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Introduction

Conventional cameras are instruments to get images of real objects. The photog-

raphy is gotten collecting on a film, through a lent, the light spread by the objects

of the scene. In the digital cameras, that last is substituted by an array of sensors

(CCD) which allow to measure the amount of light for each pixel.

In order to understand the physics behind the plenoptic camera, we have to define:

the focus and the depth of field.

In geometrical optics, a focus, also called an image point, is the point where light

rays originating from a point on the object converge; the depth of field (DOF) is

defined as the distance between the nearest and the farthest objects that are in

acceptably sharp focus in an image.

In the conventional cameras in order to increase the depth of field, we need to re-

duce the diaphragm, however in this way we reduce the resolution of the image.

The evolution of those digital cameras is the plenoptic camera. It allows to increase

the depth of field without any depletion of the diaphragm. With one shot, we are

able also to refocus the gotten imagine, or increase the depth of field, or change the

point of view without reducing the resolution.

So this camera is able to re-capture the light distribution entering from the world,

that in the conventional cameras is lost: so the capability of this camera is to mea-

sure not just our 2D photographs of the total amount of the light at each point on

the photosensor, but also the 4D light field through the computation of the amount

of light traveling along each ray that intersects the sensor.
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The aim of capturing the additional two dimensions of data allows us to apply

ray-tracing techniques to compute synthetic photographs flexibly from the acquire

light. The overall concept is to re-sort the rays of light to where they would have

the terminated if the camera had been configured as desired.

Plenoptic camera, or light field camera,in order to acquire 4D light field of a scene,

is provided with an array of individual lenses. The arrangement of the lens means

that the multiple light rays are linked to each sensor pixel and synthetic cameras

can compute the information. The physics linked to the plenoptic camera is ex-

plained in details in the following chapters.

The aim of the work is to understand the most important physical principles linked

to plenoptic camera and the estimation of the accuracy in practical applications

using a 3D chessboard designed throught Solidworks software and printed throught

3D printer.
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Chapter 1

Plenoptic Camera

1.1 Light Field Representation

The light field, as defined by Gershun [1] in 1936, describes the radiance travelling

in every direction through every point in space. Mathematically it can be described

by a 7D function which is called plenoptic function.

To obtain such a function, we must measure the light rays at every possible location

(x, y, z), from every possible angle (θ, φ), at every wave length γ and at every time

t.

As said before, the plenoptic function is then a 7D function denoted as L(x, y, z,

θ, φ, γ, t) (see Fig. 1.1). However, such high dimensional data is difficult to record

and handle in practice. Thus, the light field model has been simplified twice for

practical usage. In the first simplification, the measured function is assumed to be

monochromatic and time-invariant. The wavelength γ of each light ray is record

independently in different colour channels and for a dynamic light field the time

sequence t can be recorded in different frames.

The second simplification was made by Levoy and Hanrahan [2] and Gortler et al

[3], who realized that the 5D representation still contained some redundancy and

could be reduced to 4D by assuming that the light field was measured in free space.
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Plenoptic Camera

In such cases, light ray radiance remains constant along a straight line, making one

dimension redundant in the 5D plenoptic function.

Figure 1.1: Plenoptic function in 5-dimensions of light.

When parameterising a 4D light field [2], there are three key issues: computational

efficiency, control over the set of rays, and uniform sampling of the light field space.

Based on the issues, the most common solution to the representation of a 4D light

field is to parameterise the light rays by the coordinates of their intersections with

two planes placed at arbitrary positions. The coordinate system is represented

by (u, v) for the first plane and (s, t) for the second plane. The defined system

first intersect the uv plane at coordinate (u, v) and then intersect the st plane at

coordinate (s, t), and is thus denoted by L(u, v, s, t). Thus, the planoptic function

that describe a light field is reduced from 7 to 4 dimensions, and parameterised by

four coordinates (u, v, s, t). This type of representation is named light slab (see

Figure 1.2).

Figure 1.2: Light slab representation.
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Plenoptic Camera

In this representation one of the planes may be placed at infinity. This is useful since

the lines may be parameterised through a point and a direction. This is convenient

for constructing light fields either from orthographic images or images with a fixed

field of view. The efficiency of geometric calculations is the big advantage of this

representation. Mapping from (u, v) to points on the plane involves only linear

algebra (multiplying by a 3x3 matrix).

1.2 History of Plenoptic Camera

The introduction of the integral photography happened in the early 20th Century

by Lippman [4], who proposed the use of a microlens array to capture the full ra-

diance of a scene. This design was approved, then, by Ives [5] in 1928 who added,

in order to improve the sharpness of the image, an objective lens .

Many new opportunities become available to investigate integral photography, with

the invention of digital photography, such as Adelson and Wang [6], who in 1990

placed on the focal plane of the cameras main lens a lenticular array in order to

estimate the depth of the scene from a single image. They propose that using

a plenoptic camera because, compared to a binocular stereo system, it improved

the reliability of the depth estimation. The reason is because informations about

both vertical and horizontal parallax are available and greater number of views are

recorded.

Then, in 2005 Ng [7] improved this design, introducing new digital processing tech-

niques such as digital refocusing and the extension the depth of field.

Despite being the basis of most current plenoptic camera, this design was faulty,

as the special resolution was dependent on the number of micro images, this is

typically too small for most applications.

The spatial resolution was improved by Georgive and Lumsdaine [8] with the intro-

duction of the focused plenoptic camera. It has been improved by creating a relay
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Plenoptic Camera

system between the microlens array and the objective lens in order to decouple the

dependency of a resolution from the number of microimages. The focused plenoptic

camera has been developed further iin order to comprise the microlens with varying

focal lengths interwoven into each other in order to have a better depth resolution.

Plenoptic image formation and manipulation require substantial computation, and

through the developments of algorithms many improvements have been made.

The first algorithms was developed by Levoy et al. for light field rendering [2]. Fur-

ther Isaksen developed the light field image rendering method in order to extend

their utility by advancing the image based rendering algorithms through the use

of a new parameterisation method [9]. Digital refocusing was improved by Ng by

deriving algorithms to process in the Fourier space [10]. Also the spatial resolution

was improved by developing new super-resolution algorithms [8, 11, 12] . Into image

blending works have been performed in order to create a more natural blur of out

of focus planes in a rendered image [13]. In addition efforts have been performed in

order to reduce the artefacts in a plenoptic camera [14]. Through the manipulation

of the colour demosaicing process, spacial resolution has also been developed [15].

The full resolution was developed by Favaro and Bishop by using multiple aliased

views [16].

1.3 Micro Lens Array

Light field or plenoptic cameras allow to capture the 4D light field with 2D image.

As it said before to capture a light ray, we need to planes and considering the two-

plane parameterisation, they can be applied in practice with an image sensor and

a micro lens array.

The light ray starts from the source and it goes into the micro lens array. The light

ray is projected into the image plane through the lens, giving different perspectives

from the same source.
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Plenoptic Camera

The micro lens array can have different configurations in term of lens organisation,

two of the most common are: the orthogonal configuration and the hexagonal

configuration (see Fig. 1.3).

(a) Orthogonal configuration (b) Hexagonal configuration

Figure 1.3: Micro lens configurations.

We are more interested in the hexagonal arrangement because it is the configuration

used by Raytrix, and in our work we uses plenoptic image provided by them.

The main advantage of the hexagonal configuration is a better coverage from the

image plane. Instead, the orthogonal configuration have bigger gaps between lenses.

1.4 f-Numbers and lens characteristic

The directional resolution relies not just on the clarity of the images under each

micro lens, but also on their size. The micro lens should cover as many photosensor

pixels as possible.

The relative sizes of the main lens and micro lens apertures should be chosen so

that the images result as large as possible without overlapping. This occurs when

the two f-numbers are equal, as shown in the ray diagram below (see Fig. 1.1).

If the main lens’ f-number is higher (i.e. the aperture is smaller with respect to its
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Plenoptic Camera

Figure 1.4: The different matches between main lens and micro lens f -numbers.

focal length), then the images below each micro lens are cropped, this means that

many pixels are black, and resolution is wasted. On the contrary, when the main

lens’ f-number is lower (i.e. the aperture is larger), the images under each micro

lens overlap contaminating each other’s signal through “cross-talk”.

It can be calculated from the following equation, where F is the f -number, f is the

focal length of the lens and D is the diameter of the lens.

F =
f

D
(1.1)
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Plenoptic Camera

Figure 1.5 shows the projection of an object at distance aL in front of a thin lens

and the focused image formed at distance bL behind the lens.

Figure 1.5: Optical path representation of a thin lens.

As given in eq (1.2), the thin lens equation defines the relationship between the

object distance aL and the image distance bL.

1

fL
=

1

aL
+

1

bL
(1.2)

In eq (1.2) fL (that is f of the eq (1.1)) is the focal length of the main lens.

1.5 Synthetic photography equation

To understand the importance of the acquired light field to compute photographs,

it is important to understand how an image is formed inside a conventional camera.

The camera is modelled, for semplicity, in just four parameters: the aperture size

and location, the depth of the lens (which are parallels) and the sensors plane.

Now the synthetic light field L′ concept can be introduced. It is parametrised

by the synthetic u′v′ and s′t′ planes shown in Figure 1.6, such that L′(u′, v′, s′, t′)

represents the light travelling between the synthetic aperture plane (u′, v′) and the
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Plenoptic Camera

Figure 1.6: Synthetic photography conceptual model. The u and s planes figure the
physical surfaces in the light field camera. u′ represents a virtual plane containing
the synthetic aperture in dotted line while s′ symbolizes the synthetic film plane.
Together they are a synthetic camera.

synthetic film plane (s′, t′).

With this definition, as the physics literature demonstrates [22], the irradiance

image value which appeares on the synthetic film plane is given by:

E(s′, t′) =
1

D2

∫ ∫
L′(u′, v′, s′, t′)A(u′, v′) cos4θ du dv (1.3)

In the equation above, D represents the separation between the film and the aper-

ture, A is an aperture function (e.g. the sensor is loaded within the opening and

zero outside it), and θ is the incidence angle that ray (u′, v′, s′, t′) forms with the

film plane.

In order to eliminate the cos4θ term, it is invoked a partial approximation, and fur-

ther simplification are made in the equation, as ignoring the constant 1/D2. The

final result is shown in eq. (1.4).

E(s′, t′) =

∫ ∫
L′(u′, v′, s′, t′)A(u′, v′) du dv (1.4)

The equation above can be express also in terms of the acquired light field, L(u, v, s, t).

The diagram below illustrates the relationship between L and L′.
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Plenoptic Camera

Figure 1.7: Relationship between L′ and L.

From [23], for notational convenience, we are able to define two parameters:

γ =
α + β − 1

α
and δ =

α + β − 1

β
(1.5)

Figure 1.7 shows that the ray does not intersects only u′ and s′ but it intersects

also the u plane at s′+ (u′− s′)/δ and the s plane at u′+ (s′−u′)/γ. Consequently,

L′(u′, v′, s′, t′) = L(s′ +
u′ − s′

δ
, t′ +

v′ − t′

δ
, u′ +

s′ − u′

γ
, v′ +

t′ − v′

γ
) (1.6)

Applying eq (1.6) to eq (1.4), it gives as result the Synthetic Photography Equation.

It is used as the basis of image formation:

Ē(s′, t′) =

∫ ∫
L(s′ +

u′ − s′

δ
, t′ +

v′ − t′

δ
, u′ +

s′ − u′

γ
, v′ +

t′ − v′

γ
)A(u′, v′) du dv

(1.7)
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Plenoptic Camera

1.6 Optical transformation

Following the developments in Refs. [24] and [25], the radiance at a given plane

perpendicular to the optical axis is represented by r(q, p), where q and p are the

position and the direction in ray space. In it, for this reason, any coordinate can

be represented by x = (q, p)T in the ray space.

Using the notation just introduced, the light field is the radiance as a function of

ray space, r(x). If we consider now an arbitrary ray transfer matrix A, each ray

becomes:

x′ = Ax (1.8)

The refraction due to the lens and travel of rays in free space are described by the

two matrices L and T :

L =

 1 0

− 1
f

1

 and T =

1 t

0 1

 (1.9)

If in the equation (1.8) A represents the optical transformation, considering the

transfrmation of r(x) to r′(x), since in the optical transfer matrices the det(A) = 1

and assuming that the entire optical system follows the convertion property, r′(x′) =

r(x).

Applying the last concept in equation (1.8), then r′(Ax) = r(x). Considering a ray

in the form y = Ax, we obtain r′(y) = r(A−1y) [26], but since y is an arbitrary ray,

the equation representing the radiance transformation turns out to be as:

r′(x) = r(A−1x) (1.10)

For simplification, the light field function L(u, v, s, t) can be represented as radiance
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Plenoptic Camera

with spatial component q and angular component p so that:

L(u, v, s, t) = r(q, p) (1.11)

In the sensor each pixel receives light from all directions. At a given spatial point

the intensity of an image, indicated as I(q), is the integral of the radiance over all

the rays incident at that point, [26]

I(q) =

∫
r(q, p) dp (1.12)

1.7 Plenoptic camera 1.0

The traditional plenoptic camera is composed by an array of microlenses at the

image plane of the main camera lens, where the sensor are placed behind the mi-

crolenses at a certain focal length (fig 1.8(a)). In front of the microlenses the

radiance is sampled by the camera with a kernel as shown in Fig. 1.8(b).

(a) Conventional plenoptic camera (b) Sampling of the radiance r(q, p) in
2D (q, p) plane

Figure 1.8: Plenoptic camera 1.0

Each microlens image is formed by vertical stack of samples in the (q, p) plane,
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Plenoptic Camera

which capture at the image plane the angular distribution of the radiance.

For each pixel, the energy of rays that come at an angle specific is measured by the

microlens, and in front of it, at one focal length, the rays pass through a plane [26].

In order to see it, the matrix A and A−1 representing the incident rays on a plane

at one focal length in front of a given microlens are identified [26].

A =

1 f

0 1

 1 0

− 1
f

1

1 f

0 1

 =

 1 f

− 1
f

0

 ; A−1 =

0 −f
1
f

0

 (1.13)

By considering eq (1.13), on the sensor a pixel replied approximately with equally

rays for all the angles. Therefore, in ray space the kernel is showed as a vertical

line as thick as the pixel in Figure 1.9.

Figure 1.9: Sampling pattern of one microlens in Plenoptic 1.0 camera.

The Matrix A−1 transforms the vertical line to an horizontal one because an input

p does not influence an output p, due to the bottom right zero matrix element.

Morover the diameter of the microlens limits the spatial size of that horizontal line.

At a specific spatial point, integrating all the angular samples, the images captured

by the traditional plenoptic camera are rendered from the radiance. However the

single microlens samples each spatial point, consequentially the integration is nec-

essary in the rendering for all the pixels in each microimage. As described, from
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the traditional plenoptic camera rendering produces only 1 pixel per microlens,

consequently the rendered image will result with a very low resolution [26].

1.8 Plenoptic camera 2.0

The focused plenoptic camera, or plenoptic camera 2.0, bases its functioning on an

array of microlenses focused on the image plane of the main lens, as shown in Fig.

1.10 [26].

Figure 1.10: Focused plenoptic camera.

A portion of the image is captured by the microlens and this is formed on the main

lens. We can think of the sensor like moved back from the main lens, so that to

allow the formation of the image at some distance a in front of the microlenses.

The microlenses works as an array of real cameras, they are able to reimage parts

of that image into the sensor.

In thius way, a relay imaging is formed with the main camera lens by every mi-

crolens.

Considering the following lens equation 1/fL = 1/aL + 1/bL, b is greater than f

[26] in the setup of the camera.

18



Plenoptic Camera

In the (q, p) plane samples of each microlens image is stack, so that we are able

to capture both positional and angualr distribution of the radiance at the image

plane.

The total transfer matrix starting from the plane to the sensor is

A =

1 b

0 1

 1 0

− 1
f

6

1 a

0 1

 =

− b
a

0

− 1
f
−a

b

 (1.14)

The last equality represents the refocusing. Computing the inverse

A−1 =

−a
b

0

1
f
− b

a

 (1.15)

Here we have to consider that due to the zero top right element, after the inverse

mapping, the sampling kernel for each pixel remains vertical in optical phase space.

Consequently, a dense set of thin vertical kernels are the results of the sampling,

and it is decoupled from microlens size (see Fig. 1.11) [26].

Figure 1.11: Sampling pattern of one microlens.

The most important result of the consideration done before is that for the focused

plenoptic camera the spatioangular trade-off for is not fixed by the number of

microlenses. In fact the optical geometry (a and b) is the one which determines the

spatioangular trade-off.
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Like in the traditional plenoptic camera, integrating the angular samples at each

space point, we obtain a rendered image as result of the radiance captured (see Fig.

1.12).

Figure 1.12: Image rendering through focused plenoptic camera. The left half
shows the rendering towards all directions considering a given position; the right
half shows the rendering towards a single direction at each position.

In contrast with the traditional plenoptic camera, different microlens samples the

given spatial points. In addition, rendering data coming from this type of plenoptic

camera includes integrating across microlens images rather than within microlens

images [26].

1.9 Focusing in plenoptic camera 2.0

In general the attainable resolution of an image rendered from focused plenoptic

camera depends on the depth of the scene. As derived in [25], the spatial resolution

of a rendered image is equal to b/a times the spatial resolution of the sensor. Image

planes closer to the microlens plane raises the resolution, or equivalentely, planes

closer to the main lens encreases it.

As with the conventional plenoptic camera, the focuses plenoptic camera renders

an image according to eq.(1.12). By evaluating r(q, p) at some particular value of
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p = p0, i.e., let I0 = r(q, p0), we are able to implement single viewpoint rendering

of eq.(1.12). In order to render the final image at each microlens we consider a

range of spatial sample corresponding to a range direction (see Fig. 1.12, where M

samples is 2) instead of selecing spatial sample which corresponds to a single value

of p.

Selecting a contiguous set of pixels (a patch) from every microimage and tiling all

such patches together into a final image, we are able to render the corresponding

image of a given view. The pixel size of the patch to select is the meaningful pa-

rameter to consider.

In the image showed in Fig. 1.13, where µ represents the distance among mi-

crolenses (the pitch of the microlens array), the main lens image plane is divided

into µ x µ sections such that each of them is mapped in portion, called patches,

of size equal to M x M . Putting together those M x M patches, we are able to

recontruct the main lens image [26].

Figure 1.13: Capturing geometry.

However, there is an alternative interpretation about the way in which an image

is captured [26]. For a rendering pitch, there is an image plane in front of the

microlens placed a certain distance s that will satisfy the relation µ = M(a/b).

In that case the plane results "in focus" only with the patch with a certain size.

In other words, the algorithm operates as is showed in Fig 1.14. In particular the

pitch and the squares of each microlens image are selected. By tiling the selected
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squares all together, we get the rendered final image.

In this way selecting one pitch rather than an other, we put different world planes

"in focus".

Figure 1.14: Scheme of the algorithm.

1.10 Refocusing in plenoptic camera 2.0

As said in Paragraph 1.1, there are two additional dimensions of a 4D light field

compared to a conventional 2D image. These allows us to produce such effects like

the refocusing even after a photo has been taken, as long as the depth image has

been computed.

In particular, the plenoptic camera 2.0 requires an accurate depth estimation in

order to reconstruct in a mieaningful way an image from the captured light field.

The depth reconstruction is possible thanks to partial redundant information com-

ing from the data stored by the camera. In particular, an object tends to have

similar appearance if obsterved in slightly different viewing angles. If this redun-

dancy can be used to compare the data coming from the camera, it has exploited

in order reconstruct the very spars data [27].
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The classical parameterization (u, v, s, t) uses distinctive planes aligned with the

optical axis z: [u, v]T represents the coordinates on the plane at the main lens

(ML) zUV and [s, t]T are the coordinates place on the focal plane of the main lens.

Since the points on the focal plane are mapped on the image plane, the coordinates

[s, t]T represent also the coordinates on the image plane at zST .

The light field can be used to calculate radiance for a new plane (q, r) places at

distance zQR, parallel to the (s, t) plane. The mapping to the original coordi-

nates requires only the computation of the intersection of the ray, originating at

[q, r, zQR]T with direction [u, v, zUV ]T - [q, r, zQR]T with the (s, t) plane at zST . The

intersection point of the [s, t]T coordinates can be determined in two step: first, a

scaling, α, of [q, r]T depending on the positions of the three planes (s, t), (q, r) and

(u, v) is computed: α = zUV −zST

zUV −zQR
.

Second a traslation equal to ∆(u, v) = −β · [u, v]T with β =
zQR−zST

zUV −zQR
brings us to

the final coordinates in the (s, t) plane: [s, t]T = α · [q, r]T + ∆(u, v), see Fig.1.15.

Figure 1.15: Refocus representation.

While a pinhole camera could have an infinitesimal aperture, the plenoptic camera

would not produce any image because of the lack of light. So, cameras need to have
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a large aperture and they use lens to refocus the acquired rays. All the points inside

the focal plane are projected to an exact location on the sensor; on the contrary,

outside the focal plane the points can be projected to several locations. For what

concerns the adjustment of the focal plane, this is a major challenge. We can imag-

ine the light rays which moves away from the camera, all the rays of a given pixels

will encounter on the focal plane. Retracing the rays in the opposite direction, it

would mean integrated at that specific sensor pixel. We are able to perform this

integration in a post-capture process through the 4D light fields [27].

In a common camera with a senor placed at the image plane (IP), the integra-

tion is performed over all directions, so, the (u, v) plane. Approximately, for a

plenoptic camera 1.0, all the pixels under a microlens are summarize as: L(s, t) =∑
u

∑
v L(u, v, s, t). The focal plane placement is dependent to the distance of the

IP to the ML. Assuming the thin lens model approximation, the original focal plane

is placed at a distance equal to dorg = (1/f − 1/(zUV − zST ))−1 from the main lens,

where f represents the focal length of the main lens. If we consider a virtual mov-

ment of the image plane to an other plane, (q, r), this has the effect of the change

of the focal plane. In particular, the new focal plane will be placed at a distance

drefocus = (1/f − 1/(zUV − zQR))−1.

The most difficult aspect in the refocuse is that it requires an elevated number of

different view points in order to reach a smooth out-of-focus blur.

In photography, the effect for which the camera renders an area out-of-focus is

called Bokeh. This effect, for small and bright out-of-focus-light, is used often

as stylisation method. The shape of the lens aperture determines, inderectly, the

Bokeh effect. In a standard camera the lens aperture cannot be changed, for this

reason photographers often add in front of the lens an additional aperture. The

adding of it blocks the incoming light in certain directions. We are able to simulate

this behaviour through the 4D ligh-field: L′(u, v, s, t) = b(u, v)L(u, v, s, t) where b

is a function which reproduces the aperture shape.
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In practice, the pixels of the plenoptic camera do not coincide exactly to the rays.

On the contrary, a pixel is able to record an incident ray within a small cone of

directions. Every point related to the microlens coincides to an image taken with a

lens with a limited aperture. These views shows a depth-of-field, consequently the

depth-of-field range forced by the optics, limits each refocusing operation. Likely,

with large apertures the captured light-field might not be enough and so the border

pixels might be missing.
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Plenoptic depth map

Since we have limited informations provided about the internal configuration of the

camera, it is treated as a balck-box system. In addition we are not able to access

to the RAW image data of the camera, and the RAW images are processed using

the Raytrix software (RxLive 4.0). Therefore, predictions have to be made about

the algorithms used to produce the virtual depth.

Raytrix uses an hexagonal grid microlens array made up of three different focal

length lenses interlaced into the array, which can reach a much greater depth of

field (dependent on the focal lengths) reducing only the effective resolution ratio in

each dimension to the half [18].

2.1 Reconstruction from multiple images

The depth algorithms are calculated via triangulation [18]. This requieres that the

pixels need to be incident in at least two microimages if they belong to the same

image point. Therefore, only in area with sufficient local contrast triangulation is

possible to perform.

The recontruction of a scene for depth in a plenoptic imaging is made through
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multiple images. In this section, we will explore how reconstruction is formed

mathematically, by using a scene made entirely of points for mathematical simplic-

ity and only two images.

In this case, we consider a set of correspondences xi ↔ x′i in two images. Taking a

set of three dimensional points, Xi, and two camera matrices, P and P ′, the corre-

spondance image will be PXi = xi and P ′Xi = x′i. Then the two data points are

projected to the point Xi. However, since the point Xi or the projection matrices

P and P ′ are unknown, they have to be determined.

In plenoptic imaging, often the depth is outputted in the form of virtual depth.

We have to underline that it is impossible to determine the positions of points with

precition without knowing anything about the calibration of the camera [20]. This

ambiguity does not depend on the number of images given, since the informations

about absolute orientation, scale or position of the imaged object are unknown.

This ambiguity, of lack of informations about camera calibration, is represented as

a projective transformation.

The projective transformation, H, can be applied to each point Xi and to the right

of the camera matrix, Pj, without having projected image points altered, such that:

PjXi = (PjH
−1)(HXi) (2.1)

In these circumstances, the choice about the projective transformation is arbitrary

as there is no reason to select one set of camera matrices and points over another.

This reconstruction, therefore, having projective ambiguity, it will have something

known as projective reconstruction. For this reconstruction, we must have seven

points at least which must not lie in one of the various critical configurations [20].

The tool used to compute the points from the two images based its working on

the use of the fundamental matrix, which can be thought of as if the constraint

on image points x and x′ would be imaged in 3D space. This is true because of
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the image points themselves, the coplanarity of the centers of the cameras on both

views, and the space point. Given a fundamental matrix, F, and pair of matching

points xi ↔ x′i it must follow the equation (2.2) where F is a 3 × 3 matrix of rank

2 [20]:

x
′T
i Fxi = 0 (2.2)

If F is unknown, it can be computed from a set of point in which we have correspon-

dences where the equations are linear in the entries into matrix F. The fundamental

matrix F can be entirely defined from a pair of camera matrices, P and P ′. Alter-

natively, the pair of camera matrices, P and P ′, can help to determine the matrix

F up to a 3D projective ambiguity. Accordingly, the 3D projective transformation

does not change the fundamental matrix F, it keeps the full projective geometry of

the camera matrices, P and P ′.

One method through which the imaged scene is recontructed using the fundamental

matrix, F, is described:

1. Using some correspondences between points so that xi ↔ x′i from two views,

then there are the composition of the linear equations in the entries of F from

the coplanarity equation x′TFx = 0;

2. Compute the linear equations in order to find a solution to F;

3. Estimate a pair of camera matrices, P and P ′, from F;

4. Through the pair of camera matrices, P and P ′, and the corresponding image

point pairs, xi ↔ x′i, we are able to find the point Xi in three dimensional

space.
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The method just described for solving a point in 3D space,X, is known as triangulation.

As a plenoptic raw image can be considered as much two view representations,

depth can be calculated through the application of this method to neighbouring

microimages.

2.2 Calculating the Depth Map

As we can see from Figure 2.1, the virtual main lens image, which would happen

behind the sensor, is projected on the sensor by each of the three middle micro

lenses.

Figure 2.1: Raytrix camera optical path representation.

The virtual main lens image is shown from a lightly different prospective by each

micro image, that is the image of a micro lens formed on the sensor. Considering the

focused image of a point presents in two or more micro images, the distance between

the virtual main lens image b and the MLA can be calculated by triangulation.

As Figure 2.2 shows, the distance b can be calculated by considering its projection

in the two micro images.

In the figure below, pxi (for i ε {1,2}) represents the distance of the points in the
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Figure 2.2: Optical path of a thin lens.

micro images to the principal point of the micro image correspondent. Moreover, di

(for i ε {1,2}) determines the distance of the respective principal point with respect

to the orthogonal projection of the virtual image point to the MLA.

Consequently, distances with an upwards pointing arrow, shown in Figure 2.2,

are treated as positive values and those with an downwards pointing arrow are

considered as negative values.

Triangles with equal angles are similar so we can consider the following relations:

pxi
B

=
di
b
→ pxi =

diB

b
for i ε {1,2} (2.3)

Furthermore, the base line distance between the two micro lenses can be computed:

d = d2 − d1 (2.4)

If we define the parallax of the virtual image point px like the difference between

px1 and px2 from eq.(2.3) and (2.4), the definition in eq.(2.5) is reached.
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px = px2 − px1 =
(d2 − d1)B

b
=
d ·B
b

(2.5)

After readjusting eq.(2.5), the distance b between the MLA and a virtual image

point can be characterize as a function of the base line length d, the distance

between the sensor B and the distance between MLA, and the estimated parallax

px , as given in eq.(2.6).

b =
d ·B
px

(2.6)

According to the distance of its virtual image to the MLA, a point takes place in

different micro images. In consequence, dependending on the distance, the length

of the baseline d changes during the computation of the triangolation. If two

neighbored micro images would be used during it, the baseline would match with

the micro lens aperture (d = D).

Since Raytrix camera has two neighbored micro lenses with different focal lengths,

they never focus the same point on the sensor. Thus, the baseline results to be

always greater than the microlens aperture (d > D).

In addiction, since the distance B between MLA and sensor is not known precisely,

the depth map, supplied by the plenoptic camera, is equal to the distance b divided

by B. This relative depth value is called virtual depth and is represented by v.

From eq. (2.6), the virtual depth v is a function of the base line distance d and the

estimated parallax px, as given in eq. (2.7).

v =
b

B
=

d

px
(2.7)

The virtual depth, as said before, can be computed for a point only which is focused
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in at least two micro images. Because of the arrangement of the MLA (hexagonal)

with three different focal lengths, like in a Raytrix camera, the minimum of the

measurable virtual depth is equal to vmin = 2 [21].

2.3 Depth Accuracy

By considering the rules coming from the theory of propagation of uncertainty, we

can understand how the depth accuracy is affected by an error of the estimated

parallax. From the derivative of v with respect to the derivative of the measured

parallax px, the standard deviation of the virtual depth v is equal to (see (2.8)) :

σv ≈
∣∣∣∣ ∂v∂px

∣∣∣∣σpx =
d

p2x
σpx =

v2

d
σpx (2.8)

From eq. (2.8) we are able to say that the proportionality of the virtual depth is

equal to v2 [21].

The baseline distance d is a discontinuous function of the virtual depth v, Since

a maximum baseline length of a microlenses sees a point changes according to

the virtual depth of that point, we can assert that the baseline distance d is a

discontinuous function of the virtual depth v . This result conducts us to understand

that the discontinuous dependency of the depth accuracy is a function of the object

distance aL.

The mathematical relationship between the virtual depth v and the image distance

bL is represented by the linear function given in eq. (2.9).

bL = b+ bL0 = v ·B + bL0 (2.9)

Here the variable bL0 is unknown but it is a constant distance between MLA and

main lens.
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Through the thin lens equation (1.2), the object distance aL can be expressed as a

function of the virtual depth v.

If the derivative of aL is computed with respect to bL, the standard deviation of

the object distance aL can result as given in eq. (2.10)

σaL ≈
∣∣∣∣∂aL∂bL

∣∣∣∣σbL =
f 2
L

(bL − fL)2
σbL

=
(aL − fL)2

f 2
L

σbL =
(aL − fL)2

f 2
L

B σv

(2.10)

We can further simplify eq. (2.10) when the object distances is much higher that

the focal length of the main lens fL. From eq. (2.11) we can see that in presence

of a constant object distance aL, the depth accuracy increases to f 2
L.

σaL =
(aL − fL)2

f 2
L

B σv ≈
a2L
f 2
L

B σv for aL � fL (2.11)

The depth accuracy decreases proportional to aL when the focal length of the main

lens is constant. Though, the depth accuracy as a function of the object distance

aL is a better than the given in eq. (2.11) because when the object distances are

large, they are equivalent to small virtual depth.

2.4 Projection model

After the theoretical background for what concern the depth estimation, it is neces-

sary to introduce the algorithms necessary to perform a robust automated camera

calibration.

Figure 2.3 gives an overview about the projectional mechanism from the virtual

depth behind the MLA to metric depth values in front of the camera.
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Figure 2.3: Representation from virtual to metric depth.

Points placed in space I are expressed in virtual depth units and lateral pixel po-

sitions on the sensor. Space II contains the points projected from space I and

converted into metric coordinates. The points placed in space III are undistorted

and are in metric coordinates depending on the principal plane of the main lens.

Finally, on the other side of the main lens space IV is located. It contains the points

in the object space. The coordinates relative to the sensor center of these points

are metric [28].

The first step is the transformation from virtual depth values in space I zI to met-

ric depth values in space II zII . In order to calculate this distance, we need to the

definition of virtual depth:

v =
b

B
(2.12)

Solving the equation through the metric distance b, the variables are replaced:

zII = zI ·Bi (2.13)

Now every detected point in the target image, has a 3D position, which is compared

to the main lens.
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The effect of the lens tilt, in a plenoptic camera, affects the 3D image which results

tilted. The effect is known as the Scheimpflug Principle [29], as illustrated in figure

2.4.

Figure 2.4: Tilt effect.

Through the 3D pose of the main lens, the algorithm model is able to model the

tilt and shift the main lens in 3D. The paramerters θL, σL are introduced in order

to controll the direction of the optical axis of the tilted main lens, along with

the introduction of parameters XL, YL in order to perform the shift of the main

lens relative to the sensor center. The image distance BL represents the distance

between the main lens ZL and the sensor [28].

The lateral undistortion model is applied after the removal of the tilt. The distortion

coefficients k1 and k2 are able to controll the amount of distortion. The radius r,

used in all of these computations, represents the lateral euclidean distance relative

to the distortion center.

Around the optical axis, the distortion of the lens is considered radially symetric,
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so through the parameters XL, YL we able to know the center of the distortion (see

figure 2.5).

Figure 2.5: Tilted/shifted main lens representation.

By applying the method described by Brown, through the two following equation

we are able to shift the lateral position of the points in order to count the radial

distortion [30]:

xIII = xII · (1 + k1r
2 + k2r

4),

yIII = yII · (1 + k1r
2 + k2r

4),
(2.14)

Following what said before, the radial depth undistortion method is applied. In

the equation (2.15) the coefficients d1 and d2 mold the distortion according to the

radius r, while the coefficient dd tunes a linear relationship between the virtual

depth of a point and the distortion strength [31]:
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z′III = zII + (1 + ddzd) · (d1r2 + d2r
4) (2.15)

Once that the points have been undistorted in order to perform the projection on

the main lens, we need to calculate the image distance of each point. In order to

perform it, we need to compute the image distance BL of the main lens through

the current values of the focal length fL and the focus distance TL :

BL =
TL
2

(
1−

√
(1− 4

fL
TL

)

)
(2.16)

The image distance is measured from the total covering plane (i.e. TCP that is

the plane on which the main lens has to be focused) of the plenoptic camera to

the principal plane of the main lens. Thus, before adding the metric depth of the

points to the image distance, we have to subtract the distance between the MLA

and the TCP:

zIII = (z′II − 2Bi) +BL (2.17)

From the plenoptic camera design theory, we know that the distance from the sensor

to the MLA Bi is equivalent to the distance from the TCP to the sensor. So the

distance from the TCP to the MLA is equal to 2Bi. By subtracting the latter

value, we are able to compute the distance from each point zIII with respect to the

principal plane of the main lens [28].

Now through the main lens, the projection can be applied. The thin lens model is

applied in order to calculate the distance zIV to which a point is projected from

the principal plane of the main lens:
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1

fL
=

1

GL

+
1

BL

(2.18)

2.5 Metric Calibration

Standard camera calibration techniques are performed with the aid of checkerboard

targets with known geometry [32]. In the plenoptic cameras using this type of tar-

get, some problems can rise because of self-similar structures in the image. The

computation of the depth estimation is no certain when an epipolar line of the

microlenses is made parallel to an edge of the checkerboard. Through the use of

circular targets, this can be avoided (see figure 2.6).

Figure 2.6: Linear or circular targets.

In the calculated total focus image, the circular features are detected from the light

field by using OpenCV’s MSER implementation. At this point, for each 2D position

point lying on the target, the virtual depth is computed (compare figure 2.6 right).

After this, a custom algorithm, using as seeds the 2D pixel positions of the circular,

associates the correct metric distances given the pitch of the target and aligns the

characteristic on a rectangular grid. This algorithm, described in greater detail in
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[33], is designed with robustness.

At this point we have two sets of point clouds. The first cloud represents the points

extracted from the 2D image, with a virtual depth values associated. The second

cloud carries the points (called model points) aligned on the rectangular grid, which

have a known constant distance.

Between the two sets of point clouds there is a one-to-one correspondance from a

point on the rectangular target model to a point detected in the image. Now the

target points are projected with initial parameters as described in paragraph 2.4.

This projection happens in space IV. The points, with appropriate initial parame-

ters, should lay close to their true position.

Since the model points is placed on a flat target, the sensor plane, on which they

are, is zIV = 0. Now in order to shift the projected target points into the sensor

plane, an extrinsic pose is applied.

In this position, we are able to calculate the error function of an optimizing al-

gorithm. Seven parameters are added for the extrinsic pose, for every image of

the target with a different placement. tThe calibration is robust by adding the

additional input data because this is a 3D-to-3D calibration. The stability of the

optimization algorithm could be decreased by a recent addition to the lens model

of a full lens pose [28].
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Experiment

In this chapter, we are going to introduce and explain the whole procedure adopted

and that lead us to the results present in the last chapter of this work.

The chapter follows a sequential order, so any section corresponds to a step that

brought us to the final results.

3.1 The 3D board

Since the final objective of this work is to test the plenoptic camera, we need of an

object that includs the whole wanted aspects.

Mainly, we want to try out the accuracy of a single image taken by the camera with

respect to the correspondent real value and the metric deviation among the whole

images taken by the camera. The object used for all the tests is a board design by

us.

The software used for the design of it is Solidworks 2020 SP03 and the 3D printer

model used to print physically the board it is Prusa MK3S.

The first step in order to obtain the final design was to decide the dimension of the

board: since the print plate has a fixed maximum dimension available for printing,

that is 210 mm, we adopted a quadratic shape with length 210 mm.
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Another aspect that we have to take into account is that the 3D printer proceeds

in layers in order to print the object, adding material till to reach the stablished

measure coming from the file containing the board project.

The problem that could rise is that since the printer has a minimum layer height

equal to 2 mm, if the wanted measure does not reach this threshold, the corre-

sponding layer is not printed. The consequence of that is a different value of length

between the theoretical board and the real one. So all the measures are decided

also in order to satisfy this constraint.

In order to avoid the bending of the panel, an extrusion of 3 mm is been adopted

for the entire board.

As said before, since we want to test the camera on different depth metric condition,

we design the board with small parallelepipeds with side of 28 mm but different

height. Between two parallelepipeds there is a distance of 1 mm.

The board has seven rows and seven column as it can be seen in Fig. 3.1.

Figure 3.1: The board seen on the top.
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Starting from the bottom right parallelepiped, it has an height of 3 mm (this mea-

sure is considered counting from the top of the extrusion) and it has a distance

from the edge of the board of 4 mm. The other parallelepipeds on the same row are

increased of 2 mm until the 4th parallelepiped of the row that reach the maximum

value for the row of 9 mm, after that the height decreases until the 7th parallelepiped

of the row that has the same height of the first, as shown in Fig.3.2.

Figure 3.2: Different height of the parellelepipeds (horizontal view)

As regards the parallelepipeds on the same column, starting from the bottom right

parallelepiped, the parallelepipeds increase of multiplier 3 until the 4th, then they

decreases until the 7th parallelepiped of the same column.

The final shape is shown in Fig.3.3

Figure 3.3: The board.
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3.2 Lighting system

The lighting is the most crucial aspect of our experiment. As any camera needs

light in order to acquired a good image, because of its working principles for the

recontruction of a 3D image, plenoptic camera requres a well enlightened scene too,

otherwise the image and the acquired data are not reliable.

In addition to this, our aim is to evaluate the accuracy of the camera under different

lighting working conditions.

So in order to reach both of the goals, we built a particular enlightening system

capable of well lighting the scene but also able to change the intensity of it in order

to study the data under different conditions.

In particular the system is compound of five 3W LED with variable luminosity in-

tensity between 160 and 240 LM, linked one by one to five different potentiometer.

Every potentiometer is connected to a single LED beacuse in this way we are able

to controll all of them indipendently from the others.

The LED are supplied by a voltage generator of 5 V.

The electrical scheme of each led is shown in Fig. 3.4.

Figure 3.4: Electrical scheme.

As Fig. 3.4 shows, the circuit has two resistances in series: the resistance R, which
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has a fixed impedance equal to 2.5 Ω, and the resistance Rv, that has a variable

impedance between 0 and 5 Ω. The aim of the fixed impedence is to prevent the

short circuit condition. This is verified when the value of the variable impedence is

equal to 0 Ω.

Considering the characteristic caming from the datasheet of the LED, the forward

and the breakdown conditons are verified for the following values of current and

voltage:

Forward condition:

• IF = 750 mA

• VF = 3.2 V

Breakdown condition:

• IBR ≤ 50 µA

• VBR ≥ 5 V

In addition to that, we have studied the power of the led (Pled) values depend-

ing on the potentiometer position. Starting with potentiometer in the maximum

configuration (i.e. variable impedance equal to 0 Ω), Pled is equal to 2.4 W. The

procedure has been replicated increasing the variable impedence of 0.25 Ω until

reaching its maximum value of 5 Ω. By increasing the variable resistance value, the

power of the led decreases because of the reduction of current passing through the

diode which is hold by the variable resistance. When the potenziometer is in the

minimum position (i.e. Rv = 5 Ω), Pled = 0.778 W.

Contemporary to the computation of Pled, we have measured the power of the vari-

able resistance considering the current coming from the diode. In order to do that,

considering the power low PRv = V · iLED and the Ohm’s Law V = RRv · iLED, we
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apply the following formula:

PRv = RRv · i2LED (3.1)

From the computations, we get the following plot:

Figure 3.5: PRv varying Rv.

As we can see, PRv increses from 0 W, in which the corresponding variable resis-

tance value is 0 Ω, to a maximum value equal to 0.337 W, where Rv = 2.25 Ω.

After this value, PRv decreases slightly until the maximum value of the variable

resistance is reached. At the maximum value of Rv, PRv = 0.296 W.

Initially PRv increases because Rv increases. Contemporary considering the de-

cresing of the current, at a certain value of it, the tendency of PRv is inverted

because the proportionality of the power with the current became greater with re-

spect to the one with the resistance, being it equals to the square according to the

power law.

The following figure shows the complete lighting system mounted in order to light

up the board. As we can see the LED are mounted on a circular structure that
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through the central hole does not interfere with the camera.

Figure 3.6: Rear view of the lighting system.

3.3 Camera calibration

As said in the previous chapter, before any experiment with a Raytrix camera, we

must to calibrate it in order to increase the metric accuracy. The software given

by Raytrix with the camera is Raytrix 4.0. This software contains two type of cal-

ibration: metric calibration and MLA calibration. More recent Raytrix softwares

have additional calibration tools.

Both of them must be done, as the software highlight, and the MLA calibration

must be run before the metric calibration.
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The aim of the MLA calibration is to align the micro lens image with the calibra-

tion grid in order to have a correct 3D calculation and 2D refocusing. In order to

achieve this aim, the calibration requires a homogeneous grey image. This is solved

by mounting on the lens the calibration filter given by Raytrix.

After that, once the software automatically aligns the micro lens to the calibration

grid, the calibration target can be removed in order to perform the metric calibra-

tion which aim and functioning is described in section 2.5.

More the metric calibration result is accurate, more the metric accuracy of the

camera will be higher.

The calibration result coming from the Raytrix software gives as results some pa-

rameters in order to immediately understand the level of accuracy: mean euclidean

distance, max euclidean distance and standard deviation.

The mean euclidean distance is, in average, how each model point is away from

its corresponding measured point. The max euclidean distance parameters repre-

sents the maximum value of euclidean distance registered during the calibration

and in order to have a good calibration, this parameter has to be less than 10 times

the mean euclidean distance. Standard deviation indicates how the points are dis-

tributed on a great range of values. More this value is small, more the points are

in a restricted range of value and so the calibration is accurate and reliable.

The values of our calibration used to take all the data are the following:

• Mean: 0.264

• Std. Dev.: 0.349

• Max Distance: 2.002

With these parameters, the calibration is considered by the software a good cali-

bration. As the data shows, the value of the maximum euclidean distance is less

than 10 times the mean euclidean distance.
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3.4 The algorithms

In this section we are going to explain in detail the two algorithms designed to

analyse the acquired data.

In order to make more simple the understanding, below a flowchart resumes the

most important steps made.

Figure 3.7: Flowchart of the algorithm.

Before starting with the explanation, it is important to say that the Raytrix soft-

ware allows to export the acquired data of the camera in different exportable file

formats: PLY, STL, XYZ, PCD. In order to export them, we used the PCD for-

mat, this means that all the informations are stored as cloud point. The choice fell

on this type of file format because, during the researches for the designing of the

algorithm, the best transformations for our porpouses are possible in an easy way
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through the extension .PCD.

The software used to acquire and process the data through the designed algorithm

is Matlab 2020b by MathWorks.

The first step of the two algorithms is the acquisition of the whole amount of data

coming from the folder in which are stored them. Since the extension, as said be-

fore, is .PCD, we use the command dir, as shown in fig.3.8, in order to search in

the folder all the files with the extension .PCD.

All the files are stored in a structure array named files.

Figure 3.8: dir command.

After having imported all the files, the algorithms read the data carried by them

through the pcread, command specific for the extension .PCD (see Fig.3.9). The

data are stored in a cell array named ptCloud.

Since the files stored in the folder are many, we introduce a for cycle in order to

read contemporary all the data in the folder. The length of the latter corresponds

to the length of the cycle, as shown in Fig. 3.9.

Figure 3.9: for cycle and pcread command.

At this point, the idea is to rotate the image depicting the board in order to place it

perpendicular with respect to the position of camera at the moment of the acquisi-

tion. By doing so, we have the depth values all equal for the whole cloud point and

it is easier to compare the real measurements of the board with the ones coming

from as results of the algorithm. The difference between the two algorithms is the
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way in which the equation of the plane to rotate is computed.

In order to calculate the slopes of the board with respect to the three cartesian

orientation, first of all, the first algorithm calculate the plane on which the board

lies, using the mathematic equation of the plane passing through three points that

in the equation below they are represented by the subscripts A, B and C.

∣∣∣∣∣∣∣∣∣
x− xA y − yA z − zA
xB − xA yB − yA zB − zA
xC − xA yC − yA zC − zA

∣∣∣∣∣∣∣∣∣ = 0 (3.2)

Since the position of the points is unknown until the entire cloud is plotted, in

order to know the coordinates of the three points, we take them directly from the

output of the plot command manually, through the data tips from the toolbar op-

tion.

Figure 3.10: Plot of the cloud of points.

As it is shown in Fig.3.10, in order to plot the board, we use the command pcshow.

Since the cell array, named ptcloud, contains all the point cloud of the different

instants in which the board is acquired by the camera, in order to calculate the

plane we consider only the first acquisition as reference for the identification of the

three points. This assumption is made for semplicity and with the idea to select, for

the identification of the plane, the points in an area well enlightened of the board

in ordero to increase the accuracy of the coordinates.
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However, the rotations transformations are performed on all the acquired data.

Once known the coordinates and the plane equation, we consider the plane passing

through the x, y and z planes with the purpose to measure the slope of the board

with respect to the three cartesian orientations.

In particular for the measure of the slopes, we procede measuring the slope of the

board considering the plane yz and then depending on the resulted one, we rotate

the board of an angle θ in a way to reach the parallelism between it and the y

plane. Then considering the updated coordinates, we do the same procedure for

the xy plane, in which the rotation is performed around z in a way to reach the

parallelism between the board and the x plane, and for the xz plane in which we

perform the rotation around y in order to have the parallelism between the board

and the x plane.

For what concern the second algorithm, the plane equation is calculated in a dif-

ferent way in order to compare the accuracy of the depth map.

In particular this algorithm calculate the plane equation through four points that

represent the mean value of the value of the coordinates belonging to four surfaces

of the board. These selected four faces have the characteristic to be at the same

height. So in order to do that the camera must be positioned in a way to capture

at least four surfaces of the board with the same height.

The algorithm select the wanted surface through a command specific for the cloud

of point called findNeighborsInRadius.

Figure 3.11: findNeighborsInRadius command.
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This command select the surface in a circular way but selecting an apropriate ra-

dius, we are able to select a few points that does not belong to the surface of interest.

The center of the circonference is chosen in order to select as center the center of

the square surface. The command gives as result the indices and the distances of

that points that lie within the specified radius.

The select command gets the point cloud data of radial neighbors and the infor-

mations are stored in a cell array.

At this point, we are able to calculate the mean value of that surface in the three

cartisian directions x, y, z. The procedure is repeated for the other three surfaces.

At the end of it, the four coordinates are stored in three different vectors: one for

the x coordinates, one for the y coordinates and one for the z coordinates.

In order to calculate the plane we adopted the Matlab’s curve fitting toolbox. This

tool is able to perform the computation of a line or a surface starting from a certain

number of points.

The software uses the method of the linear least squares in order to fit the data,

even for the fitting of a surface. This is done through the assumption that the z

coordinate is dependent on the x and y in the form:

z = a0 + a1xi + a2yi (3.3)

Given a set of data (xn, yn, zn), the best fitting curve has the least square error:

S =
n∑

i=1

[z − f(xi, yi)]
2 =

n∑
i=1

[zi − (a0 + a1xi + a2yi)]
2 = min (3.4)

In order to obtain the least square error, the coefficient a0, a1, a2 first derivatives

must yield to zero. This has as results the matrix:
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n

∑
xi

∑
yi∑

xi
∑
x2i

∑
xiyi∑

yi
∑
xiyi

∑
y2i



a0

a1

a2

 =


∑
zi∑
xizi∑
yizi

 (3.5)

Where n is the number of data set.

From eq (3.5), the nth degree polynomial equation can be expressed as:

zi = S(xi, yi) =
m∑
j=0

aj

n∑
i=1

pi(xi, yi) (3.6)

The difference between Zf (xi, yi) and the surface elevation gives the residualR(xi, yi)

as equation (3.7) shows.

n∑
i=1

R(xi, yi) = Zf (xi, yi)− S(xi, yi) (3.7)

In general the surface equation through the 2D least square method can be repre-

sented as [34]:

R2 = Z2
f − Z2

i (3.8)

In our cases, since the data set used are characterized by four point, the resulting

equation coming from the computations operated by the tool will be of 1st order,

in the form:

z = a0 + a1x+ a2y (3.9)

After that, the computation of the slope of the plane is made, in the same way of

the first algorithm, in order to perform the rotation.

Mathematically, a rotation is possible through a specific matrix, called rotational
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matrix, R, which is used in the rotation of vectors and tensors whereas the coordi-

nate system remains fixed. The general rule for applying the rotation matrix are

the same as for the coordinate transformation matrix (see eq.(3.10)).

v′ = v ·R For the vectors (3.10)

The general definition of R, in 3D is:

R =


cos(x′, x) cos(y′, x) cos(z′, x)

cos(x′, y) cos(y′, y) cos(z′, y)

cos(x′, z) cos(y′, z) cos(z′, z)

 (3.11)

In the equation above, (x′, x) represents the angle between the x′ and x axes, (x′, y)

is the angle between the x′ and y axes, etc. However, if the rotation happens along

the x, y or z axes, the rotational matrix endures a reduction and simplifications in

terms of arguments. This three particular rotational matrices are called elementary

rotation matrices and their structures are shown in the eq(3.12).

Rot(x, α) =


1 0 0

0 cosα −sinα

0 sinα cosα



Rot(y, β) =


cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ



Rot(z, γ) =


cosγ −sinγ 0

sinγ cosγ 0

0 0 1



(3.12)
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In the equations above, the angles α, β and γ are the ones used in order to ro-

tate the cloud point in the three cartesian directions.

In the algorithm the first matrix, intended to the rotation around x, is applied

on the data coming from the folder because this is the first rotation computed by

the algorithm. Instead, the others rotational matrices are applied on the updated

data coming from the algorithm. In particular the rotational matrix around the

y axes is applied to the updated data coming from the rotation around x, while

the rotational matrix of the z axes is applied to the data coming from the rotation

around y. All the procedure is performed consequentially by the algorithm.

The rotational transformations happens through a command called rigid3D, which

stores information about the transformation and enables forward and inverse trans-

formations (fig.3.12).

Figure 3.12: rigid3D command.

The command just described presents another argument in addition to the rota-

tional matrix A: the argument trans1. This is because the command rigid3D allows

roto-translations transformations. But in our purpose the translational transfor-

mation is used once, at the end of the rotational transformations in order to place

at the origin one of the edges of the board. So the arguments of this matrix are

zero for both of the first two roto-translations transformations.

The 3D transformation is applied to the cloud point through the command pctrans-

form, as shown in fig. 3.13. The ones coming from the transformation are updated

with the definition of a new cell array named ptCloudOut1.
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Figure 3.13: pctransformation command.

Once the board is in the desired position, the two algorithms start to perform the

comparison.

In particular, they work at the same way for the comparison. So we are going to

explicate how the first algorithm performs it, taking into account the same steps

for the other algorithm.

The comparison is performed on the whole surfaces acquired by the camera in order

to undestand the accuracy of the depth map. In order to do that, our attention is

focused on the z coordinates.

The surfaces are selected by the algorithm one by one using the command find-

NeighborsInRadius. Also in this step the calculation of the center of each surface

of the board is made by hand.

The informations coming from the command are stored in a cell vector used to per-

form the computation of the mean value and the standard deviation of the whole

points belonged to the surface. The mean value and the standard deviation in

statistic are the most popular ways in order to calculate the variabilty of a set of

data. In particular the mean value, or average, is defined as:

µ =

∑n
i=1 xi
n

(3.13)

In the equation above the numerator represents the sum of the acquisitions, while

the denominator n represents the total number of the acquisitions.

Regarding the standard deviation, it shows how a set of data differs from the mean

value, as figure 3.14 shows.
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Figure 3.14: Standard deviation (example).

Mathematically it is defined as:

S =

√√√√ 1

N − 1

N∑
i1

∣∣Ai − µ
∣∣2 (3.14)

Through Matlab’s commands, they are calculated as figure 3.15 shows.

Figure 3.15: Mean value and standard deviation commands.
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Results and conclusions

In this chapter, we are going to show the results gotten using the designed algo-

rithms.

In particular the experiment is made at two different distances, 75 cm and 45 cm,

to which the two algorithms have been applied. In this chapter, we will explain

the results for both the cases making a comparison between the results at the same

distance, then we will make a general final comparison among the overall results.

After that, we are going to conclude our work making explicit the possible future

works.

4.1 Distance 75 cm

By placing the camera at the distance of 75 cm from the object, we acquire 30

images, with the five LED in a specific configuration: one LED at maximum light

intensity and all the others at minimum intensity. This is made in order to increase

the contrast of the image and consequently in order to have a well defined image

for the point of view of the edges.

The rotated board used for the computations is shown in figure 4.1. In order to

better understand the results, on the image we added the surfaces’ names and the
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point considered as reference.

Figure 4.1: Rotated and translated board.

Each surface, as said, has a particular theoretical height that in the depth map

computed by the algorithms is referred to a different reference. In order to under-

stand the results, the following table contains both theoretical and practical values

(referred to the reference used in the algorithms) of the heights.

Surface name Absolute height [mm] Relative height [mm]
A 13 2
B 16 5
C 15 4
D 18 7
E 13 2
F 16 5
G 11 0
H 14 3
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The results of the first algorithm are shown in the following graph.

Figure 4.2: Results of the 1st algorithm.

The graph above shows on the x-axis the thirty acquisitions taken. On the y-axis

there are the values, in mm, of the mean value calculated for each surface of each

acquisition.

The coloured lines represent, as the legend suggests, the eight surfaces on which

our attention is focused.

In order to make understand the graph, there are some values showed for each

surface. These points are taken trying to capture the maximum, the minimum and

the middle values of the results in order to give an idea of the numerical value of

them.

As figure 4.3 shows, the results of the first algorithm point out a difference from

the theoretical heights. These results was expected and in particular the error from

the theoretical value is 1.7 mm with a range of variation of 0.5 mm.

The values of standard deviation underline that the whole amount of data (more

that 2 million) for each surface is less than 1 mm (see figure 4.4).
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Figure 4.3: Results of the 1st algorithm.

Figure 4.4: Standard deviation 1st algorithm.

Regarding chart of the standard deviation, on the x-axes there are the total number

of acquisitions taken, while on the y-axes there are the resulting values of standard

deviation computed for each surface of each acquisition. It shows that the values

are distant from the mean value in a constant way because the range on which the
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standard deviation swings is between 0.87 mm and 0.95 mm.

At this point, we introduce the graph computed by the results coming from the

second algorithm (figure 4.5).

Figure 4.5: Results of the 2st algorithm.

As before, we show some numerical values, as figure 4.6 shows.

The error is more precise than the error coming from the first algorithm, and pre-

cisely in this case it is 1.3 mm. The reason behind this is due to the different

technique adopted for the computation of the plane equation required for the cal-

culation of the slope of the board.

Also in this situation, the standard deviation computed by the algorithm is less

than 1 mm for the whole acquisitions, and the range of variation of it is quite

small, as figure 4.7 shows.
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Figure 4.6: Results of the 2st algorithm.

Figure 4.7: Standard deviation 2nd algorithm.

4.2 Distance 45 cm

The procedure about the placement is the same as before, with the difference that

in this case the distance of the camera from the board is 45 cm. This distance has
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been chosen because of the limit of the camera during the calibration. The limit

is due to the calibration target supplied by Raytrix. At distance less than 40 cm,

with this specific target with point target of 2 mm, the calibration of the camera

is not able to be performed by the software. So we chose a distance close to this

limit to see its behaviour.

Also in this case in order to increase the contrast, we use the same configuration of

the LED used before: one LED at maximum intensity and all the others at mini-

mum intensity.

The representation of the board, after the roto-translation computations, is as fig-

ure 4.8 shows. Also in this case we explicit the name of the surface to better

understand the variable of the graphs.

Figure 4.8: Rotated and translated board.

Also here the heights of the surfaces are referred to a reference different from the
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theoretical one so, as before, we differentiate the absolute and relative heights val-

ues in the following table.

Surface name Absolute height [mm] Relative height [mm]
A 18 5
B 16 3
C 16 3
D 13 0
E 14 1
F 11 -2

At this point, the results of the first algorithm are shown in figure 4.9.

Figure 4.9: Results of the 1st algorithm.

Here the results are nearer to the theoretical values showed in the table. As for the

distance of 75 cm, some values are considered on the graph (see figure 4.10).

These results were expected because of the theory linked to the accuracy of the

depth map: since the accuracy of the depth map is inversely proportional to the
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Figure 4.10: Results of the 1st algorithm.

distance of the camera from the object, decreasing it, the accuracy increases.

Here the distance error is 1.2 mm for the first algorithm.

The standard deviation is shown in figure 4.11.

Figure 4.11: Standard deviation of the 1st algorithm.
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The range of variation in this case is 0.865 mm and 0.9 mm.

At this point the results coming from the 2nd algorithm are shown (see figure 4.12).

Figure 4.12: Results of the 2nd algorithm.

As before, some values are added on the graph, as figure 4.13 shows.

As the results suggest, these distances are affected by a lower error equal to 0.9

mm.

Regarding the standard deviation of these values, as figure 4.14 shows, it is similar

to the standard deviation of the first algorithm.

Comparing all the results, we can say that at the distance of 45 cm, the depth map

computed by the camera is more precise. What we can see comparing the whole

results is that the maximum range of variation of the values is equal to 0.5 mm

among the different acquisitions. This is due two principal factors: the algorithm

and the lighting system. For what concern the algorithm, since as starting point

to calculate the center necessary to use the command to select the surface we take

only, as reference, the first image acquired, the other acquisitions are considered
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Figure 4.13: Results of the 2nd algorithm.

Figure 4.14: Standard deviation 2nd algorithm.

only as comparison. So that exact point on the reference image will not be the

same for the other acquisitions.

Regarding the lighting system, as we said in the theory part and during the de-

scription of the lighting system, the plenoptic camera needs to a lighting system
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with high luminosity intensity possibly constant for the whole procedure. As the

results show, the light is not constant enough.

For what concern about the difference of errors between the distance of 75 cm and

45 cm, this is due to the calibration. Before we said that the accuracy increases if

we decreases the distance, but the reason why we obtain a better results at 45 cm

rather than at 75 cm is also because of the calibration. At 75 cm, the software, used

for the calibration of the camera, is less accurate in the recognition of the pattern

presents on the target necessary to perform it. This fact has as consequence a worst

calibration at 75 cm with respect to 45 cm.

Regarding the standard deviations, they are similar if we compared, at the same

distance, the results of the two algorithms but they differ in the two distances.

This difference is due to the reduction of distance between the camera and the

object. Because of its dependence from the data, and being they more precise at 45

cm rather than 75 cm, the standard deviation will be better at the distance of 45 cm.

4.3 Conclusions and future works

At the end of our work, we can summarize the principal informations gotten by our

research.

The plenoptic camera exploits, through the presence of the microlens array, the

redundant informations coming from the images formed on each microlens. In ad-

dition, thanks to it, we are able to understand why in the plenoptic camera the

refocusing, also after the acquisition of the image, is possible.

Through some mathematical definitions, we were able to explain the difference be-

tween the plenoptic camera 1.0 and 2.0.

In addition, our researches brought us to two interpretations about the explanation

of the algorithm, being it nowadays unknown, that allows the focus in the plenoptic
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camera.

We have defined the concept of depth map, our subject in the experiment. What

come out from the theory about the depth map is that its accuracy is inversely

proportional to the distance of the camera from the objects: increasing it, the ac-

curacy decreases.

We explained, also, the algorithm behind the calibration of the camera. Calibration

that is the most important aspects along with the lighting conditions. About it, we

explained, for our particular plenoptic camera, the types of calibrations necessary

and mandatory to be perform before any acquisition.

In the last part of our work, we defined how our particular object has been designed

and developed, explaining the values of distances and heights.

In addition, the lighting system has been defined, focusing on the electronic issues.

The algorithms necessary to perform the computations have been described.

From the two algorithms, we got that the camera measurements are affected by

some errors. Considering the distance of 75 cm, the camera make an error equal

to 1.8 mm with standard deviation equal to 0.9 mm; at the distance of 45 mm, the

camera make an error equal to 1 mm with standard deviation equal to 0.85mm.

The camera, considering the results, can be used for industrial application, as sup-

plement instrumentation for the measurements.

Obviously, as we said in the previous sections, these results can be improved. So

the future works on the plenoptic camera should be focused on testing it with a

better lighting system, in terms of light intensity, able to generate more contrast.

In addition the calibration is an another important feature that can be improved,

in particular the one regarding the metric calibration.

By considering the calibration, this has been, for distances greater that 1 m, an

obstacle because of the dimension of the target used to perform it. Having it spe-

cific dimensions, the camera, around these distances, was not able to focus the

image on it and we could not perform the calibration. So future works should be
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focused, also, on testing the camera around these values using a calibration target

with greater dimensions.
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