
POLITECNICO DI TORINO
Master Degree course in Communications and Computer Networks

Engineering

Master Degree Thesis

WiFi Fingerprinting For
Controlling Social Distancing

Supervisors
Prof. Paolo Giaccone
Prof. Claudio Ettore Casetti

Candidate
Ali Hojeij

Academic Year 2020-2021

Abstract
Internet of Things (IoT) has become a cutting-edge research topic in recent years
to extend the massive internet connectivity to every physical device used in our
daily life routine.

As the COVID-19 pandemic hits the smart cities like Turin, it is essential to
manage the public transport boarding limitation to maintain the social distancing
as much as possible. In this thesis work, the analysis of people’s boarding on a bus
is implemented by electromagnetic fingerprinting using a Raspberry PI 3 with a
sniffer mounted on the bus, that is connected to the internet by a 4G SIM modem
and connected to a network of the bus that provides essential information (e.g.
door status, location, line ID, etc).

The sniffer captures WiFi probe request messages sent frequently by active de-
vices searching for known access points. Each message contains a randomized MAC
address that needs to be matched with other random MAC addresses corresponding
to the same device for it to be counted as a unique passenger. Taking to account
that not all people keep the WiFi interface enabled, or not all of them have a smart
device, a correction factor and a smoothing process are applied. At each bus stop,
our system returns an estimated number of passengers to be stored in a database
and then visualizes it on a real-time dashboard.

Test results prove that our system is efficiently and accurately classifying the
bus utilization based on a confusion matrix. Moreover, it is possible to identify
frequent patterns of a specific line at different time slots of any given day. Also, it
is relevant to see the effect of the COVID-19 lockdown regulations on such patterns.

3

Acknowledgements
I would like to express my deepest gratitude to my supervisors’ professor Paolo
Giaccone and professor Claudio Casetti for their endless support and valuable com-
ments and guidance through this thesis work. I highly appreciate their valuable
advice and suggestions to improve my work.

I would like to extend my gratitude to Marco Rapelli and Riccardo Rusca, the
player makers of this project. Great things are not done by one person, they are
done by a team of people.

Nevertheless, I am thankful to my family and friends for the unlimited support
and inspiration to allow me to continue my journey.

4

Contents

Abstract . 3
Acknowledgements . 4

1 Introduction 7

2 WiFi Fingerprinting 9
2.1 MAC Address . 9
2.2 MAC Address Randomization . 10
2.3 WiFi Probe Request . 10

3 System Architecture 13
3.1 Choosing the hardware . 13
3.2 On-board System Description . 14

3.2.1 Remote Accessing to Raspberry PI 15
3.2.2 Collecting Data . 15

3.3 Python Chain Processes . 16
3.4 De-randomization Algorithm . 19

3.4.1 Conditions for Starting the Algorithm 19
3.4.2 Score Computation . 19
3.4.3 The Algorithm . 20

3.5 Pseudocodes for python chain scripts 22
3.5.1 Pseudocode of time window sampling script 22
3.5.2 Pseudocode of Capture Analyser Script 22
3.5.3 Pseudocode of Capture Filtering Script 22
3.5.4 pseudocode of the de-randomizing algorithm 23
3.5.5 pseudocode of Calibration and Sending to database 24

4 Database Storage and Data Visualization 25
4.1 Types of databases . 25

4.1.1 Relational Database . 25
4.1.2 Non-Relational Database . 26

4.2 Implemented Database . 27
4.3 Real-Time Visualization Tool . 27

5

4.3.1 Grafana . 27
4.3.2 Google Charts . 28

4.4 Implemented Dashboard . 28

5 Experimental Evaluation 29
5.1 Profiling . 33
5.2 MAC De-randomization Algorithm Performance 37
5.3 Tuning System Parameters . 41

5.3.1 Determining Optimal Filter Combination 41
5.3.2 Applying Smoothing . 42
5.3.3 Choosing the Smoothing Coefficient 43
5.3.4 Initial Value For Exponential Smoothing 43

5.4 Confusion Matrix Classification . 46
5.5 Frequent Pattern Recognition . 54

5.5.1 Urban Mobility Pattern Recognition 54
5.5.2 Sub-Urban Mobility Pattern Recognition 55

6 Real-Time Dashboard 57
6.1 Data Visualization in Grafana Dashboard 57

7 Conclusion and Future Work 60

Bibliography 61

6

Chapter 1

Introduction

As technology is growing, IoT is crossing the essentials towards an easier life. Smart
cities already started deploying the new mobile communication generation 5G which
can support plenty of use cases, mainly IoT applications. The goal behind IoT
is to have devices that self-report in real-time, improving efficiency and bringing
important information to the surface more quickly than a system depending on
human intervention. IoT makes virtually everything "smart" by improving aspects
of our life with the power of data collection. Citizens interact with the smart city
through the use of their smart devices.

Turin is one of the important smart cities in Italy, which has a population of
around one million, more or less, where citizens strongly depend on public trans-
portation service offered by Gruppo Torinese Trasporti (GTT). Having the option
of precisely checking the number of travelers addresses the most applicable vari-
ant for GTT since it gives a vital proportion of adequacy. Long and short-term
planning contributes to efficient resource management and guarantees that vehicles
operate in the appropriate place and time. Moreover, the COVID-19 pandemic is
raising an urgent problem which is social distancing. Knowing how the vehicles
are utilized by passengers is crucial to re-plan the timetables and number of busses
running accordingly.

There are different applications to enable the automatic people on board count-
ing systems, such as infrared sensors, video processing, or suspension sensors. These
applications are quite expensive to be implemented on a large scale. Thus, the
electromagnetic fingerprinting-based application is optimal in terms of cost where
neither a further action is required from the passenger nor a specific application is
needed to be installed on their devices. Thanks to the standardization of 802.11
WiFi protocol that allows us to build a system able to passively capture probe-
request sent by devices asking to connect to a known access point. However, MAC
addresses reported in these probe-requests are randomized for user privacy threats
due to expected maltreatment like location tracking and profiling for devices being
sniffed [10].

7

Introduction

To counteract the MAC randomization, it is a must to match different MAC
addresses detected to a single device to count it at once. Using a recursive scor-
ing algorithm, we can investigate how probable that two or more probe-requests
with different MAC address links to the same device. This algorithm depends
on data reported in the probe-request messages that are not randomized such as
packet sequence number, timestamp, and high throughput capabilities. Although
the original MAC address will stay unknown since our system is out of any tracking
or profiling purposes.

The objective of the thesis is to show how it is conceivable to use IoT to precisely
detect the number of devices, which can be viewed as equivalent to the number of
passengers on board. Somebody could contend that there is a jumble between the
number of passengers and the number of devices possessed. This is without a doubt
evident, but people are supposed to own a smart device taking to account that Turin
is a smart city with a well-designed network infrastructure that extends the internet
connectivity all over the city. In any case, it is necessary to calibrate the output
of our system introducing a correction factor and a forecast smoothing based on
previous outputs. Our system may have some limitations and considerations to
overcome that are listed below:

• The system performance may be affected if bus stops are very close to each
other, (e.g. not enough time window to capture probe-requests to be sent by
all active devices on-board);

• The system can detect only people carrying smart devices with active WiFi
interface in which no clear behavior of how often the Wifi interface is enabled,
it can be compensated by a static or dynamic correction factor;

• Long traffic-stopping can affect the performance of the system due to the
possibility of capturing data from passers-by, whereas, if the bus is moving,
it is less probable to capture data from outside, even if, it will be a message
with a very low signal quality that is in turn discarded based on appropriate
filtering.

8

Chapter 2

WiFi Fingerprinting

Before building our system, deep research was held into the relevant technologies
and approaches required to understand the structure of the WiFi probe requests
and the MAC randomization applied depending on different device vendors.

2.1 MAC Address

A media access control address (MAC address) is a unique identifier assigned to a
network interface controller (NIC). Every network interface hardware has a unique
MAC address, which is a 48-bit hardware unique identifier. Institute of Electrical
and Electronics Engineers (IEEE) assigns the first 3 bytes (24 bits) that are known
as the Organizationally Unique Identifier (OUI), then device vendors assign the 24
most significant bits (NIC) under the condition that they use each address once.
An example is shown in Figure 2.1.

Figure 2.1. MAC Address Structure (reproduced from [13])

9

WiFi Fingerprinting

2.2 MAC Address Randomization
Wireless device users can be easily tracked if they are transmitting their unique
identity (MAC address). So to ensure user privacy, main vendors have imple-
mented MAC address randomization such that probe requests sent by a device
don’t use its real MAC address. There is no specific standardization for MAC
address randomization in which each OS has its variant to implement the random-
ization algorithm. We recall that Apple supports MAC randomization starting
from iOS 8 [10], whereas Android follows them by supporting MAC randomization
starting from Android 6.0 [1].

According to [16], iOS apply MAC randomization every time the following
events occur: (i) the device is locked or unlocked; (ii) WiFi interface is activated
or deactivated; or (iii) a connection to a WiFi access point is made or attempted.
Thus, it is not possible to estimate the time interval in which the same random
MAC address is used. It strongly depends on the user’s actions.

Researchers did an observation over a short time scale, recording that over one-
hour, mobile devices send almost 55 probe-requests [10]. Another study ascertained
that probe-request frames are sent in intervals of time ranging from 5 seconds to
more than 10 minutes, with a tight density distribution of 88% of probe requests
are sent during the first 5 minutes [12]. Unfortunately, whenever a new version of
the mobile OS is released, the adequacy of these results may be disrupted.

2.3 WiFi Probe Request
WiFi-enabled devices can discover WiFi networks in two different ways: passive
scanning or active scanning. This scanning process is done regardless of whether
or not the user is connected to a wireless network, where the device sends a probe
request messages even if a connection is established with an AP, to ensure the best
signal quality if any AP is nearby with a better signal strength [14].

In passive scanning, stations (STA) listen on each frequency channel to the
beacons to be sent by nearby AP which is not an efficient technique. While in
active scanning, that most of the mobile vendors follow, STA sends to the broadcast
address a probe request management frame asking what network is available on
usable channels in an ordered way. Then STA starts a Probe Timer and waits for
a possible answer from known AP, if no answers are received, STA moves to the
next channel and repeats the scanning process.

We are required to analyze these frames which include information that is as-
sociated with a single device to achieve our goal. This information is the so-called
Information Elements (IE) or the tagged parameters. According to [14], the tagged
parameters can be used as a fingerprint to defeat the MAC randomization, in which
they are not randomized by vendors as declared in [11].

10

WiFi Fingerprinting

As shown in Figure 2.2, a well know probe request structure is supported by
802.11 and we are interested in the following data:

• Source Address is the randomized MAC address of the STA;

• Packet Sequence Number, it is a part of Seq-ctl element, which is incremented
for each transmitted frame (in cycle manner), with a value ranging from 0 to
4095 that reset to 0 when reaching its maximum value [7];

• The tagged Parameters are part of the High Throughput (HT) Capabilities
that identify a family of devices but not the single device, which is a sub-
element of the frame body element of the probe-request frame as shown in
2.3, that contains the following information:

– HT Capabilities Information
– HT Extended Capabilities
– Transmit Beamforming Capabilities
– ASEL Capabilities
– A-MPDU Parameters

Figure 2.2. Basic Structure of 802.11 Probe Request Frame (reproduced from [11])

11

WiFi Fingerprinting

Figure 2.3. Wireshark Capture of Probe Request Frame Highlighting
the HT Capabilities

12

Chapter 3

System Architecture

3.1 Choosing the hardware
For implementing our proposal on a large scale, the cost will be the main metric
to consider, thus we seek the minimum cost possible with the best performance.
For our project, dedicating an entire PC is overkill, thus a Single Board Computer
(SBC) is the best option in terms of cost, power consumption, and space utilization.
The hardware preferably must be a Linux-based operating system, for which a wide
variety of tools is supported by Linux and can be easily configured by command line.
We need a multiprocessor able to process data in to multitask manner, with RAM
large enough to run the system, an LTE dongle to provide internet connectivity,
an efficient WiFi USB-modem to capture probe requests, and a Network LAN port
for plugging an Ethernet cable. Moreover, Taking to account that the available
power on the bus supports a 5V/2.5A voltage/current output, we need hardware
that copes with this specification.

There are plenty of options available in the market, such as Raspberry PI 3,
Raspberry PI 4, Banana Pi, Odroid, etc. The prices range between $10 to over
$250. A set of SBCs available in the market is reported with its specs in Table ??.

Product Price ($) Processor Cores RAM LAN Wireless USB ports OSes
Raspberry Pi 3 Model B 35 Broadcom BCM2837 4 @ 1.2GHz 1GB Fast WiFi, BT 5 Linux

Banana Pi M2 Ultra 46 Allwinner R40 4 @ 1.4GHz 2GB GbE WiFi, BT 4 Linux, Android
Odroid-XU4 74 Samsung Exynos5422 4 @ 2GHz 2GB GbE opt. 3 Linux, Android

Table 3.1. Some SBC Specs in the market

According to [9], power and cost trade-off is done showing that Raspberry Pi 3B
compromise as the best among the bench-marked SBCs. Thus the Raspberry Pi 3B
is our final choice providing the specification we are looking for. We have tried to
use Raspberry Pi 4 instead, trying to improve more the overall system performance

13

System Architecture

but the power provided by the bus system (5.1V/2.5A) is not compatible with the
Raspberry PI 4 needs (5.1V/3A).

Since the built-in WiFi interface in the Raspberry PI 3 doesn’t support the
monitor mode [3], a USB WiFi dongle is used. This new interface must be con-
figured as monitor mode, and the built-in device must be shut down to avoid any
possible interference caused by it.

As what concerns WiFi antenna, we anticipate using a short-range WiFi antenna
that covers the distance limited by the bus borders as much as possible. The higher
the dBi of the antenna, the wider the coverage, and vice versa. An antenna with
low dBi has 360 degrees coverage with tight distance. Thus we choose a commercial
2-dBi WiFi USB dongle to capture the WiFi probe requests.

According to the 802.11 standards, the typical transmission frequency bands for
Wi-Fi are 2.4 and 5 GHz. The sniffer can capture data only at one frequency at a
time, this would require two sniffers placed at the same point to capture on both
bands. But processing data from two sniffers will increase the system complexity.
Thus, the monitoring channel frequency was set to 2.4 GHz since all devices support
2.4 GHz, while old devices don’t support 5 GHz. The main drawback is that 2.4GHz
has fewer channel options with only three of them non-overlapping, while 5GHz has
23 non-overlapping channels.

We need a reliable server to store the system outcome data in a database.
Thanks for Politecnico di Torino support, we have permission to use one of their
powerful servers, namely FULL00 Server, that have a public static IP address. So
we create a database running on the FULL00 server, see Chapter 3.5.5 for more
information about the implemented database.

3.2 On-board System Description

With the collaboration of GTT, we mount a Raspberry PI 3 B on a bus that runs
our system as shown in Figures 3.1 and 3.2. The Raspberry PI is power provided
by the bus power system. It is connected to the bus network by an Ethernet cable,
where the bus network broadcast the door status every one second using UDP
transport protocol. The Raspberry PI is connected to the internet using an LTE
module and plugged in with a WiFi USB dongle to capture the probe requests.
The WiFi USB dongle is the default wireless interface of the system, where it is
configured as a monitor mode. This configuration is done every time the system
startup. Whereas, the capturing process starts right after the configuration, where
the python chain scripts that apply the analysis and algorithm are executed a few
seconds later.

14

System Architecture

3.2.1 Remote Accessing to Raspberry PI
The Raspberry PI is connected to the internet by LTE Network, where the IP
address is dynamic and ISP firewalls don’t allow the reception of the incoming SSH
connections. Thus it is not possible to perform directly an SSH channel to the
Raspberry PI. Instead, a persistent reverse SSH connection must be established
upon system startup. Reverse SSH is a technique through which we can access
systems that are behind a firewall from the outside world.

To establish a persistent reverse SSH, autossh tool is used. At each system
startup, the /etc/rc.local file is executed, in which a bash script is written inside this
file. Before performing an autossh channel, it is required to create the Raspberry
PI ssh-key, then copy it to the FULL00 server. This key is static, so it is done once
and there is no need to create it at each system start-up. In this way, we can access
remotely the Raspberry PI from the FULL00 server.

3.2.2 Collecting Data
Capturing WiFi Probe Request

The sniffer mounted on the bus is in charge of collecting the probe requests and
saving them in a local file in real-time using tshark tool (part of Wireshark).

Using Wireshark we distinguish a probe request frame by its sub-type tag which
is 0x04 as standardized by 802.11 as shown in Figure 2.3. With this support, we can
report the timestamp and the received signal power of each captured probe-request
frame. The data are stored in a local file Captures.txt, which in turn to be analyzed
by the python scripts chain.

Capturing UDP packets sent by bus network

To read the broadcast data sent by the bus network, a UDP connection is es-
tablished using socket library in python [8]. UDP does not require a long-lived
connection, so setting up a UDP socket is simple. The IP address will be the
broadcast address of the network (192.168.0.255), and the port will be any free
port available. UDP messages must fit within a single packet and delivery is not
guaranteed. Each UDP packet contains a set of information, such as door status,
timestamp, Line ID, GPS location (latitude and longitude), speed of the bus, etc.
These data are stored in a local file Door.txt, where every new entry received is
appended to the file.

15

System Architecture

3.3 Python Chain Processes
The system performs a set of tasks, executed in a chain manner, where each task
is performed in an independent python script that is in communication with other
scripts by UNIX pipes. A UNIX pipe connects the STDOUT (standard output) file
descriptor of the first process to the STDIN (standard input) of the second. When
the first process writes to its STDOUT, that output can be immediately read (from
STDIN) by the second process. In our case, we are using multiple pipes which are
not different from using a single pipe. Each pipe is independent, and simply links
the STDOUT and STDIN of the adjacent processes.

• Time Window Sampling: Read data from the local file Captures.txt that
contain the information of probe-request frames being captured. Then seek
for the last line and check its integrity (e.g. if the format is disrupted or the
line is not complete). After that, perform a time window sampling according
to door status fetched from local file Door.txt in such a way when the doors
are opened, data captured are discarded, and the data collected so far will
be constructed as an independent list L1 to be analyzed in the following
processes, then print the list L1 to STDOUT;

• Capture Analysis: Read L1 data from STDIN and analyze it. For each
MAC address detected, a set of data must be reported in list L2:

– Number of occurrences of MAC address per list;
– Received signal power average, maximum and minimum for each MAC

per list;
– Fist view and last view of each MAC per list;
– First sequence number and last sequence number detected for each MAC

per list;
– OUI mapping for each MAC per list, if the first 3 bytes of the MAC is

not found in the OUI list, the manufacturer is reported as "Unknown";

• Capture Filtering: Discard received packets in the list L2 that have a
MAC with an average received signal power less than a certain threshold
(e.g. -70dBm) and the minimum number of MAC occurrences per list (e.g.
2). These values are in charge of analysis to be set (see Chapter 5). Then
save the filtered list in L3 and print it out to STDOUT;

• De-randomizing Algorithm: Read list L3 from STDIN, then apply a re-
cursive scoring algorithm to all 2-MAC combination in list L3 that satisfy
certain conditions (see 3.4.1). This algorithm assesses the probability that
two or more random MAC addresses correspond to the same device. The

16

System Architecture

higher the score, the more probable the two MAC addresses relate to the
same device. Save the result in list L4 and print it out to STDOUT. A de-
tailed description of the algorithm is mentioned in Section 3.4. A similar
algorithm was built by [15];

• Outcome Calibration and storing in database: Read L4 data from
STDIN. The length of L4 is the pre-estimated number of people boarding the
bus. Then calibrate the result using simple exponential smoothing and adding
a correction factor (these coefficients are in charge of analysis, see Chapter
5). Insert in the database the calibrated outcome, the instance timestamp,
and the average load of the RP’s CPU in the last one minute.

An overview of system architecture is shown in Figure 3.3.

Figure 3.1. Raspberry PI 3 Plug-in Description

17

System Architecture

Figure 3.2. Raspberry PI 3 and the modules installed on the bus

Figure 3.3. System Architecture Flow Chart

18

System Architecture

3.4 De-randomization Algorithm

3.4.1 Conditions for Starting the Algorithm
As stated in Section 2.3, some elements included in probe-request frames can be
exploited as a device fingerprint with a sufficient reliability. Elements such as se-
quence number and tagged parameters (HT Capabilities) of probe-request frames
remain constant even with randomized MAC address. Considering two different
MAC addresses captured by the sniffer: MACi and MACj, de-randomization algo-
rithm starts if:

• Condition 1: First view of MACi ti
f is before last view of MACj tj

l;

• Condition 2: HT capability (Tagged Parameters) of MACi is similar to HT
capability of MACj.

3.4.2 Score Computation
We define a score for each 2-MAC combination available in a list. The score tells
how probable these 2 MAC addresses relate to the same device, the higher the score
the greater the probability. The score is the inverse proportion of:

• [∆TIME]: The difference in time of the last view of MACi and the first view of
MACj where it expresses the continuity in the arrival of the received frames;

• [∆SEQ]: The difference in the sequence numbers between received frames
and different MAC addresses. It expresses the continuity in the received
frames, taking to account that the sequence number is cycling incremental
value (range from 0 to 4095, then set to 0 when it reach its maximum value);

• [∆POWER]: The difference between the received signal power of each MAC.
If the difference of received average signal power for the two MAC addresses
is high, it is more probable that these two MAC don’t relate to the same
device.

Using the Equation 3.1 the score is computed:

Scoreij =
⃓⃓⃓⃓
⃓ 1
∆TIMEij

· 1
∆SEQij

· 1
∆POWERij

⃓⃓⃓⃓
⃓ (3.1)

where:

∆SEQ =

⎧⎨⎩sf
j − sl

i, if sf
j >sl

i

4095 − (sl
i − sf

j) if sf
j <sl

i

(3.2)

19

System Architecture

∆TIMEij = tf
j − tl

i (3.3)

∆POWERij = pj − pi (3.4)

defining:

• sj
f: Sequence Number of the first view of Macj

• si
l: Sequence Number of the last view of Maci

• tj
f: Timestamp of the first view of Macj

• ti
l: Timestamp of the last view of Maci

• pi: Average received signal power of Maci

• pj: Average received signal power of Macj

3.4.3 The Algorithm
Consider the dataframe D received from the filtering script that contains a set of
MAC addresses and their associated information. Initially, the device list of list is
empty. The first MAC in the dataframe will be appended to the first list of the
device list. Each MAC in the dataframe will be assigned to a specific device list
according to the following algorithm: If conditions 1 and 2 holds for at least one
MAC in the list device at given index ind: save this index ind in the candidate list
and set the found flag to 1. If the flag found not equal to 1, thus the MACcurrent
certainly belongs to a new device, so the MACcurrent is appended to a new list of the
device list, and the algorithm is stopped. Otherwise, compute the score between
MACcurrent and all MAC inside the list with index ind. Then search for MACm
having the maximum score computed.

Considering the list Lind where MACm is located, if MACm is the last element
of the list, MACcurrent is appended to the list, and the algorithm is stopped.

If there is another MAC address MACn that follows MACm in list Lind, compare
Scorem,current and Scorem,n:

If Scorem,current is less than Scorem,n, it means that it is more likely that MACm
and MACn belong to the same device, with respect to MACm and MACcurrent. Thus
ignore MACm and recur for MACcurrent with an updated ignoring list. Ignoring
means that the ignored MAC will not interfere again in the computation of scores
when the algorithm recurs.

Otherwise, Scorem,current is greater than Scorem,n, the MAC addresses following
the MACm, are not sure to belong to same device. Thus trim them from the list
Lind and repeat the recursion for those trimmed MAC addresses to specify again the

20

System Architecture

more probable device they belong to. Then append the MACcurrent to the remaining
list.

Applying this algorithm for all the available MAC in the dataframe D, the
resulting will be a device list of list, that contains in each element of list of list
the corresponding MAC addresses referring to the same device. Keep in mind
that a limitation of recursion is set to stop the recursion in order not to reach the
maximum recursion depth.

Summarizing, we state that the de-randomizing algorithm stops if: the recursion
limit exceeded, the MACcurrent belong to a new device, or the MAC having the
maximum score is the last element in the list. While it recurs if the MAC having
the greatest score is not the last element in the corresponding list.

21

System Architecture

3.5 Pseudocodes for python chain scripts

3.5.1 Pseudocode of time window sampling script
1
2 f l a g =1 # i t d e s c r i b e s t h e p r e c e d i n g door s t a t u s
3
4 while True :
5 read l a s t L i n e from l o c a l f i l e Captures . t x t
6 read doorStatus from l o c a l f i l e Door . t x t
7 check i n t e g r i t y for l a s t L i n e :
8 i f doorStatus =0: # Door i s c l o s e d
9 i f f l a g == 0 :

10 l i s t = l i s t + l a s t L i n e
11 f l a g = 0
12 e l s e :
13 l i s t = l a s t L i n e
14 f l a g = 0
15
16 e l s e : # Door i s opened
17 i f f l a g == 0 :
18 print l i s t to st d o u t
19 l i s t = ’ ’
20 f l a g = 1
21
22 e l s e :
23 l i n e s = ’ ’
24 f l a g = 1

3.5.2 Pseudocode of Capture Analyser Script
1 l i s t =[]
2 while True :
3 read dataframe D from s t d i n
4 c a l c u l a t e for each unique MAC in the dataframe D:
5 n = Number o f o c c u r r e n c e
6 f t = F i r s t timestamp
7 l t = Last timestamp
8 ar = average r e c e i v e d s i g n a l power
9 f s = f i r s t sequence number

10 l s = l a s t sequence number
11 Match the MAC with OUI l i s t
12 i f no match :
13 manufacture=unknown
14 append to a l i s t the unique MAC and i t s c o r r e s p o n d i n g data
15 print l i s t to st d o u t

3.5.3 Pseudocode of Capture Filtering Script
1 L2 =[]
2 while True :
3 read dataframe D from s t d i n
4 for each l i s t L1 in D:
5 i f L1 . number_of_MAC_occurrence>=threshold_n :
6 i f L1 . average_signal_power>=t h r e s h o l d _ s :
7 L2 . append (L1)
8 print L2 to s t d o u t

22

System Architecture

3.5.4 pseudocode of the de-randomizing algorithm

1
2 # d e f i n e D as d a t a f r a m e t h a t c o n t a i n MAC a d d r e s s e s d e t e c t e d and i t s a s s o c i a t e d i n f o r m a t i o n
3 # read current_mac one by one from t h e d a t a f r a m e D, and c h e c k i t w i t h a l l c r e a t e d l i s t i f any ,
4 # d e f i n e l s t _ d e v i c e as a l i s t o f l i s t ,
5 # t h a t s t o r e s , when r e c u r s i o n ends t h e MAC, a d d r e s s e s c o r r e s p o n d i n g t o each d e v i c e
6 # d e f i n e l i s t _ l s t e l e m e n t l i s t o f l s t _ d e v i c e
7
8 de−randomizer (current_mac , l ist_ignoring_mac , r e c u r s i o n _ l i m i t) :
9 for j , l i s t in l s t _ d e v i c e :

10 for k , old_mac in l s t _ l i s t :
11 i f c o n d i t i o n 1 (old_mac , current_mac) && c o n d i t i o n 2 (old_mac , current_mac) :
12 l s t _ c a n d i d a t e . append [j]
13 found=1
14 break # whenever we found one MAC s a t i s f i y i n g t h e two c o d i t i o n s ,
15 # append t h e i n d e x o f t h e l i s t _ d e v i c e found i n i t t o a t r a c k i n g l i s t and b r e a k
16
17 i f found =0: # no MAC i s s a t i s f y i n g t h e two e q u a t i o n s ,
18 # t h e n current_mac c e r t a i n l y b e l o n g t o new d e v i c e
19
20 l s t _ d e v i c e . append ([current_mac]) # append t o t h e l i s t o f l i s t l s t _ d e v i c e
21 # t h e new MAC, and new l i s t h a v i n g a f i r s t e l e m e n t current_mac
22 l i st_ignor ing_mac =[] # r e s e t t h e i g n o r i n g l i s t , s i n c e no matching MAC i s p o s s i b l e y e t
23 return # s t o p t h e r a n d o m i z i n g a l g o r i t h m
24 e l s e :
25 for index in l s t _ c a n d i d a t e :
26 for old_mac in l s t _ d e v i c e [index] :
27 i f old_mac i s not in l i s t_ignor ing_mac :
28 i f s c o r e >maxScore : #f i n d i n g maximum s c o r e
29 maxScore=s c o r e
30 i n d e x _ l i s t=index
31
32 #mac_candidate i s t h e MAC w i t h t h e h i g h e s t s c o r e
33 mac_candidate=old_mac
34 max_score_index=l s t _ d e v i c e s [i n d e x _ l i s t] . index (mac_candidate)
35
36 i f mac_candidate i s the l a s t element o f the l i s t :
37 # f o r s u r e mac_candidate i s r e l a t e d t o MAC a d d r e s s e s i n s i d e t h e c o r r e s p o n d i n g l i s t
38 #t h u s append i t t o t h e c o r r e s p o n d i n g l i s t
39 l s t _ d e v i c e s [i n d e x _ l i s t] . append (current_mac)
40 lst_ignoring_mac =[] #
41 return # s t o p t h e a l g o r i t h m
42
43 e l s e : # t h e mac_candidate i s not t h e l a s t e lement ,
44 #t r a c k t h e f o l l o w i n g _ m a c t o mac_candidate
45 #t h e f o l l o w i n g s c o r e must be compared t o max_score
46 f o l l o w i n g _ s c o r e=computeScore (mac_candidate , fol lowing_mac)
47 i f f o l l o w i n g _ s c o r e > maxScore :
48 lst_ignoring_mac . append (mac_candidate)
49 # i t i s more l i k e l y t h a t mac_candidate and f o l l o w i n g _ m a c b e l o n g t o t h e same d e v i c e
50 # than mac_candidate and current_mac , t h u s i g n o r e mac_candidate
51 i f r e c u r s i o n _ l i m i t >0:
52 r e c u r s i o n _ l i m i t = r e c u r s i o n _ l i m i t − 1
53 de−randomize (current_mac , lst_ignoring_mac , r e c u r s i o n _ l i m i t)
54 # r e c u r s e a g a i n t o f i n d t h e r i g h t l i s t f o r current_mac
55 e l s e :
56 return # max r e c u r s i o n l i m i t i s r e a c h e d
57 e l s e :
58 # t h e MAC a d d r e s s e s f o l l o w i n g t h e mac_candidate i n t h e c o r r e s p o n d i n g l i s t
59 # are not s u r e t o b e l o n g t o t h e same d e v i c e anymore
60 i n d e x _ f o l l o w i n g = l s t _ l i s t . index (following_mac)
61 # s a v e t h e mac a d d r e s s e s t h a t are more l i k e l y not
62 # b e l o n g t o t h e c u r r e n t d e v i e c , t h u s t o be de−randomized a g a i n
63 l s t _ r e p e a t i n g=l s t _ d e v i c e s [i n d e x _ l i s t] [i n d e x _ f o l l o w i n g :]
64 # s a v e t h e mac a d d r e s s e s t h a t are more l i k e l y b e l o n g t o t h e same d e v i c e
65 l s t _ d e v i c e s [i n d e x _ l i s t]= l s t _ d e v i c e s [i n d e x _ l i s t] [: i n d e x _ f o l l o w i n g]
66 # add current_mac t o t h e end o f t h e c u r r e n t l i s t
67 l s t _ d e v i c e s [i n d e x _ l i s t] . append (current_mac)
68 # r e s e t t h e i g n o r i n g mac l i s t t o p a s s i t a g a i n i n t h e f o l l o w i n g de−randomize r e c u r s i o n
69 lst_ignoring_mac =[]
70
71 for mac_repeating in l s t _ r e p e a t i n g :
72 i f r e c u r s i o n _ l i m i t >0:
73 r e c u r s i o n _ l i m i t = r e c u r s i o n _ l i m i t − 1
74 # r e c u r e a g a i n t o f i n d t h e r i g h t l i s t f o r current_mac w i t h u p d a t e d i g n o r i n g l i s t
75 de−randomize (current_mac , lst_ignoring_mac , r e c u r s i o n _ l i m i t)
76 e l s e :
77 return # max r e c u r s i o n l i m i t i s reached , s t o p t h e a l g o r i t h m

23

System Architecture

3.5.5 pseudocode of Calibration and Sending to database
1
2 def exponential_smoothing (l s t , alpha) :
3 # F i s t h e Forcast , l s t i s t h e d a t a t o be smoothed
4 # F [i +1]= a l p h a ∗A[i] + (1− a l p h a)∗F [i]
5 F = []
6 F . append (l s t [0])
7 for i in range (1 , len (l s t) + 1) :
8 F . append (alpha ∗ l s t [i − 1] + (1 − alpha) ∗ F [i − 1])
9 return F

10
11
12 while True :
13 e s t a b l i s h c o n n e c t i o n to database db
14 i f c o n n e c t i o n i s e s t a b l i s h e d s u c c e s s f u l l y :
15 while True :
16 read dataframe D from s t d i n
17 num=len (D)
18 b u f f . append (num)
19 i f (len (b u f f) >1):
20 l=exponential_smoothing (buf f , 0 . 4)
21 e l s e :
22 b u f f . append (num) # i n i t i a l v a l u e f o r s t a r t i n g t h e smoothing
23 cpuLoad = average CPU load o f l a s t one minute
24 time = f i r s t V i e w o f f i r s t MAC in dataframe D
25 d e t e c t i o n = l a s t element o f l i s t l
26 d e t e c t i o n = d e t e c t i o n + d e t e c t i o n ∗ c o r r e c t i o n _ f a c t o r
27 query = insert_to_Table_in_database (time , d e t e c t i o n , cpuLoad)
28 db . e x e c u t e (query)
29 db . commit ()
30 e l s e :
31 s l e e p 5 minutes

24

Chapter 4

Database Storage and Data
Visualization

A database is a collection of data stored in an orderly manner. To run a system
efficiently and not lose any data from our system outcomes, the data must be stored
in a database. These data can be fetched by a web server that runs the real-time
dashboard. In this section, we will illustrate which type of database is suitable
for our use case, and what are the options for visualizing the data on a real-time
dashboard.

4.1 Types of databases
There are various types of databases. However, databases are widely divided
into two major types, namely, Relational (Sequence Databases) and Non-relational
(Non-sequence) databases.

4.1.1 Relational Database
A relational database is structured, meaning the data is organized in tables con-
taining rows and columns. Each row is considered as a tuple or an entry, and each
column stores a specific type of information. In other words, the column represents
the data point itself that needs to be stored and the row is a record of the data
points per column. The data within these tables have relationships with one an-
other, or dependencies, where relationships are established through Primary and
Foreign keys. Relationships can be easily defined between data points. Traditional
relational databases are efficient at keeping the data transactions secure and making
complex queries to acquire information.

25

Database Storage and Data Visualization

Relational Database Advantages:

• Data is easily structured into categories;

• Data are consistent in input and easy to navigate;

• Can handle lots of complex queries, database transactions, and routine anal-
ysis of data;

• Easy configuration, simple import, and export of data;

• Ensure reliable database transactions.

Relational Database Disadvantages:

• Abundance of Information: Don’t support storing very large images, numbers,
designs, and multimedia products;

• Cost: Very expensive in setting up and maintaining the database

• Structured Limits: where relational databases have limits on field lengths.
When you design the database, you have to specify the amount of data you
can fit into a field.

4.1.2 Non-Relational Database
A non-relational database is document-oriented, meaning, all information gets
stored in more of a laundry list order. Where NoSQL is less structured/confined
in format, and thus, allows for more flexibility and adaptability. Non-Relational
databases are efficient at storing large amounts of data semi-structured. Companies
growing at a rapid pace like startups utilize more non-relational databases for their
scalability and flexibility, where it can also save companies a lot of money.

26

Database Storage and Data Visualization

4.2 Implemented Database
The database implemented is a relational database, because the data visualization
tool we use supports only a time-series database that is a relational database.
MySQL is a well-known relational database supported by the visualization tool we
use, thus it is convenient to our use case.

Our MySQL database consist one table that have the following structure:

• ID [Primary Key], (int) auto-generated

• Timestamp, (datetime)

• Detection, (int)

• cpuLoad, (double)

The Timestamp is the instance when the bus stops (e.g. instance when the door
is opened), the Detection is the estimated number of people at each bus stop, and
cpuLoad is the average RP’s CPU utilization in the last one minute.

4.3 Real-Time Visualization Tool
There are many tools available to create visualizations of large data sets. The best
data visualization tools include Google Charts, Tableau, Grafana, ChartBlocks,
etc. These tools offer a variety of visualization styles that are easy to use and can
handle large data sets. Each one has its advantages and disadvantages. Among
these options, we will try to identify the best visualization tool to be used. A
comparison is held between Grafana and Google Charts

4.3.1 Grafana
Grafana is an open-source visualization tool that lets users create dynamic dash-
boards and other visualizations. It supports mixed data sources, annotations, and
customize alert functions, and it can be extended via hundreds of available plugins.
This makes it one of the most powerful visualization tools available. Grafana is
advantageous in the following:

• Open source, with free and paid options available;

• Large selection of data sources available;

• Simple creation of dynamic dashboards;

• Built-in access control mechanism that allows restricted access to dashboards
only to authorized users.

27

Database Storage and Data Visualization

Nevertheless, Grafana has the following drawbacks:
• Very large database;

• Loading time depends on operation time on the database;

• Not the best option for creating visualization images;

• Not able to embed dashboards in websites, though possible for individual
panels.

4.3.2 Google Charts
Google Charts is a powerful, free data visualization tool that is specifically for
creating interactive charts for embedding online [5]. It works with dynamic data
and the outputs are based on HTML5, so they work in browsers without the use
of additional plugins. Google Charts have the following points of interest:

• Completely Free;

• Wide variety of chart formats available;

• Cross-browser compatible since it uses HTML5 customization options;

• Works with dynamic data;

All things considered, Google Charts have the following downsides:
• Beyond the tutorials and forum available, there’s limited support

• Require a web developer to integrate it with their website

4.4 Implemented Dashboard
We decide to use the Grafana dashboard for visualizing the estimated number of
people boarding the bus over time. Because Google Chart requires a website to be
build which is not our point of interest. Instead, Grafana supports fetching data
from the local MySQL database, where it can be accessed online using the static
public IP of the server on a free port that is chosen upon the configuration of the
dashboard.

We set two line charts, first for visualizing the estimated number of people
boarding per bus stop as a function of time, and the other for visualizing the
average CPU load evolution over time.

All the charts are interactive, so it is possible to change the time axis and zoom
in a specific time interval to see more in detail all the data. Also, it is possible to
set or modify the refresh rate of the data to see real-time values coming from the
system.

28

Chapter 5

Experimental Evaluation

This chapter will show the analysis of captures received by our sniffer. We did six
manual counting sets, each one with a different day and time. Based on the ground
truth results, we set the best filter combination (i.e. received average signal power
threshold for each MAC address and the number of the occurrence of a MAC per
list), smoothing coefficient (α), and correction factor.

Moreover, we tested the performance of the de-randomization algorithm along
with the analysis. It is also conceivable to identify a frequent pattern of people
boarding the bus at different times of the day and during vacation and working
days.

The manual counting is done on the following days:

• JULY 26th 2020;

• JULY 27th 2020;

• OCTOBER 16th 2020;

• OCTOBER 19th 2020;

• OCTOBER 30th 2020;

• NOVEMBER 2nd 2020.

During the lockdown, it is not possible to do any manual counting due to the
strict regulations, thus we are limited with these sets only. Our system is mounted
on bus ID 33E that is operated by GTT. It usually runs on specific lines as shown
in table 5.1.

The lines with urban mobility type are usually more utilized by passengers, thus
different patterns are expected for different mobility types.

29

Experimental Evaluation

Line Number Path Figure Mobility Type Starting Region Returning Region
6 5.1 Urban Porta Nuova Madonna Del Pilone
19 5.2 Urban Porta Susa Madonna Del Pilone

SE1 5.3 Sub-Urban Torino Stura Settimo Torinese
SE2 5.3 Sub-Urban Torino Stura Settimo Torinese
61 5.4 Sub-Urban Porta Nuova San Mauro Torinese

Table 5.1. Lines that bus 33E runs on

Figure 5.1. Line 6 Path

30

Experimental Evaluation

Figure 5.2. Line 19 Path

Figure 5.3. Line SE1 and SE2 Paths

31

Experimental Evaluation

Figure 5.4. Line 61 Path

32

Experimental Evaluation

5.1 Profiling
Profiling is exploited to test the capability of our system. Since our system is build
using python, which is high-level programming, we have to monitor the CPU load
and the Memory Load to see if the system is capable to execute all the scripts
simultaneously without overloading. In order to do so, top LINUX tool is used. top
command provides a dynamic real-time view of the running system. This command
shows the summary information of the system and the list of processes that are
currently managed by the Linux Kernel. A bash script is written to monitor all the
python scripts by their process ID (PID) using top over a time interval.

Fortunately, our system is under-loaded, with a maximum CPU load spike of
55% as shown in the Figure 5.10 and a stable memory load around 19.8% as shown
in Table 5.2. The system is experiencing spikes in CPU load since the probe re-
quests are burst-oriented so the processor will process a burst at once, which will
significantly increase the CPU utilization at a single instance. Each python script
of the chain has a different CPU load. Figure 5.5 shows the time window sampling
CPU load, which is the least consuming with a max spike equal to 0.75%. Because
no dataframe is created in this script, and the script is simple. (see pseudo-codes
in Section 3.5). While capture analyzer, capture filter, and de-randomizing algo-
rithm script have a much higher CPU load since they are more complex because
data-frames are used and complex calculations are done in these scripts. The de-
randomizing algorithm is the most CPU-consuming since it is the most complex
among all the scripts with a maximum CPU spike of 22%. The process-related
to calibrating the outcome and inserting it in the database have a different CPU
utilization behavior, as shown in Figure 5.9. Since the connection to the database
is frequently checked to not lose any data, thus the CPU load of this script is always
fluctuating.

Process Memory Load [%]
Time Window Sampling 0.7

Capture Analyzer 4.7
Capture Filter 4.5

De-randomizing Algorithm 4.5
Calibrating and Sending Outcome to DB 4.7

Total Memory Load 19.8

Table 5.2. Static Memory Load of Each Process

33

Experimental Evaluation

Figure 5.5. Time Window Sampling Script CPU Load Evolution Over Time

Figure 5.6. Capture Analyzer Script CPU Load Evolution Over Time

34

Experimental Evaluation

Figure 5.7. Capture Filter Script CPU Load Evolution Over Time

Figure 5.8. De-randomization Algorithm Script CPU Load Evolution Over Time

35

Experimental Evaluation

Figure 5.9. Outcome calibration and Inserting it in Database Script CPU
Load Evolution Over Time

Figure 5.10. Total CPU Load Evolution Over Time

36

Experimental Evaluation

5.2 MAC De-randomization Algorithm Performance
In this section, we tested the performance of the de-randomizing algorithm by com-
paring the ground truth with the system outcome in two scenarios: with applying
the derandomizing algorithm and without applying it. To have a fair comparison,
the same filter combination was followed in both scenarios, in such a way that the
signal power threshold is equal to -75dBm and the minimum number of MAC oc-
currence per list is 1. This algorithm is substantial since as illustrated previously,
the same device sends probe-request with different randomized MAC address every
time, so de-randomization is required to guarantee a single time counting of it.

The longer the sampling time window, the higher the number of times a device
changes its MAC address and then the higher the number of distinct MAC address
captured. The effect of derandomization is to reduce the number of MAC addresses
received by a factor. The factor of reducing the number of MAC addresses is
dynamic, which depends on the time window sampling and user’s habit.

Taking to account that the MAC randomization strongly depends on the user’s
habit, where probe requests are sent upon special events done by the user. Each
device applies MAC randomization after sending a probe-request burst. Hence, the
factor of reducing the number of distinct MAC is dynamic (i.e. matching MAC
addresses in a dataframe to the same device).

Moreover, If the sampling time window is tight, each device may send only one
probe request burst having a unique MAC during the time interval, thus the reduc-
ing factor is equal to 1. Otherwise, each device has enough time interval to send
one or more probe request burst, each time with a different MAC address. Thus
the reducing factor will be greater than 1. Reducing factor equal to 1 means that
each MAC address captured is not related to any MAC address in the dataframe
(e.g. all scores returned by the derandomization algorithm are zero).

We can see clearly from Figure 5.14 that the maximum reducing factor is 5,
meaning that on average each 5 distinct MAC detected is brought back to a single
device. Whereas the minimum reducing factor is 1, meaning that each distinct
MAC is detected as a single device. The same scenario is shown in 5.12, where the
maximum reducing factor equal to 5.6, where the lowest reducing factor equal to
1. Also, in Figure 5.16 the minimum reducing factor is 1, but with maximum equal
to 3.s

The comparisons are shown in Figures 5.11 , 5.13 and 5.15. The plots prove
the efficiency of our derandomizing algorithm. When no MAC derandomizing was
applied, the system outcome is relatively not reasonable (order of hundred distinct
MAC detected). Whereas after applying the de-randomization algorithm, the out-
come converges to reasonable values close enough to the ground truth values with
some spikes to be smoothed later on.

37

Experimental Evaluation

Figure 5.11. OCTOBER 16 - With or Without MAC De-randomization Comparison

Figure 5.12. OCTOBER 16 - Factor of reducing number of MAC addresses
Evolution over time

38

Experimental Evaluation

Figure 5.13. OCTOBER 19 - With or Without MAC De-randomization Comparison

Figure 5.14. OCTOBER 19 - Factor of reducing number of MAC addresses
Evolution over time

39

Experimental Evaluation

Figure 5.15. OCTOBER 30 - With or Without MAC De-randomization Comparison

Figure 5.16. OCTOBER 30 - Factor of reducing number of MAC Addresses
Evolution Over Time

40

Experimental Evaluation

5.3 Tuning System Parameters

5.3.1 Determining Optimal Filter Combination
The system parameters are tuned based on minimizing the absolute average relative
error between ground truth and system detection. We test the system changing
every time the MAC occurrence from 1 to 5, and the average received signal power
threshold from -60dBm to -110dBm to find the best filter combination for each
manual counting set. Taking into consideration the strong correlation between
different manual counting sets, thus the best filter combination for each set will be
almost similar.

It is clearly shown from the plots in Figure 5.17, the best filter combination is:
minimum occurrence of MAC per list is equal to 1, and signal power threshold is
-75dBm.

Figure 5.17. Plots for different Manual Counting to find the best filter combina-
tion based on minimizing AARE

41

Experimental Evaluation

5.3.2 Applying Smoothing
To overcome noisy measurements like unexpected spikes in estimating the number
of people boarding the bus, it’s essential to apply a smoothing process to our
data based on previous measurements. There are different approaches to apply to
smooth, such as Simple Exponential Smoothing.

Simple Exponential Smoothing is a time series forecasting method for one-
dimensional data without a trend or seasonality. It requires a single parameter,
called α, also called the smoothing factor or smoothing coefficient. This parame-
ter controls the rate at which the influence of the observations at prior time steps
decays exponentially. Simple exponential smoothing is described by the following
equation:

F t+1 = α · Dt + (1 − α) · Ft (5.1)

defining:

• The forecast Ft+1 for the upcoming period is the estimate of the average
level at the end of period t, in other words, Ft+1 is a weighted average of all
previous demand;

• Dt is the current value to be smoothed;

• Ft is the previous smoothed value;

• α: the smoothing parameter that defines the weighting and should be greater
than 0 and less than 1. α equal 0 sets the current smoothed point to the
previous smoothed value and α equal 1 sets the current smoothed point to
the current point (i.e., the smoothed series is the original series). The closer
α is to 1, the less the prior data points enter into the smooth.

Since the probe requests are burst-oriented, so the sniffer has to capture packets
in a long enough time. If the time elapsed between consecutive stops is tight, the
detection will be sharply decreased concerning the previous detection. On the
other hand, the detection may have a sharp increase, since at crowd areas like
Porta Nouva or Porta Susa, a lot of passers-by will be there and it is possible to
capture probe requests from them. Thus we are obliged to use forecast average
smoothing based on the preceding detection to smooth such spikes.

42

Experimental Evaluation

5.3.3 Choosing the Smoothing Coefficient
According to the function 5.1, values of α near one put almost all weight on the most
recent observations, where Values of α near-zero allow the distant past observations
to have a large influence.

The smoothing constant determine the sensitivity of forecasts to changes in
demand. α may be chosen either subjectively or objectively.

Selecting the smoothing constant subjectively, depends on testing experience. As
such if the mechanism generating the series has gone through some fundamental
changes, choose a smoothing constant value of 0.9 which will cause distant obser-
vations to be ignored. While if the series is fairly stable and only going through
random fluctuations, use a value of 0.1.

Selecting a smoothing factor objectively instead is better (which the way we
will follow) based on some metrics in terms of error, such as MAE (mean absolute
error), MSE (mean square error), AARE (absolute average relative percentage er-
ror). These errors are calculated concerning ground truth values to be measured
(e.g. manual counting of people boarding the bus in our case). One of these met-
rics is followed to get its minimum value to find the most suitable smoothing factor
for our case. Using this formulation, we can define the three error-size criteria as
follows:

MSE = 1
n

·
n∑︂

t=1
(At − Xt)2 (5.2)

MAE = 1
n

·
n∑︂

t=1
|At − Xt| (5.3)

AARE =
⃓⃓⃓⃓
At − Xt

Xt

⃓⃓⃓⃓
(5.4)

defining:

• At: Ground truth value at period t

• Xt: Estimated value at period t

• n: number of observation per test

5.3.4 Initial Value For Exponential Smoothing
As noticed in Equation 5.1, the smoothing process needs an initial value F1. But
how can we set it?

A poor decision of the initial value will require a lot of time before the recursive
smoothing formula to adjust. The effect is truly unmistakable among small-time se-
ries. In this manner, having an appropriate initial value will enhance the smoothing

43

Experimental Evaluation

process. There are different approaches for setting the initial value: i First Obser-
vation Value, (ii) Average value of the 1st few observations, (iii) Back-casting, (iv)
Optimization.

Back-casting and Optimization techniques can’t be implemented in the real-
time scenario, since the series must be pre-defined. Taking to account that the
probe request transmitting is burst-oriented, then maybe the first few detections
of the system will not be adequate, where the impact of one observation value on
the forecast value is mitigated. So no worth having an initial value equal to the
average of the first few detections, therefore the initial value we set is equal to the
first observation value.

By changing to the smoothing coefficient the absolute average relative error
will be improved or getting worse by applying exponential smoothing. We test the
smoothing coefficient (α) ranging from 0.0 to 1.0. The best smoothing coefficient
detected is 0.4 by minimizing the absolute average relative error. The overall ade-
quacy of the estimated number of people on the bus is improved as shown in Figure
5.18. Whereas the spikes are smoothed as shown in Figure 5.19 and 5.20.

Figure 5.18. Comparison of AARE with and without smoothing for different
manual counting sets with minimum number of MAC occurrence = 1

44

Experimental Evaluation

Figure 5.19. Spikes Smoothing α = 0.4 - OCTOBER 16 SET

Figure 5.20. Spikes Smoothing α = 0.4 - OCTOBER 19 SET

45

Experimental Evaluation

5.4 Confusion Matrix Classification
Our system has high adequacy in classifying the bus utilization into three categories
using a confusion matrix. A confusion matrix is a table that is used to describe the
performance of a classification model on a set of test data for which the true values
are known. It allows the visualization of the performance of our algorithm.

According to GTT [4], the maximum capacity of the bus with ID 33E (BYD
Model) is 77 passengers: 21 of them are seated, 55 are standing and 1 with a
wheelchair as shown in Figure 5.21.

COVID 19 Regulations asserts that the maximum utilization of public vehicles
must be at most 50% of its capacity. The thresholds for the confusion matrix are
static according to half of the bus maximum capacity. Hence, we decide to set 3
different classification categories:

• Under-Utilized [Green Zone]: from zero to 15 people on board

• Moderate Utilized [Yellow Zone]: from 16 to 27 on people board

• Highly Utilized [Red Zone]: equal or above 28 people on board

Figure 5.21. Bus layout and boarding capacity (reproduced from [4])

46

Experimental Evaluation

The confusion matrix evaluates the system’s overall performance, either the
system outcome is overestimating, underestimating or the outcome is in line with
the ground truth category class.

The main diagonal of the confusion matrix reflects the accuracy of classifying
bus utilization (e.g. underutilized, moderate utilized, or highly utilized). The values
under the main diagonal tell the percentage when the system is under-estimating
the number of people on board, where the values above the main diagonal show the
percentage when the system is over-estimating the number of passengers on board.
The weighted average accuracy is calculated by the means of the percentages in
the main diagonal, weighted by considering the number of instances of each class.
The critical point of view for controlling social distancing is to not under-estimate
the number of people on board. Thus we seek for confusion matrix that has low
probabilities below the main diagonal.

Since the system can detect only devices with an enabled WiFi interface, a
correction factor must be applied to compensate people on board not detected.
The correction factor is chosen upon maximizing the weighted average accuracy
of the confusion matrix. We add a correction factor ranging from -20% to +20%,
where the best correction factor detected is +10% as shown in a sample test in
Figure 5.22.

Figure 5.22. Weighted Average Accuracy as function of correction factor

The Tables 5.3, 5.4, 5.5 5.6, 5.7 and 5.8 are showing the confusion matrices for
the manual counting sets versus the system detection. Where the corresponding
system detection evolution over time versus the manual counting is shown in Figures
5.23, 5.24, 5.25, 5.26, 5.27 and 5.28 respectively.

47

Experimental Evaluation

Our point of interest is to detect when the bus is highly-utilized. As we can see
in Table 5.3, the system can classify 100% the highly-utilized category (red-zone).
This tells us that when the bus is overutilized, our system can detect that efficiently.
The overall weighted average accuracy of the confusion matrix is 84.6%. Weighted
average accuracy with a high value tells that the system may have some misestimat-
ing but with low probability. However, the percentage of the moderate-utilization
class (yellow) classified correctly is 67%, with 33% with under-estimating, but this
doesn’t reflect the real performance, since the number of instances involved in this
category is small compared with other categories as clearly shown in Figure 5.23.

Figure 5.23. OCTOBER 16 - System Detection and Manual Counting
evolution over time

System Detection
[0 - 15] [16 - 27] >=28

Manual Counting
[0 - 15] 0.84 0.13 0.02
[16 - 27] 0.33 0.67 0.00
>=28 0.00 0.00 1.00

Weighted Average Accuracy = 0.846

Table 5.3. OCTOBER 16 - Confusion Matrix

48

Experimental Evaluation

As shown in Table 5.4, the system is 100% classifying the red-zone class. The
main drawback here is overestimating the yellow-zone. It is clearly visualized in
Figure 5.24 at time instance 08:00 and 08:01. These instances are the first two stops
for a new bus cycle. The miss-estimating is since the bus stays for a while at the
departing point to restart the cycle again, thus the values of the previous detections
will affect the new detection due to the smoothing process. But all in all, the overall
performance is not affected significantly, where the weighted average accuracy is
relatively high (90.3%), and the system didn’t under-estimate the number of people
on-board. This tells that the system is efficiently classifying the number of people
on board.

Figure 5.24. OCTOBER 19 - System Outcome versus Manual Counting

System Detection
[0 - 15] [16 - 27] >=28

Manual Counting
[0 - 15] 0.88 0.12 0.00
[16 - 27] 0.00 0.50 0.50
>=28 0.00 0.00 1.00

Weighted Average Accuracy = 0.903

Table 5.4. OCTOBER 19 - Confusion Matrix

49

Experimental Evaluation

For October 30th manual counting set the weighted average accuracy is 91.9%.
Most of the system detections were in the green-zone as the real case. The same
scenario repeats for November 2nd , July 26th and July 27th as shown in 5.6, 5.7
and 5.8 respectively. The weighted average accuracy ranges between 83% to 100%,
where the interesting point is the system outcome is consistent with the ground
truth, where it is neither over-estimating nor under-estimating.

Figure 5.25. OCTOBER 30 - System Outcome versus Manual Counting

System Detection
[0 - 15] [16 - 27] >=28

Manual Counting
[0 - 15] 0.92 0.08 0.00
[16 - 27] 0.00 1.00 0.00
>=28 0.00 0.00 0.00

Weighted Average Accuracy = 0.919

Table 5.5. OCTOBER 30 - Confusion Matrix

50

Experimental Evaluation

Figure 5.26. NOVEMBER 02 - System Outcome versus Manual Counting

System Detection
[0 - 15] [16 - 27] >=28

Manual Counting
[0 - 15] 0.88 0.12 0.00
[16 - 27] 0.00 0.00 0.00
>=28 0.00 0.00 0.00

Weighted Average Accuracy = 0.88

Table 5.6. NOVEMBER 02 - Confusion Matrix

51

Experimental Evaluation

Figure 5.27. JULY 26 - System Outcome versus Manual Counting

System Detection
[0 - 15] [16 - 27] >=28

Manual Counting
[0 - 15] 0.96 0.04 0.00
[16 - 27] 0.80 0.20 0.00
>=28 0.00 0.00 0.00

Weighted Average Accuracy = 0.884

Table 5.7. JULY 26 - Confusion Matrix

52

Experimental Evaluation

Figure 5.28. JULY 27 - System Outcome versus Manual Counting

System Detection
[0 - 15] [16 - 27] >=28

Manual Counting
[0 - 15] 1.00 0.00 0.00
[16 - 27] 0.00 0.00 0.00
>=28 0.00 0.00 0.00

Weighted Average Accuracy = 1.00

Table 5.8. JULY 27 - Confusion Matrix

53

Experimental Evaluation

5.5 Frequent Pattern Recognition
As said before, the bus 33E usually run on different lines with different mobility type
(e.g. Urban or Sub-Urban). In this section, we try to identify frequent patterns of
bus utilization during different days for different lines. Through an hourly heatmap,
a frequent pattern can be recognized for each line during either working or vacation
days. It is also relevant to see the lockdown regulation effects on these patterns.
Blank hour block tells that the bus was not operating in that hour. The darker
the color, the higher the number of detections and vice versa. The data collected
are from October 15th till 31st of January, however the bus was out of service from
November 10th till December 17th.

5.5.1 Urban Mobility Pattern Recognition
As shown in Figure 5.29, the peak bus utilization running at line 6 is at 08:00 and
14:00, in which people are normally going and returning from their work. While
in vacation days as shown in 5.30, this peak is no more existing. Over the data
captured, the bus is dedicated for line 19 only on working days. The effect of
lockdown regulations is clearly shown in Figure 5.31, where the estimated number
of people decreased dramatically in the lockdown time. Line 19 is usually utilized
by school students since a school is on the path of this line. This proves the
peak hours detected are at 07:00 and 14:00 before announcing that lectures are
completely online starting October 26th [2].

Figure 5.29. Hourly Heatmap of System detection - Line 6 - Working Days

54

Experimental Evaluation

Figure 5.30. Hourly Heatmap of System detection - Line 6 - Vacation Days

Figure 5.31. Hourly Heatmap of System detection - Line 19 - Working Days

5.5.2 Sub-Urban Mobility Pattern Recognition
The bus operates on SE1, SE2, and 61 lines which are sub-urban paths. These
buses are less used by passengers in general, since these buses are going out from
the city. Instead, people may use a better mobility option like trains or even their
cars to reach the city. The pattern here is challenging to recognize, but it is clearly
shown the difference in the utilization between working and vacation days.

55

Experimental Evaluation

Figure 5.32. Hourly Heatmap of System detection - Suburban Lines - Working Days

Figure 5.33. Hourly Heatmap of System detection - Suburban Lines - Vacation Days

56

Chapter 6

Real-Time Dashboard

As said in Section 4.4, the real-time dashboards are implemented using Grafana [6].
This chapter will list in detail all Grafana features and show all the implemented
dashboards. Grafana provides a wide variety of feature, as follows:

• The graphs can be customized (e.g. color, shape, etc ..);

• The dashboards are interactive, it is possible to visualize a specific timestamp
range and it possible to change the refresh rate;

• Easy configuration of data source, such as MySQL database;

• The dashboards are accessible only after authentication;

• It is possible to generate an alarm if a specific value exceeds a certain thresh-
old.

6.1 Data Visualization in Grafana Dashboard
The following graphs are visualized by Grafana for system outcome from January,
1st, 2021 till January, 31st, 2021. The charts are showing the system outcome
with filter combination [minimum MAC occurrence = 1, average received signal
power threshold = -75dBm], and applying exponential smoothing with α = 0.4,
and correction factor = +10%.

Figure 6.1 is showing the main dashboard, which includes 3 charts:

• Line graph of system detection over each time epoch

• Hourly Heatmap shows the average detections over each hour in each day.

• Line graph of the CPU load evolution over time.

57

Real-Time Dashboard

As we can see in the line graph of system detection, the peaks are frequent
every day in a specific time slot. The CPU load maximum peak doesn’t exceed
the 45% over all the time interval as shown in the Load consumption line chart.
This means that our system is efficiently running by the Raspberry PI 3 without
any overloading, whatever the scenario is. More clearly, the peaks are shown in the
hourly heatmap also, where each block represent the average of detection for each
hour over the day.

Figure 6.1. Grafana Main Dashboard

58

Real-Time Dashboard

All the charts can be zoomed to a specific time interval as shown in Figure 6.2.
The red circles here shows the interruption when the bus is not operating.

Figure 6.2. More detailed for line chart of system detection

As stated above, we can zoom to any time interval interested in, in Figure 6.3
we zoom for a specific day to see clearly how the system detections are. As expected
main trends exist during the day (e.g. at 08:00 and 14:00).

Figure 6.3. 1-Day Zoomed Chart with the hourly heat map

59

Chapter 7

Conclusion and Future Work

This thesis work proposes an automatic people counting boarding on a public vehi-
cle based on IoT, which infers the number of people on-board based on WiFi probe
requests received by a sniffer installed on the bus. Mobile devices nowadays are
applying MAC randomization, thus capturing a unique MAC as a single person not
true anymore. For this reason, we build a de-randomization algorithm to under-
stand which MAC addresses captured are most likely belong to the same device.
This algorithm is recursive that returns a score based on timestamps of the frames,
the sequence number of each frame, and the received signal power for each one.

The results are entirely good, principally in terms of bus utilization classifi-
cation. The interesting point is to detect the high utilization of people boarding
to control the social distancing. The system can classify 100% when the bus is
highly-utilized. Whereas the derandomization algorithm was magically improving
the order of detection accuracy. However, without applying the algorithm, the es-
timation of the number of people on board was in the order of hundreds, which is
relatively not reasonable. Some events may affect the system performance, thus we
implement an average smoothing process that depends on the previous detections
to limit the effect of such events. Furthermore, a correction factor is applied to
compensate the people on board having no smart device, or turning off the WiFi
interface.

For sure, this prototype done can also be a starting point for other projects,
such as estimating in real-time the number of people in other environments, such as
airports, hospitals, schools, train stations, etc... It would be very useful to analyze
the number of people present in a given area, to allocate appropriate resources
in each time slot. For any public transportation company, they can re-plan the
timetables based on frequent peaks observed recently. This would improve the
company’s overall performance.

60

Bibliography

[1] Android 6.0 changes. https://developer.android.com/about/versions/
marshmallow/android-6.0-changes.

[2] Covid-19 october 26th italian authorities announcement.
https://www.garda.com/crisis24/news-alerts/392941/
italy-authorities-announce-new-covid-19-restrictions-nationwide-from-october-26-update-46.

[3] Do raspberry pi 3 supports wifi monitor mode? https://www.raspberrypi.
org/forums/viewtopic.php?t=222151.

[4] Electric transport in torino gtt experience. https://ec.europa.eu/
environment/gpp/pdf/Zanini.pdf.

[5] Google chart website. https://developers.google.com/chart.
[6] Grafana website. https://grafana.com/.
[7] Probe request frame. https://www.oreilly.com/library/view/

80211-wireless-networks/0596100523/ch04.html.
[8] Socket - low-level networking interface. https://docs.python.org/3/

library/socket.html#socket.AF_INET.
[9] Philip J. Basford, Steven J. Johnston, Colin S. Perkins, Tony Garnock-Jones,

Fung Po Tso, Dimitrios Pezaros, Robert D. Mullins, Eiko Yoneki, Jeremy
Singer, and Simon J. Cox. Performance analysis of single board computer
clusters. Future Generation Computer Systems, 102:278–291, 2020.

[10] Julien Freudiger. How talkative is your mobile device? an experimental study
of wi-fi probe requests. New York, NY, USA, 2015. Association for Computing
Machinery.

[11] Xiaolin Gu, Wenjia Wu, Xiaodan Gu, Zhen Ling, Ming Yang, and Aibo Song.
Probe request based device identification attack and defense. Sensors, 20(16),
2020.

[12] Hande Hong, Girisha Durrel De Silva, and Mun Choon Chan. Crowdprobe:
Non-invasive crowd monitoring with wi-fi probe. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol., 2(3), September 2018.

[13] Jeremy Martin, Travis Mayberry, Collin Donahue, Lucas Foppe, Lamont
Brown, Chadwick Riggins, Erik C. Rye, and Dane Brown. A study of mac
address randomization in mobile devices and when it fails. Proceedings on
Privacy Enhancing Technologies, 2017(4):365 – 383, 01 Oct. 2017.

61

https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://www.garda.com/crisis24/news-alerts/392941/italy-authorities-announce-new-covid-19-restrictions-nationwide-from-october-26-update-46
https://www.garda.com/crisis24/news-alerts/392941/italy-authorities-announce-new-covid-19-restrictions-nationwide-from-october-26-update-46
https://www.raspberrypi.org/forums/viewtopic.php?t=222151
https://www.raspberrypi.org/forums/viewtopic.php?t=222151
https://ec.europa.eu/environment/gpp/pdf/Zanini.pdf
https://ec.europa.eu/environment/gpp/pdf/Zanini.pdf
https://developers.google.com/chart
https://grafana.com/
https://www.oreilly.com/library/ view/80211-wireless-networks/0596100523/ch04.html
https://www.oreilly.com/library/ view/80211-wireless-networks/0596100523/ch04.html
https://docs.python.org/3/library/socket.html#socket.AF_INET
https://docs.python.org/3/library/socket.html#socket.AF_INET

Bibliography

[14] Mathieu Cunche Leonardo Cardoso Frank Piessens Mathy Vanhoef,
Célestin Matte. Why mac address randomization is not enough: An anal-
ysis of wi-fi network discovery mechanisms. May 2016.

[15] Michele Nitti, Francesca Pinna, Lucia Pintor, Virginia Pilloni, and Benedetto
Barabino. iabacus: A wi-fi-based automatic bus passenger counting system.
Energies, 13(6), 2020.

[16] L. Oliveira, D. Schneider, J. De Souza, and W. Shen. Mobile device detection
through wifi probe request analysis. IEEE Access, 7:98579–98588, 2019.

62

	Abstract
	Acknowledgements
	Introduction
	WiFi Fingerprinting
	MAC Address
	MAC Address Randomization
	WiFi Probe Request

	System Architecture
	Choosing the hardware
	On-board System Description
	Remote Accessing to Raspberry PI
	Collecting Data

	Python Chain Processes
	De-randomization Algorithm
	Conditions for Starting the Algorithm
	Score Computation
	The Algorithm

	Pseudocodes for python chain scripts
	Pseudocode of time window sampling script
	Pseudocode of Capture Analyser Script
	Pseudocode of Capture Filtering Script
	pseudocode of the de-randomizing algorithm
	pseudocode of Calibration and Sending to database

	Database Storage and Data Visualization
	Types of databases
	Relational Database
	Non-Relational Database

	Implemented Database
	Real-Time Visualization Tool
	Grafana
	Google Charts

	Implemented Dashboard

	Experimental Evaluation
	Profiling
	MAC De-randomization Algorithm Performance
	Tuning System Parameters
	Determining Optimal Filter Combination
	Applying Smoothing
	Choosing the Smoothing Coefficient
	Initial Value For Exponential Smoothing

	Confusion Matrix Classification
	Frequent Pattern Recognition
	Urban Mobility Pattern Recognition
	Sub-Urban Mobility Pattern Recognition

	Real-Time Dashboard
	Data Visualization in Grafana Dashboard

	Conclusion and Future Work
	Bibliography

