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Summary

Likelihood maximization and entropy maximization are two common tech-
niques used to infer the set of parameters of a probability distribution. In
recent years, they have shown outstanding performance in inference problems
of structural biology from sequence data. My work addresses two main
aspects related to this subject. The first one is the prediction of contacts
in a protein family through the analysis of correlation between residues.
Standard information theory related methods based on local correlation
measures (e.g. Mutual Information) that are routinely used to evaluate the
correlation between two random variables, often fail because they are not
able to disentangle direct from indirect interaction between variables. For
this purpose, global inference strategies such as entropy maximization, can
be used to define a quantity called "direct information" which is capable to
ignore statistical correlation between residues which are not linked to the
presence of contacts between them. The second research direction undertaken
in my thesis, is about a maximum likelihood strategy to model phage display
experiments. Phage display is a widespread laboratory technique (2018
Nobel prize in Chemistry) for the study of protein–protein, protein–peptide,
and protein–DNA interactions that uses bacteriophages (viruses that infect
bacteria) to connect proteins with the genetic information that encodes
them. A coding gene is inserted into the phage genome to expose the protein
under study on the phage capsid. Typically, a population of 1013 phages
is grown to display variants of wild-type proteins encoded in biologically
engineered combinatorial libraries. This allows for screening tests, repeated
for a certain number of rounds, aimed at testing their binding capability
against a target. After each round, the phage population can be sequenced
to inspect the abundance of sequences that are bound to the target. Usu-
ally, supervised machine learning approaches are utilized to analyze phage
display experiments in order to predict the selectivity of new sequences.
Nevertheless, an unsupervised approach based on Likelihood Maximization
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can be developed by outlining a model based on statistical mechanics which
describes the experiment and it allows for the statistical inference of the
relevant parameters of the model. This is carried out through a multi-variate
optimization of a likelihood score. Thanks to this approach, the binding of
the sequence to the target is modelled in a probabilistic way in terms of a
two-states system by using an "energy" function that depends on the amino
acid sequence. Finally, this model can be extended to a three-states system
in which the third state can be associated to the state in which the sequence
is folded but still cannot bind to the target.

iv





Table of Contents

List of Tables viii

List of Figures ix

1 Introduction: The basic tools 1
1.1 Fitness Landscapes: a general framework . . . . . . . . . . . 1
1.2 A probabilistic model for the data . . . . . . . . . . . . . . . 2
1.3 Maximum Entropy . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Maximum Likelihood estimation . . . . . . . . . . . . . . . . 6

2 Direct Information 8
2.1 Mutations at contact points . . . . . . . . . . . . . . . . . . 8
2.2 Local measure . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Frequency counts . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Re-weighting sequences . . . . . . . . . . . . . . . . . 9
2.2.3 Pseudo-counts . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Mutual Information . . . . . . . . . . . . . . . . . . . 12

2.3 Global probability distribution . . . . . . . . . . . . . . . . . 12
2.3.1 Maximum entropy modelling . . . . . . . . . . . . . . 13
2.3.2 Gauge fixing . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Direct Information . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Equivalence of the two methods . . . . . . . . . . . . 17

3 Phage Display 18
3.1 Brief overview of the experiment . . . . . . . . . . . . . . . . 18
3.2 Machine Learning technique . . . . . . . . . . . . . . . . . . 19
3.3 Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



3.3.1 Specificity . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Likelihood maximization . . . . . . . . . . . . . . . . 23

3.4 Validation of the inference . . . . . . . . . . . . . . . . . . . 26
3.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . 28
3.6.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Drawbacks of the model and future work . . . . . . . . . . . 35
3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 40

vii



List of Tables

3.1 Datasets description . . . . . . . . . . . . . . . . . . . . . . 27

viii



List of Figures

1.1 Example of MSA of ten I-set immunoglobulin domains, figure
reprinted from [1]. . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Schematic representation of the various steps of a phage display
experiment. Reprinted from [6] . . . . . . . . . . . . . . . . 19

3.2 Antibody’s structure. Reprinted from "Britannica, The Edi-
tors of Encyclopaedia. "Antibody". Encyclopedia Britannica,
27 May. 2020, https://www.britannica.com/science/antibody." 28

3.3 Library design for the experiment by Boyer et al.. In red is
reported the variant region (CDR3) and all possible combi-
nations of residues for these sites have been included in the
library. Reprinted from [10] . . . . . . . . . . . . . . . . . . 28

3.4 Protein structure of human YAP65, WW domain is coloured
in red. Reprinted from Protein Data Bank, identifier 1JMQ. 29

3.5 GB1 protein’s structure. The four mutated sites are labelled
and highlighted in the picture. Reprinted from [12] . . . . . 30

3.6 Reads before and after filtering out sequences with low counts
for the Boyer et al. dataset . . . . . . . . . . . . . . . . . . . 31

3.7 Learning of the parameter λ(t) in some cases. . . . . . . . . 32
3.8 Snapshots of the learning for µ parameter in some cases. . . 33
3.9 Comparison of the inferred probabilities on a test set with the

Maxwell-Boltzmann distribution. Form Wu et al. dataset. . 34
3.10 Correlation between log-selectivity and energies as function of

the fraction of retained data for all datasets. Sequences with
high errors on empirical-log-selectivity are discarded . . . . . 35

ix



3.11 Correlation between log-selectivity and energies as function
of the fraction of retained data for all datasets, computed on
training set and test set of the same dataset. Dataset from
Wu et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.12 Histogram of empirical log-selectivity for Wu et al. dataset.
The sequences which have been put in the training set and in
the test set has been coloured differently. Train/test propor-
tion is still around 4/5. . . . . . . . . . . . . . . . . . . . . . 37

3.13 Validation of the model learned on low-selectivity sequences
and tested on the high-selectivity ones. . . . . . . . . . . . . 37

x





Chapter 1

Introduction: The basic
tools

1.1 Fitness Landscapes: a general framework

Due to technical advances in experimental techniques larger and larger
libraries of sequences can be sequenced and this has caused an outburst of
experimental data. This abundance calls for novel and more efficient methods
to analyze this large amounts of data. Statistical physics has provided the
fundamental tools to provide this methods and it has revealed as a perfect
match with these experimental techniques to devise general approach aimed
at giving insights into biological sequences properties and pave the way to
solve difficult and demanding problems in structural biology.
The key strategy to design these combined approaches is to study the
properties of sequences by creating large libraries of mutated variants of a
specific sequence and to observe how these mutations affect the property
under study (e.g. the 3D structure in sec. 2 or its binding affinity in sec. 3).
This is something that, in a certain way, mimics natural selection and thanks
to these powerful experimental techniques one can reconstruct the general
landscape that describes how the specific properties changes by changing the
sequences.
Statistical physics has proven to be a very powerful tool to design efficient
models to derive this fitness landscape, this because in general, at some point,
some stochasticity enters in in order to provide an accurate description of
the processes involved in the experimental counterpart.
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Introduction: The basic tools

1.2 A probabilistic model for the data

[1] When analyzing sequences the property under study can be explored by
grouping sequences in sets of homologous: groups of sequences that can be
considered as related, for instance because one can think that they have
mutated from a common ancestor, typically because they are quite similar.
That being said, a very general approach to this problem is to construct
a set of homologous sequences that is in general composed by a wild type
and a certain number of sequences that are similar to that particular one
because these sequences have mutated from that wild type (these sequences
are usually called variants) and the property under study can be tested on
these different sequences to outline the precise part of the sequence that is
responsible for it.
Detecting differences between two sequences can be thought as the same as
finding differences between two text strings because one can consider the
primary structure of a sequence as a sequence of symbols (e.g. aminoacids
in proteins, nitrogenous bases in DNA strands). This problem of assessing
the similarity between two sequences is a well known problem in computer
science and it is tackled by modeling mutations as a composition of three
possible operations that can be done on strings: the insertion of a character,
the deletion of a character and the substitution of a character with another;
then one can count how many of these operation must be done on a sequence
to obtain another one and score their amount of similarity.
Based on this approach one can quantify the similarity between two se-
quences and attribute a score to them. This scoring system can be used not
only to assess whether two sequences can be considered similar, but also to
reconstruct the most likely sequence of elementary operation that produced
that particular sequence by means of evolution, and this can be represented
by a multiple sequences alignment (MSA), an example is shown in figure 1.1.
The task of building these sets of homologous and to align them is in general
a difficult one, and even if much progress has been already carried out on
this topic, it is still an open one that should be addressed by itself. For this
reason in the proceeding of this work it will be assumed that a MSA of a
family is given.
In generalizing this approach, when one wants to assess a property of a
certain sequence, different from the occurrence of a residue in a certain
position, a more sophisticated probabilistic model must be employed in order
to rely on a meaningful inference after observing some data and avoiding
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Introduction: The basic tools

Figure 1.1: Example of MSA of ten I-set immunoglobulin domains, figure
reprinted from [1].

the act of just counting how many sequences displaying a certain feature is
present in the dataset.
This probabilistic model can be considered as a stochastic machine that
produces randomly some output, and these are the samples that we get to
observe. In the case of MSA the stochastic machine that is usually employed
is an Hidden Markov Model that generates aligned sequences belonging to
the the set of homologous sequences that we want to outline (this is a simple
generalization that corresponds to adding a symbol, the gap "−" among the
ones that can compose the sequences).
Introducing a probabilistic model is a tool that can employed not only to
devise an efficient aligning method but also more generally to model many
possible processes that the particular sequences under study can undergo, to
investigate the property that can be associated to these sequences.
Of course a model can be designed to describe also different kinds of informa-
tion, therefore the approach that will be exposed and analyzed in this work
is indeed a very general one and it must be carefully adapted to the data
that must be analyzed. For instance, in chapter 2, a technique known as
Direct Coupling Analysis (DCA) will be exposed and it will be shown how it
can give insight into coevolutionary patterns of homologous sequences. In
chapter 3, instead, taking inspiration from DCA a similar approach is used
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Introduction: The basic tools

to analyze data coming from Phage Display experiments that are composed
of sets of reads of the various sequences at each round of the experiment;
this kind of data are fundamentally different from a MSA.

1.3 Maximum Entropy
Once a model that can describe the occurrence of the data has been designed,
one typically wants to determine it after having observed the data. This a
very old problem in statistics and many solutions has been proposed during
the time. As shown in [2] it is possible to tackle this problem considering
a quantity known as Shannon’s entropy. Let us consider for the moment
a more general framework with respect to the one that one uses when
performing inference starting from a particular dataset. Consider a random
variable x ∈ X with |X| = n finite and its possible outcomes are labelled
as (x1, · · · , xn), moreover p : X −→ R≥0 a probability distribution over X.
One can consider the problem of determining the pis considering as known
the expectation of some functions fr(x), namely

éfr(x)ê =
Ø
i

pifr(xi) (1.1)

typically the knowledge of these expectation values encodes the piece of
information coming from the observed data.
Shannon’s entropy is defined as

S(p) =
Ø
i

pi log pi (1.2)

and it can be shown that this quantity can be associated with the amount
of uncertainty about the outcome of the random variable x. Even if the
concept of uncertainty lacks of a mathematical definition it can be shown
that such a quantity comes from very simple requested properties and it
encodes the fact that we consider as maximally uncertain the outcome of
x when pi = 1/n ∀i and it is minimally uncertain when the probability is
concentrated on a particular outcome, according to our intuitive meaning
of uncertainty. The simple properties from which the expression of S will
follow are 3:

1. S(p) is a continuous functions of the pis

2. S(1/n, · · · ,1/n) is an increasing function of n
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3. Consider {πj}kj=1 a partition of the set {1, · · · , n} such that if l, m ∈ πi
and l ≤ k ≤ m then k ∈ πi, in addition πi ∩ πj = ∅ for i /= j and
∪k
j=1πj = {1, · · · , n}.

Define w(πi) as the probability of the subset of outcomes πi and naturally
w(πi) = q

j∈πi
pj.

Then define w(xm|πi) as the probability of event m ∈ πi given that
subset πi is chosen and in this case

w(xm|πi) = pmq
j∈πi

pj
(1.3)

Now one can require that the amount of information doesn’t change if
the realization of event xm happens in two steps instead of one: first a
πi is specified, then event xm is chosen from it. In mathematical terms

S({pj}nj=1) = S({w(πj)}kj=1) +
kØ
j=1

w(πj)S({w(xm|πj)}m∈πj ) (1.4)

Exploiting property 1, one determine the function S only for rational values
of the pis and then the function can be extended to values in R \ Q. That
being said one can consider pi in the form of

pi = niq
i ni

with ni ∈ N (1.5)

One can now notice that the pis has assumed the form of the probability of
one of the ni events among qi ni equally probable events {ar}

q
i ni

r=1 . Therefore
one can regard the outcome of x as a first step before one of the corresponding
ni events is chosen and setting xi

.= πi = {ar+1, · · · , ar+ni}. Now let us define
A(n) = S(1/n, · · · ,1/n) as the entropy of the uniform distribution among n
possible outcomes and then from property 1.4 one can write

S(p1, · · · , pn) +
nØ
i

piA(ni) = A(
nØ
i=1

ni) (1.6)

Setting ni = m for all is and using eq. 1.5, eq. 1.6 reduces to

A(n) + A(m) = A(nm) (1.7)

which is clearly solved by A(n) = K log n with K > 0. Now inserting this
solution into eq. 1.6 the well known expression of Shannon’s entropy in
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eq. 1.2 is obtained. Going back to consider the initial inference problem
now it seems natural that the probability distribution should be the one
that maximizes the entropy, the one that makes the least assumption about
the system under study and therefore introduces the least amount of bias,
constrained to what is considered as known from the observed data, encoded
in the form of eq. 1.1.

1.4 Maximum Likelihood estimation
The inference problem considered in section 1.3 is indeed very general but still
quite useless if we apply that approach without further work. This because
when using machine learning to gain information about the properties of
sequences we are not interested in knowing how they depend on the particular
sequences in the dataset, rather on the particular primary structure of the
sequence. In this way one could also use the information to infer the particular
property of interest on sequences that were not observed experimentally, or
to generate sequences having that particular property.
This is what is typically done when using machine learning: a large set of
samples, which is supposed to be sufficiently representative of the whole
space of possible sequences that can be found, is taken and it is used to learn
how this specific property depends on the primary structure of the sequence
and then this information is used to infer this property on any other sequence
that one could be interested in studying.
This task is accomplished by writing the probability distribution of the
stochastic machine that in our model generates the samples in terms of a
set of parameters θ that is used to encode the information of the primary
structure of the sequence, namely p(x|θ).
A problem which is somehow complementary to the one of inferring the
form of the probability distribution investigated in section 1.3 is the one of
determining the best set of parameters θ according to the observed data
considering the form of the probability distribution as known.
At first sight this problem seems way easier with respect to the one of
determine the form of the probability distribution, and it is often the case
as will be illustrated in chapter 2 for the case of DCA, in that case this
problem can be solved together with the one of determining the form of the
probability distribution within the Maximum entropy approach. In other
cases instead the system under study undergoes some physical processes
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before we can observe something about it, and neglecting this fact, when
designing the probabilistic model, can lead to the incapability of the model
to describe these processes and this could result in a poor performance when
using the learnt information to infer something about sequences that are not
observed.
When this is the case more effort must be put into working out a model
that is capable to capture all relevant aspects concerning the observation of
the experimental data. For example, in chapter 3, there will be the need to
model the physical experiment of phage display in a probabilistic way so that
the learnt information can be meaningful and can be used on any compatible
data that undergoes the same physical processes before being observed.
Since this is an approach that relies deeply on the particular problem that
one wants to study there is no general recipe to design such a model but
the problem must be tackled in a specific way depending on the particular
system under study. The only general principle that can be employed in this
task is the one of Maximum Likelihood estimation [3], or more specifically of
Maximum Aposteriori estimation, that comes very naturally from a Bayesian
point of view of the problem that can be expressed with the following simple
expression resulting from a simple application of Bayes’s Theorem:

p(θ|data) ∝ p(data|θ)p(θ) (1.8)

were p(θ) is any probability distribution over parameters θ coming from
any prior knowledge about these parameters and the likelihood p(data|θ)
is the probability of our model to generate the observed data. And it is
now natural to look for the θ that maximizes p(θ|data). Sometimes this
approach passes through additional variables and parameters that can be
used to model the physical processes of the experiment, and this will be the
case of phage display and its modeling process will be addressed in chapter
3.

7



Chapter 2

Direct Information

2.1 Mutations at contact points

Proteins assume a well defined structure in order to perform their biological
tasks and a particular mutation at a certain point of its chain can in principle
alter its functionality. For this reason, nature selection accepts only mutations
that preserve the protein structure and allows them to continue to carry
out their particular tasks. Anyway it is experimentally observed that two
proteins that have a common ancestor have the same three-dimensional
structure but they differ from 70-80% in their amino acids [4].
One can imagine that these processes can happen in two different steps: first
an harmful single site mutation occurs and than a second mutation happens
at the corresponding site at which contact has been lost, and this second
mutation occurs in such a way to restore the correct contact point necessary
to maintain the correct 3D structure.
Assuming that a MSA of proteins of a certain family is already been given,
one could expect to find correlation between residues that form contact
points. Unfortunately this approach to reconstruct contact points doesn’t
work since sites along the chain that are highly correlated cannot be associate
directly to contact points. The reason is that correlation between two sites
may arise because of small correlation contributes between intermediary sites
without any presence of contact [5].

8
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2.2 Local measure

2.2.1 Frequency counts

In order to detect correlation it is necessary to count one-site and double-site
residue occurrences. In particular being ami the residue of the m−th sequence
occurring at site i with m = 1, · · · , M and i = 1, · · · , L, one can compute
occurrences frequencies:

fi(a) = 1
M

Ø
m

δa,am
i

(2.1)

fij(a, b) = 1
M

Ø
m

δa,am
i

δb,am
j

(2.2)

2.2.2 Re-weighting sequences

Before starting with the analysis of correlation between the various couples
of sites, a first step is needed to deal with the non uniformity of sequence
sampling inside a family. Since in a protein family we expect many similarities
due to the fact that they come from a common ancestor, we need this first
step because, otherwise, one could detect correlation between sites which are
not linked to a coupling.
Another reason why one should implement this first re-weighting step is
that often, sequences are sampled due to their relevance in various studies
and sequences that are not involved in important roles are less frequently
sequenced in databases and this can introduce bias in counting as well. Let us
fix a threshold x ∈ (0,1) and use the Hamming distance (portion of distinct
residues between two sequences) to define if two sequences can be considered
identical, in practice they bring the same information to our analysis.
Let us define the number of sequences “identical” to a certain one

nm = |{b|1 ≤ b ≤ M, seqid(Am, Ab) ≥ xL}| (2.3)

where Aa represents the a-th sequence of MSA and seqid is the funciton that
measures the percentage of match between two sequences.
Let us now use this quantity to define the counting weight wm = 1/nm of

9
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the sequence a. Now this weight can be inserted in 2.1-2.2 turning them into

fi(a) = 1
Meff

Ø
m

wmδa,am
i

(2.4)

fij(a, b) = 1
Meff

Ø
m

wmδa,am
i

δb,am
j

(2.5)

where
Meff =

Ø
m

wm (2.6)

Let us investigate the effect of this re-weighting step.
Eq. 2.3 divides sequences in k classes of identical sequences

Cj = {Am|1 ≤ m, mÍ ≤ M, seqid(Am, AmÍ
) ≤ xL ∀mÍ s.t. AmÍ

∈ Cj} (2.7)

with j = 1, · · · , k, and let us consider ,for a generic residue a, the term

Ø
m

wmδa,am
i

=
KØ
j=1

Ø
m∈Cj

1
nm

δa,am
i

=
KØ
j=1

1
|Cj|

Ø
m∈Cj

δa,am
i

(2.8)

The last term 1
|Cj |

q
m∈Cj

δa,am
i
in the previous equation is the average fre-

quency count for a in position i in the j-th class. And moreover

Meff =
Ø
m

wm =
KØ
j=1

Ø
m∈Cj

1
nm

=
KØ
j=1

1 = K (2.9)

Now one can easily see that fi(a) becomes

fi(a) = 1
K

KØ
j=1

average frequency count of a in position i in class j (2.10)

This re-weighting steps gives equal weights to all classes of identical sequences
in MSA in the computation of empirical counts. Exactly the same con be
said about two-sites frequency counts getting to 2.5.
Setting x to 1 would simply re-weight sequences that are sampled more than
once, and lower values of x are used to correct more imbalanced MSA.
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2.2.3 Pseudo-counts
In order to correct finite-size effect of the MSA one could introduce pseudo-
counts. Let us say that a total number of λ pseudo-counts are introduced
for all residues, it means that the counts for each residue start from λ/q and,
whatever type of re-weighting is chosen, Eq. 2.1 becomes

fi(a) = 1
λ + M

A
λ

q
+
Ø
m

δa,am
i

B
(2.11)

When introducing pseudo-counts in two-sites frequencies, instead, a bit of
attention must be paid because it is necessary to keep consistency between
one-site and two-sites frequencies, because by marginalizing one obtainsØ

b

fij(a, b) = fi(a) (2.12)

Therefore the correct way to introduce pseudo-counts is

fij(a, b) = 1
λ + M

A
λ

q2 +
Ø
m

δa,am
i

δb,am
j

B
(2.13)

In fact by marginalizing one gets

Ø
b

fij(a, b) =
Ø
b

1
λ + M

A
λ

q2 +
Ø
m

δa,am
i

δb,am
j

B
=

1
λ + M

A
λ

q
+
Ø
m

δa,am
i

B
= fi(a) (2.14)

In this approach the occurrence of a certain residue in a position is mod-
elled through a categorical probability distribution, and the probability of
observing residue a at a site i is given by p(a) = θi(a) where θi(a) is the
real probability of occurrence of a at site i and q

b θi(b) = 1 must hold for
every i = 1, · · · , L. In this framework the probability of observing a certain
sequence is given by

p(Am|θ) =
LÙ
i=1

θi(ami ) (2.15)

and the likelihood of the MSA can e written as

p(A|θ) =
LÙ
i=1

qÙ
a=1

θi(a)Ni(a) (2.16)

11
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where Ni(a) = q
m δa,aa

i
is the number of times the residue a appears at site

i in the MSA. In a Bayesian framework in which

p(θ|A) ∝ p(A|θ)p(θ) (2.17)

one can interpret pseudo-counts as a Dirichelet prior over the space of admis-
sible parameters θ: the simplex given by ri Si where Si = {θ : qb θi(b) = 1},
and p(θ) is given by

p(θ) =
LÙ
i=1

qÙ
a=1

θi(a)λ/q (2.18)

2.2.4 Mutual Information
Once one-site and two-sites frequencies have been computed, Mutual In-
formation (MI), a standard method to compute correlation in information
theory, can be used to detect correlation in occurrences at various pairs of
sites, namely:

Mij =
Ø
a,b

fij(a, b) log
A

fij(a, b)
fi(a)fj(b)

B
(2.19)

the KL divergence between fij and f2
i (point-wise multiplication). Mij

vanishes when fij(a, b) = fi(a)fj(b) for each couple (a, b).
The problem whith this method is that while it is expected that a contact
between sites i and j results in a not small value of Mij the converse is not
true in general because, as already said in 2.1 correlation between sites may
arise due to indirect coupling between intermediate sites.

2.3 Global probability distribution
In order to disentangle direct from indirect correlation one can adopt a
strategy which is different from the one described in the previous section.
Instead of computing the mutual information of a local distribution (one/two-
site estimates) one could infer a global distribution P (a1, · · · , aL) and obtain
single and double-site frequencies as marginals of this global distribution

Pi(ai) =
Ø
a\{ai}

P (a1, · · · , aL) (2.20)

Pij(ai, aj) =
Ø

a\{ai,aj}
P (a1, · · · , aL) (2.21)
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This global distribution con be inferred in two ways but they are equiva-
lent. The first, more general method, is to use entropy maximization; the
second one assumes that sequences are drawn from a Boltzmann probability
distribution with an Hamiltonian of an Ising model with pair couplings.

2.3.1 Maximum entropy modelling
From Information theory it is known that entropy can be associated to the
“quantity of information” known for a certain system and it suggests that
the probability distribution with maximum entropy is the most unbiased one
(which retains the biggest amount of information) that one can use.
Besides that the entropy must be maximized, one should request that
marginals in Eqs. 2.20 and 2.21 match empirical one-site and two-sites
frequencies for each i, j, ai, aj.
Adding another constraint due to the normalization of the distribution, the
Lagrangian will be given by

L[P ] = −
Ø
a

P (a1, · · · , aL) log P (a1, · · · , aL)+
Ø
i

Ø
ai

hi(ai)(Pi(ai)−fi(ai))

+
Ø
i<j

Ø
ai,aj

eij(ai, aj)(Pij(ai, aj) − fij(ai, aj)) + Q(
Ø
a

P (a1, · · · , aL) − 1) =
Ø
a

î
− P (a1, · · · , aL) log P (a1, · · · , aL) +

Ø
i

hi(ai)(P (a1, · · · , aL) − fi(ai))

+
Ø
i<j

eij(ai, aj)(P (a1, · · · , aL) − fij(ai, aj)) + Q(P (a1, · · · , aL) − 1
qL

)
ï

(2.22)

The P (a1, · · · , aL) that maximizes L[P ] must satisy the stationarity condition
given by

δ

δP (a1, · · · , aL)L[P ] =

− log P (a1, · · · , aL) +
Ø
i

hi(ai) +
Ø
i<j

eij(ai, aj) + const = 0 (2.23)

and therefore one can obtain

P (a1, · · · , aL) = 1
Z

exp
Ø
i<j

eij(ai, aj) +
Ø
i

hi(ai)
 (2.24)
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where Z is given by normalization

Z =
Ø
a

exp
Ø
i<j

eij(ai, aj) +
Ø
i

hi(ai)
 (2.25)

Even though the form of the distribution P (a1, · · · , aL) can be obtained from
the necessary condition of stationarity the actual values of the Lagrange mul-
tipliers {eij(ai, aj)} and {hi(ai)}, and Z (in place of the Lagrange multiplier
Q which, basically, plays the same role) must still be computed and there
are many algorithms that can be used to address this problem.

2.3.2 Gauge fixing
When inferring the probability distribution in Eq.2.24 in principle one should
determine Lq + 1

2L(L−1)q2 different parameters but a careful analysis shows
that not all of the are independent. Basically because constraint on single
and double site frequencies must be consistent through Eq. 2.14 and their
normalization. In detail it must be thatØ

a
fi(a) = 1 ∀i (2.26)

and therefore only L(q − 1) of them are independent. For double-site fre-
quencies Ø

b

fij(a, b) = fi(a) (2.27)

must hold for every i; and therefore only q − 1 of them are independent. But
it must also hold that Ø

a
fij(a, b) = fj(b) (2.28)

for every j and again only q − 1 of them are independent. This means that
the number of independent couplings is 1

2L(L − 1)(q − 1)2. The remaining
parameters can in principle be fixed arbitrarily (this procedure in physics is
known as Gauge fixing and this is the reason why the same name is used) as
if all energy values are measure with respect to a certain residue chosen as
reference .
For instance a possible Gauge fixing is the following in which the gap is
chosen as reference

eij(a, −) = eij(−, a) = hi(−) = 0 ∀a, ∀i < j (2.29)
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2.4 Direct Information
At this point, a quantity called Direct Information (DI) can be introduced
in order to detect correlation between sites filtering out correlation due to
intermediate residues which cannot be linked structural contacts.
Considering a two-sites model which is composed only of sites i and j, let us
define a probability distribution on this model given by

P
(dir)
ij (a, b) = 1

Zij
exp

1
eij(a, b) + h̃i(a) + h̃j(b)

2
(2.30)

where Zij is a normalization factor and the two fields h̃i(a) and h̃j(b) must
be chosen in order to satisfy consistency with single-site frequencies, namelyØ

b

P
(dir)
ij (a, b) = fi(a) (2.31)

Ø
a

P
(dir)
ij (a, b) = fj(b) (2.32)

At this point DI can be introduced as the mutual information of this two-sites
distribution respect to single-site frequencies

DI =
Ø
a,b

P
(dir)
ij (a, b) log

P
(dir)
ij (a, b)

fi(a)fj(b)

 (2.33)

This quantity is expected to be smaller than MI because the coupling between
i and j is the only one present in this new model and it vanishes when there
are no couplings, eij(a, b) = 0 for each a, b, because of constraints in Eq.
2.31.

2.5 Maximum Likelihood
Another way to infer the global distribution P (a1, · · · , aL) is to use a maxi-
mum likelihood approach [4].
Assuming that sequences are drawn from a Boltzmann distribution with an
Hamiltonian given by an Ising model with pair couplings, one can find the
parameters {eij(a, b)} and {hi(a)} by finding the ones that maximise the
(weighted, if a re-weighting if the sequences has been performed as described
in section 2.2.2) (log-)likelihood

L = 1
Meff

Ø
m

wm log P (am1 , · · · , amL ) (2.34)
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where

P (a1, · · · , aL) = 1
Z

exp
Ø
i<j

eij(ai, aj) +
Ø
i

hi(ai)
 (2.35)

Re-expressing Eq. 2.34 one obtains

L = 1
Meff

Ø
m

wm log P (am1 , · · · , amL ) =

1
Meff

Ø
m

wm[− log Z +
Ø
i<j

eij(ami , amj ) +
Ø
i

hi(ami )] =

− log Z + 1
Meff

Ø
m

wm

Ø
i<j

Ø
a,b

δam
i ,a

δam
j ,b

eij(a, b)+ 1
Meff

Ø
m

wm

Ø
i

Ø
a

δam
i ,a

hi(a)

= − log Z +
Ø
i<j

Ø
a,b

eij(a, b)fij(a, b) +
Ø
i

Ø
a

hi(a)fi(a) (2.36)

If we subtract to this quantity the entropy of the empirical distribution: the
one that has, in principle, the single-site and double-site frequency counts as
marginals, f(b) = 1

Meff

q
m
rL
i=1 δbi,am

i
such that

fi(ai) =
Ø
a\{ai}

f(a) ∀i (2.37)

and (2.38)
fij(ai, aj) =

Ø
a\{ai,aj}

f(a) ∀i < j (2.39)

one obtains the the opposite of the KL divergence of f(a) with respect to
P (a). Therefore the optimal values of the parameters can be seen as the
ones that minimizes the KL-divergence

DKL(f ||P ) =
Ø
a

f(a) log f(a)
P (a) (2.40)

In fact

DKL(f ||P ) =
Ø
a

f(a) log f(a)ü ûú ý
(∗)

−f(a) log P (a)ü ûú ý
(∗∗)

 (2.41)
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the term labeled as (∗) is the entropy of f(a) and the term labelled as (∗∗)
can be expressed as

−
Ø
a

f(a) log P (a) = −
Ø
a

f(a)
− log Z +

Ø
i<j

eij(ai, aj) +
Ø
i

hi(ai)
 =

= log Z −
Ø
i<j

Ø
ai,bi

eij(ai, bi)fij(ai, aj) −
Ø
i

Ø
ai

hi(ai)fi(ai) (2.42)

which is exactly the quantity in Eq. 2.36 with opposite sign.

2.5.1 Equivalence of the two methods
It can be easily seen that the two approaches are equivalent and bring to
the same optimal set of parameters {eij(a, b)} and hi(a).
In fact, stationarity of the constrained entropy implies the form of the
distribution given by Eq. 2.24, and inserting it back in the constrained
entropy to be maximised one obtains

S = −
Ø
a

P (a1, · · · , aL) log P (a1, · · · , aL) +
Ø
i

Ø
ai

hi(ai)(Pi(ai) − fi(ai))

+
Ø
i<j

Ø
ai,aj

eij(ai, aj)(Pij(ai, aj) − fij(ai, aj))) =

log Z +
Ø
ij

Ø
ai,aj

eij(ai, aj)fij(ai, aj) +
Ø
i

Ø
ai

fi(ai) (2.43)

which apart from the different term log Z, which is a constant independent
of the couplings and fields, is the same expression of Eq. 2.36 and it is
maximised by the same set of parameters {eij(a, b)} and {hi(a)}. This time,
in the expression of the constrained entropy, the normalization has not been
included because it is already taken into account in the expression of the
Boltzmann distribution of Eq. 2.35.
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Chapter 3

Phage Display

Taking inspiration from the method exposed in Chapter 2 it is possible
to develop a statistical model which can be used to analyze data coming
from experiments aimed at testing the affinity of certain peptides to a given
target and predict this capability for peptides that where never observed.
One relevant technique is Phage display that was first tested by George P.
Smith in 1985 and the developed and enhanced by Greg Winter (and John
McCafferty) which got them the 2018 Nobel Prize in Chemistry.

3.1 Brief overview of the experiment
This technique consists in taking some genes coding for a certain peptide
and inserting them in the DNA strand of a particular type of virus called
bacteriophage. This particular virus is capable to expose the corresponding
peptide on its outside just like a “hat”, in this way one phage carries the
information about the connection between genotype and phenotype, and
being the peptide exposed on its hat it is possible to test its affinity towards a
certain target molecule. Using a protein-engineering technique called directed
evolution, developed by Frances Arnold (2018 Nobel Prize in Chemistry), it
is possible to create a large library of phages carrying mutated genes of a
wild type and makes it possible to explore if a certain mutation increases or
decreases affinity to the target. This library of phage can bind to molecules of
the immobilized target and then the ones that didn’t succeeded in binding get
washed away. The remaining bound phages are used to infect bacteria that
produce other phages carrying the same genetic information (amplification
phase). And the experiment can be repeated from the beginning.
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Just after the amplification phase the bound phages can be sequenced
obtaining the number of bound phages displaying a particular sequence. A
schematic representation reprinted from [6] can be found in fig. 3.1.

Figure 3.1: Schematic representation of the various steps of a phage display
experiment. Reprinted from [6]

.

3.2 Machine Learning technique
Before the work exposed in [7] this problem was usually tackled with standard
supervised learning techniques: a proxy was computed for the affinity of a
sequence from the reads of the various rounds, and then a standard machine
learning methods solved the regression.
The unsupervised method exposed in this work models the binding process
as a probabilistic one writing down the binding probability of each sequence
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depending on its specific composition through some parameters. Using the
sequences reads at various rounds, a Likelihood function can be written in
terms of these parameters and it can be maximized to find the best set of
parameters that describes the experiment. And because of the specificity
of these parameters they can be used to infer the affinity of sequences that
were not observe in the experiment.

3.3 Statistical Model
Consider a library of sequences composed by S different variants of a wild
type. What is observed from phage display experiments is Ns(t), the number
of phages displaying sequence s at the beginning of round t (t = 1, ..., T )
where Ns(1) represents the initial abundance of variant s in the library used
for the experiment.
A single round con be modelled as a combination of two stochastic processes:
a first phase of selection during which the phages have the possibility to
bind to the target molecules and then the unbound phages are washed away.
After this, there is a second phase during which the phages that survive the
wash are used to infect bacteria that are used to regrow the library until it
reaches the starting size.
The selection phase is modelled using a binomial distribution: every variant
can bind to the target with probability ps so the probability to find ns(t)
phages carrying sequence s bound to target during round t is given by

P (ns(t)|Ns(t), ps) =
Ns(t)

ns(t)

pns(t)
s (1 − ps)Ns(t)−ns(t) (3.1)

Since it is reasonable to consider different rounds as statistically independent,
the probability of the selected variants through the entire experiment can be
written as

P ({ns(t)}t,s|{Ns(t)}t,s, {ps}s) =
T−1Ù
t=1

Ù
s

Ns(t)
ns(t)

pns(t)
s (1−ps)Ns(t)−ns(t) (3.2)

where the notation ns(t)st stands the set of all ns(t) for s = 1, ..., S and
t = 1, ...T − 1 (the values of t included in this set will be obvious from the
context, for instance in this case t = T is not included because Ns(T ) is
determined by the amplification phase of round T − 1 and round T has no
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selection phase because it represents the end of the experiment.
Instead, the amplification phase can be modelled with a multi-nomial distri-
bution with a probability of producing a new phage with variant s given by
the fraction of phages carrying sequence s that are used to infect bacteria,
so

P ({Ns(t + 1)}s|{ns(t)}s) = Ntot!r
s Ns(t + 1)!

Ù
s

3 ns(t)
ntot(t)

4Ns(t+1)
(3.3)

where Ntot = q
s Ns(t) and it is independent of t because it has been assumed

that the amplification phase restore the initial abundance of each variants,
and ntot(t) = q

s ns(t) is the total number of bound phages at round t.
Since it can be assumed that the rounds of the experiment are independent one
from another it is possible to write the Likelihood for the whole experiment
as

P ({Ns(t)}s,t, {ns(t)}s,t|{ps}s, Ntot) =

P ({ns(t)}t,s|{Ns(t)}t,s, {ps}s)ü ûú ý
selection phases

TÙ
t=1

P ({Ns(t + 1)}s|{ns(t)}s)ü ûú ý
amplification phases

(3.4)

where Ntot must be considered given because it can be computed from the
starting library. Since during the experiment it is not possible to observe
ns(t) they can be traced out by marginalizing the and write the Likelihood
as function of only the variables Ns(t) as

P ({Ns(t)}s,t|{ps}s, Ntot) =
Ø

{ns(t)}s,t

P ({ns(t)}t,s|{Ns(t)}t,s, {ps}s)ü ûú ý
selection phases

TÙ
t=1

P ({Ns(t + 1)}s|{ns(t)}s)ü ûú ý
amplification phases

(3.5)

At this point the crucial step is how to compute 3.5, and it is clear that it
is not possible to perform it analytically: one must resort to some kind of
approximation.
The first approximation that one can do is to assume that ns(t) assumes
the value given by the average of the binomial distribution that determines
it, i.e. ns(t) ≈ psNs(t). This approximation is called deterministic binding
approximation and by using it and taking the logarithm, the log-likelihood
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to be maximized becomes L = q
s,t Ls,t, with Ls,t given by

Ls,t = Ns(t + 1) log psNs(t)q
σ pσNσ(t) (3.6)

This approximation has been used to obtain the results exposed in [7]. The
other possible approximation can be introduced in the amplification phase:
it will be no longer a stochastic step but a deterministic one and the bound
phages get amplified by a factor λ(t) independent of the variants, such that
Ns(t + 1) = λ(t)ns(t). So, at the cost of introducing T − 1 new parameters
it is possible to eliminate the variables ns(t) by using the change of variables
ns(t) = Ns(t + 1)/λ(t). Therefore 3.1 becomes

P (Ns(t + 1)|Ns(t), ps, λ(t)) =
1

λ(t)

 Ns(t)
Ns(t + 1)/λ(t)

pNs(t+1)/λ(t)
s (1 − ps)Ns(t)−Ns(t+1)/λ(t) (3.7)

Multiplying it for all variants and all rounds to get the likelihood of the data
obtained in the experiment and taking the logarithm one gets

Ls,t = − log λ(t) + log
 Ns(t)
Ns(t+1)
λ(t)

 + Ns(t + 1)
λ(t) log ps

1 − ps
+ Ns(t) log(1 − ps)

(3.8)
This approximation (it will be referred to as uniform amplification factor
approximation) will be used in the present work and the results will be com-
pared with the ones obtained employing deterministic binding approximation.
Note that in this case the condition that amplification restores the initial size
of the library is not ensured but it is not a problem because if the variables
Ns(t + 1) are rescaled, such rescaling produces only a constant term that can
be neglected in the maximization operation, as long as one is interested only
in the model parameters concerning the binding probabilities, because it
doesn’t depend on any of the parameters of the model. And because of this
"rescaling invariance" the variables Ns(t + 1) can be considered as continuous
ones and the logarithm of the binomial coefficient appearing in 3.8 can be
expressed using Stirling approximation

log
n

k

 ≈ n log n − k log k − (n − k) log(n − k) (3.9)
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3.3.1 Specificity
What is left to model is the specificity of the binding probabilities ps in
terms of the primary structure of the sequences. This can be done assuming
that we can model each sequence as a two-states (bound/unbound) system
at equilibrium, where the unbound state corresponds to the reference level
for energy (Hs = 0) and the energy of the bound state is given by the
Hamiltonian of a Potts Model which takes into account single and double
occurrences of residues in the sequence chain

Hs = −
Ø
i<j

Jij(si, sj) −
Ø
i

hi(si) (3.10)

It is well known that such a system follows the Fermi-Dirac statistics and ps
is given by

ps = 1
1 + exp(Hs − µ) (3.11)

where µ is the chemical potential and it depends on the target concentration.
Inserting 3.11 in 3.8 one gets the complete expression of the likelihood to
maximize as function of the model parameters Jij(si, sj), hi(si), µ, λ(t) for
every i, j, si, sj, t.
The expression of ps in eq. 3.11, as usually done [8], easily follows from a
grandcanonical ensamble description inserting a binary variable σ ∈ {0,1}
that describes these two thermodynamical states (σ = 0 corresponds to the
unbound state and σ = 1 corresponds to the bounded state). Then the
grandcanonical partition function Z reads, setting the inverse temperature
β = 1 since it plays no role in this description and can be considered as being
incorporated to the parameters of the Hamiltonian:

Z =
Ø

σ∈{0,1}
e−(Hs−µ)σ = 1 + e−(Hs−µ) (3.12)

and the expression in eq. 3.11 is the normalized Boltzmann weigth

ps = e−(Hs−µ)

1 + e−(Hs−µ) = 1
1 + exp(Hs − µ) (3.13)

3.3.2 Likelihood maximization
When performing the maximization process some conditions must be taken
into account.
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First of all the condition ns(t) ≤ Ns(t) it must be always satisfied for every
variant at each time, and in the uniform amplification factor approximation
it means that λ(t) ≥ Ns(t+1)

Ns(t) ∀s, therefore

λ(t) ≥ max
s

;Ns(t + 1)
Ns(t)

<
(3.14)

In principle equality in formula 3.14 would be admissible for the model
because the term (Ns(t) − Ns(t + 1)/λ(t)) log(Ns(t) − Ns(t + 1)/λ(t)) would
vanish, so it remains finite, if thought as a limit of the type limx→0 x log x;
But when performing maximization the algorithm employed to search for the
maximum uses the gradient of the likelihood to move from point to point,
and computing the gradient of the likelihood with respect to λ(t) one gets

∂L
∂λ(t) ≈

Ø
s

Ns(t + 1)
λ(t)2

I
log Ns(t + 1)

λ(t) − log
A

Ns(t) − Ns(t + 1
λ(t)

B
+ Hs − µ

J
− S

λ(t)
(3.15)

where the symbol “≈” has been used because of the Stirling approximation.
From this expression one can easily see that the second term of this expression
becomes singular when in the condition 3.14 the equality holds. For this
reason when performing numerical maximization this case must be excluded
and 3.14 becomes

λ(t) > max
s

;Ns(t + 1)
Ns(t)

<
(3.16)

and this condition has been provided by adding a small value (δ) at the
border of the constraint

λ(t) ≥ max
s

;Ns(t + 1)
Ns(t)

<
+ δ (3.17)

Besides, something more can be said about the location of the maximum
of the log-likelihood as function of λ(t). Since the optimization over λ(t)
is constrained, the maximum could be attained at the border without the
gradient to be zero. By rewriting equation 3.8 in a clearer way by inserting
both the functional form of Hs and the Stirling approximation for the
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binomial coefficient one gets

L =
Ø
t

Ø
s

5Ns(t + 1)
λ(t) (µ − Hs) − Ns(t + 1)

λ(t) log Ns(t + 1)
λ(t)

−
3

Ns(t) − Ns(t + 1)
λ(t)

4
log

3
Ns(t) − Ns(t + 1)

λ(t)

4
− log λ(t)

6
(3.18)

When λ(t) reaches the lower border it means that there is (at least) a sequence
such that Ns(t) − Ns(t+1)

λ(t) = 0. In this case the log-likelihood expression in
equation 3.18 remains finite. The gradient expression in equation 3.15 instead,
diverges to +∞ and this means that the log-likelihood as function of λ(t) at
the border, incrases with a vertical asymptote.
Studying the limit of 3.18 for λ(t) → +∞ one can see that the term

Ns(t + 1)
λ(t) log Ns(t + 1)

λ(t)
approaches zero and the whole expression tends to −∞. If the maximum
is not attained at the border it must be a stationary point, implying that
∂L
∂λ(t) = 0, which corresponds to

∂L
∂λ(t) ≈

Ø
s

Ns(t + 1)
λ(t)2

I
log Ns(t + 1)

λ(t) − log
A

Ns(t) − Ns(t + 1
λ(t)

B
+ Hs − µ

J

− S

λ(t) = 0

Ø
s

Ns(t + 1) log
3Ns(t)λ(t)

Ns(t + 1) − 1
4

+ Sλ(t) =
Ø
s

Ns(t + 1)(Hs − µ) = 0

(3.19)
Since the l.h.s. of 3.19 is strictly increasing with λ(t) the solution of equation
3.19 is unique. Considering what has just been stated before and together
with the fact that the solution of ∂L

∂λ(t) = 0 is unique, one can conclude that
the log-likelihood as function of λ(t) is concave and the maximum can’t be
attained at the border.
In summary the likelihood maximization consists in a constrained optimiza-
tion of the sum of all contributions given by eq. 3.8 with respect to the model
parameters, namely Jij(a, b), hi(a), µ, λ(t) for all a, b in the vocabulary, i, j
from 1 to L and t from 0 to T − 1.
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3.4 Validation of the inference
A major issue in this approach is that there is no quantity that can be
determined experimentally and can be used as proxy to asses the validity of
the learnt model. Nevertheless such a quantity can be computed from the
sequences reads [9]: the only information provided by experiments.
The selectivity of a sequence, which is defined as the ratio of reads at
two consecutive rounds, can be interpreted as a measure of the affinity of
the sequence to the target. Considering the ideal case in which both the
approximations hold

Ns(t + 1) = λ(t)ns(t) uniform amplification (3.20)
ns(t) = psNs(t) deterministic binding (3.21)

one gets that the following condition should hold

Ns(t + 1)
Ns(t)

= λ(t)ps (3.22)

Taking logarithms and inserting a term Ôs(t) that represents the measurement
error one gets

log Ns(t + 1) − log Ns(t) = θs + α(t) + Ôs(t) (3.23)

where θs is the (empirical) log-selectivity, α(t) is log λ(t) and they can be
determined with a least squares fit where the data are the sequencing reads
Ns(t) assuming 1/Ns(t) as variance for them, as if they were sampled from a
Poisson’s distribution as described in [9] and used in [7].
The results from this fit provides also an estimate for the error that must be
associated to the empirical selectivities θs.
Once these quantities θs hve been determined, the accuracy of the learning
is assessed by computing the correlation between the energy Es and the
log-selectivity θs of the sequences of the dataset. Two measures of correlation
will be considered in this work: Pearson coefficient and Spearman correlation.

3.5 Datasets
This short section contains a description of the datasets analyzed in this
work [10] [11] [12]: relevant properties are reported in table 3.1. The second
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column reports the length of the mutated sequence, the third one reports the
number of rounds that have been sequenced during the experiment, the third
column reports the number of sequences whose counts are are consistent with
the statistical model provided in section 3.3, that is to say that all sequences
that at a certain round have zero reads and then reappear in a following, due
to experimental error in the sequencing step, round have been discarded from
all datasets. The reason is that if Ns(t) = 0 one must have Ns(t + 1) = 0,
because Ns(t) = 0 forces ns(t) to be zero. Finally, the last column reports
the ratio between the number of training sequences (training-test split of
80%-20% is always considered here) and the number of parameters to learn.
The first dataset is from a 2016 study by Boyer et al. that involves antibodies.

Reference Variant length Rounds Valid sequences Sequences
per parameter

Boyer et al. 4 2 23572 ≈7.6
Fowler et al. 25 2 478733 ≈3.2
Wu et al. 4 1 158447 ≈51.1

Table 3.1: Datasets description

Antibodies have a very complex protein structure but all of them share some
common features (see fig. 3.2. They have a particular particular “Y” shape
where the two upper chains are highly variable from one to another and they
are the part of the molecule which can bind to the antigen. These chains,
in turn, are divided in an heavy chain (VH) and a light chain (VL). To
construct the dataset they have focused in inducing mutation in 4 particular
sites in the VH chain, reported as CDR3 in fig. 3.3, producing all possible
combinations for these sites. As target molecule they have used a fragment
of hairpin DNA.
The second dataset is from a 2010 study by Fowler et al.. It has been
performed using, as variants, mutated WW domain of human YAP65, a
protein involved in transcription regulation (see fig. 3.4), and its peptide
ligand as target.
The third dataset is from a 2016 study by Wu et al.. They have induced
mutations in four particular sites of GB1 protein to construct the library of
variants (see fig. 3.5). And they have used the fragment crystallizable region
(Fc region) of the IgG antibody as target that can interact with protein G.
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Figure 3.2: Antibody’s structure. Reprinted from "Britannica, The Editors
of Encyclopaedia. "Antibody". Encyclopedia Britannica, 27 May. 2020,
https://www.britannica.com/science/antibody."

Figure 3.3: Library design for the experiment by Boyer et al.. In red is
reported the variant region (CDR3) and all possible combinations of residues
for these sites have been included in the library. Reprinted from [10]

3.6 Analysis and Results

3.6.1 Preprocessing
A usual preprocessing step that is taken in these cases is that of filtering out
sequences with low counts during rounds (all but the last one). The reason
for this is that these sequences introduce overfitting in the learned model
because of the high fluctuations in the fraction of bound phages carrying
these sequences. This procedure usually results in filtering out sequences that
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Figure 3.4: Protein structure of human YAP65, WW domain is coloured
in red. Reprinted from Protein Data Bank, identifier 1JMQ.

have an high error on the log-selectivity θs from the least square fit (see figure
3.6). Particular attention must be paid when performing this step. When
the length of the mutated sequence grows the number of parameters involved
in the statistical model increase dramatically. When filtering sequences one
should always obtain is a situation in which the number of sequences in
the training set is much grater than the number of parameters. When this
condition is not met, an accurate and robust learning is impossible. In fact
this preprocessing step has not been performed because the only dataset
that would have allowed this step is the one from Wu et al. but as will be
shown later the performance is so good that this step would have introduced
minimal changes in the performance.
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Figure 3.5: GB1 protein’s structure. The four mutated sites are labelled
and highlighted in the picture. Reprinted from [12]

Because these low-counts sequences has been kept for the learning a regular-
ization has been introduced in the log likelihood. In particular an L2-norm
regularization has been used, resulting in a total likelihood

Ltotal = L − ηJ
Ø

a,b,i<j

Jij(a, b) − ηh
Ø
i,a

hi(a) − ηµµ2 (3.24)

In equation 3.24 the various couplings, fields and chemical potential have
different number of terms. So the parameters ηJ and ηh have been divided
by the number of parameters of these two types, in order to give the same
contribution to the total log likelihood. When a large number of low-counts
sequence is used in the learning, the values of these parameters must be
increased accordingly. The following and last preprocessing step is the
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(a) Reads before filtering out low counts
sequences

(b) Reads after filtering out sequences
with less than 3 counts at the beginning
of the experiment

Figure 3.6: Reads before and after filtering out sequences with low counts
for the Boyer et al. dataset

addition of pseudocounts: 0.5 for all sequences. In particular the same
has been done before computing the empirical log-selectivities as already
discussed in section 3.4, as reported in [7].

3.6.2 Learning
The learning has been performed through a 5-fold crossvalidation, as done
in [7], for multiple reasons: to compare results, to make up for the small
number of training sequences and, finally, to take into account the fact that
train-test split is carried out randomly.
The non-linear optimization has been performed by a numerical routine
using the Method of Moving Asymptotes1 because this algorithm has been
observed to be not very sensitive to the tolerance of the objective function.
Some snapshots of the learning process of the amplification factor are present
in figure 3.7. It can be seen that at the end of the learning, convergence is
reached and this means that λ(t) sets correctly on the unique maximum and
does not fluctuate. This is expected as said before, because the solution of

1The specific package used for the numerical optimization is NLopt, it implements non-
linear optimization algorithms. Reference is available at https://nlopt.readthedocs.
io/en/latest/

31

https://nlopt.readthedocs.io/en/latest/
https://nlopt.readthedocs.io/en/latest/


Phage Display

(a) λ(1) learning, Boyer et al. dataset (b) λ(2) learning, Fowler et al. dataset

Figure 3.7: Learning of the parameter λ(t) in some cases.

equation 3.19 is unique.
One can notice that, in some cases, like the one in panel 3.7b the lower bound
for λ(t)’s at different rounds can differ considerably (about 50% in this case).
For this reason is crucial to repeat the learning as many times as possible to
mitigate this effect produced by a random instance of the training set.
What is reported in figure 3.7 can seem to be in contrast with the fact that
the maximum can’t be attained at the border as already stated in 3.3.2, but
the explanation resides in the fact that to exclude the value at the border a
small quantity δ has been introduced in 3.17, and since at the border the
function has a vertical asymptote it can increase a lot within a very small
displacement from the border.
Other relevant quantities can be observed during the learning process, for
instance the chemical potential reported in figure 3.8. From it, it can be
seen that in all cases µ reaches a pretty highly negative value. Nevertheless
this value should be compared with the energies of the sequences, and the
rare-binding regime holds only if the energy of the sequences are much larger
than the chemical potential. The graph in figure 3.9 has been obtained
by learning the model parameters from an instance of train set and then
using these parameter to estimate the energies on the train set. From this
figure one can see that the inferred probabilities start to differ from the
Maxwell-Boltzmann when energy (µ included) is below 2.0. One can count
the fraction of sequences for which energy doesn’t exceed this value among all
the sequences, this fraction is ≈ 98% for both training and test set. One can
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(a) µ learning, Wu et al. dataset (b) µ learning, Fowler et al. dataset

(c) µ learning, Boyer et al. dataset

Figure 3.8: Snapshots of the learning for µ parameter in some cases.

conclude that the fraction of sequences outside of the Maxwell-Boltzmann
regime can be negligible respect to the ones in this regime. In this cases the
binding probability can be approximated as

ps ≈ exp(−(Hs − µ)))

Obviously this condition should be checked from time to time.

3.6.3 Validation
After all these considerations one can assess the validity of the learning
as exposed in 3.4. Figure 3.10 shows the correlation between energies and
log-selectivities of the sequences as function of fraction of data retained:
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Figure 3.9: Comparison of the inferred probabilities on a test set with the
Maxwell-Boltzmann distribution. Form Wu et al. dataset.

correlation has been computed multiple times, each time discarding sequences
with highest error on the log-selectivity. It can be seen that by keeping
sequences with smaller values of errors on selectivities the correlation increases
and it reaches pretty high values of correlation. The absence of overfitting can
be assessed by inspecting the graphs in figure 3.11. Figure 3.11b shows that
the curves relative to training set and test set have a very small discrepancy
indicating that the model can generalize well in predicting the selectivity of
new samples.
By looking at table 3.1 one can see that the dataset from Fowler et al. has
the smallest ratio between training samples and model parameters, and this
is the case which is most sensible to overfitting. But by looking at 3.11a it
can be seen that this is prevented by the increasing of the regularization as
described before. The ultimate validation that one can think about to assess
the validity of the model in extreme learning situation: to learn the model
parameters on sequences with the lowest selectivity and testing the results
on sequences with high selectivity. One can do this to asses if the model is
capable to catch relevant single and double occurrences that are really linked
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(a) Pearson correlation (b) Spearman correlation

Figure 3.10: Correlation between log-selectivity and energies as function
of the fraction of retained data for all datasets. Sequences with high errors
on empirical-log-selectivity are discarded

to the affinity with the target.
This test has been conducted on Wu et al. dataset because it showed the
most robust and valid learning due to the high number of samples. Figure
3.12 shows an histogram with the values of log-selectivity for the Wu et al.
dataset and shows how they have been divided into training set and test set.
After the learning has been carried out the validation of the model shows
some interesting results, reported in figure 3.13. In the same way it happens
when performing standard cross-validation (3.10) the correlation succeeds
in remaining high even for large fraction on test set (where sequences with
an high error on log-selectivity are kept) but there is a sudden drop when
the test set gets decimated. Even though a some overfitting seems to be
present, the validity of the model on the test set remains constant for a very
wide range of different data fraction. This can mean that if one looks only
at sequences with high selectivity (usually they are the most relevant one
during experiments) the learning shows to be robust and stable.

3.7 Drawbacks of the model and future work
Although, assessing the validity of this model, quite remarkable results have
been obtained there are still some drawbacks of the model which can possibly
open the way for future work.
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(a) Average validity of training set and
test set, Fowler et al.

(b) Average validity of training set and
test set, Wu et al.

(c) Scatter plot energy vs empirical log
selectivity

Figure 3.11: Correlation between log-selectivity and energies as function
of the fraction of retained data for all datasets, computed on training set
and test set of the same dataset. Dataset from Wu et al.

The main issue is that of separating the effect of binding probabilities from
the effect of the amplification factor. In going from a certain number of
reads Ns(t) to a number of reads Ns(t + 1) at the following rounds many
combinations of binding and amplification processes can describe the data.
For instance, just as a clarifying example: if Ns(t) = 6 and Ns(t + 1) = 10
both (ps = 1/3, λ(t) = 5) and (ps = 1/6, λ(t) = 10) can fit these data, as well
as many other combinations of ps and λ(t). Nevertheless, up to a certain
point, the learning tends to prefer those combination for wich ps is not too
close to 0 or 1 due to the effect of the regularization on the model parameters
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Figure 3.12: Histogram of empirical log-selectivity for Wu et al. dataset.
The sequences which have been put in the training set and in the test set
has been coloured differently. Train/test proportion is still around 4/5.

(a) Pearson coefficient (b) Spearman coefficient

Figure 3.13: Validation of the model learned on low-selectivity sequences
and tested on the high-selectivity ones.
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Jij(a, b), hi(a) and µ but still no regularization has been introduced on λ(t)
because it is not clear the way it should be done.
Another drawback concerning the parameter λ(t) is the strong dependence
on the training set instance. The values of λ(t) can be interpreted as the
average infected bacteria during the amplification phase at round t, it is
expected to be independent of the particular sequence and to be a property
of the phages. The fact that a particular training set sets a lower bound
for λ(t) can make the inferred λ(t) differ considerably from a learning to
another (this situation is depicted in figure 3.7b). This in turn can imply an
high error to be associated with this parameter.
Future work can certainly aim to expanding and enriching the model. This
particular model considers only two states of the sequence, it can be found
either bound or not bound to the target. But in practice one could distinguish
this last case in two possible sub-cases: one in which the sequence is folded
and active to perform its task and bind to the target, and a second one
in which the sequence is in an unfolded state and in any case it would be
impossible for it to bind to the target. In the first case one would associate
the event of non binding to a low affinity of that particular sequence with
the target, in the other case one associate the non binding the the fact
that binding has been prevented by mechanical reasons; this can avoid to
introduce a certain amount of bias in the results. This situation can be
modelled with a three-states system instead of two; one associated to the
state unfolded, another one to the state folded but not bound and a third one
to the state folded and bound. This model can be explored but the main issue
is that, in contrary to this two-states model, the likelihood maximization is
not so trivial because one would obtain a non concave function and a way to
skip local maxima must be employed.

3.8 Conclusions
The positive validation showed in fig. 3.10 suggests that when the empirical
estimate of the selectivity is reliable we can observe a large correlation
with the one inferred on the test set marking a good agreement between
experimental results and this machine learning approach (the choice of the
metric is a minor issue in this case since they show the same behaviour).
And when the experimental dataset is consistent and it allows for a robust
and reliable learning these results don’t depend crucially on the fraction of
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data retained, this is a clear sign of the fact that the statistical model is
capable to capture the essential features that makes the sequence bind to
the target.
This particular approximation is also capable to give insights into the value
of the amplification factor λ(t). Because of the good performance of the
learning one could conclude that considering this quantity as independent
of the particular sequence bound to the target, and this is precisely what is
experimentally expected. A result, based a probabilistic analysis, that can
be useful also on the experimental side.
These result are relevant as long as the system is modelled as a two-state
one, but more work in due when one wants to improve the accuracy of this
model and its capability to capture capture the features of the experimental
result by introducing additional states: in this case some implementation
issues arises as described in sec. 3.7. But the good results obtained since now
outlines the validity of these approaches based on statics as valid contributors
to practical issues such as protein design, antibodies engineering and further
developments in the phage display experimental technique and its several
applications.
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