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Abstract 
 

Starting from the electromyography, usually recorded on the surface of the skin, 

a prosthesis can be controlled following a classical step-flow. By adding a real-

time pre-processing to a single-channel surface electromyography, a new signal 

is obtained: the deconvolution, which provides an estimation of the firing rates 

of the muscle units involved in the motion. In this work, after giving an overview 

of the classical pattern control strategies, we resolved a classification problem 

with both the electromyography and the associated deconvolution. The problem 

is: 10 motion classes, 2 recording channels on 10 healthy subjects. Classical time-

domain features are extracted from the signals and reduced by Mutual 

Component Analysis, and the classification is done by both a Support Vector 

Machine and a k-Nearest Neighbours. The overall results of this work are that 

the classification results are better and more robust when using the estimation 

of the firing rates than the classical signal. Even if deeper insight in this new 

technic is required to state a clear advantage over the electromyography, this 

preliminary work gives promising outcomes for a further use of the 

deconvolution as prosthesis control technic.   
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Glossary 
 

ANN: Artificial Neural Network 

AP: Action Potential 

BSS: Blind Source Separation 

DoF: Degrees of Freedom 

EMG: Electromyogram 

FD: Frequency Domain 

GMM: Gaussian Mixture Model 

HH (model): Hodgkin-Huxley (model) 

IAV: Integrate Absolute Value 

ISI: Inter-Spike Interval 

IZ: Innervation Zone 

kNN: k Nearest Neighbours 

LDA: Linear Discriminant Analysis 

MAV: Mean Absolute Value 

MCA: Mutual Component Analysis 

MU: Motor Unit 

MV: Majority Voter 

PCA: Principal Components Analysis 

RMS: Root Mean Square 

RTE: Recruitment Threshold Excitation 

SSC: Slope Sign Change 

STFT: Short Time Fourier Transform 

SVM: Support Vector Machine 

TD: Time Domain 



6 
 

TFR: Time-Frequency Representation 

ULDA: Uncorrelated LDA 

WL: Waveform Length 

WPT: Wavelet Packet Transform 

WT: Wavelet Transform 

ZC: Zero Crossings 
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Introduction 

 

For several decades now, myoelectric prostheses have been under investigation. 

Indeed, these devices allow people who lost a limb to partially recover motion 

capabilities, such as grasping for arm amputees or walking for leg amputees, and 

so to improve their quality of life. Body-powered mechanical prostheses, which 

are control by the power of the patient’s residual limb, can be used by patients 

to retrieve some functions [1] [2]. These devices are simple but cannot 

reproduce a big range of motions: for example, the hand is usually modelled by 

a hook that perform only grasping functions. On the other hand, myoelectric 

artificial limbs can be controlled by recording the muscle activity, and the 

motions are done thanks to actuators and external power sources [2]. In 1955, 

Batty showed the possibility to use the electromyogram (EMG) to control an 

artificial upper limb [3]. Indeed, even in the case of a patient who had to undergo 

an amputation, the central nervous system still “controls” the phantom limb by 

sending set of impulses. Recording them thanks to electrodes allows to get 

necessary information to control a device. 

If the first models of prosthesis were simple on/off devices (the only motion 

available usually being the grasp for upper-limb prostheses) controlled by the 

amplitude of the recorded EMG [2] [3] [4], pattern classification with multiple 

degrees-of-freedom (DoF) have been developed for the last decades [5]: many 

different patterns can be reproduced today. The motivation is simple: covering 

a wider range of motions leads to a better user experience, since it tends to 

mimic an actual limb and everyday life tasks can be performed [6]. Researchers 

can now control each finger individually with a marvellous success rate (the rate 

of correctly classified motions) [7] [8]. Nevertheless, the output of the devices 
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becoming more complex, the classification algorithm could not be based only on 

an amplitude threshold anymore, and more sophisticated methods are needed. 

In this scope, even if several technics to decipher the intended movement and 

to control a prosthesis from the EMG have been proposed [2], we will focus on 

pattern recognition classification which follows a classical step flow [2] [9]:  

1. Pre-processing of raw EMG  

2. Extraction of features 

3. Selection/reduction of the features set  

4. Classification  

5. Post-processing  

This succession of computations is shown on Figure 1. 

 

Even if good performances are achieved in the frame of pattern control, many 

improvements can be done, and many researchers are currently working to 

propose technics that could enhance the prosthetic control. The specialists 

advocate for few improvement axes. The first one is continuing to increase the 

controllable DoF with a low error, to further improve the user experience by 

approximating better an actual limb, without confusing the different motions 

Figure 1-Classical flowchart of the resolution of a pattern classification problem for limb movements 
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[10] [11]. The control should also be as robust as possible toward non-ideal 

conditions and the changes of EMG [11]: in the presence of sweat or when the 

user is tired, the recorded EMG can vary from the recording in laboratory 

conditions [12] [13] and so degrades the performances of the algorithm. A good 

control should not be sensitive to these changes and should overcome these 

problems that will surely occur during the use of the device. Finally, the 

prosthesis should provide to the user a sensory feedback. Most of devices only 

integrate the feed-forward, i.e. sending the control to the prosthesis, with the 

simplest feedback (the vision of the motion). Closing the loop by adding a 

sensory feedback (adding an applied pressure to the residual limb for example) 

could lead to more efficient control, learning and adaptation [6] [10] [11].  

 

In this work, we will give a non-exhaustive overview of the prosthetic pattern 

control, with the strategies most used. We will first recall the basis of muscle 

anatomy, how the contraction works and how we can record this activity. Then, 

for each stage of the classical pattern control, we will explain the purpose of the 

step and present the most used technics in the literature. Finally, a promising 

method of control, based on the deconvolution of the EMG, will be introduced.  
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I Muscle Contraction, EMG and detection 

 

Before diving into the description of the classification, it is essential to 

understand the mechanisms of a limb gesture. The movements done by an 

individual can be divided in two categories: reflexes and intentional movements. 

The first ones are rapid responses of the body to an external stimulus, and they 

are done “automatically” by the subject: the command comes from the 

peripheral nervous system (the spinal cord), not from the central nervous 

system. Since the prosthesis aims at reproducing the movement intended by the 

user, the reflexes will be kept out of this subject and we will only focus on 

voluntary contraction.  

Understanding how a limb moves, what happens in the muscle during a 

movement, is a key to understand the control of a prosthesis. We will first look 

at the anatomy of a muscle, then we will present how a voluntary movement is 

commanded, and we will finish this part by examining how a monitoring of the 

activity can be achieved. Most information presented here are taken from [14], 

when not specified otherwise. 

 

1. Anatomy 

 

The organs responsible for the movements are the skeletal muscles. By 

contracting, either the length of the muscle change (isotonic contraction) or a 

tension is created (isometric contraction). In either case, the tension or the 

movement is transmitted to the bones and makes the concerned limb move in 

the case of an isotonic contraction, as bones and muscles are attached to each 
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other thanks to tendons. Note that other types of muscles (not attached to any 

bone) exist, the cardiac muscle for example is not responsible for a motion, but 

we will only focus on the skeletal muscles here. 

A muscle can be described as several muscular fibres aligned in the longitudinal 

direction of the organ. They are the parts of the muscle that contract, and so 

induce the motion of the limb. Indeed, at the end of the fibres, there are tendons 

fixed to the bones which put them into motion. These fibres can be classified in 

two categories [15]: 

• Type I, or red fibres: rich in blood and oxygen, they can contract for a long 

period of time, but can only produce little force twitches. 

• Type II, or white fibres: poor in blood and oxygen, they can produce high 

force twitches, but only for short periods of time. 

The fibres are also linked to the central nervous system (where the order of 

movement comes from) by the neuromuscular junctions in the innervation zone 

(IZ), i.e. where the nerves who propagate the information of the wanted motion 

are linked to muscular fibres. 

The contraction of a given fibre is induced by an electrical signal propagating 

along it, called Action Potential (AP) [15]. This is a brief depolarization of the 

membrane of a muscle fibre or of a neuron, and it causes the aperture of voltage-

sensitive and selective channels allowing the flow of certain ions across the 

membrane of the cell. Especially, calcium ions Ca2+ flow into the fibre cytoplasm, 

which induces the release of more calcium ions, and eventually the 

concentration of these ions allows actin-myosin activity which leads to the 

contraction [16]. 

The smallest functional unit in the muscle is named motor unit (MU). Each 

muscle is usually formed by several MU, themselves formed by a neuron and the 
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muscular fibres innervated by it [15]. For a given motion wanted by the patient, 

the nerves activate the needed units that will contract according to the 

command (to the force for example). The MU can also be divided in two 

categories: the small ones, involved in all contractions, and the large ones only 

involved in intensive contractions.  

Now we have reviewed the main physiological elements involved in a 

movement, we can go deeper in the explanations of what happens when a 

contraction is commanded by the patient. 

 

2. Muscle contraction and electrical command 

 

Let us imagine a patient who wants to perform a gesture. Thus, the central 

nervous system, especially the brain, sends an order to contract the concerned 

muscles through nerves. This order is under the form of a bio-electrical signal. As 

we said before, a muscle is divided in several MU, and not all of them are 

concerned with every contraction: it depends on the force level required. Once 

the concerned MUs get excited, an AP is created and propagates along the 

muscle fibres. We will see here the most accepted models explaining these 

phenomena. 

 

a. MU recruitment 

 

The force developed during contraction depends on two parameters: the size of 

the involved MU and their firing rate, which is the frequency at which the 

neurons stimulate the fibres. The Henneman’s size principle states that the 
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smallest MU, able to furnish only small force levels, are the ones recruited first 

and as the commanded force increases, the bigger units are recruited in addition 

[17]. Fuglevand et al. [18] proposed a model to describe the activation of the MU 

and the behaviour of the fire rate. In this model, a recruitment threshold is 

assigned to each MU of the considered pool. If the command, related to the 

wanted force exceeds, the recruitment threshold of a unit, the MU starts firing 

(i.e. being excited by the neuron and contracts). Researchers have noted that 

there were many small units always (or almost always) active, so with a low 

threshold, and as the force level (and so the command) increase, only few big 

units become active. To fit these observations, a model of threshold repartition 

was proposed, which distributes the threshold of each MU with an exponential 

law: 

RTE(i) = eαi (I. 2.1) 

 

With: 

• RTE(i): recruitment threshold excitation of the ithmotoneuron 

• i: index identifying the motor neuron 

• α: coefficient to set the range of threshold value. It is given by:  α =  
ln (R)

n
 

with R the desired range of threshold and n the number of motoneurons. 
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Once we established which units are involved in the motion, we still must 

determine at which frequency they will discharge (i.e. get excited by the neuron,  

contract and return to idle state). When the excitation level reaches the 

threshold of a unit, the MU starts firing at its minimum rate. Studies tend to show 

that this minimum frequency is the same for all MU, regardless their size or their 

recruitment threshold [19] [20]. It is approximately 8 impulsions/s [20]. As the 

input level increases, the firing rate increases. The best input-output relationship 

is a single linear model [21], with a gain uncorrelated with the size of the units, 

until it reaches the maximum frequency of the unit and the output rate 

saturates. The saturation rate depends on the MU and is ranged between 20 and 

45 impulsions per seconds [19]. 

Figure 2-Recruitment Threshold Excitation of a pool of neurons according to Fuglevand’s 
model. The Range of Recruitment is arbitrarily set to 50 (arbitrary unit), and the RTE is given 

in an arbitrary unit. 
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This model can be mathematically written under the form:  

FRi(t) = {

0 if E(t) < RTE(i)

gE ∗ [E(t) − RTE(i)] + FRmin if RTE(i) < E(t) < RTESAT(i)

FRmaxifE(t) > RTESAT(i)
(I. 2.2) 

With: 

• FRi: firing rate of the ith motor neuron  

• E(t): excitation level 

• gE: gain 

• RTESAT(i): threshold for which the maximum firing rate is reached for the 

ith motor neuron 

The last part of the model considers that the time between two consecutive 

discharges is variable (a Gaussian noise is added to the inter-spike interval (ISI)). 

Figure 3-Firing rates of the neurons from a pool of 6 neurons, depending on the excitation 
level. Their saturation firing rates are between 20 and 45 impulsions per second. Their RTE 

are given by Fuglevand’s model, with R=10. The gain is 8imp/s. 
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So, MU are being activated and AP are created in these at a certain frequency. 

We will now try to understand the behaviour of the action potential in the fibres. 

 

b. Action Potential creation  

 

In an excitable cell, a neuron or a muscle fibre, the membrane at rest is polarized: 

in the case of muscle cells, the potential at rest inside the cell is negative 

compared to the extracellular fluid. When the cell is excited, a brief 

depolarization of the membrane occurs: that is the action potential.  

The voltage between the two side of the membrane is induced by the 

concentrations and the fluxes through the membrane of two main ions, sodium 

ions Na+and potassium ions K+. At rest, Na+concentration is higher outside the 

cell than inside, and K+ concentration is higher inside than outside. This 

condition is kept by the activity of the Na+ − K+ pump. Selective channels, 

allowing only one type of ion to pass through, are present across the membrane 

and the concentration gradient of each species determines the flux of them in 

their respective channels, by diffusion. This flux is however counteracted by 

another flux in the opposite direction, as a voltage difference is generated by the 

motion of the ions. This flux opposes the motions of ions. The equilibrium is 

reached when these two fluxes are equal [22]. However, when the cell gets 

excited, the permeabilities of the membrane toward ions change for a brief time, 

which leads to the depolarization of the membrane. 

Ions channels can be either open or closed. Let a selective channel be open. The 

total flux is obtained with addition, with their respective directions taken into 
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account, of the diffusive flux, given by Fick’s law, and the electrodynamic one, 

given by Planck’s law. The Nernst-Planck equation is obtained as a result: 

J = −D ∗ (∇c +
zc

RT
F∇ϕ) (I. 2.3) 

With: 

• J: diffusion flux density (mol.m−2. s−1) 

• D: diffusion coefficient (m2. s−1) 

• c: concentration of the species (mol.m−3) 

• z: valence of the ionic species 

• R: the universal gas constant (J. K−1. mol−1) 

• T: temperature 

• F: Faraday’s constant (C.mol−1) 

• ϕ: Electrical potential (V) 

 

We established the equilibrium is reached when the flux is 0. If we consider the 

problem in a 1D version, we get as an equilibrium condition: 

J = −D ∗ (
dc

dx
+

zF

RT
c
dϕ

dx
) = 0 (I. 2.4) 

That can be solved through a separation of variables methods, and the solution 

is the Nernst potential [22]: 

Veq = Vi − Ve =
RT

zF
ln (

ce

ci
) (I. 2.5) 

Nevertheless, this would be the voltage at the equilibrium if only one species of 

ions was present. In the presence of several ion types, if the Nernst potential of 

an ion is reached, the other ions are not in their equilibrium state. So, the actual 

rest potential is a weighted sum of each Nernst potential, no ions are in 
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equilibrium and they are still flowing through the membrane, but nonetheless 

the system reaches a dynamic equilibrium. Many models have been proposed to 

describe this state: a complete one considering a system of coupled equations 

(Nernst-Planck and Poisson equations), the one proposed by Goldman, Hodgkin 

and Katz under few assumptions [23] [24] and the linear model proposed by 

Hodgkin and Huxley (HH model) [25], the simplest. 

In the HH model, the membrane of the excitable cell is modelled a parallel 

association of a capacitor (keeping ions on each side of it), conductors (modelling 

the channels by a conductance, so one conductance for each ion), voltage 

generators (representing the gradient of concentration, modelled by the Nernst 

potential for each ion) and two current sources (modelling the ion pumps). 

 

The mathematical model is: 

Figure 4-Hodgkin-Huxley model for transmembrane voltage. 
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I = Cm

dVm

dt
+ gK(Vm − VK) + gNa(Vm − VNa) (I. 2.6) 

With: 

• Vm: voltage across the membrane 

• VX: Nernst voltage of the X species 

• gX: channel conductance for the X species 

• I: total membrane current per unit area 

The potential difference between the outside and the inside at equilibrium is the 

weighted sum of the Nernst potentials of each ion:  

Vm
eq

=
∑ giVi

eq
i

∑ gii

(I. 2.7) 

 

At rest, this potential is around −70mV [15].  

 

As we said, channels can be either closed or open. The kinetics of aperture and 

closure of the channels change the permeability of the channels, thus the 

conductance in the HH model. Therefore, it is essential to understand the 

dynamics of the channels to understand how the AP works. 

Sodium and potassium channels can both be described by sequences of four 

subunits. A sodium channel is formed by three subunits of type 𝑚, which are 

activation gates, and one subunit of type ℎ, which is an inhibition gate [25]. Each 

of these subunits are independent and can be either closed or open. The 

conductance of the sodium is denoted: 

gNa = g̅Nam
3h (I. 2.8) 
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With: 

• m, h: variables describing the state of their respective channel (0 when 

closed, and increasing as the unit closes) 

• g̅Na: a constant 

 

The potassium channel is, on the other hand, formed by four independent 

subunits of type 𝑛. The conductance of the potassium is given by: 

gK = g̅Kn4 (I. 2.9) 

 

With: 

• n: variable describing the state of the n units 

• g̅K: a constant 

 

The dynamics of these subunits can be described by the following equations: 

ṁ =
m∞(V) − m

τm(V)
(I. 2.10) 

ḣ =
h∞(V) − h

τh(V)
(I. 2.11) 

ṅ =
n∞(V) − n

τn(V)
(I. 2.12) 
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The steady-state values of these variables, as well as the time constants for the 

aperture/closure, depend on the voltage across the membrane. We will not give 

the analytical dependency [25] here, but we can give a qualitative behaviour:  

• m∞ and n∞, representing steady states of activation gates, increases with 

the voltage. So, the m and n subunits are closed in rest conditions and tend 

to open when V rises (so during the depolarization). 

•  h∞, representing steady states of inhibition gate, is high at rest and 

decreases when the voltage increases. The h subunit is so open during rest 

and tends to close during depolarization. 

• τm is much smaller than τh and τn. The consequence is that the sodium 

channels open rapidly (m open before h close), faster than the potassium 

ones. 

 

At rest, in a muscle fibre, more potassium channels than sodium channels are 

open (for low V, n∞
4  >  m∞

3 h∞). Hence, adopting the HH model, the voltage 

across the membrane is negative since the Nernst potential of potassium is 

negative (see equation (I. 2.7)).  

Let a depolarization, i.e. an increase in the membrane voltage due to the 

excitation from the neuron, occurs. If the depolarization stays below a given 

threshold, the conductances of the channels do not change much, and the 

system returns to its equilibrium soon. On the other hand, if the threshold is 

reached by the depolarization, the channels begin to open or to close depending 

to their nature. The m subunits of the sodium channel, the fastest ones, begin to 

open while the h subunit remains open and the n subunits remain closed. During 

this phase, the conductivity of the sodium channel increases, leading to a further 

increase of the voltage as the sodium can flow inside the cell and the potassium 
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cannot flow outside (positive feedback). After a sufficient time, the slower 

subunits begin to change state: the inhibition h units close and the potassium n 

units open. The effect is a return to rest state, as the chemical equilibrium can 

be restored [22].  

This is the mechanism of the action potential in the muscle fibre. Note that, due 

to the slow dynamic of the gates, a hyperpolarization (voltage below the rest 

potential) occurs after the repolarization. As long as the rest conditions are not 

restored, the cell remains insensitive to a second excitation (the n and h units 

are still open), which explains the maximum firing rate of a fibre [25]. 

This is what happens locally during an AP. Nevertheless, it does not occur at the 

same time everywhere in the fibre: it propagates, as other physical signals. 

 

c. Propagation of the AP 

 

The cable theory has been developed [26] to model the propagation of the AP 

along the muscle fibres. This theory aims at computing the voltage and the 

Figure 5-Model of a muscle fibre in the cable theory 
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current wherever in the fibre, by modelling it with an electrical circuit. The fibre 

is discretized in several units, that we will call cells here, linked to each other 

with distributed resistances defined along the axon of the fibre, inside and 

outside it. Each cell represents the current flowing through the membrane of the 

fibre. HH model can be used. 

When a portion of the fibre is depolarized, i.e. the voltage at the poles of a cell 

changes sign, a current starts flowing through this given cell. Consequently, 

return currents appear in the surrounding cells, creating circles of flowing 

currents and depolarizing these cells. Thus, the AP propagates to the 

neighbouring cells, except the ones which has been previously depolarized 

(because of the long time-constants of the channels we already mentioned in 

I.2.b-Action Potential creation). So, the AP goes only toward one direction. 

In the cable theory, the distance between each cell is dX, the resistances per unit 

length are denote ri and re for respectively the interior and the exterior of the 

fibre, and the capacitance per unit length of the membrane is cm. If we denote 

p the perimeter of the axon, IIon a term describing the I-V relation of the ion 

channels, and V the transmembrane voltage at position X, the cable equation is 

given by: 

1

ri  +  re

∂2V

∂X2
= p(cm

dV

dt
+ IIon(V)) (I. 2.13) 

The voltage evolution of the action potential along the fibre axis can be modelled 

as an exponential decay. The action potential is initiated at the IZ and propagates 

to the tendons: the space variable along the fibre, z, is used: 

Vm(z) = {
Az3e−z + B for z ∈ [zmin; zmax]

0 otherwise
 (I. 2.14) 
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With: 

• A =  96mV.mm3 a constant 

• B =  −90mV a constant 

• zmin and zmax the bounds’ coordinates of the membrane  

The transmembrane current by unit area is, according to cable equation, 

proportional to the second derivative of the transmembrane voltage. The 

solution can be approximated by 3 Dirac functions, thus leading to the tripole 

current model, proposed by Rosenfalck [27]. In the depolarized zone, the tripole 

current models the currents entering and exiting the fibres with respectively a 

delta δ Dirac function of amplitude I (current sink), and two delta Dirac function 

with respective amplitudes of 
2

3
I, 2mm ahead of the sink, and 

1

3
I, 4mm behind 

the sink. The two last currents are called current sources. These three currents 

propagate toward the end of the fibre, conserving the distance between them 

and their amplitudes. When the first pole arrives to the tendon, it stops 

propagating while the two other poles continue moving toward the tendon. 

When the second pole reaches the end of the fibre, the two poles superimpose: 

the outcome is a delta Dirac function of 
1

3
I. This resulting pole does not move, 

and the tripole becomes a dipole. The last pole continues its propagation until 

arriving to the tendon. It superimposes with the other pole, and the AP 

extinguishes.  
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The speed at which the AP propagates in the fibre is called conduction velocity 

(CV). It is a value of interest, as it is related to the type of fibre (fast fibres have 

larger CV than slower fibre) and the fatigue. The fatigue is characterized by some 

changes in the properties of the contraction, including the decrease of the 

maximal developed force and of the contraction velocity. These changes induce 

variations in the EMG.  

 

d. Propagation to the skin 

 

The trigger for the muscle contraction is the propagation of an electric signal 

along its concerned fibres. The current arising in the muscle fibres leads to the 

generation of a potential in the surrounding tissues, up to the skin surface: it acts 

like a source in an electromagnetic problem. The problem in the frame of bio-

tissues is called Volume Conductor problem, and we will describe it here. 

The electromagnetic equations can describe the problem. Given low 

frequencies, a quasi-static approximation can be done. Thus, the dielectric 

Figure 6-Tripole current along muscle fibre in cable theory 
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properties are neglected, and the volume conductor can be described with only 

the conductivity tensor. Especially, we are in presence of a source, the electrical 

behaviour of the volume can be described by Poisson’s equation [28]: 

∇ ∙ (σ∇ϕ) = −I (I. 2.15) 

With: 

• ϕ: the electrical potential 

• I: the current density of the source 

• σ: conductivity tensor 

The conductivity tensor can have different properties given how the problem is 

modelized. In a homogenous, isotropic, and infinite medium, the tensor is 

constant in time and space [29] (simplest model possible). More realistic models 

include planar [30] or cylindrical [31] layers (layers of muscle, fat, or other 

physiological tissues). In the case of several media, a conductivity tensor is 

defined for each layer. 

To get a full model of the volume conductor, boundary conditions and the 

geometry of the system must be considered together with Poisson’s equation. 

The usual boundary condition is given in (I. 2.16), as the volume is considered 

insulated and no current can exit it. 

J = −σ∇ϕ = 0 on ∂Ω (I. 2.16) 

With: 

• ∂Ω: the boundary of the volume conductor 

Moreover, if several layers are considered, we must set the conditions at the 

interfaces in order to have a matching solution for all media. These conditions 
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are the continuity of the potential and of the current flow (see (I. 2.17) and 

(I. 2.18)). 

ϕ|− = ϕ|+ (I. 2.17) 

σ∇ϕ ∙ n⃗ |− = σ∇ϕ ∙ n⃗ |+ (I. 2.18) 

With: 

• -,+: designate each side of the interface 

• n⃗ : normal vector at the interface 

An analytical solution cannot always be derived from this problem. We can 

compute one only under specific conditions [29] [30] [32]. Otherwise, numerical 

methods, such as finite element modelling, are used [28] [33].  

 

3. EMG detection 

 

Muscle activity is initiated by an electrical signal, triggered by the nerves, which 

propagates along muscle fibres and a potential is created in the whole 

conductive volume around the concerned muscle to the skin. Measuring this 

electrical signal gives an insight of the muscle activity and thus allows medical 

diagnosis [34] and prosthesis control.  

The objective of this section is to give an overview of the recording technics and 

their inherent problems. 

 

a. Intramuscular EMG 
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Since the bioelectrical signal, initiator and witness of the contraction of a muscle, 

originates inside the muscle fibres, the first idea is to record it directly from the 

source.  

To do so, it is needed to place the electrode inside the muscle. The sensor tip is 

placed near the muscular fibres of interest and directly record the AP 

propagating along it. The sensors are usually on the end of thin wires or of a 

needle. The recorded signal is very selective [35], since only one muscle is under 

investigation (the detection volume, i.e. the volume for which a reliable potential 

can be obtained, is very small and so only local tissues are monitored). The 

pattern classification based on intramuscular EMG gives good results compared 

to surface EMG [36]. 

Nevertheless, the technic is invasive and requires a surgery to place the 

electrode inside the muscle of interest. This is the main drawback of the 

intramuscular EMG, and it is why most of researchers use surface EMG. 

 

b. Surface EMG 

 

As we said in the description of the volume conductor problem, under the effect 

of the source, namely the AP, a potential is created inside the tissues, from the 

muscular fibres to the skin surface. Therefore, with a proper equipment, it is 

possible to record the activity of the muscle on the surface of the skin, placed on 

the limb in motion. We will explore several aspects of this technic in this section. 

The information we present here are taken from [37] when not specified. 

 

Electrode structure 
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There are different types of surface electrodes. The structural factors that can 

vary between them are their shapes, their physical dimensions, the technology, 

and the materials used. Thus, there are many ways to classify the available 

electrodes on the market (wet vs dry electrodes for example, based on either if 

the electrode includes a layer of conductive gel or not). In the frame of the 

recording of bio-signals such as surface EMG, the usual distinction is done 

between polarizable and non-polarizable electrodes. The first ones are 

characterized by a strong capacitive behaviour. This feature of polarizable 

electrodes is due to a double layer of charges at the metal-electrolyte interface. 

Consequently, there is no charge flow through the electrode-skin interface. With 

this kind of device, a displacement of the metal surface with respect to the 

electrolyte solution, due to the contraction of the muscle for example, induce a 

movement artifact (i.e. a change in the surface potential). Thus, they are not 

suitable for the recording of EMG. So non-polarizable electrodes are used.  

Figure 7-A) Electrical model of a surface electrode plus the conductive gel. B) Model of the 
whole electrode-skin interface. 
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The interface between the non-polarizable electrode and the skin can be 

modelled by a non-linear RC circuit, whose components depend on both 

frequency and current (see Figure 7). This whole model is obtained by 

considering separately the electrode-electrolyte and the electrolyte-skin 

interfaces, and then serially connect them.   

 

Disposition of the electrodes 
 

We established earlier that the AP generates a potential on the skin. A reference 

potential is defined as the potential at a point far enough to be out of the 

source’s influence. The simplest way to record the surface EMG at a given point 

is to measure the voltage between the chosen point and the reference point: 

this is the monopolar configuration. This configuration contains the whole 

information that can be got from the detection volume.  

Other configurations are possible. These alternatives use more than one 

detection electrode (i.e. several monopolar signals), and the resulting signal is a 

linear combination of the inputs. The distance between two electrodes is the 

same everywhere and is called interelectrode distance (denoted IED). Doing so, 

the output acts like a spatial filter. The most popular dispositions are the Single 

Differential (SD), the Double Differential (DD) and the Laplacian. They 

respectively act like the first spatial derivative, the second spatial derivative and 

the double derivative along two normal directions.  The linear combination of 

the signals from the electrodes is represented in matrix, in which non-zero 

elements represent the place of an electrode and the coefficient associated to 

its signal. Two adjacent numbers mean the two electrodes are away of the IED 

distance. The representations of the three filters we mentioned are given by: 
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Single differential: (−1   1) 

Double differential: (−1   2  − 1) 

 Laplacian: (
0 −1 0

−1 4 −1
0 −1 0

) 

 

The motivation for using such filters is the poor spatial selectivity of surface 

recording: indeed, with a monopolar configuration, the detection volume is 

large, so the contributions of many MU are included in the recording and it is 

hard to distinguish the different contributions. Using a spatial filter enhances the 

selectivity of the device by reducing the detection volume, and the different 

sources become more separable.  

More recent researches use a further improvement of the network of electrodes 

by recording high density EMG (by using arrays of close, small electrodes). It 

provides temporal and spatial information about the electrical activity of the 

muscle, in particular a precise location of the IZ [38], estimation of AP’s 

properties [39], or estimation of MU location [40]. 

 

Amplification 
 

Given the low level of the EMG, an amplification stage is needed. A differential 

amplifier is used. The usual requirements for the amplification after recording 

are [41]: 

• A high gain (typically between 1000 and 100 000) 
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• Low input noise density. Both this noise and the wanted signal are 

amplified, thus a noisy input will contaminate the whole chain. Typical 

wanted values are 1 − 60nV/sqrt(Hz) and 1 − 100fA/sqrt(Hz). 

• High input impedance. It must be at least 100 times higher than the largest 

impedance of the electrode-skin interface. This is needed to get a reliable 

measure of the potential by reducing the effect of the electrode-skin 

impedance on the measure. 

• High common mode ratio rejection (CMRR). An ideal differential amplifier 

amplifies only the difference of the two input signals (with a gain Ad). 

Nevertheless, a real amplifier does not fully reject signals present on both 

inputs (in particular, a capacitive coupling with the power line creates an 

interference voltage) and the common part is also amplified, with a gain 

Ac. The presence of this common components should be kept as low as 

possible. The CMRR is given by: CMRR =  20 log10 (
Ad

Ac
), and it should be 

around 100dB to limit power line interference. 

 

Usual problems arising 
 

One of the main problems of surface EMG is the low selectivity due to the large 

detection volume. So, the signal recorded by one electrode contains the 

contributions of several MU, and not only the ones from the targeted muscle. 

Furthermore, when several recording channels are placed on the limb of a 

patient, crosstalk between them arises. It means that signals from different 

channels have components in common and that they are not independent. 

Therefore, the information extracted from these signals will not independent 
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neither. As we said, spatial filtering can counteract the low selectivity, and 

crosstalk can also be decreased, by increasing the IED for example [42]. 

Moreover, there is an intrinsic noise in the electrode. Indeed, every electrical 

equipment creates electrical noise, and the electrode used to record the EMG is 

no exception. This is due to the charge carriers’ flux at the metal-electrolyte 

interface and to the change of impedance of the electrode-skin interface. The 

impedance depends on the design of the device (on the surface notably [43]) and 

on time (drying of the gel, change in the properties of the skin or of the interface 

[44] [45]). Thus, the measure will be noisy in any case. This noise has a frequency 

range from 0Hz to several kHz with a level of 1 − 4μVRMS.  

 

Conclusion 

 

A voluntary contraction is accompanied by a bio-electrical signal along the 

muscle fibres, the Action Potential, that creates a potential in the volume 

surrounding the contracted muscle. This potential goes to the surface of the skin 

and can be measure with the proper equipment. The recorded signal gives an 

insight of muscle activity and can be used in the frame of prosthesis control.  

The simpler models of artificial limb implement a single DoF controlled by a 

threshold on the EMG level. To control more than one DoF, a more complex 

process must be implemented. 
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II Pre-processing of data 

 

Once the EMG is recorded, the classification process can begin. The first step is 

to prepare the data to ensure good results. This pre-processing is usually the 

windowing of the EMG and the filtering. 

 

1 Windowing 

 

The windowing of the time data is simply the division of it into a subset of smaller 

time series. In this way, the data will not be considered instantly or as the whole 

recording, but as a succession of smaller time series of a given length.  

For example, let us imagine we recorded a 5s EMG from a subject doing a given 

motor task. We divide it into a subset of windows, of 200ms for example. Thus, 

the classifier will not give results for a continuous time, but there will instead be 

an output motion class (i.e. an assigned motion, among the motions that can be 

reproduced by the device) for each discrete window. We will now see why this 

windowing is applied, and what are the main procedure used. 

 

a. Why dividing the EMG in several time periods? 

 

The EMG is, by nature, a stochastic [46]. This random nature makes the 

instantaneous value of the record unusable. If instead of using the value of the 

EMG an instant t we take the record during a period, we can compute properties 

over this time span and thus overcome this problem.  
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Some researchers have described the real-time constraint of the prosthesis: the 

computational delay of the prosthesis should be kept under 300ms, otherwise 

the user feels the delay and the reproduced motion seems unnatural [47]. To 

have a response time of the device under this time value, the length of the time-

windows must be less than 300ms: having a greater window would violate the 

real-time requirement, leading to a disturbing user experience. 

 

b. Disjoint windows 

 

The most natural division of the raw signal is surely the one called “disjoint 

windows” in the literature. With this method, each time window begins when 

the previous ends, thus there is absolutely no overlapping between the different 

time divisions. This explanation will make more sense with an example. 

Let us choose a window length, for example 200ms, and an EMG recording 

starting at t = 0s. The first window will be from t = 0s to t = 200ms; the second 

window will start at t = 200ms and ends at t = 400ms; the third will start at 

t = 400ms and so on and so forth.  

This strategy is clearly the simplest way to divide the time span of our initial full 

signal. Nevertheless, it is generally suboptimal: indeed, if the required process 

time, τ, is smaller than the window size, winsize, then there is a time span of 

(winsize − τ) where the computing capacity remains unutilized [47]. A solution 

to better use the capacity of the computational unit is to use a sliding window 

scheme. 
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c. Sliding Windows 

 

As we said, the main motivation for the choice of using sliding windows is the 

optimization of the computational capacity of the device. In this strategy, unlike 

the previous one, the windows overlap each other, to have a denser stream of 

data. Doing so, the classification can be optimized to have almost no time 

without any computation.  

Englehart defined the critical parameters of the windowing [47]: the window 

cannot be slid by less than the process time for the classification of one time unit. 

For example, if the required classification time of a 200ms window is 20ms, the 

minimum time for which the window can be slid is 20ms. In that case, the first 

window will start at t = 0s and end at t = 200ms. The second window will start 

at t = 20ms and end t = 220ms. The third time window is t = 40ms and end at 

t = 240ms, and so on. In that example, the stream of data is optimized: a new 

Figure 8-Temporal partition of a signal according to the disjoint windows scheme. The 
numbers represent the different time spans of each window. 
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process starts as soon as the previous process ends, and the computational unit 

is always working. The stream is as dense as possible, and the classifier can 

provide an output every 20ms instead of every 200ms with disjoint windows. 

Note that the increment of the window is not necessarily equal to the process 

time and can be between this lower bound (20ms in our example) and the upper 

bound that is the size of the windows (200ms here). 

 

This method leads to better classification results, denser stream of data, but also 

increase the computational cost [47] as we could have expected. The parameters 

can be chosen in the way to get the best compromise between these different 

aspects. 

 

Figure 9-Temporal partition of a signal according to the sliding windows scheme 
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2 Filtering 

 

The raw recorded EMG is usually noisy and cannot be processed as it is. Many 

artifacts appear in the spectrum and contaminate the signal. Chowdhury and her 

colleagues listed the main sources of noise in the EMG [48]. We report them 

here. 

• Inherent noise in the sensor: see I.3.b-Surface EMG. 

• Movement artifact: when the subject moves, the motion can induce a 

noise in the recording. De Luca et al. noted two origins to this noise [49]: 

the first one is when a muscle is contracted, it moves, its length changes, 

changing the relative placement of the electrode above it and inducing a 

voltage change; the second source is the movement of the skin that affects 

the skin-electrode interface. The frequency range of this noise is of the 

order of 1 − 10Hz. 

• Electromagnetic noise: the human body receives electromagnetic 

radiations and behaves like an antenna. As a result, other signals add to 

the recording. The most important artifact to add is the interference from 

the power line, which add an important component at 50Hz (or 60Hz, 

depending on the power grid frequency). 

• Crosstalk: when monitoring the activity of a muscle with a surface 

electrode, the record can capture an EMG coming from a muscle we did 

not intend to capture. The wanted EMG is contaminated by the unwanted 

one, and the first becomes more difficult to interpret. The crosstalk 

depends on physiological parameters, such as fat layer thickness [50] or 

muscle shortening [51]. 
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• Internal noise: degradation of the signal due to several factors 

(anatomical, biochemical, and physiological) that occurs because of the 

number, the depth, and the location of the active muscle fibres. 

• Inherent instability of the signal: because the amplitude of the EMG is 

quasi-random, the components between 0 and 20Hz are considered 

unstable (they depend on the firing rate of the muscle unit, which is quasi-

random in nature). 

To eliminate most of these noises, researchers usually apply two filters. The first 

one is a notch filter, with a cut-off frequency at 50 or 60Hz (depending on the 

frequency of the power line). The second is a band-pass filter to remove the part 

of the signal where the noise prevails. The usual bounds are 20Hz for the lower 

bound, and between 400 and 500Hz for the upper bound. 

 

Once the data are prepared after these two steps, the classification can begin. 
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III Features extraction and reduction 

 

The aim of the pattern classification is to assign a class (i.e. the motion to 

reproduce by the prosthesis, in the case of the prosthetic classification) to each 

window according to the properties, the attributes, of the signal during this time 

span. These attributes are called “features”, and they are the input of the 

classifier, which will assign a class of membership to every window according to 

the features of the signal during the time window. Researches tend to show that 

the choice of the features is a predominant parameter for the classification 

results [52], so this step is crucial. 

We will see here what are the features that are traditionally used in the 

literature, and then we will see the solutions to keep the dimensionality under 

control. 

 

1 Features extraction 

 

Many features sets have been proposed in the literature. The most used are 

surely the Time Domain (TD) features since they require rather simple processing 

with no transformation of the signal. Some researchers also use signal properties 

from the Frequency Domain (FD) and Time-Frequency Domain, such as Wavelet 

transforms (WT). 

 

a. Time Domain features 
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TD features are properties of the signal related to the time-series representing 

the signal, calculated over the observed window. They are the most used in 

research papers focusing on myoelectric control, due to their simplicity (they are 

directly computed from the time-series, without needing transform, unlike the 

FD features involving a Fourier Transform or the WT features) and because their 

meanings are more intuitive. Many different features have been used, it is 

difficult to tell a specific set with features always used, but we will introduce here 

some of the most recurrent ones [5] [53] [54] [55].  

• Zero-Crossing (ZC): this is how many times the zero-amplitude axis is 

crossed during the time-window.  

• Mean Absolute Value (MAV): the mean of the absolute value of the signal. 

• Integrate Absolute Value (IAV): the sum of the absolute value of the signal. 

• Root Mean Square (RMS): square root of the mean of the signal values to 

the square. 

• Slope Sign Change (SSC): how many times the slope of the signal changes 

sign (i.e. how many times the derivative of the signal crosses zero). 

• Waveform Length (WL): it is the cumulative length of the signal. It also 

gives a measure of the complexity of the signal [5]. 

• Willison Amplitude: how many times the change in the signal exceed a 

predefined threshold. It is an indicator of muscle contraction level. 

• Auto-Regressive Model: this states that in a time series, the current output 

can be interpreted as a linear combination of the previous outputs plus a 

stochastic term. The coefficients can be estimated for an EMG, and the 

coefficient can thus be used as classification features. 
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b. Frequency Domain Features 

 

Unlike the previous set, these features require a transformation of the time-

series recorded: the computation of the Power Spectral Density [9] [56] (which 

is the power distribution over the frequency, i.e. the power of each frequency 

component). This can be by several numerical technics, such as Welch’s Method. 

The features that can be computed are: 

• Median Frequency: frequency for which half of the power is distributed 

above and the other is below. 

• Mean Frequency: the mean frequency of the power spectrum. 

 

c. Time-Frequency Domain Features 

 

The time-series and its Fourier transform are representations of the signal in 

respectively the time domain and the frequency domain. There is a one-to-one 

relation between them. Nevertheless, with them both, we cannot easily observe 

where in time the spectral components are, which is interesting in a non-

stationary signal. The time-frequency representations (TFR) of the signal are a 

way to overcome this issue. Indeed, while the previous representations were 

only in “one dimension”, the TFRs are in “two dimensions”, so we can monitor 

how the energy of the signal distributes in time and frequency simultaneously.  

Three kinds of TFR are usually used in the frame of the prosthesis control: Short-

Time Fourier Transform (STFT), the Wavelet Transform (WT) and the Wavelet 

Packet Transform (WPT) [9] [52] [57]. All these representations are linear 

discrete TFRs. Indeed, the quadratic TFRs and the continuous TFRs are not 
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recommended for real-time applications [52] as they are less efficient, and this 

is a threat to real-time capabilities of the prosthesis. 

The main differences between these three is how the time-frequency plane is 

divided (see Figure 10). For the STFT, the tiling is the same for the entire plane, 

the fixed aspect-ratio is the same all over the space (thus the time and frequency 

resolutions are the same everywhere). In the WT, the tiling is variable, and so 

the resolutions adapt according of where we are in the plane. For example, to 

study high-frequency components, short time windows are enough, while the 

windows need to be longer for low-frequency components. The frequency 

resolution is proportional to the centre frequency, so the aspect-ratio is variable. 

This variable, yet fixed, tiling was shown to best fits physiological signals. The 

WPT, on the other hand, has an adaptative tiling: the tiling is set to best fits the 

aimed application. The tiling is usually set by minimizing the reconstruction 

error, using a class separability cost function [58], to have the best tiling for 

classification. 

 

Figure 10-Division of the Time-Frequency space in the different TFR. (a) STFT: the tiling is 
fixed, with the same aspect ratio everywhere. (b)WT: the tilling is fixed, but the resolution 

depends on the center frequency. (c)WPT: the tiling adapts to the signal. 
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Many parameters can be chosen for each transformation: the window type, 

length and overlap for STFT; the mother wavelet for WT; the mother wavelet and 

the cost function for WPT. Englehart et al. gave the parameters which seemed 

to lead to best classification results [52]. We report them in Table 1. 

Type of TFR STFT WT WPT 

Best 

parameters 

according to 

[52] 

• Window width: 

64ms 

• Window 

Overlap: 50% 

• Window type: 

Hamming 

Mother Wavelet: 

Coiflet-4 

• Mother 

Wavelet: 

Symmlet-5 

• Cost 

Function: 

Euclidean 

Distance 

Table 1-Parameters for Time-Frequency Representations leading to the lowest error rates in 
the frame of a myoelectric pattern classification problem [52]. 

 

2. Reduction of the feature set 

 

In most papers, the feature set obtained after extraction is reduced. It means the 

classifier does not take as an input the whole set, but only a part and/or a 

different projection of it. We will see here the motivations of such a step, and 

then some methods that can be used. 

 

a. Why do we need to reduce the feature set? 

 

One of the first motivations is to avoid the curse of dimensionality. That is a 

phenomenon that can occur in many numerical domains, especially in Machine 

Learning. The root of this problem is when we work in a high-dimension space 
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(i.e. many features are sent to the classifier, a feature being one dimension), the 

data become sparse in the space, so a huge number of observations is needed 

to have a reliable result (this number grows exponentially with dimensionality). 

More data implies a bigger computational cost, and we want to avoid that.  

Another possible problem is the overfitting. This is the fact that too many 

parameters are used to describe the data, leading to extremely specific models 

to discriminate the different classes, and the classification becomes less robust.  

Finally, the original features do not necessarily provide the best separability 

between the classes and the best clustering of them. The transformation of the 

set into another equivalent one, like a projection, can overcome this problem. 

 

b. Principal Component Analysis (PCA) 

 

Let us imagine a p-space (a p-feature set for example). The principal components 

of this space are the p direction vectors that best fits the data, with the ith vector 

being orthogonal to the (i − 1) previous vectors. We determine the directions 

that best fits the data by minimizing the Eucledian distance from the points to 

the directions. The new vectors after this transformation are a combination of 

the original vector set and is an orthogonal basis, with the maximum variance 

laying in the first direction, and the minimum variance in the last direction. The 

new directions are uncorrelated [52]. The user of the PCA can nevertheless 

decide to only use the k first principal component rather than the whole set, thus 

reducing the dimensionality. The algorithm to get the new basis is the following. 

Let z be the original space, with M observations (columns) of p variables (rows). 

The first step is to subtract to z the mean of each variable, thus leading to a new 

vector x [59]: 
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x = z − E[z] (III. 2.1) 

Then we compute the p × p covariance matrix of x: 

Cx = E[xxT] (III. 2.2) 

We can then get the principal component of the space thanks to the unit-length 

eigenvectors (e1 …ep) of the covariance matrix. The projection matrix 

W contains the eigen vectors, and S =  Wx is the projection of the observations 

of the original features along the principal components. Note that we can use 

only the k first rows of S (i.e. use the projection of the original feature set only 

along the k first principal components), with 1 ≤ k ≤ p, for the classification, 

thus reducing the feature set. 

It has been shown by many studies that using the PCA on the original set of 

features rather than using the raw data improves the classification results [52] 

[59].  

Figure 11-Representation of a PCA in a two-features space. (a) Repartition of the samples in 
the original feature space. The arrows represent the principal components. (b) Projection of 

the samples along the principal components. 
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c. Linear Discriminant Analysis  

 

The Linear Discriminant Analysis (LDA) is a technic to change the original feature 

space in another one where the different classes are more separated. The main 

difference with the PCA is that the LDA is a supervised method, i.e. it takes as an 

input, in addition to the observation of the features, the classes in which fall 

every observation [60]. This allows to have a projection class-wise, improving the 

separability of the different patterns. Nevertheless, training values (i.e. 

observations of the feature space for which the output class is known) are 

required. 

Let us consider a p × M matrix X, each column being an observation and each 

row being a feature. The transformation matrix is denoted G, of dimensions 

p × k, with k < p the number of desired features. This transformation matrix 

maps each observation xi in X (each column) to a yi  vector in a k-dimension 

space. We so get a new feature matrix in  ℝk×M: Y =  GTX. The features in the 

new space are linear combinations of the features in the original space. The aim 

of LDA is to get the G matrix, ensuring a good clustering of the different classes, 

and it is done through the scattering matrixes. 

Assume there are N classes in which the data can be classified. The scattering 

matrixes are defined as follow: 

Within − class scatter matrix: Sw = ∑ P(ci)E[(X − μi)(X − μi)
T]

N

i = 1

(III. 2.3) 

Between − class scatter matrix: Sb = ∑ P(ci)(μi − μ0)(μi − μ0)
T

N

i = 1

(III. 2.4) 
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With: 

• μi: the mean of the ithclass 

• μ0: the global mean vector μ0 = ∑ P(ci)μi
N
i = 1  

• P(ci): the a priori probability of the class ci. P(ci) ≈  
ni

N
, where ni the 

number of samples of the class. 

 

The within-class matrix is related to how well the classes are clustered: the trace 

of it is a measure of the average of the variances of the features in the classes. 

The between-class matrix on the other hand is related to how the different 

classes are separated, and its trace is a measure of the average distance of the 

mean of the classes to the global mean. They both are square matrixes, with as 

many rows and columns as there are features in the space. 

The matrix G must be chosen in order to maximize the separability of the classes, 

while minimizing the variance inside each class. This can be resumed as 

maximizing the following function: 

J = trace(Sw
−1Sb) (III. 2.5) 

Now, since Y =  GTX, we can define other scattering matrixes: 

Sw
Y = GSwGT (III. 2.6) 

Sb
Y = GSbG

T (III. 2.7) 

So, we can express J as: 

J(G) = trace[(GSwGT)−1(GSbG
T)] (III. 2.8) 

And G is given by: 

G = arg [max
G

J(G)] (III. 2.9) 



49 
 

This optimization problem can be solved by resolving an eigenvalue problem on 

Sw
−1Sb, assuming that Sw is non-singular.  

The rank of the between-class scattering matrix is bounded by (N − 1), so the 

reduced space cannot have a higher dimension in LDA.  

Some variations of the classical LDA have been proposed to improve the 

algorithm, the pseudoinverse based LDA to handle singular scatter matrixes [61], 

or uncorrelated LDA (ULDA) to get uncorrelated features as an output [62], which 

is the one mostly used in the frame of classification problems and provides better 

results than when the original raw set is used [55] [62]. Note that the LDA can 

also be used as a classifier (see III.2.c-Linear Discriminant Analysis). 

 

d. Mutual Component Analysis 

 

If the PCA set the information in a more effective way, the main limitation of this 

technic is that the class labels are not taken into account, and so the re-mapping 

of the features is not done in order to increase the separability of the possible 

patterns. A modification has been studied, using the concept of mutual 

information (MI). This new reduction method, called Mutual Component 

Analysis (MCA), was introduced by Khushaba [7] and requires training data, such 

as the LDA. 

In information theory, we can quantify the information of a random variable 

through its entropy. This concept was introduced by Shannon [63]. Let us take a 

random variable X, its entropy is noted H(X) and is given by: 

H(X) = −E[log P(X)] (III. 2.10) 
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From this definition, we can express the conditional entropy of the random 

variable X given the knowledge of random variable Y: 

H(X|Y) = −E[log P(X|Y)] = −P(X, Y)logP(X|Y) (III. 2.11) 

And so, we get: 

H(X|Y) = H(X, Y) − H(Y) (III. 2.12) 

The MI of two variables measures how mutually dependent they are, i.e. the 

information they both have in common: 

I(X, Y) = E [log
P(X, Y)

P(X)P(Y)
] (III. 2.13) 

In the frame of our problem, the random variables can be replaced by the 

features. Thus, I(f1, f2) represent the information in common brought by the 

two features f1 and f2, thus how redundant they are. If two features have a huge 

MI, removing one of them from the feature set would not change much the 

result of the classification, since most of the information it would have brought 

to the set is already covered by another feature. So, the point of the MCA is to 

choose properly the features to reduce the redundancy between them. 

Alternatively, we can replace one of the features by the class labels of the 

training data, getting a new value I(C, f1). This quantifies the relevance of the 

feature toward the classification problem: if I(C, f1) is higher than I(C, f2), it 

means that the information carried by the feature f1 is more relevant toward the 

class labels (since the values taken by f1 depends more on the class it falls into 

than f2), i.e. it discriminates better the classes. The features should be chosen in 

order to increase this value. 

The algorithm proposed in [7] is thought to fit these two requirements, i.e. it 

follows “Minimal Redundancy-Maximum Relevance” criterion to select the 
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features with the most interesting information for the problem under 

investigation and with the less information in common, followed by a PCA to 

project along the principal component of the feature space and thus get a new 

space where the features are uncorrelated. An algorithm of this kind ensures a 

minimal loss of information. We give the algorithm in the Appendix. 

The results obtained by this reduction are compared to more traditional ones, 

such as PCA, Linear Discriminant Analysis (LDA) and Uncorrelated Linear 

Discriminant Analysis (ULDA). The conclusions are that there is a statistically 

significant improvement in the classification results when using MCA instead of 

PCA, while they are slightly worse than the results with LDA and ULDA (without 

being statistically different with a p-value set to 0.05). Nevertheless, the 

computation time is way smaller for MCA than for the LDAs, so it seems to be an 

interesting, yet simple in terms of computation, alternative to the usual 

methods. 
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IV. Classifiers 

 

Once we have a proper set of features, with characteristics that can ensure a 

good separability of the classes, we use them as an input for the classifier.  

All classifiers work in two phases. The first one is the training phase. In this one, 

we use observations for which we know the pattern in which the data fall (so the 

expected output classes, or the motion the subject wants to do) and the 

corresponding class labels. This phase is for calibrating the classifier, to “teach” 

it how the class are separated in the features space. The second phase is the 

testing one. In this, we send to the trained classifier new data as observations of 

features (the output patterns are considered unknown). The classifier outputs 

the class labels of such observations, namely the corresponding pattern 

according to its calibration. 

In this section, we will present some of the most used classifiers in the literature, 

how they work, their advantages and limitations.  

 

1. Linear Discriminant Analysis 

 

The LDA classifier is based on the Bayes classification rule [64] [65], which states 

that an observation x of the feature set belongs to a given class wi among the 𝑁 

possible output classes if: 

P(wi|x) > P(wj|x) for j = 1,… , N (IV. 1.1) 

These posterior probabilities can be computed using the Bayes formula, that we 

recall: 
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P(wi|x) =
P(wi)P(x|wi)

P(x)
(IV. 1.2) 

With: 

• P(wi): the prior probability for class i 

• P(x|wi): the class distribution  

If we assume all classes are equally probable, i.e. there is an equal number of 

observations for each class in the training set, P(wi) is the same for all i and the 

classification rule can be reduced as: 

P(x|wi) > P(x|wj) for j = 1,… , N (IV. 1.3) 

In the LDA classification, we assume that inside each class the distribution of the 

observations along each feature follows a gaussian distribution. This hypothesis 

is named the Multivariate Normality. Under this assumption, the probability 

density functions follow the rule: 

P(x|wi) =
1

√(2π)pdet(C)
exp(−

1

2
(x − μi)

TC−1(x − μi)) (IV. 1.4) 

With: 

• x: the observation of the feature set to classify 

• p: the dimension of x (number of features) 

• C: the covariance matrix for all classes 

• μi: the mean value of the class i 

The point of the training is to get the parameters μi and C from the known values. 

For the classical LDA, the parameters are fixed: the classifier is called static. This 

version is simple, but it can encounter difficulties when there are changes in the 

EMG over time (due to fatigue for example). To compensate the effects of these 
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changes, some authors proposed a modification of the algorithm to create an 

adaptative LDA classifier (ALDA). 

The difference between the LDA and the ALDA is the update of the parameters 

with time. In the ALDA, at every step, the L last observations are used to update 

the values of the model. The classifier is kept up to date by always using the last 

possible training set in a sense. The ALDA is more robust to noise and to the 

changes in the EMG (that can be caused by the fatigue, electrode shifting, 

sweating for example), and globally shows better performances than the 

classical static LDA [64] [65].  

 

2. K Nearest Neighbours 

 

The k-nearest neighbours (kNN) classifier (k being an integer) is probably the 

most intuitive and the simplest classifier. It is based on the idea that a new point 

in the features space is likely to belong to the same class as the surrounding 

points.  

As training values, we send to the classifier L observations of the feature space 

(where a distance is defined, Euclidean distance for example) with their 

corresponding L output classes. When a new observation of the feature set 

arrives to be classified, the distance of this new value to each of the L training 

values is computed, and then these distances are ranked from the nearest to the 

furthest. The output value of the new observation is the class that appears the 

most among the classes of the k observations for which the distances are the 

smallest [66].  
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The parameter k has to be chosen. A large k value, thus when more neighbours 

are taken into account, reduces the noise on the classification but, on the other 

hand, makes the separation between the different classes less clear (the classes 

become less clustered). An optimal value can be sought using some optimization 

technics [67].  

An improvement of the method by weighting the distances to the neighbours 

has been proposed [68]. The idea is that if a neighbour is close to the observation 

to classify, it should matter more than the furthest training value. So, we give a 

weight to each of the k nearest neighbours, to give more importance to the 

closest ones. This method is more robust to noise. 

Figure 12-Partition of the space with 10 training points for a kNN (k=1), known as Voronoi 
graph. The lines represent the “frontier” where the closest training point changes. 
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Note that the kNN is high computational technic since L distances are computed 

for each observation to classify. 

 

3. Support Vector Machine 

 

The Support Machine Vector (SVM) is a classifier based on the research of a 

hyperplane that best separates two classes in the feature space. Thus, the 

observation in this space on one side of the hyperplane will be assigned to one 

class, and the observations on the other side will be assigned to the other class. 

The construction of the classifier was described by Cortes and Vapnik [69]. 

Let L training observations of the feature space, xi, and the corresponding 

classes, yi. So, the training set is L duets (xi, yi). The class yi is either +1 or −1 

depending on the class. 

A hyperplane is described as: 

wTx + w0 = 0 (IV. 3.1) 

With: 

• w: normal vector to the plane 

• w0: the position of the plane 

The hyperplane that separates the two classes is not unique, the algorithm 

selects the one that offers the maximum margin (see Figure 13). It means that 

the chosen hyperplane will be the furthest possible to the closest training points, 

to minimise the misclassifications.  
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The classes are said linearly separable if there are a vector w and a scalar w0 

such as: 

yi(w
Txi + w0)  ≥  1  for i = 1,… , L  

In that case, w and w0 are rescaled to get a unitary distance for the closest 

training point for each class. These points are noted x+and x−, belonging 

respectively to the class " + 1" and " − 1". 

{
wTx+ + w0  =  +1

wTx− + w0  =  −1
(VI. 3.2)  

Figure 13-Support Machine Vector for a two-classes problem in a two-features space. The 
stars are the training points for the class "+1", while the dots are the training points for the 
class "-1". The support vector are circled. The normal vector w is shown before scaling. The 

continuous line is the hyperplane separating the classes, and the dashed lines are shown for 
the margin. 
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Let the optimal hyperplane, that separates the classes with the maximal margin. 

The direction of w is the one where the distance between the projections of the 

vectors of the training set is the highest (since it is the hyperplane with the 

maximal margin). We defined the margin as: 

M =
wT

|w|
∙ (x+ − x−) (IV. 3.3) 

The margin is simply the minimum distance between the projections a vector 

from the class “ + 1” and a vector from the class “ − 1” along the direction of w. 

By the equation (IV.3.2), we obtain: 

M =
2

|w|
(IV. 3.4) 

And the research of the optimal hyperplane is reduced to the optimization 

problem: 

minimize J(w,w0)  =  
1
2
 ||w||2

under the constraint: yi(w
Txi + w0)  ≥  1  for i = 1, . . . , L 

 

 

The vectors for which yi(w. xi + w0) = 1 are called support vectors. It has been 

shown the vector w0, that gives the position of the optimal hyperplane, can be 

written as a linear combination of support vectors [69]. 

This linear classifier applies only in the case of separable classes, so no sample 

“crosses” the separation of the hyperplane and falls in the “wrong part” of the 

space. Nevertheless, it may happen that data do not validate this condition. In 

that case, modifications must be done in the algorithm. In particular we 

introduce slack variables ξ [69], such as: 

yi(w
Txi + w0)  ≥  1 − ξi  for i = 1,… , L  
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The value of ξi, depends on either if the pattern is on the correct side of the 

plane: ξi  =  0 if it is outside the margin and on the right side, ξi  >  0 if inside 

the margin or on the wrong side. The point of the algorithm in this case is to find 

the margin to have the sum of the ξi as small as possible. Thus, the optimization 

problem become: 

minimize J(w,w0, ξ)  =  
1
2
 ||w||2  +  C∑ ξi

p
i=1

under the constraint: yi(w
Txi + w0)  ≥  1 − ξi, for i = 1, . . . , L and ξi > 0 

 

For both cases, Lagrangian functions of the problem can be introduced, and the 

Karush-Kuhn-Tucker (KKT) conditions can be applied. Note that the classifier 

remains linear after the addition of slack variables. Nevertheless, if this not 

enough for the considered problem, one can use the kernel method to remap 

the data in the new space where they will be separable [70] [71]: this is the non-

linear SVM. 

 

The SVM is defined only for a two-classes problem. Nevertheless, it can be 

generalized to a multiclass problem by calculating several classifiers. Two 

procedures can be followed to extend to N > 2 output patterns: 

• One-versus-all. In this case, we consider each class individually and all the 

other classes are considered a single class. A SVM is computed to separate 

the class and the aggregation of all the other classes. So, in the end, we 

get N classifiers. When an observation to be classified arrives, the N 

classifications are done and the one with the highest output function 

assigns the output class (winner takes all). 

• One-versus-one. In that case, the classes are considered two-by-two and 

a classifier is computed for every pair of classes. N(N − 1)/2 binary 
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classifiers are computed. The new observations are classified by each 

classifier, and the class with the maximum number of wins is designed as 

the output class (max-wins voting strategy). 

 

4. Artificial Neural Networks 

 

The Artificial Neural Networks (ANN) are classifiers for which the structure is 

inspired by the organization of actual brain cells, especially on how each neuron 

interacts with the others.  

These networks are organized in 3 or more layers (an input layer, one or more 

hidden layers and an output layer) of “neurons”, which are the nodes of the 

network. Each neuron of a given layer is linked to all neurons of the previous and 

following layers (if they exist), the connections modelling the synapses. The job 

of theses synapses is to link the output of the neurons on the (n − 1)th layer to 

the input of the neurons on the nth layer. 

The neurons are the computational units of the network. When a neuron gets 

the information (i.e. the signals) from the previous neural layer, it processes the 

output (sent to the next layer) from a linear combination of inputs. For the 

ithneuron of a given layer, the output is given by: 

yi = φi (∑(ωijxj)  + bi

k

j = 1

) (IV. 4.1) 

 

With: 

• yi: output of the ithneuron of the given layer 
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• xj: input coming from the jth neuron of the previous layer 

• ωij: weight of the input xj for the ithneuron 

• bi: a bias 

• φi(∙): activation function of the ithneuron 

This weighted sum plus a bias is taken as the argument of the activation function, 

that will state the information the neuron will send to the following layer. The 

most used activation function is the sigmoid: 

φ(x) =
1

1 + exp(−ax)
(IV. 4.2) 

With: 

• a: the slope parameter 

So according to the inputs of the neuron, a value between 0 and 1 is outputted. 

There are in the input layer one neuron by feature used. The value sent to the 

Figure 14-Representation of a simple Artificial Neural Network, with a simple forward 
topology and two hidden layers. 
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second layer is the observation of that feature during the time window. The 

output of the neuron of the output layer finally gives the class assigned to the 

observation of the features. 

 

This is the basic scheme of the neural networks. Nevertheless, the connection 

topology can change, with synapses that could skip a layer, return to a previous 

layer, or be connected to the same layer.  

The training of the net in supervised learning involves tuning the weights, the 

bias, and the slope parameters of the neurons in order to best fit to the expected 

output. Unsupervised learning is also possible [72], but we will not focus on it 

here. The optimization of the net is done by minimizing a cost function, which 

measures the error between the computed output and the expected one for the 

training set. The usual training of the ANN is based on the gradient of the cost 

function, and the update of the parameters is done in the direction of it. The 

most popular algorithms are the back propagation [73] and the Levenberg-

Marquardt algorithm [74] [75]. 

 

The back-propagation algorithm is called like this because the error is 

propagated from the output to the nodes inside the hidden layers. The first step 

is setting the weights to initial small random value.  

Then, the forward computation: for every training observation, every argument 

in the net and the output are computed with the current parameters. The cost 

function related to the parameters under investigation is calculated. 

Backward computation: the dependency of the cost function toward the 

parameters is computed. 
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Update: the weights and biases are updated to reduce the cost (in the direction 

of the gradient). We go back to the forward computation and we go on until the 

error reaches a minimum. 

 

The Levenberg-Marquardt algorithm is designed to solve non-linear least-square 

problems. The sum of square errors is considered: 

E(ω) = ∑(di − y(xi, ω))
2

L

i = 1

(IV. 4.3) 

With: 

• di: expected class of the ith observation 

• xi: i
th observation of the feature space 

• ω: weights of the network 

• y(xi, ω): classification of the ith observation of the feature space given the 

weights of the network 

At each iteration step, the weights are updated as follows: ω →  ω + δ⃗ . To 

estimate the update vector, δ⃗ , we consider the linearization of the output of the 

network: 

y(xi, ω + δ⃗ ) ≈ y(xi, ω) + Jiδ⃗ (IV. 4.4) 

With: 

• Ji: the gradient of the y: Ji  =  
∂y(xi,ω)

∂ω
 

So, the error function can be approximated by: 

E(ω + δ⃗ ) ≈ ∑(di − y(xi, ω) − Jiδ⃗ )
2

L

i = 1

= ‖d⃗ − y⃗ (x⃗ , ω)  −  Jiδ⃗ )‖
2

(IV. 4.5) 
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With: 

• d⃗ : a vector containing the values di 

• y⃗ (x⃗ , ω): a vector containing the values y(xi, ω) 

We choose the value of the update vector with the pseudoinverse, J#, of the 

matrix J. We get the optimal value of δopt
⃗⃗ ⃗⃗ ⃗⃗  ⃗ to minimize the error function 

(derivative set to 0): 

δopt
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = J# (d⃗ − y⃗ (x⃗ , ω)) (IV. 4.6) 

With: 

• J#  =  (JHJ)−1JH  =  (JTJ)−1JT in the case of a real matrix 

This update is called the Gauss-Newton algorithm. In Levenberg’s algorithm, on 

the other hand, a damping term λ is added: 

(JTJ + λI)δopt
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = JT (d⃗ − y⃗ (x⃗ , ω)) (IV. 4.7) 

This term is updated at every iteration and is used to control the speed of 

convergence. If the convergence is fast, λ is reduced, and the algorithm gets 

closer to the Gauss-Newton result. On the other hand, if the reduction of the 

error is slow, λ is increased to follow the gradient-descent direction a step 

further. The problem of this feature is when λ is large: in this case, the 

approximation of the Hessian matrix JTJ is not used, and the convergence is slow 

in direction of small gradients. To overcome this problem, Marquardt modified 

the algorithm: the idea is scaling gradient’s components according to the 

curvature, so the movements direction of small gradients become larger. He 

replaced the identity by diag(JTJ) [75]: 

(JTJ + λdiag(JTJ)) δopt
⃗⃗ ⃗⃗ ⃗⃗  ⃗ = JT (d⃗ − y⃗ (x⃗ , ω)) (IV. 4.8) 
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5. Classification trees 

 

Decision trees are predictive models, in which the classes are the leaves, and the 

branches are splits based on a certain threshold of a given feature. After a split, 

the algorithm goes to another node according to the evaluation of the feature. 

For example, let us take a node i for which the split is based on the MAV. If the 

MAV is smaller than a given α, the next step in the algorithm will be the node j 

which is linked to node i by the transition MAV <  α. Each observation begins at 

the top of the tree, passes every split (thus classes are rejected sequentially), to 

finally arrive to a leaf which is the assigned output class. A schematic of a 

classification tree is displayed on Figure 15. The main issue is to decide which 

features should be used on the splits, in which orders and what are the 

corresponding thresholds. These decisions are usually taken adopting a top-

down approach: at each step, we choose the feature that best splits the set. 
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Several strategies to construct the tree have been proposed, we will review some 

of them here. 

 

The Iterative Dichotomiser 3 (ID3) is an algorithm that uses the entropies of the 

features to construct the splits. It has been introduced by Quinlan [76]. 

The entropy of a feature was given in the Mutual Component Analysis part of 

this work. As we stated there, the entropy is a notion linked to the information 

gain: the lower the entropy, the higher the information brought by the feature. 

Using this value allows to state which features are the most interesting in the 

frame of the classification, and thus we can say which ones most discriminate 

the data set. This is computed by the information gain, given by: 

IG(S, f) = H(S) − ∑p(t)H(t)

t∈T

= H(S) − H(S|f) (IV. 5.1) 

Figure 15-Representation of an exemple of a Classification Tree. Each split is based on the 
value of a feature, and the leaves are the target classes. 
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With: 

• f: feature on which the split is done 

• S: feature set 

• 𝑇: space of the subsets 𝑡 created by the splitting of S on 𝑓. S =  ⋃ tt ∈ T  

• p(t): proportion of the number of elements in t to the number of elements 

in S. 

The information gain is basically a measure of how the uncertainty is reduced 

after a split on the feature f. 

The ID3 algorithm is: 

1. Compute the entropy and information gain after a split on every feature 

of the data set. 

2. Split the data set by using the feature for which the entropy will be 

minimized after splitting (the threshold is chosen to have an optimally 

divided set). 

3. Create one node of the decision tree with this given test on this given 

feature. 

4. Iterate the algorithm on each subset with the unused features. 

 

The Classification And Regression Tree (CART) [77] is a decision tree in which 

the splits are computed by the mean of a cost function, the chosen splits being 

the ones minimizing this function. For each node, all different features and splits 

are tested, and the one for which the cost is the lowest is chosen. Usually, the 

Gini Index is chosen as the cost function for classification problems. This index is 

a measure of the “impurity” of a given value. In the frame of a classification 

problem, it states the disparity of the classes after a split. If the Gini coefficient 
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is 0, it means all the data belong to a single class, and so this split discriminates 

perfectly. It is given by: 

IG(p) = ∑ p
i

N

i = 1

∑ p
j

N

j ≠ i

= ∑ p
i
(1 − p

i
)

N

i = 1

= ∑ p
i

N

i = 1

− ∑ p
i
2

N

i = 1

= 1 − ∑ p
i
2

N

i = 1

(IV. 5.2) 

With: 

• N: number of classes 

• pi: proportion of samples in the ith class 

 

To improve the accuracy and to decrease the complexity of the algorithm, a 

modification has been proposed: creating several trees, and aggregate their 

results to get the final class. The classifier is called Random Forest [78] [79]. For 

the jth tree, only a part of the feature set is used (usually, for p features in the 

original set, only √p features are used for each tree). This subset of features is 

chosen randomly. This is a solution to the dimensionality curse, the trees are 

simple and stable, and leads to good classification results. 

 

6. Gaussian Mixture Model 

 

In statistics, a mixture model is a method to represent a population containing 

several subpopulations. Starting from it, we can give for every observation, every 

element of the population, the probability that it belongs to each subpopulation. 

If we assimilate every possible output class to a subpopulation, we can clearly 

see how interesting such models can be of interest to classify the EMG. The 

Gaussian Mixture Model (GMM) is one of these representations.  
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Let a N class classification problem, and a p-dimensional feature set. X is an 

observation of the feature space to be classified. The GMM of this problem, if 

we suppose a k-order model, is for each class n (n = 1, . . . , N), with p features: 

λn = (wi
n, μ⃗ i

n, Ci
n)i = 1,...,k (IV. 6.1) 

With: 

• wi
n: weights. They are under the constraints: ∑ wi

nN
i=1  =  1 and wi

n  >  0 

• μ⃗ i
n: mean vectors, of dimension p × 1 

• Ci
n: covariance matrices, of dimension p × p 

These parameters of the model can be computed using an estimation-

maximization algorithm [80]. 

The mixture density x for the nth class, i.e. the likelihood of the observation x to 

belong to the nth class, is given by: 

P(x⃗ |λn) = ∑ wi
n

i
n(x⃗ )

k

i = 1

(IV. 6.2) 

With: 

• 
i
n(x⃗ ): Gaussian density functions of the nth class. It is defined by: 


i
n(x⃗ )  =  

1

(2π)p/2|Ci
n|1/2

exp (−
1

2
(x⃗  − μ⃗ i

n)′(Ci
n)−1(x⃗  − μ⃗ i

n)), p being the 

dimension of the feature space 

Once all the probabilities are estimated for an arriving observation (the 

likelihoods that this observation belongs to each class), the pattern with the 

maximum probability is selected as the output of the classifier.  

This algorithm still has some issue. Firstly, the order of the model is crucial. 

Selecting too few mixture components can leads to a model that does not 
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describe accurately the space while when selecting too many, the model cannot 

be reliably trained by the training set and thus leads to reduced classification 

performances (plus an increase of the required computation). So an optimal 

value has to be found. Huang [81] found that each subject (so each problem) has 

a given optimal order, for which the performances are the best (better than a 

“universal” value of this order). 

Secondly, during the training of the GMM, it is usual that the variances become 

small (especially for high orders). These low variances produce singularities and 

reduce the classification results. The solution to avoid this problem is to set a 

Variance Limiting (VL) constraint [82]: the lower bound of the covariance 

matrixes 𝜎𝑚𝑖𝑛
2  is chosen. This value should not be chosen to high, otherwise 

there is a risk that all elements are the same, drastically changing the 

performances of the model; and it should not be set too low neither, as it could 

not resolve the initial problem. The value of 𝜎𝑚𝑖𝑛
2  is usually set empirically. 

Finally, the form of the covariance matrixes is important. The matrixes can either 

be full or diagonal. The diagonal ones seem to outperform the full ones, and the 

computations required are less intensive [83]. 
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V. Post-processing 

 

The final step of the classification is to apply a post-processing to smoothen the 

results, thus eliminating the possible spurious assigned classes. The main 

method is the majority voter (MV), but other technics, exploiting a Bayesian 

approach, are proposed. 

 

1. Majority Voter 

 

The majority voter takes as an input the output of the classifier, which is the 

assigned class for each time window. The aim of the MV is to smoothen the 

decisions of the classifier by averaging it over a certain number of windows. This 

is based on the idea that a different result occurring in the middle of a rather 

homogenous stream of output is likely to be misclassified, and so the MV 

corrects it. The parameter of the MV is the number of windows to consider. For 

example, for the nth window with 5 decisions, the majority voter takes the five 

decisions between the (n − 2)thand the (n + 2)th, and the output class for the 

nth window is the class that appears the most in this span. Doing so, the MV 

eliminates spurious decisions. As a concrete example, if the flow of classification 

results, i.e. the output of the classifier, is:  

Window (n − 2)th (n − 1)th nth (n + 1)th (n + 2)th 

Assigned 

class 

1 1 2 1 3 
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The classifier first classified the nth window as part of the second motion class. 

But, if we apply a MV with 5 decisions, this result is transformed. Indeed, as we 

can see, there three occurrences of the class “1” in the decisions we consider, so 

the MV will output the nth window as part of the first motion class. The spurious 

decision has been eliminated; the results are smoother.  

The requirements for a real-time application are explained in [47]: basically, the 

controller delay must be kept under 300ms, and the optimal delay for the 

patient is in the 100 − 125ms range [84]. So, the number of decisions we can 

include in the MV will depends on the delay we want for the device. Let us state 

that 2m + 1 decisions are included in the majority voter (the decision of the 

window under observation, m decisions before, m decisions after), that wininc 

is the window increment (so the increment must be between the computation 

time for the classification of one window and the length of the windows, see 

II.1.c-Sliding Windows), and Td is the delay. Englehart and Hudgins stated the 

inequality:  

m ∗ wininc <  Td 

The parameters wininc depends on the length of the window and on the 

processing we apply to it [47]. Generally, the greater the number m, the lower 

the error rate, but it increases the total delay, making it possibly suboptimal. A 

compromise must be found between the classification results and the delay, 

especially by changing the window length. 

  

2. Bayesian Fusion 
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The MV has shown its effectiveness despite its simplicity. Nevertheless, 

researchers as Khushaba address criticism to this method because it approaches 

the output of the classifier “in a naïve manner without consider the actual 

probabilities of misclassification” [8]. A new approach is so described to 

overcome this problem, based on a Bayesian fusion. 

The Bayesian fusion assumes the statistical independence of the results we 

combine. Khushaba uses a disjoint windows scheme to fulfil this requirement. 

Indeed, the EMG is by nature random, and taking two disjoint windows (thus no 

overlapping), the samples can be considered weakly correlated. Nevertheless, 

some researchers seem to show that the Bayesian fusion can work even if the 

statistical independence is not respected [85]. 

Let a n-classes problem be. We will denote the class set Ci, with i = 1,2,… , n. 

We will denote the kth time window wk. The probability the data in the kth 

window belongs to the ith  class is denoted p(Ci|wk). We consider the n classes 

the only possible output, so the sum of conditional probabilities is 1: 

∑ p(Ci|wk)
n
i=1 = 1.  

After the classification of the first window, we express the probability that the 

data belongs to a given class Ci by p(Ci|w1). After the classification of the second 

window, we express the probability as p(Ci|w2) and so on so forth. We can also 

express another probability using the Bayes rule: the probability the class is Ci 

given the data of the two first windows: 

p(Ci|w1,w2) =
p(w1|Ci,w2)p(Ci|w2)

p(w1|w2)
(V. 2.1) 

With the data from the different windows independent, we can simplify some 

expression as following: 
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p(w1|Ci,w2) = p(w1|Ci) (V. 2.2) 

p(w1|w2) = p(w1) (V. 2.3) 

Reducing the Bayes expression to: 

p(Ci|w1,w2) =
p(w1)p(Ci|w2)

p(w1)
(V. 2.4) 

From the expansion: 

p(w1|Ci) =
p(Ci|w1)p(w1)

p(Ci)
(V. 2.5) 

we finally get: 

p(Ci|w1,w2) =
p(Ci|w1)p(Ci|w2)

p(Ci)
(V. 2.6) 

 

We notice the result is simply equal to the product of the conditional 

probabilities of the given class Ci for all time window, divided by a term to 

normalize the sum of probabilities for all classes. If we generalize for M time-

windows: 

p(Ci|w1, w2, … ,wM) = ∆ ∏ p(Ci|wm)

M

m= 1

(V. 2.7) 

With ∆ the normalization term to have a proper and valid probability density 

function. The class for which the probability is the highest when the M time-

windows are taken into account is considered the best classification.  

An improvement can however still be done. Indeed, if one of the estimated 

probabilities is zero, the probability p(Ci|w1, w2, … ,wM)  becomes null. 

Moreover, the L previous probabilities, still stored in the memory, weight as 
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much as the probabilities of the current window, which can cause delay in the 

transition between two classes: indeed, for the first time windows after a change 

of motion, the most ancient probabilities designate the previous motion as more 

probable as long as they are considered in the post-processing. These problems 

can be resolved by adding a weighting factor kj as: 

p(Ci|w1, w2, … ,wM) = ∆ ∏[p(Ci|wm) + kj]

M

m= 1

(V. 2.8) 

With: 

• j: the position in the queue. j =  1,2, . . . , L + 1, with j = 1 for the last 

value inserted in the queue and increasing as it moves to older value. 

This factor must decrease as the concerned window becomes “further away” to 

the current window. The higher weights must be assigned to the more recent 

windows, to reduce the bias toward the previous results. We express it as: 

kj = 10
exp(−0.5 × j (L + 1)⁄ )

∑ exp(−0.5 × l (L + 1)⁄ )L+1
l =1

(V. 2.9) 
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VI. Beyond EMG classification: using deconvolution 

as a new technic. 

 

Surface EMG has been widely used as the signal in the classification research. 

The main axes of improvement for the classification are usually increasing the 

number of detection channels [57], finding new technics for one stage instead of 

using more “traditional” ones [86], or optimizing one or several parameters [87]. 

However, increasing the number of surface electrodes could make the prosthesis 

expensive, cumbersome and uncomfortable. Indeed, as the required 

performances of the prosthesis are constantly rising, many works aim at using 

only few detection channels [88]. Moreover, further optimizing the processing 

of the EMG could be prone to overfitting or to the enlargement of the processing 

time, which should be kept low to allow real time control and to be accepted by 

users. Indeed, the processing delay should be kept under 300ms to ensure a 

good user experience [47], with an optimal delay between 100 and 125ms [84]. 

Thus, an alternative is to get better information from the muscles. 

We will here give an overview of the other signals used in the literature, and then 

we will explore the possibility of using a deconvolution of the EMG. 

 

1. Other signals used in the literature. 

 



77 
 

The first signal that comes to mind is the intramuscular EMG (see I.3.a-

Intramuscular EMG) for its high selectivity. But as mentioned earlier, it is not 

used due to the invasiveness of the technic. 

It has also been proposed to use a different measure from EMG, such as the force 

myography (FMG). FMG is a measure of the surface pressure that occurs during 

a muscle contraction. The FMG can so be recorded by force sensors, and it can 

be used in pattern classification [89] or regression control [90] that continuously 

maps the position of the artificial limb under control. The advantage of the FMG 

is the natural mechanical filtering, which makes the necessary signal 

conditioning less complex than for EMG, due to its stochastic nature. Therefore, 

the output of the force sensor can directly be used for classification, unlike the 

raw EMG [90]. 

Nevertheless, these alternatives usually require a different hardware that is still 

less widespread than surface EMG amplifiers, which are instead available in most 

labs studying prosthetic control, since it is the most widely used signal. Thus, an 

innovative pre-processing of surface EMG to extract the firing pattern of the MU 

involved in the motion could provide a step forward in the field of myoelectric 

control. This would keep the benefits of surface EMG technology (which is non-

invasive and widespread), possibly providing a better input (e.g., in terms of 

selectivity of information, stability to noise or crosstalk) to the classification 

machine.  

We will here give a brief overview of the deconvolution of the EMG and the 

methods used in the literature to obtain it and to use it in a control frame. Then, 

we will prove the possibility to control several patterns using a simpler 

deconvolution technic (only one channel, in real-time) than the “more 

traditional” ones. 
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2. Deconvolution signal 

 

a. What is it? 

 

The surface EMG that we record on the surface of the skin of the patient can be 

modelled as a convolutive mixture of the muscle units’ discharges involved in the 

movement. Indeed, the movement is created by the activation of muscle units, 

i.e. the propagation of action potentials along the muscle fibres, which is then 

filtered by the conduction volume before arriving to the electrode (the 

convolution being the mathematical representation of filtering in the time 

domain) [91]. For each MU involved in the motion, a contribution appears in the 

surface EMG: the firing pattern of the MU, convoluted with a kernel.  

We recall that a convolution is a mathematical operation that associates to a 

couple of functions, f and g, a third function, f ∗ g, called the convolution of f and 

g. Mathematically, it is given by: 

(f ∗ g)(t) = ∫ f(t − τ)g(τ)dτ
τ = +∞

τ = −∞

= ∫ f(τ)g(t − τ)dτ
τ = +∞

τ = −∞

(VI. 2.1) 

 

Visually, it can be seen as how the function f overlaps with a “sliding” function g. 

The convolution generalizes the idea of moving average. 

So, the EMG is related to these firing patterns, but it is not a direct measure of 

it. Several methods have been established to access to this signal starting from 

the recorded EMG and are reviewed in [92]. One of the most interesting methods 

is certainly the Blind Source Separation (BSS) based Convolution Kernel 
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Compensation [93], which is robust and offers good estimation of the firing rate 

of the MU [92]. 

 

b. Uses of MU’s discharges in the frame of a classification problem. 

 

A new information, which gives a more precise insight of the muscle activity than 

the classical EMG, is available. Specifically, the timings of MU recruitment and 

discharges are related to muscle force [94] and velocity [95]. Thus, researchers 

have tried to use this new signal for prosthetic purposes. 

Farina et al. [96] used a BSS to get the MU’s discharge timing from a high-density 

recording device (more than 50 channels) EMG, after muscle reinnervation. They 

then resolved a pattern classification problem, with either 7, 9 or 11 motions to 

classify. On one hand, the classical EMG classification was done (extracting TD 

features), and on the other hand the neuron discharge timings were used to 

classify the motions. The use of the decomposition into MU’s firing patterns 

outperformed the classical classification technics (average rate of classification 

superior to 97%, against 85%). 

The decomposition is also used to predict wrist [97] or fingers [98] kinematics 

(regression control), i.e. get an estimation of the joint angle of the given degree 

of freedom. The correlation between the predicted and the actual angles allow 

authors of respective papers to assess that this kind of prosthetic control is 

promising. 

Nevertheless, in this brief overview of the possible control procedures using the 

MU discharge timings, a high number of sensors is needed (usually more than 



80 
 

50), and so the needed computations can be huge, which are drawbacks from 

the point of view of a real prosthesis. 

 

c. Single channel deconvolution 

 

While most estimations of the firing patterns technics require either 

computationally intensive methods or dense sensor arrays, Luca Mesin proposed 

to compute it with a single channel, called the Single Channel Deconvolution 

[99].  

A Single Differential EMG can be interpreted as a noisy convolution of the firing 

rate of the MU with a kernel. This kernel is the first derivative of a Gaussian 

function, with a standard deviation set to optimally fit the Power Spectral 

Density. This function models the average MU Action Potential (MUAP) and can 

be rescaled in amplitude. The model is: 

s(t) = K(t) ∗ f(t) + n(t) (VI. 2.2) 

With: 

• s(t): the EMG 

• K(t): the kernel 

• f(t): the firing pattern of the involved MU 

• n(t): the noise 

Note that in the model above, all errors (approximations in the convolution due 

to noise, differences between the MUAP shape and the chosen kernel, …) are 

aggregated in the noise term. 
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The aim of the deconvolution is to get the signal f. To do so, we must resolve an 

unstable inverse problem. This problem must be regularized with the Tykhonov 

approach [100]: 

argminf̂(t) = ‖s(t) − K(t) ∗ f̂(t)‖
2

2
+ α‖f̂(t)‖

2

2
(VI. 2.3) 

 

With: 

• α: a term set to get a compromise between an optimal fit of the data and 

the stability of the solution. 

• ‖∙‖2: the L2-norm in the space. 

To fit the discrete signals (digital records of the sEMG), we discretize the problem 

[99]. The deconvolution operation becomes the multiplication with a matrix A, 

which contains delayed versions of the kernel in its columns: the kernel is 

discretized according to the sampling frequency and delayed by multiple of the 

sampling time. α is set to 1% of the maximum eigenvalue of ATA. We must take 

care of the computational cost: indeed, the number of elements of ATA 

increases as the square of the number of samples in the time frame (the ith 

column of A is a version of the kernel delayed of i ∗ ts, or i samples, so there are, 

for a signal of T seconds, (⌊T/ts⌋ + 1) columns in A). Thus, to limit the needed 

computation, the time frame is divided in several smaller epochs. The 

deconvolution for each epoch is calculated separately, and then recombined to 

get the whole deconvolution signal.  

The problem established earlier is a mean square error (L2 norm), which allows 

to get an analytical solution of the problem [101]. Nevertheless, the square 

function of the L2 norm exacerbates the high values and reduces the small 

values. The solution of problem involving the square of the functions would be 
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too sensitive to values exceptionally high (outliers), while being too tolerant 

toward small values. A more stable solution would be obtained using the L1  

norm, which involves the amplitude of the errors and not the energy. This 

solution would also be sparse, as small values are put to zero if useless. 

However, a least-L1 problem is more difficult to solve than a least-square 

problem since no analytical solution is available in this case. It has been proposed 

to use an Iterative Reweighted Least Square (IRLS) method [101]. This is a 

method to solve Lp norm problems iteratively, in which the problem is 

approximated by a weighted least square problem at each step, for which an 

analytical solution exists. So, for each step, the initial problem: 

min
β

∑|yi − fi(β)|p
k

i = 1

(VI. 2.4) 

Is approximated by: 

β(t+1) = min
β

∑ ωi
(t)|yi − fi(β)|2

k

i = 1

(VI. 2.5) 

With: 

• β =  β(1), β(2), . ..: the parameters to find. 

• yi: goal function. 

• ωi
(t): weights to be updated at each iteration. ωi

(0)  =  1, and ωi
(t)  =

 |yi  −  fi(β)|p − 2  

Notice that before each iteration, the solution is set to 0 when it is negative since 

the firing pattern should be positive.  
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The proposed deconvolution can provide the firing rate of the muscle units. 

Moreover, the method can be done in real-time [99], which is a requirement for 

the possible application in the frame of prosthetic control.  

 

3. Classification 

 

We will now show the interest of using the single channel deconvolution in the 

frame of a prosthetic control. 

a. Method 

 

Acquisition 
 

The classification problem we will try to resolve using the single channel 

deconvolution is the one solved by Khushaba in his paper [8], with the data he 

made available on his website [102]. Ten motions patterns are to classify, and 

two recording channels are used. 

In brief, the dataset includes EMGs from 10 subjects (2 were excluded in 

Khushaba’s paper), aged between 20 and 35 years old. No subject suffers from 

limb disability, nor from any neurological or muscular disorder. They have been 

seated on an armchair, allowing to support and fix their arm. The subjects were 

asked to perform the following ten classes of movement (individual and 

combined fingers flexions): Thumb (TT); Index (II); Middle (MM); Ring (RR); Little 

(LL); Thumb and Index (TI); Thumb and Middle (TM); Thumb and Ring (TR); 

Thumb and Little (TL); Hand Closed (HC). These motions are shown in Figure 16. 
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The subjects were instructed to contract their muscles from rest position and 

hold the flexion for 5 seconds (the transition being included in the data). Each 

movement was performed six times, with a resting time of 3-to-5 seconds in-

between. Four of these trials are used to train the classifier, while the other two 

form the test set. Thus, the training set for each subject is constituted of 4 trials 

for 10 motor tasks, therefore 40 recordings of 5 s each, and the test set for each 

subject is constituted of the remaining 20 recordings. 

Surface EMG was recorded using two bipolar channels (Delsys DE 2.x series EMG 

sensors) and processed by the Bagnoli Desktop EMG Systems from Delsys Inc. A 

reference electrode has been attached on the wrist of each subject, and the two 

channels were near the elbow. The EMG was then amplified by a Delsys-Bagnoli-

8 amplifier (total gain equal to 1000), sampled at 4000 Hz by a 12-bit analog-to-

digital converter (National Instruments, BNC-2090), and acquired using Delsys 

EMGWorks Acquisition software.  

 

Signal Processing 
 

Figure 16-Motions considered in the pattern classification problem considered in this Master 
Thesis. These are the motion considered in the paper [8]. This figure extracted from [8] and 

downloaded from [102]. 
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The classical steps of EMG classification have been reminded in this work (see 

Introduction). These steps were applied either to the raw EMG or to the signals 

obtained after deconvolution, to understand if there is any advantage in using 

such a pre-processing. The details of the classification are described below. 

The following signals have been considered.  

1. The raw EMG, notch filtered at 50Hz and band-pass filtered between 

20Hz and 400Hz. The attenuation is at least 30dB in the stopband.  

2. The signal obtained by deconvolution of the EMG filtered by a notch at 

50Hz and band-pass filtered between 1 and 400Hz (referred to as 

“deconvolution signal” in the following). 

3. Deconvolution signal band-pass filtered between 20Hz and 400Hz with 

the same filter as for the raw EMG.  

Notice that, since we deconvoluted a previously filtered EMG, some noise is 

already excluded from the deconvolution we will use for the classification. We 

decided to apply the classification to both the original deconvolution and a band-

pass filtered version. This is to see if a further filtering could be useful, i.e., if the 

deconvolution signal is also noisy, or if adding the components out of the 20 −

400Hz band (such as the low frequency peak, which reflects the average firing 

rate [103]) can improve the classification results. 

 

The signals were divided in several time windows of 250ms, slided by 50ms. 

Using sliding instead of disjoint windows leads to better performances but 

requires more computation time. The minimum window increment for windows 

of this size is 16ms [47], so we chose an increment of 50ms to find a compromise 

between computation time and performances. We have extracted, for each 

window, some classical TD features from each channel: MAV, RMS, ZC, SSC, WL 
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and IAV. The features set was then reduced using the Mutual Component 

Analysis. Different reduced sets have been considered, containing respectively 

either 4, 6 or 8 features.  

We have then applied two different classifiers: SVM and the kNN. For the SVM, 

a “one-versus-one” strategy has been used to extend the algorithm to our 

multiclass problem. Concerning the kNN, the parameter k was empirically set to 

5 after a rough tuning on a few preliminary tests.  

Finally, a classical majority voter is applied as a post-processing. We set the 

number of windows in the MV to 11, which is compatible with the maximum 

number of decisions (13) established in [47]. Note that the maximum number of 

decisions, and so the maximum delay, is not the optimal delay for the average 

patient (100 − 125ms). But we found after a preliminary check that sticking to 

this optimal delay (i.e. using only 5 decisions in the MV) would increase the error 

rate, so we kept 11 decisions.  

The classification was run on Matlab 2019b, using some codes and toolboxes 

available on the internet [7] [55] [104] [105]. 

 

b. Results 

 

The error rate in classification as a function of the number of features used after 

reduction with the SVM approach, is displayed in Figure 17. Since the results for 

kNN follow the same trend, we decided to not show them for the sake of 

simplicity. Notice that the results shown here are not comparable to the ones 

obtained in [8], since different features and technics are used here, and two 

patients had been excluded from the previous study while we used them all here.   
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We observe that, for every tested configuration, using the unfiltered 

deconvolution leads to better results in average than using the raw EMG filtered. 

Specifically, the mean error rate was reduced of 4-6% (for example, using 8 

features and the SVM, the error rate is 19.06% with the features extracted from 

the EMG while it is 13.74% when using the deconvolution). We did not plot it on 

the figures, but the use of the filtered deconvolution signal leads to far worse 

classification performances than the other two signals when it is filtered in the 

usual band (20-400 Hz). Indeed, the classification error rate in that case is 

between 4 and 10% higher than when using the EMG (for example, using 6 

features and the SVM, the error rate is 19.95% with the features extracted from 

the EMG while it is 27.45% when using the filtered deconvolution). For this 

reason, this signal will be excluded from most of the following results and 

considerations. 

As suspected, most of the classification errors come from the misinterpretation 

of motions involving the same fingers. For example, most of the errors when the 

subject makes RR are misclassification as TR. Using the deconvolution, we reduce 

these misinterpretation (as the mean error diminishes), but the same trend is 

observable. Thus, the classification based on the deconvolution signal does not 

solve completely the confusion between “similar motions”. 
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  EMG Deconvolution 

kNN 4 feat 7.23  4.92 
 6 feat 8.83 5.20 

 8 feat 8.22 5.46 

SVM 4 feat 5.91 5.38 

 6 feat 7.17 5.81 

 8 feat 7.36 4.93 
Table 2 - Standard Deviation of the error rate among all participants depending on the signal 
used for classification: either the EMG or the deconvolution. The standard deviation has been 

computed for the kNN and the SVM methods with 4, 6 or 8 features used after features 
reduction. 

 The boxplots (Figure 17) and the standard deviation of the error rates (Table 

2Erreur ! Source du renvoi introuvable.) allow us to say that using the 

deconvolution also provides more robust classification outputs toward the 

different subjects than with the raw EMG. Indeed, the standard deviation is 

smaller when using the deconvolution: the error rate is less keen to deviate from 

Figure 17 - Boxplots and mean classification error rate for TD features, SVM and MV with 11 
decisions, depending on the number of features and the signal used, namely the EMG, the 

deconvolution, and the deconvolution with a reduced feature set. The bars above indicate a 
statistically significant difference between the classification outputs obtained from two 

different signals. The p-values were computed with McNemar test [106]. A circle indicates a 
p-value < 0.05, and an asterisk indicates a p-value < 0.01. 
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the mean. When using the EMG to classify the motion task of the subject, some 

aberrant results can occur (subject 3 is by far the most relevant example, with 

an error rate higher than 35% for all configurations).  

We can further improve the classification algorithm changing the features set. 

When we look at the features mostly selected by the MCA algorithm (i.e., the 

most informative/lowest redundant) when classifying starting from the 

deconvolution signals (Figure 18) we realize, in general, the same ones are used 

across all subjects. These features are the SSC, the WL, and the RMS. On the 

contrary, the ZC features (estimated after removing the mean value) were not 

considered for the deconvolution signal, since this signal is always positive. The 

IAV is rarely used, and the MAV is used a little bit more than the previous two. 

We can use a reduced set of features, computing only the three dominant 

features for both deconvolution signals (coming from the two channels), halving 

the number of features and so reducing the required computations. Such a 

distinction in the occurrences of the features was not clear when using the EMG, 

so this reduced feature set was considered only for the deconvolution signal. 

Moreover, this could remove overfitting problems. We observe on Figure 17 that 

the performances are slightly better using only these 6 features (3 per channel) 

instead of the classical 12 (6 per channel). It seems to offer a great compromise 

between reduced computation and great classification results. 
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The different approaches when using deconvolution signals, either including all 

temporal features or only a reduced set, are compared to the classification 

obtained using the EMG in Table 3 and Table 4, showing some statistically 

significant improvements. 

 

Classifier Number of 
features 

EMG vs. 
Deconvolution 

EMG vs. 
Reduced 
Decon. 

Deconvolution 
vs. Reduced 

Decon. 
kNN 4 p = 0.106 p = 0.0371 p = 0.300 

6 p = 0.0840 p = 0.0273 p = 0.412 
8 p = 0.0645 /  / 

SVM 4 p = 0.0371 p = 0.0195 p = 0.500 
6 p = 0.0371 p = 0.0273 p = 0.133 

8 p = 0.0098 /  / 
Table 3-Statistical significance (Wilcoxon sign rank test) between the classification results 

when using either the EMG or the deconvolution signal. Different classifiers, number of 
features selected by MCA and Time Domain (TD) sets (either complete or reduced) are 

considered. Significant improvements of performance when using the deconvolution signal 
instead of the original EMG (with a p-value lower than 0.05) are indicated in grey. 

Figure 18 - Number of occurrences of every feature over 10 sets of features (one for each 
subject). These sets have been constructed by extracting the TD features introduced in the 

“Methods” section and by extracting 8 features by MCA for each subject. 
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4. Perspectives of this technic 
 

The deconvolution provides an estimation of the MU cumulative firing rate. 

Thus, it allows to emphasize the information provided by MU firing patterns. This 

preliminary processing, which can be performed in real-time with only one 

single-differential detection channel [99], leads to better classification results 

than using the raw data. Indeed, deconvoluting the EMG gives access to “purer” 

information, more related to the MU activities, which discriminates better the 

different motor tasks. Other methods to get this information and to use it in a 

prosthesis control frame had been used in the literature before as we said 

earlier, and we mentioned the problems they had (they require computationally 

intensive processing and many detection channels). On the other hand, the 

estimation of the cumulative firing pattern can be achieved from a single 

detection channel and in real-time. Thus, the control method introduced in this 

Master Thesis seems to be simpler, faster and cheaper than the pre-existing 

ones. Moreover, filtering the deconvolution signal leads to worse results than 

when using the EMG, suggesting that the components out of the [20Hz −

Classifier Number of 
features 

EMG vs. 
Deconvolution 

EMG vs. 
Reduced 
Decon. 

Deconvolution 
vs. Reduced 

Decon. 

kNN 4 p < 0.001 p < 0.001 p < 0.001 
6 p < 0.001 p < 0.001 p < 0.001 

8 p < 0.001 / / 

SVM 4 p < 0.001 p < 0.001 p = 0.0405 
6 p < 0.001 p < 0.001 p = 0.00216 

8 p < 0.001 / / 

Table 4 - Statistical significance (McNemar test) between the classification results of each 
time window (either ‘1’ when correctly classified or ‘0’ when misclassified) when using either 
the EMG or the deconvolution signal. Different classifiers, the number of features selected by 

MCA, and Time Domain (TD) sets (either complete or reduced) are considered. Significant 
improvements of performance when using the deconvolution signal instead of the original 

EMG (with a p-value lower than 0.05) are indicated in grey. 
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400Hz] band are relevant and carry information useful for the classification, 

unlike the EMG for which the out-of-band components are essentially noise. 

Therefore, the whole deconvoluted signal seems to be interesting in the scope 

of motion classification. 

Another advantage of this new technic compared to the raw EMG is the 

robustness toward the different subjects, as shown by a lower standard 

deviation on classification error rates. The high variation of the classification 

performances over the patients when using the raw EMG can be due to many 

factors, e.g., a misplacement of an electrode, an unusual noise or differences in 

the anatomy of the patients, reflecting on different MUAP shapes. On the 

contrary, when using the deconvolution (which ideally compensates for different 

MUAP shapes, preserving only information on firings), we obtained more stable 

results across subjects. 

We performed two statistical tests to explore if the improvements in 

performances when using the deconvolution signals instead of the EMGs are 

statistically significant or due to chance: a Wilcoxon sign rank test between the 

error rate of each subject; and a McNemar test [106] between the classification 

output (either ‘good’ or ‘wrong’ classification) for each time window. The tests 

were carried out with the deconvolution signals and the EMG, for both 

considered classifiers (i.e., kNN and SVM) and for 4, 6 and 8 features extracted 

by MCA (starting from either the original or a reduced feature set). As shown in 

Table 3 and Table 4, statistically significant differences are asserted in most 

cases, namely all the classification results from SVM and the classification from 

kNN between the EMG and the deconvolution with reduced TD set. So, when 

using the SVM classifier and/or the reduced TD set, the null hypothesis can be 

rejected with a 5% level of confidence, and we can conclude there are 

statistically significant differences when using the deconvolution for 
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classification instead of the EMG. These outputs of the Wilcoxon sign rank test 

tend to confirm the advantages of the methods introduced in this section from 

a statistical point-of-view. In the case of the Wilcoxon test carried on the error 

rates of the kNN, the p-values are, in some cases (see Table 3), too high to draw 

a conclusion at the chosen level of confidence. Nevertheless, still lower median 

classification rates were consistently obtained when using the deconvolution 

signal, independently of the number of features included. Note that no statistical 

improvement between the deconvolution and the deconvolution with a reduced 

feature set can be asserted at the given level of confidence. Nevertheless, the 

reduction of the set has advantages we explained earlier. 

Even if our new methods based on single-channel deconvolution seems to be of 

interest for prosthetic control, our study did not cover the whole aspect of this 

field and some points still must be answered. Firstly, as we mentioned in the 

VI.3.b-Results section, the confusion between the classes were found when the 

same fingers were in motion (e.g., between TL and LL, or TR and RR). Despite the 

reduction of the confusion, we did not completely solve it when using the pre-

processing by deconvolution. We can think that the cumulative firing rate to 

bend the ring finger alone or to bend the ring with the thumb will be essentially 

the same, and that is why using the deconvolution still leads to an important 

confusion. Further information could be needed to discriminate those motions. 

Some classifiers have also been introduced to classify simultaneous motions 

[107]: applying such approaches to the deconvolution signal could possibly 

improve the classification performances. 

Secondly, only one domain of features, the time-domain, has been considered. 

As we mentioned earlier, many others are used in the literature, some of them 

showing excellent classification results [52] [57], that we did not test on this 

preliminary work. Could we provide, starting from the deconvolution, other kind 
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of features that lead to even better classification results? Or is it only efficient 

for TD?  

Thirdly, the data we used here were recorded in laboratory conditions, and 

researchers have noted how different can be the results between these 

conditions and the daily life [13]. The arm of the subjects was on a support, in a 

certain position that was the same for all trials. We cannot draw any conclusion 

on the robustness toward an electrode misplacement or a different arm position. 

Moreover, the effect of the fatigue was not investigated. Both central and 

peripheral myoelectric manifestations of fatigue have been documented [108]. 

As the deconvolution signal ideally reflects central control, compensating for 

MUAPs shapes (changing as a peripheral manifestation of fatigue), we can 

speculate that it should be affected to a lesser extent with respect to the raw 

EMG (which is affected by both central and peripheral fatigue). These aspects 

are surely to be explored if a commercial use is considered. The data were also 

processed offline, and the method was not tested for a continuous flow of data. 

Testing it would give us the confirmation that our proposal meets the real-time 

requirements. Finally, no prototype was built: we could consider it the final test, 

to ensure a good user experience through getting the output expected by the 

user in a reasonable delay.  

Nevertheless, beside the limitations of this master thesis, our method is 

promising because it overcomes the EMG in the classification process, without 

needing other complex detection system and by keeping the computational cost 

low. It seems to be a path to explore for the future of the prosthesis control and 

further researches in that field, beginning by testing the most advanced methods 

used for the EMG in the literature, such as force and pattern classification [109].  
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Conclusion 
 

Myoelectric prosthesis are key devices to help people with disabilities or who 

had to undergo surgery to recover motion capabilities. Nowadays, the state-of-

the-art indicates that most of the proposed strategies follow the same scheme 

of pattern classification, that we described here. For each stage, many different 

processing technics, among which there are classical algorithm of machine 

learning, have been described and shown to be effective.  

In most papers in the field, the surface EMG is used because of its simplicity and 

its non-invasiveness. However, due to the filtering effect of the volume 

conductor, the EMG does not give a precise insight of the MU activity. Works 

have been done with numerical methods extracting the firing pattern of the MU, 

and the obtained signal was used to control a prosthesis. These methods were 

proved to be interesting in spite of the limitations (dense detection arrays and 

expensive computation). We proved that simpler deconvolution methods (single 

differential channel and real-time processing) could be used for prosthesis 

control and leads to great results compared to classical EMG processing. This 

could be an interesting alternative for prosthetic pattern classification in the 

future, but many questions still need to be answered (they are essentially the 

same as for EMG), concerning the robustness and the parallel classification, to 

fully consider this effective for real devices. 
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Appendix 
 

MCA algorithm 
 

Let F be the original feature set, of dimension p. The aim of the MCA is to get a 

feature set L of dimension k <  p, with L ⊂  F, conserving the learning 

information. We define g(L) an evaluation function for the new feature subset. 

The algorithm is directly taken from [81]. 

• Initialisation: F =  {fi, i =  1, . . . , p}, L =  ∅, g(L)  =  0; 

• Step 1: For each fi  ∈  F, compute I(C, fi). We choose the feature fj that 

produces the highest information toward the class labels, remove it from 

F and add it to the new subset: F ←  F\{fj}, L ←  {fj} and g(L) ← I(C, fj). 

• Step 2: For each feature fi  ∈  F and fi  ∉  L, we compute m(fi)  =

 g(L)  +  λ I(C, fi), where λ is the information gain. The feature fj that 

maximizes m is added to L, removed from F, and g(L)  =  m(fj). 

The information gain λ is given by: λ =  
2

1 + exp(−αD)
− 1, with: 

o D =

 min
fj∈L

[
H(fi) − I(fi; fj)

H(fi)
]

1

|L|
 ∑ exp (

I(C; fi) + I(C; fj) − I(C; {fi,fj})

H(C)
)fj∈L  

o α =  0.3 a small value empirically set to make λ ≈ 0 

o |L| the cardinal of L 

and approximates the amount of information added to the set by adding 

fi. If fi is completely redundant with the features already in L, H(fi)  −

 I(fi;  fj)  =  0 and thus λ = 0. On the other hand, if fi brings a new 

information in L, 
H(fi) − I(fi; fj)

H(fi)
 =  1 and λ ≈ 1 since I(C; {fi, fj})  =  0. 

• Step 3: if |L|  <  p, return to step 2. 
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• Step 4: normalize the gains in g(L) by dividing it by the size of the subset 

to remove the size effect of the estimated gain: m(fi)  ←   m(fi)/

i with i =  1, . . . , p. 

• Step 5: the k first features (k <  p) with a normalized value of m such as 

m(fi)  >  
1

|L|
∑ m(fi)i  are selected to form the new feature set. 

• Step 6: Apply PCA to the new set. 
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