger-disgust. The
first issue to consider is that, unfortunately, not all the classes in these two datasets correspond.
Some EEG signals are labeled as neutral, but we do not have paintings for this class. At the
same time, we have the class anger-disgust in the paintings dataset, but we do not have the
corresponding EEG signals. This issue naturally arises because of our small manipulation on the
paintings. When choosing the available classes in the WikiArt Emotions dataset, we have been
careful in selecting only the most populated classes and, unfortunately, neutral was not one of
these. The only way to overcome this limitation without intervening on the available datasets is to
pair the anger-disgust class of the paintings with the neutral class of the EEG signals. Although
this is conceptually wrong, it is important to highlight that this experiment still allows testing
the performance of our pipeline.

This phase of the training is performed on images of size 128x128 pixels. The quality of the
obtained results varies with the training time and we provide a graph showing the FID metric
over training time (expressed in iterations), in Figure 5.1. From the figure on the left-hand side, we

Figure 5.1. FID metric over iterations for the experiment on Subject 15 of the SEED-IV dataset.
On the left, the general trend, on the right, the zoom in the neighbourhood of the minimum.

see that the value of the metric decrease with the iterations and stabilizes after 80.000 iterations.
The minimum FID is equal to 58.49 at iteration 81.000. It is higher than the FID reported by
the authors of StyleGAN2ADA in generating portrait paintings. In their case, the metric reaches
a value around 15-20 (depending on the experimental setting). We have to consider that, in their
case, the aim was to generate portraits representing human faces. The correlation between the
paintings in the dataset was much higher, in terms of shapes and, therefore, the generator has
an easier task to accomplish. In our case, we are providing a dataset of paintings that is more
diverse: it contains landscapes, portraits, people, abstract figures. For this reason, we did not
and could not expect a much lower value of the FID metric.

To give a general insight on the quality of these paintings and their style, we provide some exam-
ples in Figure 5.2. In this image, the first row corresponds to anger-disgust class, the second row
corresponds to sadness-pessimism, the third to happiness-optimism and the last to fear-shame. To
better appreciate the quality of these results, we invite the reader to make a comparison with the
images obtained in the project Crossing you in Style [87], provided in Figure 3.9. The paintings
that we obtained have more convincing shapes and colors and they have an higher resolution. The
authors of the cited paper have managed to reach convergence only when working with images
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Figure 5.2. Some of the conditional paintings generated with out pipeline when trained
on the SEED-IV dataset. In the first row, paintings from class anger-disgust ; in the second
row, paintings from class sadness-pessimism; in the third row, class happiness-optimism;
in the last row, fear-shame.

64x64 pixels or smaller. In the case of this experiment, we are training the pipeline on images
with double the resolution on each edge.

Figure 5.2 already demonstrates a high level of conditioning as the rows have evident differ-
ent stylistic features. The conditioning abilities are also assessed by having a higher-level look at
the generated styles and colors for each class. Grids containing generated paintings at iteration
81.000 are reported in Figure 5.3.

Comparing these grids with the ones of the dataset, shown in Figure 4.5, we can observe that
the pipeline provided stylistically different images for anger-disgust and happiness-optimism; on
the contrary, sadness-pessimism and fear-shame look very similar. As explained in the previous
chapters, we already knew that these two classes contained paintings that are too similar in their
styles. We noticed this issue in Figure 4.5, but also in the confusion matrix reported in Figure 4.6.
In this matrix, in fact, we have shown that the AlexNet model was often confusing the paintings
in the sadness-pessimism and fear-shame classes.

The similarity in the style does not necessarily mean that the images are not conditioned, as
they may still express different emotions in their content rather than in the colors. To visualize
this concept, we have performed super-resolution on some of the obtained images, up-scaling their
sizes from 128x128 pixels to 512x512 pixels (four times higher). To perform it, we have utilized the
method Learned Image Downscaling for Upscaling Using Content Adaptive Resampler. [108] We
do not go into the details of these methodologies, but we refer the interested readers to this review
[109] that compares the performance of existing methods on different datasets. The method we
have selected seemed to be the one with highest performance on the most flexible scenarios.

In Figure 5.4 we report three example images for the happiness-optimism class. These images
present vivid and bright colors in rather naturalistic scenarios. In Figure 5.5, we provide three
examples of generated paintings in the class anger-disgust. These paintings present warmer and
darker shades. Also the content differs from the previous examples. Instead of the landscapes
and naturalist contexts in Figure 5.4, we see here the presence of three obscure characters. The
image in the middle is particularly powerful.

As previously stated, the remaining classes are not easy to distinguish in terms of style. How-
ever, we provide a detailed view on some examples that show that some images are conditioned
also in this case. In Figure 5.6 we report four examples of paintings generated in the class
sadness-pessimism. In all these images, the depicted characters transmit a sense of loneliness and
abandonement. The first one is a humanoid face, covered by a mask and immersed in a black
background. At its right, we can recognize a dog-looking character with a rather sad expression
on his face. In the bottom-left of the image, there is a human figure that could be associated to a
nomad travelling from a place to another and carrying something heavy on his shoulders. In the
bottom-right corner, instead, a monster-looking character and its shadow abandoned in a blue
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Figure 5.3. Grids showing the images generated in the four-classes version of the training, divided
according to their labels. Top-left is anger-disgust, top-right fear-shame, bottom-left happiness-op-
timism, bottom-right sadness-pessimism

Figure 5.4. Higher-resolution view on some of the generated paintings in the happiness-optimism class
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Figure 5.5. Higher-resolution view on some of the generated paintings in the anger-disgust class

Figure 5.6. Higher-resolution view on some of the generated paintings in the sadness-pessimism class

atmosphere.

We report five examples generated in the class fear-shame in Figure 5.7. Almost all the charac-
ters here depicted look like threatening monsters. The only exception is the figure in the top-right
corner, which looks like a human silhouette immersed in a cloudy atmosphere.

All the proposed details have been selected for their expressive power in terms of generated
content rather than simply their style. The fact that some of the generated images are able to
express emotions not only by the style but also by their content is a result that we did not expect
at the beginning of this project.

The images obtained in this experimental setting are heterogeneous in both style and shapes.
Some paintings do not necessarily fall into the idea of their assigned emotion: they may either
evoke something different, or evoke more emotions at once. This is not an unexpected or unde-
sired result. If we wanted to partially avoid this effect, we could utilize the prediction on each
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Figure 5.7. Higher-resolution view on some of the generated paintings in the fear-shame class

EEG signal made by the RGNN as input to the StyleGAN2. In this way, the latent vectors would
be more synthetic and understandable, avoiding the contamination between different emotions.
After some preliminary experiments (not reported in the thesis), we have ascertained that this
choice would lead to more flat and less interesting results. Although we have decided to adopt
the discrete model to formalize emotions, we still want to represent the richness of human feelings
and the idea that the difference between an emotion and another is not so defined. To reach this
effect, we pass a 50-entries latent vector as an input to the StyleGAN2.

5.2 Experiment on recorded EEGs (test subject)

The SEED-IV dataset has been recorded with a sophisticated device, made of 62 channels. The
difficult accessibility of such a device inevitably implies that the results obtained in the previous
experiment would be hard to employ in a practical scenario. For this reason, we re-train the
entire pipeline on the signals we recorded on the test subject using the OpenBCI headband kit.
As exaplained in the previous chapter, in this case the available classes (in both EEG and paint-
ing datasets) are three, namely positive, negative-aroused (i.e. anger, fear, shame, disgust) and
sadness.

We provide the FID metric over iterations in Figure 5.8. The minimum value reached is 83.53 at
iteration 101.000.

Despite training the model for the same amount of iterations as the previous experiment,
the FID metric has a sensitively higher value, meaning that the generated paintings do not have
the same level of detail. We identify the possible cause and describe it. When we created the
three-classes paintings dataset, we have still kept the balance between the images in each class.
This means that, by unifying the anger-disgust and fear-shame classes, we have utilized 50% of
the paintings from a class and 50% from the other (chosen randomly). The result is that the
final dataset contains 25% less paintings than the corresponding four-classes one. Although Style-
GAN2ADA is optimized to be trained on small datasets, diminishing the number of paintings
may have had a negative impact on the overall performance. The result is that the generated
paintings have more undefined and abstract shapes.
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Figure 5.8. FID metric over iterations for the experiment on the recorded signals without extra
losses. On the left, the general trend, on the right, the zoom in the neighbourhood of the minimum.

The conditioning process of the pipeline is assessed by looking at the grids in Figure 5.9 (generated
at iteration 101.000).

Figure 5.9. Grids showing the images in the three-classes version of the training, without using ex-
tra losses. The images are divided according to their labels. On the left, anger-disgust-fear-shame,
in the center sadness-pessimism, on the right, happiness-optimism.

These grid show that the images are conditioned successfully. Comparing these grids with the
grids of the dataset (Figure 4.7), it is evident that the generated paintings in the class negative-
aroused have dark and red shades; class sadness is characterized by a bleak palette, while the
paintings in the positive class are brighter. Although the images are well-conditioned in style,
the content of the images tends to be more similar across different classes (comparing with the
results obtained in the previous experiment). In the case of the SEED-IV dataset we have trained
the GAN on EEG latent vectors that could lead to a 97% of accuracy. In this case, instead, the
accuracy reached by RGNN on the training set is around 80% in each class (see confusion matrix
4.1). The GAN is inevitably more confused on the different classes and the conditioning process
is weaker.

Having a weaker conditioning is not necessarily a disadvantage in the case of this work. We
know that, to generate a painting, we input in the STYLEGAN2ADA both an EEG latent vec-
tor and some random Gaussian noise. The given noise is interpreted by the model according to
the emotion identified in the latent EEG vector. When this pipeline is trained on the SEED-
IV dataset, the conditioning process is strong enough that the generated paintings (with same
noise but different EEGs) only rarely depict similar scenes across the four different emotions.
On the contrary, when the pipeline is trained on our signals, there is more correlation between
the paintings in the different emotions. The resulting effect is quite peculiar. As a general rule,
when given a certain random noise and three EEG latent vectors belonging to the three different
classes, the GAN shows the same scene but deformed, according to the main features of the class.
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To give a clearer idea, we provide three examples of this phenomenon in Figure 5.10. The figure

Figure 5.10. Three different noise vectors visualized according to the three different emotions.
(Pipeline trained on the test subject)

presents three rows. In each row, the same random noise is inputted, but different EEG signals.
In the first column, the EEG signals represent a positive emotion; in the second, the EEG signals
belong to the class of negative aroused emotions; in the third, the EEG signals represent sadness.
Also in this case, the conditioning of the GAN does not only concern the style, but also the content.

In the first row of this figure we see an abstract shape, representing a cumulation of grey matter
mixed with viscous, golden-looking and shiny liquid. The second picture represents the same
shape but with a more aggressive appearance: the corners are less roundish, the colors are darker,
and the viscous liquid is red as lava. In the third picture, the grey cumulation becomes more
closed in itself, shyer, it does not let as much liquid out, its surface color is colder.

The first picture of the second row is a bit less clear in its shape, but it seems to show the
silhouettes of two people, maybe driving a machine in a rural field, the sky is clear with some
white clouds. In the second picture, the sky becomes a bit more cloudy, the silhouettes of the
people and the machine merge together, creating a difficult and intricate figure; the shadows are
darker and the scene is full of red shades. In the third picture, the scene becomes desolate, static,
abandoned. The intricate shape of the previous figure leaves space to the silhouette of a barren
tree. There is no grass on the ground and the sky is gloomy.

The first picture in the third row represents a green garden overlooked by a sky. The sky is
terse, with some clouds: in the lower part of the image the clouds are white, in the upper part
there are some grey ones coming. In the second image, the grey clouds dominate the scene and
occupy the entire sky. The ground becomes insidious and less hospitable. In the third picture,
the scene is barely recognizable, the sky and the ground become two parts of a whole brownish
atmosphere. The previous landscape seems now to be immersed in a storm.
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5.3 Experiments on recorded EEGs (test subject) with ex-
tra losses

To help the pipeline converge more easily to the expected results, we repeat the same experiment
but utilizing also the extra losses described in Chapter 3. We present in Figure 5.11 the trend of
the FID over the iterations.

Figure 5.11. FID metric over iterations for the experiment on the recorded signals with extra
losses. On the left, the general trend, on the right, the zoom in the neighbourhood of the minimum.

To understand the role of the extra losses, we make a comparison with the previous experi-
ment. From Figure 5.11, we observe that the minimum (84.55) is close to the similar experiment,
but it is reached at iteration 71000. This means that we have saved 30.000 iterations, which, in
terms of time, is roughly equivalent to more than 25 hours of training. More in detail, we can
observe that in Figure 5.8, the curve is steeper in the first 5000 iterations, but it then becomes
flatter and it stabilizes below 100 only after 40.000. On the contrary, in the experiment with the
extra losses, the decrease is initially slower, but then the FID stabilizes below 100 after 20.000
iterations (half than the previous experiment).

Despite the convergence being faster, introducing the extra losses does not lead to a lower mini-
mum than the previous experiment.

We evaluate the conditioning in the grids of Figure 5.12. Although the stylistic differences between

Figure 5.12. Grids showing the images in the three-classes version of the training, using extra
losses. The images are divided according to their labels. On the left, anger-disgust-fear-shame, in
the center sadness-pessimism, on the right, happiness-optimism.

the different classes are still visibile, it is important to observe that, in this case, the conditioning
is lower and that the contamination between different classes seems higher. To double-check this
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intuition, we repeat the same test we provided in Figure 5.10. In Figure 5.13, we show three dif-
ferent images generated with the same noise but with different latent vectors. The phenomenon

Figure 5.13. Three different noise vectors visualized according to the three different emotions.
(Pipeline trained on the test subject with extra losses)

we have previously described is still visible. In the three rows we see the same scene becoming
more insidious in the different columns. However, the shapes and the colors do change less with
respect to what happened in the previous experiment, confirming that the conditioning may be
weaker.

The extra losses have not enhanced the quality of the paintings, and they seem to decrease
the conditioning. However, they have reduced the number of iterations needed to reach a certain
level of FID. For this reason, we suggest that these extra losses should be used only in situations
in which time is a constraint.

5.4 Experiment on recorded EEG (test subject) using trans-
fer learning from subject 15 (SEED-IV)

Transfer learning (described in Chapter 4) is a technique that is often employed to enhance the
generated images in context with small datasets. We try to perform transfer learning from the
Experiment on the SEED-IV dataset to improve the quality of the generated paintings with our
recorded EEGs.

The FID metric over iterations is provided in Figure 5.14. The minimum is equal to 69.64.
We remind that the experiment on the SEED-IV dataset reached a value of 58.49, while the two
previous experiments on the recorded signals reached FID values equal to 83.53 and 84.55. This is
a confirmation that applying transfer learning on this pipeline improves the quality of the images
generated from the recorded signals. The value is reached at iteration 135.000, i.e. only 54.000
iterations after the beginning of the training (81.000).
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Figure 5.14. FID metric over iterations for the experiment on the recorded signals using
transfer learning and without extra losses. On the left, the general trend, on the right, the
zoom in the neighbourhood of the minimum.

We assess the conditioning of the experiment by looking at the grids in the image 5.15. De-

Figure 5.15. Grids showing the images in the three-classes version of the training, using
transfer learning from the four-classes version of the pipeline. The images are divided accord-
ing to their labels. On the left, anger-disgust-fear-shame, in the center sadness-pessimism,
on the right, happiness-optimism.

spite a higher level of contamination between the class of negative-aroused emotions and positive
emotions, the overall stylistic differences are still visible.

In Figures 5.16, we report some examples respectively from the classes sadness, negative-aroused,
positive.

This experiment shows that our pipeline allows generating high-quality and conditioned images
also on the recordings we have taken with our commercial device on the test subject.

5.5 Experiment on recorded EEGs (test subject) with extra
losses and higher resolution

The previous experiments were all working on images with dimensions 128x128 pixels. The low
resolution of the generated paintings inevitably causes the loss of some details. We try to push
these experiments further by training the pipeline on the recorded signals (test subject) and gen-
erating images with dimensions 256x256 pixels.

Increasing the resolution of the images has an effect on the training time. Each iteration, in
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Figure 5.16. Higher-resolution view on some of the generated paintings in the experiment with
transfer learning. The first row reports painting in the sadness class, the second row nega-
tive-aroused and the last row positive.

fact, requires four times more to be completed. In addition, when the resolution of the images
is increased, more iterations may be needed to reach a certain quality. The authors of the Style-
GAN2 describe this characteristic in their paper, showing that the contribution higher-resolution
details become more relevant during the training time. To explain this phenomenon, they provide
the picture that we reported in Figure 5.17. In this picture, the x-axis represents the training
time, expressed as number of images that the discriminator sees (in millions). The y-axis, in-
stead, represents the contribution of each resolutions. We observe that in the first iterations, the
StyleGAN2 focuses on generating low resolution paintings and we have to wait for later stages
of the training for the model to focus on the higher-resolution details. This graph suggests that
the training in this experiment will not only need more time for every iteration, but also more
iterations in order to provide a sensible increase in the generated images. This is a situation in
which the employment of the extra losses may be helpful. As we have explained in the previous
paragraph, these losses do not bring an improvement in the quality, but they shorten the number
of iterations needed to reach a certain value of the FID metric.

N.B.: We provide results obtained in this experiment, but we highlight that they should be consid-
ered provisional, as the pipeline is still at early stages of the training process.

In Figure 5.18 we provide the general trend of the FID metric over the 60.000 iterations that
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Figure 5.17. Contribution of different resolutions over training time in Style-
GAN2 training. Image source: [73]

we have performed. As expected, despite the utilization of the extra losses, the trend is slower
because of the higher resolution of the images. For the time being, the minimum is equal to 93.36,
at iteration 65.000. We assess the conditioning of this pipeline visualizing the grids in figure 5.19.

Figure 5.18. Provisional trend of the FID metric over iterations when the pipeline is trained on
the test subject with higher resolution and extra losses.

These grids contain less samples than the previous experiments because of the higher resolution
of the single paintings. Despite the early stage of the training, the grids already seem quite
conditioned. The high value of the FID metric does not prevent the generated paintings in this
experiment to show an high level of detail. We provide some examples in Figure 5.20. With such a
high value of FID (93.36), we could have never wished to see any expressive shape in the previous
experiments. In this case, instead, we can clearly recognize some characters, some faces, even
some expressions. This is a preliminary result, but it is promising: as we have intuited, training
the pipeline at a higher resolution could bring to the generation of more powerful paintings.

We finally provide a synthetic overview of the different experiments in Table 5.1 (everything
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Figure 5.19. Grids showing the images in the three-classes version of the training, using higher
resolution and extra losses. The images are divided according to their labels. On the left,
anger-disgust-fear-shame, in the center sadness-pessimism, on the right, happiness-optimism.

Figure 5.20. Details of some of the higher-resolution generated paintings. From left to right and
from top to bottom, the paintings belong to the following classes: the first two to negative-aroused,
the third to positive and the last five to sadness

referred to the last experiment is marked with a star, meaning that the results are collected at
an early stage of the training). The table provides an overview in terms of minimum FID value,
required iterations to reach it and perceived level of conditioning. The experiment on the SEED-
IV dataset is, for the time being, the one providing the best FID value and the best perceived
conditioning. According to these properties, the worst experiment has been the one on the test
subject with extra losses: it is fast but it has a high FID value and a conditioning that we would
just define as ”acceptable”. The experiment performed with transfer learning is the best result on
the test subject in terms of FID value and speed. Given the promising results we have obtained in
the last experiment, it could be interesting to experiment the pipeline on the SEED-IV dataset,
using a higher resolution and, eventually, utilizing it to perform transfer learning on signals we
record with our device.
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Comparison among different experiments
Experiment: Minimum FID Iteration of the

minimum
Perceived condi-
tioning

on SEED-IV with-
out extra losses

58.49 81.000 Very good

on recorded signals
without extra losses

83.53 101.000 Good

on recorded signals
with extra losses

84.55 71.000 Acceptable

on recorded signals
with transfer learn-
ing

69.64 54.000 Acceptable

on recorded signals
with higher resolu-
tion

93.36* 65.000* Good*

Table 5.1. Comparison between the different experiments, in terms of minimum FID value,
required iterations to reach the minimum and perceived conditioning of the pipeline
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Chapter 6

Application examples

The technology developed in this thesis can be utilized in several applications and in different
fields, such as videogames, interactive installations or art exhibitions. This project finds fertile
ground also in the context of Art Therapy. As some of the Related art and technical projects
described in Chapter 3, having the possibility of generating paintings using only the brain waves
can be rewarding especially for impaired patients. In the works that we have analyzed, we
identified two main limitations, that we reiterate here:

• In some cases, the connection between the brain waves and the generated painting is just
a result of the brain activity and does not reflect any emotional state, or other kinds of
features in the waves.

• In the cases in which the paintings are generated according to the emotional state identified
in the brain waves, the painting styles are predefined and chosen by the authors.

In our project, the generated paintings have a direct and personalized correlation with the emo-
tional states of the subjects. The resulting images represent an abstraction of the emotional
features identified in an EEG wave, while maintaining a high level of heterogeneity and variabil-
ity. The correlation between an emotion and the style of a painting is not chosen apriori. On
the contrary, they are a natural derivation of the emotional features identified by our model in a
dataset of paintings.

We propose an idea for an art project as possible example application of this thesis work, dis-
cussing the technical characteristics and challenges.

6.1 An art installation

In the context of a constantly increasing affirmation of appearances in our society, each individual
is becoming undeniably more concerned about their image. The image itself becomes a symbol of
power and realization [110], as both life and relationships result to be, somehow, sensationalized.
The ability of an individual to achieve a certain goal is perceived as correlated to the represen-
tation and commercialization of the self. Such a cultural process has started decades ago, as
philosopher Guy Debord witnesses in 1968 with his book and film La société du spectacle. [111]
However, it has recently become faster because of the massive utilization of social media and the
continuous exposure to content from other individuals. [112] [113]

Emotions have a non-negligible impact on the way we perceive ourselves and our environment.
[114] During the global pandemic situation and in lockdown periods, it is normal for individuals
to feel more anxious or stressed. In such a context, we wish to raise awareness on the power of
negative emotions in compromising our self-perception and in fostering self-loathing. The pro-
posed art installation aims to speculate on this effect and on the ability of individuals to perceive
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life differently according to their affective state. The experience can be divided into four different
steps, summarized in Figure 6.1.1

Figure 6.1. Synthetic scheme of the proposed installation.

• Step 1: Users joining the experience agree on allowing us to take a picture of their face,
a portrait. The expression in this portrait should be neutral. We provide an example in
Figure 6.2

Figure 6.2. Portrait of a person with a neutral expression.

• Step 2: They then sit in a comfortable chair, avoiding movement. They wear the same
device we have utilized for the recordings (OpenBCI headband kit with Cyton board), and
they are asked to focus on the feelings they are experiencing in that period of their lives.
The signals recorded in this phase will be the input of our pipeline, depicted in Figure 3.4.

• Step 3: After the recording, the users fill a self-assessment, trying to identify themselves
the emotion that they have felt. Based on this answer, they will be proposed a different

1All the icons in Figure 6.1 are downloaded from freeicons.io, with the relative authors: Raj Dev for camera and
VR icons, shivani for the portrait and the emotion icons, BECRIS for the user and self-assessment icons, king1
for the brain.
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pre-recorded video as a Virtual Reality experience. The image they see in the visor is a
360-degree landscape. As they move in the environment, the picture starts to deform. This
deformation has the purpose of conveying the idea that our emotions and mental states affect
how we perceive and visualize the environment around us and that we live. At the beginning
of the VR experience, the proposed environment is plausible and photo-realistic. Slowly,
it starts acquiring a more abstract and metaphorical aspect. To reach a more evocative
effect, this part will be accompanied by spoken words and music, according to the selected
emotion. The deformation is obtained by applying Neural Style Transfer techniques to the
image. This is possible by using the Block Shuffle Method described in Chapter 2.

• Step 4: After the experience in Virtual Reality, the user finally receives a printed photo. It
is the portrait took at the beginning of the experience, but the Style Transfer Technique is
applied to the picture. The transferred style is generated employing our pipeline, starting
from the emotion in the EEG wave of the user. Generating the stylizing image directly from
the EEG waves allows us to make the experience more interactive, personal, and less flat.
Besides, it can also raise several questions on the meaning of the unique styling image that
will be generated from the EEG of each user.

Choices and motivations

With this installation, we wish to raise two main concerns regarding the power of emotions: the
way they influence the perception we have of ourselves and our environment.

To speculate on the perception of ourselves, we have decided to provide the users with a printed
and deformed portrait of themselves. What they receive at the end of the experience is a physical
object that they can bring home and have always as a reminder. Metaphorically speaking, this
portrait is evidence of the effects that our brain can have on our image and the different ways
in which it can deform it. Some examples of deformed portraits are provided in Figure 6.3. The
utilized software for performing Style Transfer is the free online tool by Reiichiro Nakano [115].
The neutral expression in Figure 6.2 is now stylized according to different emotions. When the
colorful and happy images are applied, Style Transfer emphasizes her smile. With dark styles,
instead, the eyes become more severe, in a gloomy atmosphere. With the sad examples, the facial
expression remains neutral, but the atmosphere conveys an idea of loneliness and abandonment.

To convey the idea of misperception of the environment, we have decided to utilize the same
technology but applied it in the context of a Virtual Reality experience. We explain this decision
reporting a relevant quotation on the power of this technology:

”But what is reality?” asked the gnomelike man. He gestured at the tall banks of
buildings that loomed around Central Park, with their countless windows glowing like
the cave fires of a city of Cro-Magnon people. ”All is dream, all is illusion; I am your
vision as you are mine.”
—
”You drink,” said the elfin, bearded face, ”to make real a dream. Is it not so? Either to
dream that what you seek is yours, or else to dream that what you hate is conquered.
You drink to escape reality, and the irony is that even reality is a dream.”
—
”It means nothing to you, eh? But listen, a movie that gives one sight and sound.
Suppose now I add taste, smell, even touch, if your interest is taken by the story.
Suppose I make it so that you are in the story, you speak to the shadows, and the
shadows reply, and instead of being on a screen, the story is all about you, and you
are in it. Would that be to make real a dream?” (”Pygmalion’s spectacles” - Stanley
Grauman Weinbaum - 1935)

The Pigmalion’s Spectacle [116] is a science fiction novel written by Stanley Grauman Weinbaum
in 1935, considered the first cultural content to express and describe the idea of Virtual Reality.
[117] In this story, the protagonist meets a strange character who proposes to use his new invention.

77



Application examples

Figure 6.3. A neutral portrait stylized with some of the generated paintings by our pipeline.
On the left-hand side of the image we have, in order from top to bottom, examples of fear-shame,
anger-disgust, negative-aroused and fear-shame. On the right hand side of the pictures and from top
to bottom we have two examples of happiness-optimism and two examples of sadness-pessimism.

This invention is a pair of glasses that bring the user in an alternate reality. In this alternate
reality, the character is able to feel immersed and present. These two characteristics make Virtual
Reality the ideal technology for our purpose. [118] An example of Style Transfer applied to an
image with VR-high resolution is provided in Figure 2.21. We also provide an initial demo video,
2 inspired by this article [119].

Technical limitations

Implementing this installation has some technical limitations that we address in this section. It
would be interesting to develop a technology that can adapt, in real-time, to the change of emo-
tions of the user. At the current state of technology, this would have not been possible in Virtual
Reality, for several reasons. First of all, a Virtual Reality experience requires the user to move in

2Link to the video: https://drive.google.com/file/d/1cimtu1lpdtifwSJL0Db4 IhnMmrzimah/view?usp=

sharing. This video simulates the deformation of the environment as the viewpoint explores it. In the final
version, it will be slower and accompanied by spoken words and music. Credits to Erica Melino for the visual
effects.
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the space. Unfortunately, the EEG recordings are reliable only when recorded in static situations,
as explained in Chapter 2. The second reason that leads to the decision of utilizing pre-recorded
videos is the high-resolution requirements for Virtual Reality. [120] [121] As explained in Chapter
2, Block Shuffle allows applying Neural Style Transfer techniques in high-resolutions. However,
this method requires a long training time (over 20 hours) for every style.

The last (and most relevant) challenge to face is training the pipeline in a subject-independent
fashion. Ideally, this means that we should take recordings from many more people using our
device, and we should assess the performance of RGNN or other models on these data. Unfortu-
nately, this part of the project was not covered, because of the current pandemic restrictions and
the impossibility to meet several people indoor.
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Chapter 7

Conclusions

7.1 Discussion & Future Work

The pipeline that we proposed and implemented in this project has presented several technical
and non-technical challenges. In the previous chapters, we have described our way to exploit some
of them creatively. In this section, we highlight the current limitations of our project, suggesting
the roads along which it can be further developed.

7.1.1 Resolution

The resolution requirements are open challenges of this project. We are generating relatively small
paintings not because of explicit limitations of StyleGAN2, but because of time constraints. When
training at resolution 128x128 pixels with GPU Tesla P100-PCIE-16GB, 100 iterations require
between 4 and 5 minutes. To reach satisfying results, we have trained every model for more than
80.000 iterations, which means for more than three consecutive days. When we have raised the
resolution to 256x256 pixels, the required time has become four times higher: 100 iterations require
around 17 minutes. To reach 80.000 iterations, ten consecutive days are required. However, even
ten days may not be enough in this case. With higher resolutions, the convergence is also slower
in terms of iterations, meaning that such a model could need a two-week-long training. If we try
to raise the resolution to 512x512 pixels, the training time would reach the order of months. In
the context of 6-month thesis work, not all the resolutions could be tested. Future work could
concern testing the pipeline at higher and higher resolutions, understanding its real limit. As we
have shown with our results, generating small paintings does not harm the final artistic result.
However, it is undeniable that if the StyleGAN2 works on bigger images, then it has access to
more details, and the generated paintings could potentially become more expressive.

7.1.2 Inter-subject variability

In the context of this project, the problem of inter-subject variability (differences between EEG
signals from different individuals) was not addressed, and we have trained the pipeline only in
subject-dependent scenarios. The reasons for this choice have already been mentioned in the other
chapters, but we reiterate them as they are one of the fundamental aspects to improve this work.

In the case of the SEED-IV dataset, the implementation of a subject-independent model should
have been feasible, given the performance of RGNN on this dataset, claimed by the authors. Due
to the extensive hyperparameter tuning required for this purpose, we have decided to set this task
apart. Although we have not implemented it, in theory, it should be possible: if the RGNN per-
forms as stated in the official paper, we have shown that our pipeline can be trained conditionally
on data from the SEED-IV dataset.

80



Conclusions

Implementing a subject-independent version of the pipeline on the recorded signals is one of
the top priorities for future work related to this Master’s thesis. As explained in Chapter 6, this
work can have artistic or therapeutic applications. It is difficult to imagine these applications if
the system has to be re-trained on every subject. The recording and training processes are time
and energy-consuming. The only way to avoid this is to pre-train a system on enough subjects
to generalize on new subjects. To reach this result, it would have been necessary to perform the
EEG recordings on a large number of people. Unfortunately, the restrictions due to the pandemic
situation did not allow us to meet indoors. With more time at hand and in a better period,
we would have been able to assess the possibility of training the RGNN (or another model for
emotion recognition) in a subject-independent fashion on the recorded signals. We want to high-
light, however, that this work is highly experimental. In the same way, we had no information
on the possibility of recognizing emotion using the 8-channels OpenBCI headband, we have even
less information on whether it will be possible to create a general model that adapts to the EEG
signals recorded on new users.

7.1.3 Small dataset of paintings

We have shown that the generated paintings on the SEED-IV dataset have more defined shapes
with respect to the paintings generated with the recorded signals. As a possible cause, we identi-
fied the fact that in the second case we have utilized a dataset of paintings that had roughly 25%
of samples less.

We suggest that a way to increase the quality of the obtained results is to increase the num-
ber of paintings in this dataset, maybe merging the utilized ones with other sources. This task
is not as trivial as it may sound. The paintings need to be associated with emotional labels that
have scientific validity. It would not be accepted if a single person looked at some paintings and
deliberately decided the labels. In the case of the WikiArt Emotions dataset (employed in this
project), the labels were the result of a study involving several subjects and performed according
to strict rules to avoid biasing the answers.

Concerning this dataset, we also provide an answer to one of the general questions we have men-
tioned in the Introduction. What is the abstraction that the machine applies to our emotions?
Is it more universal, or does it suffer from the same cultural bias?. To answer this question, we
have to speculate on the type of paintings in the WikiArt Emotions dataset. Even though they
are heterogeneous in the styles (as we mentioned), they are mainly taken from western artists.
Inevitably, the generated paintings also try to follow the aesthetic norms of western visual arts.
To separate the generated paintings from the cultural features of the history of arts, it would be
interesting to work on a broader dataset, containing paintings from all over the world. In this
way, the representation of emotions in the generated paintings would reflect the common and
cultural-independent features identified in the paintings representing the same emotion.

7.1.4 Non-universal emotion eliciting stimuli

When the design and development of AI systems do not consider the heterogeneity of humanity,
the systems may cause systematic detriment to some people. This is known as algorithmic bias.
[122] In most cases, algorithmic biases are insidious because they can arise from the uninten-
tional under- or over-representation of minorities in datasets. Algorithmic bias, unfortunately,
also affects emotion recognition systems [123], specifically when the recognition is based on facial
expression or other external factors. To the best of our knowledge, we do not have information
on whether these biases exist also in EEG-based emotion recognition.

EEG datasets should still be inclusive and diverse, especially when the aim is to build a sys-
tem to be employed in an artistic context, as in our case. The applications that we have proposed
are thought to be open to anyone, including children and elders. We observed that the EEG
datasets we have studied do not ensure a high level of diversity among the subjects. In the DEAP
dataset, the authors are careful in selecting half of the subjects as females and half as males.
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However, the age range is quite limited (19-37 years), and no other discriminating factors are
explicitly communicated. In the case of the SEED-IV dataset, we have again an equal number of
females and males, but the subjects are all right-handed, and the age range is even smaller (20-24
years).

In some cases, the cause of this problem is in the way the emotions are elicited. Many factors can
influence the emotion elicitation process, such as language, cultural background, and age. During
the research we have carried out regarding possible databases for eliciting emotions in laboratory
settings, we have not encountered authors that considered the universality of the proposed stimuli.

Having emotion elicitation datasets that do not elicit emotions independent of culture, age, gender,
language (or other factors) is limiting for the inclusivity and the development of the technologies.
The non-universality of these stimuli makes the research in the field much slower. For example,
the authors of SEED-IV have publicly shared the emotion-eliciting videos they had utilized in
their experiments. Unfortunately, these videos are entirely in Chinese and hard to follow for
non-Chinese speakers (they provided subtitles in English, but the subtitles may cause distraction
from the plot and the emotions). Apart from the language barrier, we observed through post-
experiment interviews that showing these videos to subjects not used to the Chinese cinema and
acting caused a sense of disorientation. The same issue could arise from the datasets that we have
used on the test subject: FilmStim and E-Movie. They both contain only clips from American or
European movies; in E-Movie they are in Italian, in FilmStim they are in French and/or English,
meaning that participants not used to these types of cinema and languages may feel similarly
disoriented.

We have performed our recordings with the OpenBCI headband following the same method-
ologies described by the authors of SEED-IV. For this reason, it would have been optimal if their
elicitation stimuli were culturally universal. In that case, we would have been able to invest time
more efficiently, focusing on the experiments rather than on the choice of the stimuli to use. As a
result, we would have trained the RGNN on the same classes of emotions as the SEED-IV dataset,
having the same number of samples in each class and we could have made a fairer comparison
between the signals in the SEED-IV and the ones recorded with our small device.

As we have explained in the previous chapters, very often the suggested stimuli are images,
music, or movie scenes. After the experiments we have carried out, we wonder if utilizing cultural
contents is, on the contrary, a considerable source of noise in the datasets for emotion elicitation.
It is far beyond the scope of our work, but we suggest that further studies should be made by
psychology experts to create emotion eliciting stimuli that are, at the same time, easy to employ
and universal (if this is possible).

7.2 Conclusions

This thesis has aimed at the exploration of a way in which humans and machines can interact
to create artistic content, enhancing the possibilities of both. Specifically, we have designed a
brain-computer interface that generates paintings according to the emotions detected in EEG
signals. The pipeline we have implemented and tested is composed of different components. The
training needs two kinds of datasets: one made of paintings, and one made of EEG signals, both
associated with emotions. The signals are processed by an encoder/classifier model. The latter
produces latent vectors that are inputted to another model that generates the paintings.

We have studied the implementation of this project in all its parts. We have investigated the
landscape of emotion eliciting stimuli to record EEG signals in the laboratory and the different
available recording devices that could best fit our purpose. We performed recordings with a cho-
sen device, the OpenBCI headband kit with eight dry-comb electrodes. We have studied one of
the most popular EEG datasets for emotion recognition (SEED-IV) and trained the deep learn-
ing model (RGNN) that performs best on this dataset, providing also experimental training and
results on our recordings. We have pre-processed and analyzed a dataset made of paintings with

82



Conclusions

emotional labels (WikiArt Emotions), performing exploratory data analysis, outliers detection
and elimination, and, finally, data augmentation to fight class imbalance. We have successfully
integrated the state-of-the-art generative adversarial network (StyleGAN2) in our pipeline, utiliz-
ing the adaptive discriminator augmentation, which allowed us to train the pipeline on a rather
small dataset. We have studied and tested the possibility of integrating two extra losses in the
pipeline, providing insights on the advantages and disadvantages they bring. We have trained
the pipeline in two different scenarios: having four classes in the SEED-IV dataset and three
classes in the EEG signals we had previously recorded. We have provided a quantitative (with
the FID metric) and a qualitative evaluation of our results, comparing different experiments. Fi-
nally, we have suggested and discussed some of the possible application contexts of such a project.

The research conducted in this thesis work has led to two main technical outcomes. First, we
have implemented a brain-computer interface that successfully generates paintings representing
human emotions. Second, we have shown that such an interface can also be adapted to con-
texts in which the resources and the needs do not allow the employment of sophisticated EEG
recording devices. In addition, we have carefully and critically analyzed the several challenges of
this process and suggested possible future work ideas to anyone interested in developing it further.

The main rationale that has guided the choices for this work was to implement a BCI that
creatively generates paintings representing the richness and complexity of the human emotional
sphere. To do so, we have leveraged the possibility of creating contamination between different
emotions. The EEG latent vectors that we utilize as inputs of the StyleGAN2 are not synthetic
prediction values stating the emotion in the signal, but they are 50-entries long vectors, containing
more information than the simple class. This contamination metaphorically represents the fact
that, often, a single word is not enough to describe a feeling. We have not focused on reaching
the best emotion recognition accuracy with the RGNN because pigeon-holing the EEG signals
in single classes would have generated final paintings whose effect and nature are diametrically
opposed to what we have wished to obtain from this research.

We have developed this project conceiving it as a part of the small steps that humanity, as a
whole, is making towards having a better understanding of the potentialities of Artificial Intel-
ligence for our culture and our society. We are in a period in which many things have to be
discovered and many more have to be invented. We wish that this project gives a small contri-
bution to people interested in this field and trying to have an enlarged and empowering view of
this complex landscape.
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[20] J. Kim and E. André, “Emotion recognition based on physiological changes in music lis-
tening”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 12,
2008, pp. 2067–2083, DOI 10.1109/TPAMI.2008.26

84

https://www.oslomet.no/en/research/research-projects/felt
https://www.informs.org/ORMS-Today/Public-Articles/February-Volume-44-Number-1/Ada-Lovelace-poetical-scientist
https://www.informs.org/ORMS-Today/Public-Articles/February-Volume-44-Number-1/Ada-Lovelace-poetical-scientist
http://imaginaryinstruments.org/lovelace-analytical-engine/
https://it.wikipedia.org/wiki/Affective_computing
https://doi.org/10.1080/02699939208411068
https://doi.org/DOI 10.1007/s12144-014-9219-4
https://doi.org/https://doi.org/10.1016/j.inffus.2020.01.011
https://doi.org/10.1145/3291280.3291788
https://doi.org/10.3389/fpsyg.2020.01111
https://doi.org/10.1109/T-AFFC.2012.11
https://doi.org/10.1109/TPAMI.2008.26


Bibliography

[21] T. Eerola and J. K. Vuoskoski, “A comparison of the discrete and dimensional mod-
els of emotion in music”, Psychology of Music, vol. 39, no. 1, 2011, pp. 18–49, DOI
10.1177/0305735610362821

[22] S. Tognetti, M. Garbarino, A. T. Bonanno, M. Matteucci, and A. Bonarini, “Enjoyment
recognition from physiological data in a car racing game”, Proceedings of the 3rd Interna-
tional Workshop on Affective Interaction in Natural Environments, New York, NY, USA,
2010, p. 3–8, DOI 10.1145/1877826.1877830

[23] C. Bassano, G. Ballestin, E. Ceccaldi, F. I. Larradet, M. Mancini, E. Volta, and
R. Niewiadomski, “A vr game-based system for multimodal emotion data collection”, Mo-
tion, Interaction and Games, New York, NY, USA, 2019, DOI 10.1145/3359566.3364695

[24] Y. Liu, O. Sourina, and M. K. Nguyen, “Real-time eeg-based emotion recognition and its
applications”, pp. 256–277. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011

[25] O. Sourina, Y. Liu, Q. Wang, and M. K. Nguyen, “Eeg-based personalized digital experi-
ence”, Universal Access in Human-Computer Interaction. Users Diversity (C. Stephanidis,
ed.), Berlin, Heidelberg, 2011, pp. 591–599

[26] Z. Lan, O. Sourina, L. Wang, and Y. Liu, “Real-time eeg-based emotion monitoring using
stable features”, Vis. Comput., vol. 32, March 2016, p. 347–358, DOI 10.1007/s00371-015-
1183-y

[27] J. Amores, R. Richer, N. Zhao, P. Maes, and B. M. Eskofier, “Promoting relaxation using
virtual reality, olfactory interfaces and wearable eeg”, 2018 IEEE 15th International Con-
ference on Wearable and Implantable Body Sensor Networks (BSN), 2018, pp. 98–101, DOI
10.1109/BSN.2018.8329668

[28] Dana Fondation, https://www.dana.org/article/neuroanatomy-the-basics/

[29] L. A. Schmidt and L. J. Trainor, “Frontal brain electrical activity (eeg) distinguishes valence
and intensity of musical emotions”, Cognition and Emotion, vol. 15, no. 4, 2001, pp. 487–
500, DOI 10.1080/02699930126048

[30] Z. Yin and J. Zhang, “Task-generic mental fatigue recognition based on neurophysiological
signals and dynamical deep extreme learning machine”, Neurocomputing, vol. 283, 2018,
pp. 266–281, DOI https://doi.org/10.1016/j.neucom.2017.12.062

[31] J. Kamiya, “Conscious control of brain waves”, 1968

[32] J. J. Vidal, “Toward direct brain-computer communication”, Annual Review of Bio-
physics and Bioengineering, vol. 2, no. 1, 1973, pp. 157–180, DOI 10.1146/an-
nurev.bb.02.060173.001105. PMID: 4583653

[33] L. Farwell and E. Donchin, “Talking off the top of your head: toward a mental prosthesis
utilizing event-related brain potentials”, Electroencephalography and Clinical Neurophysi-
ology, vol. 70, no. 6, 1988, pp. 510–523, DOI https://doi.org/10.1016/0013-4694(88)90149-6

[34] C. ANDERSON, “Classification of eeg signals from four subjects during five mental tasks”,
Solving Engineering Problems with Neural Networks : Proceedings of the Conference on
Engineering Applications in Neural Networks (EANN’96), 1996

[35] B. Blankertz, G. Curio, and K. Müller, “Classifying single trial eeg: Towards brain computer
interfacing”, Advances in Neural Information Processing Systems 14 - Proceedings of the
2001 Conference, NIPS 2001, 2002. 15th Annual Neural Information Processing Systems
Conference, NIPS 2001 ; Conference date: 03-12-2001 Through 08-12-2001

[36] J. del R Millan, J. Mourino, M. Franze, F. Cincotti, M. Varsta, J. Heikkonen, and F. Ba-
biloni, “A local neural classifier for the recognition of eeg patterns associated to mental
tasks”, IEEE Transactions on Neural Networks, vol. 13, no. 3, 2002, pp. 678–686, DOI
10.1109/TNN.2002.1000132

[37] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial filtering of single trial
eeg during imagined hand movement”, IEEE Transactions on Rehabilitation Engineering,
vol. 8, no. 4, 2000, pp. 441–446, DOI 10.1109/86.895946

[38] A. Nijholt and D. Tan, “Playing with your brain: Brain-computer interfaces and games”,
Proceedings of the International Conference on Advances in Computer Entertainment Tech-
nology, New York, NY, USA, 2007, p. 305–306, DOI 10.1145/1255047.1255140
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