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Realization of a Prototype to Implement NILM

Abstract

The Non-Intrusive Load Monitoring is a technique that can be used to recognize

appliances that are being used in a house from their electrical characteristics, such

as the profile of the current that they absorb. This technique can be employed to

potentially achieve an appliance by appliance complete disaggregation of the loads

connected to a power grid and therefore of the ongoing energy consumption.

The Non-Intrusive Load Monitoring can have different applications, going from the

partitioning of the electrical bill and the smart management of local power sources,

like solar panels, to the Ambient Assisted Living for which we use it to check the

normal continuation of the everyday life activity of the assisted person (e.g. an old

person).

The purpose of the presented study is to realize a prototype which receive as input

the waveform profile of the current absorbed from the power grid and that is capable

of detecting the activation of a new appliance, called event, and of recognizing it from

its characteristic waveform shape. Moreover, the prototype is intended to be capable

of communicating the outcome of the performed classification to other devices via

Wi-Fi by using an MQTT protocol, which is typically employed in IoT applications

since it allows a short data transmission to multiple readers.

For the recognition mechanism we exploited a Feed-Forward Neural Network

(FFNN) and we utilized as the identifying feature for each appliance the waveform

profile of the current that it absorbs after a certain time from its activation, in its

steady-state. More specifically, we observed the real and imaginary harmonic con-

tent of the acquired waveform up to the 16th.

In particular, we used as the basic Single Layer Perceptron Neural Network

structure, which is characterized by a single hidden layer and therefore by the low-

est possible computational weight, which is particularly suitable for our application.

During the study, after an initial evaluation of the feasibility of the project in

which we analyzed with an oscilloscope and a MATLAB modeling respectively the

input noise and the minimum number of bits required in our ADC, we explored two

different implementations of the described prototype: one in which the classification

of the appliance is performed remotely in a cloud server and the other one in which

it is carried out in edge, at local hardware level.

Both the architectures examined employ the same hardware resources that are an

MSP430 reference design (TIDA-00929), which provides the signal chain for the in-

tegrated ADC, and a Cortex-M4 Launchpad (CC3220MODASF), which also mounts

a module for wireless communication and an antenna that can be exploited for the

MQTT-based Wi-Fi transmission required in the prototype. The communication

among the two MCUs is established by mean of a UART channel.
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In both the explored solutions, the prototype receives as input the profile of the

current waveform that is absorbed from the power grid and detects the eventual

activation of an appliance. Afterwards, in the case of the classification in cloud ar-

chitecture it transmits via Wi-Fi an entire isolated section of the waveform acquired

to a cloud server, where it is remotely performed the frequency analysis and the

appliance recognition.

In the second architecture considered, instead, those same operations for the

frequency analysis and the classification are done at the local hardware level and in

particular by the Cortex-M4 processor.

At the end of the classification process, whether is was realized locally or in

cloud, the outcomes are transmitted via Wi-Fi through an MQTT broker poten-

tially to multiple other devices, such as smartphones. However, if we perform the

recognition in edge we are able to directly communicate the result to other devices

without the need of a remote cloud server.

The results obtained with these two solutions present a comparable accuracy in

the appliances recognition, 92% for the classification in edge and 90% for the one in

edge, but they strongly differ in the organization of the computational cost among

the local hardware resources and the remote cloud, with the consequent need, in

one case, of an appliance classification service in cloud and, in the other case, of a

hardware powerful enough to perform the recognition.

The optimization of this computational distribution, as well as a study of the cost-

effectiveness trade-off for the employment of hardware with different levels of perfor-

mances, can be the foundations of further studies to be conducted on these subjects.
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1 Introduction

1.1 Non-Intrusive Load Monitoring

The Non-Intrusive Load Monitoring, also called NILM, is a technique that is used

to recognize appliances from their electrical characteristics.

The NILM is made possible by the fact that each appliance presents, in its electrical

characteristics, a peculiar behavior, similar to a signature that identifies it and that

can be exploited to build a system capable of recognizing the different types of

devices.

Figure 1: Every Appliance has its own (current) signature

The idea behind the Non-Intrusive Load Monitoring is to obtain a complete

disaggregation, appliance by appliance, of the electrical loads connected to the power

grid. This technique can have several applications, such as achieving a disaggregation

of the electrical bill or a smart management of the local energy sources.

Figure 2: Example of Loads Disaggregation
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The significance of this technique relies on its minimum intrusiveness, since the

detection and the recognition does not happen where the power is actually consumed,

at the power outlet level, like in ILM (Intrusive Load Monitoring), but it is performed

at the source, so at the power grid level.

1.2 NILM advanced applications

The Non-Intrusive Load Monitoring can be exploited in several different applications

besides the plain energy bill disaggregation. In fact, it can also be employed in more

advanced uses, such as the Smart Home Energy Management System (HEMS) and

the Ambient Assisted Living (AAL).

The former uses the Non-Intrusive Load Monitoring for managing efficiently the

partitioning of the usage of the local power sources, such as solar panels, according

to the punctual cost of the power consumed from the standard grid, the amount of

power required and of the energy stored locally. With HEMS it is performed a smart

choice, among others, of when to use the power coming from the grid and when to

use the one produced locally.

Figure 3: Smart Home Energy Management System
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With the Ambient Assisted Living (AAL), instead, we can monitor the normal

every-day life activities prosecution in the house of the person that we are moni-

toring. This application can be particularly useful in the case of elders, in order

to be able to spot potential medical emergencies effectively and quickly and also to

monitor, in general, the health state of the subject without any intrusiveness.

Figure 4: Ambient Assisted Living
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1.2.1 NILM Realization Steps

Generally, in the realization of the NILM, we can identify a total of four steps, and

each one of them will be conditioned in its characteristics and its effectiveness by

the choices that we make. These steps are:

• Data Collection.

• Event Detection.

• Features Extraction.

• Load Classification.

Data Collection is the first step for the realization for the Non-Intrusive Load

Monitoring, in which we need to select: what we want to measure; where we want

to perform the measurements and the sampling frequency to use.

We need, indeed, to choose the electrical parameter(s) to measure in our devices.

In particular, we can acquire, for example, the current profile absorbed by the ap-

pliances or their I/V trajectory and, from those, we can also compute and use the

active/reactive dissipated power information.

Moreover, we need to select whether we want to perform the measurements at a

single or multiple houses level and, finally, the sampling frequency to apply.

In particular, for the sampling frequency used for the NILM data collection, we

can distinguish among different categories, going from the Very-Slow ones (≤1Hz)

up to the Extremely-High ones (≥40 kHz).
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The Event Detection step represents the capability of the system, that is im-

plementing the Non-Intrusive Load Monitoring, of revealing the occurrence of an

event, which is defined as the general activation (or deactivation) of an appliance,

that has been connected to the power outlet or has been turned On (or Off).

Figure 5: Example of Events on Current Measurements

The importance of this step relies on the fact that a good reliability of the

event detection mechanism translates into an high repeatability of the performed

measurements, and therefore to -an higher accuracy levels in the classification phase.

10
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Features Extraction is the following step for the realization of the Non-Intrusive

Load Monitoring and it consists in the extraction, from the electrical characteristics

of the load that we have measured, of a proper feature that contains the signature

of the appliance and that is coherent among the different measurements of the same

device, in order to ensure repeatability in the signatures extraction.

At this level, we can select features that are either event-based, and therefore

related to a measurement performed consequently to the occurrence of an event, or

non-event based, hence a periodic measurement, from which it is generally harder

to obtain a proper appliance recognition.

Furthermore, we can act on the transient of the event or on the steady state of the

waveform, waiting for a certain time, after the event, before collecting the data.

Load Classification is the last step of the NILM. It is based on the coherent fea-

tures previously selected and extracted and it is performed exploiting a recognition

mechanism, such as machine learning.

At this point, it is worth mentioning that appliances can be divided into four

different classes according to their general behavior and typical usage.

We can, in fact, have On/Off appliances, such as lamps or heaters, that provide

a fairly constant behavior and whose activation lifetime can be fully determined

by their being turned On- or plugged in a power outlet- and then turned Off- or

unplugged.

Appliances can, otherwise, belong to the class called Finite State Machine, in

which they follow, during their normal functioning, a cycle of different behaviors and

perform a sequence of different actions. Examples of these appliances are washing

machines and fridges.
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We can, then, also have Continuously Varying appliances, such as working tools

or dimmers, whose behavior can not be predicted a priori and, finally, we can have

the Permanent Consumers type of appliances, like smoke detectors and security

cameras, that are intended to be continuously active.

As it can be imagined, the appliances for which the realization of Non-Intrusive

Load Monitoring results easier, and on which the following study has been based,

are the ones belonging to the first class described, the On/Off.

Figure 6: Classes of Appliances
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1.3 Database Measurements

Since, in our study, we did not have the possibility of connecting probes to an actual

power grid and measure personally the electrical characteristics of several appliances

at their activation, we resort to a public database, called WHITED (Worldwide

Household and Industry Transient Energy Data Set).

In the WHITED database there are the current and voltage profiles, during their

activation phase, of 126 appliances. For each of them, the database provides a total

of 10 measurements. The data present in this database were acquired with a 16-bits

precision and a sampling frequency of 44.1 kHz.

Each measurement has a duration of 5 seconds and the actual activation of the

appliance occurs after ∼ 0.5 seconds.

Figure 7: WHITED Database Setup and Measurements
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1.4 Purpose of the Study

The purpose of this study is to realize a prototype which is capable of recognizing

an appliance, that has been activated, from its electrical characteristics, such as

the profile of the current that it absorbs from the power grid, exploiting the Non-

Intrusive Load Monitoring technique described previously.

Furthermore, the prototype implemented, is intended to be capable through a

Wi-Fi transmission of communicating the results of its processing to other devices

such as, for instance, the provider’s servers or the smartphone of the owner of the

power grid.

Figure 8: Project Overview

The first steps for the realization of this prototype regards the study of feasibility

of the classification mechanism.

To do that, we exploit the Database Measurements previously described and a

MATLAB modeling of the final behavior of the prototype and of the recognition

system. The purpose of this process is to verify whether the obtained results are

compliant with the possibility of actually realizing the intended device.
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2 Prototype Theorizing

2.1 Prototypes Architectures

During the study, we explored two different solutions for the realization of the generic

described prototype with the same overall architecture and hardware resources but

with very different behaviors. In fact, the first step is to analyse the case of a proto-

type in which the actual classification process is performed in Cloud, exploiting the

higher computational power available, and from which the results can be distributed

among other devices, such as smartphones.

The second case of study is the one of a prototype in which, instead, the classifi-

cation is realized directly in edge, at the local hardware level, and where we only use

a Wi-Fi communication to transmit the result of the recognition to other devices.

Figure 9: Prototypes Comparison
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In Figure 9 it’s shown that in the case of Classification in Cloud, the prototype

receives as input to its ADC Signal Chain the entire current waveform and after its

acquisition it performs from that the event detection (identification of the activation

of a new appliance) and the isolation of a section of the signal in its steady-state.

Afterwards, it transmits via Wi-Fi to a cloud server the entire isolated signal and

where it is remotely performed, at cloud level, the actual processing for the appli-

ance recognition.

In the second case, the one of Classification in Edge, we still receive as input the

same current waveform signal, and we still perform the operations of event detection

and signal isolation just described but, in addition, we also realize the processing for

the appliance recognition at the local hardware level. After that, we still exploit a

Wi-Fi communication system to transmit the final result of the classification, which

is distributed among other devices. Therefore, in this case, no actual operation is

performed at cloud level.

2.2 Starting Point of the Project

The project realized and here presented had, as a starting point, a previous study

conducted on the topic and, in particular, the following aspects of the system had

already been explored:

• Hardware: ADC Signal Chain

• Software: Database values normalization

• Firmware: Early Algorithm for the Event Detection

16
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2.3 Appliances Signature Feature Selection

The feature that we exploit for the appliance recognition mechanism, in which there-

fore must be contained a signature of the appliance that is consistent among different

measurements and which differentiates each device, is contained in the spectrum of

the steady-state waveform of the current absorbed by the appliance. In particular,

we detected the presence of a signature feature in the odd harmonics extracted from

the signal analysed and we used them up to the 16th harmonic.

Figure 10: Appliances Signature Feature
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3 Neural Network for Appliances Recognition

3.1 Recognition Mechanism

The recognition mechanism to be chosen for the purpose of our study must allow

proper classification performances, with a good level of accuracy, but it must also

provide the lowest possible computational effort, since one of the purposes of the

research is to be able to perform those operations at local hardware level.

For those reasons, the recognition mechanism employed is a Feed-Forward Neural

Network (FFNN) with the structure of a Perceptron. It accepts as input the values of

the harmonic content of the isolated signal and return in the output the index of the

corresponding classified appliance. In particular, the perceptron structure will ensure

a minimum computational effort, since it is only made of Hidden Layers placed

between the Input and Output ones and therefore it will reduce the complexity and

the cost of the hardware required for the network to be recreated into it.

3.2 Data-Set Generation with Matlab

During the Matlab modeling of the problem, we need to consider that most of the

operations that we are examining will be performed at MCU level, and so they need

to be kept as simple and straightforward as possible when modelled with Matlab,

without making full use of the huge computational power of the tool. In fact, other-

wise it would be fairly impossible to perform similar operation with the MCU, and

our Matlab analysis would result to be meaningless.

In the analysed case of appliances recognition starting from their current mea-

surements, we need to extract the harmonics content from the current samples and,

in particular, to isolate the odd harmonics in the real and the imaginary spectrum.

The first thing to do is to convert the two-channels .flac files, provided by the

WHITED database, into raw current samples, using the Matlab function audioread().

Then we need to apply a correction factor, assigned by the Database, according to

the region in which that particular measurement was taken.

After that, we need to isolate a section from each current measurements, to

resemble the limited memory capacity available at Hardware Level.

18
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3.2.1 Algorithms for Single Period Isolation

1. At this point, the purpose is to isolate a single period of the current wave con-

sidered. A first attempt to pursue this goal is done using a Zero-Crossing function,

which points out where the data crosses the zero-value. This function can be useful

to try to highlight a single wave period by using its three consecutive zero-crossing

values [ZeroCrossing(3) − ZeroCrossing(1)]. To obtain more consistent data, we

consider the measurements after the initial transient, which lasts on average 0.2sec,

and so, considered the database Fs (44.1 kHz), after ∼ 20000 samples, starting from

the event detection, we will surely be in the steady state condition.

However, this first attempt, presents some issues that would lead to a poor over-

all recognition performances. First of all, the signal may present some fluctuations

around the zero, making the Zero-Crossing function strongly unreliable. In addi-

tion, we have that, using this algorithm, we may end up isolating, for the different

measurements of same appliance, periods that are in phase opposition.

Due to the fact that we are considering a single period of the original wave

and the separate real and imaginary spectra, this phase shift within an appliance

measurements, results into an erroneous extraction of the harmonic content in the

isolated periods, for which, with a phase inversion, their real and imaginary harmon-

ics are detected as inverted in sign, leading to an impossibility of a coherent training

of the Neural Network and of achieving consistent classification results. This effect

can be appreciated in Figure 11, where are depicted the spectrum of two identical

isolated periods with a phase inversion between them.

(a) Signals Comparison (b) Real Spectrum Comparison

Figure 11: Phase inversion effect on spectra
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To solve the problem of wrong periods extractions for those signals that present

fluctuations around zero, we exploit the fact that we are aware, within a certain error

range, of the value of the fundamental harmonic (∼ 50 Hz), so we can take, as the

end point of the single wavelength, the next zero-crossing after ∼ 1/50sec. Being

our sample frequency Fs, equal to 44.1kHz, this corresponds to an 880 samples

shift.

Although we are now able to isolate a single period of the current waves, we are

still not able to guarantee a phase coherence between the periods extracted from the

different measurements of a single appliance. To solve this problem, a first attempt

is made by verifying, by looking at the sign of the mean of the firsts 100 values after

the first Zero-Crossing detected and, in case of a negative average we would multiply

the isolated period by −1 to flip it.

Anyhow, since this would alter the actual waveform, this period isolation algo-

rithm is abandoned.

2. The second algorithm evaluated to achieve a coherent isolation of a single

period from the current wave, consists in detecting the peaks of the signal in order

to isolate a period as the wave in between two consecutive local maximum.

The main issue with this algorithm is that the signals very often presents several

fluctuations that can lead to an erroneous detection of the peaks. As before, we

consider the wave in its steady state, which means ∼ 20000 samples after the event

detection. The starting peak of the period can be easily computed exploiting the

awareness, withing a certain error range, of the fundamental harmonic value. In

fact, we can compute the maximum of the signal within the 880 samples, because

we know that the fundamental is at ∼ 50 Hz and so within that range we will surely

have an entire period.

For the second peak detection, we can’t assume that its value will be consistent

with the previous one due to the high irregularity of the measured current waves.

Thus we can use the same approach as before by taking the maximum of the signal

within the 880 samples after the first peak.

20



Realization of a Prototype to Implement NILM

With this algorithm we are able to perfectly isolate in-phase signals and the

periods extracted start and end with peaks as we can see in Figure 12.

(a) Zero-Crossing Algorithm (b) Peaks Detection Algorithm

Figure 12: Different isolation techniques outcomes

3. To properly isolate coherent periods from the different measurements of

the same appliance in terms of phase and still being able to obtain a signal that

starts and ends at the zero-point, we resort to a mixed approach, that combines

both concepts exploited in the previous two algorithms.

In fact, we use a peak detection mechanism, similar to the one used in the second

proposed algorithm, to point out two subsequent peaks, again in the steady state

of the wave, that, as previously stated, will identify a complete period of the signal.

Hence, we are now perfectly aware of the exact number of samples that compose

the analysed period. Now we can exploit the Zero-Crossing function, described for

the first algorithm, to find the first zero of the signal that occurs before the first

detected peak and then we isolate the period by using the exact number of samples

that compose it previously retrieved. The procedure is depicted in Figures 13 and

14.
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Figure 13: Mixed Algorithm: Step 1

Figure 14: Mixed Algorithm: Step 2

3.2.2 Features Extraction

Once the current wave period has been isolated, in order to obtain a more accurate

spectrum content, we extend each wave by repeating the extracted single period for

a total of eight times.
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After that, we can proceed with the Fast Fourier Transform and the separation

of the Real and Imaginary parts of the spectrum. Knowing, within a certain error

range, the value of the fundamental harmonic, we are able to detect it precisely

using the max()/min() functions and similarly we are able to detect all the higher

order harmonics.

Finally we need to isolate the Odd ones, for both the Real and Imaginary spec-

trum, and to aggregate them into a single vector, obtaining, for 126 appliances with

10 measurements each, a total of 1260 vectors of Odd harmonics values. In partic-

ular, each vector is made of 14 elements and it is constructed as [1RE ; 1IM ; 3RE ;

3IM ; 5RE ; 5IM ; 7RE ; 7IM ... ].

(a) Real Harmonics Content (b) Imaginary Harmonics Content

Figure 15: Separate spectra

Figure 16: Composed Harmonics Content
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3.3 Neural Network Characteristics

As mentioned previously, our choice for the implementation of a Feed-Forward Neu-

ral Network capable of classifying current waves from their spectral content, among

a total of 126 classes, falls on the use of a simple Perceptron. To be able to identify

a fairly high number of classes, like in this case, we need to select accordingly the

number of Hidden Layers and the number of neurons in each of them.

However, it is not a trivial task, since if we make our Neural Network too complex,

with an excessive number of layers and neurons with respect to the number of input

and output neurons, our Neural Network will be susceptible to bias when trained,

and it will not be able to accomplish the generalization principle, falling in the case

of overfitting.

Whereas, if we select an insufficient number of hidden-layer neurons, our network

will not be able to approximate our model, and we will not have accurate outcomes,

falling in an underfitting case.

Figure 17: Recognition Issues

For these reasons, we use a single hidden layer for our Network and we select the

number of neurons in it by exploiting the general rule of thumb for which:

N o H.L. Neurons =
N o Samples in Training Dataset

α (N o Input Neurons× N o Output Neurons)
α ∈ (2; 5)
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Therefore, the Feed-Forward Neural Network chosen will have a structure similar

to the one in Figure 18, corresponding to a Single-Layer Perceptron.

Figure 18: Neural Network Visualization
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3.4 Neural Network Training

To train effectively the Neural Network (NN) with a Supervised technique, which

provides higher accuracy in this case, we need a vast training data-set of harmonics

vectors, extracted from the current waveform provided by the database, with the

corresponding correct classification outcomes. However, we want to avoid the occur-

rence of overfitting in the training data set and so, in order to have enough training

data, without introducing a bias in the NN, we remove, for each appliance set of 10

measurements, 3 of the 10 harmonics vectors extracted, and we will use those only

to measure the accuracy of the NN and not for its actual training.

Then, we use the 7 remaining vectors to extend our data-set generating a total

of 50 vectors for each appliance, without introducing a bias. In fact, we build

these 50 vectors by using a random noise signal, with a variance equal to the one

measured among the starting 7 harmonics, and overlapping this noise with the actual

harmonics values from those 7 vectors. Moreover, to further reduce risk of a biased

training, the harmonics with the same order, belonging to different vectors of the

same appliance, are mixed randomly. From the Figures 19 and 20 below it is possible

to notice how, from the 7 starting odd-harmonics graphs, the several vectors created

present coherent characteristics, even though they are all different from the original

ones and from each others.

Figure 19: Starting Seven Odd-Harmonics Graphs
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Figure 20: 50 Generated Odd-Harmonics Vectors

3.5 Partial Results and Problems

Following the steps so far discussed, we are able to generate and train a Neural

Network capable of recognising and classify the 126 appliances. However, when

we perform an accuracy analysis with the three Odd-Harmonics vectors previously

removed from the data-set, we are only able to achieve an accuracy of ∼ 85% - 88%,

which is not acceptable, considering that we are performing a Matlab modeling,

while these operations will actually be performed at MCU level with a considerable

worsening of the measurements.

3.6 Data-Set Reduction

Analysing in details the results of the performed accuracy measurement, we can

easily learn that the overall performances of the NN are not equally distributed

among all the different considered appliances. In fact, we can point out some of

them for which, due to the characteristics of their current waves, the followed steps

lead to a very poor accuracy outcome.

To avoid the increase of complexity in the computational weight to be handled

by the MCU, instead of making the algorithm more complex and precise, we identify

those appliances that are less likely to be correctly identified, and we remove them

from the the data set.

27



Realization of a Prototype to Implement NILM

To recognize these problematic appliances, we build a Matlab script which com-

putes the accuracy of the generated Neural Network by feeding it with the different

measurements provided for each appliance, we monitor the output of the Network

and compares it with the expected outcome, verifying whether we have an Hit or

a Miss. The built script, in parallel with the standard computation of the overall

performance of the network, also keeps track of the disaggregate accuracy related to

each single appliance.

In this way we can easily recognize those appliances that poorly perform due

to their characteristics. We can notice, for example, the presence of two appliances

that, due to their small current amplitude and to the presence of a slight offset, never

cross the zero value in proximity of the event, causing the algorithm to be unusable

without a pre-processing of the measured data, e.g. shift of the signal mean to zero.

An example of these appliance current wave is reported in Figure 21.

Figure 21: Non Zero-Crossing Appliance
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Additionally, we discover some appliances that do not provide enough coherence

within their different measurements and along their steady state to let us achieve

an acceptable recognition performance and some others that present a current trend

which is too similar to other appliances already listed in the database, leading to

frequent classification errors, as depicted in Figure 22.

(a) First Appliance (b) Second Appliance

Figure 22: Different Appliances with Similar Current Waves

Finally, we can remove from the original data-set all the appliances that can’t

be recognized with an acceptable accuracy by the algorithm proposed, in order

to significantly boost up the performance of the Neural Network. We identify 21

problematic appliances, on a total of 126, which is a fairly small percentage that

still leave us with a notable number of elements in the data-set. Consequently,

the reduction of the data-set is considerable largely acceptable, hence we lower the

number of recognisable appliances to 105, obtaining an increase in the accuracy

resulting from 83% up to ∼ 95%.
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3.7 Fixed Point Analysis

The Fixed Point Analysis is the verification of how the accuracy of our network

changes by modifying the number of bits used to represent data.

In fact, the analysis conducted so far has considered the ideal case of Floating

Point numbers and operations, which allows us to reach a level of precision that

goes beyond the one that we will actually be able to achieve with our ADC and

MCUs. By reducing the number of bits we have a loss of information in the values

of the measurements and also at the occurrence of each operation, due to the final

performed rounding.

(a) 6 Bits Data (b) 8 Bits Data

(c) 10 Bits Data (d) 12 Bits Data

Figure 23: Loss of Information for lower bits conversions
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Moreover, the fixed point analysis is fundamental to highlight which is the mini-

mum Effective Number Of Bits (ENOB) that the Data Converter that we will use in

our Prototype should have in order to keep the accuracy of the classifications similar

to the one retrieved in Floating Point.

It results that, to achieve an accuracy higher than 90%, the number of bits must

be at least equal to 10, as shown in the following table.

Fixed Point Analysis

Peak Detection & Zero-Crossing

Number of Bits Accuracy

7 < 70%

8 86%

9 89%

10 93%

≥ 11 94%

Table 1: Fixed Point accuracy results

3.8 Randomization of the Starting Point

During the analysis performed so far, the waves from which we isolated a single

period and retrieved the spectrum content were considered and processed always

starting from the same point, in the steady state. However, we need to take into

account the fact that, in our final prototype, it will be virtually impossible to start to

apply the period-isolation algorithm after an exact amount of samples with respect

to the occurrence of the Event Detection. Thus we introduce an uncertainty of

±0.25sec, which corresponds roughly to ±10000samples, to the starting point for

the application of our algorithm and we monitor how the performance of the Neural

Network changes, also according to the number of bits used.
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(a) Fixed Algorithm Starting Point (b) Randomized Algorithm Starting Point

Figure 24: Starting Point Techniques

From the obtained results, which are considerably close to the one previously

retrieved, for the different number of bits considered, we can conclude that the

proposed algorithm is robust against fluctuations of the starting point of the wave

at which it is applied. The Neural Network is, however, retrained with the signals

obtained with the described random starting-point. The results are presented in

Table 2.

Fixed Point Analysis

Peak Detection & Zero-Crossing

Random Start Measuring Point

Number of Bits Accuracy

7 < 70%

8 85%

9 87%

10 93%

≥ 11 94%

Table 2: Fixed Point accuracy results with random starting point
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4 Micro-Controller Setup

4.1 Hardware Equipment

The Micro-Controller used for this study is the MSP430FR5994, mounted on the

Reference Design TIDA-00929.

(a) MSP430FR5994 (b) Evaluation Board

TIDA-00929

Figure 25: µC and Evaluation Board

This µC provides a 12-bits ADC based on an SAR architecture (Successive Ap-

proximations Register) which ensures a good level of conversion speed, achieving

200 Ksps, potentially being able to generate a conversion output after a number of

clock cycles equal to the number of bits of the input, and a low complexity level,

exploiting a single comparator, a DAC and a Successive Approximation Register.

Moreover, its small complexity level translates into a fairly low power consumption.

Figure 26: SAR-Based ADC architecture

The MSP430FR5994 is a Micro-Controller whose main purpose is the signal pro-

cessing, hence it provides also a Low-Energy Accelerator (LEA) module, to support

and speed up vector-based arithmetic and, in general, signal processing. Therefore,
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it is capable of accelerating complex operations on signals, such as filtering, by mean

of digital FIR filters, and the Fast Fourier Transform. For the purpose of our study,

those capabilities are strictly needed, therefore this explains the choices made on

this Micro-Controller as the one to be used.

The TIDA-00929, on the other hand, provides, among other things, a protection

circuit for the ADC input, to avoid the failure of the device for an input that

exceeds the MCU limits; a signal conditioning chain to minimize the SNRq (Signal

over Quantization Noise) due to input signals that do not exploit the entire input

dynamic of the ADC available; and a JTAG interface to easily be able to program

the µC using an external USB-Debug-Interface.

Figure 27: USB-Debug-Interface

The purpose of the study is to build a working prototype of an appliance event

detector and recogniser, so, in order to test test our device, instead of actually

connecting the Analog ADC input of the board to an eMeter to measure the current

waves produced by the powering on of different appliances, we connect its Analog

input to the audio source of a Laptop, by using an audio Jack with exposed wires,

as shown in Figure 28, and we transmit through it the current wave signals retrieved

from the WHITED Database.
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Figure 28: Audio Jack with exposed wires

In order to transmit through the audio output the signals from the database

representing current waves, we need to convert them, using once again Matlab, into

.wav playable and single-channel audio files. This is realized using the audiowrite()

Matlab function.

4.2 Measurement Noise Evaluation

To verify the actual feasibility of the project with the proposed setup, the first step

is to evaluate the noise level introduced at the input of TIDA’ s signal chain, so at

the end of the audio cable, by performing the transmission of the signal from the

audio Laptop source, through the audio cable. We connect the audio jack to the

Laptop and the exposed wires on the other end of the audio cable directly to the

Oscilloscope, to measure the signal that will be seen at the input of our prototype.

In this way we are able to estimate the noise level introduced by the transmission

system and judge, approximately, whether this mechanism is consistent or needs to

be modified.
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4.2.1 Long Wire Transmission

An initial attempt is performed by using a fairly long audio wire (∼ 80cm).

Figure 29: Transmission with Long Wire

Analysing the results retrieved from the Oscilloscope with this transmission con-

figuration, we notice an heavy presence of noise, introduced likely by the use of such

a long audio cable, as we can see in Figure 30, where it is compared with the original

wave from the Database.

(a) Oscilloscope Measurement (b) Oscilloscope and Database Comparison

Figure 30: Long Wire Measurements
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However, to be sure that the signals transmitted in this way are unusable and

unreliable, we save the waveform captured by the Oscilloscope, we transfer the data

collected into our PC and we feed it to our Neural Network in MATLAB, which gives

us wrong classifications, confirming the need of modifying the data transmission

mechanism.

Figure 31: Wrong classification of extracted period

4.2.2 Short Wire Transmission

At this point, we make the hypothesis that the encountered noise can be due to the

length of the wire through which the audio signals are transmitted.

Therefore, we proceed removing most of the cable, reducing its length to exactly

7cm.

Now we connect, once again, the audio Jack to a Laptop and we reproduce with it

the .wav audio file obtained from the conversion of the current wave signal. Also this

time, we measure the waveform at the exposed part of the cable with an Oscilloscope

Figure 32: Short Wire measurement

This time, the measurements retrieved with the oscilloscope present a much

cleaner profile, with a significant lower level of noise. In fact, after performing a

simple decimation of the measured data, we obtain the wave reported in Figure 33.
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Figure 33: Decimated Oscilloscope Measure with Short Wire

Now we can proceed, similarly to the previous case, feeding the wave extracted

from the Oscilloscope to the Neural Network in MATLAB and this time we obtain

correct classifications.

Figure 34: Right classification of extracted period

This suggests that the initial hypothesis that led us to a reduction of the cable

length, was correct and that, with the proper modifications applied, the transmission

mechanism tested can be considered valid and can be used for the further analysis

conducted on our prototype. Therefore, the shortened audio cable is soldered on the

Evaluation Module, as depicted in Figure 35.
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Figure 35: EVM with Short Wire

4.3 Transmission to Micro-Controller

The last test is to verify the adequacy of the transmission mechanism, is to stream

the data from the Laptop to the board ADC input, and check the sampled and

converted data directly from the MCU memory.

To do that, we program, using the JTAG interface of the TIDA and the external

USB Debug Interface, the Micro-Controller, with the Event-Detection algorithm,

which has already been developed in the previous study conducted on this subject.

The Event-Detection is capable, by exploiting the 12 Bits SAR-Based ADC of the

µC and a Band-Pass FIR filter, to detect the occurrence of an event, which consists

in the powering on of an appliance, by reading the relative current wave absorbed.

Therefore, we run this program and, as soon as an event has been detected, we

interrupt it, leaving the circular buffer of the MCU, in which the ADC stores its

acquisitions, filled with valid signal waves.

Hence, by using the USB Debug Interface and the Software tool Code Composer

Studio, we are able to extract the signal values from the Circular Buffer of the

MCU and verify their quality, to properly analyse whether our data transmission

mechanism and the SAR ADC provided are adequate.
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Figure 36: MCU Transmission Validity Test

Since the MCU, in our test program, samples at 12800Hz and the Circular Buffer

can store 512 Words, being aware of the fundamental frequency of the signal ∼ 50Hz,

we expect to find in it exactly 2 periods, as demonstrated below:

Samples Per Period =
Fs

f0
=

12800Hz

50Hz
= 256

↓

N o Periods In Buffer =
Buffer Length

Samples Per Period
=

512

216
= 2

Therefore, we are able to collect the periods of the transmitted waveform from

the MCU Circular Buffer. From the data retrieved in this way, presented in Figure

37, we can notice that, as predicted, are present exactly two waveform periods and,

in addition, we can observe a strong similarity between the wave extracted from the

MCU and the ideal one from the Database.
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(a) MCU Sampled Waveform (b) Comparison with Database Waveform

Figure 37: MCU Circular Buffer Content after Event Detection

Finally, we isolate a single period from the waveform collected from the MCU

Circular Buffer and we feed it into the Neural Network and we obtain a correct

Classification Outcome. This ultimately confirms the adequacy of the transmission

and measurement system built and, as a side effect, also proves the robustness of

the generated Neural Network.

Moreover, the quality observed in the signal sampled and converted by the MCU

and extracted from the Circular Buffer, may lead us to confirm, in the final proto-

type, the use of the integrated SAR ADC, abandoning any hypothesis of substituting

it with an higher precision external one. Using the integrated ADC, together with

a reduction in the project complexity, would also contain significantly the final Bill

of Material (BOM) and, therefore, the cost of the final product, making it more

competitive on the market.
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4.4 Micro-Controller Wave Sampling Tests

To verify the consistency of the measurements performed by the Micro-Controller,

we try to transmit, again with the Laptop audio player, through the standard audio

Jack, different current waves taken from the database and opportunely converted.

Once again, after the event detection, we can check the content of the Circular Buffer

by interrupting the program running on the MCU.

In order to make this operation simpler and to avoid the insertion of breaking

points in the code, we want to transfer, after the Event Detection, the waveform

contained in the Circular Buffer into another memory location, using another vari-

able, that we call Wave Memory. In this way the desired waveform can be monitored

from this additional variable at any moment, while, instead, the Circular Buffer’s

content is continuously modified.

At this point, while testing other current waves, we notice that, due to the

mechanism used by the ADC and the MCU to save the data samples into the Circular

Buffer, for which it is considered as made of two separate halves that are filled one

after the other, it is present, in the overall signal, an imperfection, which corresponds

to the point in which the two Circular Buffer halves are logically connected. This

effect is due to a carrier frequency of the signal which is slightly different from the

ideal 50Hz one, and can be easily spotted in the Figure 38.

(a) Database Waveform (b) Circular Buffer Data

Figure 38: Circular Buffer Data Imperfection
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The circular buffer has been defined, on purpose, with a length of 512 Words,

so that a wave period, that we know having their fundamental frequency at 50Hz,

sampled at 12800Hz by the MCU, will occupy exactly half of the Circular Buffer

Length, hence 256 Words.

Therefore, we can avoid the occurrence in our Wave Memory of the imperfection

found in the Circular Buffer, by copying in the new location, initially, only one half

of the Circular Buffer, which will contain an entire period of the signal, using the

function memcpy(). Afterwards, we duplicate in the remaining half of the Wave

Memory its own content, obtaining a total of two contiguous wave periods, without

any imperfections between them, as can be appreciated in Figure 39.

Figure 39: Wave Memory Data

Now we proceed analysing other appliances, verifying every time whether the

MCU is able to correctly sample the input waveform and if the Number of Bits

provided by the on-board SAR ADC allow us to obtain a correct classification. In

the following graphs are reported, for four appliances (namely the number 2, 4, 18

and 41) randomly picked, the comparisons between the Original Database waveform

and the signal retrieved from the MCU Wave Memory.
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(a) Appliance 2 Database Measurement 1 (b) Appliance 4 Database Measurement 1

(c) Appliance 18 Database Measurement 1 (d) Appliance 41 Database Measurement 1

Figure 40: Comparisons Between Database and MCU Signals

From the tests conducted with different appliances, characterized by heteroge-

neous waveforms, we can conclude that the event detection mechanism works prop-

erly in identifying the occurrence of an event, e.g. an appliance being turned on.

However, we also notice that, extracting the sampled and converted waveforms

from the MCU’s Wave Memory and feeding them into our Neural Network, we ob-

tain inconsistent results, with a fairly high number of misclassifications. At this

point, we make the hypothesis that this can be due to the relatively small number

of ENOB provided by the on-board SAR ADC (∼ 10).
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In fact, as we can see, for example, in Figure 40, appliances with waveforms

with a very specific signature, like the (a.) or (d.) can be recognized by the Neural

Network also with an evident presence of an high Quantization Noise, while those

appliances, like the (c.), that provide a much less characterized waveform, we need

a good level of precision in the MCU measurements to be able to distinguish them

from the other similar ones.

This is true also for those appliances that, even though they have a well charac-

terized signature, they share a similar behaviour with some other ones, making the

recognition in need of a good level of precision and therefore, possibly, an higher

number of bits.

In any case, from the tests performed, the level of precision of the classifications

applied to the waveforms extracted from the MCU, settles around 65-75%.

However, before deciding whether we need to substitute the currently used ADC

with a more accurate one, we will need to perform an accuracy analysis using, as

training data-set of the Neural Network, actual waveforms extracted from the MCU,

in order to train the Network with more realistic inputs, since the loss in accuracy

may be due to an inadequacy of the Neural Network itself.

4.4.1 MCU Data Classification Issues Solution

In the previous steps of the study, we have highlighted how, signals acquired from

the MCU and then extracted from it, are not classified effectively, obtaining an

accuracy of ∼ 65% - 75%.

This can be due to the fact that the analysis performed on Matlab, on the

Database signals, even though it was conducted in fixed point, relied on signals that

are intrinsically different from the one that we can extract from the MCU, since in the

latter ones there will be a different Noise Floor, Jitter Noise and Quantization Noise.

To be able to achieve a good accuracy with this kind of waves, we need to change

completely the Data-set involved in the Neural Network Training mechanism. This

is fundamental, because at this moment, we are trying to classify MCU-Acquired

waves with a Neural Network that has been trained with Database signals.

Therefore, we try modifying the training data-set for our Network by substituting

the database signals with the actual signals extracted from the MSP430 memory that

previously we were not able to classify effectively.

The actual neural network training data-set was generated exactly as discussed
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Figure 41: Waveform extracted from MCU and database comparison

previously, creating 50 waves per appliance from 7 of the 10 signals, using a random-

ization of their values within the actual variance that exists between them. However,

in this case, the 10 starting signals, were the ones extracted directly from the MCU

memory.

We can now proceed performing the classification, after verifying the coherence

of the training executed by classifying the remaining three signals extracted from the

MCU acquirements, and we obtain a fairly high accuracy (> 90%) for the appliances

under test. From this analysis we learn that we are indeed able to classify with high

accuracy the signals that we extract from the Micro-Controller Memory if we train

the Neural Network with real case on-field waves and not with the Database ones.
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5 UART Communication

Considering that our prototype shall be able to perform a transmission of data via

Wi-Fi, we will need to resort to an additional board, since it is not possible to re-

alise a wireless communication system with the hardware so far presented, as the

TIDA-00929 does not provide such a capability.

As a consequence, we will need some additional hardware to implement the com-

munication with the cloud and, moreover, we need to implement a communication

mechanism to transmit the data acquired and processed by the TIDA-00929 to the

new additional board, still to be defined and chosen.

Since, indeed, the additional board, to which at this point we can refer to as

the WiFi-Board, has not been chosen yet, we select a communication mechanism

between that and the TIDA, which is extremely common and eventually relatively

easy to implement with standard IO pins. Therefore, we choose the UART (Uni-

versal Asynchronous Receiver-Transmitter). In this way, once we have correctly

implemented and tested the UART transmission from the TIDA, the WiFi-Board

that we will select will most likely have such an interface and will be able to com-

municate with the TIDA.

5.0.1 UART Protocol

The UART is a single-master single-slave asynchronous serial communication proto-

col, which means that it allows the communication only between two ICs at the time.

It can be designed as Simplex, Half-Duplex or Full-Duplex, according to whether,

respectively, only one of the two connected ICs can write on the line; both of them

can write on it (not simultaneously) or there are two separate transmission lines for

the two ICs to write and read at the same time.
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Figure 42: UART configurations

The idle condition of the UART transmission line is the high − bit state and

the start of the communication is indicated with a Start bit, that, of course, to be

distinguished by the idle condition will be a low − bit.

After the Start Bit, a total of 8 bits (1 Byte) are transmitted and then the

communication is closed with a stop bit, which makes the line go back to the idle

high condition.

Figure 43: UART protocol

The UART protocol is also characterized by a Baud-Rate, which must be the

same between the two connected ICs. For the purposes of this project we will com-

municate using a full duplex UART protocol, which is supported by the Hardware

available so far, and a standard Baude-Rate equal to 9600.
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5.0.2 TIDA UART Testing Hardware Setup

To implement and easily test the C code for the UART communication, we use

at this initial stage another board which mounts the same Micro-Processor as the

TIDA-00929, so that the code will be perfectly reusable on the TIDA, but that

provides a much larger GPIO interface, which makes the debugging much easier.

The board chosen is the LaunchPad MSP-EXP430FR5994.

Figure 44: LaunchPad MSP-EXP430FR5994

The use of this additional board is due to the fact that the TIDA-00929, even

though the MSP430 has a Full-Duplex UART channel, does not provide the related

GPIO pins. In fact, on the TIDA, we can access the UART interface of the MSP430

only through some Testing Points (TP), which are much harder to access than

standard GPIO Pins and, for most of them, it would be also required a soldering

of an external jumper for testing and debugging, as can be seen from the zoomed

TIDA detail reported in Figure 45. The UART testing point on the TIDA would be

TP9 (for TX) and TP10 (for RX).
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Figure 45: UART Testing Points on TIDA

Therefore, we can now proceed by designing a proper C code for the MSP430FR5994

processor, that will be compatible with both the MSP-EXP430FR5994 and the

TIDA-00929, for the UART communication, since they both mount the same Micro-

Controller.
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5.1 UART Implementation and Debugging

The purpose, at this point, is to verify the correct functioning of the UART interface

of the MSP430 and of our code. Hence, we exploit the USB debugging interface that

is present on the Launchpad.

1) LaunchPad → LaunchPad

The first logical step to achieve an effective TIDA → LaunchPad communication is

to design a code, for the latter one, capable of transmitting data from its UART TX

port and reading those same data from its RX port, shorting the two pins with a

jumper. Thus, at this first stage, we are only using the LaunchPad, as a debugging

platform.

In order to be able to verify separately the functioning of the TX and RX sides

of the code, we can check whether the board is actually transmitting by connecting

its UART Transmission port to an Oscilloscope.

In this way we are able to tell whether, in case of a non-functioning code, the

problem is in the TX or RX part of it. The setup is shown in Figure 46.

Figure 46: Shorted TX-RX Testing Setup

After designing the UART transmission code and completing the debugging we

are able to collect, with the oscilloscope, a valid UART transmission, which is also

detected and correctly read by the Board itself from its RX port.
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The signal collected with the Oscilloscope is reported in Figure 48. All the C

codes can be found in the Appendix 10.1.

Figure 47: UART Transmission Detected with Oscilloscope

2) LaunchPad → PC

The next step is to transmit the data to our PC through the USB port of the board,

still using only the LaunchPad MSP-EXP430FR5994 and the UART protocol. In

fact, another advantage that the LaunchPad presents with respect to the TIDA is

the possibility of debugging and communicating with the PC through the same USB

interface which is used for power supply without any external Debugger MSP-FET.

The capability of communicating with the PC through the USB port will be

useful for the entire project for debugging and to collect much faster the current

wave signals from the MCU that we will use for the training of the Neural Network.

However, this communication mechanism will not be actually present in the final

prototype.
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To perform the data transmission through the USB channel we modify the code

used in the previous step, by enabling the LaunchPad USB UART Full Duplex

Channels. To test its functioning, we initially transmit through it some known data

while in the PC we read the corresponding serial port using the software Tera-Term.

Similarly, we are also able to read the serial port with Matlab, by using the functions

serialport() and read(), which will be useful when we will need to classify the current

waves transmitted in this way, for testing purposes.

Figure 48: Tera Term Reading Serial Data from USB

3) TIDA → LaunchPad → PC

The final step is to load the tested code in the TIDA-00929 and to modify accordingly

the enabled UART ports. The idea is to transmit data from the TIDA to the

LaunchPad, and then forward those same data, again via UART, through the USB

port to the PC, where we can verify their correctness with Matlab or Tera-Term.

To avoid the need of soldering an external Pin on the TIDA board, we use only the

TP9, that is the TX port of the UART interface used and which provides a small

hole that can be used for fastening a jumper to connect this TX terminal to the RX

of the MSP-EXP430FR5994.
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Figure 49: Audio Jack → TIDA → LaunchPad → PC (USB) → Matlab

We proceed by integrating the code of TIDA’s UART in its Event Detector one,

making the serial transmission happening after an event detection and making, in the

first prototype architecture performing the classification in cloud, the acquired and

isolated waveform period the data transmitted. In order to be able to transmit the

Q15 type data, which is used in the Event Detection code to represent the acquired

wave and which is made of 16 bits (2 Bytes), we need to separate each sample into

two successive 8-Bits transmissions, as shown in the following code snippet .

1 for(k=0;k<256;k++){
2 for(i=0;i<2;i++){
3 if(i==1){
4 TX_Buffer = (uint8_t)(Data_To_Transmit[k] >> 8);
5 }
6 else if(i==0){
7 TX_Buffer = (uint8_t)(Data_To_Transmit[k]& 0x00FF);
8 }
9 UCA0TXBUF =TX_Buffer;

10 __delay_cycles(10000);
11 }
12 }
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We use Matlab to read the data coming from the USB, transmitted by the TIDA

and forwarded by the Launchpad, we are able to directly select a uint16 type of

data and the two separate bytes will be automatically merged into a 16-Bits integer.

After receiving from the USB the test current wave signal which has gone through

the TIDA, LaunchPad and PC UART channels, we collect the wave period and we

feed it into our appliance recognition neural network. As we can see in Figure 50,

in which we compare the database ideal wave period and the one transmitted via

UART, the two waveforms are very similar. Moreover, we need to take into account

the fact that, if we will perform the FFT in Cloud with Matlab, we are also able to

apply any kind of pre-processing to the received wave.

(a) Database Waveform (b) UART Received Waveform

Figure 50: Waveforms Comparison

Finally, feeding the Waveforms received via UART to the Neural Network for the

appliance recognition, we obtain correct classifications. We can, therefore, conclude

that the data transmission via UART between the boards does not alter the signals

information and that this communication mechanism is adequate for our application.

The UART Transmission analysis conducted so far lays the foundations for the

possibility of transmitting the isolated wave period or its spectrum to a Wi-Fi board

for the successive Wi-Fi communication, respectively, of that same isolated period

or of the final classification result, according to which one of the two prototype

architectures we are dealing with.
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5.2 UART Transmission Issues

The main issues during the UART transmission chain is encountered in the UART

communication between the TIDA and the LaunchPad, which resembles the actual

final communication system between the TIDA and the Wi-Fi Board. In fact, fre-

quently, the data transmission appears to be erroneous, for a loss of data. However,

thanks to the different debugging steps previously performed, we can assume that

the transmission and the reception codes loaded in the two boards are fully working.

Hence the problem is due to the use of non-shielded and fairly long wire for the

UART transmission between the boards.

The data that we are transmitting from the TIDA, regarding the samples of the

current wave acquired by the ADC, are expressed with 16 bits, while with the UART

we transmit only 8 bits at the time. Consequently, every signal sample is delivered

with two subsequent UART TX, by sending, separately, firstly the 8 LSBs and then

the 8 MSBs.

In the case of the classification in cloud prototype, in order to transmit an entire

signal waveform, we need to transmit 256 samples, hence 512 bytes. Although we

are able to correctly deliver most of the bytes, if we miss even a single one of them,

it will result in a compete erroneous interpretation also of all the following data, as

can be visualized in Figure 51. This is due to the fact that, at the receiving stage,

to recreate the 16-Bits samples, that we are transmitting as two successive bytes,

we multiply the 8-MSBs by 256 (28) and then we add the 8-LSBs value.
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If we miss a word, we will end up doing this operation with non-coherent values,

obtaining results that are extremely wrong, and moreover this problem will continue

for the rest of the transmission.

Figure 51: 16-Bits Data received with 1 Word Missing

To solve this issue, we need to introduce, at the transmission stage, a certain

level of redundancy, in order to detect the right byte value at each transmission

and prevent the occurrence of phase displacement of the data stream due to missing

data.

In particular, we introduce three levels of redundancy, repeating the UART trans-

mission of each byte for a total of three times. One of the advantages of this technique

is the easiness of C code adjustment, since we simply have to insert an additional

for cycle in the transmission part of it.

Figure 52: Redundant TX with Missing and Wrong words

On the other hand, the Matlab code for the reception of the redundant data and

its interpretation, providing robustness to either missing or wrong word transmission,

is not a trivial task.
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5.2.1 Matlab Redundant RX Algorithm

The Matlab Algorithm for the reception of 8-bits data, with a level three of redun-

dancy, and their correct reconstruction in 16-bits data, is based on the analysis of

three subsequent received data that we call i, i+1 and i+2.

Starting from these three words we need to verify which one of them are equal, so

we check for i=i+1 ; i=i+2 and i+1=i+2. Now we analyze the different possibilities

that can occur during the transmission of these three subsequent bytes, that should

be redundant.

• The three words are equal → Correct Transmission.

• Missing Byte → In i+2 we have a different word, but i+2 = i+3 or i+2 = i+4.

• Wrong data received → In any position i have a different data 6= i+3 and i+4

Figure 53: Matlab Algorithm for Redundant RX

Therefore, knowing the equalities between the three analysed bytes, and also

looking eventually at the next ones, we can evaluate whether we have a correct

transmission; a missing byte or a wrong data reception and eventually retrieve the

right data.
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5.3 Matlab GUI - Read Signal from COM

In order to simplify the process of data acquisition from the UART, its graphical

comparison with the original waveform coming from the Database and the classifi-

cation of the received signal, we implement exploiting the Matlab App Designer tool

a simple GUI (Graphic User Interface).

Figure 54: Matlab GUI

From the GUI it is possible to start to read data from UART, by pressing the

corresponding button. Before doing that, it’s necessary to indicate in the box on

top the number of the appliance under test, in order to be able to show the right

wave from the database and verify the correctness of an eventual classification. Af-

ter pressing “Read UAR”, the Message “Waiting for TX...” will be displayed in

the Text-Box provided below. After a know strating code is detected, we read from

UART the 512 Bytes with a three degree redundancy that compose the signal in-

formation to be received.
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After the completion of the transmission we extract, using the algorithm de-

scribed in Section 5.2, the valuable information, removing the redundancy and even-

tual errors. Finally we can merge the 512 Bytes retrieved into the 256 16-Bits words

that originally composed the waveform data.

By checking the two boxes present in the GUI (“Compare with Database” and

“Classify MCU Wave”) we can, respectively, compare graphically the UART-received

waveform with the database one and classify the former one. In this case, in the

Text-Box, will appear the result of the classification as “CORRECT” or “NON

CORRECT”.

Figure 55: Matlab GUI in action
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6 Wi-Fi Communication

Now that we have built the C-Code for a fully functioning UART communication

system from the MSP430, we need to explore the possible solutions for implementing

a Wireless communication using an additional board still to be defined,

In fact, the main idea, is to acquire the current wave signals using the TIDA board

and then, in the case of classification in cloud, to transmit the measured signal via

UART to a WiFi Board, which is used to forward those data to the cloud, where we

can properly process it and perform the recognition of the relative appliance.

On the contrary, in the case of classification in edge the idea is to perform the

FFT with the MSP430 in the TIDA, and then transmit, similarly to the previous

case, the spectrum of the signal, to the Wi-Fi board, where we perform the actual

classification and from which we can directly transmit the final result to other de-

vices. In this case the Wi-Fi communication is only responsible of the distribution

of the outcomes.

Since we are interested in transmitting the acquired data to a remote cloud or

directly to other devices, the best solution appears to be the use of Wi-Fi, exploiting

a local Access Point nowadays available in any home. In fact, other solutions, like

the use of BLE (Bluetooth Low Energy), which can transmit up to 1 Km of distance

and which presents a much lower power consumption with respect to WiFi, or others

communication protocols like ZigBee, will need the use of an additional HUB to

transmit to remote devices and clouds.

Figure 56: Communication Protocols

In order to allow a direct communication between the Wi-Fi Board and the Cloud

in one prototype architecture and to allow an easy distribution of the results toward

other devices in the other, we decide to use an MQTT protocol, which is based on

a remote Broker Server.
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6.1 MQTT Protocol

The MQTT (Message Queuing Telemetry Transport) network protocol is based on

a publish-subscribe structure, for which each device can create a topic and/or sub-

scribe to it and publish a message relative to that. All the other devices subscribed

to that same topic will receive the message. MQTT, is a typical IoT protocol that

provides a lightweight protocol, which runs over TCP/IP and does not require a

wide bandwidth.

MQTT protocol relies on two types of entities: the Broker and the Clients. The

Client can be represented by any device which is connected to the Broker. It is

allowed to create topics, to subscribe to them and to send messages regarding any

topic. In our example, the Client is represented by the Wi-Fi Board that transmit

the previously acquired waveform to the Broker. The Broker is the remote server,

in our project it is the Laptop or any other appropriate device, which receives all

the different messages, related to specific topics, from all the connected clients and

redirects those messages to all the clients that are subscribed to the corresponding

topic, notifying them.

Figure 57: MQTT Structure

The MQTT protocol has been chosen because it allows an easy communication

mechanism with a remote server and it is supported by the SDKs (Software Devel-

opment Kits) provided with a large number of Texas-Instruments Boards that allow

Wi-Fi communication. In addition, due to the small amount of data that we need

to exchange, MQTT does not provide any relevant limitation in terms of maximum

message length.
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6.2 Wi-Fi Board Choice

After considering all the necessities for the project, our choice for the Wi-Fi board

falls on a CC3220MODASF, which is a LaunchPad, based on a 32-Bits ARM Cortex-

M4, made specifically for wireless communications.

Figure 58: LaunchPad CC3220MODASF

The CC3220 LaunchPad provides a full-duplex UART channel, which is needed

in the project for the communication with the MSP430, and a USB port for the power

supply and to allow a direct communication with the PC to make the debugging

phase much easier.

In addition, for the CC3220 LaunchPad it is available a wide SDK, providing

diversified code examples that we can use as foundations of the program.

We can also find a specific code example for the implementation of an MQTT-

based communication that we will use as starting point.
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6.3 MQTT Transmission Implementation

6.3.1 SDK Code Analysis

In order to run properly the Software Development Kit MQTT code example, we

need to modify accordingly the parameters indicated in it, such as the Access-Point

Name, the Password and the type of security associated (Open, WPA/WPA2).

The code example allows the board to connect to the specified access point and,

by default, automatically subscribes the device to two MQTT topics, called ”Bro-

ker/To/cc32xx” and ”cc32xx/ToggleLED1”. Therefore, every time a message will

be published in those two topics, the LaunchPad will be notified and will read it.

The board also provides the visualization of its status and, eventually, of the

messages published in the topics of subscription, by sending data through the UART

channel of the USB port, already connected to the PC. Thus, by setting up Tera

Term accordingly with the specified Baud Rate of 115200, we are able to consult

the data, as shown in Figure 59.

Figure 59: CC3220MODASF MQTT UART Console

By pressing the Switch 2 on the LaunchPad we observe the toggling of the Blue

LED on the board and a message is published in the topic cc32xx/ToggleLED1.

Figure 60: Message received on console
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Consequently, in the UART console we can visualize respectively: the topic in

which a message has been published; the payload, that is the actual message; and

the QoS (Quality Of Service), indicating the number of acknowledgments required

for the transmission.

To test furtherly the MQTT message transmission, we connect to the same Bro-

ker another device -a smartphone- and we subscribe it to those same two topics.

After that, we verify that the messages published by the LaunchPad are visible

from the phone and vice versa, testing at the same time the functioning of both the

exploited topics.

(a) Message Sent by the LaunchPad

⇒
(b) Message Received by the Phone

Figure 61: Message Transmission LaunchPad → Phone

(a) Message Sent by the Phone

⇒
(b) Message Received by the LaunchPad

Figure 62: Message Transmission Phone → LaunchPad
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6.3.2 Customization of the Code

For our purposes, we need the Wi-Fi board to be capable of receiving data via UART

and to publish in a certain topic of the MQTT Server to which it is connected. The

information sent to the Broker are thus redirected in case of classification in cloud,

to our the remote server, the PC, where they can be processed to perform the actual

classification; while in case of classification in edge, the MQTT Broker will simply

redirect the recognition outcome directly to other devices.

Figure 63: MQTT Publish-Read Chain

At the remote server (PC) level, in the first case, we are able to read the messages

that have been published by the Wi-Fi board, in the predefined topic sections, by

using Matlab and an apposite MQTT Data Exchanger API.

To do so, we build a script capable of subscribing to the same MQTT topics in

which the CC3220 is writing the data received from UART; verifying when there

is a new message in them and, in case, reading it. The described Matlab script is

reported in the Section 10.2.3.

To verify the functioning of the implemented C and Matlab code and to make

their debugging easier, we do not connect the TIDA part of the chain yet, and we

simply proceed checking whether from Matlab it is possible to read the messages

published by the CC3220 LaunchPad and by an additional test device, a smartphone.

After that, in order to verify the correct functioning of both the UART and the

Wi-Fi communication mechanisms, we modify the C code loaded into the CC3220

so that the message that it publishes in the MQTT topic is the one that it receives

from the UART channel. At this point, we are introducing the operation of reading

from the UART but we are still not using the TIDA board, since the UART channel

from which the LaunchPad reads is the one present in the USB already connected

to the PC, from which we transmit a test message.
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Consequently, we can easily write in this UART channel by typing on the same

Tera Term console in which we visualize the status of the LaunchPad and the mes-

sages we receive from it.

Figure 64: MQTT Testing Chain

By exploiting the external Pins on the CC3220 and the available jumpers, we

are able to redirect the UART channels of the board with the USB COM port, to

the standard GPIO pins.

Figure 65: Jumpers configurations

In this way, we are able to connect the RX channel of the UART to the TIDA-

00929, still keeping the TX UART channel connected to the USB, so that we can

still consult the UART-Console by mean of Tera Term.

67



Realization of a Prototype to Implement NILM

6.3.3 MQTT Communication Issues

The main issue encountered when implementing a Wi-Fi communication with the

CC3220MODASF, regards the capability of the board of connecting with a Broker

Server.

Initially, we relied on a standard and public MQTT Broker, such as the one

provided by eclipse (mqtt.eclipse.org), but if in our C code we provided the server

address as its URL, the board seemed to be unable to establish a connection or, at

least, it disconnected immediately.

(a) Board Immediately Disconnecting (b) Board Not connecting

Figure 66: Errors in Connection with Broker

This issue is solved by performing a punctual “Sniffing” of each TCP packet

exchanged between the CC3220MODASF and the Access Point at which it was

connecting. This is done by mean of the software Wireshark.

Figure 67: Wireshark

By comparing the IP Address at which the requests of the Board, through the
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Access Point, are directed with the actual IP Address of the Broker Server, we can

point out that the board was not targeting the right Address.

Consequently, we modify the C code by stating explicitly the IP4 Address of the

target broker server.

6.3.4 Private Secure MQTT Broker

Now that we are able to connect out CC3220MODASF, through an IP4 Address,

to a public MQTT Broker Server, our purpose is to implement our own private and

secure Broker to rely on.

We exploit the Eclipse Software Mosquitto, which provides a Windows Service

to enable the PC as a Broker Server.

Figure 68: MQTT Custom Broker Software

With Mosquitto we are, indeed, also able to setup a secure connection between

clients and the Broker by mean of a Password and of an arbitrary list of accepted

Client-IDs, to control the access to the Server. It is worth mentioning that, in order

to use our device as a Broker Server, we need to allow external connection through

the port specified for the MQTT data transmission.

To verify the functioning of the Broker Server by itself we exploit another soft-

ware which is MQTT Explorer, with which can connect with other devices to the

Mosquitto server, publish and receive messages.

Figure 69: MQTT Explorer
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6.4 MQTT Connection Implementation in Matlab

In order to connect with the MQTT Broker and implement a Wi-Fi data transmission

between the CC3220 and the PC, we exploit the Toolbox ”MQTT Data Exchanger”

that can be added to Matlab and which is based on an MQTT API.

The Toolbox provides a simplified set of commands to connect to a Broker, to

subscribe to topics and to publish/receive messages. In fact, by using the mqtt()

command, specifying the IP4 address of the Broker and the communication proto-

col, in our case TCP, it is established a connection with the MQTT Broker and we

can subscribe to a topic by using the apposite subscribe command. This function

returns a struct-type in which are indicated, among other things, the number of

messages currently present in the specified topic that we have subscribed to.

By constantly monitoring this number with a polling mechanism, we can tell

when a new message has been published in the topics of interest and we can read it

in the format of a string, since the message that would be published by the Wi-Fi

board, representing the waveform acquired by the TIDA-00929 and transmitted to

it via UART, is made of Unsigned Char values (1 Byte size). The string is then

converted into an array of uint8 and, finally, from the 8-Bits data recevied we can

retrieve the 16-Bits that represent the actual waveform acquisition values.

This can be achieved by using, for two consecutive uint8 received values that

compose a single uint16 data, the following expression, where the i term represents

the LSBs of the 16-Bits value and the i+1 term its MSBs, shifting the latter one to

the left by 8 Bits and then adding the former one to the result:

data uint16 = data uint8i + (data uint8
i+1

) << 8

The full Matlab script for the MQTT connection, message extraction and 16-Bits

data construction is reported in the Appendix 10.2.3.
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6.5 Matlab MQTT API Issues

It is worth mentioning that, due to the particular data types used in the MQTT

Matlab API, we encountered an issue regarding the interpretation of Matlab of some

particular values when retrieved from the MQTT Broker messages.

In particular, we noticed that, when we performed a Wi-Fi transmission through

the MQTT protocol, the message read by Matlab presented some errors. At first,

we hypothesized that the errors were caused by an erroneous UART transmission

between the TIDA-00929 and the CC3220MODASF or by a wrong code implemen-

tation for the publishing of the waveform values from the CC3220 to the MQTT

Broker.

However, performing a cross-analysis, using both Matlab and Code Composer

Studio, of the data transmitted with redundancy by the TIDA then received by the

CC3220 and sent to the MQTT Broker and finally received by Matlab, we noticed

that, when there was the occurrence of a wrong value, this was repeated in the same

way also in all its redundancy repetitions.

This led to an exclusion of the possibility of an erroneous UART transmission.

In addition, we analysed punctually the Bytes sent by the CC3220 to the MQTT

Broker, by also exploiting Tera Term and making the CC3220 print in it the same

data transmitted to the Broker. Thus, we could also exclude the possibility of an

erroneous transmission CC3220 → MQTT Broker.

As a consequence we isolated the issue as part of the MQTT Broker → Matlab

communication section.

Therefore, we proceeded by publishing in the MQTT Broker known sequence of

all the possible 8-bits value, from 0 to 255, verifying then the values retrieved by

Matlab. We noticed that, for some particular values read from the received MQTT

messages, Matlab was interpreting them in an erroneous way.
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In particular, the transmitted values that are systematically misinterpreted are

the ones between 128 and 159. However, we also observed that these values, even

though they are read in the wrong way, they are always misinterpreted in the same

way, which means that we are able, in Matlab, to manually correct them, since

there’s a direct correspondence between the wrong values read and the actual ones.

The conversion table adopted is reported in Table 3.

Right Value Misinterpreted Value

128 8364

130 8218

131 402

132 8222

133 8230

134 8224

135 8225

136 710

137 8240

138 352

139 8249

140 338

142 381

145 8216

146 8217

147 8220

148 8221

149 8226

150 8211

151 8212

152 732

153 8482

154 353

155 8250

156 339

158 382

159 376

Table 3: Conversion Table

For those values that are represented by the same ”misinterpreted” one, we

computed them as the average of the previous and the following data.

Subsequently, we build a Matlab script to automatize the audio stream of the
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current waves from the PC to the ADC board and the acquisition of the waveforms,

isolated by the TIDA, transmitted via UART to the CC3220MODASF and sent via

WiFi to the Broker, from the MQTT server.

In particular, this Matlab script, reported in Appendix 10.2.4, creates the 1050

audio files from the same number of appliances measurements and then it plays

them through the audio jack one at the time. After that it waits for new messages,

containing the Waveform transmitted by the CC3220, to be published in the MQTT

Broker topics, and re-builds the received signal. At this point the script plots the

profile of the acquired signal and the user can indicate whether the waveform has

been correctly received or we need to repeat the operation.

Figure 70: Wi-Fi Testing Configuration

We are able to collect in a fairly short time an entire data set of the appliances

considered which reflects much better the actual measurements that we will need to

classify in operative conditions rather than using the plain waveforms contained in

the database. In the data collected in this way, indeed, we have the real ENOB and

distortions, phase noise and errors that will be encountered in the actual classifica-

tion cases. In this way we will be able to train our neural network accordingly, to

significantly increase the prediction accuracy.

(a) Ideal Database Signal (b) Signal acquired from WiFi

Figure 71: Errors in Connection with Broker
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7 Features Analysis

7.1 Absolute Spectrum Classification

Now that we have ensured that it is possible to communicate via WiFi, through an

MQTT Broker, the next step is to try to verify whether it is possible to exploit, to

perform the classification, the absolute value of the wave spectrum instead of the

separated Real and Imaginary ones.

(a) Real and Imaginary Spectrum (b) Absolute Spectrum

Figure 72: Spectra Comparisons

Although the use of the absolute spectrum means to have an halving of the num-

ber of information to perform the classification, it also leads to several advantages.

In particular, it would make the classification process much more robust to possible

errors in the period isolation mechanism that can result in an unwanted and unpre-

dictable phase between different measurements.

In fact, if we use the separate real and imaginary spectra, they are strictly

dependent from the phase of the analysed signal and hence of the isolated period.

In order to obtain a good coherence in our classification we must provide a known,

constant, phase in each isolated period.
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(a) Phase 1 (b) Phase 2

Figure 73: Separate Spectra with different Phases

If, instead, we use the absolute spectrum, our measurements and our classifica-

tion become independent from the phase of the signal acquired and, therefore, our

system becomes robust to phase errors in the signal acquisition and isolation.

Moreover, using the absolute value of the signal spectrum will also be extremely

useful when we will analyse, in the following steps of the study, the possibility of

recognising multiple appliances being active simultaneously. In fact, due to the dif-

ferent typologies of loads that can be connected to the power grid, we will observe

the presence of a phase difference between the current waves absorbed by two differ-

ent appliances, even though the voltage supplied to them is the same in amplitude

and phase.

As a consequence, when we have more than one appliance absorbing current from

the grid at the same time, the resulting current wave will be made of the sum of

the different appliances’ ones. Therefore, when we isolate a section of the composed

current wave, we will have an unknown and unpredictable phase between the signals

that compose the acquired waveform.
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Figure 74: Unknown Phase between appliances

Consequently, a disaggregation of the involved appliances would be impossible

using the separate real and imaginary spectra, since the presence of an unknown

phase between the two signals will make the spectra measurements non coherent

and would lead to an impossibility of its classification.

The analysis of the signals disaggregation will be discussed in Section 8.
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7.2 ADC Requirements Analysis

At this point of the study, we need to verify whether in our system it is actually

required an external ADC with a number of bits higher than the SAR-based one in-

tegrated in the MSP430FR5994. In fact, the latter one provides a 12-bits conversion,

with an ENOB of 10-bits, while the one evaluated to substitute it with provides a 24-

bits conversion with an ENOB of 18-bits and it is based on a Sigma-Delta Converter.

(a) SAR Transfer Function (b) Σ∆ Transfer Function

Figure 75: Precision Difference between 12 and 24 bits ADC

The advantages of using an higher bit number ADC is the increase in the accuracy

and the strong reduction in the quantization noise and the consequent improvement

of the SNRq (Signal over Quantization Noise), since:

SNRq
∼= 6.02N + 1.72 with N = Number of Bits
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Moreover, quantization noise strongly depends on the amplitude of the considered

signal and in particular on whether it exploits the entire ADC dynamic or part of it.

In fact, if the signal observed has an amplitude which is lower than the maximum

dynamic available, the SNRq will decrease with it of -20dB/dec, and therefore there’s

a linear dependency between them.

Figure 76: Variation of SNRq with non full-dynamic signals

This aspect is particularly important for the case of study, since the current

waves of the analysed appliances have a wide and diversified range of amplitudes.

However, the use of an higher precision ADC like the one taken into account,

would increase remarkably the cost (BOM) of the final device, and hence it is worth

analysing whether this modification to the project is actually needed.

To perform this investigation, having in a previous stage of the study verified,

with a fixed-point analysis Matlab, that the classification accuracy of the Neural

Network remains acceptable for 10-bits data, we build an automatized Matlab al-

gorithm, capable of collecting, directly from the WiFi, the waveforms acquired and

converted by the prototype, without any need of external supervision.

The algorithm was built by modifying the one previously developed and reported

in Appendix 10.2.4, inserting a wait of 5 seconds between each acquisition and a

watchdog to repeat the transmission of the signal at the occurrence of a timeout in

case of an occasional miss of the event detection algorithm on the device.
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It is important to mention that, in order to make this process more robust against

event detection misses and against wrong triggering of it, we modified the FIR filter

involved in the event detection by using a much steeper and hence higher order

(Order 70), with a Band-Pass behavior between 30Hz and 300Hz, as shown in

Figure 77. The filter coefficients were generated using the DSP-Library provided

with the MSP430FR5994 Software Development Kit.

Figure 77: FIR Filter Transfer Function and Characteristics

Therefore, exploiting this algorithm, we are able to re-collect from the WiFi the

entire database of 1050 measurements, for a total of 105 appliances. We can now

use those acquisition, which are representative of the actual signals in operative con-

ditions, to create some new training and testing data-sets and verify whether the

SAR-based 12 bits ADC exploited at this point is adequate. It is worth mentioning

that, to make the measurements coherent, the transmission of the waves via audio

jack was performed at fixed and constant volume level such that no clipping would

occur also for the signals with higher amplitudes.

With the new data-set, taken in operative conditions, we obtain an overall accu-

racy of ∼92%, definitely proving that the on-board 12 bits SAR ADC, integrated in

the MSP430FR5994, is sufficient for the case of study of appliance recognition.
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8 Disaggregation of Multiple Appliances

Now that we have implemented the single appliance classification mechanism, we

want to attempt to find an algorithm and a solution to make it possible to recognize

additional appliances that are turned on when there are already one or more devices

connected to the power line.

(a) First Appliance (b) Second Appliance

Figure 78: Multiple Active Appliances
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For what concerns the detection of the turning on of successive appliances when

there are already some active ones, the Band Pass FIR filter, implemented in the

MSP430FR5994 and described in the Section 7.2, which is part of the event detection

algorithm, is capable of detecting also small variations of its input signal thanks to

the accurately chosen behaviour of its transfer function.

(a) Filter Input (b) Filter Output

Figure 79: Band-Pass FIR filter Behaviour

In fact, as we can see in Figure 79 with some test signals, the occurrence of even

a small event cause the presence of a clear peak at the output, making possible

without any further modification of the firmware built, the detection of additional

events while there are already one or, potentially, multiple other devices connected.
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8.1 Signals Disaggregation Issues

The disaggregation of multiple overlapped signal is not a trivial task. In fact, since

each appliance can potentially have a completely different reactive load, it can in-

troduce on its absorbed current wave an unknown and unpredictable phase with

respect to the one of the appliances already active on the line.

This leads to the fact that the real and the imaginary spectra of the two over-

lapped appliances will sum up with an unknown phase between them and therefore

the amplitude of their real and imaginary harmonics will be unpredictable as well as

the corresponding sum between the appliances. We can’t even resort to the use of

the absolute spectrum since with the presence of this unknown phase, the spectrum

of the sum signal will not be equivalent to the sum of the single appliances spectra,

because given two complex numbers X and Y :

|X| + |Y | 6= |X + Y |

(a) Appliance A Spectrum (b) Appliance A Absolute Spectrum

(c) Appliance B Spectrum (d) Appliance b Absolute Spectrum
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(a) Sum of Spectra

6=
(b) Spectrum of Sum

Figure 80: Sum of Spectra and Spectrum of Sum comparison

As we can easily notice from Figure 98, the Sum of the two absolute spectra does

not coincides with the absolute spectra of the sum of the two signals when there is

a phase between them.

As a consequence, when we isolate a period of the overlapped signal, we need

to know at least the phase of the already active appliance current wave, to try to

remove it from the sum signal. To do that, we can keep track of the number of

samples taken between the activation of the second appliance and the isolation of

the period of the sum signal and according to the known main harmonic frequency,

we can compute the phase of the first appliance with respect to the isolated sum

period or, alternatively, we can isolate a period of the sum signal such that it is in

phase with the first appliance.

Figure 81: Sum signal with phase
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Figure 82: Sum Signal in Phase with Appliance A

However, as we can notice from Figure 82, the current waves absorbed by an ap-

pliance can strongly variate their behaviour. This can be due either to a non ideal

behaviours of the connected load or of the grid itself, or it can be generated by the

fact that many devices, that are generally grouped in the class of the FSM-Based

appliances, modify completely their behaviour, their functioning and therefore the

trend of the current absorbed in time.

As a consequence, even though we are able to isolate a period from the sum-

signal which is in phase with the first e turned on appliance, the spectrum of the

first appliance will potentially have undergone a large modification of its behaviour

and hence of its current wave. Therefore, we can’t simply remove from the in-

phase spectrum of the sum signal the spectrum of the first appliance taken at the

occurrence of its event to extract the spectrum of the newly activated one.
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The best chance that we have to be able to isolate the in-phase sum signal period

while knowing the exact trend of the first appliance involved in it, is to take another

period from the first appliance just before the occurrence of the second event. There-

fore, we can transmit, with the same mechanism described in the previous steps, the

newly isolated period from the first appliance right before sending also the one iso-

lated from the sum signal.

Figure 83: Sum signal with phase

By doing this we significantly reduce the time interval between the acquisitions

of the sum wave and of the first appliance waveform that we want to remove from

it. Therefore, it will be much more probable that the first appliance current wave

will remain unvaried in this time interval, making it possible to extract the second

wave and the corresponding appliance classification.
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From the Matlab analysis of an extended number of combination of appliances,

we find out that the quality of the second appliance extraction and of the conse-

quent results depends on the type of the appliances involved. In particular, we can

recognise a total of three possible situations of aggregation of appliances:

a. Two appliances with comparable current wave amplitudes.

b. Second appliance’s current wave much greater than the first one.

c. First appliance’s current wave much greater than the second one.

(a) Comparable Amplitudes (b) Second appliance greater than the first one

(c) First appliance greater than the second one

Figure 84: Overlapping appliances cases
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While the new detection algorithm for occurrence of events is robust to the in-

troduction of multiple appliances and it is capable of detecting with high reliability

also the activation of multiple appliances regardless of the relative magnitudes of

the current waves involved, the appliance classification one results to be dependent

by the situation, among the three described, in which we are operating.

In fact, we observe that, while in the cases of the two appliances having compa-

rable amplitudes or in the case of the second appliance being larger than the first

one, which are pictured in Figure 84 - (a) and (b), the disaggregation algorithm

is capable of extract effectively the newly activated appliance and we are able to

classify it accordingly, in the case of a second appliance with a current wave much

smaller than the first one this operation becomes much harder.

If the profile of the first appliance has a small fluctuation between its last ac-

quisition right before the second appliance event and when the sum-wave period is

isolated, when we try to remove from the latter one the spectrum of the former, we

are not actually removing the new content of the first appliance in the aggregate

signal.

Therefore, being the second appliance waveform much smaller than the first one,

its error of estimation of the first appliance due to its variation over time may cause

a complete misinterpretation of the second one, making it impossible to be classi-

fied. The improvement of the algorithm to allow a more robust, reliable and correct

classification also in this worst case is left for further studies.

All the considerations and the analysis performed on the case of the aggregation

of two devices can be easily extended to the case of multiple appliances, since each

one of them is classified individually at its activation and, for the disaggregation

algorithm described, we can simply consider the first appliance as the sum-wave of

all the devices already turned on, and the second appliance as the newly activated

one.
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9 Prototypes Realization

The next step of the study is the actual realization of the two prototypes architec-

tures, one performing the classification in cloud and the other one in edge, at local

hardware level.

9.1 Appliance Classification in Cloud

The next step is to analyse the realization of the first prototype, the one that per-

forms the classification in cloud, and its overall functioning.

First of all, we need to define whether in this architecture we want to transmit to

the Cloud, for the appliance recognition, an entire isolated signal section from the

steady state of the original waveform, or if we want to send directly its spectrum.

We start analysing the latter hypothesis.

9.1.1 Local FFT for Classification in Cloud

We try to explore the hypothesis of performing locally the FFT on the isolated

section of the original waveform and then transmitting via Wi-Fi to the Cloud its

harmonic content for the classification. By doing that we would only have to transmit

the absolute values of the harmonics of interest, made in total of 8 words of 2 bytes

each.

Figure 85: Local FFT configuration

Therefore, starting from the modified Event Detection Algorithm, we want to

perform the Fast Fourier Transform on the data saved in the variable that, in the

previous discussions, we called Wave Memory, in which we store the output of the

MSP430 ADC after the detection of an event.
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However, even though in the Wave Memory we are able to isolate two complete

wave periods, when we perform the FFT on it we encounter the following issues that

prevents us from obtaining a reliable and coherent spectrum content:

• The waves extracted always starts at a different point.

• Two periods are not enough to highlight the harmonics present in the signal.

The overall result of the spectrum results to be extremely confused and poor in

actual information, as can be seen in Figure 86.

Figure 86: FFT on Two-Periods with Random Starting Point

Once the two main issues that affect the quality of out FFT have been identified,

we can try to solve them respectively by:

• Using a Zero-Crossing Algorithm to make the periods start from the same

point (e.g. where they cross the Zero) or, as discussed earlier, exploiting the

absolute spectrum as the classification feature.

• Increase the length of the waveform section on which we perform the FFT to

improve its frequency resolution.
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The former, in case of employing of a zero-crossing algorithm, is realized by

computing the average of the signal and then recursively checking whether each

sample of the waveform is closer to it than the previous one, in order to highlight

the array-index of the value closest to the signal average, as shown in the following

code snippet:

1 average=0;
2 for(k=0; k<FIR_LENGTH; k++){
3 average += result[k]/256;
4 }
5

6 closest_value=1000;
7 for(k=0; k<FIR_LENGTH; k++){
8 if((average - result[k]< closest_value) && (average - result[k] >0)){
9 ZERO_C=k;

10 closest_value=average - result[k];
11 }
12 }

For what concerns adding more signal periods to the signal for the FFT analysis,

we try to extend it to a total of 8 periods, similarly to what we did in Matlab.

However, here at MCU level, we face the limited hardware resources that the Micro-

Controller presents. In particular, the MSP430FR5994 controller, provides a total

of 8 kB of RAM memory, which is also divided in half between the actual processor

memory and the LEA RAM, for the acceleration of signal processing operations.

Exploring the functioning of the MSP430, we find out that, in order to perform

complex signal-processing operations like the FFT, the involved variables need to be

stored in the LEA RAM. Consequently, we need to save the variable, that we call

fftBuffer in which we store the signal on which we will perform the FFT and where

the FFT function gives its result, in the LEA RAM (4 KB). Since we are sampling at

12800 KHz signals with a 50Hz fundamental frequency, a single period, as discussed

in Section 4.4 , will occupy 256 Words, made of 2 Bytes each, for a total of 512 Bytes.
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Therefore, the maximum number of signal periods that we can store on our LEA

RAM is:

Max Number of Periods in LEA RAM =
4096Bytes

512Bytes
= 8 Periods

However, in the LEA RAM we also need to keep the Circular Buffer, where we

store circularly the output values of the ADC, which is made of 516 Words and so

occupies 1 kB, and the High-Pass FIR Filter result vector, called result, which takes

for another 512 Bytes. Moreover, the FFT can be applied only on vectors that have

a length which is a power of two, so we can’t resort to a 3.5 Kb fftBuffer variable.

After performing several attempts, we discover that the maximum length for the

fftBuffer is 1024 Words, for a total of 4 waveform periods, corresponding to 2 kB.

This was made possible also by accurately studying the RAM locations assigned to

the LEA RAM and available to the user and manually setting the allocated memory

locations for the LEA RAM variables of Circular Buffer, result and fftBuffer.

1 /* ADC Output Register */
2 #pragma LOCATION(circularBuffer, 0x002C00)
3 _q15 circularBuffer[2* FIR_LENGTH];
4

5 /* FFT Input and Result */
6 #pragma LOCATION(fftBuffer, 0x003000)
7 _q15 fftBuffer[4*FIR_LENGTH];
8

9 /* Filter result */
10 #pragma LOCATION(result, 0x003800)
11 _q15 result[FIR_LENGTH];

We can now perform the FFT on the fftBuffer vector, which now includes a total

of 4 signal periods that always start from the same point to obtain coherent results.
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The spectrum resulting from the FFT has a much higher frequency resolution,

as we can easily see in Figure 87, also comparing it with the previous one.

(a) Single-Period FFT (b) Improved FFT

Figure 87: FFT Quality Comparison

However, since the actual appliance recognition will be performed anyway in

cloud, it results to be better to transmit to it the entire isolated waveform section,

in such a way to exploit its computational power also for the FFT.

9.1.2 FFT in Cloud

We advance now the hypothesis of performing the FFT in cloud by sending to it,

instead of the 14 words (28 Bytes) of the composed harmonics vector of the signal,

an entire wave period made of 256 words for a total of 512Bytes ( 0.5 Kb ). Even

though this may look like an heavy increase in the bandwidth occupation, the nowa-

days WiFi capabilities make this data transfer totally negligible either in bandwidth

occupation and required time.
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If we perform the FFT in cloud and send to it the entire isolated section of

the waveform, we are able to exploit the computational potential of MATLAB, to

properly scale and process the signals before proceeding with their frequency domain

analysis and consequent classification.

Figure 88: FFT in cloud configuration

9.2 Complete Prototype

We can appreciate the overall functioning of the architecture for the first explored

prototype solution in Figure 89.

Figure 89: Complete Prototype Functioning
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We can notice how the input current wave signal is fed through the TIDA’s

Signal Chain to the ADC of the MSP430. After the signal is acquired we have the

realization, in parallel, of its FIR filtering for the event detection and, in case of an

event, also of the isolation of a section of the waveform.

That same data is then transmitted via UART to the CC3220 which forwards it

to the MQTT server and hence to the cloud server running MATLAB for the final

appliance classification.

In Figure 90, we can instead observe the final prototype block diagram.

Figure 90: Complete Prototype Block Diagram
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9.2.1 Classification in Cloud GUI

Similarly to what we did in the previous discussions, for the graphical visualization of

the data that we were receiving via UART, we build now a MATLAB GUI (Graphic

User Interface) to visualize at the cloud level the data that we are receiving from the

prototype and the classification result, with the image of the resulting appliance.

This GUI may resemble the appearances of a mobile application for the classification

results communication and display.

Figure 91: Classification in Cloud GUI

(a) (b)

Figure 92: GUI Output Examples
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9.2.2 Classification in Cloud Results

Analyzing the results obtained with the classification in cloud configuration, we can

identify, as its main features, the following aspects:

• High Recognition Accuracy ∼ 92%.

• Possibility to improve the recognition system by acting directly on cloud and

exploiting its high computational power.

• New recognizable Appliances can be added without intervening on the proto-

type Software.

On the other hand, this configuration presents, as its main disadvantages, the

following characteristics:

• Need for an Appliance Classification Service in Cloud.

• Underuse of the hardware involved in the prototype realization.
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9.3 Appliance Classification in Edge

Considering the relative simplicity of the involved Neural Network, we evaluate

the possibility to perform the FFT and the consequent spectrum identification and

appliance classification directly in edge.

Figure 93: Block Diagram In-Edge Classification

The general idea is to perform the acquisition of the signal and its FFT on the

TIDA-00929, with its MSP430FR5994, and to compute the absolute spectrum and

isolate the spectral components of interest.

After that, we transmit via UART the values of the harmonics to the CC3220

with its Cortex-M4 and we perform the classification with the proper Neural Network

reconstructed in the latter and, finally, we directly send to other devices the final

classification outcome, without using any cloud.
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9.3.1 Neural Network Structure

The neural network employed in the appliance classification algorithm is a single-

layer perceptron, which means that it is only made of one input layer, one hidden one

and one output one. For each layer we have to perform a matrix multiplication and

sum with the weight and bias matrices, obtained at the training step. In addition, at

the end of the Hidden and Output Layers we have two different activation functions.

Figure 94: Neural Network Structure

In particular, between the Hidden Layer and the Output one we have a Sigmoid

Function, which is used to normalise the values computed previously between zero

and one, as can be observed by its transfer function in Figure 95.

Figure 95: Sigmoid Activation Function
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At the end of the Output Layer, instead, we have the SoftMax function, which

normalise the values in the vector fed to it in such a way that the sum of all the

elements will be one. Its expression and transfer function are pictured in Figure 96.

Figure 96: Transfer Function

In order to be able to implement the NN in edge, and therefore using embedded-C

on the CC3220 board, we need to understand precisely all the operations performed

by the neural network to go from the absolute harmonics’ values to the classification

of the appliance.

The first step is to model in Matlab a neural network, which is equivalent to the

one that we want to realize in the micro-controller.
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By analysing the operations performed by the feed-forward network, we observe

that from the input, which is made of the 8 values of the first odd absolute harmonics,

the following operations are performed:

1. Input Normalization → Sum and Multiplication of the input vector

2. Hidden Layer → Sum and Multiplication between matrices

3. Sigmoid Function

4. Output Layer → Sum and Multiplication between matrices

5. SoftMax Function

5. Classification

To understand properly the performed operations, we implement the Neural

Network behaviour in Matlab, as reported in the following code snippet:

1 Input_layer= (harmonics_vector-x1_step1.xoffset).*x1_step1.gain + x1_step1.ymin
2 Hidden_Layer= 2 ./ (1 + exp(-2*(b1+IW1_1 * input_layer))) - 1
3 Output_Layer= b2 +LW2_1 * Hidden_Layer
4

5 [val,classification]=max(Output_Layer);
6 classification

Since we are only interested in performing a classification of the appliance by se-

lecting the corresponding output of the network that has the best fit with respect to

the input vector fed to it, it is not necessary to implement an actual SoftMax func-

tion, but we can just select, as the classification output, the index of the maximum

value from the Output Layer Vector.

In fact, if we use the SoftMax function, we obtain a vector where are indicated the

percentage of guess of each appliance for the analysed spectrum, where the appliance

with the highest percentage is the final guess of the recognition mechanism.

However, if we simply compute the index of the max signed value of the Output

Layer Vector we obtain the same result with a huge reduction in the computational

cost of the network, which is extremely desirable since our purpose is to transfer this

computations in edge, at Micro-Controller level.
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9.3.2 FFT at Local Hardware Level

In order to be able to classify the profile of the appliance waveform at local hardware

level, we need first of all to perform an FFT accurately and coherently.

In addition to the considerations carried out in the previous sections, we evaluate

two possible solutions: one of performing a plane Discrete Fourier Transform (DFT)

on the data acquired, and the other one implying the multiplication of the waveform

with an appropriate window before performing the frequency domain analysis. The

window explored is the Hamming one, reported in Figure 97.

(a) Appliance Wave (b) Window Signal

(c) Windowed Signal

Figure 97: Windowing of the Current Wave Signal
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By using the technique of windowing the acquired signal before performing the

FFT with a function like Hamming’s, instead of the classic rectangular one, in the

final spectrum computed we reduce the weight of imperfections and discontinuities

that are inevitably present at the edges of the non-infinite section of the signal of

which we perform the frequency analysis.

This operation results into an increase in the Spurious Free Dynamic Range

(SFDR) of the spectrum and therefore in an overall enhancing of the harmonic com-

ponents of interest.

However, since we are performing the windowing and the FFT in the MSP430FR5994,

we need to take into account its consequent memory limitations.

In particular, since those two operations, that require a fairly large computa-

tional effort, necessarily require the use of the LEA (Low Energy Accelerator) to be

realized in an acceptable amount of time, we need to keep the data employed in the

LEA-RAM, which is made of 4 Kb.

Therefore, when we evaluate the possibility of using a windowing of the acquired

signal, we encounter a trade-off. In fact, if we need to save the Hamming Window

in the LEA-RAM, then we will not have enough memory left to fit the 1024 signal

samples on which, otherwise, we would perform the FFT. The two possible operative

solutions analysed come down to performing:

1. FFT on more periods with Rectangular windowing.

2. FFT on less periods with Hamming windowing.

(a) Case 1 (b) Case 2

Figure 98: Windowing Trade-Off
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After analysing the outcome of the FFT in the two cases, for numerous appliances

measurements, since we are interested in the peak values of the absolute spectrum

harmonic components, the increase in the Spurious Free Dynamic Range caused by

the Hamming windowing of the signal does not provide any notable improvement

in the collected data, while the reduction in the period exploited for the FFT that

we encounter in this case leads to a significant worsening of the spectral outcome,

as can be noticed in Figures 99 and 100.

Figure 99: Spectrum with Rectangular Window

Figure 100: Spectrum with Hamming Window
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9.3.3 Absolute Spectrum Computation

Now that we have decided to exploit an higher number of periods but a rectangular

windowing for the frequency analysis, we need to compute the absolute spectrum of

the signal from the resulting FFT and to isolate in it the values of the harmonics

component of interest.

However, the computation of the absolute spectrum is not as trivial as it was on

Matlab when we were performing the FFT in Matlab.

To perform the FFT we can rely on the DSP Library functions provided by the

Software Development Kit of the MSP430FR994, and use the predefined function

msp fft auto q15 which is capable of computing the auto-scaled FFT on a vector

of Q15 values.

Since we are performing a DFT, in the output provided are present both the

Real and Imaginary spectra merged in the same output vector in which the data of

the two results are arranged in an alternated sequence, as can be seen in Figure 101.

Figure 101: DFT output data arrangement
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Therefore, to separate the Real and Imaginary components of the spectrum we

need to divide, in the output vector, the values with even and odd indices as shown

in the following code snippet:

1 index_imag=0;
2 index_real=0;
3

4 for(kk=1;kk<512;kk++){
5 if(kk%2==0){//IMAGINARY
6 result_fft[512+index_imag]=result_fft[kk];
7 index_imag++;
8 }
9 else{ //REAL

10 result_fft[index_real]=result_fft[kk];
11 index_real++;
12 }
13 }

After that, from the Real and Imaginary components of the spectrum we can

simply compute the absolute spectrum as the square root of the sum of the two

values squared.

The use of the absolute spectrum, even though it results into an halving of the

usable data for the classification, makes the algorithm robust against phase varia-

tions in the isolation of the acquired signal.

For what concerns the isolation of the values of spectral components, we identify

the index of fundamental harmonic in the vector of the spectrum by using a max

function and then we identify the values of the rest of the harmonic content in the

spectrum vector as multiples of the index of the fundamental.
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9.3.4 Neural Network in the CC3220

In order to transfer the Neural Network in edge and, in particular, in the CC3220,

first of all we need to compute the proper values of the Weight and Bias matrices

that are used respectively in matrix multiplications and sums in its different layers.

We need to collect a reliable on-field dataset of the harmonic components from the

10 available measurements of all the considered appliances and then proceed with

the training phase of the perceptron.

Therefore, in this phase we use the CC3220 to forward the spectrum received via

UART from the MSP430 to our PC running Matlab via Wi-Fi, where we can collect

and use the spectrum for the actual training of the NN.

Successively, we can transfer the computed matrices in the CC3220 that will

receive the harmonic components of interest from the MSP430 and will perform

the same operations of the Neural Network and recognize the analyzed appliance.

The final classification result is then transmitted through the same MQTT Broker

mechanism described in Section 6.1 to all the devices connected to that broker and

subscribed to the specific topic chosen for the communication.

However, for what concerns the two activation functions present in the Neural

Network, while the Sigmoid Function has been realized as expected in the CC3220,

the SoftMax was actually substituted by an evaluation of the index of the maximum

value in the vector that would have been fed to it, since the normalization provided

by the SoftMax activation function is not needed to obtain the only classification

result.

Finally, in this way, we can easy transmit the classification result directly to the

user and/or to the Energy Provider.

Figure 102: Edge-Class. Prototype Functioning
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In Figure 103 we can observe an example of data that can be transmitted via

Wi-Fi. In (a) the entire harmonic content and the final classification result, here

actually sent via USB and displayed with Tera Term, and in (b) an example of the

classification outcome that can be received on the user’s Smartphone.

(a) Tera Term Tx Example (b) Smartphone Data Delivery

Figure 103: Example of data delivered to Other devices

9.3.5 Classification in Edge Results

Analyzing the main features of the classification in edge configuration and its results,

we can highlight as its positive characteristics that:

• Good Accuracy Level ∼ 90%

• No need for an Appliance Classification Service in Cloud

• More adequate use of the Hardware provided

On the other hand, we can identify as the main disadvantage of this solution the

following aspect:

• Software Updates needed to add new recognizable appliances or to improve

the recognition mechanism
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9.4 Further Developments

The study and the prototype realized and here discussed are not meant to be con-

sidered as an arriving point for this technologies, but its purpose is to lay the foun-

dations for future analysis, in which several aspects of the project can be improved

and optimized, going, for each of them, into details.

In fact, starting from the researches conducted so far, we identify as some of the

basic characteristics of interest for further studies, the following ones:

• Improvement of the capability of disaggregation of multiple appliances over-

lapped, obtaining more consistent results.

• Realization of a Non-Event Based NILM, with a continuous monitoring of

the current spectrum and its variations, with the relative estimation of the

computational power and of the hardware required.

• Optimization of the balancing among the operations performed in Cloud and

the ones realized at local hardware level.

• Capability of classifying also other classes of appliances in addition to the

On/Off ones.

• Modeling of a single custom-PCB for the realization of the entire prototype,

possibly exploiting a single Micro-Controller.

• Study and optimization of the Cost-Effectiveness trade-off for involvement of

different categories processors.

• Development of a Mobile Application for an easier visualization and deliver-

ance of the outcomes of the prototype.
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10 Code Appendix

10.1 C Code

10.1.1 MSP-EXP430FR5994 Writing on USB

1 #include <msp430.h>
2

3 volatile unsigned char RXData = 0;
4 volatile unsigned char TXData = 'a';
5 int k;
6

7 int main(void)
8 {
9 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog

10

11 // Configure GPIO
12 P1OUT &= ~BIT0; // Clear P1.0 output latch
13 P1DIR |= BIT0; // For LED on P1.0
14

15 P2SEL1 |= (BIT0 | BIT1); // USCI_A0 UART operation
16 P2SEL0 &= ~(BIT0 | BIT1);
17

18 // Disable the GPIO power-on default high-impedance mode to activate
19 // previously configured port settings
20 PM5CTL0 &= ~LOCKLPM5;
21

22 CSCTL0_H = CSKEY_H; // Unlock CS registers
23 CSCTL1 = DCOFSEL_3 | DCORSEL; // Set DCO to 8MHz
24 CSCTL2 = SELA__VLOCLK | SELS__DCOCLK | SELM__DCOCLK;
25 CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1; // Set all dividers
26 CSCTL0_H = 0;
27

28

29 UCA0CTLW0 = UCSWRST; // Put eUSCI in reset
30 UCA0CTLW0 |= UCSSEL__SMCLK; // CLK = SMCLK
31 // Baud Rate calculation
32 // 8000000/(16*9600) = 52.083
33 // Fractional portion = 0.083
34 // User's Guide Table 21-4: UCBRSx = 0x04
35 // UCBRFx = int ( (52.083-52)*16) = 1
36 UCA0BRW = 52; //52 // 8000000/16/9600
37 UCA0MCTLW |= UCOS16 | UCBRF_1 | 0x4900;
38 UCA0CTLW0 &= ~UCSWRST; // Initialize eUSCI
39 UCA0IE |= UCRXIE;
40

41

42 // Configure USCI_A3 for UART mode
43 UCA0CTLW0 = UCSWRST; // Put eUSCI in reset
44 UCA0CTLW0 |= UCSSEL__SMCLK; // CLK = SMCLK
45 UCA0BRW = 52; //52 // 8000000/16/9600
46 UCA0MCTLW |= UCOS16 | UCBRF_1 | 0x4900; // 1000000/115200 - INT(1000000/115200)=0.68
47 // UCBRSx value = 0xD6 (See UG)
48 UCA0CTLW0 &= ~UCSWRST; // release from reset
49 UCA0IE |= UCRXIE; // Enable USCI_A3 RX interrupt
50

51

52 UCA0TXBUF = 'r';
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53

54 __bis_SR_register(LPM3_bits | GIE); // Enter LPM3, interrupts enabled
55 __no_operation();
56 while (1)
57 {
58 while(!(UCA0IFG & UCTXIFG));
59 P1OUT |= BIT0;
60 UCA0TXBUF = TXData; // Load data onto buffer
61 __bis_SR_register(LPM0_bits | GIE); // Enter LPM0, interrupts enabled
62 }
63 }
64

65

66 #if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
67 #pragma vector=EUSCI_A0_VECTOR
68 __interrupt void USCI_A0_ISR(void)
69 #elif defined(__GNUC__)
70 void __attribute__ ((interrupt(EUSCI_A0_VECTOR))) USCI_A0_ISR (void) //
71 #else
72 #error Compiler not supported!
73 #endif
74 {
75 switch(__even_in_range(UCA0IV, USCI_UART_UCTXCPTIFG))
76 {
77 case USCI_NONE: break;
78 case USCI_UART_UCRXIFG:
79 RXData= UCA0RXBUF; // Read buffer
80 if(RXData != TXData) // Check value
81 {
82 P1OUT |= BIT0; // If incorrect turn on P1.0
83 while(1); // Trap CPU
84 }
85 TXData++; // increment data byte
86 __bic_SR_register_on_exit(LPM0_bits); // Exit LPM0 on reti
87 break;
88 case USCI_UART_UCTXIFG: break;
89 case USCI_UART_UCSTTIFG: break;
90 case USCI_UART_UCTXCPTIFG: break;
91 default: break;
92 }
93 }

10.1.2 TIDA-00929 Transmitting Data

1 #include <msp430.h>
2 #include <stdio.h>
3

4 volatile unsigned char RXData = 0;
5 volatile unsigned char TXData = 'a';
6 int k;
7

8 int main(void)
9 {

10
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11

12 // Stop watchdog timer
13 WDTCTL = WDTPW | WDTHOLD;
14

15 CSCTL0_H = 0;
16

17 // Initialize GPIO
18 PAOUT = 0x0000; PADIR = 0xFFFF;
19 PBOUT = 0x0000; PBDIR = 0xFFFF;
20 PCOUT = 0x0000; PCDIR = 0xFFFF;
21 PDOUT = 0x0000; PDDIR = 0xFFFF;
22 PJOUT = 0x0000; PJDIR = 0xFFFF;
23 PM5CTL0 &= ~LOCKLPM5;
24

25 // DEBUG: Set P4.5 low
26 P4OUT &= ~BIT5;
27 P4OUT ^= BIT5;
28 P4OUT ^= BIT5;
29 P1OUT |=BIT1; //Set P1.1 high
30

31 WDTCTL = WDTPW | WDTHOLD; // stop watchdog timer
32

33 // Configure GPIO
34 P2SEL1 |= (BIT0 | BIT1); // USCI_A0 UART operation
35 P2SEL0 &= ~(BIT0 | BIT1);
36

37

38 // Disable the GPIO power-on default high-impedance mode to activate
39 // previously configured port settings
40 PM5CTL0 &= ~LOCKLPM5;
41

42 // Startup clock system with max DCO setting ~8MHz
43 CSCTL0_H = CSKEY_H; // Unlock CS registers
44 CSCTL1 = DCOFSEL_3 | DCORSEL; // Set DCO to 8MHz
45 CSCTL2 = SELA__VLOCLK | SELS__DCOCLK | SELM__DCOCLK;
46 CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1; // Set all dividers
47 CSCTL0_H = 0; // Lock CS registers
48

49 // Configure USCI_A0 for UART mode
50 UCA0CTLW0 = UCSWRST; // Put eUSCI in reset
51 UCA0CTLW0 |= UCSSEL__SMCLK; // CLK = SMCLK
52 // Baud Rate calculation
53 // 8000000/(16*9600) = 52.083
54 // Fractional portion = 0.083
55 // User's Guide Table 21-4: UCBRSx = 0x04
56 // UCBRFx = int ( (52.083-52)*16) = 1
57 UCA0BRW = 52; //52 // 8000000/16/9600
58 UCA0MCTLW |= UCOS16 | UCBRF_1 | 0x4900;
59 UCA0CTLW0 &= ~UCSWRST; // Initialize eUSCI
60 UCA0IE |= UCRXIE; // Enable USCI_A0 RX interrupt
61

62 while(1){
63 P4OUT ^= BIT5;
64 UCA0TXBUF = 'a';
65 __delay_cycles(800000);
66 UCA0TXBUF = 'l';
67 __delay_cycles(800000);
68 UCA0TXBUF = 'b';
69 __delay_cycles(800000);
70 UCA0TXBUF = 'e';
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71 __delay_cycles(8000000);
72 P4OUT^=BIT4;
73

74 }
75 __delay_cycles(20000);
76 while(1)
77 __bis_SR_register(LPM0_bits | GIE); // Enter LPM3, interrupts enabled
78 __no_operation(); // For debugger
79

80 return 0;
81 }
82

83 #if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
84 #pragma vector=EUSCI_A0_VECTOR
85 __interrupt void USCI_A0_ISR(void)
86 #elif defined(__GNUC__)
87 void __attribute__ ((interrupt(EUSCI_A0_VECTOR))) USCI_A0_ISR (void) //
88 #else
89 #error Compiler not supported!
90 #endif
91 {
92 switch(__even_in_range(UCA0IV, USCI_UART_UCTXCPTIFG))
93 {
94 case USCI_NONE: break;
95 case USCI_UART_UCRXIFG:
96 RXData = UCA0RXBUF; // Read buffer
97 __bic_SR_register_on_exit(LPM0_bits); // Exit LPM0 on reti
98 break;
99 case USCI_UART_UCTXIFG: break;

100 case USCI_UART_UCSTTIFG: break;
101 case USCI_UART_UCTXCPTIFG: break;
102 default: break;
103 }
104 }
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10.1.3 MSP-EXP430FR5994 Receiving from TIDA and Sending to PC

via USB

1 #include <msp430.h>
2

3 unsigned char RXData_tmp;RXData[100],TXData;
4 int index=0;
5

6 int main(void)
7 {
8 WDTCTL = WDTPW | WDTHOLD; // Stop Watchdog
9

10 PAOUT = 0x0000; PADIR = 0xFFFF;
11 PBOUT = 0x0000; PBDIR = 0xFFFF;
12 PCOUT = 0x0000; PCDIR = 0xFFFF;
13 PDOUT = 0x0000; PDDIR = 0xFFFF;
14 PJOUT = 0x0000; PJDIR = 0xFFFF;
15 PM5CTL0 &= ~LOCKLPM5;
16

17 // DEBUG: Set P4.5 low
18 P1OUT &= ~BIT5;
19 P1OUT ^= BIT5;
20 P1OUT ^= BIT5;
21 P1OUT |=BIT1; //Set P1.1 high
22 // Configure GPIO
23

24 P6SEL1 &= ~(BIT0 | BIT1); // USCI_A3 UART operation
25 P6SEL0 |= BIT0 | BIT1;
26

27 P2SEL1 |= (BIT0 | BIT1); // USCI_A0 UART operation
28 P2SEL0 &= ~(BIT0 | BIT1);
29

30 // Disable the GPIO power-on default high-impedance mode to activate
31 // previously configured port settings
32 PM5CTL0 &= ~LOCKLPM5;
33

34

35 CSCTL0_H = CSKEY_H; // Unlock CS registers
36 CSCTL1 = DCOFSEL_3 | DCORSEL; // Set DCO to 8MHz
37 CSCTL2 = SELA__VLOCLK | SELS__DCOCLK | SELM__DCOCLK;
38 CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1; // Set all dividers
39 CSCTL0_H = 0; // Lock CS registers
40

41 // Configure USCI_A3 for UART mode
42 UCA3CTLW0 = UCSWRST; // Put eUSCI in reset
43 UCA3CTLW0 |= UCSSEL__SMCLK; // CLK = SMCLK
44 UCA3BRW = 52; //52 // 8000000/16/9600
45 UCA3MCTLW |= UCOS16 | UCBRF_1 | 0x4900;
46 UCA3CTLW0 &= ~UCSWRST; // Initialize eUSCI
47 UCA3IE |= UCRXIE; // Enable USCI_A3 RX interrupt
48

49 // Configure USCI_A0 for UART mode
50 UCA0CTLW0 = UCSWRST; // Put eUSCI in reset
51 UCA0CTLW0 |= UCSSEL__SMCLK; // CLK = SMCLK
52 UCA0BRW = 52; //52 // 8000000/16/9600
53 UCA0MCTLW |= UCOS16 | UCBRF_1 | 0x4900;
54 UCA0CTLW0 &= ~UCSWRST; // Initialize eUSCI
55 UCA0IE |= UCRXIE; // Enable USCI_A3 RX interrupt
56
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57 // __bis_SR_register(LPM3_bits | GIE); // Enter LPM3, interrupts enabled
58 // __no_operation();
59 while (1)
60 {
61

62 __bis_SR_register(LPM0_bits | GIE); // Enter LPM0, interrupts enabled
63 }
64 }
65

66 #if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
67 #pragma vector=EUSCI_A3_VECTOR
68 __interrupt void USCI_A3_ISR(void)
69 #elif defined(__GNUC__)
70 void __attribute__ ((interrupt(EUSCI_A3_VECTOR))) USCI_A3_ISR (void)
71 #else
72 #error Compiler not supported!
73 #endif
74 {
75

76 switch(__even_in_range(UCA3IV, USCI_UART_UCTXCPTIFG))
77 {
78 case USCI_NONE: break;
79 case USCI_UART_UCRXIFG:
80 // while(!(UCA3IFG&UCTXIFG));
81 P1OUT^=BIT1;
82 RXData_tmp= UCA3RXBUF;
83 RXData[index%100]=RXData_tmp;
84 //__delay_cycles(8000000); //wait 1 sec, we work at 8Mhz
85 UCA0TXBUF = RXData[index%100]; // Load data onto buffer
86 index++;
87 while(!(UCTXIFG));
88

89 // __no_operation();
90 break;
91 case USCI_UART_UCTXIFG: break;
92 case USCI_UART_UCSTTIFG: break;
93 case USCI_UART_UCTXCPTIFG: break;
94 default: break;
95 }
96 }

10.1.4 TIDA Event Detection and UART Acquired Wave Transmission

1 #include <msp430.h>
2 #include <math.h>
3 #include <stdint.h>
4 #include <string.h>
5 #include <stdbool.h>
6 #include "DSPLib.h"
7 #include "FIR_3.h"
8 //System parameters
9 #define SYSTEM_MCLK 16000000

10 #define SYSTEM_SMCLK SYSTEM_MCLK
11 #define SAMPLE_LENGTH 256
12 #define SAMPLE_FREQUENCY 25600 /////12800 i doubled the sampling frequency because actually our clock will be 8MHZ
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13 /* Filter parameters */
14 #define FIR_LENGTH 256
15 #define COEFF_LENGTH sizeof(FILTER_COEFFS_EX1)/sizeof(FILTER_COEFFS_EX1[0])
16

17 #pragma LOCATION(circularBuffer, 0x002C00) //// it was 3000
18 /////////////////////////////DSPLIB_DATA(circularBuffer,4)
19 _q15 circularBuffer[2* FIR_LENGTH];
20

21

22 /* Filter result */
23 #pragma LOCATION(fftBuffer, 0x003000) //// it was 3000
24 ///////////////////////////DSPLIB_DATA(fftBuffer,4)
25 _q15 fftBuffer[2*FIR_LENGTH];
26

27 #pragma LOCATION(Data_To_Transmit, 0x003400) //// it was 3000
28 ///////////////////////////DSPLIB_DATA(fftBuffer,4)
29 _q15 Data_To_Transmit[FIR_LENGTH];
30

31 ////////////////////////////////DSPLIB_DATA(result,4)
32 #pragma LOCATION(result, 0x003800)
33 _q15 result[FIR_LENGTH];
34

35 /*Filter Data*/
36 //#pragma PERSISTENT(firdata) ////////////////////////////
37 //_q15 firdata[FIR_LENGTH] = {0}; //////////////////////////////
38

39 msp_fir_q15_params firParams;
40 msp_fill_q15_params fillParams;
41 msp_max_q15_params firmaxParams;
42

43 DSPLIB_DATA(pulse_counts,4)
44 _q15 pulse_counts[8];
45

46 DSPLIB_DATA(FIR_peaks,4)
47 _q15 FIR_peaks[16];
48

49 volatile uint16_t cycle_counts = 0;
50 volatile uint16_t DataCopyPointer = 0;
51

52 volatile int16_t *previousBuffer;
53 volatile int16_t *activeBuffer;
54 volatile int16_t *nextBuffer;
55 volatile int16_t *firmax;
56

57 volatile uint16_t FilterIndex;
58 uint16_t firmaxIndex;
59 static const samples=0;
60 _q15 temp;
61 _q15 temp2;
62 static uint16_t caption;
63 uint8_t TX_Buffer;
64 uint16_t closest_value;
65 uint16_t i;
66 uint16_t kk;
67 uint16_t average;
68 uint16_t IDLE;
69 uint16_t IDLE_TIME;
70 uint16_t IDLE_TIME_MAX;
71 uint16_t ZERO_C;
72 uint16_t ppp;
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73 int main(void)
74 {
75 msp_status status;
76

77 // Stop watchdog timer
78 WDTCTL = WDTPW | WDTHOLD;
79

80 // Initialize clock settings
81 CSCTL0_H = CSKEY >> 8;
82 #if (SYSTEM_MCLK == 8000000)
83 CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1;
84 #elif (SYSTEM_MCLK == 16000000)
85 FRCTL0 = FRCTLPW | NWAITS_1;
86 CSCTL3 = DIVA__4 | DIVS__4 | DIVM__4;
87 CSCTL1 = DCOFSEL_4 | DCORSEL; __delay_cycles(60);
88 CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1;
89 #else
90 #error "Unsupported MCLK setting"
91 #endif
92 CSCTL0_H = 0;
93

94 // Initialize GPIO
95 PAOUT = 0x0000; PADIR = 0xFFFF;
96 PBOUT = 0x0000; PBDIR = 0xFFFF;
97 PCOUT = 0x0000; PCDIR = 0xFFFF;
98 PDOUT = 0x0000; PDDIR = 0xFFFF;
99 PJOUT = 0x0000; PJDIR = 0xFFFF;

100 PM5CTL0 &= ~LOCKLPM5;
101

102 // DEBUG: Set P4.5 low
103 P4OUT &= ~BIT5;
104 P4OUT ^= BIT5;
105 P4OUT ^= BIT5;
106 P1OUT |=BIT1; //Set P1.1 high
107 // Configure ADC: P1.0/A0
108 P1SEL0 |= BIT0;
109 P1SEL1 |= BIT0;
110 //Configure P1.2 for comparator input C2
111 P1SEL0 |= BIT2;
112 P1SEL1 |= BIT2;
113 //configure P2.0 to be input TB0CLK from the external comparator output
114 //this is enable only if external comparator is used
115

116 //P2DIR &= ~BIT0;
117 //P2SEL1 |= BIT0;
118 //P2SEL0 |= BIT0;
119 P1DIR &= ~BIT6; //configure P1.6 as input since it is connected to the comparator output on the board
120

121

122 PM5CTL0 &= ~LOCKLPM5;
123

124 CSCTL0_H = CSKEY_H; // Unlock CS registers
125 CSCTL1 = DCOFSEL_3 | DCORSEL; // Set DCO to 8MHz
126 CSCTL2 = SELA__VLOCLK | SELS__DCOCLK | SELM__DCOCLK;
127 CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1; // Set all dividers
128 CSCTL0_H = 0; // Lock CS registers
129

130 // DEBUG: Set P4.5 low
131 P4OUT &= ~BIT5;
132 P4OUT ^= BIT5;
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133 P4OUT ^= BIT5;
134 P1OUT |=BIT1; //Set P1.1 high
135

136 // Configure GPIO
137 P2SEL1 |= (BIT0 | BIT1); // USCI_A0 UART operation
138 P2SEL0 &= ~(BIT0 | BIT1);
139

140 // Configure USCI_A0 for UART mode
141 UCA0CTLW0 = UCSWRST; // Put eUSCI in reset
142 UCA0CTLW0 |= UCSSEL__SMCLK; // CLK = SMCLK
143 UCA0BRW = 52; //52 // 8000000/16/9600
144 UCA0MCTLW |= UCOS16 | UCBRF_1 | 0x4900;
145 UCA0CTLW0 &= ~UCSWRST; // Initialize eUSCI
146 UCA0IE |= UCRXIE; // Enable USCI_A0 RX interrupt
147

148 __delay_cycles(6000);
149

150 // Configure TA2 as counter with COUT as input clock, enable overflow interrupt
151 TA2CTL = TASSEL__TACLK | MC__CONTINUOUS | TACLR | TAIE;
152 // Configure TB0 as counter with TB0CLK/P2.0 as input clock, enable overflow interrupt
153 //THIS IS USED IF EXTERNAL COMPARATOR IS USED
154 //TB0CTL = TASSEL__0 | MC__CONTINUOUS | TBCLR | TBIE;
155

156 // Configure COMP and P1.2 as C2 input
157 // P1SEL0 |= BIT2;
158 // P1SEL1 |= BIT2;
159

160 // Configure TA1 timer to provide interval
161 TA1CCR0 = (SYSTEM_SMCLK / SAMPLE_FREQUENCY) - 1;
162 TA1CCR1 = (SYSTEM_SMCLK / SAMPLE_FREQUENCY / 2) - 1;
163 TA1CCTL1 = OUTMOD_3;
164 TA1CTL = TASSEL__SMCLK | ID__1;
165

166 // Configure ADC12 for sampling
167 ADC12CTL0 = ADC12SHT0_0 | ADC12SHT1_0 | ADC12ON;
168 ADC12CTL1 = ADC12SHS_4 | ADC12CONSEQ_2 | ADC12SHP;
169 ADC12CTL2 = ADC12RES_2 | ADC12DF_0; //ADC12DF_0: Unsigned 12-bit read, ADC12DF_1: signed (2s complement) left aligned value
170 ADC12MCTL0 |= ADC12INCH_0;
171 ADC12CTL0 |= ADC12ENC | ADC12SC;
172

173 // Configure DMA channel 0 to transfer ADC samples
174 __data20_write_long((uintptr_t)&DMA0SZ, (uint16_t)SAMPLE_LENGTH); //
175 __data20_write_long((uintptr_t)&DMA0SA, (uintptr_t)&ADC12MEM0);
176 __data20_write_long((uintptr_t)&DMA0DA, (uintptr_t)circularBuffer);
177 DMACTL0 = DMA0TSEL__ADC12IFG;
178 DMA0CTL = DMADT_0 | DMASRCINCR_0 | DMADSTINCR_3 | DMAIE | DMAEN;
179

180 // Initialize DMA buffer pointers
181 previousBuffer =&circularBuffer[SAMPLE_LENGTH]; ////////////////////&circularBuffer[SAMPLE_LENGTH];
182 activeBuffer = &circularBuffer[0];
183 nextBuffer = previousBuffer;
184

185 //Initialize FFT variables
186 uint16_t shift;
187 msp_cmplx_fft_q15_params fftParams;
188

189 /* Initialize the fft parameter structure. */
190 fftParams.length = 512; /////////////////////////IT WAS 128 ////////////////////////
191 fftParams.bitReverse = 1;
192 fftParams.twiddleTable = msp_cmplx_twiddle_table_512_q15; /////////////////////////
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193

194 // Initialize FIR pointers
195 FilterIndex = 2*FIR_LENGTH-COEFF_LENGTH;
196

197 /* Initialize the FIR parameter structure. */
198 firParams.length = FIR_LENGTH;
199 firParams.tapLength = COEFF_LENGTH;
200 firParams.coeffs = FILTER_COEFFS_EX1;
201 firParams.enableCircularBuffer = true;
202

203 /* Zero initialize FIR input for use with circular buffer. */
204 fillParams.length = 2*FIR_LENGTH;
205 fillParams.value = 0;
206 status = msp_fill_q15(&fillParams, circularBuffer);
207 msp_checkStatus(status);
208

209 /*Max Value function initialize */
210 firmaxParams.length = FIR_LENGTH;
211

212 _q15 q15MaxVector;
213 uint16_t uint16MaxIndex;
214 uint16MaxIndex=0;
215

216

217 //Initialize general variables
218 closest_value=0;
219 kk=0;
220 ppp=0;
221 ZERO_C=0;
222 average=0;
223 i=0;
224 IDLE=0;
225 IDLE_TIME=0;
226 IDLE_TIME_MAX= 512;
227 // temp=FIR_LENGTH;
228 temp=0;
229 caption=0;
230 DataCopyPointer=0;
231 // Enable interrupts and start conversion
232 __enable_interrupt();
233 TA1CTL |= MC__UP | TACLR;
234

235 while(1) {
236 cycle_counts = 0;
237 temp2=temp;
238 temp=0;
239 if (caption==1)
240 {
241 caption=0;
242 //memcpy(&fftBuffer, circularBuffer, FIR_LENGTH * sizeof(_q15) );
243 memcpy(&result, circularBuffer, FIR_LENGTH * sizeof(_q15) );
244

245 status = msp_max_q15(&firmaxParams,result ,&q15MaxVector,&uint16MaxIndex);
246 msp_checkStatus(status);
247

248 average=0;
249 for(kk=0; kk<FIR_LENGTH; kk++){
250 average += result[kk]/FIR_LENGTH;
251 }
252
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253 closest_value=1000;
254 for(kk=0; kk<FIR_LENGTH; kk++){
255 if((average - result[kk] <closest_value) && (average - result[kk] >0)){
256 ZERO_C=kk;
257 closest_value=average - result[kk];
258 }
259 }
260

261 memcpy(&fftBuffer, result, FIR_LENGTH * sizeof(_q15) );
262 memcpy(&fftBuffer[FIR_LENGTH], fftBuffer, FIR_LENGTH * sizeof(_q15) );
263 memcpy(&fftBuffer[2*FIR_LENGTH], fftBuffer, FIR_LENGTH * sizeof(_q15) );
264

265 memcpy(&Data_To_Transmit, &fftBuffer[ZERO_C], (FIR_LENGTH) * sizeof(_q15) ); //ISOLATE A SINGLE WAVE
266

267 // memcpy(&fftBuffer[FIR_LENGTH], &fftBuffer, FIR_LENGTH * sizeof(_q15) );
268 // memcpy(&fftBuffer[2*FIR_LENGTH], &fftBuffer, 2*FIR_LENGTH * sizeof(_q15) );
269

270 for(kk=0;kk<256;kk++){
271 //P4OUT ^= BIT5;
272 for(ppp=0;ppp<2;ppp++){
273

274 if(ppp==1){
275 TX_Buffer = (uint8_t)(Data_To_Transmit[kk] >> 8);
276 }
277 else if(ppp==0){
278 TX_Buffer = (uint8_t)(Data_To_Transmit[kk]& 0x00FF);
279 }
280 UCA0TXBUF =TX_Buffer;
281 __delay_cycles(10000);
282 }
283

284 }
285

286 // FFT !
287 //status = msp_cmplx_fft_auto_q15(&fftParams,fftBuffer, &shift);// PERFORM FFT ON STORE_WAVE
288 // msp_checkStatus(status);
289 P4OUT^=BIT4;
290

291 }
292

293

294

295

296 while(cycle_counts<8*8*4)
297 {
298 // Enter LPM0 and wait for DMA ISR
299 __bis_SR_register(LPM0);
300

301

302 P4OUT ^= BIT5;
303

304 ///AVOID DETECTION AT THE END
305 if(IDLE==1){
306 IDLE_TIME++;
307 if(IDLE_TIME >= IDLE_TIME_MAX){
308 IDLE=0;
309 IDLE_TIME=0;
310 }
311 }
312
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313 // Run FIR filter
314 status = msp_fir_q15(&firParams, &circularBuffer[FilterIndex], &result[samples]);
315 msp_checkStatus(status);
316 FilterIndex ^= FIR_LENGTH;
317 // memcpy(&firdata[DataCopyPointer], &result[samples], FIR_LENGTH*2);
318 //DataCopyPointer += FIR_LENGTH;
319 // Find max in result
320 status = msp_max_q15(&firmaxParams,result ,&q15MaxVector,&uint16MaxIndex);
321 msp_checkStatus(status);
322 //Compare max with previous (with temp and temp2 we avoid to detect as event the first peak, due to FIR on first samples, and we put a link between one cycle with the following)
323 if (((q15MaxVector>1.3*temp2 &&temp2!=0) ||(q15MaxVector>1.3*temp &&temp!=0)) &&caption==0&&IDLE==0) { ///IT WAS 1.3 TO BOTH
324 caption+=1;
325 DataCopyPointer++;
326 IDLE=1;
327 /* Perform complex FFT with auto scaling */
328 // memcpy(fftBuffer, result, FIR_LENGTH * sizeof(_q15) );
329 // status = msp_cmplx_fft_auto_q15(&fftParams,fftBuffer, &shift);
330 // msp_checkStatus(status);
331 P4OUT ^= BIT4; //LED
332 }
333

334 if (q15MaxVector > temp)
335 temp=q15MaxVector;
336

337 cycle_counts++;
338 // DEBUG: Toggle P4.5
339 P4OUT ^= BIT5;
340

341

342 }
343 //P4OUT ^= BIT4;
344 i+=1;
345 }
346 }
347 // DMA interrupt service routine
348 #pragma vector = DMA_VECTOR
349 __interrupt void DmaIsr(void)
350 {
351 switch(__even_in_range(DMAIV, DMAIV_DMA0IFG)) {
352 case DMAIV_NONE: break;
353 case DMAIV_DMA0IFG:
354 // Setup next transfer
355 __data20_write_long((uintptr_t)&DMA0DA, (uintptr_t)nextBuffer);
356 DMA0CTL |= DMAEN;
357

358 // Switch buffer pointers
359 previousBuffer = activeBuffer;
360 activeBuffer = nextBuffer;
361 nextBuffer = previousBuffer;
362

363 // Exit from LPM0
364 __bic_SR_register_on_exit(LPM0_bits);
365 break;
366 default: break;
367 }
368 }
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10.2 TIDA Event detection with FFT and spectrum TX

1 #include <msp430.h>
2 #include <math.h>
3 #include <stdint.h>
4 #include <string.h>
5 #include <stdbool.h>
6 #include <complex.h>
7 #include "DSPLib.h"
8 #include "FIR_Bandpass.h"
9 //System parameters

10 #define SYSTEM_MCLK 16000000 //16
11 #define SYSTEM_SMCLK SYSTEM_MCLK
12 #define SAMPLE_LENGTH 256
13 #define SAMPLE_FREQUENCY 12800 //25600//12800
14 /* Filter parameters */
15 #define FIR_LENGTH 256
16 #define COEFF_LENGTH sizeof(FILTER_COEFFS_EX1)/sizeof(FILTER_COEFFS_EX1[0])
17

18

19

20 #pragma LOCATION(circularBuffer, 0x002C00)
21 //DSPLIB_DATA(circularBuffer,4)
22 _q15 circularBuffer[2* FIR_LENGTH];
23 //DSPLIB_DATA(circularBuffer,4)
24

25 //DSPLIB_DATA(window,4)
26 //_q15 window[FIR_LENGTH];
27

28 /* Filter result */
29 //#pragma LOCATION(fftBuffer, 0x003000)
30

31

32 DSPLIB_DATA(result,4)
33 //#pragma LOCATION(result, 0x003000)
34 _q15 result[4*FIR_LENGTH];
35

36

37 //#pragma LOCATION(Data_To_Transmit, 0x003900)//// it was 3000
38 DSPLIB_DATA(Data_To_Transmit,4)
39 _q15 Data_To_Transmit[16];
40

41 DSPLIB_DATA(spectrum_value,4)
42 _q15 spectrum_value[6];
43

44

45 msp_fir_q15_params firParams;
46 msp_fill_q15_params fillParams;
47 msp_max_q15_params firmaxParams;
48 msp_max_q15_params tmpParams;
49 msp_min_q15_params firminParams;
50

51 DSPLIB_DATA(pulse_counts,4)
52 _q15 pulse_counts[8];
53

54 DSPLIB_DATA(FIR_peaks,4)
55 _q15 FIR_peaks[16];
56

57 volatile uint16_t cycle_counts = 0;
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58 volatile uint16_t DataCopyPointer = 0;
59

60 volatile int16_t *previousBuffer;
61 volatile int16_t *activeBuffer;
62 volatile int16_t *nextBuffer;
63 volatile int16_t *firmax;
64

65 volatile uint16_t FilterIndex;
66 uint16_t firmaxIndex;
67 static const int samples=0;
68 _q15 temp;
69 _q15 temp2;
70 uint16_t fundamental_index;
71 _q15 delta_previous;
72 _q15 delta;
73 static uint16_t caption;
74 uint16_t i;
75 uint16_t kk;
76 uint16_t index_imag, index_real;
77 uint16_t average;
78 uint16_t IDLE;
79 uint16_t IDLE_TIME;
80 uint16_t IDLE_TIME_MAX;
81 uint16_t ZERO_C;
82 uint16_t ppp;
83 uint8_t TX_Buffer;
84 uint16_t redundancy;
85 uint16_t spikes_avoid;
86

87 int main(void)
88 {
89 msp_status status;
90

91 //initHamming();
92

93 // Stop watchdog timer
94 WDTCTL = WDTPW | WDTHOLD;
95

96 // Initialize clock settings
97 CSCTL0_H = CSKEY >> 8;
98 #if (SYSTEM_MCLK == 8000000)
99 CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1;

100 #elif (SYSTEM_MCLK == 16000000)
101 FRCTL0 = FRCTLPW | NWAITS_1;
102 CSCTL3 = DIVA__4 | DIVS__4 | DIVM__4;
103 CSCTL1 = DCOFSEL_4 | DCORSEL; __delay_cycles(60);
104 CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1;
105 #else
106 #error "Unsupported MCLK setting"
107 #endif
108

109 CSCTL0_H = 0;
110

111 // Initialize GPIO
112 PAOUT = 0x0000; PADIR = 0xFFFF;
113 PBOUT = 0x0000; PBDIR = 0xFFFF;
114 PCOUT = 0x0000; PCDIR = 0xFFFF;
115 PDOUT = 0x0000; PDDIR = 0xFFFF;
116 PJOUT = 0x0000; PJDIR = 0xFFFF;
117 PM5CTL0 &= ~LOCKLPM5;
118
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119 // DEBUG: Set P4.5 low
120 P4OUT &= ~BIT5;
121 P4OUT ^= BIT5;
122 P4OUT ^= BIT5;
123 P1OUT |=BIT1; //Set P1.1 high
124 // Configure ADC: P1.0/A0
125 P1SEL0 |= BIT0;
126 P1SEL1 |= BIT0;
127 //Configure P1.2 for comparator input C2
128 P1SEL0 |= BIT2;
129 P1SEL1 |= BIT2;
130 //configure P2.0 to be input TB0CLK from the external comparator output
131 //this is enable only if external comparator is used
132 P2DIR &= ~BIT0;
133 // P2SEL1 |= BIT0;
134 // P2SEL0 |= BIT0;
135 P1DIR &= ~BIT6; //configure P1.6 as input since it is connected to the comparator output on the board
136

137

138 P2SEL1 |= (BIT0 | BIT1); // USCI_A0 UART operation
139 P2SEL0 &= ~(BIT0 | BIT1);
140

141 CSCTL0_H = CSKEY_H; // Unlock CS registers
142 //CSCTL1 = DCOFSEL_3 | DCORSEL; // Set DCO to 8MHz
143 CSCTL2 = SELA__VLOCLK | SELS__DCOCLK | SELM__DCOCLK;
144 //CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1; // Set all dividers
145 CSCTL0_H = 0; // Lock CS registers
146

147 // Configure USCI_A0 for UART mode
148 UCA0CTLW0 = UCSWRST; // Put eUSCI in reset
149 UCA0CTLW0 |= UCSSEL__SMCLK; // CLK = SMCLK
150 // Baud Rate calculation
151 // 8000000/(16*9600) = 52.083
152 // Fractional portion = 0.083
153 // User's Guide Table 21-4: UCBRS0 = 0x04 0x11
154 // UCBRF0 = int ( (52.083-52)*16) = 1
155 UCA0BRW = 104; //52 104=16MHz/16/9600 // 8000000/16/9600
156 UCA0MCTLW |= UCOS16 | UCBRF_2 | 0x4900;////UCBRF_1
157 UCA0CTLW0 &= ~UCSWRST; // Initialize eUSCI
158 UCA0IE |= UCRXIE; // Enable USCI_A0 RX interrupt
159

160 __delay_cycles(6000);
161

162 // Configure TA2 as counter with COUT as input clock, enable overflow interrupt
163 TA2CTL = TASSEL__TACLK | MC__CONTINUOUS | TACLR | TAIE;
164 // Configure TB0 as counter with TB0CLK/P2.0 as input clock, enable overflow interrupt
165 //THIS IS USED IF EXTERNAL COMPARATOR IS USED
166 //TB0CTL = TASSEL__0 | MC__CONTINUOUS | TBCLR | TBIE;
167

168 // Configure COMP and P1.2 as C2 input
169 CECTL0 = CEIPEN | CEIPSEL_2;
170 CECTL1 = CEPWRMD_1;
171 CECTL2 = CEREFL_2 | CERS_3 | CERSEL;
172 CECTL3 = BIT2;
173 CECTL1 |= CEON;
174

175 // Configure TA1 timer to provide interval
176 TA1CCR0 = (SYSTEM_SMCLK / SAMPLE_FREQUENCY) - 1;
177 TA1CCR1 = (SYSTEM_SMCLK / SAMPLE_FREQUENCY / 2) - 1;
178 TA1CCTL1 = OUTMOD_3;
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179 TA1CTL = TASSEL__SMCLK | ID__1;
180

181 // Configure ADC12 for sampling
182 ADC12CTL0 = ADC12SHT0_0 | ADC12SHT1_0 | ADC12ON;
183 ADC12CTL1 = ADC12SHS_4 | ADC12CONSEQ_2 | ADC12SHP;
184 ADC12CTL2 = ADC12RES_2 | ADC12DF_0; //ADC12DF_0: Unsigned 12-bit read, ADC12DF_1: signed (2s complement) left aligned value
185 ADC12MCTL0 |= ADC12INCH_0;
186 ADC12CTL0 |= ADC12ENC | ADC12SC;
187

188 // Configure DMA channel 0 to transfer ADC samples
189 __data20_write_long((uintptr_t)&DMA0SZ, (uint16_t)SAMPLE_LENGTH); //
190 __data20_write_long((uintptr_t)&DMA0SA, (uintptr_t)&ADC12MEM0);
191 __data20_write_long((uintptr_t)&DMA0DA, (uintptr_t)&circularBuffer[0]);
192 DMACTL0 = DMA0TSEL__ADC12IFG;
193 DMA0CTL = DMADT_0 | DMASRCINCR_0 | DMADSTINCR_3 | DMAIE | DMAEN;
194

195 // Initialize DMA buffer pointers
196 previousBuffer =&circularBuffer[SAMPLE_LENGTH]; ////////////////////&circularBuffer[SAMPLE_LENGTH];
197 activeBuffer = &circularBuffer[0];
198 nextBuffer = previousBuffer;
199

200 //Initialize FFT variables
201 uint16_t shift;
202 msp_fft_q15_params fftParams;
203 msp_cmplx_fft_q15_params fftParams_cmplx;
204 msp_abs_q15_params absParams;
205 msp_cmplx_conj_q15_params cmplxParams;
206 cmplxParams.length=1024;
207 absParams.length=1024;
208 tmpParams.length= 6;
209

210 //msp_cmplx_fft_q15_params fftParams;
211

212 /* Initialize the fft parameter structure. */
213 fftParams.length = 1024; /////////////////////////IT WAS 128 ////////////////////////
214 fftParams.bitReverse = 1;
215 fftParams.twiddleTable = msp_cmplx_twiddle_table_1024_q15; /////////////////////////
216 // Initialize FIR pointers
217 FilterIndex = 2*FIR_LENGTH-COEFF_LENGTH;
218

219 /* Initialize the FIR parameter structure. */
220 firParams.length = FIR_LENGTH;
221 firParams.tapLength = COEFF_LENGTH;
222 firParams.coeffs = FILTER_COEFFS_EX1;
223 firParams.enableCircularBuffer = true;
224

225 /* Zero initialize FIR input for use with circular buffer. */
226 fillParams.length = 2*FIR_LENGTH;
227 fillParams.value = 0;
228 status = msp_fill_q15(&fillParams, circularBuffer);
229 msp_checkStatus(status);
230

231 /*Max Value function initialize */
232 firmaxParams.length = FIR_LENGTH;
233 firminParams.length = FIR_LENGTH;
234

235 _q15 q15MaxVector;
236 uint16_t uint16MaxIndex;
237 uint16MaxIndex=0;
238
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239

240 //Initialize general variables
241 delta_previous=0;
242 delta=0;
243 spikes_avoid=0;
244 redundancy=0;
245 TX_Buffer=0;
246 ppp=0;
247 kk=0;
248 ZERO_C=0;
249 average=0;
250 i=0;
251 IDLE=1;
252 IDLE_TIME=0;
253 IDLE_TIME_MAX=256;
254 temp=0;
255 caption=0;
256 DataCopyPointer=0;
257

258 TA1CTL |= MC__UP | TACLR;
259

260 while(1) {
261 cycle_counts = 0;
262 temp2=temp;
263 if (caption==1)
264 {
265 caption=0;
266 memcpy(&result[0], circularBuffer, FIR_LENGTH * sizeof(_q15) );
267 memcpy(&result[FIR_LENGTH], result, FIR_LENGTH * sizeof(_q15) );
268 memcpy(&result[2*FIR_LENGTH], result, 2*FIR_LENGTH * sizeof(_q15) );
269

270 status = msp_fft_auto_q15(&fftParams, result, &shift);
271 msp_checkStatus(status);
272

273 index_imag=0;
274 index_real=0;
275

276 for(kk=1;kk<512;kk++){
277 if(kk%2==0){//IMAGINARY
278 result[512+index_imag]=result[kk];
279 index_imag++;
280 }
281 else{ //REAL
282 result[index_real]=result[kk];
283 index_real++;
284 }
285 }
286

287

288 for(kk=0;kk<512;kk++){
289 result[kk]= sqrt((pow(result[kk],2))+(pow(result[kk+512],2)));
290 }
291

292 msp_checkStatus(status);
293

294 memcpy(spectrum_value, &result[2], 4* sizeof(_q15) );
295

296 status = msp_max_q15(&tmpParams,spectrum_value ,&q15MaxVector,&fundamental_index);
297 msp_checkStatus(status);
298
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299 fundamental_index=fundamental_index+3;
300

301 Data_To_Transmit[0]= q15MaxVector;
302

303 for(kk=1;kk<16;kk++){
304 memcpy(spectrum_value, &result[(kk+1)*fundamental_index-3], 6* sizeof(_q15) );
305

306 status = msp_max_q15(&tmpParams,spectrum_value ,&q15MaxVector,&uint16MaxIndex);
307 msp_checkStatus(status);
308

309 Data_To_Transmit[kk]=q15MaxVector;
310

311 }
312

313 UCA0TXBUF='k';
314 __delay_cycles(800000);
315

316 for(kk=0;kk<16;kk++){
317 for(ppp=0;ppp<2;ppp++){
318

319 if(ppp==1){
320 TX_Buffer = (uint8_t)(Data_To_Transmit[kk] >> 8); //MSBs
321

322 }
323 else if(ppp==0){
324 TX_Buffer = (uint8_t)(Data_To_Transmit[kk]& 0x00FF); //LSBs
325

326 }
327

328 UCA0TXBUF =TX_Buffer;
329 __delay_cycles(800000);
330 }
331

332 }
333

334 /* for(kk=0;kk<200;kk++){ //PADDING FOR MISSING CHAR AT RX
335 UCA0TXBUF =0x0D;
336 __delay_cycles(80000);
337 }*/
338

339 P4OUT^=BIT4;
340 }
341

342

343

344

345 while(cycle_counts<8*8*4)
346 {
347 // Enter LPM0 and wait for DMA ISR
348 __bis_SR_register(LPM0);
349

350

351 P4OUT ^= BIT5;
352

353 ///AVOID DETECTION AT THE END
354 if(IDLE==1){
355 IDLE_TIME++;
356 if(IDLE_TIME >= IDLE_TIME_MAX){
357 IDLE=0;
358 IDLE_TIME=0;
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359 }
360 }
361

362

363

364 // Run FIR filter
365 status = msp_fir_q15(&firParams, &circularBuffer[FilterIndex], &result[samples]);
366 msp_checkStatus(status);
367 FilterIndex ^= FIR_LENGTH;
368

369

370

371

372 if((cycle_counts+1)%4==0){
373 status = msp_max_q15(&firmaxParams,result ,&temp,&uint16MaxIndex);
374 msp_checkStatus(status);
375 status = msp_min_q15(&firminParams,result ,&temp2,&uint16MaxIndex);
376 msp_checkStatus(status);
377 delta_previous=delta;
378 delta=temp-temp2;
379 }
380

381

382 //Compare max with previous (with temp and temp2 we avoid to detect as event the first peak, due to FIR on first samples, and we put a link between one cycle with the following)
383

384 if ( (delta-delta_previous>20) && caption==0 && IDLE==0 && delta_previous>1) { ///IT WAS 1.3 TO BOTH && spikes_avoid==0
385 caption+=1;
386 DataCopyPointer++;
387 IDLE=1;
388

389 P4OUT ^= BIT4; //LED
390 }
391

392 else { ///IT WAS ONLY IF
393 temp=q15MaxVector;
394 }
395

396 cycle_counts++;
397 // DEBUG: Toggle P4.5
398 P4OUT ^= BIT5;
399

400

401 }
402 //P4OUT ^= BIT4;
403 i+=1;
404 }
405 }
406 // DMA interrupt service routine
407 #pragma vector = DMA_VECTOR
408 __interrupt void DmaIsr(void)
409 {
410 switch(__even_in_range(DMAIV, DMAIV_DMA0IFG)) {
411 case DMAIV_NONE: break;
412 case DMAIV_DMA0IFG:
413 // Setup next transfer
414 __data20_write_long((uintptr_t)&DMA0DA, (uintptr_t)nextBuffer);
415 DMA0CTL |= DMAEN;
416

417 // Switch buffer pointers
418 previousBuffer = activeBuffer;
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419 activeBuffer = nextBuffer;
420 nextBuffer = previousBuffer;
421

422 // Exit from LPM0
423 __bic_SR_register_on_exit(LPM0_bits);
424 break;
425 default: break;
426 }
427 }

10.2.1 Generate Neural Network Training Dataset

1 %ALLINEO SEGNALI E CALCOLO VARIANZA MEDIA PER CREARE UN RUMORE ADATTO
2

3 index=1
4 for p=1:length(names_unique) %%1 to 113
5 p
6 start= (p-1)*10+1;
7 ending= start+9;
8 for k=1:200
9 for z=1:14

10

11 test_harmonics(z,index)=harmonics_composed(z,start+ceil(rand(1,1)*6))+
12 sqrt(var(harmonics_composed(z,start:ending)'))*randn(1,1);
13

14 end
15 index=index+1;
16 end
17 end
18

19

20

21 training_result=zeros(length(names_unique),200*length(names_unique));
22

23 index=1;
24 for p=1:length(names_unique)
25 p
26 for k=1:200
27 training_result(p,index)=1;
28 index=index+1;
29

30 end
31 end
32

33 training_result_VERIF=zeros(length(names_unique),3*length(names_unique));
34

35

36 index=1;
37 for p=1:length(names_unique)
38 p
39 for k= 1:3
40

41

42 TEST_WAVES(:,index)= harmonics_composed(:,(p-1)*10+k+7);
43 training_result_VERIF(p,index)=1;
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44 index=index+1;
45

46 end
47 end

10.2.2 Read Signal from COM and Classify it

1 clear UART_wave
2 clear UART_wave_unique
3

4 clear start
5 warning('off','all')
6

7

8 appliance_measurement=1; %%STATE WHAT IS THE CORRESPONDING APPLIANCE
9

10 if(not( exist('device')))
11 device = serialport("COM7",9600);
12 end
13 flush(device)
14 flush(device,'input')
15 flush(device,'output')
16

17

18 start= read(device,1,"uint8");
19

20 while(isempty(start))
21 start= read(device,1,"uint8");
22 end
23 disp("TRANSMISSION DETECTED")
24 UART_wave= read(device,3*512,"uint8");
25 %%UART_wave= read(device,256,"uint16") %%%%%%%%%%%%
26

27

28 %%
29 unique_index=1;
30 k=3;
31 while(k<=length(UART_wave))
32 value_1= UART_wave(k-2);
33 value_2= UART_wave(k-1);
34 value_3= UART_wave(k);
35

36 eq12=0;
37 eq13=0;
38 eq23=0;
39

40 if(value_1 == value_2)
41 eq12=1;
42 end
43 if (value_1==value_3)
44 eq13=1;
45 end
46 if (value_2==value_3)
47 eq23=1;
48 end
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49

50

51 if( eq12==1)
52 new_value=value_1;
53

54 if(eq23==1)
55 k= k+3;
56 elseif (eq23==0)
57 if(value_3 == UART_wave(k+1) | value_3 == UART_wave(k+2))
58 k=k+2;
59

60 else
61 k=k+3;
62 end
63

64 end
65

66 elseif(eq13==1)
67 new_value=value_1;
68 k=k+3;
69 elseif(eq23==1)
70 if(value_1 == UART_wave(k-3) | value_3 == UART_wave(k-4))
71 k=k+2;
72 else
73 k=k+3;
74 end
75 new_value=value_2;
76 else
77 k=k+3;
78 end
79

80

81 UART_wave_unique(unique_index)=new_value;
82 unique_index=unique_index+1;
83

84 end
85

86 if(UART_wave_unique(1) > UART_wave_unique(2))
87 start_index=1;
88 else
89 start_index=2;
90 end
91

92 clear data;
93 if(rem(length(UART_wave_unique)-start_index+1,2)==1)
94 data=UART_wave_unique(start_index: end-1);
95 else
96 data= UART_wave_unique(start_index: end);
97 end
98

99 index=1;
100 % if(UART_wave(1)>5*UART_wave(2)
101 for i=2:2:length(data)
102 signal(index) =bitshift(data(i),8)+ data(i-1);
103 if(signal(index)>6000)
104 index
105 i
106 end
107 index=index+1;
108

109 end
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110

111 repeated_wave= cat(2,signal,signal);
112 repeated_wave= cat(2,repeated_wave,repeated_wave);
113

114

115

116 plot(repeated_wave)
117 CLASSIFY(appliance_measurement,repeated_wave');

10.2.3 MQTT - Subscribe and Read Messages from predefined Topics

1 clear channel_1
2 clear channel_2
3 clear my_Broker
4 clear num_messages1
5 clear num_messages2
6 clear message1
7 clear message2
8 clear data_rx1
9 clear data_rx2

10 clear data_rx
11

12

13 my_Broker=mqtt('tcp://192.168.0.102')
14

15 channel_1 = subscribe(my_Broker, 'Broker/To/cc32xx','QoS', 2);
16 channel_2 = subscribe(my_Broker, 'cc32xx/ToggleLED1','QoS', 2);
17

18 num_messages1= channel_1.MessageCount;
19 num_messages2= channel_2.MessageCount;
20 message1=0;
21 my_index=1;
22

23 while(1)
24 count1=channel_1.MessageCount;
25 count2=channel_2.MessageCount;
26 if( count1 > num_messages1)
27 message1=read(channel_1)
28 num_messages1= channel_1.MessageCount;
29 end
30 if( count2 > num_messages2)
31 message2=read(channel_2)
32 my_index=my_index+1;
33 num_messages2= channel_2.MessageCount;
34

35 end
36 pause(0.1);
37 end
38

39 data_rx1=double(cell2mat(num2cell(message1{:})));
40 data_rx2=double(cell2mat(num2cell(message2{:})));
41

42 data_rx(1:256)=data_rx1;
43 data_rx(257:512)=data_rx2;
44
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45 dataconversion=double(table2array(dataconversionS2))
46

47 for i=length(data_rx):-1:1
48 for k=1:27
49 if(data_rx(i)== dataconversion(k,2))
50 data_rx(i)= dataconversion(k,1);
51

52 end
53 end
54 end
55

56 for i=length(data_rx):-1:1
57 if(data_rx(i) == 65533)
58 if((data_rx(i-2)~=65533 )&& (data_rx(i+2)~=65533 ))
59 data_rx(i)=(data_rx(i+2)+data_rx(i-2))/2
60 else
61 data_rx(i)=(data_rx(i+4)+data_rx(i-4))/2
62 end
63 end
64 end
65

66

67 index_rx=1;
68 for i=1:2:length(data_rx)
69 SIGNAL_RX(index_rx)= data_rx(i)+ bitshift(data_rx(i+1),8);
70 index_rx=index_rx+1;
71 end
72 plot(SIGNAL_RX);

10.2.4 Automatic Waveforms acquisition from MQTT

1 %% Read all Appliance Names
2 % clear
3 list_appliances= dir("Appliances");
4

5 for i=3:length(list_appliances)
6 appliances_names(i-2)= string(strcat("./Appliances/",string(list_appliances(i).name)));
7 names(i-2)= string(extractBefore(list_appliances(i).name, strlength(list_appliances(i).name)-26));
8 end
9

10 for i=3 : length(list_appliances)
11 TMP=string(extractBefore(list_appliances(i).name, strlength(list_appliances(i).name)-19));
12 MK_value=string(extractAfter(TMP, strlength(TMP)-3));
13 if(strcmp(MK_value,"MK1")==1)
14 correction_factor(i-2) =61.4835;
15 elseif(strcmp(MK_value,"MK2")==1)
16 correction_factor(i-2) =60.200;
17 % end
18 elseif(strcmp(MK_value,"MK3")==1)
19 correction_factor(i-2) =60.9562;
20 % end
21 end
22

23 end
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24

25 names_unique= unique(names,'stable');
26 number_samples=cell2mat(cellfun(@(x) sum(ismember(names,x)),names_unique,'un',0));
27

28 %% CREATE 1050 ELONGED AUDIO FILES
29

30 for p=1:1050
31 p
32 [data,fs]=audioread(appliances_names(p));
33 data(:,2)=4*data(:,2);
34 START_COPY=1;
35 END_COPY=882;
36 aaa=cat(1,data(START_COPY:END_COPY,2),data(START_COPY:END_COPY,2));
37 aaa=cat(1,cat(1,aaa,aaa),cat(1,aaa,aaa));
38 aaa=cat(1,cat(1,aaa,aaa),cat(1,aaa,aaa));
39 aaa=cat(1,cat(1,aaa,aaa),cat(1,aaa,aaa));
40 aaa=cat(1,cat(1,aaa,aaa),cat(1,aaa,aaa));
41 IRes=cat(1,aaa(287000:end),data(END_COPY+1:end,2));
42 filename=sprintf("./Appliances_Sounds/Appliance_\%d.wav", p);
43 audiowrite(filename,IRes,44100);
44 end
45 plot(IRes);
46

47 %% AUTOMATIC PLAY OF THE AUDIO FILES AND MEASUREMENT FROM THE WIFI
48

49 %%SELECT INTERVAL OF APPLIANCE SOUNDS TO PLAY:
50 start=41;
51 stop=50;
52

53 my_Broker=mqtt('tcp://mqtt.eclipse.org')
54 channel_1 = subscribe(my_Broker, 'Broker/To/cc32xx','QoS', 2);
55 channel_2 = subscribe(my_Broker, 'cc32xx/ToggleLED1','QoS', 2);
56

57 num_messages1= channel_1.MessageCount;
58 num_messages2= channel_2.MessageCount;
59 message1=0;
60 message2=0;
61

62 read_channel_1=0;
63 read_channel_2=0;
64 p=start;
65 load('data_conversion.mat');
66 dataconversion=double(table2array(dataconversion));
67

68 while (p<=stop)
69 close all;
70 p
71 play_filename= sprintf("./Appliances_Sounds/Appliance_%d.wav", p);
72 [sound_array,Fs]= audioread(play_filename);
73 sound= audioplayer(sound_array, Fs);
74 play(sound)
75 read_channel_1=0;
76 read_channel_2=0;
77 watchdog=0;
78 %%WAIT FOR BOTH TOPICS TO RECEIVE A MESSAGE
79 while( ~(read_channel_1 && read_channel_2))
80 count1=channel_1.MessageCount;
81 count2=channel_2.MessageCount;
82

83 if( count1 > num_messages1)
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84 message1=read(channel_1)
85 num_messages1= channel_1.MessageCount;
86 read_channel_1=1;
87 % watchdog=0;
88 end
89

90 if( count2 > num_messages2)
91 message2=read(channel_2)
92 num_messages2= channel_2.MessageCount;
93 read_channel_2=1;
94 % watchdog=0;
95 end
96

97 pause(0.1);
98 end
99

100

101 data_rx1=double(cell2mat(num2cell(message1{:})));
102 data_rx2=double(cell2mat(num2cell(message2{:})));
103

104 data_rx(1:256)=data_rx1;
105 data_rx(257:512)=data_rx2;
106

107

108 for i=length(data_rx):-1:1
109 for k=1:27
110 if(data_rx(i)== dataconversion(k,2))
111 data_rx(i)= dataconversion(k,1);
112 end
113 end
114 end
115

116 for i=length(data_rx):-1:1
117 if(data_rx(i) == 65533)
118 if((data_rx(i-2)~=65533 )&& (data_rx(i+2)~=65533 ))
119 data_rx(i)=(data_rx(i+2)+data_rx(i-2))/2
120 else
121 data_rx(i)=(data_rx(i+4)+data_rx(i-4))/2
122 end
123 end
124 end
125

126

127 index_rx=1;
128 for i=1:2:length(data_rx)
129 SIGNAL_RX_appliance3(p,index_rx)= data_rx(i)+ bitshift(data_rx(i+1),8);
130 index_rx=index_rx+1;
131 end
132 plot(SIGNAL_RX_appliance3(p,:));
133

134 prompt='Is the Wave camptured ok? [y/n] ------> ';
135 user_input= input(prompt,'s')
136

137 if(strcmp(user_input,'y')==1)
138 p=p+1;
139 disp('Next Wave!');
140 else
141 disp('Repeating current Wave!');
142 end
143 end
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