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Abstract

Nowadays image recognition algorithms are used in various fields, which go from
simple mobile phone face recognition, to detect object from drones but also to
land rovers on Mars.
Among these algorithms, the Convolution Neural Networks (CNN) are the most
used one. Even if their construction and structure is very simple and easy to
be understood, their computational cost and memory requirements are nowadays
challenging, especially when the network has to be inferred on FPGAs, which are
the most suitable devices for embedded systems and data-centers, due to the low
energy requirements.

In this thesis work an architecturally optimized CNN is considered as starting
point for further data precision optimization. This network is called SkyNet and
is the winner of the System Design Contest for low power object detection in the
56th IEEE/ACM Design Automation Conference (DAC-SDC). Given an image,
this network is able to detect objects which are present in there.

In order to optimize this network, a quantization aware training QAT tech-
nique, which consists in reducing the amount of bits on which the network pa-
rameters are stored, is adopted. The goal of quantization aware training is to find
the best trade-off among memory saving and accuracy reduction: Brevitas, from
Xilinx Research Lab, turned out to be a very good library for this purpose. This
thesis describes how to use Brevitas to quantize networks (by quantizing SkyNet)
and how the quantization is implemented in the library.

After the QAT, the model is optimized, synthesized and implemented using
the FINN compiler which, as Brevitas, has been developed by the Xilinx Research
Lab. This thesis deeply describes the steps to be followed in FINN to imple-
ment the network on a target FPGA, starting from the export of the model from
Brevitas, then optimizing the model using Transformations functions, and finally
inferring the network on a target device, using Vivado HLS and Vivado Design
Suite. Furthermore, the mains FINN problems encountered during the develop-
ment of the quantized network are listed and analyzed, giving partial solutions on
how to fix them.

In conclusion, a comparison among the initial SkyNet network and its quan-
tized version is reported, highlighting the memory reduction required to store the
network parameters.
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Chapter 1

Introduction to CNNs

Convolutional Neural Networks (CNNs or ConvNet) are a set of neural net-
works used in the object detection and tracking field.

Given an image as input, the CNN recognizes the elements in the image and
classifies them, by giving as output the probability that that image belongs to a
particular class (as person, bike, cat, dog, car...). Some CNNs, such as SkyNet
(see Section 2) are able also to detect the position of the detected object in the
figure.

Figure 1.1: A basic CNN schematic.

CNNs are made of different layers, each one with a specific function, that are
repeated several times, depending on the CNN implementation. An example of
schematic of CNN is reported in Figure 1.1.
In order to classify the image, the CNN takes as input the related matrix1, called
Feature Map (FM), and makes it flows into these layers, where the FM is convoluted
and the learnable parameters, called weights, are updated.
The most common type of layers are:

• Convolutional Layer : in CNN it is the most important one. Given a filter,
this layer is able to detect particular shapes inside the figure.

• Batch Normalization Layer : this optional layer is used in order to allow a
better and faster training of the network.

1CNN and, more in general, computer see images as matrices of pixels: if the image is coded
in RGB, then CNN will decode it as a H×W×3 matrix, where H and W represent height and
width respectively, while 3 is the number of channels, where every of them stores the value of
the Red, Green, Blue color, which goes from 0 to 255.

8



• Activation Layer : this layer is usually added right after the convolutional
layer to add a non-linearity factor in the network.

• Pooling Layer : it is usually placed after the activation layer; it is used to
reduce the size of its output.

• Fully Connected Layers

1.1 Convolutional Layers

Convolutional Layers are used to detect any kind of shapes in an image. In order
to do that, the image, represented by a nA × nA × 3 matrix (RGB coding), is
convoluted with specific filter matrices, also called kernels, who store the learnable
parameters of the network, i.e. the weights.
The kernels are used to detect specific shapes inside an image, such as horizontal
and vertical lines and, as the image, they are represented by square matrices, with
different weights, depending on which shapes they have to detect. In order to
understand what convolution is and how it works, an example is here reported.
Considering two matrices (called tensor in Pytorch), A for the image and K for
the kernel, both with dimensions 3×3 the convolution is given by:a11 a12 a13

a21 a22 a23
a31 a32 a33

 ·

k11 k12 k13
k21 k22 k23
k31 k32 k33

 =
3∑

i=1

3∑
j=1

ai,jki,j (1.1)

Thus, in convolution each element of one tensor is dot multiplied with the corre-
sponding element of the second tensor and then all the values are summed together
to obtain the output value [5].

Typically, the kernel tensors are small, 3×3 or 5×5, with respect to the image
tensors, that can be big as 1024×1024×3, depending on the image resolution,
therefore in order to apply convolution, the filter slides over the image matrix.

Considering the case of a gray scale image (i.e. an matrix with just one chan-
nel), with tensor nA × nA × 1, with nA=4 represented as:

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (1.2)

and the filter tensor on nK × nK with nK=3

K =

k11 k12 k13
k21 k22 k23
k31 k32 k33

 (1.3)

the convolution is performed by sliding the kernel on the image tensor, from top-
left corner to the top-right corner (i.e. the right-end of the matrix), with a step
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given by a parameter called stride, which is the number of pixels shifts over the
input matrix (in this example, stride=1):

FM11 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ·

k11 k12 k13
k21 k22 k23
k31 k32 k33


= a11 · k11 + a12 · k12 + a13 · k13 + a21 · k21 + a22 · k22 + a23 · k23+
+ a31 · k31 + a32 · k32 + a33 · k33

FM11 represents the first element of the feature map. Moving the window to right,
the second element of the feature map is computed by:

FM12 =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 ·

k11 k12 k13
k21 k22 k23
k31 k32 k33


= a12 · k11 + a13 · k12 + a14 · k13 + a22 · k21 + a23 · k22 + a24 · k23+
+ a32 · k31 + a33 · k32 + a34 · k33

Since the kernel window has reached the right-end of the image, it is moved back
to the left-end and shifted down with the same step given by the stride parameter.
Thus the convolution proceeds by computing the third element of the feature map,
FM21.

FM21 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ·

k11 k12 k13
k21 k22 k23
k31 k32 k33


= a21 · k11 + a22 · k12 + a23 · k13 + a31 · k21 + a32 · k22 + a33 · k23+
+ a41 · k31 + a42 · k32 + a43 · k33

Then, moving the kernel window to right, the last element of the feature map
is computed:

FM22 =


a11 a12 a13 a14
a21 a22 a23 a24

a31 a32 a33 a34

a11 a42 a43 a44

 ·

k11 k12 k13
k21 k22 k23
k31 k32 k33


= a22 · k11 + a23 · k12 + a24 · k13 + a32 · k21 + a33 · k22 + a34 · k23+
+ a42 · k31 + a43 · k32 + a44 · k33

Thus, the output tensor, which is also called feature map, is obtained:

FM =

(
FM11 FM12

FM21 FM22

)
(1.4)
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Its dimensions are given by:

n =

⌊
nA − nK

s
+ 1

⌋
(1.5)

where s stands for stride.
In this example, the image is represented by a square tensor. More in general,
when the image tensor dimensions are nH ×nW , and the kernel tensor dimensions
are nK × nK , the feature map dimensions nh × nw are given by:

nh =

⌊
nH − nK

s
+ 1

⌋
(1.6)

nw =

⌊
nW − nK

s
+ 1

⌋
(1.7)

In Figure 1.2, an example of convolution over an input image is reported.

In this case the filter has been chosen in order to detect the edges and it has
been directly assigned by the user to the layer, without any training. As a results
the output image highlights the structure of the bridge.

(a) Input image before convolution. (b) Input image after convolution.

Figure 1.2: Application of convolution on a grayscale image in order to detect
edges.

1.2 Normalization Layers

In order to make the gradient descent reaching the global minimum faster, batch
normalization is usually applied in CNN. This technique consists in normalizing
the input data in order to have a restricted range of values, in such a way that
when the training is performed the possibility to overshoot the minimum is re-
duced.

The batch normalization layer is usually placed before the activation layer (see
section 1.3) and it simply zero-centers and normalizes the inputs, then scales and
shifts the result using two new parameters per layer (one for scaling, the other for
shifting). This operation allows the model to learn the optimal scale and mean of
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the inputs for each layer. [2]
In order to zero-center and normalize the inputs, the algorithm needs to estimate
the mean and the standard deviation of the input. It does so by evaluating the
mean and standard deviation of the inputs over the current mini-batch, i.e. over
a number, a batch, of images belonging to the image dataset.

1.3 Activation Layers

After convolutional layer, an activation layer is usually present. The purpose of
activation layer is to introduce a non-linearity factor in the network, in order to
make the network learn correctly. The most used activation function is the ReLU:

ReLU(x) = max(0, x) (1.8)

−10 10

−10

10

O

x

ReLU

−10 10

−10

10

O

x

ReLU6

Figure 1.3: On the left, the ReLU(x) graph, on the right the ReLU6(x) graph.

As displayed in the Figure 1.3, the ReLU function simply filers the input values:
if the input is negative, the ouput is set to 0, while if it is positive, it is left as it
is.
In SkyNet (see Section 2) a particular type of ReLU is adopted, that is the ReLU6:
this function simply behaves like the standard ReLU with the exception that in
case of positive values the maximum output is set to 6.

1.4 Pooling Layers

When input images are particularly big, the output of convolution layer, namely
the feature map, has a consistent nH × nW size. In order to reduce the feature
map size, after the convolution layer, a pooling layer is usually instantiated.
As in the convolutional layer, the pooling layer is characterized by a kernel, with
defined kernel size nK and stride s, which is made flown over the input feature
map. In this case the filter is empty and it is used like a window to highlight a
region of the feature map.

12



Given an highlighted region (the red one in Figure 1.4), the output of the pooling
layer depends on the type of pooling is applied. Actually, there are two main
types of pooling: the max pooling, where the output is given by the maximum
value of the window, and the average pooling, where the output is given by the
average among the values of the window. In Figure 1.4, an example of Max Pooling
application is reported.

Figure 1.4: Example on Pooling Layer application on a tensor of 4x4

1.5 Fully Connected Layers

Typically, the last layer of the CNNs is a fully connected layer, which first flattens
the matrix into a number vectors, as many as the number of classes of the network
and then gives those vectors to a neural network.
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Chapter 2

SkyNet

SkyNet is a powerfull convolutional neural network developed by [8], winner of
the System Design Contest for low power object detection in the 56th IEEE/ACM
Design Automation Conference (DAC-SDC). Its aim is to detect object inside
images.

2.1 SkyNet Design Workflow

SkyNet has been designed with a bottom-up approach, considering the hardware
constraints at the very beginning. This approach has made SkyNet extremely
efficient and different from others CNNs, which have not been implemented to be
hardware optimal.
Actually, in the standard top-down design process, an efficient DNN is selected as
target, then, since it is typically expensive in term of resource usage, it is com-
pressed using software and hardware optimization techniques such as quantization,
pruning and layer fusion, so that it can be inferred on common FPGAs.
Skynet developers have found out why this kind of top-down approach is actu-
ally not the best one [8]: even if the DNN selected has great accuracy, the final
accuracy when the network is inferred will depends strictly on the compression
technology adopted. As example, in case of quantization, the accuracy may vari-
ate significantly in case the quantization is applied on parameters (i.e. weights) or
on feature maps. As example consider the AlexNet network: as shown in Figure
2.1.(a) if the intermediate FMs are quantized the accuracy decreases more with
respect to the case in which the parameters are quantized.
In addition, architectures with almost the same accuracy may have different re-
source usage depending on their implementation. As example Figure 2.1.(b) shows
some implementations of the same network but with different FMs quantization
and input size: it can be noticed how, by simply resizing the input image of a 0.9
factor, the BRAM (the on-chip memory in FPGA) utilization is almost halved.
Similarly, 2.1.(c) shows how DPS utilization can vary a lot by using a different
type of quantization for the weights and the FMs.
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Figure 2.1: (a) Accuracy results for different quantization on FM and on param-
eters on the AlexNet network. (b) BRAM utilization for the same architecture
for different resized input image and FM quantization. (c) DSP utilization for
different quantization combinations on weights and FMs. [8]

2.1.1 The Skynet Bottom-Up Approach

The bottom-up approach followed by SkyNet developers is made of three stages:

1. Bundle selection and evaluation

2. Hardware-aware DNN search

3. Feature Addition

Bundle Selection and Evaluation

The first step is to search for the best bundle implementation. A Bundle is a set
of sequential DNN layers (such as Convolution, BatchNormalization, Activation):
repeated bundles forms a network. From an hardware point of view, a bundle is
a set of IPs that need to be implemented in hardware.
In order to select the best bundle implementation, different bundles are proposed
first, each of them containing a different order and different type of DNN layers.
To search for the best one, the front-end and the back-end of the architecture are
fixed based on the given task, while the in the middle a single type of bundle is
repeated n times: this limit to one single type of bundle has been set in order to
guarantee the best hardware efficiency.
To find out the best bundle for the SkyNet network, the front-end has been made
of a input resizing unit, while the back-end has been made of a bounding box
regression unit. Then, all the possible sketches have been trained with targeted
dataset, to compute the latancy and the accuracy of each bundle selection and to
find out the pareto points, and thus the best bundle implementations have been
selected.

Hardware-Aware DNN Search

In order to select the best network among the ones laying in the pareto curve of
the previous step, a group-based Particle Swarm Optimization (PSO) algortihm
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is adopted. In the PSO each DNNs proposed is seen as a particle in the design
space, but since in this particular case every DNNs is made of the same repeated
bundle, they are considered as particle group.
The pareto point of the group, i.e. the best position of the group in the design
space, is labeled as P i

group. Each P i
group is composed of different particle ni

j, where
j is the particle in group i, characterized by a pair of vector (fv1, fv2), where fv1
are the number of channels in each bundle replication, while fv2 is the Pooling
layer position between bundles. Both the two vectors have a dimension equal to the
number of bundle in ni

j and impacts on the accuracy and hardware performance
of the DNN.
The PSO algorithm adopted is here reported:

1 P ← InitialPopulation(M, N)

2 while itr < I do

3 FastTraining(P, eitr)

4 Fitji ← GetFitnessVal(P) #evaluate all candidates

5 for each group i do

6 GroupRank(i) #rank candidates in group i

7 N i
group ← GroupBest(i) #select the best one in group i

8 #get the group best position

9 P i
group(fv1, fv2) ← GetPosition(N i

group)

10 for each candidate ni
j(itr) in group i do

11 #rank ni
j across all passing iterations

12 LocalRank(i, j)

13 N ij
local ← LocalBest(i, j)

14 #get the local best position

15 P ij
local(fv1, fv2) ← GetPosition (N ij

local)

16 #get the current position

17 P i
j(fv1, fv2) ← GetPosition(ni

j(itr))

18 #get the velocity toward the local and the group best

19 Vlocal ← GetV(P i
j , P

ij
local)

20 Vgroup ← GetV(P i
j , P

ij
group)

21 ni
j(itr+ 1) ← Evolve(nj

i(itr), Vlocal, Vgroup)

22 end

23 end

24 end

• P - Population: Initially a set of possible DNNs is generated through the
function InitialPopulation with M groups and N networks for each group.
The process is iterated I times and in the itr -th iteration, all networks are
fast trained for eitr epochs (FastTraining(P, eitr)), where eitr increases
with itr.

• Latency is estimated: in case of GPUs, it is directly computed on the one
which has been used for the training, then its value is scaled to the target
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one. In case of FPGAs, a predefined IP-based DNN accelerator template
[1] for hardware performance evaluation is followed and, to get the best
performance, IPs are configured to fully consume the available resources.

• Then the fitness value Fitji for each network ni
j is computed. This value is

given by:
Fitji = Accij + α · (Est(ni

j)− Tar)

where Accij is the validation accuracy of ni
j, while Est(ni

j) represents the
latency estimation on hardware and Tar is the targeted latency. The pa-
rameter α (where α < 0) is used to balance between network accuracy and
hardware performance.

• In standard PSO, the velocity
−−−→
V itr+1
i , namely the vector used in order to

calculate the position in the design space for the particle in the next iteration,

is computed considering the current velocity
−−→
V itr
i , the personal best solution

−→
P d
i and the global best solution

−→
Gd

i .

−−−→
V itr+1
i = w

−−→
V itr
i + c1r1(

−→
P d
i −
−→
Xd

i ) + c2r2(
−→
Gd

i −
−→
Xd

i )

In this case, DNNs in the same group update their positions based on the
current design, the local best design (the best one across all passing itera-
tions), and the group best design. Then to compute the velocity towards
the local best Vlocal and the group best Vgroup, the differences between posi-
tions of current and the local/group best designs are computed. Since each
position is represented by (fv1, fv2), position differences are evaluated by
the mismatch of layer expansion factors fv1 and pooling spots fv2, respec-
tively. Then, with the velocities Vlocal and Vgroup, the current network is
evolved (line 22) by updating its position toward the local and the group
best by a random percentage.

Feature Addition

It is possible to insert more features to the resulting DNNs in order to further
improve the design. A possibility could be to substitute the ReLU layer with the
ReLU6 layer, which has the advantage of representing FMs in a range restricted
to [0, 6], meaning the use of less bits for representation, instead of using ReLU
which operates in the [0, +∞] range (see Section 1.3).

2.1.2 Skynet Architecture

Therefore, the SkyNet architecture has been implemented following the reported
bottom-up approach. The best configuration found has been identified in a bundle
composed of Depth-Wise Convolution, Batch Normalization, ReLU6, Pont-Wise
Convolution, Batch Normalization and ReLU6 (see Figure 2.2).
This bundle is repeated three times followed by a Max Pooling layer, then it is
repeated again three times. As reported in the Figure 2.2, after the last pooling
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Figure 2.2: The SkyNet Architecture representation. [8]

layer a feature map bypass and reordering is performed: this feature has been
added in order to make the network able to detect more easily objects that are
very small, which have a very small bounding boxes. Actually, thanks to the
bypass the feature map keeps an higher resolution, since no more calculus are
performed on it; then reordering is used to align the size of the two FMs without
losing information.
Furthermore, to reach the best accuracy and performance, SkyNet has been im-
plemented with:

• Depth-Wise/Point-Wise Convolution

• Layer Fusion

Depth-Wise/Point-Wise Convolution

In order to reduce the computational cost, in each Bundle the standard convolution
has been replaced by a Depth-Wise/Point-Wise convolution. Actually, as reported
in [3], a standard convolutional layer has a computational cost of:

DK ·DK ·M ·N ·DFx ·DFy (2.1)

where DK is the kernel size, M is the number of channels, N is the number of
filters applied to the feature map and DFx and DFy are respectively the width
and the height of the feature map (see Figure 2.3).

Figure 2.3: The picture describes the standard convolution of a 3 channels feature
map with a 3×3 kernel filter. As it can be notice, the output size of the convolution
respects the nh and nw formulas (1.6, 1.7) described in Section 1.1.
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In order to reduce this cost, the convolution can be split in two phases: a depth-
wise convolution, where single channels of the feature map are convoluted with
single channel of the filter (see Figure 2.4), and a point-wise convolution, where
a 1×1 kernel (see Figure 2.5) is used to combine the outputs of the depthwise
convolution.
Thus, the depth-wise convolution has a computational cost of:

DK ·DK ·M ·DFx ·DFy (2.2)

and the point-wise convolution has a cost of:

N ·M ·DFx ·DFy (2.3)

Thus, the total cost of the depthwise separable convolutions is:

DK ·DK ·M ·DFx ·DFy +N ·M ·DFx ·DFy (2.4)

Thus, comparing the standard convolution to the depth-wise convolution, the
computation is reduced by a factor of:

DK ·DK ·M ·DFx ·DFy +N ·M ·DFx ·DFy

DK ·DK ·M ·N ·DFx ·DFy

=
1

N
+

1

D2
K

(2.5)

Figure 2.4: The picture describes the depthwise convolution, where the 3 input
channels of the image are separated and convoluted with 3 different kernels.

Figure 2.5: The picture describes the point-wise convolution, where the 3 feature
maps of the depthwise convolution are convoluted with N 1×1 kernel in order to
obtain the final feature map.
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In order to better understand the power of this methodology consider the case
in which the bundle of SkyNet is not composed of a Detpth-Wise/Point-Wise
convolution but by a standard convolution.
In this case the computation cost required is given by:

DK ·DK ·M ·N ·DFx ·DFy = 3 · 3 · 3 · 3 · 320 · 160 = 4147200

While, thanks to the Depth-Wise/Point-Wise convolution it is actually:

DK ·DK ·M ·DFx ·DFy +N ·M ·DFx ·DFy =

= 3 · 3 · 3 · 320 · 160 + 3 · 3 · 320 · 160 = 1843200

Thus 4147200-1843200=2304000 operations do not need to be performed, meaning
a great saving in term of computational cost (more or less the 44%).

Layer Fusion

The traditional linear structure of CNNs, where each layer is evaluated after the
previous one, generates a large amount of intermediate data.
Consider, as example, two subsequent convolutional layers: in order to get the
output feature map, the first layer is computed first, generating an intermediate
feature map which is then used as input to the second layer. This intermediate
feature map, which is needed only as input to the second layer, is in general ex-
tremely consistent and does not fit in the on-chip memory of common FPGAs.
Thus, it has to be saved in the off-chip memory and reloaded when the second
convolution layer is executed.

Figure 2.6: Structure of two subsequent convolution, highlighting the presence of
the intermediate FM.

In order to avoid this transfer from on-chip to off-chip and then again to on-chip
memory, a possibility is to fuse the two convolutional layer together.

Consider the example in Figure 2.7. The input feature map is a 7×7 matrix,
which is convoluted by the first convolutional layer CONV1 by a 3×3 kernel; the

20



Figure 2.7: An example of two sequential CNN layers: the intermediate output
is saved in the off-chip memory while it is computed. For simplicity, only one
channel is displayed.

intermediate feature map is a 5×5 matrix, which is convoluted by the second con-
volutional layer CONV2 with a 3×3 kernel to give the final output feature map of
3×3. Following the standard flow, the CONV1 layer is executed entirely and its
output, i.e. the intermediate feature map, is saved in the off-chip memory. Then
the intermediate feature map is loaded back in the on-chip memory to perform
the second convolution by layer CONV2.

The idea of the layer fusion technique is to exploit the locality in the convo-
lution’s dataflow: actually, each output value of the feature map computed by a
convolutional layer depends only on a small window of the input feature map.
As reported from the example in Figure 2.8, the computation of one of the element
of the output feature map depends only on a 3×3 window of the intermediate fea-
ture map, and this 3×3 window itself depends only on a 5×5 window of the input
feature map. The required input feature map sizes are simply obtained reversing
the formulas 1.6 and 1.7:

nFMintermidiate = s · (nFMoutput − 1) + nK (2.6)

Considering this facts, there is no need to upload the entire 7×7 input feature
map to obtain one of the elements of the output, and also no transfer of the
intermediate feature map from on-chip to off-chip and vice-versa is required, since
the output can be directly computed.

21



Figure 2.8: Example of layer fusion technique, highlighting the dependency among
the output, the intermediate FM and the input.

After the computation of one element of the output feature map, in order to
compute the second one, the input feature map has to be shifted to right by one
position (assuming the case in which the stride parameter is equal to 1): in this
case just a line of data has to be loaded in the memory for the input feature map
(the pink one in the Figure 2.9), while the others are still present from the previous
convolution.

Figure 2.9: The sketch highlights how the input data has to be loaded from off-chip
memory.

Concerning the intermediate feature map, as it can be noticed, some of the values
have already been computed by the previous convolution, thus can be reused to
compute the second value of the output feature map: this implies a saving in terms
of computations, but requires on-chip buffering.

2.2 SkyNet Results on GPU and FPGA

SkyNet network is trained on DAC-SDC dataset, using data augmentation to
distort, jitter, crop and resize input image to 160x320. The optimizer adopted to
update the weights parameter is the Stochastic Gradient Descent (SDG), with an
initial learning rate of 1e−4, which is decreased at every epoch reaching the value
of 1e−7.
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Figure 2.10: The predicted bounding box in red and the true bounding box in
green. The IOU is given by the ratio among the area of intersection of the two
boxes and the area of the true bounding box.

Since SkyNet is a CNN used for object detection, the metric used in order to
evaluate the result is the Intersection Over Union (IOU), which represent the
ratio among the overlap of the true and the predicted bounding box with the true
bounding box, as:

IOU =
Overlap

True BB
(2.7)

Actually, the dataset of the DAC-SDC contains with the images also the position
of the object inside those images: in this way the optimizer can evaluate how much
the predicted bounding box differs from the true one. In Figure 2.10 an example
of true and predicted bonding box is reported. The Figure has been taken from
the DAC dataset images, which has been used to train the SkyNetQuant network
described in Section 3.2. The best IOU result of SkyNet on GPU is 0.741.

2.2.1 Implementation on TX2 GPU

The model has then been optimized for TX2 GPU implementation, by dividing
the SkyNet execution in four main steps:

1. Image fetching from memory;

2. Image resizing and preprocessing;

3. SkyNet inference;

4. Bounding Boxes computation and store of the result in DDR memory.

and applying pipelining (see Figure 2.11) by fusing togheter the first two steps.
With respect to the original sequential design, the pipelined one has increased its
speed of a factor 3.35X and the throughput of 67.33 FPS.
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Figure 2.11: SkyNet pipeline on TX2 GPU.

2.2.2 Impelementation on FPGA

The target FPGA is the Ultra96, Xilinx Zynq UltraScale+ MPSoC board. Due
to the FPGA resource limits, the SkyNet FMs and weights have been converted
from float32 to fixed point representation: 9 bits for the FMs and 11 bits for the
weights, dropping the accuracy from 0.741 to 0.727.
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Chapter 3

Quantization Aware-Training
Using Brevitas

Starting from the SkyNet network reported above, the aim of this thesis work has
been to develop a better implementation by maintaining as possible the SkyNet’s
original structure.
In order to do that, the idea taken in consideration has been to implement a quan-
tized version of SkyNet, by using Brevitas as quantization tool.

Brevitas is an extremely new PyTorch library for quantization-aware training (ac-
tually, no documentation has been provided yet) developed by the Xilinx Research
Lab.
This library provides several quantized version of the standard PyTorch layers and
it is extremely easy to use: given a model made of PyTorch layers, the user simply
has to replace them in the code with their Brevitas implementation.
At the moment, Brevitas provides only the layers reported in Table 3.1: as it can
be noticed the implementation of normalization layers is still missing. However
this is not a problem, since Brevitas allows the user to mix together Brevitas and
PyTorch layers, meaning that the user can really decide which layer to quantize
in the model. The quantized version of SkyNet, namely SkyNetQuant has been
actually developed with the standard BatchNorm2d from PyTorch, as reported in
Section 3.2.

3.1 Quantization in Brevitas

Brevitas library is built upon the PyTorch library, implementing the quantization
on the standard PyTorch layers by giving to them quantized parameters.
Actually, considering the sketch of QuantConv2d in Figure 3.1, the layer is build
inheriting the standard Conv2d PyTorch layer and by instantiating a quantization
class, called QuantWBIOL (which stands for QuantWeightBiasInputOutputLayer)
which receives the input, the bias and the weights of the Conv2d layer and returns
back their quantization version, thus the convolution performed by Conv2d is done
among quantized parameters.
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PyTorch Layer Brevitas Layer
Convolutional Layers

nn.Conv1d QuantConv1d
nn.Conv2d QuantConv2d

nn.ConvTranspose1d QuantConvTranspose1d
nn.ConvTranspose2d QuantConvTranspose2d

Pooling Layers
nn.MaxPool1d QuantMaxPool1d
nn.MaxPool2d QuantMaxPool2d
nn.AvgPool2d QuantAvgPool2d

nn.AdaptiveAvgPool2d QuantAdaptiveAvgPool2d
Non-linear Activations

nn.Hardtanh QuantHardTanh
nn.ReLU QuantRelu

nn.Sigmoid QuantSigmoid
nn.Tanh QuantTanh

Dropout Layers
nn.Dropout QuantDropout

Table 3.1: The table reports the PyTorch layers which have already a correspon-
dent layer in the Brevitas library. Notice that there is no Brevitas version of
nn.BatchNorm2d: actually this layer still has to be implemented.

Figure 3.1: The Figure describes the implementation of the QuantConv2d layer
in Brevitas, made inheriting the standard PyTorch Conv2d and instantiating as
quantizer the QuantWeightBiasInputOutputLayer.

In order to explain how this mechanism is implemented, consider the QuantConv2d
layer implementation code:

41 from typing import Union, Tuple, Type, Optional
42 import math
43

44 import torch
45 from torch import Tensor
46 from torch.nn import Conv1d, Conv2d
47 from torch.nn import functional as F
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48 from torch.nn.functional import conv2d
49

50 from brevitas.inject import BaseInjector as Injector
51 from brevitas.function.ops import max_int
52 from brevitas.function.ops_ste import ceil_ste
53 from brevitas.proxy.parameter_quant import WeightQuantProxyProtocol,

BiasQuantProxyProtocol
54 from brevitas.proxy.runtime_quant import ActQuantProxyProtocol
55 from brevitas.quant_tensor import QuantTensor
56 from brevitas.inject.defaults import Int8WeightPerTensorFloat
57 from .quant_layer import QuantWeightBiasInputOutputLayer as QuantWBIOL
58

59

60 __all__ = ['QuantConv1d', 'QuantConv2d']

. . . ...

154

155 class QuantConv2d(QuantWBIOL, Conv2d):
156

157 def __init__(
158 self,
159 in_channels: int,
160 out_channels: int,
161 kernel_size: Union[int, Tuple[int, int]],
162 stride: Union[int, Tuple[int, int]] = 1,
163 padding: Union[int, Tuple[int, int]] = 0,
164 dilation: Union[int, Tuple[int, int]] = 1,
165 groups: int = 1,
166 bias: bool = True,
167 padding_type: str = 'standard',
168 weight_quant: Union[WeightQuantProxyProtocol, Type[Injector]] =

Int8WeightPerTensorFloat,
169 bias_quant: Union[BiasQuantProxyProtocol, Type[Injector]] = None,
170 input_quant: Union[ActQuantProxyProtocol, Type[Injector]] = None,
171 output_quant: Union[ActQuantProxyProtocol, Type[Injector]] = None,
172 return_quant_tensor: bool = False,
173 **kwargs) -> None:
174 Conv2d.__init__(
175 self,
176 in_channels=in_channels,
177 out_channels=out_channels,
178 kernel_size=kernel_size,
179 stride=stride,
180 padding=padding,
181 dilation=dilation,
182 groups=groups,
183 bias=bias)
184 QuantWBIOL.__init__(
185 self,
186 weight=self.weight,
187 bias=self.bias,
188 weight_quant=weight_quant,
189 bias_quant=bias_quant,
190 input_quant=input_quant,
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191 output_quant=output_quant,
192 return_quant_tensor=return_quant_tensor,
193 **kwargs)

As described from the Figure 3.1, the QuantConv2d layer is implemented inherit-
ing two classes: Conv2d (line 174), the class that implements the convolution in
PyTorch and that instantiates the weight and bias parameters, and QuantWBIOL
(line 184) which receives the weight and bias of Conv2d (see line 186-187) and
compute its quantized version, so that the convolution is performed using quan-
tized parameters.
As for the standard Conv2d, to instantiate QuantConv2d, the user has to specify
the dimension of the input and output channels, the dimension of the filter size
and other parameters such as stride, padding, dilation, group and bias. The main
difference is that in this case, the user can select a quantizer for the weights and
the biases (but also for the input and the output): in this case, the standard
QuantConv2d applies quantization only on the weights parameters.

Brevitas already provides several quantizers (they can be found in folder brev
itas.quant at [6]) and each of them is fully customizable by the user according
to its own requirements.
Each quantizer is characterized by different parameters whose values define how
the quantizer should work; the mains ones are:

• quant type: the kind of quantization that the library implements for the
parameter. The available most used ones are:

– QuantType.INT: integer quantization implemented by the module
IntQuant(). Giving an input Tensor, IntQuant() implements scale,
shifted, uniform integer quantization according to the parameters scale,
zero-point and bit-width, which are given as argument. It returns the
quantized tensor in a de-quantized format (see section B.1 for code
implementation).

– QuantType.BINARY: binary quantization implemented by the module
BinaryQuant(). It returns the quantized output in the de-quantized
format, the scale, the zero-point and the bith width, which in this case
is equal to 1 (see section B.2 for code implementation).

– QuantType.TERNARY: ternary quantization implemented by the mod-
ule TernaryQuant(). Given an input tensor, it returns its quantized
output in de-quantized format, scale, zero-point and bit width, which
in this case is always equal to 2 (see section B.3 for code implementa-
tion).

• bit width: the amount of bit on which the original parameter is quantized.

• narrow range: boolean parameter that if it is True implements the value in
a range from (−2N−1 +1) to (2N−1), instead of −2N−1 to (2N−1), where N
correspond to bit width. As example, in case N=8, if narrow range=True
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the quantized value will go from-127 to 127 and not from -128 to 127; this
will make the hardware inference more efficient.

• signed: if it is True the quantized value can be both positive and negative.

In this case, the layer QuantConv2d uses as default the quantizer Int8WeightPe
rTensorFloat (see line 168) for the weights parameter which, as reported in [6],
is “8-bit narrow per-tensor signed int weight quantizer with floating-point scale
factor computed from backpropagated statistics of the weight tensor”, i.e. the
weight of the convolution kernel are quantized on 8 bit in a range which goes from
-127 to 127, with a floating point scale factor.
The formula used by Int8WeightPerTensorFloat to compute the scale is given
by:

scale =
th

int th
(3.1)

where th is the threshold and it is defined as the maximum absolute value in an
input tensor X :

th = max
i,j=1,...,dim(X)

{|xi,j|} (3.2)

while int th is the integer threshold given by:

int th =

{
2N−1 − 1 if signed=True

2N − 1 if signed=False

Then, the quantization is performed doing the ratio among the floating point value
and the scale factor:

IntW =
FPW

scale
(3.3)

Thus, considering the following numerical example, in which the quantization is
performed on 4 bits, with signed True, the quantization will be computed with
these steps:

FPW =

 0.678 0.231 0.912
−0.234 0.654 0.342
−0.123 0.825 −0.702


th = max|FPWij| = 0.912

int th = 2N−1 − 1 = 24−1 − 1 = 7

scale =
th

int th
=

0.912

7
= 0.130

Then to compute the quantized weight:

IntW =
FPW

scale
≈

 5 2 7
−2 5 3
−1 6 −5


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where ≈ approximate the result to the nearest integer.

Thus, coming back to QuantConv2d implementation, only the weights param-
eters of Conv2d are quantized by QuantWBIOL.
It is important to notice that during the training of the network the quantized
parameters (and the scale) are recomputed each time the optmizer updates the
original non-quantized parameters (FPW in the example). Also it is important
to highlight that the convolution is not performed among the input and integer
representation of the weight, but with the quantized weight in the de-quantized
format. Actually, as seen from code B.1 at line 89, the quantizer, giving the scale,
the zero point, the bit width and the input tensor X, computes its integer repre-
sentation y int, but then it returns the quantized parameter in the de-quantized
float representation. Thus, during training the convolution operations are per-
formed among floating point values (see Figure 3.2).
The weights’ de-quantized format is given by:

Figure 3.2: Numerical example of quantization in Brevitas.

DeQuantW = IntW · scale (3.4)

which in this specific case is:

DeQuantW = IntW · scale =

 5 2 7
−2 5 3
−1 6 −5

 ·0.130 =

 0.651 0.261 0.912
−0.261 0.651 0.391
−0.130 0.782 −0.651


Of course, when inferring the network on FPGA, the weights are exported and
stored in the integer quantized format and, in order to keep the result correct as
the one during training, the output FM will be multiplied times the scale factor,
since it is true that:

InputFM ∗DeQuantW = InputFM ∗ IntW · scale (3.5)

A similar layer construction is adopted also for the other Brevitas layer.
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3.1.1 Quantization of Activation and Pooling Layers

In Brevitas, also activation and pooling layers are quantized. Actually, even if
these layers do not learn any parameters, their output can be quantized. Consid-
ering as example the common ReLU layer described in section 1.3, it is implemented
by Brevitas in the following way:

51 class QuantReLU(QuantNLAL):
52

53 def __init__(
54 self,
55 input_quant: Union[ActQuantProxyProtocol, Type[Injector]] = None,
56 act_quant: Type[Injector] = Uint8ActPerTensorFloat,
57 return_quant_tensor: bool = False,
58 **kwargs):
59 QuantNLAL.__init__(
60 self,
61 act_impl=nn.ReLU,
62 passthrough_act=True,
63 input_quant=input_quant,
64 act_quant=act_quant,
65 return_quant_tensor=return_quant_tensor,
66 **kwargs)

Again, as for the convolutional layer, QuantReLU is composed of two classes: the
standard nn.ReLU imported from PyTorch and QuantNLAL (QuantNonLinearActi
vationLayer) defined in Brevitas, which is simply used in order to quantize the
nn.ReLU output. In this case, the default quantization is performed on unsigned
values (due to the ReLU behavior) on 8 bits, but again it is fully customizable by
the user.
In this case, when QuantRelu receives the input, it first executes the nn.ReLU

Figure 3.3: The Figure describes the implementation of the QuantReLU layer in
Brevitas, made inheriting the standard PyTorch ReLU and instantiating as quan-
tizer the QuantNonLinearActivationLayer.

function, filtering positive values, then its output is quantized by QuantNLAL: again
the scale factor is computed as described in equation 3.5 and the integer and the
de-quantized output values are computed. As in the previous cases, the formal
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output of the QuantReLU is the de-quantized one.

3.1.2 How to define custom quantizers in Brevitas

In Brevitas the user can also define its own custom quantizer. As example, consider
the following code:

1 from brevitas.inject import BaseInjector as Injector
2 from brevitas.inject.enum import QuantType, BitWidthImplType, ScalingImplType
3 from brevitas.inject.enum import RestrictValueType, StatsOp
4 from brevitas.core.zero_point import ZeroZeroPoint
5 from brevitas.nn import QuantConv2d
6

7 class MyLearnedWeightQuant(Injector):
8 quant_type = QuantType.INT
9 bit_width_impl_type = BitWidthImplType.PARAMETER

10 narrow_range = True
11 signed = True
12 zero_point_impl = ZeroZeroPoint
13 scaling_impl_type = ScalingImplType.PARAMETER_FROM_STATS
14 scaling_stats_op = StatsOp.MAX
15 scaling_per_output_channel = False
16 restrict_scaling_type = RestrictValueType.LOG_FP
17 bit_width = 4
18

19 conv = QuantConv2d(..., weight_quant=MyLearnedWeightQuant)

The user firstly defines the quantizer MyLearnedWeightQuant (line 7) and then
replaces the standard Int8WeightPerTensorFloat in QuantConv2d with the new
quantizer (line 19).
As Int8WeightPerTensorFloat, to define MyLearnedWeightQuant, some already
built-in parameters are used, such as the quantization of integer type (line 8) on
4 bits (line 17) and the zero point in the half of the quantization interval. Notice
that in this case the parameter bit width implementation type is not constant,
but variable (line 9): this means that it is a learnable parameter whose value will
be determined during the training.

3.2 SkyNet Quantization using Brevitas

The qunatized model of SkyNet, named SkyNetQuant, has been developed with
the following code:

1 from collections import OrderedDict
2 import torch
3 import torch.nn as nn
4 import torch.nn.functional as F
5 import torch.nn.init as init
6 from region_loss_cuda import RegionLoss
7 from utils import *
8 from collections import OrderedDict
9
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10 #BREVITAS LIBRARY
11 import brevitas.nn as qnn
12 from brevitas.core.quant import QuantType
13

14 class PrintLayer(nn.Module):
15 def __init__(self):
16 super(PrintLayer,self).__init__()
17

18 def forward(self,x):
19 print('Printing a layer:')
20 print(x)
21 return x
22

23 class ReorgLayer(nn.Module):
24 def __init__(self, stride=2):
25 super(ReorgLayer, self).__init__()
26 self.stride = stride
27 def forward(self, x):
28 stride = self.stride
29 assert(x.data.dim() == 4)
30 B = x.data.size(0)
31 C = x.data.size(1)
32 H = x.data.size(2)
33 W = x.data.size(3)
34 assert(H % stride == 0)
35 assert(W % stride == 0)
36 ws = stride
37 hs = stride
38 x = x.view([B, C, H//hs, hs, W//ws, ws]).transpose(3, 4).contiguous()
39 x = x.view([B, C, H//hs*W//ws, hs*ws]).transpose(2, 3).contiguous()
40 x = x.view([B, C, hs*ws, H//hs, W//ws]).transpose(1, 2).contiguous()
41 x = x.view([B, hs*ws*C, H//hs, W//ws])
42 return x
43

44

45 class SkyNetQuant(nn.Module):
46 def __init__(self, weight_bit_width=4, act_bit_width=4, in_bit_width=4):
47 super(SkyNetQuant, self).__init__()
48 self.width = int(320)
49 self.height = int(320)
50 self.header = torch.FloatTensor([0,0,0,0])
51 self.seen = 0
52 self.reorg = ReorgLayer(stride=2)
53

54 def conv_dw_Brevitas(inp, oup, stride):
55 return nn.Sequential(
56 qnn.QuantConv2d(in_channels=inp, out_channels=inp, kernel_size=3,

stride=1, padding=1, groups=inp, bias=False,
weight_bit_width=weight_bit_width),

57 nn.BatchNorm2d(inp),
58 qnn.QuantReLU(bit_width=act_bit_width, max_val=6),
59 qnn.QuantConv2d(in_channels=inp, out_channels=oup, kernel_size=1,

stride=1, padding=0, groups=1, bias=False,
weight_bit_width=weight_bit_width),

60 nn.BatchNorm2d(oup),
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61 qnn.QuantReLU(bit_width=act_bit_width, max_val=6),
62 )
63

64 self.model_p1 = nn.Sequential(
65 conv_dw_Brevitas( 3, 48, 1), #dw1
66 qnn.QuantMaxPool2d(kernel_size=2, stride=2),
67 conv_dw_Brevitas( 48, 96, 1), #dw2
68 qnn.QuantMaxPool2d(kernel_size=2, stride=2),
69 conv_dw_Brevitas( 96, 192, 1), #dw3
70 )
71 self.model_p2 = nn.Sequential(
72 qnn.QuantMaxPool2d(kernel_size=2, stride=2),
73 conv_dw_Brevitas(192, 384, 1), #dw4
74 conv_dw_Brevitas(384, 512, 1), #dw5
75 )
76 self.model_p3 = nn.Sequential( #cat dw3(ch:192 -> 768) and dw5(ch:512)
77 conv_dw_Brevitas(1280, 96, 1),
78 qnn.QuantConv2d(in_channels=96, out_channels=10, kernel_size=1,

weight_bit_width=weight_bit_width, bias=False),
79 )
80

81

82 self.loss = RegionLoss([1.4940052559648322, 2.3598481287086823,
4.0113013115312155, 5.760873975661669],2)

83 self.anchors = self.loss.anchors
84 self.num_anchors = self.loss.num_anchors
85 self.anchor_step = self.loss.anchor_step
86 self._initialize_weights()
87

88 def forward(self, x):
89

90 x_p1=self.model_p1(x)
91 x_p1_reorg = self.reorg(x_p1)
92 x_p2 = self.model_p2(x_p1)
93 x_p3_in = torch.cat([x_p1_reorg, x_p2], 1)
94 x = self.model_p3(x_p3_in)
95

96 return x
97

98 def _initialize_weights(self):
99 for m in self.modules():

100 if isinstance(m, qnn.QuantConv2d):
101 nn.init.kaiming_normal_(m.weight, mode='fan_out')
102 if m.bias is not None:
103 nn.init.constant_(m.bias, 0)
104 elif isinstance(m, nn.BatchNorm2d):
105 nn.init.constant_(m.weight, 1)
106 nn.init.constant_(m.bias, 0)
107

108 def quantize_weight_extractor(self):
109 for m in self.modules():
110 if isinstance(m, qnn.QuantConv2d):
111 print(m.weight_quant(m.weight))
112 elif isinstance(m, nn.BatchNorm2d):
113 print(m.weight)
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As it can be notice from the code, the PyTorch layer Conv2d, ReLU and MaxPool2d
have been replaced by their Brevitas implementation, while the standard PyTorch
BatchNorm2d layer has been left, for the reasons explained in Section 3. Concerning
the quantization of the weights, the default quantizer Int8WeightPerTensorFloat
is adopted with bit width set to 4, meaning that the integer weight value will be
in a range from -7 to 7.
Also the activation function is quantized on 4 bit: in this case the QuantRelu
behaves like a standard ReLu layer, with the only difference that its output is
quantized on 4 bit.
Notice that beside network quantization also the network input size has been
modified from 3×160×320 to 3×320×320. This variation is due to the fact that
the current release of FINN, i.e. the tool used to optimize the inference on FPGA
of the network, support only squared feature maps and not rectangular ones.

3.3 SkyNetQuant Accuracy Results

The training of SkyNetQuant has been performed using the Adam optimizer, with
a starting learning rate of 0.001 and the dataset of the 2020 DAC-SDC. As for the
original Skynet, the images have been preprocessed using dataset augmentation
technique.
The highest IOU reached by SkyNetQuant is 0.7248, which is more or less equal
to the IOU of the original SkyNet, which is 0.741. Given these results the new
SkyNet implementation seems to be efficient, since the IOU is almost the same
of the original, while the amount of memory requested for the weights is smaller.
Unfortunately this efficiency cannot be demonstrated since it has not been possible
to inference the SkyNetQuant model on FPGA, due to the reasons explained in
Section 4.
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Figure 3.4: Accuracy IOU results of SkyNetQuant at every epochs during the
training.
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Chapter 4

FINN

FINN is a new powerful tool developed by the Xilinx Research Lab that can be
used to synthesize and implement quantized network on FPGA.
To work with FINN, the user should have:

• Ubuntu 18.04 with bash installed;

• Vivado 2019.1 or 2020.1 installed;

• Docker, a virtual container for applications;

It is also possible to avoid the use of Docker, by installing FINN from the com-
mand line: in this case the user has to modify several files to make FINN work (if
possible, it is better to use Docker).

FINN is a compiler infrastructure [4], namely a collection of scripts that can
be used to convert a QNN into a custom FPGA accelerator that performs high-
performance inference. Indeed, to use FINN the user has to prepare the script to
transform and inference the model on FPGA.
Furthermore there is a function, which is still under development, called built d
ataflow, which executes all the transformation steps by itself, so that the user has
just to give the trained QNN model as input. However, this function, as FINN
itself, is extremely new and works only with very small and standard structure
QNNs, thus is not suitable for SkyNetQuant.

The FINN design flow is reported in Figure 4.1 and can be summarized in three
main steps:

1. ONNX export: after the training, the network has to be exported in the
ONNX format in order to be imported in FINN. At the moment, Brevitas
is the only tool that supports the export to FINN.

2. Network Transformation and Streamlining: the ONNX model is trans-
formed with several FINN transformations in such a way that each layer
(represented by one ore more ONNX nodes) is suitable for the finn-hls li-
brary.
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3. Hardware Generation: giving a target FPGA and clock frequency, the
network is inferred on hardware.

4.1 ONNX export: Brevitas export to FINN

After the training, the Brevitas model is exported as ONNX model, so that it can
be used in FINN.
The export is performed by loading the best state dict1 on the model, as reported
in the following code:

1 import onnx
2 import os
3 import brevitas.onnx as bo
4 from model4bit import *
5

6 #The SkyNetQuant model is loaded with the parameters that
7 #have reached the best accuracy results.
8 checkpoint_path= os.getcwd()+"/checkpoint/best.tar"
9 model = SkyNetQuant()

10 checkpoint = torch.load(checkpoint_path)
11 model.load_state_dict(checkpoint['state_dict'])
12

13 #SkyNetQuant is exported to ONNX
14 quantskynet=model.eval()
15 dir=os.getcwd()+"/finn_model/"
16 export_onnx_path = "quantskynet_brevitas_export.onnx"
17 input_shape = (1, 3, 320, 320)
18 bo.export_finn_onnx(quantskynet, input_shape, dir+export_onnx_path)

Adopting the load state dict function by PyTorch, the SkyNetQuant() is loaded
with the quantized parameters that had made the model reach its best accuracy,
i.e. its highest IOU of 0.7248.
Then, when executing the export finn onnx, each weight that during training
was given to the convolutional layer in its de-quantized format is converted to its
integer representation, which is given by the equation 3.3 here reported:

IntW =
FPW

scale

The exported model can be visualized by the user adopting Netron2, which is a
tool used to display ONNX networks (see Figure 4.4).

As it can be noticed the exported ONNX model is characterized by different
types of nodes, each one representing a layer of the Brevitas model. In addition,
it is possible to notice the multiplication among the output of the Conv layer with
the scale factor, as explained in equation 3.5 reported in Section 3.1.

1A state dict is simply a Python dictionary object that maps each layer to its parameter
tensor (https://pytorch.org/tutorials/beginner/saving loading models.html).

2Netron can be found here: https://github.com/lutzroeder/netron
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Figure 4.1: FINN standard design flow.
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Figure 4.4: SkyNet quantized ONNX model displayed using Netron. The model
has been split into 6 parts due to its huge dimension, it has to be read from top
to bottom starting from left and going to right.
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The Multihreshold node followed by the Mul node represent the QuantRelu layer.
Actually, FINN goal is to reduce floating point values as much as possible thus,
the QuantRelu layer is converted into a Multithreshold layer, in such a way that
the input is no more simply filtered (as described in 1.3), but depending on its
value it is converted to a given threshold [7]. When the model is exported running
export finn onnx the scale factor of QuantReLU and its bit width N are used in
order to compute the thresholds:

step = scale factor (4.1)

min th =
step

2
(4.2)

num th = 2N − 1 (4.3)

where step is the threshold size, and it is constant for each thresholds, min th is
the first value of the threshold, namely the minimum value, and num th is the
number of thresholds.
In the SkyNetQuant model, since the bit width has been set to 4 for the QuantReLU
layer, the number of threshold computed is 15. In Figure 4.5, the thresholds of
the first MultiThreshold node are displayed.
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Figure 4.5: The fifteen thresholds adopted by the first MultiThreshold node in the
SkyNetQuant model.

4.2 Network Transformation and Streamlining

After the export, the ONNX model has to be optimized in order to be synthesizable
by FINN framework. In order to do that the ONNX model is transformed by
executing function that are called Transformation and that can be classified in
three main categories:

• General: are transformations used to assign names to nodes or to infer
shapes to nodes’ input.
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• Streamlined: are the ones that impact more on the graph. They are used
to collapse nodes together and to reorganize the graph’s structure. In partic-
ular, the Streamline() transformation is a collection of several streamline
transformations that the user can use to optimize the graph without the
need of searching for the right transformation.

• HLS: given a ready to be converted graph, they are used to convert nodes
of the ONNX model into HLS nodes, that can be mapped to the finn-hls
library, considering some constraints.

4.2.1 General Transformation

The first transformations after the network export are the ones that simply tidy-
up the ONNX model. Actually, those kind of transformation are called Tidy Up
Transformation: they give unique node names to the graph, assign input tensor
dimension to the nodes and readable tensor names to every node parameters. The
following code is the one that has been used in order to get the graph of Figure
4.4.

20 #Importing General Transformation classes
21 from finn.core.modelwrapper import ModelWrapper
22 from finn.transformation.infer_shapes import InferShapes
23 from finn.transformation.fold_constants import FoldConstants
24 from finn.transformation.general import GiveReadableTensorNames,

GiveUniqueNodeNames, RemoveStaticGraphInputs
25 from finn.transformation.infer_datatypes import InferDataTypes
26

27 #Loading the exported ONNX model
28 model=ModelWrapper(dir+"quantskynet_brevitas_export.onnx")
29

30 #Simple tranformations on the network
31 model = model.transform(InferShapes())
32 model = model.transform(InferDataTypes())
33 model = model.transform(FoldConstants())
34 model = model.transform(GiveUniqueNodeNames())
35 model = model.transform(GiveReadableTensorNames())
36 model = model.transform(RemoveStaticGraphInputs())
37 model.save(dir+"quantskynet_tidy.onnx")

At line 9, the class ModelWrapper is used to load the just extracted ONNX model:
it is implemented by FINN, and, beside being used to load and save model (line
18), it allows the ONNX model to be transformed, plus it has some useful function
that allow to rename, modify, delete nodes and much more.

4.2.2 Streamlining Transformation

Then, the Streamline transformations are applied in order to reduce the model as
much as possible and make every nodes suitable for HLS node conversion.
Actually, FINN HLS conversion function supports only these type of nodes:

– Add
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– Mul

– MultiThreshold

– MatMul

– Im2Col

– MaxPoolNWHC

thus the user has to apply transformations on the graph to obtain a ONNX model
where only these kind of nodes are present, otherwise no conversion will be per-
formed. Beside that, each input of these node must be integer, which is the only
datatype that FINN HLS node conversion supports.

Replacing Convolutional Layers: the LowerConvsToMatMul Transfor-
mation

First of all, if the ONNX model presents Conv nodes, they have to be replaced
using the LowerConvsToMatMul transformation. This transformation is one of the
most relevant from the hardware point of view, since it is strictly related on how
finn-hls library performs the convolution.

When executing LowerConvsToMatMul, FINN searches in the model for Conv
nodes and replace them with a pair of Im2Col→MatMul nodes, in case of depth-
wise convolution (which can be asserted checking that the number of tensor’s
input channels is equal to the number of tensor’s output channels), or a single
MatMul node, in case of point-wise convolution (which can be asserted checking
that the number of tensor’s input channels is not equal to the number of tensor’s
output channels). As explained in Section 1.1, when performing the convolution a
sliding window of size K×K (where K is the kernel dimension) highlights a K×K
section of the feature map a time and performs the convolution: in hardware this
procedure is lowered to a matrix by matrix multiplication.

In case of depthwise convolution, the input tensor is reshaped in a matrix of
dimension K2 · C × N , as showed in Figure 4.6. This reshaping is performed in
FINN by the Im2Col node which, given a feature map of size H×W ×C, returns a
matrix whose structure is given by different columns which are made of the K2 ·C
parameters highlighted by the sliding window. The number output columns N is
given by:

N = nH × nW (4.4)

where

nH =
H − 2× P −K

S
+ 1 (4.5)

nW =
W − 2× P −K

S
+ 1 (4.6)
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Figure 4.6: The picture describes how Im2Col creates the global feature map matrix
that will be convoluted with the filter matrix.

and S, P are respectively the stride and the padding.
Then the convolution is performed by the MatMul node wich multiplies the output
of Im2Col by the filter. The two nodes are displyed in Figure 4.7.

Figure 4.7: On the left, the Conv node, on the right its replacement performed
when running LowerConvsToMatMul
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Notice that two Transpose nodes have been inserted at the input and at the output:
this is due to the fact that both Im2Col and MatMul operates on NHWC format,
while in this case the input tensor of the Conv is on NCHW format. Thus, the
input and the output are transposed to maintain the original shapes. Also notice
that the weight matrix, whose dimension in Conv is 3 × 1 × 3 × 3 is reshaped to
27 × 3: this is done by LowerConvsToMatMul when inferring the MatMul node in
order to make the matrix multiplication with the 1×320×320×27 output tensor
of Im2Col possible, due to the fact that in matrix multiplication the number of
columns of the first matrix must be equal to the number of rows of the second
matrix.

In case of pointwise convolution, no Im2Col layer is needed, as showed in Figure
4.8. In this case LowerConvsToMatMul(), simply replaces the Conv node with the
MatMul node, reshaping the 48 × 3 × 1 × 1 weight matrix to 3 × 48, and adding
two Transpose nodes at the input and at the output. Again this operation is done
in order to allow the matrix multiplication.

Figure 4.8: On the left, the Conv node, on the right its replacement performed
when running LowerConvsToMatMul()

4.2.3 Optimizing the model: the Streamline Transforma-
tion

FINN has a already a built-in class called Streamline() that can be used to
optimize the model and to remove the non-convertible to HLS nodes. Its code is
here reported:

71 class Streamline(Transformation):
72 """Apply the streamlining transform, see arXiv:1709.04060."""
73

74 def apply(self, model):
75 streamline_transformations = [
76 ConvertSubToAdd(),
77 ConvertDivToMul(),
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78 BatchNormToAffine(),
79 ConvertSignToThres(),
80 AbsorbSignBiasIntoMultiThreshold(),
81 MoveAddPastMul(),
82 MoveScalarAddPastMatMul(),
83 MoveAddPastConv(),
84 MoveScalarMulPastMatMul(),
85 MoveScalarMulPastConv(),
86 MoveAddPastMul(),
87 CollapseRepeatedAdd(),
88 CollapseRepeatedMul(),
89 AbsorbAddIntoMultiThreshold(),
90 FactorOutMulSignMagnitude(),
91 AbsorbMulIntoMultiThreshold(),
92 Absorb1BitMulIntoMatMul(),
93 Absorb1BitMulIntoConv(),
94 RoundAndClipThresholds(),
95 ]
96 for trn in streamline_transformations:
97 model = model.transform(trn)
98 model = model.transform(RemoveIdentityOps())
99 model = model.transform(GiveUniqueNodeNames())

100 model = model.transform(GiveReadableTensorNames())
101 model = model.transform(InferDataTypes())
102 return (model, False)

As it can be notice, Streamline() is made of different transformations:

• ConvertSubToAdd(): this transformation detects Sub node in the graph and
converts them to Add node, since it is true that A − B = A + (−B). This
conversion is made in order to have only Add node in the model, so that they
can be collapsed together (executing CollapseRepeatedAdd()) or absorbed
into MultiThreshold nodes (executing AbsorbAddIntoMultiThreshold()).

• ConvertDivToMul(): this transformation detects Div nodes in the graph and
converts them to Mul nodes, since it is true that A

B
= A · ( 1

B
). As in the

previous case, this transformation allows to have only Mul nodes, so that they
can be collapsed together (executing CollapseRepeatedMul()) or absorbed
into MultiThreshold nodes (executing AbsorbMulIntoMultiThreshold()).

• BatchNormToAffine(): this transformation detects BatchNormalization nodes
and converts them in and Add→Sub nodes, as shown in Figure 4.9: Actually,
PyTorch BatchNormalization layer output is given by:

y =
x− E[x]√
Var[x] + ε

? γ + β (4.7)

where x is the input tensor, E[x] is its mean and Var[x] is its standard devi-
ation; γ and β are respectively the scale and the bias, learnable parameters
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Figure 4.9: On the left, the BatchNormalization node, on the right its replacement
performed when running BatchNormToAffine()

updated during training. Thus assuming:

A =
γ√

Var[x] + ε
(4.8)

B = β − A · E[x] (4.9)

the BatchNormalization node can be replaced by a Mul node, which multiplies
the input tensor x by A, and an Add node, which sums the Mul node output
(xA) to B.

• ConvertSignToThres(): Convert Sign node instances to MultiThreshold with
threshold at 0.

• AbsorbSignBiasIntoMultiThreshold(): this transformation searches in the
model for two subsequent MultiThreshold→Add nodes and if the Add node
performs a scalar addition, the scalar factor is summed to the thresholds of
the MultiThreshold node, then the Add node is removed from the graph.

• MoveAddPastMul(), MoveScalarAddPastMatMul(), MoveAddPastConv(), Mo
veScalarMulPastMatMul(), MoveScalarMulPastConv(): these transfor-
mations search in the graph pair of subsequent Add→Mul, Add→MatMul,
Add→Conv, Mul→MatMul, Mul→Conv respectively and swap them, thanks
to the commutative property.

• CollapseRepeatedAdd(), CollapseRepeatedMul(): these transformations
search in the graph for two subsequent Add→Add, Mul→Mul respectively
and collapse them together, so that only one single Add node, or one single
Mul node, is maintained in the graph.

• FactorOutMulSignMagnitude(): Splits multiply-by-constant nodes into two
multiply-by-constant nodes, where the first node is a bipolar vector (of signs)
and the second is a vector of magnitudes.
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• AbsorbMulIntoMultiThreshold(): this transformation searches in the model
for two subsequent Mul→MultiThreshold nodes and if Mul is a scalar positive
value, it is absorbed into the MultiThreshold node, by updating the threshold
values. Thus the Mul node is removed from the graph.

• Absorb1BitMulIntoMatMul(), Absorb1BitMulIntoConv(): these transfor-
mations search in the model for two subsequent MatMul→Mul, Conv→Mul
nodes and if Mul is a 1 bit value, it is absorbed into the preceding matrix
multiply or convolution node. Then, the Mul node is removed from the
graph.

• RoundAndClipThreshold(): this transformation searches for MultiThreshold
nodes in the graph and if their input datatype is integer, its thresholds values
are rounded to the nearest integer. Then, if the input is unsigned, negative
thresholds are set to zero.

Usually, applying Streamline() transformation is already enough for reducing
network size and preparing it for the HLS convertion. In the case of SkyNetQuant,
these transformations have not been enough, for reasons that are explained in the
following.

SkyNetQuant Streamlining problems Even if SkyNetQuant has been trans-
formed by using Streamline tranformations, it has not been possible to reach a
model where every node is suitable for the finn-hls nodes library. In the follow-
ing, a list of all the problems encountered during SkyNetQuant development is
reported:

1. Tensor’s shape not supported: Some nodes of the SkyNetQuant graph
have an input or an output tensor shape which is not supported by the FINN
library. Actually, FINN supports only tensor shapes of 4 dimensions, while
as it can be noticed from Figure 4.10, some nodes of SkyNetQuant have a
dimension of 5 or 6.
This is a real problem in FINN: with these dimensions the compiler is not
going to synthesize and implement the model. In order to solve this issue,
a custom transformation, called CollapseReshape(), has been created and
added to the FINN library (the code is reported in Appendix C.1). Basi-
cally, CollapseReshape searches in the graph the chain Reshape→Transpose→
Reshape (line 17-21) and gives the input edge of the first Reshape (n.input[0]
in the code) to the ReorderBypass node (whose code is reported in Ap-
pendix C.3), plus the input size of the Transpose node and its output size
(first reshape and second reshape in the code), which will be used by the
new node to perform exactly the same operations. Thus, from a functional-
ity point of view, the behavior is the same, but in this way the tensor lengths
are hidden from the FINN compiler and no error messages occur.
However, this issue has been partially solved, due to the fact that it is not
possible to add the new ReorderBypass node to the finn-hls library and thus
this node is not synthesized by FINN.
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Figure 4.10: On the left, the model before the CollapseReshape() transformation,
on the right the new model, with Reshape→Transpose→Reshape been substituted
by ReorderBypass node by the transformation.

2. Non-Integer input for finn-hls node: In some cases nodes ready to be
converted to hls-node cannot be converted, due to the fact that their in-
put is not integer, but is floating point. This problem can be solved by
going back to the Brevitas model and by adding some quantization lay-
ers (QuantIdentity), whose only purpose is to quantize the feature map
among layers. In this case, QuantIdentity layers are added before every
QuantConv2d layers since when exporting the model to FINN and after do-
ing every kind of transformations, the Im2Col nodes have a non integer in-
put which make them non-convertible to HLS nodes. The code of this new
SkyNetQuant model is reported in Appendix C.4. In this case the quanti-
zation of the feature map is done on 8 bits.
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Of course, the quantization performed on the FMs has made the accuracy
drops, as stated in Section 2.1: after training, the highest IOU reached by
this version of SkyNetQuant is 0.5563, which is more or less the 23.25% lower
with respect to the previous version of SkyNetQuant, whose IOU is 0.7248.

3. Presence of Transpose layers: Due to the FINN transformations, in par-
ticular the LowerConvsToMatMul, plenty of Transpose nodes are inserted in
the ONNX model and as it is noticed, they do not have a HLS implementa-
tion in the finn-hls library.
In some cases, these Transpose nodes have been absorbed creating a cus-
tom transformation. Actually, as seen from Figure 4.11 using the custom
AddTranspose() transformation, whose code is reported in Appendix C.2, it
is possible to add two subsequent Transpose nodes, which do not affect the
model behavior, in such a way that when running the AbsorbTransposeIn-
toMultiThreshold the structure Transpose→MultiThreshold→Transpose is de-
tected and the Transpose nodes are collapsed into the MultiThreshold node.

Figure 4.11: Going from left to right, the model before the AddTranspose tran-
formation, then the model after the AddTranspose tranformation and finally the
model after the AbsorbTransposeIntoMultiThreshold transformation.

The code used in order to prepare the model to synthesis is here reported:

39 #Importing classes for Streamlining Transformations
40 import finn.transformation.streamline.absorb as absorb
41 from finn.core.modelwrapper import ModelWrapper
42 from finn.transformation.infer_shapes import InferShapes
43 from finn.transformation.fold_constants import FoldConstants
44 from finn.transformation.general import GiveReadableTensorNames,

GiveUniqueNodeNames, RemoveStaticGraphInputs
45 from finn.transformation.infer_data_layouts import InferDataLayouts
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46 from finn.transformation.streamline import Streamline
47 from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul
48 from finn.transformation.general import RemoveUnusedTensors
49 from finn.transformation.streamline.reorder import MoveMaxPoolPastMultiThreshold,

MakeMaxPoolNHWC, MoveScalarLinearPastInvariants, MoveScalarMulPastConv
50 from finn.transformation.addtranspose import AddTranspose
51 from finn.transformation.newreshape import NewReshape
52

53 #Loading the just tidy-up model..
54 model = ModelWrapper(dir+"quantskynet_tidy.onnx")
55

56

57 print("Running Streamline Tranformation...")
58 model = model.transform(MoveScalarLinearPastInvariants())
59 model = model.transform(Streamline())
60 model.save(dir+"quantskynet_streamlined.onnx")
61

62 print("Running LowerConvsToMatMul Tranformation...")
63 model = model.transform(LowerConvsToMatMul())
64 model.save(dir+"quantskynet_lower_convs.onnx")
65

66 #Further Tranformation are executed to optimize and make the model
67 #convertible to finn-hls library
68 model = model.transform(MoveMaxPoolPastMultiThreshold())
69 model = model.transform(MakeMaxPoolNHWC())
70 model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
71 model = model.transform(absorb.AbsorbMulIntoMultiThreshold())
72 model = model.transform(AddTranspose())
73 model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
74 model = model.transform(absorb.AbsorbScalarMulAddIntoTopK())
75 model = model.transform(GiveUniqueNodeNames())
76 model = model.transform(GiveReadableTensorNames())
77 model = model.transform(InferShapes())
78 model = model.transform(FoldConstants())
79 model = model.transform(GiveUniqueNodeNames())
80 model = model.transform(GiveReadableTensorNames())
81 model = model.transform(RemoveStaticGraphInputs())
82 model = model.transform(NewReshape())
83 model = model.transform(GiveUniqueNodeNames())
84 model = model.transform(GiveReadableTensorNames())
85 model = model.transform(InferDataLayouts())
86 model = model.transform(RemoveUnusedTensors())
87

88 model.save(dir+"quantskynet_ready_to_hls_conv.onnx")

4.2.4 HLS Transformations

After the network optimization, the node of the ONNX model are converted to
the HLS node of the finn-hls library. Each node topology is converted by a specific
transformation, the main ones are listed in Table 4.1.
In order to convert the ONNX nodes, the user has to go and look for the FINN file
named “convert to hls.py” and to search for the transformation which better fits
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its model, namely depending on the kind of nodes present in the model. Actually
there is no a single global transformation that can be used to transform the model
completely.
In the SkyNetQuant case the following HLS transformations have been executed:

90 #Importing classes for HLS conversions
91 from finn.transformation.move_reshape import RemoveCNVtoFCFlatten
92 from finn.custom_op.registry import getCustomOp
93 from finn.transformation.infer_data_layouts import InferDataLayouts
94 from finn.core.modelwrapper import ModelWrapper
95 from finn.core.datatype import DataType
96 from finn.transformation.streamline.reorder import MoveMaxPoolPastMultiThreshold,

MakeMaxPoolNHWC, MoveScalarLinearPastInvariants, MoveScalarMulPastConv
97 import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls
98 from finn.transformation.streamline.round_thresholds import RoundAndClipThresholds
99

100 #Loading the streamlined model..
101 model=ModelWrapper(dir+"quantskynet_ready_to_hls_conv.onnx")
102

103 #Running HLS conversions..
104 model = model.transform(to_hls.InferQuantizedStreamingFCLayer())
105 model = model.transform(to_hls.InferConvInpGen())
106 model = model.transform(to_hls.InferStreamingMaxPool())
107 model = model.transform(to_hls.InferVVAU())
108 model = model.transform(to_hls.InferChannelwiseLinearLayer())
109 model = model.transform(RoundAndClipThresholds())
110 model = model.transform(to_hls.InferThresholdingLayer())
111 model = model.transform(absorb.AbsorbConsecutiveTransposes())
112 model.save(dir+"quantskynet_pre_dataflow_partition.onnx")

ONNX NODE TRANSFORMATION OUTPUT HLS NODE

Im2Col InferConvInpGen() ConvolutionInputGenerator

MaxPoolNHWC InferStreamingMaxPool() StreamingMaxPool

XnorPopcountMatMul
InferBinaryStreamingFCLayer() StreamingFCLayer Batch↓

MultiThreshold

MatMul
InferQuantizedStreamingFCLayer() StreamingFCLayer Batch↓

MultiThreshold

MatMul
InferVVAU() Vector Vector Activate Batch↓

MultiThreshold

MultiThreshold InferThresholdingLayer() Thresholding Batch

Add InferAddStreamsLayer() AddStreams

Table 4.1: The Table reports the HLS transformations that have to be applied to
convert the ONNX nodes to HLS nodes.
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4.3 Synthesis and Implementation on FPGA

After converting the nodes to finn-hls nodes, the model can be finally synthesized
and implemented on a target FPGA.
In order to make sure that every node of the graph is synthesizable, namely that
every node belongs to the HLS node class, the CreateDataFlowPartiton() trans-
formation should be executed on the final model: this transformation is used in
order to separate the HLS nodes from the NON-HLS nodes.
Actually, CreateDataFlowPartiton() searches in the graph for chains of fpga-
dataflow nodes, namely HLS nodes, and NON-HLS nodes and returns two differ-
ent ONNX models: one made of only HLS nodes, called Child model, the other
made of NON-HLS nodes, called Parent model.
As it can be noticed from Figure 4.12, the ONNX model is cut by the CreateDa
taFlowPartiton() transformation and the connection among the two graphs is
given by a new node called StreamingDataflowPartion, which contains the path to
the Child model that is called by the Parent model when executing the network.

Figure 4.12: The creation of the parent model and child model done by the
CreateDataFlowPartition() transformation.

In order to make the transformation succeed, every HLS node of the graph should
be connected together and should not be interleaved by NON-HLS nodes. Ac-
tually, as seen from Figure 4.12, the best case is the one where there are two
NON-HLS nodes chains interleaved by a single HLS-NODE chain. In this case
the Child model is made of the only HLS-NODE chain, while the Parent model is
made of the two NON-HLS node chains connected by the StreamingDataflowPar-
tition node.
It is important to notice that when running the synthesis and implementation
FINN will focus only on the Child model and the Parent model will be left unsyn-
thetized: thus the real best case is the one where an unique chains of HLS nodes
is present in the model, so that the user will have the complete model synthesis
as output product.
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If the final graph has got a structure as the one represented in Figure 4.13, the
CreateDataflowPartition() will not succeed. Actually, since there are more than

Figure 4.13: The broken models returned by the CreateDataflowPartition()
when the initial model is made of multiple HLS-NODE chains.

one single chain of HLS nodes, the transformation will return both the chains in
the Child model and the Parent model will be broken, due to the fact that only
one single StreamingDataflowPartition node is instantiated by FINN.
In this case, if the user tries to synthesize the Child model, the synthesis will fail,
because FINN has not been developed to synthetize multiple chains yet.
In case of SkyNetQuant, CreateDataflowPartition returned a Child model made
of three chains (see Figure 4.14). In this case, if this model is synthesize, FINN
will start creating and running Vivado HLS bash files that will never return.

In order to solve this issue, the only possibility is to go back to the model after the
streamlining transformation and to limit the number of ONNX node converted to
HLS node in such a way that when running the CreateDataflowPartition trans-
formation the Child model will have only one single chain of HLS nodes. In the
particular case of SkyNetQuant only the first chain (the bigger one) has been kept
in order to be returned in the Child model.

Before going deeply on the synthesis and implementation part, it is important
to highlight again that FINN should be used only if the user manage to convert
all the node to HLS, because it is the only possibility to synthesize the entire
network.

56



Figure 4.14: Child model returned for SkyNetQuant.
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4.3.1 Synthesis and Implementation: the ZynqBuild Trans-
formation

Again, to synthesize and implement the Child model, the user has to execute
a transformation, in this case the ZynqBuild transformation. In the case of
SkyNetQuant the following script has been adopted:

1 from finn.core.modelwrapper import ModelWrapper
2 from finn.transformation.fpgadataflow.make_zynq_proj import ZynqBuild
3 from finn.util.basic import pynq_part_map
4

5 #Selecting the target board
6 pynq_board="ZCU104"
7 fpga_part=pynq_part_map[pynq_board]
8 #Setting the desired clock period
9 target_clk_ns=10

10

11 model = ModelWrapper("skynet_child_model.onnx")
12 model = model.transform(ZynqBuild(platform = pynq_board, period_ns =

target_clk_ns))

As it can be notice from the reported code, the user simply has to declare the target
board (line 6) and the target clock period (line 9). In this case, SkyNetQuant has
been inferred on the Zynq ZCU104 board with a target clock period of 10 ns.

Figure 4.15: Synthesis and implementation steps of FINN.

The inference on FPGA is performed by FINN in three main steps:

• Synthesis of every node: FINN synthesizes separately every HLS nodes
using Vivado HLS and storing the HLS results into different folders, one for
every node. The synthesis is done by running a script which is created by
FINN.

• Synthesis of the full network: FINN synthesizes the complete network
by connecting every HLS node synthesis together.

• Inference on FPGA: FINN creates a Vivado Design Suite project were
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the IP of the synthesized network is connected to the target FPGA; then
the bitstream file is generated.

The results of the implemented child model of SkyNetQuant are reported in Table
4.2, where the quantized model is compared with the implementation of original
SkyNet model, both with a target clock frequency fCLK = 100.00 MHz.

Resource Type SkyNet SkyNetQuant
CLB 52266 178081

BRAM 209 40
DSP 360 6

Table 4.2: Comparison among the resource usage of the original SkyNet architec-
ture with the SkyNetQuant architecture synthesized using FINN.

As expected the BRAM resource usage is decreased with respect to the original
SkyNet: this is due to the fact that SkyNet has been sinthetized with fixed point
weight on 9 bits, while SkyNetQuant’s weights require only 4 bits each. However,
it has to be considered that the results of SkyNetQuant are related to just the
half of the entire architecture, thus they are expected to be doubled in case of
complete synthesis.
On the contrary, the CLB is three time bigger with respect to the original im-
plementation: this could be related on how FINN implements convolutions and
activation function.
Another point that has to be highlighted is that SkyNetQuant besides storing the
weights, also needs to store the thresholds related to the MultiThreshold nodes,
that are automatically inferred in place of the QuantReLU and the QuantIdentity
layers. Thus, the 40 BRAM are used to store both weights and thresholds.
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Chapter 5

Conclusions

Due to the fact that both Brevitas and FINN are extremely new and still under
development, it was impossible to complete the SkyNetQuant implementation.

Regarding Brevitas, the results in term of accuracy are extremely good. Also,
once understood how it works, it is really easy to use on already existing PyTorch
models and it is fully customizable by the users. The possibility to define a specific
kind of quantizer and to mix quantized layer with standard one, allows users to
explore any kind of model and to select the best one depending on their needs.

Concerning FINN, at the moment it could be used only with very small net-
work with standard structure: the presence of the bypass and reordering branch,
used to increase the ability to detect small objects, has made the SkyNet and
SkyNetQuant models’ structure not standard. In particular, the Streamline()
transformation function works perfectly for one single chain model, namely with-
out fork nodes as SkyNetQuant, since it manages to collapse and reorder nodes in
such a way that every node has got integer input and can be converted to finn-hls
library. In this case, the model structure did not allow the Streamline() to reach
this scope. Also, even if the model has changed by adding quantization layers for
intermediate FMs, the model structure still be too particular to be synthesized
with FINN.
Another problem has been the adding of the Transpose node when executing the
LowerConvsToMatMul() transformation: this node is created automatically by
FINN even if not present in the original CNN and, since it is not present into
finn-hls library, it results in a non-implementable network if it cannot be absorbed
back into some other layer.
Finally, the fact that the Parent model is left unsynthesized is a real problem,
since the user cannot reach the complete network implementation. Then, last but
not least, the documentation related to FINN and Brevitas is extremely poor.

Since it has been impossible to complete the entire model synthesis, an hypo-
thetical synthesis of the SkyNetQuant model has been carried out with Vivado
HLS using the original C++ files of SkyNet and by setting the weights variable
on 4 bits. Unfortunately, this is an hypothetical version of SkyNetQuant, since
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the original HLS SkyNet implementation was too specific to be modified on time,
thus no simulation has been carried out. The results, both for Ultra96v2 board,
are displayed on Table 5.1.
Firstly, the original SkyNet has been synthesized with three different clock fre-
quency (fCLK = 115.39 MHz, fCLK = 125.00 MHz, fCLK = 136.37 MHz), by
tuning the PLL of the Ultra96 board; then, in order to compare the results,
SkyNetQuant has been synthesized with the same clock period. From Table 5.1,
it could be notice that the maximum clock frequency reachable by SkyNet without
negative slack is fCLK = 125.00 MHz, while SkyNetQuant still have positive slack
also with fCLK = 136.37 MHz.

SkyNet SkyNetQuant
fCLK = 115.39 MHz

WNS 0.470 ns 0.722 ns
TNS 0 0

Resources
Type Units % Units %
CLB 52266 74.07 % 43814 62.09 %
BRAM 209 96.76 % 193 89.35 %
DSP 360 100.00 % 359 99.72%

Power
Total Power 4027 W 3602 W

SkyNet SkyNetQuant
fCLK = 125.00 MHz

WNS 0.003ns 0.190ns
TNS 0 0

Resources
Type Units % Units %
CLB 52303 74.13 % 43815 62.10 %
BRAM 209 96.76 % 193 89.35 %
DSP 360 100.00 % 359 99.72 %

Power
Total Power 4216 W 3748 W

SkyNet SkyNetQuant
fCLK = 136.37 MHz

WNS -0.108 ns 0.020 ns
TNS -8.616 ns 0

Resources
Type Units % Units %
CLB 52321 74.15 % 43859 62.16 %
BRAM 209 96.76 % 193 89.35 %
DSP 360 100.00 % 359 99.72 %

Power
Total Power 4413 W 3900 W

Table 5.1: Comparison among three different implementations results for SkyNet
and SkyNetQuant. (WNS=Worst Negative Slack; TNS=Total Negative Slack).

Notice how the BRAM resource usage is reduced of a 7.41% factor, going from the
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Figure 5.1: On the left, the SkyNet CLB resource usage, on the right, the
SkyNetQuant CLB resource usage. Notice how both the architecture requires
more CLB units as the frequency increases.

96.76% requested by SkyNet to 89.35% requested by SkyNetQuant. Of course,
these values are constants for all the implementations, due to the fact that the
amount of memory requested by SkyNet and SkyNetQuant is the same for every
implementation.
On the contrary, the CLB usage increases as frequency increases for both the
architecture (see the graphs of Figure 5.1). Notice that SkyNetQuant requires
almost the 10% less of CLB units than SkyNet.
As the frequency increases, also the total power of the two architecture increases.
Again SkyNetQuant requires less power than SkyNet.

In conclusion, FINN has to be further improved to be used for every kind of
quantized network; at the moment it can be used just for restricted type of net-
works. On the contrary, Brevitas is already extremely powerful and easy to use.
Thus, if FINN problems are fixed, these tools used together could be very useful
for future developers.
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Appendix A

Skynet Model PyTorch Code

1 from collections import OrderedDict
2 import torch
3 import torch.nn as nn
4 import torch.nn.functional as F
5 import torch.nn.init as init
6

7 from region_loss import RegionLoss
8 from utils import *
9 from collections import OrderedDict

10

11

12 class ReorgLayer(nn.Module):
13 def __init__(self, stride=2):
14 super(ReorgLayer, self).__init__()
15 self.stride = stride
16 def forward(self, x):
17 stride = self.stride
18 assert(x.data.dim() == 4)
19 B = x.data.size(0)
20 C = x.data.size(1)
21 H = x.data.size(2)
22 W = x.data.size(3)
23 assert(H % stride == 0)
24 assert(W % stride == 0)
25 ws = stride
26 hs = stride
27 x = x.view([B, C, H//hs, hs, W//ws, ws]).transpose(3, 4).contiguous()
28 x = x.view([B, C, H//hs*W//ws, hs*ws]).transpose(2, 3).contiguous()
29 x = x.view([B, C, hs*ws, H//hs, W//ws]).transpose(1, 2).contiguous()
30 x = x.view([B, hs*ws*C, H//hs, W//ws])
31 return x
32

33

34 class SkyNet(nn.Module):
35 def __init__(self):
36 super(SkyNet, self).__init__()
37 self.width = int(320)
38 self.height = int(160)
39 self.header = torch.IntTensor([0,0,0,0])
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40 self.seen = 0
41 self.reorg = ReorgLayer(stride=2)
42

43 def conv_bn(inp, oup, stride):
44 return nn.Sequential(
45 nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
46 nn.BatchNorm2d(oup),
47 nn.ReLU(inplace=True)
48 )
49

50 def conv_dw(inp, oup, stride):
51 return nn.Sequential(
52 nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
53 nn.BatchNorm2d(inp),
54 nn.ReLU6(inplace=True),
55

56 nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
57 nn.BatchNorm2d(oup),
58 nn.ReLU6(inplace=True),
59 )
60

61 self.model_p1 = nn.Sequential(
62 conv_dw( 3, 48, 1), #dw1
63 nn.MaxPool2d(kernel_size=2, stride=2),
64 conv_dw( 48, 96, 1), #dw2
65 nn.MaxPool2d(kernel_size=2, stride=2),
66 conv_dw( 96, 192, 1), #dw3
67 )
68

69 self.model_p2 = nn.Sequential(
70 nn.MaxPool2d(kernel_size=2, stride=2),
71 conv_dw(192, 384, 1), #dw4
72 conv_dw(384, 512, 1), #dw5
73 )
74

75 self.model_p3 = nn.Sequential( #cat dw3(ch:192 -> 768) and dw5(ch:512)
76 conv_dw(1280, 96, 1),
77 nn.Conv2d(96, 10, 1, 1,bias=False),
78 )
79

80 self.loss = RegionLoss([1.4940052559648322,
2.3598481287086823,4.0113013115312155,5.760873975661669],2)

81 self.anchors = self.loss.anchors
82 self.num_anchors = self.loss.num_anchors
83 self.anchor_step = self.loss.anchor_step
84 self._initialize_weights()
85

86 def forward(self, x):
87 x_p1 = self.model_p1(x)
88 x_p1_reorg = self.reorg(x_p1)
89 x_p2 = self.model_p2(x_p1)
90 x_p3_in = torch.cat([x_p1_reorg, x_p2], 1)
91 x = self.model_p3(x_p3_in)
92 return x
93
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94 def _initialize_weights(self):
95 for m in self.modules():
96 if isinstance(m, nn.Conv2d):
97 nn.init.kaiming_normal_(m.weight, mode='fan_out')
98 if m.bias is not None:
99 nn.init.constant_(m.bias, 0)

100 elif isinstance(m, nn.BatchNorm2d):
101 nn.init.constant_(m.weight, 1)
102 nn.init.constant_(m.bias, 0)
103 elif isinstance(m, nn.Linear):
104 nn.init.normal_(m.weight, 0, 0.01)
105 nn.init.constant_(m.bias, 0)
106

107 from finn.core.onnx_exec import execute_onnx
108 output_dict = execute_onnx(onnxmodel, input_dict, True)
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Appendix B

Brevitas Library

B.1 Integer Quantizer Code Implementation

1 import torch
2 from torch import Tensor
3 from torch.nn import Module
4

5 import brevitas
6 from brevitas.function.ops import max_int, min_int
7 from brevitas.core.function_wrapper import RoundSte, TensorClamp
8 from brevitas.core.quant.delay import DelayWrapper
9

10

11 class IntQuant(brevitas.jit.ScriptModule):
12 """
13 ScriptModule that implements scale, shifted, uniform integer quantization of

an input tensor,
14 according to an input scale, zero-point and bit-width.
15

16 Args:
17 narrow_range (bool): Flag that determines whether restrict quantization to

a narrow range or not.
18 signed (bool): Flag that determines whether to quantize to a signed range

or not.
19 float_to_int_impl (Module): Module that performs the conversion from

floating point to
20 integer representation. Default: RoundSte()
21 tensor_clamp_impl (Module): Module that performs clamping. Default:

TensorClamp()
22 quant_delay_steps (int): Number of training steps to delay quantization

for. Default: 0
23

24 Returns:
25 Tensor: Quantized output in de-quantized format.
26

27 Examples:
28 >>> from brevitas.core.scaling import ConstScaling
29 >>> int_quant = IntQuant(narrow_range=True, signed=True)
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30 >>> scale, zero_point, bit_width = torch.tensor(0.01), torch.tensor(0.),
torch.tensor(4.)

31 >>> inp = torch.Tensor([0.042, -0.053, 0.31, -0.44])
32 >>> out = int_quant(scale, zero_point, bit_width, inp)
33 >>> out
34 tensor([ 0.0400, -0.0500, 0.0700, -0.0700])
35

36 Note:
37 Maps to quant_type == QuantType.INT == 'INT' == 'int' in higher-level APIs.
38

39 Note:
40 Set env variable BREVITAS_JIT=1 to enable TorchScript compilation of this

module.
41 """
42

43 __constants__ = ['signed', 'narrow_range']
44

45 def __init__(
46 self,
47 narrow_range: bool,
48 signed: bool,
49 float_to_int_impl: Module = RoundSte(),
50 tensor_clamp_impl: Module = TensorClamp(),
51 quant_delay_steps: int = 0):
52 super(IntQuant, self).__init__()
53 self.float_to_int_impl = float_to_int_impl
54 self.tensor_clamp_impl = tensor_clamp_impl
55 self.signed = signed
56 self.narrow_range = narrow_range
57 self.delay_wrapper = DelayWrapper(quant_delay_steps)
58

59 @brevitas.jit.script_method_110_disabled
60 def to_int(
61 self,
62 scale: Tensor,
63 zero_point: Tensor,
64 bit_width: Tensor,
65 x: Tensor) -> Tensor:
66 y = x / scale
67 y = y + zero_point
68 min_int_val = self.min_int(bit_width)
69 max_int_val = self.max_int(bit_width)
70 y = self.tensor_clamp_impl(y, min_val=min_int_val, max_val=max_int_val)
71 y = self.float_to_int_impl(y)
72 return y
73

74 @brevitas.jit.script_method
75 def min_int(self, bit_width):
76 return min_int(self.signed, self.narrow_range, bit_width)
77

78 @brevitas.jit.script_method
79 def max_int(self, bit_width):
80 return max_int(self.signed, self.narrow_range, bit_width)
81

82 @brevitas.jit.script_method

67



83 def forward(
84 self,
85 scale: Tensor,
86 zero_point: Tensor,
87 bit_width: Tensor,
88 x: Tensor) -> Tensor:
89 y_int = self.to_int(scale, zero_point, bit_width, x)
90 y = y_int - zero_point
91 y = y * scale
92 y = self.delay_wrapper(x, y)
93 return y

B.2 Binary Quantizer Code Implementation

1 from typing import Tuple
2

3 import torch
4 from torch import Tensor
5 from torch.nn import Module
6

7 import brevitas
8 from brevitas.function.ops import tensor_clamp
9 from brevitas.function.ops_ste import binary_sign_ste

10 from brevitas.core.bit_width import BitWidthConst
11 from brevitas.core.utils import StatelessBuffer
12 from brevitas.core.quant.delay import DelayWrapper
13

14

15 class BinaryQuant(brevitas.jit.ScriptModule):
16 """
17 ScriptModule that implements scaled uniform binary quantization of an input

tensor.
18 Quantization is performed with

:func:`˜brevitas.function.ops_ste.binary_sign_ste`.
19

20 Args:
21 scaling_impl (Module): Module that returns a scale factor.
22 quant_delay_steps (int): Number of training steps to delay quantization

for. Default: 0
23

24 Returns:
25 Tuple[Tensor, Tensor, Tensor, Tensor]: Quantized output in de-quantized

format, scale,
26 zero-point, bit_width.
27

28 Examples:
29 >>> from brevitas.core.scaling import ConstScaling
30 >>> binary_quant = BinaryQuant(ConstScaling(0.1))
31 >>> inp = torch.Tensor([0.04, -0.6, 3.3])
32 >>> out, scale, zero_point, bit_width = binary_quant(inp)
33 >>> out
34 tensor([ 0.1000, -0.1000, 0.1000])
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35 >>> scale
36 tensor(0.1000)
37 >>> zero_point
38 tensor(0.)
39 >>> bit_width
40 tensor(1.)
41

42 Note:
43 Maps to quant_type == QuantType.BINARY == 'BINARY' == 'binary' when applied

to weights
44 in higher-level APIs.
45

46 Note:
47 Set env variable BREVITAS_JIT=1 to enable TorchScript compilation of this

module.
48 """
49

50 def __init__(self, scaling_impl: Module, quant_delay_steps: int = 0):
51 super(BinaryQuant, self).__init__()
52 self.scaling_impl = scaling_impl
53 self.bit_width = BitWidthConst(1)
54 self.zero_point = StatelessBuffer(torch.tensor(0.0))
55 self.delay_wrapper = DelayWrapper(quant_delay_steps)
56

57 @brevitas.jit.script_method
58 def forward(self, x: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
59 scale = self.scaling_impl(x)
60 y = binary_sign_ste(x) * scale
61 y = self.delay_wrapper(x, y)
62 return y, scale, self.zero_point(), self.bit_width()

B.3 Ternary Quantizer Code Implementation

1 from typing import Tuple
2

3 import torch
4 from torch import Tensor
5 from torch.nn import Module
6

7 import brevitas
8 from brevitas.function.ops_ste import ternary_sign_ste
9 from brevitas.core.bit_width import BitWidthConst

10 from brevitas.core.utils import StatelessBuffer
11 from brevitas.core.quant.delay import DelayWrapper
12

13

14 class TernaryQuant(brevitas.jit.ScriptModule):
15 """
16 ScriptModule that implements scaled uniform ternary quantization of an input

tensor.
17 Quantization is performed with

:func:`˜brevitas.function.ops_ste.ternary_sign_ste`.
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18

19 Args:
20 scaling_impl (Module): Module that returns a scale factor.
21 threshold (float): Ternarization threshold w.r.t. to the scale factor.
22 quant_delay_steps (int): Number of training steps to delay quantization

for. Default: 0
23

24 Returns:
25 Tuple[Tensor, Tensor, Tensor, Tensor]: Quantized output in de-quantized

format, scale,
26 zero-point, bit_width.
27

28 Examples:
29 >>> from brevitas.core.scaling import ConstScaling
30 >>> ternary_quant = TernaryQuant(ConstScaling(1.0), 0.5)
31 >>> inp = torch.Tensor([0.04, -0.6, 3.3])
32 >>> out, scale, zero_point, bit_width = ternary_quant(inp)
33 >>> out
34 tensor([ 0., -1., 1.])
35 >>> scale
36 tensor(1.)
37 >>> zero_point
38 tensor(0.)
39 >>> bit_width
40 tensor(2.)
41

42 Note:
43 Maps to quant_type == QuantType.TERNARY == 'TERNARY' == 'ternary' in

higher-level APIs.
44

45 Note:
46 Set env variable BREVITAS_JIT=1 to enable TorchScript compilation of this

module.
47 """
48

49 __constants__ = ['threshold']
50

51 def __init__(self, scaling_impl: Module, threshold: float, quant_delay_steps:
int = None):

52 super(TernaryQuant, self).__init__()
53 self.scaling_impl = scaling_impl
54 self.threshold = threshold
55 self.bit_width = BitWidthConst(2)
56 self.zero_point = StatelessBuffer(torch.tensor(0.0))
57 self.delay_wrapper = DelayWrapper(quant_delay_steps)
58

59 @brevitas.jit.script_method
60 def forward(self, x: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
61 scale = self.scaling_impl(x)
62 mask = x.abs().gt(self.threshold * scale)
63 y = mask.float() * ternary_sign_ste(x)
64 y = y * scale
65 y = self.delay_wrapper(x, y)
66 return y, scale, self.zero_point(), self.bit_width()
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B.4 QuantTensor Code Implementation

1 from abc import ABC
2 from typing import Optional, NamedTuple
3

4 import torch
5 from torch import Tensor
6

7 from brevitas.function.ops_ste import ceil_ste, round_ste
8 from brevitas.function.ops import max_int
9

10

11 class QuantTensor(NamedTuple):
12 value: Tensor
13 scale: Optional[Tensor] = None
14 zero_point: Optional[Tensor] = None
15 bit_width: Optional[Tensor] = None
16 signed: Optional[bool] = None
17 training: Optional[bool] = None
18

19 @property
20 def tensor(self):
21 return self.value
22

23 @property
24 def is_valid(self):
25 return self.value is not None \
26 and self.scale is not None \
27 and self.zero_point is not None \
28 and self.bit_width is not None \
29 and self.signed is not None
30

31 def set(self, **kwargs):
32 return self._replace(**kwargs)
33

34 def detach_(self):
35 self.value.detach_()
36 self.scale.detach_()
37 self.zero_point.detach_()
38 self.bit_width.detach_()
39

40 def detach(self):
41 return QuantTensor(
42 self.value.detach() if self.value is not None else None,
43 self.scale.detach() if self.scale is not None else None,
44 self.zero_point.detach() if self.zero_point is not None else None,
45 self.bit_width.detach() if self.bit_width is not None else None,
46 self.signed)
47

48 def int(self, float_datatype=False):
49 if self.is_valid:
50 int_value = self.value / self.scale
51 int_value = int_value + self.zero_point
52 int_value = round_ste(int_value)
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53 if float_datatype:
54 return int_value
55 else:
56 return int_value.int()
57 else:
58 raise RuntimeError(f"QuantTensor not well formed, all fields must be

set: {self}")
59

60 @staticmethod
61 def check_input_type(other):
62 if not isinstance(other, QuantTensor):
63 raise RuntimeError("Other tensor is not a QuantTensor")
64

65 def check_scaling_factors_same(self, other):
66 if self.training is not None and self.training:
67 return True
68 if not torch.allclose(self.scale, other.scale):
69 raise RuntimeError("Scaling factors are different")
70

71 def check_zero_points_same(self, other):
72 if self.training is not None and self.training:
73 return True
74 if not torch.allclose(self.zero_point, other.zero_point):
75 raise RuntimeError("Zero points are different")
76

77 def check_bit_width_same(self, other):
78 if not torch.allclose(self.bit_width, other.bit_width):
79 raise RuntimeError("Bit widths are different")
80

81 def check_sign_same(self, other):
82 if not self.signed == other.signed:
83 raise RuntimeError("Signs are different")
84

85 def view(self, *args, **kwargs):
86 return self.set(value= self.value.view(*args, **kwargs))
87

88 def reshape(self, *args, **kwargs):
89 return self.set(value=self.value.reshape(*args, **kwargs))
90

91 def flatten(self, *args, **kwargs):
92 return self.set(value=self.value.flatten(*args, **kwargs))
93

94 def size(self, *args, **kwargs):
95 return self.value.size(*args, **kwargs)
96

97 @property
98 def shape(self):
99 return self.value.shape

100

101 def add(self, other):
102 return self + other
103

104 @staticmethod
105 def cat(tensor_list, dim):
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106 assert len(tensor_list) >= 2, 'Two or more tensors required for
concatenation'

107 first_qt = tensor_list[0]
108 if all([qt.is_valid for qt in tensor_list]):
109 for qt in tensor_list[1:]:
110 QuantTensor.check_input_type(qt)
111 first_qt.check_scaling_factors_same(qt)
112 first_qt.check_scaling_factors_same(qt)
113 first_qt.check_bit_width_same(qt)
114 first_qt.check_sign_same(qt)
115 output_value = torch.cat([qt.value for qt in tensor_list], dim=dim)
116 output_scale = sum([qt.scale for qt in tensor_list]) / len(tensor_list)
117 output_zero_point = sum([qt.zero_point for qt in tensor_list]) /

len(tensor_list)
118 output_bit_width = sum([qt.bit_width for qt in tensor_list]) /

len(tensor_list)
119 output_signed = first_qt.signed # they are the same
120 return QuantTensor(
121 output_value, output_scale, output_zero_point, output_bit_width,

output_signed)
122 else:
123 output_value = torch.cat([qt.value for qt in tensor_list], dim=dim)
124 return QuantTensor(output_value)
125

126

127 # Reference:
https://docs.python.org/3/reference/datamodel.html#emulating-numeric-types

128

129 def __neg__(self):
130 if self.signed:
131 return QuantTensor(
132 - self.value, self.scale, self.zero_point, self.bit_width,

self.signed)
133 else:
134 return QuantTensor(
135 - self.value, self.scale, self.bit_width + 1, signed=True)
136

137 def __add__(self, other):
138 QuantTensor.check_input_type(other)
139 if self.is_valid and other.is_valid:
140 self.check_scaling_factors_same(other)
141 self.check_zero_points_same(other)
142 output_value = self.value + other.value
143 output_scale = (self.scale + other.scale) / 2
144 output_zero_point = (self.zero_point + other.zero_point) / 2
145 max_uint_val = max_int(signed=False, narrow_range=False,

bit_width=self.bit_width)
146 max_uint_val += max_int(signed=False, narrow_range=False,

bit_width=other.bit_width)
147 output_bit_width = ceil_ste(torch.log2(max_uint_val))
148 output_signed = self.signed or other.signed
149 output = QuantTensor(
150 output_value, output_scale, output_zero_point, output_bit_width,

output_signed)
151 else:
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152 output_value = self.value + other.value
153 output = QuantTensor(output_value)
154 return output
155

156 def __mul__(self, other): # todo zero point
157 QuantTensor.check_input_type(other)
158 if self.is_valid and other.is_valid:
159 output_value = self.value * other.value
160 output_scale = self.scale * other.scale
161 output_bit_width = self.bit_width + other.bit_width
162 output_signed = self.signed or other.signed
163 output = QuantTensor(output_value, output_scale, output_bit_width,

output_signed)
164 else:
165 output_value = self.value * other.value
166 output = QuantTensor(output_value)
167 return output
168

169 def __sub__(self, other):
170 return self.__add__(- other)
171

172 def __truediv__(self, other): # todo zero point
173 QuantTensor.check_input_type(other)
174 if self.is_valid and other.is_valid:
175 output_tensor = self.value / other.tensor
176 output_scale = self.scale / other.scale
177 output_bit_width = self.bit_width - other.bit_width
178 output_signed = self.signed or other.signed
179 output = QuantTensor(output_tensor, output_scale, output_bit_width,

output_signed)
180 else:
181 output_value = self.value / other.value
182 output = QuantTensor(output_value)
183 return output
184

185 def __abs__(self):
186 if self.signed:
187 return QuantTensor(
188 torch.abs(self.tensor), self.zero_point, self.scale, self.bit_width

- 1, False)
189 else:
190 return QuantTensor(
191 torch.abs(self.tensor), self.zero_point, self.scale,

self.bit_width, False)
192

193 def __pos__(self):
194 return self
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Appendix C

FINN Custom Transformations
and Node

C.1 CollapseReshape Transformation

1 import finn.custom_op.registry as registry
2 import finn.core.data_layout as DataLayout
3 from finn.transformation.base import Transformation
4 import warnings
5 import numpy as np
6 import onnx.helper as helper
7 from onnx import TensorProto
8

9 class CollapseReshape(Transformation):
10

11 def apply(self, model):
12 graph = model.graph
13 node_ind = 0
14 graph_modified = False
15 for n in graph.node:
16 node_ind += 1
17 if n.op_type == "Reshape":
18 consumer_one=model.find_consumer(n.output[0])
19 if consumer_one.op_type=="Transpose":
20 consumer_two=model.find_consumer(consumer_one.output[0])
21 if consumer_two.op_type=="Reshape":
22 graph_modified = True
23 first_reshape=model.get_initializer(n.input[1])
24 second_reshape=model.get_initializer(consumer_two.input[1])
25 first_edge = helper.make_tensor_value_info(
26 model.make_new_valueinfo_name(), TensorProto.FLOAT,

first_reshape.shape
27 )
28 graph.value_info.append(first_edge)
29 model.set_initializer(first_edge.name, first_reshape)
30

31 last_edge = helper.make_tensor_value_info(
32 model.make_new_valueinfo_name(), TensorProto.FLOAT,

second_reshape.shape
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33 )
34 graph.value_info.append(last_edge)
35 model.set_initializer(last_edge.name, second_reshape)
36

37 new_node = helper.make_node(
38 "ReorderBypass", [n.input[0], first_edge.name, last_edge.name],

[consumer_two.output[0]], domain="finn",
first_shape=first_reshape, second_shape=second_reshape)

39 graph.node.insert(node_ind, new_node)
40 graph.node.remove(n)
41 graph.node.remove(consumer_one)
42 graph.node.remove(consumer_two)
43 return (model, graph_modified)

C.2 AddTranspose Transformation

1 import finn.custom_op.registry as registry
2 import finn.core.data_layout as DataLayout
3 from finn.transformation.base import Transformation
4 import warnings
5 import numpy as np
6 import onnx.helper as helper
7 from onnx import TensorProto
8

9 class AddTranspose(Transformation):
10

11 def apply(self, model):
12 graph = model.graph
13 node_ind = 0
14 j=0
15 graph_modified = False
16 for n in graph.node:
17 node_ind += 1
18 if n.op_type=="MultiThreshold":
19 consumer=model.find_consumer(n.output[0])
20 if consumer.op_type=="MultiThreshold":
21 ifm_ch = model.get_tensor_shape(n.output[0])[1] #48
22 ifm_dim = model.get_tensor_shape(n.output[0])[-2] #320
23 idt=model.get_tensor_datatype(n.output[0])
24 inp_trans_out = helper.make_tensor_value_info(
25 model.make_new_valueinfo_name(),
26 TensorProto.FLOAT,
27 (1, ifm_dim, ifm_dim, ifm_ch), # NHWC
28 )
29 graph.value_info.append(inp_trans_out)
30 inp_trans_out = inp_trans_out.name
31 model.set_tensor_datatype(inp_trans_out, idt)
32

33 graph_modified = True
34 transpose_layer_one = helper.make_node(
35 "Transpose", [n.output[0]], [inp_trans_out], perm=[0, 2, 3, 1]
36 )
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37 graph.node.insert(node_ind+1, transpose_layer_one)
38

39 inp_trans_out_2 = helper.make_tensor_value_info(
40 model.make_new_valueinfo_name(),
41 TensorProto.FLOAT,
42 (1, ifm_ch, ifm_dim, ifm_dim), # NCHW
43 )
44 graph.value_info.append(inp_trans_out_2)
45 inp_trans_out_2 = inp_trans_out_2.name
46 model.set_tensor_datatype(inp_trans_out_2, idt)
47 transpose_layer_two = helper.make_node(
48 "Transpose", [inp_trans_out], [inp_trans_out_2], perm=[0, 3, 1, 2]
49 )
50 graph.node.insert(node_ind+2, transpose_layer_two)
51 consumer.input[0]=inp_trans_out_2
52

53

54 return (model, graph_modified)

C.3 ReorderByPass Custom Node

1 import finn.core.data_layout as DataLayout
2 from finn.transformation.base import Transformation
3 import warnings
4 from finn.custom_op.base import CustomOp
5 from finn.util.basic import get_by_name
6 import numpy as np
7 import onnx.helper as helper
8 from onnx import TensorProto
9

10

11 class ReorderBypass(CustomOp):
12 def get_nodeattr_types(self):
13 return {
14 "first_shape": ("i", True, 1),
15 "second_shape": ("i", True, 1),
16 }
17

18 def infer_node_datatype(self, model):
19 node = self.onnx_node
20 dtype = model.get_tensor_datatype(node.input[0])
21 model.set_tensor_datatype(node.output[0], dtype)
22

23 def get_normal_output_shape(self, model):
24 node = self.onnx_node
25 if (node.op_type=="ReorderBypass"):
26 oshape = model.get_initializer(node.input[2])
27 return oshape
28

29 def make_shape_compatible_op(self, model):
30 oshape = self.get_normal_output_shape(model)
31 values = np.random.randn(*oshape).astype(np.float32)
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32 return helper.make_node(
33 "Constant",
34 inputs=[],
35 outputs=[self.onnx_node.output[0]],
36 value=helper.make_tensor(
37 name="const_tensor",
38 data_type=TensorProto.FLOAT,
39 dims=values.shape,
40 vals=values.flatten().astype(float),
41 ),
42 )
43

44 def verify_node(self):
45 pass
46

47

48 def execute_node(self, context, graph):
49 node = self.onnx_node
50 iname = node.input[0]
51 first_input= node.input[1]
52 second_input= node.input[2]
53 x = context[iname]
54 first_shape=context[first_input]
55 second_shape=context[second_input]
56 reshaped_one=np.reshape(x, first_shape)
57 if len(first_shape)==6:
58 transposed=reshaped_one.transpose((0, 1, 2, 4, 3, 5))
59 elif len(first_shape)==5:
60 transposed=reshaped_one.transpose((0, 2, 1, 3, 4))
61

62 reshaped_two=np.reshape(transposed, second_shape)
63 context[node.output[0]] = reshaped_two

C.4 SkyNetQuant model for FINN

1 from collections import OrderedDict
2 import torch
3 import torch.nn as nn
4 import torch.nn.functional as F
5 import torch.nn.init as init
6 from region_loss_cuda import RegionLoss
7 from utils import *
8 from collections import OrderedDict
9

10 #BREVITAS LIBRARY
11 import brevitas.nn as qnn
12 from brevitas.core.quant import QuantType
13

14 class PrintLayer(nn.Module):
15 def __init__(self):
16 super(PrintLayer,self).__init__()
17
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18 def forward(self,x):
19 print('Printing a layer:')
20 print(x)
21 return x
22

23 class ReorgLayer(nn.Module):
24 def __init__(self, stride=2):
25 super(ReorgLayer, self).__init__()
26 self.stride = stride
27 def forward(self, x):
28 stride = self.stride
29 assert(x.data.dim() == 4)
30 B = x.data.size(0)
31 C = x.data.size(1)
32 H = x.data.size(2)
33 W = x.data.size(3)
34 assert(H % stride == 0)
35 assert(W % stride == 0)
36 ws = stride
37 hs = stride
38 x = x.view([B, C, H//hs, hs, W//ws, ws]).transpose(3, 4).contiguous()
39 x = x.view([B, C, H//hs*W//ws, hs*ws]).transpose(2, 3).contiguous()
40 x = x.view([B, C, hs*ws, H//hs, W//ws]).transpose(1, 2).contiguous()
41 x = x.view([B, hs*ws*C, H//hs, W//ws])
42 return x
43

44

45 class SkyNetQuant(nn.Module):
46 def __init__(self, weight_bit_width=4, act_bit_width=4, in_bit_width=4):
47 super(SkyNet, self).__init__()
48 self.width = int(320)
49 self.height = int(320)
50 self.header = torch.FloatTensor([0,0,0,0])
51 self.seen = 0
52 self.reorg = ReorgLayer(stride=2)
53

54 def conv_dw_Brevitas(inp, oup, stride):
55 return nn.Sequential(
56 qnn.QuantConv2d(in_channels=inp, out_channels=inp, kernel_size=3,

stride=1, padding=1, groups=inp, bias=False,
weight_bit_width=weight_bit_width),

57 nn.BatchNorm2d(inp),
58 qnn.QuantReLU(bit_width=act_bit_width, max_val=6),
59 qnn.QuantConv2d(in_channels=inp, out_channels=oup, kernel_size=1,

stride=1, padding=0, groups=1, bias=False,
weight_bit_width=weight_bit_width),

60 nn.BatchNorm2d(oup),
61 qnn.QuantReLU(bit_width=act_bit_width, max_val=6),
62 )
63

64

65 self.model_p1 = nn.Sequential(
66 qnn.QuantIdentity(bit_width=8),
67 conv_dw_Brevitas(3, 48, 1), #dw1
68 qnn.QuantMaxPool2d(kernel_size=2, stride=2),
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69 qnn.QuantIdentity(bit_width=8),
70 conv_dw_Brevitas(48, 96, 1), #dw2
71 qnn.QuantMaxPool2d(kernel_size=2, stride=2),
72 qnn.QuantIdentity(bit_width=8),
73 conv_dw_Brevitas(96, 192, 1), #dw3
74 )
75 self.model_p2 = nn.Sequential(
76 qnn.QuantMaxPool2d(kernel_size=2, stride=2),
77 qnn.QuantIdentity(bit_width=8),
78 conv_dw_Brevitas(192, 384, 1), #dw4
79 conv_dw_Brevitas(384, 512, 1), #dw5
80 )
81 self.model_p3 = nn.Sequential( #cat dw3(ch:192 -> 768) and dw5(ch:512)
82 conv_dw_Brevitas(1280, 96, 1),
83 qnn.QuantConv2d(in_channels=96, out_channels=10, kernel_size=1,

weight_bit_width=weight_bit_width, bias=False),
84 )
85 self.identity=qnn.QuantIdentity(bit_width=8)
86 self.loss = RegionLoss([1.4940052559648322, 2.3598481287086823,

4.0113013115312155, 5.760873975661669],2)
87 self.anchors = self.loss.anchors
88 self.num_anchors = self.loss.num_anchors
89 self.anchor_step = self.loss.anchor_step
90 self._initialize_weights()
91

92 def forward(self, x):
93 x_p1=self.model_p1(x)
94 x_p1_reorg = self.reorg(x_p1)
95 x_p2 = self.model_p2(x_p1)
96 x_p3_in = torch.cat([x_p1_reorg, x_p2], 1)
97 x_p3_in=self.identity(x_p3_in)
98 x = self.model_p3(x_p3_in)
99 return x

100

101 def _initialize_weights(self):
102 for m in self.modules():
103 if isinstance(m, qnn.QuantConv2d):
104 nn.init.kaiming_normal_(m.weight, mode='fan_out')
105 if m.bias is not None:
106 nn.init.constant_(m.bias, 0)
107 elif isinstance(m, nn.BatchNorm2d):
108 nn.init.constant_(m.weight, 1)
109 nn.init.constant_(m.bias, 0)
110 elif isinstance(m, qnn.QuantLinear): #NOT PRESENT IN THE NETWORK
111 nn.init.normal_(m.weight, 0, 0.01)
112 nn.init.constant_(m.bias, 0)
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