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Summary

This thesis presents design and implementation of a UWB 3-D localization system
for real time augmented reality applications to be applied in TV studios. It first
presents the state of art of RTLS based on the UWB technology. After that, it
focuses on the design of the RTLS. The UWB-based Localization System is formed
by the Anchors and the Tags. In a real-time location system (RTLS), anchors are
electronic devices that detect UWB pulses emitted by UWB Tags and forward them
to the location server for calculating tag positions. Tags are small electronic devices
that are attached to objects that need to be tracked. These devices exchange range
messages and send in real-time the range measurements to a gateway where a
localization algorithm, based on EKF, runs to estimate tag’s position according
to a relative references system. In this thesis, to evaluate the performance of the
designed EKF algorithm, 25 test points have been chosen for the tag’s position and
the localization algorithm has been tested via Matlab simulation in an indoor area
where 8 anchors have been deployed. Measurements campaign have been carried
out in RAI by using UWB devices from synchronicIT and these measurements were
done in different scenarios without obstacle and with human body. The positioning
phase was used the extended Kalman filter (EKF) since it is robust and less complex
than many others algorithms. In this thesis, EKF is simulated to show its features
and how its parameters change the tracking performance by using two different
state namely, Position (P) model and Position velocity (PV) model and several
tests were done in order to evaluate and compare different localization performance
without obstacle and with human body. It was found that the localization depends
on the precision of ranging measurements and with more ranging measurements
the system becomes more precise. Due to human body interference, sometimes the
direct path is obstructed and the receiver synchronizes on a reflected path, thus
affecting the range measurement. In this thesis, We start with 1 tag and evaluate
the performance to find the best σ (which is one of parameters of Q matrix ) that
minimise the 3DLoc error rmse for two state models, P model and PV model. Then
we continue this simulation by having 2 tags and 3 tags on human body to see how
performance will be changed.
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Chapter 1

Introduction

1.1 Real-Time Locating System Applications

RTLS allow you to locate people or enterprise assets in real time. For deployment of
a RTLS we use an ideal technology IPs which is base on WSN. A WSN is designed to
locate, in specific places of the network, sensors able to read different types of data,
depending on the type of system, such as temperature, motion, etc. RTL combines
hardware and software to periodically provide the real-time position of a moving
capable asset using mobile nodes, called “Tags”. These tags will communicate with
fixed sensors with known position, estimated in coordinates, called “Anchors” [1].
This localization estimation of a real-time position is obtained in two phases of
ranging and positioning. The first one estimates the distance between mobile and
anchor nodes, while the second one uses these distance measurements to localize
the mobile node in the system based on coordinates. There are several practical
cases where having an IPS could be of great utility, such as smart structures to
respond to earthquakes and make the buildings safer; precision agriculture by
watering and fertilizing only where is necessary; maintenance exactly when and
where is needed; traffic monitoring systems with better control stoplights and
inform motorist for alternative routes; and environmental monitoring networks
sensing air, water ,and soil quality and identifying the source of pollutants in real-
time. There are two types of IPS systems which are Distributed and Centralized
systems. In a distributed system the location of the mobile node is calculated
by himself, this mobile node is cheap and with limited computation capabilities.
In a centralized system, the locations of the mobile nodes are calculated by the
control center connected to the central gateway. Today, thanks to advances in
RF, it is possible the use of large networks of wireless sensors for monitoring and
controlling applications. As is possible to see, there are a lot of useful applications
and implementations in the market for indoor positioning, increasing the interest
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Introduction

for IPS, that is the motivation to develop it, taking advantage of the UWB systems
due to its benefits. According to the above, it was proposed this thesis to develop
an IPS based on a UWB technology that uses at TV studios.

1.2 Objective of Thesis
This thesis has several objectives to design and implement a 3D indoor localization
algorithm suitable for real-time augmented reality applications to be applied in TV
studios. In particular, the localization system has to accurately localize in parallel
up to eight UWB wearable devices.
Indoor localization systems will be based on UWB technology.
The main goal is generating algorithms for 3D localization in indoor environments
and then optimize and make robust these algorithms to mitigate the interference
effect that the human body might cause to the UWB signal.
The performance of the overall system will be evaluated offline taking as input real
measurements, provided by the LINKS personnel, collected in a real TV studio.

1.3 Overview of Thesis
After this introductory chapter, chapter 2 will explain an overview of Indoor Local-
ization Systems as the most used ranging techniques. The two kind of approaches
used in these systems and the localization algorithms where is specified the models
used later in the implementation.

Chapter 3, provides an overview of the ranging measurements campaign for 3D
Localization explaining its characteristics. Measurements have been performed in
RAI TV studio, where eight UWB anchors and twenty-five test points are available.
At the end of the chapter, distance measurement scenario is described and the best
ranging performance evaluation for different cases without having obstacle and
with human body are shown.

Chapter 4, discuss the evaluation of the 3D Localization Algorithm for 1 Tag.
To meet this objective, an extended Kalman filter is used to evaluate the best
performance for different models. At the end of this chapter, KF and EKF tracking
algorithms have been analyzed in details. In addition, EKF is simulated to show
its features and how its parameters change the tracking performance.

Chapter 5, represent the evaluation of 3D localization algorithm for 2 Tags by
applying EKF and realizing the best performance for two models.

2
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Chapter 6, present the evaluation of 3D localization algorithm for 3 Tags by
using EKF and finding the best performance for two models.

In the last chapter, by comparing chapters 4, 5, and 6, the best performance
model is evaluated and conclusions can be found.
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Chapter 2

Overview of Indoor
Localization systems

2.1 Introduction
RTLS are a combination of hardware and software used to establish and give real-
time information about the location of assets and resources, such as objects, people,
animals or anything equipped with devices designed to work with the system. GPS
is the most pervasive example of an RTLS which is a well-known satellite-based
technology that is used, assuming the availability of the appropriate hardware and
software, to find a GPS-equipped device geographically worldwide. This is a truly
noticeable system that has irrevocably convert the face of commercial and personal
navigation. However, some problems appear when talking about indoors and the
technology that GPS provides has strong limitations to work indoors.
As a result, the need to discover some technology appropriate for indoor location
capability got increased. Basically, an indoor locating system is based on some
localization hardware that is formed by a small number of sensors, called reference
nodes, with fix known coordinates (either via GPS or from a system administrator
during startup) and the unknown-location nodes or tags (facing the power supply
problem that they have limited energy to work with). RTLS is based on many
types of communication technologies, such as RF or optical systems (infrared),
or acoustic (ultrasound). Future RTLS systems are predicted to be based on low
power electronic tags used to follow and/or monitor assets, people, or anything
of value with very high accuracy and mobility. Some example of radio frequency
solutions are BLE, Zigbee, UWB and WIFI.
BLE is a low power wireless communication technology that can be used over a
short distance to enable smart devices to communicate
Zigbee is a wireless technology developed as an open global standard to address the
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unique needs of low-cost, low-power wireless IoT networks. The Zigbee standard
operates on the IEEE 802.15.4 physical radio specification and operates in unlicensed
bands including 2.4 GHz, 900 MHz and 868 MHz, as shown in Figure 2.1

Figure 2.1: One example of Zigbee

UWB Like Bluetooth and Wi-Fi is a short-range, wireless communication
protocol that operates through radio waves. Ultra-wide-band signals are well
known procedures for high-bandwidth ToA estimations and is used for positioning
applications because allows centimeter accuracy in ranging, as well as low power
and low cost implementation of communications.
Nevertheless, there are two major disadvantages related to RTLS tags.
Firstly, the wide band based RF technology provide accurate localization solutions,
while relatively narrow band based RF technology do not provide a sufficient level
of accuracy required by applications.
Secondly, the RF technology can be large and power-hungry. This finding a trade
off between accuracy and power consumption is the goal of RTLS design [5].
UWB is an attractive way to perform localization, especially for RTLS that require
an accurate position information and high measurement rate. The UWB technology
with ToA measurements, resulting in high accurate ranging estimates even in strong
multi-path environments. Based on RF signals which spread over a large bandwidth,
short pulses transmitted between UWB nodes are utilized for estimating the required
travel time for the RF signal. Even though the ToA technique for UWB ranging
provides accurate results, exact synchronization (usually through hardware) of the
transmitting and receiving devices is a requirement. Through utilizing the coherent
transmission capabilities of UWB signals and through implementing the TW-ToA
technique, synchronization issues are resolved to a great extent. TW-ToA relies on
the calculation of the time the RF signal requires for traveling from the transmitter
to the receiver, the processing and transmission time at the receiver’s part and the
time for traveling back to the transmitter Figure 2.3. [11]

2.2 Ranging Techniques
To figure out the location of a tagged object, in 2D or 3D space, it is significant
to determine and establish its distance from diverse well-known points. Through
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learning and doing some generally basic calculations it is feasible to figure the
position of the tag. There are various techniques for implementing ranging utilizing
wireless schemes. These are divided basically into three types of schemes. First,
Radio Signal Strength-based, normally referred to as Received Signal Strength
Indication or RSSI schemes, second AoA and third ToA.
In this thesis, the main focus is on ToA.

2.2.1 RSSI

RSS is the power of received signal estimated by a receiver’s RSSI circuit. Frequently,
RSS is reported as estimated power, i.e., the squared magnitude of the voltage.
Wireless sensors connect to neighboring sensors, so every beneficiary amongst
ordinary information communication without introducing extra bandwidth or
energy requirements can estimate the RSS of RF signs. RSS assessments are
generally easy to execute in hardware equipment. However, RSS estimations are
unstable and the driving distance estimation is inaccurate.

2.2.2 OW-ToA

The main idea supporting ToA method is that the distance between the sender and
the receiver of a signal can be obtained by measuring the signal propagation time
and the signal’s known velocity. Two ways for the calculation ToA are OW-ToA
and TW-ToA. In one-way, the difference between the send and arrival of the signal
is calculated using high precision synchronization of the clocks of the sender and
receiver. For one-way measurements, the distance between two nodes i, j can be
calculated as

dist = (t2 − t1)V (2.1)

Where t1 and t2 are the send and receive time of arrival of the signal measured at
the sender and receiver respectively, as Shown in Figure 2.2 [4]

6



Overview of Indoor Localization systems

Figure 2.2: Temporal diagram for one way ToA

2.2.3 TW-ToA
In two-way method the round trip of the signal is measured at the sender node
and t3 and t4 are the send and receive times of the response signal.

dist = (t4 − t1)− (t3 − t2)
2 V (2.2)

We can observe that with the one-way approach the receiver node calculates its
position while in two-way method the sender calculates the distance to the receiver
and must then report the location using an extra message, as shown in Figure 2.3
Advantage of this technique is more robust to the multi-path channel than the RSS
technique by assuming that there is a direct path between transmitter and receiver.
The difficulty of implementing a time based technique is the receiver’s ability to
accurately estimate the arrival time of the LoS signal hampered by additive noise
and multi-path signals.
The best achievable accuracy of ToA based distance estimate under single path
additive white Gaussian noise (AWGN) channel satisfies the following inequality
[10]

c

2
√

2
√

SNRβ
<

ñ
var(d− d̂) (2.3)

Where d̂ is the estimated distance between two nodes while d is the corresponding
exact distance. c is the speed of light and β is the effective bandwidth of the
transmission signal. Hence, the ToA ranging accuracy is improved by increasing
the SNR or the effective signal bandwidth. This is the main reason why UWB
technology is widely used in time-based ranging method.
Errors in ToA estimation are caused early arriving multi-path, when many multi-
path signals arrive very soon after the LoS signal and their contributions to the
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cross correlation obscure the location of the peak from the LoS signal. The second
cause of error is the attenuated LoS that can be severally attenuated compared
to the late arriving multi-path components, causing it to be lost in the noise and
missed completely. The attenuated LoS problem, is only severe in networks with
large inter sensor distances so using a cooperative localization approach avoids
large errors also in these kind of networks. Early arriving multi-path components
cause smaller errors but are very difficult to combat.
Generally, wider signal bandwidths are necessary to obtain grater temporal reso-
lution. The peak width of the auto-correlation function is inversely proportional
to the signal bandwidth. A narrow auto-correlation peak enhances the ability to
identify the arrival time of a signal and helps in separating the LoS signal cross
correlation contribution from the contributions of the early arriving multi-path
signal justifying the use of UWB signals to calculate the ToA in localization systems.
[11]

Figure 2.3: Temporal diagram for two way ToA

2.3 Localization Algorithms

There ere are two main stages to estimate the position when working with wireless
positioning systems. A ranging technique is utilized in the initial stage, as ToA
or RSS the most widely used, to measure the distance between the tag and the
anchors, at that point in the second stage, this data is applied as a part of the
location algorithms to estimate the tag’s position. KF and EKF are Bayesian
method that can be applied for indoor localization.
The Bayesian positioning approach considers the probability and statistics of these
measurements and the a priori mobile’s positions. The Bayesian tracking approach
models the tracking problem as a discrete time stochastic process.
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Overview of Indoor Localization systems

2.3.1 KF
Rudolph Kalman introduced The Kalman Filters (KF from now on) back in and
1960. Since then, they have been extensively used in both applied science and
economics. They are elegant and efficient algorithms for localization, Due to its
statistical treatment, at least while both the system and measurements behave
linearly and normally distributed. However, these conditions are not always satisfied,
the reason why some linearization and approximations are performed expanding
the applications of the KF in the form of the EKF.

2.3.2 EKF
The Kalman Filter algorithm, provides a satisfactory, effective and practical solution
for location issues when the system is linear, and measurement errors are modelled
according to Gaussian distribution. Since these conditions do not generally occur,
some linearization and approximations are expected to exchange the KF into
the EKF, appropriate for non-linear systems [6]. The discrete EKF modeled by
discrete-time state equation can measure recursively the condition of a dynamic
system.

xk = f(xk − 1) + wk (2.4)

wk = N (0, Qk) (2.5)
Where xk the state vector at time k, f is the state transition function which evolves
the state in time given the previous state. The random process noise vector wk

takes into account the non linearity and perturbations of the system normally
distributed with zero mean and co-variance matrix Qk. The system is observed
trough the following measurement equations[7]

zk = h(xk) + v(k) (2.6)

vk = N (0, Rk) (2.7)
Where zk the measurements vector at time k, hk is the observation function
which estimates the expected measurements at the state xk and vk is the random
observation noise vector assumed normally distributed with zero mean and co-
variance matrix Rk. The EKF is developed in two phases the predict phase and
the update phase. The predict phase takes the previous state and does a predicted
state with the system information and the update phase updates the estimate with
the prediction correcting the error vector where finally in the same conditions the
system will arrive to steady state.

xk = f(xk−1, uk−1) + qk (2.8)
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Overview of Indoor Localization systems

Pk = FkPk−1F
T
K + Qk (2.9)

Where qk is the mean vector and Qk the co-variance matrix of the system state
noise vector w which is Gaussian distributed; and Fk is the Jacobian of the system
transition function f calculated around the previous a posteriori state estimate
previous xk After finding these a priori values, the algorithm proceeds to the
Measurement Update, correcting the estimates finding a weight factor for the
measures according to their co-variance matrix and the state estimated.

Sk = HkP −
k HT

k + Rk (2.10)

Kk = P −
k HT

k S−
k 1 (2.11)

sk = zk − h(x−
k ) (2.12)

x+
k = x−

k + Kksk (2.13)

P +
k = (Ik −KkPk)P −

k (2.14)

sk is the innovation vector and Sk its co variance matrix, Kk is the Kalman gain,
Rk the co-variance of the Gaussian distributed measurement noise vector vk Like
in the first step, Hk is the Jacobian around the a priori state estimate xk of the
observation function h. Both steps, just the first order derivatives are used for
the Jacobian, and accuracy can be improved with higher order Jacobian. The
performance of the Kalman Filter in general depends on how well the systems are
modeled and the initial parameters chosen, so a survey of some models inside the
scope of this research are presented on next.
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Chapter 3

Ranging Measurements
Campaign for 3D
Localization

3.1 Introduction
A measurement campaign has been carry out in RAI by using UWB devices from
synchronicIT. This measurement were done in different scenarios without obstacle
and with human body. For without obstacle the measurements are base on two
different tripod 93 cm and 153 cm and with human body three measurements
which consist of right shoulder 156 cm, right pocket 77 cm and back belt 93 cm
are considered. By calculating ranging error the best performance for scenario of
without obstacle and with human body will be observed.

3.2 Deployment of the UWB Localisation Sys-
tem

This thesis was meant to be designed and implemented an RTLS based on the
UWB. The UWB-based Localization System has been deployed in an indoor area
by the Anchors, as shown in Figure 3.2 and the Tags shown in Figure 3.1.
They will be exchanging ranging messages between them to let the tags estimate
their position based on a coordinate system. In this thesis, the number of test
points is twenty-five and the Localization system will be based on indoor area in
which 8 anchors were disposed to range with up to three tags that are programmed
to work, as shown in Figure 3.3
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Figure 3.1: Tag - size 4.6 x 7.3 cm

Figure 3.2: Anchor - size 9.8 x 9.8 cm

Figure 3.3: Test points
12
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3.3 Distance Measurement Scenarios

In this thesis two measurement scenarios are considered. Firstly, measurements
in static condition and secondly, measurements in dynamic condition. Ranging
measurement have been performed without obstacles deploying the tag on tripod
at two different height 93 cm and 153 cm, as shown in Figure 3.4. In order to test
interface of human body several tests have been done with the tag in right pocket,
as shown in Figure 3.6, for tag on the back belt, as shown in Figure 3.5 and for tag
on the right shoulder, as shown in Figure 3.7.
Some measurements have been done in dynamic condition by walking with a tag
inside the right pocket, walking with a tag on the back, walking with a tag on the
right shoulder, running with a tag inside the right pocket, running with a tag on
the back and running with a tag on the right shoulder.

Figure 3.4: Tripod - height 93 cm and height 153 cm

Figure 3.5: Back belt - height 93 cm
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Figure 3.6: Right pocket - height 77 cm

Figure 3.7: Right shoulder - height 156 cm

Figure 3.8: 4 orientation of Human body Ranging Localization

For ranging with human body four orientation +x, +y, -x and -y for different
test points have been considered, as shown in Figure 3.8
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3.4 Ranging Performance Evaluation
For evaluating ranging error, calculation of ranging error of average µi, average
standard deviation σij and RMSi are done by using the following formula

µi = 1
N

ΣÔi
k (3.1)

σij =
ó

1
N − 1Σ(Ôi

k − µi)(Ôi
k − µj) (3.2)

RMSi =
ñ

(σij)2 + (µi)2 (3.3)

Figure 3.9: Error along the axes

As shown in Figure 3.9, error along x, y, z axes for position estimation of tags
and for exact location of them can be evaluated by formula 3.4, 3.5 and 3.6.

Ôx = x̂i − xi (3.4)

Ôy = ŷi − yi (3.5)

Ôy = ẑi − zi (3.6)
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Figure 3.10: Static Ranging Localization

For static ranging localization, first for ranging distance measurement and exact
distances are evaluated, as shown in Figure 3.10
Then error for distance can be calculated by having value of distance measurement
and exact distances, as shown in formula 3.7

Ôd = d̂i − di (3.7)

For localization, evaluation for position estimation of tags and exact location of
them have been calculated, as shown in Figure 3.10 and then by using Formula
3.5, error of 3D position and by using Formula 3.6 error of 2D position can be
evaluated.

Ôp
k =

ñ
(x̂k − xk)2 + (ŷk − yk)2 (3.8)

Ôp
k =

ñ
(x̂k − xk)2 + (ŷk − yk)2 + (ẑk − yk)2 (3.9)

3.4.1 Without Obstacle
3.4.1.1 Measurements in static condition

For this case, two different tripod are considered. First with 93 cm height and then
tripod with 153 cm height. Test point 0 is one example of the 25 test points and
performance of 8 anchors for this specific test point is shown in Figure 3.11 and
Figure 3.12.

Anchor 3 has less number of errors among 8 anchors and there is no evaluation for
anchor 5, as shown in figure 3.12
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Figure 3.11: Ranging without obstacles (h = 93 cm), (Test Point 0)

Figure 3.12: Ranging without obstacles (h = 153 cm), (Test Point 0)
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Table 3.1 shows global performance and average error for tripod with 93cm and
153cm height. Tripod with height 153cm has smaller number of errors comparing
with tripod with 93cm height. As result, tripod 153cm height has the best per-
formance. Multi-Path effect occasionally happens when the distance is estimated
not on the direct radius but on the reflected path, introducing an error on the
measurement, as shown in Figure 3.13.

Figure 3.13: Multi-Path Effect

Static Tag on Tripod with height = 93 cm
avdErrDist = 0.02 m
stdErrDist = 0.21 m

Static Tag on Tripod with height = 153 cm
avdErrDist = 0.003 m
stdErrDist = 0.14 m

Table 3.1: Global statistics for ranging with Tripod

3.4.2 With Human body

3.4.2.1 Measurements in static condition

Five different test points 0,12,16,21,23 in four orientations were checked. As
example test point 21 with orientation +y when the tag is on right shoulder is
shown in Figure 3.14, test point 21 with orientation -y, when tag is on back belt is
shown in Figure 3.15 and test point 21 with orientation +y when tag is on right
pocket is shown in Figure 3.16.
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Figure 3.14: Ranging with right shoulder (h=156 cm),(Test Point 0)

Figure 3.15: Ranging with Human body (tag on the back belt h = 111 cm)
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Figure 3.16: Ranging with Human body (tag inside the right pocket h = 77 cm)

Statistics global performance about ranging with tags on human body, are shown
in table 3.2. First of all, Tag on the right shoulder has fewer errors and the most
connectivity. The second best choice is tag behind the back on the belt which has
better connectivity and the worse connectivity by having a lot of errors is for tag
inside the right pocket.

Tag inside the right pocket
avdErrDist = 0.45 m
stdErrDist = 0.66 m

Connectivity = 7 / (20 * 7) = 5.0 percent
Tag behind the back on the belt

avdErrDist = 0.28 m
stdErrDist = 0.50 m

Connectivity = (20 * 7 – 16) / (20 * 7) = 88.6 percent
Tag on the right shoulder

avdErrDist = 0.12 m
stdErrDist = 0.62 m

Connectivity = (20 * 7 – 6) / (20 * 7) = 95.7 percent

Table 3.2: Global statistics for ranging with Human body
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The Multi-Path effect in the presence of the human body is more pronounced
and distance is estimated not on the direct path but on the reflected path. The
tag on the right shoulder shows the best performance for human body shown in
Figure 3.17
In general, the Multi-Path effect in the presence of the human body is more
pronounced than in the case with tags on a tripod the localization error on
the shoulder is lower (less subject to multi-path). In fact, the error on ranging
measurements is lower than tag on back belt and right pocket, As shown in Table
3.2.

Figure 3.17: The Multi-Path effect in the presence of the Human body
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Chapter 4

Design and Evaluation of
the 3D Localization
Algorithm - 1 Tag

4.1 Design of the EKF for 3D Localization for 1
Tag

In this chapter, the EKF algorithm for 1 tag was simulated and tested in Matlab.
First of all, observation has been done for tag on 153 cm tripod as the best model
without obstacle which has been chosen in previous chapter.
Second, the evaluation of tag on right shoulder as the best model with smaller
number of errors with human body was evaluated.
For this purpose, for designing EKF for 1 tag, the simulation has been done for
two state models, P and PV model (which in this chapter these two models will be
introduced later). As a result, the best σa for these state models has been chosen
and the best performance without obstacle and with human body are evaluated.

4.1.1 State Models
The first step to design a good EKF is to formulate a state model that describes
the system dynamics. In particular, this research is interested in improving the
localization accuracy on applications with statics and dynamics (walk or run) while
keeping a systems that is implementable in different scenarios, so two basic models
are studied. The models here presented are developed in 3D space and n = 1, 2, 3
is an indicator of the space dimension.
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4.1.2.1 P model

This model can be viewed as a static version of the EKF, in other words it
just performs the measurement update. Generally has two applications, one is to
filter and estimate some measurement parameters knowing the exact position and
the second one is tracking, where due to low sampling frequencies for instance,a
dynamic model does not work well and a priori positions are predicted as random
variables inside a certain region (described by the process noise co-variance matrix).
This matrix has a great impact on the EKF performance, with lower values a
smooth output will be obtained but with larger settling times, so a variable Qk is
presented as function of the time transcurred between two measures ∆T and the
standard deviation σa of a Gaussian distributed acceleration vector and I3,3 is 3x3
identity matrix. The state equation would be

x = [x, y, z]T (4.1)

xk = f(xk−1, 0) = I3,3xk−1 (4.2)

Qk = [∆T I3,3][∆T I3,3]T σ2
a (4.3)

4.1.2.2 PV model

It is a dynamic EKF and assumes near constant velocity between the estima-
tion intervals ∆T . Again the process noise is a key factor, and smooth tracking will
be gotten if we consider zero or small white accelerations. However on non-linear
maneuvers (velocity is not longer constant) slow response or even divergence will be
appreciated, anyway if process noise is set large enough, some of these maneuvers
can be tracked with noisier tracking. Its state vector is expressed as

x = [x, y, z, vx, vy, vz]T (4.4)

xk = F (xk−1, 0) =
C

I3,3 ∆T I3,3
O3,3 I3,3

D
xk−1 (4.5)

Qk =
C
1/2∆2

T I3,3
∆T I3,3

D C
1/2∆2

T I3,3
∆T I3,3

DT

σ2
a (4.6)

∆T is the elapsed time from previous time k to current time k + 1 and I3,3, O3,3
are 3x3 identity matrix and zero matrix, respectively. PV model is feasible in low
acceleration movement scenario, that is, constant speed circumstance. There is
a time interval during which the tracking algorithm estimates the speed, named
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as transient stage. Moreover, we only care about the position of the tag and the
measurements are only related to positions[12].
The process noise is modeled as independent random acceleration k normally
distributed with zero mean and co-variance matrix Qk that allow the track of the
different forces that could temporally affect target’s dynamics [13].
where σ2

a is the variance random acceleration component of the process noise. This
value is set manually according to the system and is a key factor in the EKF design
zero or small variance random acceleration generally lead to a smooth tracking.

4.1.2 Measurement model

Most of tracking systems are based on some sort of distance estimates, we have
N number of distance measurements While these estimates keep a Gaussian dis-
tribution, as shown in formula 4.7. The transformation between distances and
coordinates is non-linear, and some linearizations has to be performed to compute
the Hk matrix for P model and PV model. For calculating Hk we use d̂ which is
the Euclidean distance evaluated at a priori estimation of the position as define in
equation 4.8
Hk for P model is a matrix of Nx3 as shown in formula 4.9 and PV model is a
matrix of Nx6 that consist of O1,3 which is a zero matrix, as shown in formula 4.10.

zk = [z1,k, z2,k, z3,k, ..., zN,k]T (4.7)

h(xk) =



ñ
(xk − xA1)2 + (yk − yA1)2 + (zk − zA1)2ñ
(xk − xA2)2 + (yk − yA2)2 + (zk − zA2)2

...ñ
(xk − xAN

)2 + (yk − yAN
)2 + (zk − zAN

)2

 (4.8)

Hk =



xk − xA1

d̂1,k

yk − yA1

d̂1,k

zk − zA1

d̂1,k
xk − xA2

d̂2,k

yk − yA2

d̂2,k

zk − zA2

d̂2,k
...

xk − xAN

d̂N,k

yk − yAN

d̂N,k

zk − zAN

d̂N,k


(4.9)
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Hk =



xk − xA1

d̂1,k

yk − yA1

d̂1,k

zk − zA1

d̂1,k

O1,3

xk − xA2

d̂2,k

yk − yA2

d̂2,k

zk − zA2

d̂2,k

O1,3

...
xk − xAN

d̂N,k

yk − yAN

d̂N,k

zk − zAN

d̂N,k

O1,3


(4.10)

The priori estimate is corrected using all the distance measurements available at
each step, but this requires to have (or at least assume) simultaneous measurements,
which is not always feasible. Another issue is the linearized Hk matrix, iterations
around a posteriori estimates can improve accuracy (not always true), but if the a
priori estimate is good, no significant improvement is noticed.

4.2 Evaluation of Localization Performance and
Optimization

The evaluation has been done in two different conditions. First in static condition
without obstacle and second in static condition with human body.
For condition without obstacle, tripod with 153 cm for two different models of
P model and PV model and For condition with human body, by using 1 tag on
right shoulder and generating EKF for 1 Tag, the best performance of σa as one
parameter of Qk matrix are evaluated. (right shoulder comparing with two other
models has best performance and smaller number of errors. For this reason, only
this scenario is mentioned in this chapter).
At the end, after evaluating static condition for human body, evaluation for dynamic
condition for three different scenarios right shoulder, right pocket and back belt
are evaluated.

4.2.1 Static Condition without Obstacles
First, by using EKF algorithm, Localization performance for test Point P0 for rang-
ing measurements without obstacles with height of the tripod 153 cm is considered
and then by optimizing σa which is one of parameters of Qk matrix, the best σa

for our localization system is selected.

4.2.1.1 P model

For evaluating different value of σa as one parameter of Qk matrix for P model
in our EKF algorithm, first different test points (Test point 0 is one example of
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test points that was evaluated, as shown in Figure 4.1), different value of rmse for
each σa were obtained, as shown in Figure 4.2. The best performance for static
condition without obstacle in case of P model is when σa = 5, as shown in Figure
4.3

Figure 4.1: Test point 0 - 3DLocErr [avg=0.049, std=0.017, RMS=0.052]m

Performance
2DLocErr [avg=0.060, std=0.050, RMS=0.078] m
3DLocErr [avg=0.110, std=0.114, RMS=0.158] m
XErr [avg=-0.012, std=0.053, RMS=0.054] m
YErr [avg=-0.005, std=0.056, RMS=0.057] m
ZErr [avg=-0.045, std=0.130, RMS=0.138] m

Table 4.1: Performance of σa= 5 for P model
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Figure 4.2: Ratio between σa and rmse as a function of σa

Figure 4.3: P model for 1 Tag - without obstacle (153cm)
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When σa = 5 the errors for 2D localization and 3D localization are 0.078 and
0.158, as shown in Figure 4.3 and Table 4.1.

4.2.1.2 PV model

σa is one parameter of Qk matrix for different test-points (Figure 4.4 is one
example of test-point 0 that shows error for 3 different axes x, y, z). In our EKF
algorithm for 1 Tag, experiment has been done by having different value for σa,
so as result each σa has specific value of rmse, as shown in Figure 4.5. The best
performance for static condition without obstacle in case of PV model is when σa

= 6, as shown in Figure 4.6 and table 4.2

Figure 4.4: Test point 0 - 3DLocErr [avg=0.050, std=0.026, RMS=0.057] m
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Figure 4.5: Ratio between σa and rmse as a function of σa

Figure 4.6: Global error of PV model for 1 tag - without obstacle(153 cm)
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Performance
2DLocErr [avg=0.060, std=0.050, RMS=0.078] m
3DLocErr [avg=0.111, std=0.116, RMS=0.160] m
XErr [avg=-0.012, std=0.053, RMS=0.054] m
YErr [avg=-0.004, std=0.057, RMS=0.057] m
ZErr [avg=-0.045, std=0.132, RMS=0.139] m

Table 4.2: Performance of σa= 5 for PV model

Error for 3D localization and 2D localization for tripod with 153 cm height is
less than tripod with 93 cm height (as shown in previous chapter tripod 153 cm
has smaller number of errors). As far as the choice of σa (one parameter of Qk

matrix in EKF algorithm) affects the localization performance. So, σa = 5 with
rmse = 0.158 for P model have been chosen as the best performance when there is
no obstacles.
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4.2.2 Static Condition with Human Body – 1 Tag on the
right shoulder

4.2.2.1 P model

In this model, by looking at Figure 4.7, test-point 0 for P model and the er-
rors for three different axes x, y, z are shown. After that, by evaluating different
value of σa as one parameter of Qk matrix in our EKF algorithm for 1 Tag, dif-
ferent values of rmse will be obtained. The best performance that minimize the
localization error for tag on right shoulder is when σa = 0.01, as shown in Figure 4.8.

4.2.2.2 PV model

Figure 4.9 is shown performance of test-Point P0 when tag is on right shoul-
der for PV model. By using EKF algorithm, the result shows that errors for this
model are more than P model.
For PV model, after σ1 =2, for all value bigger that 2, errors were increased. σa

=1, σa =1.5 and σa =2 have the lowest number of errors and errors are same for
all of them, as shown in Figure 4.10. So as result, we have smaller number of errors
and the best performance when σa is any of these values 1, 1.5 or 2.

Figure 4.7: P model - 1 Tag on the right shoulder - Test point 0
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Figure 4.8: P model - 1 Tag on the right shoulder

Figure 4.9: PV model - 1 Tag on the right shoulder
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Figure 4.10: PV model - 1 Tag on the right shoulder

Figure 4.11: P model - 1 Tag on the right shoulder
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Performance
2DLocErr [avg=0.272, std=0.403, RMS=0.486] m
3DLocErr [avg=0.380, std=0.548, RMS=0.667] m
XErr [avg=-0.169, std=0.353, RMS=0.392] m
YErr [avg=-0.095, std=0.272, RMS=0.288] m
ZErr [avg=-0.184, std=0.417, RMS=0.456] m

Table 4.3: Performance of σa = 0.01 for P model

As result, P model for tag on right shoulder has better performance comparing
with PV model, by looking at Table 4.3 error for 3D localization is 0.667 when
σa = 0.01, as shown in Figure 4.11. As result, the best performance for P model is
when σa = 0.01, as shown in Figure 4.11 and Table 4.3
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4.2.3 Dynamic Condition with Human Body – Tag on the
right shoulder (walk)

4.2.3.1 P model

For mobility, by evaluation different σa for P model in EKF algorithm, smaller
number of errors and the best performance is σa = 4, as shown in Figure 4.12.
As result, in case of mobility the σa parameter should be increased.

4.2.3.2 PV model

For PV model, smaller number of errors and the best performance is σa = 1.5, as
shown in Figure 4.13

Figure 4.12: σa = 4, P model, walking by having 1 tag on right shoulder
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Figure 4.13: σa = 1.5, PV model, walking by having 1 tag on right shoulder

4.2.4 Dynamic Condition with Human Body – Tag on the
right shoulder (run)

By looking at Figure 4.14 experiment has been done for P model in case of running
when tag is on right shoulder.
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Figure 4.14: σa = 4, P model, tag on right shoulder while running

As shown in Figure 4.15, PV model in case of running with 1 tag on right
shoulder.
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Figure 4.15: σa = 1.5, PV model in case of running by having 1 tag on right
shoulder

4.2.5 Dynamic Condition with Human Body – Tag on the
pocket (walk)

4.2.4.1 P model

For tracking in case of walking smaller number of errors and the best perfor-
mance is when σa = 4 for P model, as shown in Figure 4.16
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Figure 4.16: σa = 4, P model, walking by having 1 tag on the pocket

4.2.4.2 PV model

For PV model in case of walking, the best performance is when σa = 1.5, as
shown in Figure 4.17
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Figure 4.17: σa = 1.5, PV model, walking by having 1 tag on the pocket

4.2.6 Dynamic Condition with Human Body – Tag on the
pocket (run)

As shown in Figure 4.18, this time previous experiment has been done in case of
running when tag is on the right pocket.
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Figure 4.18: σa = 4, P model, running by having 1 tag on pocket

As shown in Figure 4.19, running by having one tag on the pocket in case of
PV model.
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Figure 4.19: σa = 1.5, PV model, running by having 1 tag on pocket

4.2.7 Dynamic Condition with Human Body – Tag on the
back belt (walk)

4.2.5.1 P model

For mobility, in case of walking, smaller number of errors and the best performance
for P model is when σa = 4, as shown in Figure 4.20

42



Design and Evaluation of the 3D Localization Algorithm - 1 Tag

Figure 4.20: σa=4, P model, walking by having 1 tag on back belt

4.2.5.2 PV model

For mobility, in case of walking, smaller number of errors and the best performance
for PV model is when σa = 1.5, as shown in Figure 4.21
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Figure 4.21: σa = 1.5, PV model, walking by having 1 tag on back belt

4.2.8 Dynamic Condition with Human Body – Tag on the
back belt (run)

As shown in Figure 4.22 and 4.23, this time previous experiment has been done for
running when tag is on back belt.
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Figure 4.22: σa = 4, P model, running by having 1 tag on back belt
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Figure 4.23: σa = 1.5, PV model, running by having 1 tag on back belt
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Chapter 5

Design and Evaluation of
the 3D Localization
Algorithm - 2 Tags

5.1 Design of the EKF for 3D Localization for 2
Tags

EKF algorithm was simulated and tested in Matlab by having 2 Tags. The
simulation allowed localization on right shoulder, right pocket and back belt as
ranging measurements and then by using EKF localization algorithm, the best σa

by having the best performance has been selected.

5.1.1 State Models
5.1.2.1 P model

As far as P model has two applications, estimate some measurement parameters
knowing the exact position and tracking, where due to low sampling frequencies for
instance, a dynamic model does not work well and a priori positions are predicted
as random variables inside a certain region. Qk is presented as function of the time
transcurred between two measures ∆T and the standard deviation σa of a Gaussian
distributed acceleration vector. The state equation for 2 tags would be

x = [x1, y1, z1, x2, y2, z2]T (5.1)

xk = f(xk−1, 0) = I6,6xk−1 (5.2)

47



Design and Evaluation of the 3D Localization Algorithm - 2 Tags

Qk = [∆T I6,6][∆T I6,6]T σ2
a (5.3)

5.1.2.2 PV model

PV model is a dynamic KF and assumes near constant velocity between the
estimation intervals ∆t. One differences comparing with having 1 tag is size of
matrix. The size of I matrix for 2 tags is I6,6 which means it is two times bigger
than having 1 tag. The state equation for 2 tags would be

x = [x1, y1, z1, x2, y2, z2, vx1 , vy1 , vz1 , vx2 , vy2 , vz2 ]T (5.4)

xk = F (xk−1, 0) =
C

I6,6 ∆T I6,6
O6,6 I6,6

D
xk−1 (5.5)

Qk =
C
1/2∆2

T I6,6
∆T I6,6

D C
1/2∆2

T I6,6
∆T I6,6

DT

σ2
a (5.6)

5.1.2 Measurement Model
After evaluation of 3D localization algorithm for 1 Tag,the same evaluation has
been done for two tags. zk shows the number of distance estimates from each
of these 2 tags. N and M define the number of distances from tag 1 and tag 2
respectively, as shown in formula 5.7

zk = [zT1,A1,k, zT1,A2,k, ..., zT1,AN ,k, zT2,A1,k, zT2,A2,k, ..., zT2,AM ,k]T (5.7)

For linearization of transformation between distances and coordinates, h(xk) is
used. First for linearization of transformation between distances and coordinates,
h(x1, k) is calculated for tag 1, as shown in formula 5.8 and then same calculation
has been done for tag 2, h(x2, k), as shown in Formula 5.9. As result, Formula 5.10
shows the result for both tags.

h(x1,k) =



ñ
(x1,k − xA1)2 + (y1,k − yA1)2 + (z1,k − zA1)2ñ
x1,k − xA2)2 + (y1,k − yA2)2 + (z1,k − zA2)2

...ñ
(x1,k − xAN

)2 + (y1,k − yAN
)2 + (z1,k − zAN

)2

 (5.8)

h(x2,k) =



ñ
(x2,k − xA1)2 + (y2,k − yA1)2 + (z2,k − zA1)2ñ
x2,k − xA2)2 + (y2,k − yA2)2 + (z2,k − zA2)2

...ñ
(x2,k − xAM

)2 + (y2,k − yAM
)2 + (z2,k − zAM

)2

 (5.9)
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h(xk) =
C
h(x1,k)
h(x2,k)

D
(5.10)

For calculating Hk, by having d̂ for 2 different tags, Hk for first tag and second
tag was evaluated, as shown in formula 5.11 and 5.12, respectively.
Hk for P model, is a matrix with 6 rows that consist of 3 rows of zero, as shown in
Formula 5.13. For PV model Hk is a matrix of 12 rows and size of zero matrix is
Nx9, as shown in Formula 5.14

H1,k =



x1,k − xA1

d̂T1,A1,k

y1,k − yA1

d̂T1,A1,k

z1,k − zA1

d̂T1,A1,k
x1,k − xA2

d̂T1,A2,k

y1,k − yA2

d̂T1,A2,k

z1,k − zA2

d̂T1,A2,k
...

x1,k − xAN

d̂T1,AN ,k

y1,k − yAN

d̂T1,AN ,k

z1,k − zAN

d̂T1,AN ,k


(5.11)

H2,k =



x2,k − xA1

d̂T2,A1,k

y2,k − yA1

d̂T2,A1,k

z2,k − zA1

d̂T2,A1,k
x2,k − xA2

d̂T2,A2,k

y2,k − yA2

d̂T2,A2,k

z2,k − zA2

d̂T2,A2,k
...

x2,k − xAM

d̂T2,AM ,k

y2,k − yAM

d̂T2,AM ,k

z2,k − zAM

d̂T2,AM ,k


(5.12)

Hk =
C

H1,k ON,3
OM,3 H2,k

D
(5.13)

Hk =
C

H1,k ON,3 ON,3
OM,3 H2,k OM,3

D
(5.14)

5.2 Evaluation of the Localization Performance
and Optimization

By having 2 tags on right shoulder, right pocket and back belt, performance of P
model and PV model are evaluated and then by choosing the best σa for each of
these models, the best performance with smaller number of errors was evaluated.
To begin with, we consider 2 tags on right shoulder, on right pocket and in back
belt.
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5.2.1 Static Condition with Human Body – 2 Tags on the
right shoulder

5.2.2.1 P model

When 2 tags are on right shoulder then different value for σa (as one parame-
ter of Qk matrix) were obtained, as shown in Figure 5.1. As conclusion, when σa =
0.5, rmse is 0.107 for P model, so performance is much better, as shown in Figure
5.2 and Table 5.1

Figure 5.1: P model - ratio σa and rmse

Performance
2DLocErr [avg=0.085, std=0.032, RMS=0.091] m
3DLocErr [avg=0.107, std=0.038, RMS=0.107] m
XErr [avg=-0.063, std=0.043, RMS=0.076] m
YErr [avg=-0.033, std=0.037, RMS=0.049] m
ZErr [avg=-0.019, std=0.065, RMS=0.072] m

Table 5.1: 2 Tags - Performance of σa for P model
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Figure 5.2: P model - 2 Tags on right shoulder

5.2.2.2 PV model

By considering different value of σa for PV model (as one parameter of Qk matrix),
σa = 0.01 has the best performance, as shown in Figure 5.3 and Table 5.2

Performance
2DLocErr [avg=0.088, std=0.031, RMS=0.93] m
3DLocErr [avg=0.103, std=0.034, RMS=0.109] m
XErr [avg=-0.059, std=0.044, RMS=0.288] m
YErr [avg=-0.038, std=0.042, RMS=0.057] m
ZErr [avg=-0.010, std=0.056, RMS=0.063] m

Table 5.2: 2 Tags - Performance of σa for PV model

5.2.2 Static Condition with Human Body – 2 Tags on the
Pocket

5.2.3.1 P model and PV model
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Figure 5.3: PV model - 2 Tags on right shoulder

We do not have any measurement for tag on the pocket

5.2.3 Static Condition with Human Body – 2 Tags on the
Back Belt

5.2.4.1 P model

For P model in case of having 2 tags on back belt, the best performance is
when σa = 0.9 by having rmse = 0.360, as shown in Figure 5.4 and table 5.3

Performance
2DLocErr [avg=0.168, std=0.“102, RMS=0.196] m
3DLocErr [avg=0.352, std=0.076, RMS=0.360] m

XErr [avg=0.009, std=0.150, RMS=0.150] m
YErr [avg=-0.069, std=0.107, RMS=0.127] m
ZErr [avg=-0.268, std=0.139, RMS=0.168] m

Table 5.3: 2 Tags - Performance of σa for P model
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Figure 5.4: P model - 2 Tags on back belt

5.2.4.2 PV model

By having 2 tags on back belt for PV model, there will be σa = 0.01 as the
best performance with rmse = 0.361, as shown in Figure 5.5 and Table 5.4. As
result, rmse for tags on back belt is bigger than rmse for tags on right shoulder, so
generally tags on right shoulder are better solution than back belt.

Performance
2DLocErr [avg=0.177, std=0.126, RMS=0.217] m
3DLocErr [avg=0.347, std=0.097, RMS=0.361] m

XErr [avg=0.021, std=0.162, RMS=0.163] m
YErr [avg=-0.065, std=0.127, RMS=0.143] m
ZErr [avg=-0.251, std=0.141, RMS=0.161] m

Table 5.4: 2 Tags - Performance of σa for PV model
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Figure 5.5: PV model - 2 Tags on back belt

54



Chapter 6

Design and Evaluation of
the EKF for 3D
Localization - 3 Tags

6.1 Design of the EKF for 3D Localization for 3
Tags

The simulation allowed localization with 3 tags, tags on right shoulder, right pocket
and back belt. The EKF algorithm for 3 tags was simulated and tested in Matlab
and at the end, the best performances for these different scenario are evaluated.

6.1.1 State Models
6.1.2.1 P model

P model has two applications, one is to filter and estimate some measurement
parameters knowing the exact position; the second one is tracking, where due to
low sampling frequencies for instance,a dynamic model does not work well and a
priori positions are predicted as random variables inside a certain region. Qk is
presented as function of the time transcurred between two measures ∆T and the
standard deviation σa of a Gaussian distributed acceleration vector. The state
equation would be 6.2 and 6.3
By having 3 Tags on human body, Inn will be a matrix of 9x9 as for each tag we
have 3 position x, y and z, as shown in formula 6.1.

x = [x1, y1, z1, x2, y2, z2, x3, y3, z3]T (6.1)
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xk = f(xk−1, 0) = I9,9xk−1 (6.2)

Qk = [∆T I9,9][∆T I9,9]T σ2
a (6.3)

6.1.2.2 PV model

PV model is a dynamic KF and assumes near constant velocity between the
estimation intervals ∆T . The state equation for 3 tags is shown in formula 6.4.
Differences of xk and Qk for 3 tags comparing with 1 tag is, matrix I9,9 3 times
bigger than matrix I3,3 for 1 tag, as shown in Formula 6.5 and 6.6

x = [x1, y1, z1, x2, y2, z2, x3, y3, z3, vx1 , vy1 , vz1 , vx2 , vy2 , vz2 , vx3 , vy3 , vz3 ]T (6.4)

xk = F (xk−1, 0) =
C

I9,9 ∆T I9,9
O9,9 I9,9

D
xk−1 (6.5)

Qk =
C
1/2∆2

T I9,9
∆T I9,9

D C
1/2∆2

T I9,9
∆T I9,9

DT

σ2
a (6.6)

6.1.2 Measurement Model
After evaluation of 3D localization Algorithm for 2 Tags, simulation is continued by
having 3 Tags. N estimating distances from tag 1, M number of distances from tag
2 and P number of distance measurements from tag 3, as shown in formula 6.7

zk = [zT1,A1,k, zT1,A2,k, ..., zT1,AN ,k,

zT2,A1,k, zT2,A2,k, ..., zT2,AM ,k,

zT3,A1,k, zT3,A2,k, ..., zT3,AP ,k]T
(6.7)

linearization of transformation between distances and coordinates has been eval-
uated for each of these 3 tags separately, as shown in formula 6.8, 6.9 and 6.10.
As result, h(xk) is a matrix with 3 rows that each rows consist of these 3 tags
linearization.

h(x1,k) =



ñ
(x1,k − xA1)2 + (y1,k − yA1)2 + (z1,k − zA1)2ñ
x1,k − xA2)2 + (y1,k − yA2)2 + (z1,k − zA2)2

...ñ
(x1,k − xAN

)2 + (y1,k − yAN
)2 + (z1,k − zAN

)2

 (6.8)
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h(x2,k) =



ñ
(x2,k − xA1)2 + (y2,k − yA1)2 + (z2,k − zA1)2ñ
x2,k − xA2)2 + (y2,k − yA2)2 + (z2,k − zA2)2

...ñ
(x2,k − xAM

)2 + (y2,k − yAM
)2 + (z2,k − zAM

)2

 (6.9)

h(x3,k) =



ñ
(x3,k − xA1)2 + (y3,k − yA1)2 + (z3,k − zA1)2ñ
x3,k − xA2)2 + (y3,k − yA2)2 + (z3,k − zA2)2

...ñ
(x3,k − xAP

)2 + (y3,k − yAP
)2 + (z3,k − zAP

)2

 (6.10)

h(xk) =
è
h(x1,k) h(x2,k) h(x3,k)

é
(6.11)

For estimating value of Hx, different d̂ for each of 3 tags is used ( d̂ is result of
h(xk) that evaluated in formula 6.11). Then by having Hk for first tag (Formula
6.12), second tag (Formula 6.13) and third tag (Formula 6.14), Hk of 3 tags for P
model and PV model has been obtained.

H1,k =



x1,k − xA1

d̂T1,A1,k

y1,k − yA1

d̂T1,A1,k

z1,k − zA1

d̂T1,A1,k
x1,k − xA2

d̂T1,A2,k

y1,k − yA2

d̂T1,A2,k

z1,k − zA2

d̂T1,A2,k
...

x1,k − xAN

d̂T1,AN ,k

y1,k − yAN

d̂T1,AN ,k

z1,k − zAN

d̂T1,AN ,k


(6.12)

H2,k =



x2,k − xA1

d̂T2,A1,k

y2,k − yA1

d̂T2,A1,k

z2,k − zA1

d̂T2,A1,k
x2,k − xA2

d̂T2,A2,k

y2,k − yA2

d̂T2,A2,k

z2,k − zA2

d̂T2,A2,k
...

x2,k − xAM

d̂T2,AM ,k

y2,k − yAM

d̂T2,AM ,k

z2,k − zAM

d̂T2,AM ,k


(6.13)

H3,k =



x3,k − xA1

d̂T3,A1,k

y3,k − yA1

d̂T3,A1,k

z3,k − zA1

d̂T3,A1,k
x3,k − xA2

d̂T3,A2,k

y3,k − yA2

d̂T3,A2,k

z3,k − zA2

d̂T3,A2,k
...

x3,k − xAP

d̂T3,AP ,k

y3,k − yAP

d̂T3,AP ,k

z3,k − zAP

d̂T3,AP ,k


(6.14)
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Hk for P model is a Nx9 matrix while for PV model the size of matrix is Nx18, as
shown in formula 6.15 and 6.16

Hk =

 H1,k ON,3 ON,3
OM,3 H2,k OM,3
OP,3 OP,3 H3,k

 (6.15)

Hk =

 H1,k ON,3 ON,3 ON,3 ON,3 ON,3
OM,3 H2,k OM,3 OM,3 OM,3 OM,3
OP,3 OP,3 H3,k OP,3 OP,3 OP,3

 (6.16)

6.2 Evaluation of the Localization Performance
and Optimization

By having three tags on right shoulder, right pocket and back belt, performance of
P model and PV model are evaluated and then by choosing the best σa for P model
and PV model for right shoulder, right pocket and back belt, the best scenario by
having smaller number of errors is selected. To begin with, tag on right shoulder is
considered, after that right pocket and at the end back belt have been taken into
consideration.

6.2.1 Static Condition with Human Body – Tag on the
Shoulder

6.2.2.1 P model

By having 3 tags and evaluating different value of σa (as one parameter of Qk

matrix in our EKF algorithm) for each of them rmse is obtained.
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Figure 6.1: P model - 3 Tags on right shoulder

Performance
2DLocErr [avg=0.112, std=0.040, RMS=0.119] m
3DLocErr [avg=0.158, std=0.082, RMS=0.134 m
XErr [avg=-0.078, std=0.065, RMS=0.101] m
YErr [avg=0.009, std=0.062, RMS=0.062] m
ZErr [avg=-0.094, std=0.094, RMS=0.094] m

Table 6.1: 3 Tags - Performance of σa for P model

The best performance is for P model when tags are on right shoulder and σa =
3.5, as shown in Figure 6.1 and Table 6.1.

6.2.2.2 PV model

By evaluating different value of σa (as one parameter of Qk matrix in EKF algo-
rithm), different value of rmse has been obtained.
As a result, the best performance for PV model by having tags on right shoulder is
when σa = 3, as shown in Table 6.2
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Figure 6.2: PV model - 3 Tags on right shoulder

Performance
2DLocErr [avg=0.112, std=0.039, RMS=0.118] m
3DLocErr [avg=0.158, std=0.082, RMS=0.137] m
XErr [-avg=0.077, std=0.064, RMS=0.101] m
YErr [avg=0.009, std=0.062, RMS=0.063] m
ZErr [avg=-0.093, std=0.094, RMS=0.094] m

Table 6.2: 3 Tags - Performance of σa for PV model

6.2.2 Static Condition with Human Body – Tag on the
Pocket

6.2.3.1 P model and PV model

There is no measurement
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6.2.3 Static Condition with Human Body – Tag on the
Back Belt

6.3.4.1 P model

By evaluating different value of σa (as one parameter of Qk matrix in EKF algo-
rithm) different value of rmse can be seen, as shown in Figure 6.3

Figure 6.3: Ratio between σa and rmse as a function of σa

Performance
2DLocErr [avg=0.175, std=0.104, RMS=0.203] m
3DLocErr [avg=0.419, std=0.090, RMS=0.428] m

XErr [avg=0.054, std=0.068, RMS=0.086] m
YErr [avg=0.149, std=0.108, RMS=0.184] m
ZErr [avg=-0.336, std=0.171, RMS=0.191] m

Table 6.3: 3 Tags - Performance of σa for P model

The best performance for right shoulder for P model is when σa = 2, as shown
in Figure 6.4 and Table 6.3
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Figure 6.4: P model - 3 Tags on back belt

6.3.4.2 PV model

By evaluating different value of σa (as one parameter of Qk matrix in EKF algo-
rithm for 3 Tags) different value of rmse were obtained, as shown in Figure 6.5 and
the best performance for PV model by having tags on right shoulder is when σa =
1, as shown in Figure 6.6 and Table 6.4.

Performance
2DLocErr [avg=0.178, std=0.104, RMS=0.207] m
3DLocErr [avg=0.420, std=0.094, RMS=0.430] m

xErr [avg=0.053, std=0.072, RMS=0.090] m
yErr [avg=0.150, std=0.111, RMS=0.186] m
zErr [avg=-0.335, std=0.173, RMS=0.193] m

Table 6.4: 3 Tags - Performance of σa for PV model
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Figure 6.5: Ratio between σa and rmse as a function of σa

Figure 6.6: PV model - 3 Tags on back belt
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Chapter 7

Performance Comparisons
and Conclusions

7.1 Performance Comparisons
By evaluating ranging measurement for different number of tags on right shoulder,
right pocket and back belt the range of errors can be estimated.
As shown in Table 7.1, the best performance for P model and PV model for different
number of tags on right shoulder are shown
The best performance is when there are 2 tags on right shoulder for p model, as
shown in Table 7.1

1 Tag / σa / rmse P model / 0.01 / 0.667
1 Tag / σa / rmse PV model / 1.5 / 0.731
2 Tags / σa / rmse P model / 0.5 / 0.107
2 Tags / σa / rmse PV model / 0.01 / 0.109
3 Tags / σa / rmse P model / 3.5 / 0.134
3 Tags / σa / rmse PV model / 3 / 0.137

Table 7.1: Comparison effect of human body on UWB signal by having different
number of Tags

7.2 Conclusions
This thesis presents design and implementation of a UWB 3-D localization system
for real time augmented reality applications to be applied in TV studios. It first
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presents the state of art of RTLS based on the UWB technology. After that, it
focuses on the design of the RTLS.
The UWB-based Localization System is formed by the Anchors and the Tags. In
a real-time location system (RTLS), anchors are electronic devices that detect
UWB pulses emitted by UWB Tags and forward them to the location server for
calculating tag positions. Tags are small electronic devices that are attached to
objects that need to be tracked. These devices exchange range messages and send
in real-time the range measurements to a gateway where a localization algorithm,
based on EKF, runs to estimate tag’s position according to a relative references
system.
In this thesis, to evaluate the performance of the designed EKF algorithm, 25 test
points have been chosen for the tag’s position and the localization algorithm has
been tested via Matlab simulation in an indoor area where 8 anchors have been
deployed. The measurement campaign has been carried out in RAI by using UWB
devices from synchronicIT. These measurements were done in different scenarios
without obstacle and with human body, as shown in Figure 7.1.
Ranging and localization error statics have been calculated by using the formulas
shown in figure 7.2. Then for getting better Precision and accuracy, we take into
account these error statics for obtaining value of mean, standard deviation and
RMS.

Figure 7.1: Measurements Scenarios
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Figure 7.2: Ranging and Location Statistics

The positioning phase was used the extended Kalman filter (EKF) since it is
robust and smaller complex than many others algorithms. Generating of EKF
filter and state models were done by Matlab. In this thesis, EKF is simulated to
show its features and how its parameters change the tracking performance by using
two different state namely, Position (P) model and Position velocity (PV) model.
Several tests were done in order to evaluate and compare different localization
performance without obstacle and with human body.

Figure 7.3: The Multi-Path effect in the presence of the human body

Due to human body interference, sometimes the direct path is obstructed and
the receiver synchronizes on a reflected path, thus affecting the range measurement,
as shown in Figure 7.3.
Different tests were performed in RAI TV studio by using EKF algorithm for
different tags. In this thesis, first of all performance evaluation by 1 tag to find the
best σ (which is one of parameters of Q matrix) that minimise the 3DLoc error
rmse for two state models, P model and PV model. Then this simulation has been
continued by having 2 tags and 3 tags on the right shoulder to see how performance
will be changed, as shown in Table 7.1.
By comparing 1 tag, 2 tags and 3 tags, It shows for 1 tag on right shoulder the
number of errors are more and by comparing P model and PV model, we recognize
value of σ is smaller for P model. So, when we have 1 tag on right shoulder, P
model has best performance and smaller number of errors comparing with PV
model.
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By have 2 tags on right shoulder for P model, we have smaller number of errors,
however the value of σ increased comparing with case when we have only 1 tag.
So when we have 2 tags still P model has best performance. Number of errors for
both P model is less than PV and value of σ for PV model is less than P model.
so, when we have 3 tags, it’s better to use P model as data are less spread out.
As result, among these 3 cases, for having the best performance, it’s better to use
2 tags on right shoulder by using P model, as shown in Figure 7.4, and after that
using 3 tags on right shoulder for P model can be considered as second choice.

Figure 7.4: Using 2 tags on right shoulder as best performance
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.1 Main code
Part of main code which consist of test points and different cases of right shoulder,
right pocket and back belt which in this thesis evaluated.

1 %swTagPos = ’ r ight_shoulder ’ ;
2 %swTagPos = ’ r ight_pocket ’ ;
3 swTagPos = ’ back_belt ’ ;
4 di sp ( [ ’ Alg : ’ , nameAlg ] ) ;
5 numMaxRangeInitLoc = 5 ; % with in the f i r s t numMaxRangeInitLoc s e t s o f

range measurements −−> take the minimum range
6 swFiltCoord = 1 ; % use the Tings a lgor i thm to f i l t e r the est imated

coo rd ina t e s
7 %Exact coo rd i nates o f t e s t po in t s
8 t e s t P o i n t s = [
9 0 , 0 , 0 ; %0

10 1 , 0 , 0 ; %1
11 0 .7071 , −0.7071 , 0 ; %2
12 0 , −1, 0 ; %3
13 −0.7071 , −0.7071 , 0 ; %4
14 −1, 0 , 0 ; %5
15 −0.7071 , 0 .7071 , 0 ; %6
16 0 , 1 , 0 ; %7
17 0 .7071 , 0 .7071 , 0 ; %8
18 2 , 0 , 0 ; %9
19 1 .4142 , −1.4142 , 0 ; %10
20 0 , −2, 0 ; %11
21 −1.4142 , −1.4142 , 0 ; %12
22 −2, 0 , 0 ; %13
23 −1.4142 , 1 .4142 , 0 ; %14
24 0 , 2 , 0 ; %15
25 1 .4142 , 1 .4142 , 0 ; %16
26 3 , 0 , 0 ; %17
27 0 , −3, 0 ; %18
28 −3, 0 , 0 ; %19

68



Appendix

29 0 , 3 , 0 ; %20
30 4 .864 , 4 . 207 , 0 . 3 9 2 ; %21
31 3 .661 , −5.268 , 0 . 7 2 ; %22
32 −5.02 , −4.924 , 0 . 7 2 ; %23
33 −5.227 , 4 . 137 , 0 . 7 2 ] ; %24
34

35 end

.2 P model and PV model for 3 Tags

Part of Matlab algorithm for P model and PV model in case of 3Tags.

1 i f ( e k fS t ru c t . model == 0)
2 ek fS t ru c t . s t a t e = [ coo rdTag1 In i t i a lEs t ( 1 : dim) ’

coo rdTag2 In i t i a lEs t ( 1 : dim) ’ coo rdTag3 In i t i a lEs t ( 1 : dim) ’ ] ; % [ x1 ,
y1 , z1 , x2 , y2 , z2 ]

3 ek fS t ru c t .F = eye (3∗dim) ;
4 ek fS t ru c t .Q = ( Delta ∗ eye (3∗dim) ) ∗( Delta ∗ eye (3∗dim) ) ’ ∗ sigmaA

^ 2 ;
5 i f ( swInputPmatrix == 1)
6 ek fS t ru c t .P = [ P1 , z e r o s (dim) , z e r o s (dim) ; z e r o s (dim) ,P2 , z e r o s (

dim) ; z e r o s (dim) , z e r o s (dim) ,P3 ] ;
7 e l s e i f ( swInputPmatrix == 0)
8 ek fS t ru c t .P = [ sigmax1 ^2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
9 0 , sigmay1 ^2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;

10 0 , 0 , sigmaz1 ^2 , 0 , 0 , 0 , 0 ,0 , 0 ;
11 0 , 0 , 0 , sigmax2 ^2 , 0 , 0 , 0 , 0 , 0 ;
12 0 , 0 , 0 , 0 , sigmay2 ^2 , 0 , 0 , 0 , 0 ;
13 0 , 0 , 0 , 0 , 0 , sigmaz2 ^2 , 0 , 0 , 0 ;
14 0 , 0 , 0 , 0 , 0 , 0 , sigmax3 ^2 , 0 , 0 ;
15 0 , 0 , 0 , 0 , 0 , 0 , 0 , sigmay3 ^2 , 0 ;
16 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , sigmaz3 ^ 2 ] ;
17 end
18 e l s e i f ( ek fS t ru c t . model == 1)
19 ek fS t ru c t . s t a t e = [ coo rdTag1 In i t i a lEs t ( 1 : dim) ’

coo rdTag2 In i t i a lEs t ( 1 : dim) ’ coo rdTag3 In i t i a lEs t ( 1 : dim) ’ 0 0 0 0 0
0 0 0 0 ] ;

20 ek fS t ru c t .F = [ eye (3∗dim) , Delta ∗ eye (3∗dim) ; z e r o s (3∗dim) , eye (3∗
dim) ] ;

21 ek fS t ru c t .Q = [ Delta ^2∗ eye (3∗dim) /2 ; Delta ∗ eye (3∗dim) ] ∗ [ Delta
^2∗ eye (3∗dim) /2 ; Delta ∗ eye (3∗dim) ] ’ ∗ sigmaA ^2;

22 end
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.3 EKF for 3 Tags
Part of Matlab algorithm for generating EKF for 3Tags

1 Q = ek fS t ru c t .Q;
2 P = F ∗ P ∗ F’+ Q;
3 Z = [ Z1 ; Z2 ; Z3 ] ;
4 numMeas = length (Z) ;
5 i f (numMeas >= 4)
6 est imated = 1 ;
7 e l s e
8 est imated = 0 ;
9 end

10 h1 = sq r t ( ( x1Tag−x1Ref ) .^2+(y1Tag−y1Ref ) .^2+(z1Tag−z1Ref ) . ^2 ) ;
11 h2 = sq r t ( ( x2Tag−x2Ref ) .^2+(y2Tag−y2Ref ) .^2+(z2Tag−z2Ref ) . ^2 ) ;
12 h3 = sq r t ( ( x3Tag−x3Ref ) .^2+(y3Tag−y3Ref ) .^2+(z3Tag−z3Ref ) . ^2 ) ;
13 h = [ h1 ; h2 ; h3 ] ;
14 numMeas1 = length ( h1 ) ;
15 numMeas2 = length ( h2 ) ;
16 numMeas3 = length ( h3 ) ;
17 i f ( model == 0)
18 H = [ ( x1Tag−x1Ref ) . / h1 , ( y1Tag−y1Ref ) . / h1 , ( z1Tag−z1Ref ) . / h1 ,

z e r o s (numMeas1 , 6 ) ;
19 z e r o s (numMeas2 , 3 ) , ( x2Tag−x2Ref ) . / h2 , ( y2Tag−y2Ref ) . / h2 , (

z2Tag−z2Ref ) . / h2 , z e r o s (numMeas2 , 3 ) ;
20 z e r o s (numMeas3 , 6 ) , ( x3Tag−x3Ref ) . / h3 , ( y3Tag−y3Ref ) . / h3 , (

z3Tag−z3Ref ) . / h3 ] ;
21 e l s e
22 H = [ ( x1Tag−x1Ref ) . / h1 , ( y1Tag−y1Ref ) . / h1 , ( z1Tag−z1Ref ) . / h1 ,

z e r o s (numMeas1 , 1 5 ) ;
23 z e r o s (numMeas2 , 3 ) , ( x2Tag−x2Ref ) . / h2 , ( y2Tag−y2Ref ) . / h2 , (

z2Tag−z2Ref ) . / h2 , z e r o s (numMeas2 , 1 2 ) ;
24 z e r o s (numMeas3 , 6 ) , ( x3Tag−x3Ref ) . / h3 , ( y3Tag−y3Ref ) . / h3 , (

z3Tag−z3Ref ) . / h3 , z e r o s (numMeas3 , 9 ) ] ;
25 end
26 R = eye (numMeas) ∗ s igmaDist ^2 ;
27 s = Z − h ;
28 S = (H∗P∗H’ )+R;
29 K = P ∗ H’ ∗ S ;
30 n = length ( ek fS t ruc t . s t a t e ) ;
31 I = eye (n) ;
32 x = x +(K ∗ s ) ;
33 P = ( I −(K ∗ H) ) ∗P;
34 ek fS t ru c t . s t a t e = x ’ ;
35 ek fS t ru c t .P = P;
36 end
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