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Summary

The Global Navigation Satellite Systems (GNSSs) have been established as one of
the most critical infrastructures in today’s world. GNSS positioning, navigation,
and timing services have played a significant role in various applications. These
GNSS signals are transmitted from satellites that are over 22000 km away from
the earth. The power of the received signals at the GNSS receivers’ antenna is
extremely weak, and the signals are vulnerable to interference, which can cause
degraded positioning accuracy or even a complete lack of position availability. Thus,
it is essential for GNSS applications to detect interference and further recognize the
interference types for the interference mitigation in GNSS receivers to guarantee
reliable solutions. Various types of intentional interference can disturb the GNSS
signals in the receivers. In this thesis, the focus is on detecting chirp signals, known
as one of the most common and disruptive interfering signals.

Digital signal processing techniques are traditional ways in order to detect the
presence of interference. The common drawback of such techniques is that they
rely on complex and computationally expensive operations. Recent researches
have shown that machine learning methods can be utilized to detect interferences.
Machine learning is the methodical study of intelligent algorithms and systems
that improve their knowledge or performance by experience. For this reason, the
use of machine learning within the framework of Radio Frequency Interference
(RFI) detection and mitigation can be multifold. The proposed algorithms are
unsupervised machine learning(K-Means clustering) and Convolutional Neural
Network (CNN).

Features of signals extracted for k-means solution are in the time domain, fre-
quency domain, and time-frequency domain. Different feature selection approaches
are implemented, including principal component analyses, correlation matrix evalu-
ation, and supervised techniques.

Another investigated classifier is CNN based on multi-layer neural networks.
The images of signals in the time-frequency domain using Wigner-Ville transform
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are fed to the CNN algorithms to classify the different shapes of chirp signals.
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Chapter 1

Overview of GNSS
Interference

1.1 Global Navigation Satellite System

Global Navigation Satellite System (GNSS) refers to the constellation of satel-
lites placed in Medium Earth Orbit(MEO), around 20,000 km far from the earth
and provides Positioning, Navigation, and Timing (PNT) services on a global
basis. America’s Global Position System(GPS), Europe’s Galileo, Russia’s Global
Navigation Satellite System(GLONASS) and China’s BeiDou provide these services.

Each GNSS receiver, to determine its location, has to estimate the distance
between itself and the satellites, create the line of position by measuring the signal’s
propagation time (time difference between signal transmission time by satellite
and the received time in the receiver). Then by solving trilateration between at
least four satellites, it can obtain X, Y, Z, and δt (misalignment time between the
receiver and GNSS time by considering all the satellites are synced) [1].

Figure 1.1: Trilateration between satellites and receiver [2]
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Overview of GNSS Interference

The Coordinated Universal Time (UTC) is the global time reference that contains
hundreds of atomic clocks located at different calibrations and aligned with the
time reference from the constellation of satellites[3]. GNSS consists of the three
main segments:

• Space segment: refers to satellites constellation on the orbit.

• Control segment: includes a network of monitoring stations distributed world-
wide and checks the status of satellites and signals. The master stations keep
the control of time scale, and other stations communicate to the satellites to
upload data or adjust the position of satellites.

• User segment: represents different types of receivers that are all common in a
certain task, positioning based on velocity and time.

As shown in Figure 1.1, the availability of the position depends on the signals
from at least four satellites, as well as the distribution of the satellites in the sky,
so the geometry of satellites is an impact of quality which is known as Geometrical
Dilution of Precision (GDOP).

GNSS receivers are designed to receive a set of signals from a satellite over a
specific range of frequencies. The frequency ranges that the receiver needs to track
are typically defined by a series of bandpass filtering inside the receiver, called
pass-band.

1.1.1 GNSS Signal and its Band
GNSS signal is transmitted continuously from the satellites in two or more frequen-
cies in the L band and its range is between 1 to 2 GHz. This L band is shared
between all GNSS constellations such as GPS, Galileo, GLONASS, and others.

As it represents in Figure 1.2, Radio Navigation Satellite System (RNSS) almost
occupy all band of L band region. There is also another communication system,
Aeronautical Radio Navigation Service (ARNS). Note that Figure 1.2 only shows
three constellations, since there exists more like BeiDou (Chinese), IRNSS (Indian),
QZSS(Japanese).

GNSS signal comprises three main components that allow the user to compute
its position. Formula 1.1 states the GPS L1 Signal, and Figure 1.3 shows the
components of the signal.

XRF (t) =
ñ

2Pcc(t)d(t)cos(2πfLt+ θL1) (1.1)
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Overview of GNSS Interference

Figure 1.2: L Frequency Band [4]

• Carrier: fL Radio-frequency sinusoidal signal at a given frequency.

• Ranging code: c(t) is a binary sequence(zeroes and ones) and unique for
each satellite. It is also known as Pseudo-Random Noise sequences or PRN
codes which allow the receiver to estimate the pseudo-range.

• Navigation data: d(t) is a binary-coded message providing complementary
information(satellite ephemeris, almanac, satellite health status) about the
satellite that the receiver needs to know.

Figure 1.3: GPS L1 signal [4]
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Each GNSS signal occupies a range of frequency in this band called GNSS
bandwidth (BGNSS). In GPS L1 case, the central frequency (carrier frequency)
is 1575.42 MHz, and the bandwidth is 24 MHz which means the maximum and
minimum frequencies of these signals are 1587 MHz and 1563 MHz, respectively
(for more details in the bandwidth of each signal, refer to [4]).

1.2 Interference Concept
According to the Cambridge dictionary, in Physics, interference between two waves
occurs when they have same frequency and produce a force that is either stronger
or weaker than one wave alone. The stronger wave is called constructive, and the
weaker wave is destructive interference. Figure 1.4 represents a straightforward
example of wave interference.

Figure 1.4: Wave Interference [5]

In the field of telecommunications, data can be transmitted between a source
and destination over a radio wave with a specific frequency in the range of 3 kHz
up to 300 GHz. Any electromagnetic source out of transmitter interacting or
disturbing with the radio wave is known as Radio Frequency Interference (RFI) or
Electromagnetic Interference (EMI). The disturbance might decrease the commu-
nication performance and increase the error rate or even completely stop it from
functioning and cause loss of data.

According to the International Telecommunication Union [6], RFI is defined as:

“The effect of unwanted energy due to one or a combination of emissions,
radiations, or inductions upon reception in a radiocommunication system,
manifested by any performance degradation, misinterpretation, or loss of
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Overview of GNSS Interference

information which could be extracted in the absence of such unwanted
energy.“

As it has mentioned in Section 1.1, constellations of satellites are placed quite
far the earth, and the power of the received signals in the receiver’s antenna is
extremely weak. The weakness of power looks like looking for the light emitted
from a 100W lamp at a distance of 20 000 km. It means that the signal could be
easily disturbed. Therefore, even small disturbance could be a potential source of
interference for GNSS signal. Due to the GNSS signal’s weakness and crowded fre-
quency spectrum, the GNSS signal is vulnerable to other communication systems [7].

1.2.1 Interference Characteristics
Each interference can be categorised based on its characteristics in the frequency
domain as follows [7]:

• Narrow-band Interference (NBI): It refers to interference whose band-
width is much narrower compared to bandwidth of interest and disturbs some
portion of GNSS bandwidth. (Binf << BGNSS)

• Wide-band Interference (WBI): The interference’s bandwidth is almost
the same as GNSS bandwidth. (Binf ≈ BGNSS)

• Continuous-Wave Interference (CWI): This type has constant amplitude
and frequency and appears as a single tone in the frequency domain. (Binf ≈ 0)
Continuous-wave interference (CWI) can induce significant ranging error for a
spread spectrum receiver [8].

• Swept-frequency interference (chirp signal): It is a signal that its fre-
quency changes with time and variation of frequency can be linear or non-linear.
Most chirp signals have appeared as wideband interference in the frequency
domain, and they are broadcast by jammers to disrupt the GNSS signal [9].
Section 3.2 will discuss more in details about this type.

1.3 Interference Sources
Any undesired radio signals are classified as RFI and reduce the efficiency of a
wireless receiver or even interrupt the receiving. RFI signals have a complex nature
and can be generated unintentionally, mostly harmonics from lower frequency bands,
inter-modulation products, and out-of-band emissions or intentionally, often named
jamming. The RFI signals are bothersome for any receiver, but they mainly warn
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for applications based on low power signals. This points to the applications that rely
on the Global Navigation Satellite Systems (GNSS), such as GNSS-Reflectometry
(GNSS-R)[3].

1.3.1 Natural Sources of Interference
GNSS signal travels from a satellite in space to reach the destination on earth.
There are some natural sources which can affect the signal. During propagation of
the signal in the atmosphere, Atmospheric impairment has to be considered. The
atmosphere consists of two layers, the upper layer containing a region of ionized
gases called the ionosphere and the lower troposphere containing clouds. The
free electron density changes signal propagation speed and introduces a delay in
propagation because there is an interaction between charged particles and the
electromagnetic wave of the signal. The troposphere is the humid part of the
atmosphere and introduces attenuation power in a signal, this phenomenon is less
critical than the ionosphere effect [7].

The ionization distribution is not uniform in the ionosphere layer around the
earth, both in space and time. This incident is caused by space weather which
involves a complex interaction between solar radiation, solar wind, and the earth’s
magnetic field. So when the signal crosses this non-uniform area, it is similar to
what is called fading in wireless communications and induces a frequency shift in
the signal carrier. This event in the GNSS domain is called ionospheric scintillation,
that is tough to predict and known as natural interference [7] [10].

1.3.2 Artificial Sources of Interference: Unintentional
In addition to natural sources of interference which are introduced as unintentional
interference, other human-made types of interference have existed that can affect
and degrade the accuracy of position. Some of unintentional artificial sources are
sorted below:

• Radio Spectrum: It is part of the electromagnetic spectrum in the range of 30
Hz (super low frequency) up to 300 GHz (extremely high frequency). Nowadays,
with the increasing number of wireless communication infrastructures, the
radio spectrum becomes more and more crowded, as it is shown in Figure 1.5.
Thus, it might overlap or interfere between signals used to communicate with
satellites and those used for terrestrial networks such as mobile phone systems.
The main effects are caused by high-order harmonic or spurious components

6



Overview of GNSS Interference

generated by intermodulation products in the communication transmitter.
(For more details and examples, refer to book [7])

Figure 1.5: Radio Frequency Band [11]

• Intersystem and Intrasystem: GNSS constellations grow fastly with more
signals at higher power levels in the same frequency bands. Due to the growing
number of satellites in view for GNSS receivers, this implies increasing inter
and intrasystem interference which should be considered in the design phase
of signal [12].

– Intrasystem: Each satellite signal is designed to be orthogonal with
respect to other satellites in the same constellation. Thus, they can
be distinguished for receivers to recognize from which satellite comes.
However, this orthogonality might not be perfect, and some residual
power generates interference known as intrasystem interference [7].

– Intersystem: It is due to using the same bandwidth for satellite commu-
nication between the different constellations. For instance, the L1 signal
from GPS and E1 from Galileo use the same carrier frequency, while they
use different modulation to be distinguishable from each other. Therefore
some power of the signal of another system can disrupt the signal of
interest [7].

1.3.3 Artificial sources of Interference: Intentional
As mentioned, GNSS signals are really at risk of being interfered; therefore, they
might be under attack by a person or an organization to fool the system or disrupt
positioning [13]. This section describes the different types of intentional interference.
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Overview of GNSS Interference

According to the book GNSS Interference Threats and Countermeasures [7], from
a general perspective, an intentional attack on GNSS receivers might state in two
different layers:

• Non-signal attack: is directly on the receiver. Typically this type includes
tampering with the receiver’s information or the alteration of the position
reported by the receiver to a service provider or a control centre. Non-signal
(cyber) attacks need no RF equipment at all.

• Signal attack: is at Signal in Space(SIS). This category includes a deliberate
attack on GNSS signal and generally is categorized into three forms: Meaconing,
Spoofing, and Jamming.

Intentional interference in GNSS is becoming a huge threat for current systems
and applications based on positioning. Intentional interference can be categorized
into three groups as follows:

• Meaconing: This attack refers to devices that receive a signal from the
satellite and rebroadcast the signal with a delay, and therfore, the measure
of propagation time is not correct; consequently, the position is wrong. The
existing GNSS system offers two services; the first one is authenticated signal
(P(y) code in case of GPS) in which the signal is encrypted and only used for
military purposes, while the second service with no need for authentication
refers to civil users (C/A code in case of GPS). In both cases, meaconing with-
out knowing the sequence of encrypting can affect the solution of positioning.
Meaconing can be detected by analyzing the GNSS receiver’s clock bias [14].

• Spoofing: Spoofing is a transmission of a counterfeit GNSS signal similar to
the original one, forcing the receiver to provide an erroneous position without
disrupting the receivers’ operation. This type of attack can be implemented
in civil user signals because They are easy to regenerate and not encrypted.
A spoofing attack happens when there are several fake signals in the GNSS
receiver, and the power of these signals is more potent than the power of the
signal from the satellite. Thus, the receivers, by using them, will face a wrong
position [7] [1].

• Jamming: Jamming refers to transmit energy at the same frequency of GNSS
signal to mask it by noise. Thus, the signal-to-noise ratio decreases and causes
failure in tracking the signal of interest. The jammer device can mask or jam
a specific portion of the GNSS signal band, disrupting receivers’ operation.
Jamming is more common than the other two types of attack, and a jammer
device can be bought easily from the internet, but the usage of these types
of devices is illegal. One of the most common of these devices is an in-car
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jammer powered by a car’s cigarette lighter, and it allows the driver to avoid
being tracked [15] [16] [7] .

All of the artificial sources are summerized in Figure 1.6

Figure 1.6: Artificial Sources

1.4 Impact of Interference on GNSS Receivers
Intentional interference by jammers makes GNSS-based systems unavailable due
to the fact that strong interference may completely make the GNSS receivers
inoperable. Although in some cases, the interference is not strong enough to
cause the receiver to face a problem in positioning, it can increase the error of
the pseudorange and/or phase measurements and, as a consequence, the accuracy
of the positioning solution reduces. The presence of jamming signal affects both
acquisition and tracking stages in the receiver which is leading to loss of quality of
the GNSS satellite signals. Consequently, GNSS receivers cannot provide accurate
positioning according to velocity and time services [17].

An analysis based on changing the observed carrier-to-noise density (C/N0)
values of the received signals represented that regardless of the use of an L1/E1
jammer, the GLONASS and Galileo signals will be affected due to the increment
of C/N0 or even the loss of signal. In fact, a jammer can considerably impact the
quality of positioning by both incorrect position or lack of final position [18].

Furthermore, in order to acquire high accuracy in positioning, high reliability,
and prevent lack of positioning, it is critical to DETECT and MITIGATE
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interference in GNSS signal. The GNSS applications need to detect interference
and further recognize the types of interference to mitigate and guarantee reliable
solutions. Nevertheless, RFI detection in GNSS is like finding a needle in the
haystack [7] which means it is a challenging task due to the large search space with
respect to time and space.

1.5 State of the art
During the past decades, the number of applications based on GNSS has highly
increased [19], and GNSS has established itself as part of critical infrastructure
in today’s world. In fact, it is widely used to provide positions in Unmanned
Aerial Vehicles (UAV) and Unmanned Ground Vehicles (UGV), and it combines
with the other information provided by other sensors[20]. Hence, RFI can be
appointed as one of the most significant topics on GNSS-based devices not only for
navigation, positioning, and timing but also for Earth Observation purposes such
as GNSS-Reflectometry (GNSS-R)[19].

The existence of GNSS interference makes the communication environment com-
plex. To reduce the interference effect, many researchers have begun to detect and
classify the interference signals. Consequently, effective interference detection and
classification are critical aspects to enhance anti-jamming techniques, and efficient
interference identification enables us to control the electromagnetic spectrum [21].
In literature, it is possible to find many methods of interference detection. Some
of them refer to past years [22] [23]. The topic of interference monitoring has
constantly been relevant in recent years.

1.5.1 Traditional Detection Technique
Depending on characteristics and power, RFI can affect the procedure of posi-
tioning in receivers at different stages. According to the book [7], detection and
countermeasures can be done at different stages as shown in Figure 1.7.

Various traditional techniques are used to detect RFI at different stages of
receivers and some of them sorted as follows:

• AGC monitoring at Front-end Stage: Automatic Gain Control (AGC) is
a critical component in GNSS receivers, where the signal power is below that
of the thermal noise floor, the AGC is driven by the noise environment rather
than the signal power. AGC denotes the main equipment for assessment of
the operating environment in the GNSS receiver. The AGC advantage is
the ability of interference detection and estimation. Moreover, the AGC may
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Figure 1.7: General architecture of a GNSS receiver [7]

increase the dynamic range, and it can be introduced as an adaptive variable
gain amplifier with the main role to minimize quantization losses. The AGC
operation is acted as an analog-to-digital converter (ADC) [7] [24] [25].

• Time-domain statistical analysis at Front-end Stage: The techniques
based on the statistical characteristics are sensitive to the presence of in-
terference and can be used for recognition purposes. Hence, Time-varying
interference can be detected by performing statistical analysis methods based
on observing the time fluctuations of the signal sample distribution at the
ADC output [26]. Normally, time domain techniques can only converse with
the narrow interference due to the fact that the wideband interference cannot
be recognized simply from Gaussian white noise [27].

• Spectral Monitoring: An interfering signal that influences the input signal
during the antenna’s reception process is expected to be distinguished via
spectral analysis by comparing the estimated power spectral density of the
received signal with a spectral mask that appropriately represents the nominal
interference-free conditions. A spectral assessment of the received signal is
expected to interpret the front-end’s equivalent transfer function, multiplied by
the noise variance which passed through the analog front-end. The interference-
free expected spectral evaluation can be considered a known value after
appropriate calibration of the antenna and RF front-end system [7].

• C/N0 Monitoring at Post-Correlation: is popular due to its low com-
plexity implementation, but, as previously remarked, it can be due to several
factors other than interference [28].
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• Techniques based on Multi-Correlators aim at identifying distortions of
the correlation function of the signal assessing several metrics and comparing
them to a threshold. While they might be useful for detecting the outliers,
they might not clarify the actual RFI presence or its features [29].

There are some other techniques such as post-correlation statistical analysis [7]
[30], pseudo-range monitoring [7] and PVT solution.

1.5.2 Machine Learning Based Detection Technique
The limitations of the traditional approaches can be reduced by using machine
learning methods, which can be learned based on specific processes and provide
automatic detection and classification with high validity. The objective of machine
learning is to recognize the best algorithm and extract the most appropriate set
of features to build a model that could achieve the desired goal in detection with
high precision [31].

Machine learning is the consistent study of intelligent algorithms and systems
that assist in developing system performance. According to IBM Co, Machine
learning focuses on applications that learn from experience and improve their
decision-making or predictive accuracy over time. In general concept, the machine
learning process refers to the ability to solve a difficult task by processing the right
features according to a model. The use of machine learning in Location-Based
Services is also motivated by the increasing volume of available data collected at
remote sites through low-cost GNSS software receivers [16].

Nowadays, by increasing computing ability, the hard problem can be solved
using Machine Learning techniques [32]. Therefore an automated approach is
useful and functional to detect RFI. Many work of literature have addressed using
machine learning to detect RFI in general domain of signal, [33] [34]. Given the
increased prevalence of interferences in GNSS bands, the GNSS literature’s focus
in recent years has shifted towards integrity methods and procedures.

For GPS interference signals, Liu et al. implemented the fast independent
component analysis method to extract the interference characteristic factors in the
frequency domain, time domain, and time-frequency domain. Tao et al. proposed
the Welch method and the fractional Fourier transform to find the interference
parameters. Liu et al. performed a new algorithm based on a support vector
machine (SVM) by extracting the signal’s characteristics and analyzing them [21].
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In another paper, machine-learning techniques are implemented to detect iono-
spheric scintillation events affecting the GNSS signal amplitude. Based on this
method, the ML algorithms are learned historical pre-classified data(decision tree)
to perform automatic classification on new data. The result indicates that this
approach performs better with respect to the traditional methods in terms of
accuracy. Moreover, the achievements show that signal-based features have better
performance in contrast to the observable-based features. Machine learning can
simplify analyzing big GNSS data sets affected by the scintillation phenomenon [31].

With reference to one research, the k-means algorithm was performed to identify
the GNSS signals suffering from multipath, therefore by eliminating the affected
signals from the PVT solution, the accuracy of positioning was improved [20].

A methodology to classify jammer types was proposed by using two different
ML algorithms: SVM and CNN on the set of generated images of time-frequency
analysis. According to the conclusion in the classification of the interference and
interference-free scenario, it is stated that with a small set of images and not
excessively complex parameters, a high accuracy result is obtained[35].

Due to the acceptable result of different investigations aforementioned and DSP
limitations, machine learning will aid to achieve better performances on analyzing
and classification of GNSS interferences.

As explained, various types of intentional interference can disturb the GNSS
signals in the receivers (Section 1.3.3). This thesis focuses on detecting chirp
signals, known as one of the most common and disruptive interfering signals. The
proposed algorithms are unsupervised machine learning(k-means clustering) and
Convolutional Neural Network (CNN).

Features of signals extracted for the K-means solution are in the time domain,
frequency domain, and time-frequency domain. Different feature selection ap-
proaches are implemented, including principal component analyses, correlation
matrix evaluation, and supervised techniques.

Another investigated classifier is CNN which is based on multi-layer neural
networks. The images of signals in the time-frequency domain using Wigner-Ville
transform are fed to the CNN algorithms to classify the different shapes of chirp
signals.
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Chapter 2

Machine learning Review

2.1 What is Machine Learning?
Machine Learning(ML) is a set of techniques to detect data patterns and describe
characteristics of the data, and therefore, it is possible to predict new data’s
behavior. Data analysis methods are employed to process data and extract useful
information from them [32].

• ML based on statistics: uses training data to determine the parameters of a
statistical model fitting, it uses the model to make prediction on new data
[36].

• ML based on numerical models: uses training data to determine the parameters
of a generic numerical model of a given type (e.g. deep neural network, using
a very large number of parameters) [36].

ML is the systematic study of intelligent algorithms and systems that improve
their knowledge or performance by experience. In its general concept, the machine
learning process refers to the ability to solve a task, processing the right features
describing the domain of interest, according to a model[31]. Figure 2.1 shows the
procedure of a machine learning problem that needs to be solved and the ML
algorithm’s main elements are sorted as follows:

• Domain: the problem to be solved [31].

• Features: the description of the objects of the domain [31].

• Task: the abstract representation of the problem that reflects in the map-
ping between the input and the output (the automatic classification of data
collection samples) [31].
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• Model: the output of the ML when the training set is fed to the algorithms
[31].

Figure 2.1: Machine Learning Procedure

The first step towards using ML is to clearly understand the problem, the
number of resources, and required efforts in different kinds of ML algorithms that
are sub-categorized to different types. Figure 2.2 represents different types of ML.

Figure 2.2: Machine Learning Classification
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2.1.1 Supervised Machine Learning
In any supervised ML problem, there is a training set which is a set of data used
to train the algorithm, denoted as D (stands for Data), and it consists of the two
following elements:

• xi represents input of machine which is a column vector, each row is a D-
dimensional vector which describes the data and each element is called feature.

• yi the scalar coefficient, the output/answer associated with the xi vector.

D = {(xi, yi)}Ni=1 (2.1)

Formula 2.1 represents data, where N is the number of training examples Ėach
training output yi can:

• belong to a finite set: yi ∈ {1, ...., C} CLASSIFICATION PROBLEM,
where our data can belong to 1 out of C different classes [37].

• be a real number, in this case we call this REGRESSION PROBLEM
[37].

2.1.2 Unsupervised Machine Learning
Unsupervised data learning inducts pattern identification without the requirement
of a target attribute. Hence, all the elements used in the analysis are denoted as
inputs. The unsupervised learning algorithms are more appropriate for creating the
labels in the data, leading to supervised learning tasks. Therefore, unsupervised
clustering algorithms associate groupings within the unlabeled data. On the other
hand, they identify rules or patterns that accurately demonstrate the relationships
among attributes [38]. Cluster analysis is one of the main approaches used in
unsupervised learning. Cluster Analysis or clustering is the task of grouping a set
of objects in such a way that objects in the same group (called a cluster) are more
similar(in some sense) to each other than to those in other groups(clusters) [39].

K-Means Clustering

The K-means is an algorithm to implement clustering over data points. It is an
iterative approach that tries to partition data into K pre-defined distinct clusters
where each point can only belong to one cluster. The K-means algorithm defines the
number of clusters and initializes centroids of each cluster randomly from the data
point. It then calculates the distance between each data point and the centroids.
Then, data points are assigned to the cluster with the minimum distance. Before
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starting the next iterate, the centroids are calculated for each cluster which is simply
the arithmetic mean of all the data points that belong to that cluster. Suppose it
is different from the previous cluster’s centroid, in this case, the centroid moves to
the new one, and this procedure continues until there is no more improvement in
clustering centroid [40]. The following steps state one iteration of K-means process:

1. Specify K as the number of clusters.

2. Selecting randomly K data points for the centroids.

3. Computing the sum of the squared distance between points and all centroids.

4. Assigning each data point to the closest cluster(centroid).

5. Computing the new centroids for the clusters by taking the average of the all
data points that belong to each cluster.

Contrary to supervised learning, where exists the ground truth to evaluate
the model’s performance, in clustering Silhouette analysis can be used, which
determines the degree of separation between clusters. The silhouette value is a
measure of how similar an object is to its cluster (ai) compared to other clusters
(bi). The silhouette ranges from -1 to +1, where a high value indicates that the
object is well matched to its cluster and poorly matched to neighboring clusters
[41].

s(i) = bi − ai
max(ai , bi)

(2.2)

2.2 Feature Selection Techniques
Feature selection reduces the number of input variables by removing non-informative
or redundant features to reduce the computational cost of modeling and improv-
ing the model’s performance. Using many features in some models can slow the
development and training process and degrade the performance [42]. In implement-
ing ML, it is crucial to select features with the most informative data of the problem .

Generally, feature selection techniques can be divided into two categories, super-
vised and unsupervised [43]. The difference is related to the selection of features
based on the target variable (label of data) or not, it means supervised methods
choose the high correlated variables to the target output. One of the other im-
portant advantages of feature selection is reducing the probability of Overfitting
(the model has trained very well but just for the training dataset, and it is not

17



Machine learning Review

generalized for other data [44]. Overfitted models learned from all the data, con-
taining the unpreventable noisy data on the training set, instead of studying the
hidden rule beyond the data [45]). Different types and methods of feature selection
can be listed as follows [43]:

• Unsupervised: uses the target variable (removes redundant variables).

– Correlation Matrix
– Principal Component Analyses (PCA)

• Supervised: Uses the target variable (removes irrelevant variables).

– Wrapper: searches for well-performing subsets of features (RFE).
– Filter: selects a subset of features based on their relationship with the
target.

– Intrinsic: performs an automatic method during training process for
feature selection.

2.2.1 Unsupervised Feature Selection
Unsupervised learning is a set of statistical tools for scenarios with a set of not
labeled features (no target variable).

Feature Selection based on Correlation Matrix

One of the most common and valuable techniques of feature selection is based on
the Correlation Matrix. The correlation term of two variables refers to the measure
level(amount) of their dependency. Features with high correlation are more linearly
dependent and have almost the same effect on the data description. Consequently,
when two features have a high correlation, one of them can be dropped. The
correlation matrix represents the correlation between each pair of features, and the
diagonal elements of this matrix are always one [46].

There are various metrics to calculate correlation, such as Pearson R correla-
tion, Kendall rank correlation, Spearman rank correlation. Pearson R correlation
measures the degree of the relationship between linearly related variables. Its
output is a number between -1 and 1, where 1 shows high correlation, zero means
no correlation, and -1 demonstrates negative linear correlation [47]. Assuming X
and Y are random variables, and the number of samples inside of each one is n,
correlation coefficients can be written as follows:

rxy =
qn
i=1(xi − X̄)(yi − Ȳ ))ñqn

i=1(xi − X̄)2
ñqn

i=1(yi − Ȳ )2
(2.3)
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where xi and yi are the individual sample points, X̄ = 1
n

qn
i=1 xi is the mean of

variable and analogously for Ȳ [47].

Principal Component Analysis

The Principal Component Analysis (PCA) is a particular kind of unsupervised
and widespread technique used in literally any ML problem. In ML problems, it is
possible to face the high dimensional dataset while only a few features correspond
to latent factors (variables that are not directly observed but are rather inferred),
and makes processing a tough task. This is the main reason for using PCA [48].

In fact, low-variance components are often not helpful due to noise and con-
sequently, they are almost not informative. PCA method finds the directions
of maximum variance of the data and then rotates the dataset based on these
directions. Considering each row of the dataset has D features, the steps to apply
PCA can sort as follows:

1. Calculating the sample covariance matrix (q̂ ∈ RDxD) of dataset.

Ø̂
= 1
N

NØ
i=1

xix
T
i (2.4)

2. Performing eigendecomposition of covariance matrix and obtain eigenvalues
and eigenvectors.

3. Ordering the eigenvalues from largest to smallest (eigenvalue essentially states
the amount variance in the data along the eigenvector direction)

4. Selecting the best value of L from D that allows to keep the most informative
vectors.

Selecting the best value of L (components) needs an iterative approach which is
performed by looking at the cumulative explained variance ratio as a function of the
number of components starting from 1 latent variable up to the number of features.
Typically a good choice for L could be the minimum number of components that
retain a desired percentage of the data variance.

It is imperative to mention that features must be standardized before applying
PCA because the PCA calculates a new projection of the dataset, the new axis is
based on the standard deviation of variables. So a variable with a high standard
deviation will have a higher weight for the calculation of axis than a variable with
a low standard deviation. By standardization the dataset, all variables have the
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same standard deviation and same weight, and as a result, PCA calculates the
relevant axis. In order to standardize the dataset, firstly it is needed to remove
the mean value from each feature, then divide it with the standard deviation of
that feature which ensures that every column in the dataset has a unit standard
deviation [49].

2.2.2 Supervised Feature Selection
As mentioned, an important distinction between supervised and unsupervised
feature selection is ignoring the outcome during the elimination of features or not.
There are different techniques such as Wrapper, Filter, or Intrinsic methods. Wrap-
per methods use different subsets of input features, create and train a model, and
select those subsets of features that result in the best performing model according
to a performance metric. These methods are unconcerned with the variable types,
therefore, wrapper methods train a new model for each subset, they can be very
computationally intensive [50].

The filter methods use statistical techniques to evaluate the relationship(score)
between each feature and the target variable. Then, those scores are used to select
the features that have more correlation with output [51]. This method consists of
three steps as follows [52]:

• Screening: This step removes variables and cases that do not provide helpful
information for prediction and issues warnings about variables that may not
be useful. For instance, variables that have all missing or constant values
will be removed. If any row of the dataset has no output value, it will be
eliminated from the dataset [51].

• Ranking: This step considers one feature at a time and check performance
level of its prediction for target variable. Each variable’s importance value is
calculated as (1−p), where p is the p−value. The p−value is the probability
of obtaining test results at least as extreme as the results observed, under the
assumption that the null hypothesis is correct [53]. F-statistic is an appropriate
statistic test to calculate p−value for continuous features(continuous variables
are numeric variables that have an infinite number of values between any two
values)[51].

The F-statistic simply denotes a ratio of two variances. The idea is to perform
a one-way Analysis of Variance(ANOVA) for each continuous feature. ANOVA
can determine whether the means of three or more groups are different and
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uses F-tests to statistically test the equality of means [51]. The p − value
based on the F statistic is calculated by:

p− value = Prob{F (J − 1, N − J) > F} (2.5)

F =
qJ

j=1 Nj(x̄j−¯̄x)/(J−1)qJ

j=1(Nj−1)s2
j/(N−J)

-

Nj The number of cases with Y = j

x̄i The sample mean of predictor X
for target class Y = j

s2
j = qNj

i=1(xij − x̄i)2/(Nj − 1) The sample variance of predictor
X for target class Y = j

¯̄x = qJ
j=1Njx̄i/N The grand mean of predictor X

Table 2.1

• Selecting: this step identifies the important subset of features to use in
subsequent models, once the predictors are ranked by p− value in ascending
order[51].
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2.3 Neural Network
A Neural Network(NN) is a network of artificial neurons that simulates how the
human brain operates. A real NN in the brain is shaped by many neurons in different
layers. Similarly, the artificial network is made up of several nodes distributed
in various layers. Each node implements an instruction called algorithms that
guides the machine in identifying patterns in the dataset. Such systems learn to
do jobs by evaluating samples rather than receiving particular instructions given
by programmers. Today, NN is used to solve many problems in different industries.
For example, they are essential in computer training for face recognition, driving,
demand forecasting, and more [54]. Generally, NN is classified into three categories
listed in the following:

• FeedForward: FeedForward neural networks are also recognized as multilayer
networks of neurons. These model networks are denominated as feedforward
because the data is only transmitted forward in the NN toward input nodes,
then into hidden layers, and finally into output nodes. There are no feedback
communications in the feedforward networks to return the network output on
their input.

• Convolutional: It is maybe the most widespread one and indeed a simplified
form of feedforward NN. One of the simplification advantages is that it ends
up with a much lower number of parameters. Training these networks also on
extensive data such as images or videos can be done efficiently. This simpli-
fication is done using filters that are placed after the convolution operation
[55].

• Recurrent: This type of network allows some outputs to be backup input for
previous layers that creates loops in the network. By using loops, the network
becomes like a state machine and learns new things from the memory of the
past. Recurrent NN is working very well in time-varying systems, but the
training process becomes much more complicated [56].

2.3.1 Learning Process of Neural Networks
The learning process in artificial neural network mainly depends on four factors[57]:

1. Number of layers in the network: the possible options for these factors are,
single layer or multiple layers.

2. Signal flow direction: it can be Feedforward or Recurrent.
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3. The number of nodes in layers: in the input layer, the number of nodes is
equivalent to the input dataset features. The number of nodes that appear in
the output layer will depend on the possible results. However, the number
of hidden layers is selected by the user. The more nodes in the hidden layer,
the higher the performance, yet using several nodes in this layer may cause
overfitting as well as increase computational costs.

4. Weight of interconnected nodes: Deciding on the amount of weight attached
to each connection among each node so that a particular learning problem
can be properly solved has been one of the difficult tasks.

In summary, this process includes feeding labeled data to the network and
changing the network’s parameters such as learning rate, epoch, cost function
to bring the results close enough to the desired output. On the other hand, the
network’s training process is an iterative approach where there is a cost function,
and the aim is to minimize its value [57]. Although there are three different types of
cost functions including, linear, quadratic, and cubic. The quadratic cost function
has several useful features listed below:

• It is convex and smooth, which facilitates the evaluation of derivatives.

• In the case of linearity in the system, the controller design is usually translated
as a kind of Ricatti Equation that is easy to study solutions and properties.

• When using nonlinear systems, Lyapunov functions are usually easy to use
when using quadratic optimal control functions.

Formula 2.6 is a mathematical representation of cost function equation.

C(w, b) = 1
2n

Ø
x

||y(x)− a(x,w, b)||2 (2.6)

where the function a(..) is the result of NN, and its parameters are x as the input
of NN, while w and b represent weights and biases respectively for all neurons in the
network. In particular, the activation function alj is defined for each neuron(j) in
each layer(l) of network. Equation 2.7 shows the details of the activation function.
Where σ(..) represents the activation function. In this compact equation, W l

indicates the weight matrix and vector bl contains bias value for each node. j is
the index of the neuron in the layer l.

al = σ(wlal−1 + bl) = σ(zl) (2.7)

Training starts with initial random weights and biases, and then at each iteration,
these parameters will be updated using Back-propagation, which is described in
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section 2.3.3. There are many different activation functions with their pros and cons,
such as perceptron, Sigmoid, Hyperbolic Tangent. One of the most widespread
and popular activation functions for the neural network is called Rectified Linear
Units (RELU). It is a non-linear function and constructed from the union of two
linear tracks of functions. The positive input value of z will be returned unchanged,
whereas an input value of 0 or a negative value will be returned as the value 0.
Unlike the sigmoid function, learning does not slow down with a large weight, and
learning stops entirely with a small weight [54].

(a) (b)

Figure 2.3: Sigmoid, Hyperbolic Tangent and Relu activation functions

2.3.2 Minimization Problem
As explained in Section 2.3.1, the cost function is defined, and the aim is to find
the optimum set of weights and biases that minimize the cost function. There are
different algorithms for the minimization problem, and one of the most common
and widespread one is Stochastic Gradient Descent(SGD), an updated version of
gradient descent that solved the problem of stoping at local minimums. SGD starts
with a random vector of weights and biases, and it goes toward the minimum point
of function by using an iterative approach. Weights and biases at each iteration
update using Formula 2.8 [54].

wk+1 = wk − η
∂c

∂wk
bl+1 = bl − η

∂c

∂bl
(2.8)

where ∂c
∂wk

and ∂c
∂bl

are the partial derivative of the cost function with respect to
weights and biases. η is a positive coefficient, called Learning Rate, which has to
be small enough so that the Taylor approximation holds and avoids the algorithm
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diverging. However, the small value of the learning rate requires much time for
training [54].

To calculate the derivatives and apply changes in the weights, the whole training
set must be considered because the average is taken over all training data. In
practical cases, the training set is enormous, and it will take much time to run the
training algorithm. Unlike gradient descent, SGD calculates the cost function for
a small subset of the training set, not for the whole training set. If the subset is
small enough, then this would be a good approximation [58].

This algorithm picks m data vectors randomly and calculates all averaging of
the cost function and the derivatives only for this subset known as mini-batch.
When the mini-batch calculation is finished, other m samples that have not been
included in previous mini-batches are chosen randomly for the next iteration.
Once an epoch is finished, meaning every sample in the training set has been used
only once, then the algorithm goes to the next epoch, and it picks new mini-batches.

Another advantage of SGD is that it estimates noisy derivatives because some-
times it is possible to overshoot a little bit in its estimation of the optimal ∆w,
and it allows the algorithm to explore different local minima by moving away from
the current solution [58].

2.3.3 Backpropagation algorithm
Backpropagation is a straightforward algorithm that updates the weights and biases
iteratively to minimize a given cost function. In order to do that, the algorithm
needs to know some values for partial derivatives of the cost function with respect
to any parameter in the network. These derivatives represent the amount and
direction of changes in the cost function [59].

Every iteration of the algorithm consists of two parts: The first one is called
the feedforward pass, where it simply uses the neural network, and the other is the
back-propagation. The steps are as follows [59]:

1. The input of the algorithm is a given training instance. in practice, it will
typically be a mini-batch that is the activation at the first layer. Then initial
values of the weights and biases for all neurons of all layers are needed. There
is no knowledge about the optimal value of weights and biases in the most
general cases, so they are chosen randomly.

2. Then, in the feedforward pass, activation functions zl are calculated from the
first layer to the last layer L.
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3. When all activations are derived, it is possible to calculate the neurons’ error
in the last layer δL.

δLj = ∂c

∂aLj
σÍ(zLj ) (2.9)

In the equation , the first term indicates how much the cost is changing as
a function of the last layer’s activation output. The cost should change as a
function of activation because the result of the activation function in the last
layer is simply the answer of the neural network, which can be compared with
the ground truth and obtain our cost. The second term indicates how fast the
activation result is changing at a specific layer.

4. The algorithm backpropagates the error for every layer starting from l − 1
by evaluating δl−1 and then all intermediate parameters of the network are
calculated.

5. In the last step, the derivatives for all parameters in the network are evaluated.
Finally, stochastic gradient descent is applied to update the values of the
network’s parameters. Once all these five steps are done, and weight and bias
values are updated, the algorithm will go to step 2. These iterations continue
since the desired performance of the network is achieved.

2.3.4 Cost Function
One problem of the quadratic cost is that sometimes it learns slowly and takes
too many computational resources to complete the training for a computationally-
intensive problem. In general, when the output is very wrong, due to the random
choice of the parameters, the cost function decreases very slowly.

When the cost function is very large, neurons are working in saturated regions,
and getting out of the saturated region takes much time. One of the possible
ways to overcome this problem is to change the cost function. So, in classification
problems, the Cross-Entropy Cost Function can be used, which is defined in
equation where n is the number of training examples, and it can be proved that
the cost function is always positive [60].

C = − 1
n

Ø
x

[y ln(a) + (a− y) ln(1− a)] (2.10)
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2.3.5 Regularization and Dropout

A deep neural network is simply a NN with many layers, neurons, and a massive
number of parameters. As the number of parameters increases, it is likely that
model overfits, and as a consequence, the accuracy drops. In some NN cases, the
result of cost function will constantly decrease during the training and plateau
at a certain point. By evaluating the trained network with test data, the cost
function’s result reduces until it reaches the minimum value, then it starts grow-
ing. It can be proved that the NN is not learning any more after a specific epoch [61].

There are different approaches to avoid overfitting, such as using a smaller
network(smaller number of layers and neurons), early stopping (just monitoring the
trend of cost function and choosing the minimum one and then stop), or using more
data for training the network (using more information is sometimes impossible,
and very expensive.)

Therefore, regularization is a common method to reduce the chance of overfit-
ting and improves model performance. This technique uses a linear combination of
the old cost functions C0(quadratic, cross-entropy) plus a new term L2 which is
the norm of the weights in the NN (the sum of the quadratic value of all weights
in the NN) [62].

C = C0 + λ

2n
Ø
w

||w||2 (2.11)

In deep learning, the goal is to minimize the loss function. In L2 regularization,
a component that tunes large weights will add to the cost function. The equation
2.11 shows the added component, and lambda is the regularization parameter. By
adding the squared norm of the weight matrix and multiplying it by the regulariza-
tion parameters, large weights will decrease to minimize the cost function.

Another extremely popular solution in training neural networks is a so-called
dropout. It is an aggressive way of fighting against overfitting: essentially, the
NN is divided into two subnetworks, so every neuron for every layer is associated
with either NN-A or NN-B. Both networks are trained simultaneously, and once
training is done, they are combined in the final network. This technique works well
because it is a sort of averaging of all bad things that can happen in training over
the network taken singularly, it is similar to averaging the noise [63].
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2.3.6 Convolutional Neural Networks
What has made neural networks so famous and influential is the Convolution Neural
Network(CNN): the name comes from after the convolutional operator from the
filtering domain. it can filter the input vector extracted from signals, images and
other possible type of data, with a linear and timing-variant filter. The CNN
becomes powerful in solving different problems by implementing three important
concepts.

• Local Receptive Fields: This concept explains using of a new design in
such a way that each neuron in the next layer is connected to a subset of
the outputs of the previous layer, instead of using a fully connected neural
network, such that each neuron in the next layer connects to all neurons in the
previous layer. It is rather evident that the number of parameters decreases
tremendously by using this technique [55].

Figure 2.4: Local Receptive Fields [36]

• Shared weights/biases: Besides the limited number of input samples for
each neuron, the concept of shared weights implies that all weights in each
window of neurons are the same. The number of parameters is reduced because
neurons share the same weights [55]. The connections from the local receptive
field to each neuron have all the same weights:

– All neurons in the first layer detect the same feature at different locations
in the image

– This exploits (possible) shift-invariance of the image content
– The shared weights/bias define a filter
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• Pooling Layers: A pooling layer is essentially a downsampling layer and
reduces the data dimensions by combining the outputs of neuron clusters at
one layer into a single neuron in the next layer. Local pooling combines small
clusters, typically two by two. Figure 2.5 represents a sample of max pooling
layer [54].

Figure 2.5: Sample of Max Pooling [36]

The last layer of the CNN (last one or two layers) takes all inputs from con-
volutional layers, combines them in a fully connected way to classify images, and
usually employs a softmax to come up with decisions about the class that the
image belongs. It means the network can be split into two distinct parts, the
convolutional part of the network which extracts some discriminative features of
the image, and the classifier part, in which those features are classified.

Figure 2.6 shows a complete CNN. A sequence of convolutional layers and
pooling layers, as many as needed (not more than thousands that are used only
in a specific puposes, called ResNet), is followed by one or more fully connected
layers.

Figure 2.6: Complete Layers of CNN (Number of layers can be rather large)[36]
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Simulation

GNSS and chirp signals are simulated by using NFUEL [64], and Matlab applications
[65].

3.1 GNSS Signal
In order to simulate GNSS signal, N-FUELS (FULL Educational Library of Signals
for Navigation) application has been used, which is a signal/disturbances generator,
implementing as a set of non-real-time MATLAB scripts able to simulate the
samples of a GNSS signal as seen by the receiver after the A/D (Analog to Digital)
conversion.

The received signal at the first stage of the receiver(antenna) is a continuous-
time signal. However, in order to characterize in digital signal processing, the
signal needs to be transformed to discrete-time and is widely known as a sampling
signal. The sampling frequency or sampling rate, Fs, is the average number of
samples obtained in one second (samples per second). The sampling frequency in
the GNSS signal simulation scenario is 40 MHz. It means each second of signal in
continuous-time can be represented with 40 million points in discrete-time. The
duration between each sample as follows:

Ts = 1
Fs

(3.1)

The simulated GNSS signals belong to the GPS constellation and L1 band
(1575.42MHz). Each satellite within the GPS constellation has a unique Pseudo-
random Noise Code (PRN code) [66] which allows any receiver to identify precisely
the transmitted satellite of the signal. 32 GNSS signals are generated referring to
PRN-1 up to PRN-32. Some of the main characteristics of the simulated GNSS
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signals are sorted in Table 3.1.

Parameter Value
Modulation GPS L1
Signal Length 1 s
Sampling Frequency 40 MHz
Satellite PRN codes 1 - 32
Code Delays* 0.0004 s
Received Signal Power -157 dBW
Carrier to Noise Ratio C/N0 45 dBHz

Table 3.1: Main Characteristics of GNSS Signals (* Code delay with respect to
the ideal start instant of the first PRN code chip)

The output of GNSS simulation is a set of binary files (.bin format) for each
signal. Note that the points of sampled GNSS signal are complex numbers and
composed of real and imaginary parts.

3.2 Chirp Signal
Chirp is a signal in which its frequency varies with respect to the time, thus the
frequency increment or decrement known as Up-chirp or Low-chirp, respectively.
This type of signal is known as the swept frequency signal. Figure 3.1 shows a
simple chirp signal whose frequency changes from 1 up to 10 Hz in a period of 5
milliseconds.

Figure 3.1: Simple Chirp Signal
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In term of mathematics, assuming chirp signal is defined as X(t) = sin(φ(t))
where depending on how the frequency is changing, φ(t) can be linear or non-linear.
The instantaneous angular frequency is the first derivative of φ(t), and if the
derivative is divided by 2π, the frequency in hertz can be obtained.

ω(t) = dφ(t)
dt

, f(t) = ω(t)
2π (3.2)

3.2.1 Chirp Classifications

The swept-frequency jammers are distinguished by their ability to generate over-
whelming signals with carrier frequencies that vary over GNSS signal bands, causing
disruptive effects on GNSS receiver performance [9]. According to Strike3 project
[67], chirp signal characteristics can classify in terms of shape, sweep range, sweep
rate, and power. The chirp simulation scenario follows draft standards developed
by STRIKE3 to create different types of chirp signals.

Figure 3.2: Chirp Signal Classifications

32



Simulation

Chirp Shapes

The chirp signal’s shape is directly related to the sweep frequency equation men-
tioned, such as linear, triangular. One way to see the shape of the signal is by
plotting the spectrogram of the signal. For instance, figure 3.3 represents the
spectrogram of the linear chirp signal. Different shapes of chirp signal and their
characteristics in spectrogram and spectrum plot can be found in appendix A.

Figure 3.3: Narrow-band Chirp Signal [68]

Chirp Sweep Range

The linear chirp signal can be classified in terms of the bandwidth into narrow-band
and wide-band with respect to the GNSS signal bandwidth. In simulation scenario
bandwidth of narrow and wide chirp signals are 5 and 16 MHz, respectively.

Figure 3.4: Narrow-band Chirp Figure 3.5: Wide-band Chirp

33



Simulation

Chirp Sweep Rate

The repetition number of one cycle of chirp signal (varying from initial frequency
up or down to target frequency) in 100 µs time window of a wideband chirp signal
is known as sweep rate. They are categorized into four classes as follows:

• Rapid: 13 - 16 chips in 100 µs

• Fast: 8 - 12 chips in 100 µs

• Medium: 4 - 6 chips in 100 µs

• Slow: 2 - 3 chips in 100 µs

Chirp Power

The power of chirp signals can be categorized with respect to the received signal’s
power in GNSS receivers as follows:

• Strong: -127 up to -107 dBW.

• Medium: -147 up to -127 dBW.

• Weak: -157 up to -147 dBW.

3.3 Combining with CHIRP
According to chirp classification, section 3.2.1, different types of chirp signal is
created by using Matlab script as follow:

• Wide linear chirp (sweep rate: 10
in 100µs)

• Narrow linear chirp

• Triangular chirp

• Triangular wave chirp

• Sawtooth chirp

• Hooked sawtooth chirp

• Tick chirp

• Multi-tone chirp

The sweep rate can vary from 2 up to 16 chirp repetitions in 100 microseconds
in the linear wide-band chirp signal. In the simulation, a linear wide-band chirp
signal with ten chirp repetitions in 100 microseconds is only considered to have a
normal distribution in terms of the number of signals in each class. Totally eight
different types of chirp signals are generated which their sampling frequency and
duration are the same as the simulated GNSS signal. Despite the different chirp
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signal shapes, chirp signals’ power is amplified from -157 dBW up to -107 dBW
incrementing by one (49 cases), which represent weak, medium, and strong power.

• The 32 GNSS signals are simulated with duration of one second.

• Each GNSS simulated signals is divided into ten equal time-based portions,
thus it is expected to derive 10 new signals with 100 ms duration from each
signal of satellites.

• Then only one of ten portions of divided signals is picked in order to combine
with the chirp signals.

• The picked GNSS signals combine with the chirp signals (totally eight cases)
in an additive way as follows:

Combinedsignal = chirpsignal + originalsignal (3.3)

Assuming power of chirp signals is amplified from -157 dBW up to -107 dBW
incrementing by one (49 cases).

• The total constructed signals based on each GNSS signal would be 402, which
consists of 10 signals result in the dividing of every GNSS signal into ten
portions without combining to chirp signal and 392 (8x49=392) combined
signals.

• The final dataset consists of 12864 different signals.

Figure 3.6 shows the pseudocode or algorithm behind combining signals.

Figure 3.6: Pseudocode of Combining GNSS signal with Chirp Signals
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Feature Extraction

Feature extraction involves reducing the number of resources required to describe
a large set of data or extracting an event’s information in a readable way for
machines. The forming of signals’ dataset is described in Chapter 3.3, each signal
of the dataset needs to be analyzed using Digital Signal Processing (DSP) in
time and frequency domains separately. Also applying Wavelet or Wigner-Ville
transformations represents the signal in the time-frequency domain.

Matlab has been used to extract the features. An object-oriented program is
developed where its input is the simulated signals, and output is a series of features
describing the signal. In the following subsections, different DSP techniques of
feature extraction are discussed.

4.1 Features in Time Domain
Time-domain signal processing involves analyzing the variation of the amplitude(or
peak) of signal with respect to time. Considering the GNSS signal’s complex
sinusoidal shape, features related to the amplitude are extracted individually for
real and imaginary parts by using statistical parameters. The features with a short
description are sorted as follows:

• Mean Value: is adding up all the observed value and dividing by the number
of them or often simply described as the "average".

• Median Value: is the middle of a sorted list of values, or it can also be
mentioned that it is a threshold value which separates the higher half from
the lower half of values. Comparing to mean value, median is not skewed so
much by a small proportion of extremely large or small values.
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• Standard Deviation: shows the amount of variation or dispersion of values
with respect to the mean value. For instance, the low value of standard
deviation indicates the value is tended near to the mean value.

• Mean Absolute Deviation:(MAD) is the average distance between each
value and the mean in observed data set. Mean absolute deviation is a way to
define variants in a data set.

• Skewness: describes how a data distribution leans. considering the normal
data distribution(Gaussian distribution) which the mean is in the middle
of data, if skewness is negative, the mean will be shifted to left and if it is
positive, the peak tends to the right and the tail goes to left [69].

• Kurtosis: Like skewness, it describes the distribution. Whereas skewness
differentiates extreme values in one versus the other tail, kurtosis measures
extreme values in either tail. Distributions with large kurtosis exhibit tail
data exceeding the tails of the normal distribution [70].

Domain Feature Name Name Meaning

Time
(14 Features)

Time_mean_real Mean of amplitude of Real part
Time_med_real Median of amplitude of real part
Time_std_real Standard Deviation of amplitude of real part
Time_mad_real Mean Absolute Deviation of amplitude of real part
Time_var_real Variance of amplitude of real part
Time_skw_real Skewness of amplitude of real part
Time_krt_real Kurtosis of amplitude of real part
Time_mean_img Mean of amplitude of Imaginary part
Time_med_img Mean of amplitude of Imaginary part
Time_std_img Median of amplitude of Imaginary part
Time_mad_img Standard Deviation of amplitude of Imaginary part
Time_var_img Variance of amplitude of Imaginary part
Time_skw_img Skewness of amplitude of Imaginary part
Time_krt_img kurtosis of amplitude of Imaginary part

Table 4.1: Feature Extracted in Time Domain for GNSS Signals

4.2 Features in Frequency Domain
In the time domain, extracting the features is limited to just statistical parameters,
whereas in the frequency domain can be obtained more informative characteristics
of the signal. However, the frequency domain of a signal means each signal consists
of at least one component at a given frequency, representing the signal’s repetition
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in 1 second. Therefore, in a complex signal, more than one component creates the
signal, which indicates the signal is combination of several signals with different
frequencies known as the Harmonic of the primary signal. Figure 4.1 illustrates a
signal with two harmonics while every single component spreads out in the time
domain as distinct impulses in the frequency domain.

Figure 4.1: Time Domain vs Frequency Domain [71]

As depicted in Figure 4.1, a time-domain graph shows how a signal changes
over time, whereas a frequency-domain graph displays how much of the signal lies
within each given frequency band over a range of frequencies. Moreover, looking at
a signal from the point of view of frequency can often give an intuitive description
of the signal’s qualitative behavior. Besides, in frequency domain representations,
the individual components are often much more closely related to the properties
we care about.

How to convert Time-Domain to Frequency-Domain? A given func-
tion or signal can be converted between the time and frequency domains by
mathematical operations, known as transforms. The Laplace and the Fourier
transform are the most famous transformation where Fourier Transform is a par-
ticular case of the Laplace Transform, so the properties of Laplace transforms are
inherited by Fourier transforms. Joseph Fourier proved that any periodic signal
could be decomposed into a summation of sinusoid waves. In other words, Fourier
transforms convert a time function into a sum or integral of sine waves of different
frequencies. This representation of the signal is known as the spectrum of the signal.
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Fast Fourier Transform(FFT) is an approach to compute Discrete Fourier
transform (DFT). This approach can be converted to a reverse procedure with
respect to going from the frequency domain to the time domain by using Inverse
DFT. In term of mathematics descriptions, considering x0, x1, ...., xN−1 be complex
numbers, DFT is defined as follows:

Xk =
N−1Ø
n=0

xne
−2πikn/N k = 0, 1, ..., N − 1 (4.1)

The output XK is a complex number which encodes the amplitude and phase of
a sinusoidal wave with frequency k/N cycles per unit of time where it comes from
Euler’s formula as follows:

e2πikn/N = cos(2πikn/N) + i sin(2πikn/N) (4.2)

After transformation, since the DFT output is a sequence of complex numbers,
the mean and variance of the magnitude and phase of points are calculated and
inserted into the features vector. Then the real and imaginary parts will be sepa-
rated, and statistical parameters (mean, variance, standard deviation, maximum
and minimum) of them are derived as features.

Domain Feature Name Name Meaning

Frequency
(16 Features)

Freq_mean_real Mean of Magnitude of Real part
Freq_var_real Variance of Magnitude of Real part
Freq_std_real Standard Deviation of Magnitude of Real part
Freq_max_real Maximum of Magnitude of Real part
Freq_min_real Minimum of Magnitude of Real part
Freq_mean_img Mean of Magnitude of Imaginary part
Freq_var_img Variance of Magnitude of Imaginary part
Freq_std_img Standard Deviation of Magnitude of Imaginary part
Freq_max_img Maximum of Magnitude of Imaginary part
Freq_min_img Minimum of Magnitude of Imaginary part
Freq_mean_cpx Mean of Magnitude of Complex Signal
Freq_var_cpx Variance of Magnitude of Complex Signal
Freq_max_cpx Maximum of Magnitude of Complex Signal
Freq_min_cpx Minimum of Magnitude of Complex Signal
Freq_mean_ph_cpx Mean of Phase of Complex Signal
Freq_var_ph_cpx Variance of Phase of Complex Signal

Table 4.2: Feature Extracted in Frequency Domain for GNSS Signals
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Magnitude is the distance of the complex point from the origin, and phase is
the angle between the line that passes through the point in the complex coordinate
and the positive real axis. Assume a = x+ iy is a complex number, magnitude(r)
and phase(φ) are shown in Figure 4.2 and can be calculated from Formula 4.3.

r = 2
ñ
x2 + y2 φ = arctan(y

x
) (4.3)

Figure 4.2: Magnitude and Phase of Complex Number

In the signal processing domain, the digitalized signal’s magnitude sequence is
known as Power Spectral Density, which describes the distribution of power
into frequency components composing the original signal.

4.3 Features by Wavelet Transform
The previous section explained that the Fourier transform provides frequency infor-
mation of signal while it does not provide information about frequencies exitance
in the time domain, so it is ideal for a stationary signal (a signal without frequency
changes with respect to time). Since the frequency of chirp signals change over time,
it needs other techniques to describe the signals. The Wavelet Transform(WT)
translates the time-amplitude representation of a signal to a time-frequency rep-
resentation encapsulated as a set of wavelet coefficients [72]. The concept of WT
comes from Short Time Fourier Transform (STFT).
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STFT comes to overcome the poor time resolution of the Fourier transform
and convert signals from the time domain into a time–frequency representation.
According to STFT, considering some portion of the non-stationary signal as
stationary makes it possible to take window function of fixed length and move it
along the signal [73]. Comparing to Fourier transform in terms of mathematic,
formulation looks as follow:

F (ω) =
Ú ∞

−∞
f(t)e−iωtdt (4.4a)

F (τ, ω) =
Ú ∞

−∞
f(t)w(t− τ)e−iωtdt (4.4b)

where τ is translation parameter and w(t− τ) represents window function. The
only difference with respect to Fourier Transform is the window function where the
signal is smoothed. There are two main limitations of using STFT:

• The window function is finite, so frequency resolution decreases.

• The windows’ fixed-length means time and frequency resolution are fixed for
the entire length of the signal. If a narrow window is chosen, it is suitable for
time resolution but poor in frequency resolution, and in contrast, choose a wide
window is proper for frequency and poor in time resolution. In other words,
low-frequency components last for an extended period, so a high-frequency
resolution is needed and vice versa [74].

WT offers properties to overcome these two limitations, where it analyzes signal
into different frequencies at the different resolutions known as Multi-Resolution
analysis. Figure 4.3 shows the time and frequency resolution of the different signal
transformations.

By definition, the WT of a signal f(t) is the correlation between the signal and
a set of basic wavelets ψ(t) known as Mother Wavelet. The following Formula
expresses WT:

F (τ, s) = 1ñ
|s|

Ú ∞

−∞
f(t)ψ∗(t− τ

s
)dt (4.5)

where s is scale parameter (1/frequency) and ψ∗ is conjugate of the wavelet
function. Generally, different types of wavelets can be chosen with respect to the
original signal’s shape. These wavelets are new basis functions compared to Fourier
transform, where sin and cosine are basic functions. Wavelets act as a window
function where their width and central frequency can change as it moves across
the signal. All the windows are compressed versions of mother wavelet by s and
shifted (by τ) version of mother Wavelet. However, the output of Formula 4.5
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Figure 4.3: Comparison of Different Transformations [75]

increases when the original signal is similar to the wavelet [76]. The same concept
is valid also for discrete signal known as Discrete Wavelet Transform(DWT), and
its formulation is as follows:

D[τ, s] = 1√
s

p−1Ø
m=0

f [tm]ψ[tm − τ
s

] (4.6)

where τ = k2−j and s = 2−j; j is scale index and k is wavelet transform signal
index. If s and τ chooses based on the power of two(dyadic), then analyses become
much more efficient and accurate.

DWT is a multi-level decomposition where the signal passes through high-pass
and low-pass filters. The approximation and detail coefficients of wavelet are
calculated after the low-pass and high-pass filter, respectively. After each low-pass
filter, the procedure is repeated literately at each level. Figure 4.4 shows a DWT
procedure [76].
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Figure 4.4: Multi-Level Decomposition [76]

Since the GNSS signal is complex sinusoidal, Complex WT is used, a simple ex-
tension to the DWT. Dual-Tree Complex Wavelet Transform is an approach
to handle complex data that analyze the real and imaginary components as two
separate signals and perform a DWT on each component separately. It is called
"dual-tree" because there are two DWT decompositions in parallel, one for the real
components and one for the imaginary [77].

As clarified before, there are different families of wavelets(to see different families
refer to [78]), where each one has special properties for different types of signals. The
Symlet (sym4) is chosen for this case, and its properties are: nearly symmetrical,
similar to the DB family, orthogonal, biorthogonal.

Figure 4.5: Sym4 Wavelet
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Once the signal is transformed, the mean and variance of approximation and
details coefficients are extracted for each real and imaginary part separately to
characterize the output as shown in Table 4.3. Figure 4.6 illustrates approximation
coefficients of wavelet analyses for the real part of the original and combined signal
with different chirp types.

Figure 4.6: Wavelet analyses over original and combined signal with different
types of chirp

Domain Feature Name Name Meaning

Wavelet
(Time-Frequency)
(8 Features)

WL_cA_mean_real Mean of Approximation Coefficients of Real Part
WL_cA_var_real Variance of Approximation Coefficients of Real Part
WL_cD_mean_real Mean of Details Coefficients of Real Part
WL_cD_var_real Variance of Details Coefficients of Real Part
WL_cA_mean_img Mean of Approximation Coefficients of Imaginary Part
WL_cA_var_img Variance of Approximation Coefficients of Imaginary Part
WL_cD_mean_img Mean of Details Coefficients of Imaginary Part
WL_cD_var_img Variance of Details Coefficients of Imaginary Part

Table 4.3: Feature Extracted by Wavelet Transform for GNSS Signals

44



Feature Extraction

4.4 Features by Wigner-Ville Transform
Basically, there are two kinds of time-frequency analyses:

• Linear approachs, including the Wavelet, Gabor, Zak transform.

• Quadratic methods covering the time-frequency distributions such as Wigner
distribution, the ambiguity function, smoothed versions of the Wigner distri-
bution.

This section is concentrated on the Wigner-Ville Transform (WVT), a time-
frequency representation of the signal and a helpful tool to analyze non-stationary
signals. The basic idea of this method is to develop a joint function of time and
frequency like the wavelet transform.

From theoretical and application points of view, the WVT or the Wigner-Ville
Distribution (WVD) plays a major role in the time-frequency signal analysis for
the following reasons. First, it provides a high-resolution representation in both
time and frequency for non-stationary signals. Second, it has the special properties
of satisfying the time and frequency marginals in terms of the instantaneous power
in time, energy spectrum in frequency, and total energy of the signal in the time
and frequency plane [79].

WVT essentially computes the Fourier transform of the so-called Auto-correlation
function (AF) [AF (τ) = x(t+ τ/2)x∗(t− τ/2)] which is a general representation
of the signal’s autocorrelation function. The WVT does not suffer from leakage
effects as the STFT does and hence, gives the best spectral resolution. Generally,
for a single time series(zero-mean), the Wigner Ville function is simply given by
[80]:

WV C(t, f) =
Ú ∞

−∞
x(t+ τ

2)x∗(t+ τ

2)e−2πiτfdτ (4.7)

where x∗ denotes the conjugate of x. There are several presentations in the
literature for the Discrete Wigner-Ville Transform (DWVT), the general form can
be written as Formula 4.8 [81] for a signal x[t] where it is sampled by N number.

WVx[n,m] =
NØ

k=−N
x[n+ k

2 ]x∗[n− k

2 ]e−2πikm/N (4.8)
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where n and m denote the index numbers for the time and frequency vectors,
respectively. To see more detail of Wigner Ville Distribution refers to [82] [83] [84].

In order to avoid the cross-terms effect in quadratic form, smoothed pseudo
Wigner distribution [85] [86] is used to analyse the signal which uses independent
windows to smooth in time g(n) and frequency h(m) and its formulation is as
follow:

WVx[n,m] =
NØ

k=−N
g(n)h(m)x[n+ k

2 ]x∗[n− k

2 ]e−2πikm/N (4.9)

Figure 4.7: Wigner Ville analyses over Original and combined signal with different
types of chirp

In terms of computing power, in order to calculate the WVD of a signal with
80 thousand samples, Matlab needs about 10GB of RAM to store the convolution
matrix(640 million elements). Besides that, it needs high computational power.
For these reasons and due to the signal’s periodic characteristic, WVD is calculated
for 100 µs of the signal where the result is depicted in Figure 4.7. As it is shown in
figure 4.7, Wigner Ville is a good tool to detect the different shapes of chirp. But
in order to deal with traditional machine learning, some statistical features of the
images are extracted, such as mean, variance, minimum, and maximum over all
elements in the output of WVD.
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Domain Feature Name Name Meaning

Wigner-Ville
(Time-Frequency)
(4 Features)

WV_mean Mean of Wigner-Ville’s matrix
WV_var Variance of Wigner-Ville’s matrix
WV_min Minimum of Wigner-Ville’s matrix
WV_max Maximum of Wigner-Ville’s matrix

Table 4.4: Feature Extracted by Wigner-Ville Transform for GNSS Signals

4.5 Final Dataset
Totally 42 features are obtained by different techniques for each signal of the
simulated dataset. All the outputs export to a CSV file for the further steps.
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Methodology and Result

In recent years the GNSS has a significant role not only for positioning but also for
many technologies and applications, including aviation. Intentional interference
by jammers makes GNSS-based systems unavailable because strong interference
may make the GNSS receivers inoperable and lead to loss of quality of the GNSS
satellite signals. Consequently, GNSS receivers cannot provide accurate positioning.
Therefore, identifying the GNSS interference signal is considered as a high priority
task. Many researches have been developed to achieve the automatic detection
for various types of interferences in GNSS signals by investigating different ML
techniques [33] [31] [35] [20]. This thesis project proposes a method for automatic
and accurate detection of chirp signals (known as one of the most common and
disruptive interfering signals) based on machine learning algorithms. The consid-
ered ML algorithms to get this goal are unsupervised machine learning(k-means
clustering) and Convolutional Neural Network (CNN).

The scenario of interfering GNSS signals with different types of chirp signals
is explained in chapter 3. Afterward, those signals are analyzed through DSP
techniques to derive features representing signal behavior in the time and frequency
domain(feature extraction).

Figure 5.1: Methodology Diagram
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5.1 K-means Clustering
In general, selecting the appropriate clustering method mainly depends on some
factors such as size and type of datasets and the noise in data. The clustering
algorithms could be categorized into Partition-based, Hierarchical-based, Density-
based, Grid-based, and Model-based [87]. It has to be noted that no clustering
algorithm performs well for all the evaluation criteria and even all the clustering
algorithm suffers from stability problem [87].

Some researches were performed on several clustering methods such as Hier-
archical or Self-Organizing Map (SOM) clustering algorithms to evaluate their
performances and provide a comparison. However, the chosen clustering algorithms
for the assessment were based on some factors such as popularity, flexibility, ap-
plicability, and handling high dimensionality, and the comparison of their results
was made according to the size of the dataset, number of clusters, and type of
dataset. The evaluation results indicate that the K-means is better than most
other algorithms in terms of performance. Indeed, the K-means algorithm is mostly
nominated for a huge amount of data, despite its sensitivity to noise which will
affect the outcome of the algorithm [88] [89].

Although clustering high dimensional data is challenging [87], many unsupervised
clustering algorithms with specific requirements and abilities exist to detect high
dimensional data clusters [90].There is a fact that with increment the attributes or
dimensions in a dataset, measuring the distance will become progressively meaning-
less. There are several recent approaches to assist in clustering high-dimensional
data. These approaches have been successfully performed in many fields. It is not
truthful to expect a particular method of clustering approach to be suitable for all
types of data or even for all high dimensional data. With increasing dimensionality,
some algorithms become computationally complex, making them inconvenient in
many real applications [87].

The principal components are the continuous solutions to the discrete cluster
membership indicators for K-means clustering. It is possible to implement K-means
on PCA results which is one of the feature selection algorithms in this thesis, and
in fact, there is a deep connection between K-means clustering with PCA [91].

As a consequence, the K-means clustering is very convenient in exploratory data
analysis. Compared to other clustering techniques, the ease of implementation and
low computational complexity and memory consumption at the same time with
high proficiency make K-means one of the most popular clustering algorithms. The
K-means clustering can also be applied as an initialization step for other algorithms
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that suffer from complexity in computation, thus approximating the distribution of
data is a starting point and reducing the noise present in the whole dataset [92].

5.1.1 Data Preparation
Data preparation or data preprocessing is the process of gathering, converting,
transforming, cleaning, or other function to make the dataset readable for the
machine. One of the important purposes of data preparation is to ensure correction
and consistency of the prepared information for analysis since the dataset often
includes missing values, inaccuracies, or other errors [93].

The first step is normalization, which means changing the features’ scale to
have a more informative range. There are different functions to do it, such as
Inverse, LogN, Log10, Exponential, Square Root. The fundamental reason for
normalization in machine learning is that the features with widespread standard
deviation describe data behavior more efficiently. Based on analysis of all features
and the shape of data distribution, normalizing with Log10 is applied to the dataset.

Therefore, all the features extracted are numerical, and it is no need for trans-
formation. However, there is the possibility to face some infinity or NaN values
that are replaced with Zero. If the number of zero values for each row of data is
over five, that row is eliminated from the dataset.

Since K-Means uses distance-based measurements to determine the closeness
between data points, the datasets are standardized to have a zero mean and stan-
dard deviation of 1 because features in any dataset might have different units of
measurements. Also, to prevent misleading training process of K-mean resulting in
longer training time, less accurate model, and poor result, outliers are removed.
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5.1.2 Feature Selection
Each row of the dataset has 42 features to describe the signal, in order to reduce
the number of features and remove non-informative or redundant features, three
different techniques are applied in the dataset. The results are described in the
following sections.

Feature Selection based on Correlation Matrix

The first technique is an unsupervised feature selection based on a correlation
matrix. The correlation is calculated for each pair of features in the dataset,
and Figure 5.2 illustrates these correlations as a heat-map. The high values of
correlation calculated for each pair of features imply the similarity between them.
Therefore one feature of each pair can be removed if the value of correlation is
higher than a defined threshold of 0.9 (Selected features have only correlation less
than 0.9). Finally, 21 remaining features from 42 are the most remarkable features
for the dataset.
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Figure 5.2: Correlation between all features (the image is imported as pdf file,
you can zoom in to see more details)
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Selected features are presented in Table 5.1. As it can be seen in Figure 5.2, for
instance the correlation between Time_kurtosis_real and Time_kurtosis_img is
0.99 and imply that these two features provide the same behavior of the data, as a
consequence Time_kurtosis_img has been removed from the final list of features.

Time_mean_real Freq_max_real Freq_mean_ph_cpx
Time_std_real Freq_min_real Freq_var_ph_cpx
Time_skewness_real Freq_mean_img WL_cA_mean_real
Time_kurtosis_real Freq_var_img WL_cD_mean_real
Time_mean_img Freq_min_img WL_cD_var_real
Time_median_img Freq_var_cpx WL_cA_mean_img
Time_skewness_img Freq_min_cpx WL_cD_mean_img

Table 5.1: Selected features by Correlation Matrix

Supervised Feature Selection

The filter method is implemented in the supervised feature selection, which uses
statistical techniques to evaluate the relationship(score) between each feature and
the target variable (label) (Section 5.1.2). Those scores are used to select the
features that have more correlation with output, and eventually, 14 features are
selected from 42. Table 5.2 indicates the selected features.

Time_mean_real Freq_max_real Freq_min_cpx
Time_median_real Freq_max_img Freq_mean_ph_cpx
Time_skewness_real Freq_mean_cpx Freq_mean_ph_cpx
Time_mean_img Freq_var_cpx WL_cA_mean_real
Time_skewness_img Freq_max_cpx

Table 5.2: Selected features by Correlation Matrix

Feature Selection based on PCA

The initial number of features extracted from the input data is 44, and the PCA
method is applied to reduce the number of features and decrease the complexity of
the model. The processes include calculating the covariance matrix and performing
eigendecomposition to map data to a new space representing data by the maximum
variance. Then all derived components will get sorted in terms of their variances
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from high value to low value. In order to select the number of latent variables, an
iterative approach is adopted to calculate cumulative variance with the different
number of components that vary from 1 up to 44. Figure 5.3 shows the percentage
of data that can be achieved by selecting a particular number of components. For
instance, by selecting the first 20 components, 99.8% of data points in the dataset
can be covered, while selecting more components does not significantly increase
data coverage. Finally, a dataset is created by selecting the first 20 components
which have the maximum of variances.
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Figure 5.3: Cumulative explained variance of different number of components

5.1.3 Modelling
Apart from the original dataset with 42 attributes, three different datasets are
obtained using different attribute selection techniques. These datasets include:

• Dataset with feature selection based on correlation matrix.

• Dataset with supervised feature selection.

• Dataset based on PCA with 20 components.

• Dataset with all features.

Each dataset comprises 12,800 rows of data. Each row represents an analyzed
signal that can be original in the absence of the chirp signal or combined with a
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specific chirp signal type (totally eight types) at different power. Consequently, the
number of clusters in K-means is nine. The dataset is divided into two parts in
order to evaluate the model’s performance. The training part consists of 80% of
data (10370 rows), and the test set contains 20% of the dataset. K-means algorithm
is implemented on the training datasets and starts by randomly selecting a centroid
value for each cluster. The algorithm then performs three steps iteratively:

1. Finding the Euclidean distance between each data sample and the centroid of
all clusters.

2. Assigning data points with the closest distance to the centroid cluster.

3. Calculating the new centroids on the average values of the coordinates of all
data points from the respective cluster.

Note that if each cluster’s centroids are determined clearly, it is simple to cal-
culate the distance between new data and the centroids to identify which cluster
belongs to the new data points.

5.1.4 Evaluation and Result
A research done by Steinbach et al. explains that in supervised learning, the
evaluation of the resulting classification model is an integral part of developing a
classification model, and there are well-accepted evaluation measures and procedures.
In contrast, due to the nature of unsupervised learning, cluster validation does not
grow much [94]. It is important to consider several aspects to validate the model
when analyzing the clustering results:

1. Determining whether a non-random structure exists.

2. Discovering the exact number of clusters.

3. Evaluating the feature of the clustering results without external information.

4. Analyzing the results achieved with external information.

5. Examining two sets of clusters to determine which one is better.

Since the dataset is generated manually, each signal has a predefined label that
is not presented and used in the training phase so that these labels can be used as
external information. According to the above categories and the structure of the
database, the adopted solution for evaluation of the model lies in the fourth category
that can be resolved by external informations or supervised validation methods [94].
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Gan et al. [95] introduce a taxonomy of evaluation methods covering internal and
external validation approaches. External accuracy validation extends by combining
additional information into the clustering validation process, for instance, external
class labels for training examples.

Figure 5.4: Taxonomy of Evaluation Methods Covering Internal and External
Validation Approaches

"Matching Sets" is one of the methods that can be utilized in the k-means
clustering technique in order to evaluate the accuracy of the model [96]. The steps
of this method is as follows:

• The model can be trained on the first portion of data without considering
external information (labels).

• A small subset (20%) of labeled data points in the training dataset is used.
These labeled data are injected into the clustering model, and based on the
label and number of points that each cluster received, a class label is assigned
to each cluster.

• The accuracy can be evaluated by using the test dataset in the presence of
labels as ground truth.

Formula 5.1 evaluates the percentage of elements that are properly included in
the same cluster.

Pr = TP

TP + FP
(5.1)

where TP represents True positive, how many data points are correctly classified
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in the same cluster. FP indicates False positive, how many examples are clas-
sified incorrectly. The model’s accuracy with different datasets is shown in Table 5.3.

Accuracy No. of Features
Feature Selection based on Correlation Matrix 37.28% 21
Supervised Feature Selection 35.06% 14
Feature Selection based on PCA 41.03% 20
All Features 27.39% 42

Table 5.3: Accuracy of Data Injection using K-Mean Algorithm

Remarks on K-means results:

• The obtained accuracy of the clustering models implies that although the
development of the K-means clustering algorithm had a considerable role as an
initial step in the analysis, it could not satisfy the desired objective completely.

• Conforming to section 5.1.2, feature selection has been used to remove re-
dundant features from the dataset and improve the model performance. Fur-
thermore, it is claimed that removing unneeded data(non-informative) leads
to better decision-making due to less noise dependency. According to all
aforementioned, the accuracy results of K-means (Table 5.3) indicate that the
lower accuracy is related to the dataset considering all the features, which
proves obtained assertion.

• According to our study achievements represented in section 4.1, PCA as a
dimensionality reduction method is well-matched (has a deep connection) with
the K-means clustering algorithm. On the other hand, referring to our results
of applying K-means clustering on the attained dataset of several feature
selection techniques (Table 5.3), it is evident that among different feature
selection approaches, the PCA technique achieved a better result than others
regarding accuracy.

• Due to the content of Section 5.1.2 along with observing the final result (Table
5.3), it is determined that although supervised learning as a feature selection
reduces the data dimensionality and complexity significantly in contrast to the
correlation matrix method, it provides less accuracy due to considering a small
subset of important features. However, the small difference in the obtained
value of accuracy in applying the K-means algorithm for both mentioned
techniques states the proximity of their performances in our model.

• A more detailed evaluation of both techniques, feature selection based on
correlation matrix, and supervised feature selection according to the tables’
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results (Tables 5.1 and 5.2) specify Wigner-Ville analysis is not utilized in
making their models, which implies that the selected statistical parameters
of this transformation are not meaningful and well distributed. Whereas the
images of WV analysis (Figure 4.7) illustrate a good view of the chirp signal
shapes, the extraction of selected statistical parameters from those images will
cause the loss of information. Thus, as the next step, Convolutional Neural
Network(CNN) is introduced as the second approach to work directly with
WV analysis images and improve the gained results.
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5.2 Convolutional Neural Network
There are many techniques to perform image classifications. Some of the most
common methods are studied to find the best-matched technique according to the
desired target, which state as follows:

• A convolutional neural network (CNN) is a multilayer neural network proposed
to identify visual patterns from images represented by pixels with the least
preprocessing [97] [98].

• Transfer Learning (TF) as the second algorithm, first trained according to a
problem and then uses the acquired knowledge during the training process to
solve a different related problem [99].

• As the next machine learning technique, the Support Vector Machine (SVM)
could generate a flexible and powerful model to solve ML problems. SVM
represents the various classes in a hyperplane in multidimensional space. As
an important component of this technique, the Kernel function has a strong
impact on the performance of the model [100].

• The next popular algorithm is K-Nearest Neighbor (K-NN), which is mostly
used for classification and regression problems. This method only relies on
the distance among the feature vectors and classifies unknown data points by
obtaining the most common class between the k-nearest instances [101] [102].

Table 5.4 represents the advantages and disadvantages of the aforementioned
methods. A CNN-based method is considered to achieve a more accurate result in
image classification by referring to a study on different introduced techniques [103]
[104]. This network’s input data is a set of images containing different shapes of
interference chirp signals, and the output represents nine different values indicating
distinct classes of chirp types. In the following sections, the model structure and
the results are described.
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Method Advantage Disadvantage

CNN

• The most accurate and reliable method
for image classification

• Pre-trained weights can be shared among
different methods

• Simplification of computation without
losing important data

• Does not require feature extraction

• In order to obtain high accuracy, a big
number of samples are needed

• The training process is slow

TL

• Does not need huge dataset to do train-
ing

• Reduce the training time

• It is no flexible in term of reducing pa-
rameters

• There is the probability of negative trans-
fer as it works based on similarity of
training and test set

SVM

• Can classify continues and categorical
data

• Can be used for linear and non-linear
problems

• The accuracy remains high even with
noisy images

• Handling overfitting is not a hard task

• The training is very time consuming

• Due to using complicated kernels, under-
standing the algorithm is hard

• SVM are applied on binary classification

K-NN

• The easiest algorithm to implement

• For small datasets there is no need to do
training

• Uses a large amount of memory to keep
training data

• The training process is slow

Table 5.4: Advantages and Disadvantages of Various Techniques for Image Clas-
sification [104]

5.2.1 Images Dataset
Different types of chirp signals described in Section 3.2.1 affect the GNSS signals
in different ways. As the chirp signals are non-stationary and their frequency
varies with respect to time, Wigner-Ville analysis can be a possible transform for
time-frequency modeling of the signal. As explained in Section 3.3, different types
of chirp signals totally (8 cases) are combined with GNSS signals at strong, medium,
and weak power, but since the weak power of the chirp signal is under the noise
floor and Wigner-Ville analysis does not recognize its components, weak power of
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the chirp signal are not considered in the simulation scenario.

Implementing Wigner-Ville analysis is described in Section 4.4; however, instead
of extracting an image’s statistical parameters as features, the spectrogram’s image
of the signals is stored in the dataset. All images are produced in grayscale and
rescaled from 1784x892 (280 Kb) to 446x223 (14 Kb) to reduce the size of images.
Figure 5.5 represents one sample from each class in the dataset.

As explained in Section 3.1, signals of 32 different satellites are generated, where
25 of them have been used as the training dataset, And the other seven signals were
used for testing the algorithm. In the end, in each class of input, there exist almost
350 images. Finally, this image dataset is prepared to feed the CNN algorithm as
input.

Figure 5.5: Sample of images in dataset

5.2.2 Model Structure
There are many models to do the image classification including, AlexNet, GoogleNet,
SqueezeNet. The performance and properties of these three networks are evalu-
ated in terms of speed for training samples and the accuracy of the classification
model. The obtained results for the same datasets representing that although
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the accuracy is almost the same for all three of them, AlexNet is faster as com-
pared to the other introduced pre-trained architectures in respect of the speed
of the training process. The reason is that AlexNet has eight layers deep with
respect to SqueezNet and GoogleNet, which have 18 and 22 layers deep, respectively.

Alex Krizhevsky primarily designed AlexNet CNN. The input to AlexNet can
be an RGB image of size 227×227 pixel that implies all images in the train and
test set need to be of size 227×227 pixel. All the images used in this experience
are resized and crop to be in the desired size. In addition, by using a filter, all the
input images changed to grayscale mode. The details of AlexNet architecture are
described as follows:

• AlexNet comprises 5 convolutional layers and 3 fully connected layers, 3
max-pooling layers, 2 normalization layers, and 1 softmax layer.

• ReLU nonlinearity is applied after all the convolution and fully connected
layers. The ReLU nonlinearity of the first and second convolutional layers are
followed by a local normalization step before doing pooling.

• The first two convolutional layers are followed by the overlapping max pooling
layers.

• The third, fourth and fifth convolutional layers are connected directly and
The fifth convolutional layer is followed by an Overlapping Max Pooling layer.

• the output of fifth convolutional layer after pooling goes into a series of two
fully connected layers. After each of these two layers, there are dropout layers
to avoid overfitting.

• The output of the second fully connected layer goes directly to the third fully
concected layer and then it feeds into a softmax classifier with 9 class labels.

• AlexNet has totally about 60 millions of parameters.

The entire architecture of AlexNet is depicted in Figure 4.4. Using the softmax
layer in this model provides some level of reliability and probability in the output
layer that the data belongs to a specific class instead of a rough answer.
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Figure 5.6: AlexNet Architecture
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5.2.3 Configuration and Result
The initial configuration of the CNN is described in table 5.5.

Parameter Value
Minimization Algorithm Stochastic Gradient Descent Momentum
Initial Learning Rate (λ) 0.001
Batch size 64
Input Image Size 227 x 227
Weight Learn Rate Factor 20
Bias Learn Rate Factor 20
Maximum Number of Epoch 5

Table 5.5: Initial Configuration of AlexNet

The CNN is trained during five epochs using the SGDM algorithm, which means
the all images in training dataset is passed through the neural network five times
both in forward and back-propagation to find the optimal values of the network’s
parameters. Figures 5.7 shows the process of training using two metrics, training
loss and training accuracy. As it is depicted, the accuracy of CNN is reached up to
99.1% in the training dataset.

Figure 5.7: Accuracy and Lost in the Training Process of AlexNet
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The last step is to assess the trained network, and the evaluation phase provides
a performance metric of the trained model on unobserved data. For the evaluation
phase of the model, test data is utilized in order to create the confusion matrix.
The confusion matrix determines the accuracy of a classification model in the way
of how well it predicts the correct and incorrect class for the test data. Figure 5.8
illustrates the confusion matrix of the test dataset.

Figure 5.8: Confusion Matrix of CNN Algorithm

Figure 5.8 represents that the CNN method for classification has an overall
accuracy of 93.46%. The CNN is also able to predict the existence and detect
shape of chirp signal in GNSS signal with an accuracy of 92.65%.

Remarks on CNN result:

• As reported in section 5.2.1, the CNN technique is applied on the grayscale
images, which includes the spectrum of the signal, as an input of the algorithm

64



Methodology and Result

to apply the classification of chirp signals. As expected the obtained result is
faced higher accuracy in contrast to statistical analysis.

• Due to the fact that there are many convolutional layers, including lots of pa-
rameters such as weights and biases, therefore the increment of computational
time and complexity in the analysis of data will be expected. As the next
point, the CNN technique has a high accuracy in image classification which is
our target.

• The main privilege of using CNN over the statistical approach is feature
selection done by convolutional layers. Due to the redundant attributes and
a large amount of input data in original data sets, feature selection is an
important technique for improving neural network performance which uses
several convolutional layers to detect the most significant features.
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Chapter 6

Conclusion

GNSS signals are really at risk of being interfered with by various intentional and
unintentional interferences, which will cause degrading accuracy or complete lack
of positioning. Hence, in order to acquire high accuracy in positioning, it is critical
to detect and recognize different types of interference in GNSS signals.

This dissertation ended a full-field analysis method, which focuses on chirp
jammers detection based on the two different machine-learning algorithms. The
selected machine learning algorithms to perform classification on datasets were
based on literature studies and other research results.

Firstly, the K-means clustering technique belongs to the unsupervised machine
learning types. Since it is an unsupervised algorithm, it can overcome one of the
significant limitation aspects of supervised techniques: the necessity of labeled
datasets representing interference and interference-free conditions. Our achieve-
ments related to the study on four different datasets (section 5.1.3) indicate that
the research models based on K-means failed to produce interpretable solutions.
Although K-means has simplicity in implementation (referring to section 5.1), it
yields poor outcomes in terms of performance accuracy. In fact, the obtained result
of this approach states that the final output has a high dependency on the chosen
statistical parameters and the number of features.

As the second implemented algorithm, we developed a methodology in order to
identify and classify the chirp interference based on the analysis of the spectrum of
the signal. Hence, in this scenario, the datasets included spectrum images. Based
on the different studies, the CNN method reportedly has a good performance in
image classification problems. This seems to be matched with our result of applying
this algorithm to the dataset.
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It has to be noted that two distinct algorithms based on two separate approaches
and datasets are investigated to achieve the desired purpose (presence of chirp and
classify it). A brief consequence obtained from a study on their implementation
and results demonstrates although it does not make sense to compare two different
approaches, it is possible to achieve a better outcome with respect to choosing a
more proper algorithm. In fact, the main conclusion represents that regardless of
the specific capability of different ML algorithms, there is no preferred detection
method. Detection reliability depends on many factors, mainly the characteristics
and number of observed data in the dataset and the desired objective.
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Appendix A

Chirp Shapes

Many different types of signals are characterized as a chirp. The following sections
describe the definitions of the different categories used in the thesis.[68]

A.1 Wide sweep

Spectrum plot:

• show wide variation in power levels at
all frequencies

• Often see shape of reference spectrum
defining bottom edge of power levels

Spectrogram:

• Clearly defined and separated linear (or
slightly curved) diagonal lines across
wide frequency range

• Most commonly show frequency increas-
ing with time

Table A.1

Figure A.1: Wide sweep - Slow(2 to 3 chirps per 100 microseconds) [68]
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Figure A.2: Wide sweep - Medium(4 to 6 chirps per 100 microseconds) [68]

Figure A.3: Wide sweep - Fast(8 to 12 chirps per 100 microseconds) [68]

Figure A.4: Wide sweep - Rapid(more than 12 chirps per 100 microseconds) [68]
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A.2 Narrow sweep

Spectrum plot:

• show increase in power levels across nar-
row frequency range

Spectrogram:

• Clearly defined and separated linear (or
slightly curved) diagonal lines covering
small frequency range

• Most commonly show frequency increas-
ing with time

Table A.2

Figure A.5: Narrow sweep [68]
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A.3 Triangular

Spectrum plot:

• more likely to see raised power over af-
fected frequency range

Spectrogram:

• Clearly see decrease and increase in fre-
quency with time

• Gradient and power level of downward
and upward slopes are more equal than
in sawtooth case

Table A.3

Figure A.6: Triangular [68]
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A.4 Triangular wave

Spectrum plot:

• wide range of powers over affected fre-
quency range

Spectrogram:

• Wave pattern showing clear continuous
increase and decrease in frequency with
time

Table A.4

Figure A.7: Triangular Wave [68]

72



Chirp Shapes

A.5 Sawtooth

Spectrum plot:

• Raised power over affected frequency
range

Spectrogram:

• Linear sweeps in frequency across wide
range

• See decrease in frequency with time as
well as the increase

• Gradient of downward slope is much
sharper than main upward slope, and
less well defined

Table A.5

Figure A.8: Sawtooth [68]
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A.6 Hooked sawtooth

Spectrum plot:

• Raised power over affected frequency
range

Spectrogram:

• Linear sweeps in frequency across wide
range

• See decrease in frequency with time as
well as the increase

• Gradient of downward slope is much
sharper than main upward slope, and
less well defined

Table A.6

Figure A.9: Hooked Sawtooth [68]
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A.7 Tick

Spectrum plot:

• general increased power across the spec-
trum

Spectrogram:

• underlying slow wide sweep (2-3 sweeps
per 100 microseconds)

• Additional structure and variation (tak-
ing form of a tick) overlaying the under-
lying slow sweep

Table A.7

Figure A.10: Tick [68]
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A.8 Multi tone

Spectrum plot:

• Multiple distinct tones with high power
at different frequencies

Spectrogram:

• multiple closely spaced near vertical lines
in the region of affected frequency

Table A.8

Figure A.11: Multi Tone [68]
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