
1

Master’s Degree Thesis

Accelerating Transformer Deep Learning Models on FPGAs using
High-Level Synthesis

 Supervisor : Prof. Luciano Lavagno
 Candidate : Mahmoud Bahmnai

Politecnico di Torino

April 2021

2

 Astract

In the current electronic industry, logic synthesis that starts from RTL description has been the
superior method to implement digital systems on both FPGAs and application-specific chips. But
recently, High-Level Synthesis (HLS) has grown and now is the choice of hardware engineers
and designers for the implementation of complex digital systems.

High-Level Synthesis or HLS is an automatic process that accepts synthesizable code written
using high-level languages such as C, SystemC, OpenCL (Open Computing Language), and C++
and then transforming them into an RTL design. Finally, This design is then implemented on
hardware devices such as FPGAs. FPGA has limited resources of hardware in terms of the logic
cell, interconnection which contains wires that are routed to the power supply, clock, and signal
nets.

In terms of language translation (Italian to English or vice versa) natural language processing,
RNN (Recurrent Neural Networks) can be used but this method severely suffers from two issues:
incapable of capturing very long term dependencies and also unable in order to parallelizing
sequential computation flow. Consider that, models with multi-head attention such as
Transformer have extreme effectiveness in order to capture the long-term dependencies in a
variety of sequence modeling tasks.

Here in this project Transformers applied on FPGA in terms of performing and analyzing time,
area, and power. The network designed with C++ and applied through the Vivado HLS tools on
the FPGA board. this work has been depicted by designing a customized hardware accelerator
for the Transformer by using a High-Level Synthesis. The tool is provided by Xilinx which is
called Vivado HLS. This accelerator needs to be implemented on the board. For this, the PYNQ
board has been chosen. It has a dual-core Cortex A9 processor.

3

 List of Acronyms

CPU

 Central Processing Unit
FPGA

 Field Programmable Gate Array
GPU

Graphical Processing Unit
HDL

Hardware Description Language
HLS
 High Level Synthesis
IP

 Intellectual Property
LSTM

 Long Short Term Memory
PL

 Programmable Logic
PLAN
 Piece wise Linear Approximation
PNYQ
 Python Productivity for ZYNQ
RNN
 Recurrent Neural Network
RTL
 Register Transfer Level
VHDL
 VHSIC Hardware Description Language
Vivado HLS
 Vivado High Level Synthesis

4

 Aknowledgements

I am grateful for the cooperation and support from the professors and students of our
research group, specially head of research group and my thesis supervisor Prof. Luciano
Lavagno which with his patient and guidance made this work feasible.

I dedicate this work which is the outcome of months of research to my parent and all
professors from all years of my academic career; I	have	to	say	“thank	you”	to	them	for	
their	love	and	support	throughout	my	life.	I	cannot	list	all	the	names	here,	but	you	are	
always	on	my	mind.	

 Turin,	April	7th,	2021	

5

Contents

1.INTRODUCTION .. 8

1.1.HIGH-LEVEL SYNTHESIS, VIVADO HLS ... 8

1.2.DESIGN FLOW ... 9

1.3.CONSTRAINTS IN HLS ... 9

1.4.RTL VALIDATION AND EXPORT .. 11

2.1.LOOP UNROLLING ... 12

2.2.INTERFACES ... 14

2.3..PIPELINING .. 17

2.4.ARRAY PARTITIONING .. 18

3.1. RNN ... 21

3.2.BERT .. 21

3.3.ROBERTA ... 22

3.4..DISTILBERT .. 22

3.5.XLNET ... 22

4.TRANSFORMERS:.. 23

4.2. SOFTMAX .. 25

4.3.WORD2VEC .. 25

4.4.SELF ATTENTION: ... 26

6

4.4.1.ATTENTION CALCULATION: ... 26

4.6.FEED FORWARD: ... 26

4.7.ADD AND NORMALIZATION.. 27

5.QUANTIZATION: ... 28

5.2.FP32 VS. INTEGER .. 28

5.3.IP BLOCK GENERATION .. 31

6.CONCLUSIONS ... 32

6.1.SUMMARY .. 32

6.2.RESULTS... 32

7.1APPENDIX C ATTENTION LAYER…………………...…..……………………………………..34

UTILIZATION DESIGN INFORMATION……………...………………………………………40

BIBLIOGRAPHY…………………………………………..……………………………………46

7

List of figure

Figure	1	:streaming mechanism
Figure	2	:	Interface
Figure	3	:	Interface with different bank
Figure	4	:	Interface with different bank
Figure	5	:	Pipeline cycles
Figure	6	:	Array partitioning instruction
Figure	7	:	RNN procedure
Figure	8	:	Comparison of transformer models
Figure	9	:	Transformer architecture
Figure	10	:	Decoder and Encoder
Figure	11	:	Word2Vec concept
Figure	12	:	Utilization before quantization
Figure	13	:	Utilization after quantization
Figure	14	:	Resource usage before quantization
Figure	15	: Resource usage after quantization
Figure	16	: Quantization architecture
Figure	17	: Quantization methodology
	Figure	18	: IP export report

	

8

1.Introduction

Right now there are over 6000 languages which are spoken in the world. A key parameter that
humans can communicate to each other or do business or travel is translation. a simple idea
about translation is translating sentences from for example Italian to english word by word till
the last word. If this method applied as translation technique it has a really low precision and
even in some case can changes the meaning of the sentence. To solve this issue RNN has been
introduced as a model for NLP (natural language processing) usages. By relying on RNN
applications such as next-sentence prediction, question answering, reading comprehension,
sentiment analysis, paraphrasing, machine translation, document summarization, document
generation, named entity recognition, speech recognition and biological sequence analysis could
be process.

In this thesis, this work has been depicted by designing a customized hardware accelerator for
the Transformer by using a High-Level Synthesis. The tool is provided by Xilinx which is called
Vivado HLS. This accelerator needs to be implemented on a board. For this, PYNQ board has
been chosen. It has a dual-core Cortex A9 processor.

High-Level Synthesis transform a high-level language (C, C++ or SystemC) design
specifications into an RTL implementation that can be further synthesized for hardware
construction on ASIC or FPGA device. High-Level Synthesis is an automated design process, to
better understand this process.

1.1.High-Level Synthesis, Vivado HLS

 High-Level Synthesis is an automated design procedure that converts a high-level design,
mainly in C/C++ or SystemC, to optimized RTL for hardware implementation. Here in this
project, the Vivado HLS tool is used that is provided by Xilinx. Xilinx High-Level Synthesis is a
tool that Vivado HLS converts a C model into a Register Transfer Level (RTL) implementations
which synthesizes into a Field Programmable Gate Array (FPGA) under Xilinx standards. Users
can write C requirements in C++, SystemC or an OpenCL API kernel. This FPGA performs a
desirable parallel architecture with advantages in order of cost, performance and power
consumption compare to the traditional processors.

In fact, HLS offers a method that hardware and software providing the following benefits:

9

enhance productivity for hardware designers. Hardware designers are more open hand in order to
design complex architectures. It is also capable of the developer to develop different multi-
architectural designs without changing the C modules. This enables design space exploration and
provides needs in finding the optimal implementation.

On other hand improved system performance for software designers. They have the capability to
accelerate the intensive parts of their algorithms, which basically take a lot of calculation on a
goal which here is focusing on FPGA.

1.2.Design Flow

With the Xilinx Vivado HLS tool first, you can create your design and optimize it and then
generating an IP block that can be integrated into a hardware system. This IP block could be
defined as a hardware accelerator which has been done in here this thesis. All parts of the design
have been performed by C language, but in the case of using Vitis (which has all features of
Vivado plus some new features) there would be a possibility to add modules in python language.

Vivado HLS design flow can be expressed:

In High-Level Synthesis executing C algorithm simulates the function to verify its working
correctly in terms of functionally and then Synthesize the C algorithm into an RTL
implementation. Optimization by use of directives and constraints can be added up to direct the
synthesis process to implement a special optimization. It also generates reports in order hardware
resource utilization, timing, and analyze the design in all aspects. Vivado HLS uses the C test
bench to simulate the C functionality to synthesize and to validate the RTL output by use of
C/RTL Co-simulation and Packaging the RTL implementation in a selection of IP packages.

1.3.Constraints in HLS

Vivado HLS is able to support the most kind of the C language but there are still some
constraints that are not accepted. so these constraints could not be synthesized and can be
finalized with an error during the design flow. For the design that would be synthesizable, the
following modifications should be done in the code.

First of all, the function inside the C code should contain the whole functionality of the design.
All the function call should be provided with respect to the Vivado rolls, not the operating
system. One another thing that should be considered is to modify C constructs in terms of being

10

fixed size. Implementations of those constructs have to be unequivocal. Let's take a look at some
constructs which can’t be synthesized in Vivado HLS.

• Standard Libraries: Many of the C++ standard libraries use dynamic memory allocation
(Malloc) and recursive function. Accordingly, it could not be synthesizable as well. Memory
allocation system calls as mentioned above are not supported and should be removed from the
design code before synthesis. All type of system calls which manage memory allocation within
the system, such as, free() and malloc() are using resources which exist inside the memory of the
operating system and they are generated and released during the run time of the operating system
that does not support by Vivado.

• System Calls: There are some function calls that are related to the operating system and they
are not synthesizable because this kind of function has no impact directly on the final design.
therefore Vivado HLS ignore them. some of these functions are as follow:
time(),getc(),sleep(),printf().

• Pointer constraints: Vivado High-Level Synthesis does not support pointer casting, except if it
would be between native C types. the pointers defined by the function are also not supported. But
in order to synthesize, pointer arrays are supported.

11

1.4.RTL Validation and Export

In order to simulate the design, Vivado HLS uses the C test bench to verify the functionality of
the top-level function. then, it automatically again uses the C test bench to validate the RTL
output using co-simulation. Vivado HLS creates the files required to use the C testbench during
the co-simulation. When validation has been complete, the console displays a special message to
confirm the validation finished successfully. the testbench forces the design and if it returns a
nonzero value, Vivado HLS reports that the simulation has been failed. Vivado creates the basic
foundation to provide the C/RTL co-simulation and then executes the simulation by use of one of
the supported RTL simulators.

After all synthesizing and simulation has been done correctly, the last step here in the Vivado
HLS design flow is to make the package as a RTL output as an IP. Here are some options to
export the final RTL output files as IP in any of the following Xilinx formats. Vivado is able to
export the RTL as an IP with formats such as Vivado IP Catalog, System Generator for DSP, and
Synthesized Checkpoint. the final output file format would be .Xo .

There is a possibility to execute logic synthesis from inside the Vivado HLS to evaluate the final
design of RTL and its implementation. This confirms that the design can provide our
requirements or not before the final export for hardware in order to utilizations and timing.

this project composed of 4 different modules and one Top module to connect all the other
modules. all modules have their own testbench and they have been simulated and synthesized
separately to confirm that they are working as well as expected.

another approach for our design to decreasing the latency is using streaming data interface.
Without this interface when the design wants to read a data from DDR memory, it produces a
long latency and when the number of requested data being high then the total delay will increase
dramatically.
The principal operation of this core allows the write or read of data packets to or from a device
without any concern over the AXI4-Stream interface signaling. You can easily manage the
AXI4-Stream interfaces as they are transparent.it is configurable at most 512-bit that the FIFO
width could be 32 bits. This core has been designed to develop memory-access to an AXI4-
straem interface which is connected to other IP.

12

	 	 	 	 Figure	1	:		streaming	mechanism

Streaming interface directly controlled with DMA (direct memory access) it means DMA
streams the data from the DDR memory at each clock cycle you can access to the required data.

One of the problems that I faced during streaming was ERROR: [SYNCHK 200-92], this error
means axi streams are uni-directional and write-only and there is not possibility to doing
read/write on the same stream which by considering this point the problem has been solved.

2.1.Loop unrolling

Instead of using single collection of operations, by unroll loops there is ability to create multiple
independent operations. This pragma by creating multiples copies body of the loop transforms
loops in the RTL that allows some of the loop or all loops occur in parallel.
in the C/C++ functions by default Loops are kept rolled. Whenever loops are rolled, then by
synthesizing it will create logic for one iteration of the loop, and then RTL will execute the logic
for all iteration of the loop respectively.
A loop is executed for all number of iterations determined by the loop variable. The number of
iterations has also to be impacted by logic inside the body of the loop ,for instance break
conditions or modifications to a loop exit variable.

To increase data access and throughput by using the UNROLL pragma you can unroll loops. The
UNROLL pragma lets the loop to be completely or partially unrolled. completely unrolling the
loop creates a copy of the loop in the RTL design for all loop iterations, consequently, the entire
loop can be run simultaneously. Partially unrolling a loop allows you to determine a factor N, to

13

create N copies of the loop, and therefore decrease the loop iterations. In term of unrolling a loop
completely, the loop bounds should be known at compile-time and it is not required for partial
unrolling. Partial loop unrolling does not need N to be a factor of the maximum loop iteration
count. Vivado HLS automatically adds an exit to ensure that partially unrolled loops are
functionally similar to the original loop. To getting know more about this pragma let take a look
at some code:

 For (int i=0; i < y; i++){

pragma HLS unroll factor=2
 Z [i] = a[i] + b [i];
 }

At the mentioned code above, by applying pragma HLS unroll factor 3, at each iteration it will
run simultaneously 2 loop. Lets take look how the above code work in term of functionality:

 For(int i=0; i<y: i++){
 Z[i]=a[i] + b[i];
 If (i+1 >= y) break;
 Z[i+1]=a[i+1] + b[i+1]
 }

If take a closer look at the code, we can clearly observe that all the iterations of the loop are
independent of each other. In fact, each addition is done on different elements of the input arrays
and it is stored on different elements of the output array. therefore, is it possible to perform
multiple additions in parallel on different elements?
yes, and the answer to it, is by unrolling the loop. Loop unrolling in practical means unrolling the
loop iterations so that, the number of iterations of the loop decreases, and the loop body performs
extra computation. This technique let the design to expose extra instruction-level parallelism
which Vivado HLS can exploit in order to hardware implementation.
The pragma should be placed directly within the loop that we wish to unroll. The pragma also
allows determining the unrolling factor by which we want to unroll the loop. consider that the
unrolling factor can be any number from 2 up to the number of iterations of the loop.
If the factor parameter is not defined, Vivado HLS tries to completely unroll the entire loop.
However, this could be achieved only if the number of iterations is constant and not dependent
on dynamic values within the function. To realize how Vivado HLS achieves this, we can look at
the analysis report.

Here we can clearly observe the Vivado HLS was able to schedule the execution of the two
floating-point additions as like as the load and store operations completely in parallel! therefore
this optimization comes at a cost. In term of performing the two floating-point additions fully in

14

parallel, it requires two floating-point adders in the hardware design which increase the overall
resource consumption of the kernel. Indeed, if taking a look at the resource estimation report we
can clearly observe the two floating-point adder instances and their corresponding resource
consumption.

In more complex designs it is very significant to consider the impact on resource consumptions
when applying optimizations to the kernel. for instance, unrolling by a factor of 2 creates a
straight 2x reduction in the latency of the loop at the cost of 2x more resources for its
implementation. consequently, in some cases, it could not be possible to achieve this ideal in
terms of latency improvement. When performing loop optimizations, there are two potential
problems that require to be considered: The first one, constraints on the number of available
memory ports and hardware resources, the second one is available loop-carried dependencies.

Disadvantage of unrolling and how to face with it:

At the first glance at unrolling method the basic idea comes in mind that why we do not unrolling
all the loops by the maximum value of factor (number of loop iteration). the point is when a loop
unrolled by at least factor 2, the required hardware doubled and consequently power
consumption increase.
So in term of unrolling the main point which should be considered is hardware limitation. The
best idea to using this pragma is first start to find out the most important loop and then applying
the unrolling just in most inner loop and then controlling the remained hardware and if there
would be enough hardware apply it on other loop.

2.2.Interfaces

once the suitable interfaces defined, SDAccel automatically generates FPGA design then connects
the kernel module to the AXI interconnects of the shell.
The kernel interfaces could be defined for special reasons. In general, for each argument, for
example, a, b and res, it defines a couple of Master AXI and AXI Lite interfaces. The AXI Lite
interface usage is to determine the offset at which the data resides in the onboard DDR and it is
configured during initialization.
The AXI Master interface is the actual interface used by the kernel to deliver data to/from the DDR
memory. consider that it is possible to specify interfaces for scalar arguments, like a simple integer
argument. In this case, a single AXI Lite interface is enough, the value of the scalar would be set
on kernel initialization before the execution of the kernel. In addition to the argument interfaces,
it is also mandatory to specify an AXI lite interface associated with the return, that is needed in
order to specify the suitable signals to control the status of the kernel. For each HLS interface
pragma, it is possible to define a bundle name. All the interfaces associated with the same bundle
have been grouped to the same AXI interface. consider that SDAccel requires a single AXI late
interface port. meanwhile, all the AXI LITE pragma should refer to the same bundle that here I
named “control”. On the other hand, it is possible to determine multiple AXI master interface ports.

15

An example about access to DDR and with AXI and read from it and write to it:

	
	

Figure	2	:		Interface

By doing different bundle each interface connects to the different memory bank, then the value
“a” and value “b” read-write exactly at the same time in parallel:

Figure 3 : Interface with different bank

Figure 4 : Interface with different bank

16

In this figure gmem0 and gmem1 work in parallel in term of timing

When implementing the last design with SDAccel, the software automatically define the Master
AXI port to one of the DDR banks. otherwise, depending on the target platform, multiple DDR
memory banks could be available and SDAccel allows to bind different AXI master interfaces to
different DDR. This effectively lets to make full usage of the available bandwidth to the DDR
bank by reading and writing in parallel across multiple banks.
In order to leverage multiple memory banks, at the first step, we need to define multiple AXI
master ports. To do it, it can simply bundle the arguments using different bundle names. In this
example, I am targetting an Alpha-Data which features two memory banks. Hence, it can
optimize memory transfers by the use of two distinct interfaces for reading the values of the
input a and b. Here, specified “gmem0” for argument “a” and “gmem1” for argument 1. Finally,
argument res is still bound to “gmem0”. As mentioned previously, the “memcpy” calls
effectively create loops that read all the data elements in a row. In terms of reading in parallel
both arguments a and b, it can be instructing Vivado HLS to merge the loop that gets created by
the use of two memcpy. This is done by encapsulating the two “memcpy” call within a simple
block using churly brackets and using the pragma HLS LOOP MERGE. this pragma tries to
merge all the top-level loops encountered within the basic block in case that the pragma is
placed.

By observing the performance report from Vivado HLS, it can be now noticed that the two
“memcpy” loops were collapsed into a single loop taking the same amount of iterations.
If we look at the schedule, we can realize that the read operations on “gmem0” and “gmem1” are
actually performed in parallel. At this point we have created a kernel with a couple of AXI
master interfaces, but, in terms of full design implementation, we still need to tell SDAccel how
to connect the interfaces with other memory banks available on the platform.

In order to do it, we can set the «sp» argument when running the link phase with the xocc Xilinx
compiler. This concludes that on interface optimizations.
We first described the types of architecture targeted with the SDAccel and focused on the
memory transfer operations included in the workflow of an SDAccel application.
Then, it presented 3 type of optimizations for the communication between the kernel and
the on-board DDR memory which are: memory bursts, maximization of AXI interface data
width and the usage of multiple memory banks.

17

2.3.Pipelining

Pipelining lets operations happening at the same time.in this method each execution step does
not need to complete all operations before it starts next operation.
To pipelining Functions or loops are pipelined PIPELINE directive should be used. The directive
is defined in the place that constitutes the function or the loop. The start points of interval
defaults to 1 if not declared but may be clearly specified. Pipelining is applied just to the
specified area and not to the hierarchy. However, all loops which are in the hierarchy are
automatically unrolled. Any sub-functions which is in the hierarchy, the specified function
should be pipelined individually. In case that the sub-functions are pipelined, the pipelined
functions can take benefit of the pipeline performance. subsequently, any sub-function under the
pipelined top function which is not pipelined, could be the limiting factor in term of pipeline
performance. There is a difference between pipelined functions and loops behavior.
• pipelined functions: the pipeline runs all the time and never ends.
• pipelined loops: pipeline executes till all iterations of the loop are completed.

Figure 5 : Pipeline cycles

Every stage computes a partial result of the operation and sends its data to the next level.
Hence, if think about how this loop is executed in hardware, we can clearly observe that we are
under-utilizing our resources. In fact, a given stage of the floating-point adder is executed once
every 10 cycles, which means that it is used only 10% of the time! In order to enhance performance

18

as well as resource utilization, we can pipeline the loops, then each loop iteration starts as soon as
possible instead of waiting for 10 cycles.
By use of loop pipelining, we switch from a sequential execution of loop iterations to a pipelined
execution that the loop iterations are overlapped in time. The number of clock cycles between two
consequent iterations of a pipelined loop is referred to as Initial Interval, or II. The minimum
possible Initial Interval that can be achieved for a pipelined loop is 1.
It means that each loop iteration can start at every cycle. therefore, depending on the loop being
pipelined, it should not be possible to achieve the ideal Initial Interval of 1 cycle.
When achieving an initial interval of 1, it means after the initial time needed to fill the pipeline, all
the levels of the operators inside the loop are completely utilized at all clock cycles.
First, when all the iterations are executed in sequence, the final latency of the loop could be
calculated by product of the Iteration Latency, mentioned as IL, by the Number of iterations, or
trip count, N of the loop.
In other words, the latency of the pipelined loop can be derived as follow. We need Initiation
Interval times N–1 cycles to start the first N–1 loop iterations, by adding the time needed to
complete the last iteration that takes 10 cycles, that is the iteration latency of the loop.
consider that, compared to unrolling, loop pipelining does not considerably increase the resource
consumption of our design, in fact with pipelining we are making better use of under-utilized
hardware resources.
With Vivado HLS we can use the HLS PIPELINE pragma inside the loop which we want to
pipeline. As we can observe from the latency report, The 1 cycle difference compared to the
previous formula is due to the fact that Vivado HLS accounts for such cycle inside the function
body instead of the loop itself.
a function which is pipelined continuously read new input and write new output. In contrary,
because first loop should finish all the operations inside the body loop before starting the next loop,
a pipelined loop causes a bubble in data stream. For instance a point that no new input is read as
the loop completes the execution of the final iterations, and a point which no new output is written
as the loop starts new loop iterations.
Pipelines continue to execute until data is available at the input and If there is not any data
available to process, pipeline will stall.

2.4.Array partitioning:

Arrays are defined as block RAM that only has at most two data ports. This can reduce the
throughput of a write or read (or store/load) intensive algorithm. The bandwidth can be increase
by splitting the array (one block RAM as a resource) into some smaller arrays (some block
RAMs), consequently extending the number of ports. Arrays are partitioned by use of the
ARRAY_PARTITION directive. Vivado_HLS prepares three kinds of array partitioning, as
depicted in the following figure.
 The three styles of partitioning are:
• block: The original array is split into same-sized blocks of elements of the original array.
• cyclic: The original array is split into the equal size blocks elements of the original array.
• fully partitioning: The default is to split the array into its exclusive elements. This relates to
resolving a memory into registers.

19

we have already seen that within a rolling the factor of 2 we managed to reduce the loop latency
by a factor of 2. compared to the implementation that only uses loop pipelining. In fact within a
rolling factor of 2, the loop creates two computations in parallel at each iteration. In this kind of
computation are also pipelines with an initiation interval of 1 clock cycle. But when it tried to
boost performance more inside a rolling factor of N, we got almost the same performance. In fact,
while there is the trip count, we also double the initial interval.
In addition, even if it has a small impact, the iteration latency is also raised by one clock cycle.
The problem comes from the number of memory ports available for reading/writing data into the
local arrays. by default each local array gets mapped to local memory on the FPGA up to 2 memory
ports for reading/writing operations.
so how we can overcome these limitations? It has mentioned that each array gets mapped to its
own local memory on the FPGA, So why do not using multiple arrays to increase the number of
memory boards?

First, in terms of better visualize the problem, it helps to manually unroll the loop instead of using
the HLS unroll pragma. specially, we need to access the element at position i, i+1, i+2 till i+N.
Since the local memories just accept two ports, it means that we can only access the elements at
position i and i+1 in one clock cycle and access i+2 and i+3 in the next iteration.
It is also considerable to note that the value of i increments with the step of last loop iteration value
in every cycle. when the elements that need to access change from iteration to iteration. In terms
of being able to achieve an initiation interval of one clock cycle, a way to access elements 1, 2, 3,
and so on are needed in parallel, as well as elements 5, 6, and …, N in parallel and so on.
To achieve this, it could possible by applying the array partitioning technique. The overall idea is
to reorganize the data of the original array into 2 or even smaller arrays or better partitions so that
all partitions are mapped to their own memory with these corresponding read/write ports.
The key element here is to decide how to reorganize that data. the best idea is to perform cyclic
partitioning.

Especially, here performed cyclic partitioning, It means that by creating partitions from the original
array. By using cyclic partitioning, the data from the original array is going out to the partitioning
a cyclic style. The first element is mapped to the first partition. The second element is mapped to
the second partition, then the cycle repeats.
all the accesses to the original arrays at addresses I, substituted with accesses to the first partitions.
And also the accesses to i+1, substituted by accesses to the second partition, and so on.

consider also when accessing the elements inside the partitions, also needs to divide by N (example
of a number of iteration) the value of variable i.
Also, need to be sure that the data coming from the external DDR memory bank gets well stored
in the way intended. similarly, we need to send the data toward the same order we had before
partitioning. First, we perform all partitions, then we need to change the logic for reading the data
from the DDR bank memory. Instead of using a simple mem copy, here by writing a pipeline loop
that at all iterations reads one value from the external DDR and then stores it in the correct partition
of the local array. In terms of understanding the correct partition to use for the element at the
address i of the first original array.

20

Figure 6: Array partitioning instruction

In fact, when using cyclic partitioning with the factor F, the element at address i from the first
original array will store partition number i modulo F at address i divided by N. consider that here
means integer division. The final result of an integer division is the result of division without the
fractional part. Once the data read, then we can now define the calculation using vector. At the
end, also needs to send back the results. To do it, we need to collect the data from the partitions
of local results and send them to the external memory bank DDR. The logic here is the same as
the one used for reading the data from the memory DDR bank. by creating a pipeline loop and at
all iterations we fetch the current value from one of the partitions. finally, we write the value to
the external DDR. Again, by using the modulo and the integer division operations to retake the
correct value from the partitions.
Thanks to the partitioning method, every iteration of the loop access exactly 1 element from each
partition, which has its own memory port. Finally, it can define all the read/write operations in
parallel and make us able to achieve the ideal initial interval of one clock cycle, but is there a
simple way to achieve the same result without the need to rewrite all this long logic in a coded
manner? the answer is yes. the array partitioning pragma prepared for this purpose.

For cyclic and block partitioning, factor option defines number of arrays which are created. In
case of using factor of 2, the array has been divided into two smaller arrays. If the number of
elements in the array is not an integer multiple of the factor, the final array has lower elements.

21

3.1. RNN

It composed set of algorithms which behave as like as human brain and it designed in a way that
can recognize patterns through labelling and clustering input data with machine perception.
All the real data such as image, text, sound first should convert to the vectors and then it
recognize them as a numerical pattern.

Recurrent Neural Network is extension of feedforward NN which has its own internal memory.
RNN perform same function to the all inputs but its output related to the previous computation
and when the output has been generated then it will send it into the recurrent network and to
make final decision it relies on actual input (current value) and the output which learned from
past input.

Figure 7 : RNN procedure

By looking at the figure, at the first step it takes x(0) from input and then block “A” generate
h(0) as output value. At the next step the second “A” block takes x(1) from input and at the same
time it takes h(0) which was generated through the previous step, it means at each step the
network learn from the previous output and do computation by current input.

There are some Transformer based method with

3.2.BERT
is a bi-directional transformer for pre-training over a some of unlabeled text data somehow to
learn a language representation that could be used to fine-tune for specific ML tasks. Meanwhile
BERT outcome the NLP state-of-the-art on some challenging tasks, its performance enhancement
could be attributed to the bidirectional transformer, pre-training tasks of Masked Language Model
and Next Prediction along with some of data and Google’s compute power.

22

3.3.RoBERTa

 Introduced at Facebook, optimized BERT method RoBERTa, is a retrained version of the BERT
with enhanced training methodology which is 1000% more data and compute power. To enhance
the training procedure, RoBERTa method will removes the Next Sentence Prediction (NSP) task
from BERT’s pre-training and introduced dynamic-masking so which the masked tokens
modified during the training epoch. Big batch-training sizes are also found to be more
advantageous in the training procedure. basically, RoBERTa uses over 160 GB of text for pre-
training, including 16GB of Books and Wikipedia used in BERT. an additional data which
included is CommonCrawl News dataset (around 63 million articles, 76 GB), Web text corpus
(38 GB) and Stories from Common Crawl (31 GB). This connect with massive 1024 V100 Tesla
GPU’s running for a day.

3.4.DistilBERT
learns a distilled version of BERT, re-training 97% performance but using just half of
parameter. explicitly, it does not has any token-type embedding, pooler and retains just half of
the layers from Googles BERT. DistilBERT method uses a technique called distillation, that
approximates the Google’s BERT, for instance the large neural network by a smaller one. The
idea is once a large neural network has been trained, its output distributions could be
approximated using a smaller network. This is similar to posterior approximation. One of the key
optimization functions which used in Bayesian Statistics is Kulback Leiber divergence and has
naturally been used here as well.

3.5.XLNet
is a large bi-directional transformer which uses improved training method, more data and more
computational power to achieve better result than BERT prediction on over 20 language tasks. To
enhance the training, XLNet introduces permutation language model, where all the tokens have
been predicted but in random order. This is in contrary to BERT’s masked language model which
just the masked (around 15%) tokens are predicted. This is in contrast to the traditional language
models, which all the tokens were predicted previously in sequential order instead of random one.
This helps the model to learn bi-directional relationships, therefore better handles dependencies
between words. In addition, Transformer XL used as the base architecture, which showed
acceptable performance even in the absence of permutation based training. XLNet was trained
with around 130 GB of textual data and 512 TPU chips running for 2.5 days.

23

Figure 8 : Comparison of transformer mode

4.Transformers:

In term of neural machine translation a ubiquitous method to improve the performance is using
attention concept. Transformer is a model that uses attention to boost up velocity by training the
model. By comparing the models, transformer shows that has better performance in neural
machine translation in some specific tasks. Most beneficial advantage of transformer is
capability of parallelization. Google is a company which introduced this model and they used it
in their cloud TPU as reference model.

Let’s break the design and going more in detail to analysis the model.

24

Figure 9 : Transformer architecture

The first two main components are encoder and decoder which each one consists of stack of
encoders and stack of decoder that the number layers in both decoder and encoder should be the
same and identical in term of structure.
By opening up encoder we can see it consists of two sublayers which named Feed Forward
Neural Network and Self-Attention.
With respect to the model hierarchy the input flow first to the Attention then its output fed the
Feed Forward layer.

Figure 10 : Decoder and Encoder

25

Considering the application of this thesis which is NLP, first all the words in the input should
turn into the vectors. This transformation is essential because most machines need all their input
as vector instead of string that it can works properly.
This technique called Embedding word to transform phrases from vocabulary to required vectors
-this vectors are real numbers- aim to generate vectors with lower dimensional space.
Word vector are used to taking what does the text means out from the entire text to make neural
network able to understand it and it should be conscious about the similarity and the different
between words in term of contextual meaning.

4.2. Softmax
is a computational function which converts a vector of numbers into a vector of probabilities, in
which the probabilities of each value are proportional to the related scale of each value in the
vectors.

The most common use case of the softmax in applied ML is its use as an activation function in a
neural network model. In fact, the network has been configured to output N values for each class
in the classification task, and the softmax is used to normalizing the outputs and then converting
them from weighted sum values into the probabilities which sum to one. Each value in the output
of the softmax is interpreted as a probability of membership for each class

.4.3.Word2Vec

The input phrases are going through as one-hot encoded vectors. it goes into (hidden layer) of
linear units, consequently go into the Softmax layer to make a prediction. The idea used is to first
train the hidden layer weight to find effective representation for words. This matrix is often
named embedding matrix, and can be queried as a look-up table.

One desirable feature of embeddings is because they’re represented as numbers of contextual
similarities between words, by doing numerical operation between vectors we can reach to
meaningful context. an example is subtracting the ‘notion’ of “King” from “Man” and adding the
notion of “Woman”. The final answer depends on how the design trained before, but you’re
eventually see one of the top results being the word “Queen”.

Figure 11 : Word2Vec concept

26

4.4.Self attention:

“The student didn’t go to Politecnico because it was closed”. In this sentence the “it” refers to the
Politecnico. Understanding this kind of refers are simple for human but for machine is not simple
as like as human. The duty of attention layer is processing “it” to associate it with Politecnico. In
this case because the model processes all the input words, attention layer lets it to take a look
better at the all words position and their sequence to do encoding words with more accuracy.

4.4.1.Attention calculation:

At the first phase of calculation in attention layer, it creates three vectors for each input of the
encoder -which are embedding of each word- that they called Key, Value and Query. All those
three vectors calculated by multiplying matrices which trained before by embedding words
output. Pay attention that those vectors smaller than embedding vector and mentioned matrices in
term of dimension because the dimensionality of embedding word and encoder input vectors are
512 and by multiplying them, the size of Query, Key and Value reach to 64.

What are the key, value and query?
In term of self-attention calculation we need score of each word in sentence. This score will
obtain by taking dot-product of query and value of a each word. For instance the word which
placed at the first position of the sentence (position 1) its score calculated by dot-product of q1
and k1 and the second one would be dot-product of q1 and k2.

At this phase score should divide by 8 (the square root of the key vectors which declared above
64). This provide more stable gradients, consequently send the result through a softmax
operation. The duty of Softmax here is to normalizing the scores which means to be sure they’re
all positive and add up to one. This Softmax score specify how much each word will be reliable
at this position. In other word each word at this position has the most softmax score, but
sometimes it’s better to consider another word that is relevant to the actual word.
So now scores are ready and this is the time that softmax score should multiply by value vector
and then by summing up weighted value producing output of self-attention for just first word.

4.6.Feed Forward:

The feed-forward layer weights which are trained during training and the exact same matrix are
applied to each respective token position. Since it is applied without communication with or
inference by other tokens position it is an extremely parallelizable part of the model. The duty
and purpose are to process the output from one attention layer in such a way to better fit the input
for the next attention layer.

27

4.7.Add and Normalization

State of the art deep neural networks generally requires many days of training. It is possible to
speed up the learning by computing gradients in different subsets of the training cases on
different machines or by splitting the neural network itself over, many machines, but this can
require complex software. It also tends to lead to rapidly diminishing returns as the degree of
parallelization increases. An orthogonal approach is to change the computations performed in the
forward pass of the neural network to make learning easier. currently, batch normalization has
been proposed to reduce training time by adding extra normalization stages in deep neural
networks. The normalization standardizes all summed input using its mean and its standard
deviation across the training data. Feedforward neural networks trained by using batch
normalization converge even faster with simple SGD. In addition to training time improvement,
the stochasticity from the batch statistics serves as a regulariser during the training step. Despite,
batch normalization requires running averages of the summed input statistics. In feed-forward
networks with fixed depth, it is straightforward to store the statistics independently for each
hidden layer. However, the summed inputs to the recurrent neurons in an RNN often vary with
the length of the sequence, so applying batch normalization to RNNs comes out to require
different statistics for different time steps. additionally, batch normalization cannot be applied to
online learning tasks or to extremely large distributed models which the minibatches have to be
small.

28

5.Quantization:

Quantization refers to some processes which can reduce the number of bits. By considering the
deep learning concept for the research, a numerical format of data has been used.
In the hardware design, the Floating-Point unit uses a huge amount of area and power and the
first common attempt to reducing the area and power usage is finding a way to use fewer PF
units. By quantizing weights their format changes from FP to INT which means instead of using
FP32 units there would be a possibility to do computation with INT8. Note that in this method
some bits of data will loss and consequently the accuracy will reduce.

As explained before by quantizing the weights the accuracy will decrease so why still it's
desirable? The main motivation is Efficiency. By comparing the design with and without
quantization the obvious benefit is energy-saving and area saving.
Let take look at the comparison:

5.2.FP32 VS. Integer

In terms of numerical computation there are two kinds of attributes. the first one is a dynamic
range that related to the size of the representable numbers and the second one is how many bits
can demonstrate inside the dynamic range which determines the resolution and precision of the
computation.
The dynamic range for integer is [−2$%&-1 …2$%&-1] where here “n” represents the number of
bits which is mean the range starts from -128 to +128 for INT8 and for INT4 this range limited
to [-8..7]. At this point the number of representable values is 2$ which in the FP32 that the
dynamic rage is ±3.4x 10)* , 4.2 x10+ values can be represented.
We can directly see FP32 is much more versatile, in terms of demonstrate a wide range of
distributions accurately. This is a great property for deep learning models, where the
distributions of weights and activations are very different. In addition the dynamic range can
differ between layers in the model.

In term of represent these different distributions with an integer format, a scale factor is used to
lead the dynamic range of the tensor to the integer range. But still we remain with the issue of
having a significantly lower number of representable values, that is much lower precision.
Pay attention that scale factor is in most cases, a floating-point number. while, even when using
integer numerics, some floating-point computations remain.

Comparison of the transformer with and without quantization in terms of resource consumption:

29

Figure 12 : Utilization Before quantization

Figure 13 : Utilization After quantization

By observing the two reports regarding to the quantization, the value of the BRAM and DSP are
similar and in case of the FF it decreased 2 percent. In the following column the value of the
LUT decreased dramatically. Because the FP units provided throught the LUT resource. As
explained before after quantization the value which has to be computed got round and
consequently the duration of computation in terms of timing reduced. By observing the tables,
the timing before quantization in 8.738 and after it reduced to 8.281.

30

Figure 14 : Resource usage before quantization

Figure 15 : Resource usage after quantization

In context of quantization till now talked about quantizing FP32 to INT8, but if we want to
obtain more efficiency, aggressive quantization is the next idea. At this level the idea is
quantizing FP32 to INT4 but first issue is facing with significant accuracy degradation. Many
researches tried to mitigate reduction of accuracy that one of the most famous one is Re-training.
Its shows by bootstrapping quantized model with the weights that trained with FP32 model. But
here in this phase I found INT8 more reliable for the design compare to the INT4.

31

Figure 17 : Quantization methodology

5.3.IP Block Generation

The final result of Vivado HLS flow is to convert the design from RTLs into the IP block that
can be also used with other tools available in the Vivado Design Suite. To carry out this task use
Export RTL button or menu bar from solution menu. IP packager generates a package that is
included and used with Vivado IP Catalog. There are some other options available at this step.
Here at this stage the project can also be finished along with incorporating ‘place and route’
option in this step. IP and project files are generated in the ‘impl folder’ which contains ‘IP
folder’ and .zip file for IP block and Verilog or VHDL folder with “xpr” format file to be used as
a project. Vivado HLS can generate RTLs in both hardware language Verilog and VHDL as per
the choice of designer. finaly, project can be exported to other Vivado tools like Design Suite for
placing this design on a physical FPGA device.

32

6.Conclusions

6.1.Summary

This thesis explained explicitly the basic idea of language translation. When a sentences translate
from the first language to the second language, the order and the relation between words are
really matter. By translating word by word the accuracy of translation will reduce dramatically.
The transformer is a technique that makes translation more intelligent and the final output is
more close to what the first sentences want to say. In fact, the work of this presented thesis is to
design a hardware accelerator for the embedded system in terms of reducing the execution time
and increase the throughput of the design.

6.2.Results

During this thesis, as explained before, different optimizations were performed for different data
type to evaluate the latency and execution time. The first optimization was loop unrolling. For
the experiment, I unrolled all the loops at the maximum factor but after synthesizing I realized
the design exceeds the resource LUT, and by removing some unrolled loops reached the
maximum allowed times of unrolling mechanism. As the target of this work is a small embedded
platform, therefore accelerator adapted is of data type fixed-point 16 that have almost the same
accuracy and precision results with respect to data types float and double. The design space
explored while performing extensive fixed-point 16 data-type optimizations using Vivado-HLS.

At the first step, the design completed I achieved these values of resource consumption. By
looking at the table, all the resource usage is over 100 percent of the hardware resource.

Name BRAM_18K DSP48E FF LUT URAM
Utilization (%) 125 138 121 236 0

After all optimization pragma applied into the design by add and removing some optimization,
now the Utilization is far from what I got at the first even with better timing.

Name BRAM_18K DSP48E FF LUT URAM
Utilization (%) 23 23 10 24 0

33

At the next step entire design exported into the IP block and can be used in other Vivado tools.

Figure 18 : IP export report

A key point about translation is latency. To decreasing the latency for normal usage we need
powerfull processor. Here in this thesis the transformer applied just on single FPGA. this work
can continue with multiple PFGAs. In that case the model would be more accurate and reliable in
terms of timing and precision.

34

7.1.Appendix c attention Layer

#include <math.h>
#include <ap_fixed.h>
#include <iostream>
#include "attention.h"

#define WORDS 10
#define EMBEDDING 512
#define WEIGHTS_CHANNEL 64
#define HEADS 4

typedef ap_fixed<16, 4,AP_RND,AP_SAT> DataTypeATT;
typedef ap_fixed<16, 4, AP_RND,AP_SAT> DataTypeTR_RND;
typedef ap_int<8> datatypeint;
using namespace std;
// In this function, I assume the maximum length of the sentence is with 10 words, THis is a
multi-head self-attention function.
void attention(DataTypeTR_RND INPUT6[WORDS*EMBEDDING], DataTypeATT
Z[WORDS*EMBEDDING], DataTypeATT Keys[WORDS*WEIGHTS_CHANNEL],
DataTypeATT Values[WORDS*WEIGHTS_CHANNEL], DataTypeATT
Wq[HEADS*EMBEDDING*WEIGHTS_CHANNEL], DataTypeATT
Wk[HEADS*EMBEDDING*WEIGHTS_CHANNEL], DataTypeATT
Wv[HEADS*EMBEDDING*WEIGHTS_CHANNEL], DataTypeATT
Wz[HEADS*WEIGHTS_CHANNEL*EMBEDDING])
{

#pragma HLS INTERFACE s_axilite port=return bundle=control
*/
 DataTypeATT sum[WORDS][WEIGHTS_CHANNEL*HEADS];
//#pragma HLS ARRAY_PARTITION variable=sum cyclic factor=64 dim=2

 DataTypeATT Q[WORDS][WEIGHTS_CHANNEL];
//#pragma HLS ARRAY_PARTITION variable=Q complete dim=2
 DataTypeATT K[WORDS][WEIGHTS_CHANNEL];
//#pragma HLS ARRAY_PARTITION variable=K complete dim=2
 DataTypeATT V[WORDS][WEIGHTS_CHANNEL];
//#pragma HLS ARRAY_PARTITION variable=V complete dim=2
 DataTypeATT IN[EMBEDDING];
//#pragma HLS ARRAY_PARTITION variable=IN complete dim=1
 DataTypeATT WQ[EMBEDDING][WEIGHTS_CHANNEL];
//#pragma HLS ARRAY_PARTITION variable=WQ complete dim=1
 DataTypeATT WK[EMBEDDING][WEIGHTS_CHANNEL];

35

//#pragma HLS ARRAY_PARTITION variable=WK complete dim=1
 DataTypeATT WV[EMBEDDING][WEIGHTS_CHANNEL];
//#pragma HLS ARRAY_PARTITION variable=WV complete dim=1
 DataTypeATT WZ[HEADS*WEIGHTS_CHANNEL][EMBEDDING];
//#pragma HLS ARRAY_PARTITION variable=WZ complete dim=1
 DataTypeATT Z_local[EMBEDDING];
//#pragma HLS ARRAY_PARTITION variable=Z_local complete dim=1

 cout << "inside the function" << endl;

 // 4 heads self-attention
 for(int c=0; c<HEADS; c++){

 //read part of weights on chip
 for(int i=0; i<EMBEDDING; i++){
 for(int j=0; j<WEIGHTS_CHANNEL; j++){
//#pragma HLS pipeline
//#pragma HLS unroll factor=2
 WQ[i][j] =
Wq[c*EMBEDDING*WEIGHTS_CHANNEL+i*WEIGHTS_CHANNEL+j];
 }
 }
 for(int i=0; i<EMBEDDING; i++){

 for(int j=0; j<WEIGHTS_CHANNEL; j++){
#pragma HLS pipeline
//#pragma HLS unroll factor=2
 WK[i][j] =
Wq[c*EMBEDDING*WEIGHTS_CHANNEL+i*WEIGHTS_CHANNEL+j];
 }
 }
 for(int i=0; i<EMBEDDING; i++){
 //#pragma HLS unroll factor=2
 for(int j=0; j<WEIGHTS_CHANNEL; j++){
 //#pragma HLS unroll factor=2
#pragma HLS pipeline
 WV[i][j] =
Wq[c*EMBEDDING*WEIGHTS_CHANNEL+i*WEIGHTS_CHANNEL+j];
 }
 }
 cout<<"after initialize the weights arrays" << endl;
 //using trained weights Wq, Wk, Wv to calculate Quries, Keys, Values
 for(int m=0; m<WORDS; m++){
 //#pragma HLS unroll factor=2
 for(int i=0; i<EMBEDDING; i++){
 //#pragma HLS unroll factor=2

36

#pragma HLS pipeline
 IN[i] = INPUT6[m*EMBEDDING+i];
 }

 for(int j=0; j<WEIGHTS_CHANNEL; j++){
 //#pragma HLS unroll factor=2

 DataTypeATT Q_sum = 0;
 for(int i=0; i<EMBEDDING; i++){
 //#pragma HLS unroll factor=2
#pragma HLS pipeline II=3
 Q_sum += IN[i] * WQ[i][j];
 }
 Q[m][j] = Q_sum;
 }
 //cout<<"test" << endl;

 for(int j=0; j<WEIGHTS_CHANNEL; j++){

 DataTypeATT K_sum = 0;
 for(int i=0; i<EMBEDDING; i++){
 K_sum += IN[i] * WK[i][j];
//#pragma HLS unroll factor=2
#pragma HLS pipeline II=3
 }
 K[m][j] = K_sum;
 }

 for(int j=0; j<WEIGHTS_CHANNEL; j++){

 DataTypeATT V_sum = 0;
 for(int i=0; i<EMBEDDING; i++){
//#pragma HLS unroll factor=2
#pragma HLS pipeline II=3
 V_sum += IN[i] * WV[i][j];
 }
 V[m][j] = V_sum;
 }

 }

 //using Quries and Keys to calculate Score
 DataTypeATT Score[WORDS][WORDS];
//#pragma HLS ARRAY_PARTITION variable=Score complete dim=2
 for(int i=0; i<WORDS; i++){
//#pragma HLS unroll factor=2

37

 for(int j=0; j<WORDS; j++){
 //cout<<"test2" << endl;
 DataTypeATT score_sum = 0;
 for(int m=0; m<WEIGHTS_CHANNEL; m++){
//#pragma HLS unroll factor=2
#pragma HLS pipeline
 score_sum += (Q[j][m] * K[j][m]) >> 3;
 }
 Score[i][j] = score_sum;
 }
 }

 //calculate the softmax
 DataTypeATT Score_exp_sum[WORDS];
//#pragma HLS ARRAY_PARTITION variable=Score_exp_sum complete dim=0
 for(int i=0; i<WORDS; i++){
//#pragma HLS unroll factor=2
 //cout<<"test3" << endl;
 float exp_sum = 0;
 for(int j=0; j<WORDS; j++){
//#pragma HLS unroll factor=2
#pragma HLS pipeline
 exp_sum += exp(float(Score[i][j]));
 }
 Score_exp_sum[i] = exp_sum;
 }
 for(int i=0; i<WORDS; i++){
//#pragma HLS unroll factor=2

 for(int j=0; j<WORDS; j++){
//#pragma HLS unroll factor=2
#pragma HLS pipeline
 Score[i][j] =
exp(float(Score[i][j]))/float(Score_exp_sum[j]);
 }
 }

 //softmax multiply Values

 for(int i=0; i<WORDS; i++){
//#pragma HLS unroll factor=2
 for(int j=0; j<WEIGHTS_CHANNEL; j++){
 //cout<<"test4" << endl;
 DataTypeATT tmp = 0;
 for(int m=0; m<WORDS; m++){
//#pragma HLS unroll factor=2

38

#pragma HLS pipeline
 tmp += Score[m][j] * V[m][j];
 }
 sum[i][WEIGHTS_CHANNEL*c + j] = tmp;
 }
 }
 }
 for(int m=0; m<WORDS; m++){
//#pragma HLS unroll factor=2
 //write K, V back to the memory, they will be used from the decoder side
 for(int j=0; j<WEIGHTS_CHANNEL; j++){
//#pragma HLS unroll factor=2
#pragma HLS pipeline
 Keys[m*WEIGHTS_CHANNEL+j] = K[m][j];
 }
 for(int j=0; j<WEIGHTS_CHANNEL; j++){
#pragma HLS pipeline
 Values[m*WEIGHTS_CHANNEL+j] = V[m][j];
 }
 }

 //The final multiplication to calculate the final output Z
 for(int i=0; i<WORDS; i++){
//#pragma HLS unroll factor=2
 for(int j=0; j<EMBEDDING; j++){
//
 for(int m=0; m<WEIGHTS_CHANNEL*HEADS; m++){
#pragma HLS pipeline
//#pragma HLS unroll factor=2
 WZ[m][j] = Wz[j*WEIGHTS_CHANNEL*HEADS+m];
 }
 }

 for(int j=0; j<EMBEDDING; j++){

 DataTypeATT Z_sum = 0;
 for(int m=0; m<WEIGHTS_CHANNEL*HEADS; m++){
 Z_sum += sum[i][m] * WZ[m][j];
#pragma HLS pipeline
 }
 Z_local[j] = Z_sum;
 }

 for(int j=0; j<EMBEDDING; j++){

39

 Z[i*EMBEDDING+j] = Z_local[j];
 }
 }

}

40

7.2.Utilization Design Information

Table of Contents

1. CLB Logic
1.1 Summary of Registers by Type
2. CLB Logic Distribution
3. BLOCKRAM
4. ARITHMETIC
5. I/O
6. CLOCK
7. ADVANCED
8. CONFIGURATION
9. Primitives
10. Black Boxes
11. Instantiated Netlists

1. CLB Logic

+----------------------------+--------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+----------------------------+--------+-------+-----------+-------+
CLB LUTs	96513	0	274080	35.21
LUT as Logic	83389	0	274080	30.43
LUT as Memory	13124	0	144000	9.11
LUT as Distributed RAM	12456	0		
LUT as Shift Register	668	0		
CLB Registers	122079	0	548160	22.27
Register as Flip Flop	122079	0	548160	22.27
Register as Latch	0	0	548160	0.00
CARRY8	5352	0	34260	15.62
F7 Muxes	11695	0	137040	8.53
F8 Muxes	5060	0	68520	7.38
F9 Muxes	0	0	34260	0.00
+----------------------------+--------+-------+-----------+-------+

41

1.1 Summary of Registers by Type

+--------+--------------+-------------+--------------+
| Total | Clock Enable | Synchronous | Asynchronous |
+--------+--------------+-------------+--------------+
0	_	-	-
0	_	-	Set
0	_	-	Reset
0	_	Set	-
0	_	Reset	-
0	Yes	-	-
0	Yes	-	Set
0	Yes	-	Reset
53	Yes	Set	-
122026	Yes	Reset	-
+--------+--------------+-------------+--------------+

2. CLB Logic Distribution

+--+--------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+--+--------+-------+-----------+-------+
CLB	27020	0	34260	78.87
CLBL	11060	0		
CLBM	15960	0		
LUT as Logic	83389	0	274080	30.43
using O5 output only	443			
using O6 output only	77579			
using O5 and O6	5367			
LUT as Memory	13124	0	144000	9.11
LUT as Distributed RAM	12456	0		
using O5 output only	0			
using O6 output only	12288			
using O5 and O6	168			
LUT as Shift Register	668	0		
using O5 output only	0			
using O6 output only	598			
using O5 and O6	70			
CLB Registers	122079	0	548160	22.27
Register driven from within the CLB	32011			
Register driven from outside the CLB	90068			
LUT in front of the register is unused	54932			

42

| LUT in front of the register is used | 35136 | | | |
| Unique Control Sets | 5609 | | 68520 | 8.19 |

* Note: Available Control Sets calculated as CLB Registers / 8, Review the Control
Sets Report for more information regarding control sets.

3. BLOCKRAM

+-------------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-------------------+------+-------+-----------+-------+
Block RAM Tile	193	0	912	21.16
RAMB36/FIFO*	184	0	912	20.18
RAMB36E2 only	184			
RAMB18	18	0	1824	0.99
RAMB18E2 only	18			
+-------------------+------+-------+-----------+-------+
* Note: Each Block RAM Tile only has one FIFO logic available and
therefore can accommodate only one FIFO36E2 or one FIFO18E2. However,
if a FIFO18E2 occupies a Block RAM Tile, that tile can still
accommodate a RAMB18E2

4. ARITHMETIC

+----------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+----------------+------+-------+-----------+-------+
| DSPs | 601 | 0 | 2520 | 23.85 |
| DSP48E2 only | 601 | | | |
+----------------+------+-------+-----------+-------+

43

5. I/O

+------------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+------------------+------+-------+-----------+-------+
Bonded IOB	0	0	204	0.00
HPIOB_M	0	0	72	0.00
HPIOB_S	0	0	72	0.00
HDIOB_M	0	0	24	0.00
HDIOB_S	0	0	24	0.00
HPIOB_SNGL	0	0	12	0.00
HPIOBDIFFINBUF	0	0	96	0.00
HPIOBDIFFOUTBUF	0	0	96	0.00
HDIOBDIFFINBUF	0	0	60	0.00
BITSLICE_CONTROL	0	0	32	0.00
BITSLICE_RX_TX	0	0	208	0.00
BITSLICE_TX	0	0	32	0.00
RIU_OR	0	0	16	0.00
+------------------+------+-------+-----------+-------+

6. CLOCK

+----------------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+----------------------+------+-------+-----------+-------+
GLOBAL CLOCK BUFFERs	2	0	404	0.50
BUFGCE	2	0	116	1.72
BUFGCE_DIV	0	0	16	0.00
BUFG_GT	0	0	168	0.00
BUFG_PS	0	0	72	0.00
BUFGCTRL*	0	0	32	0.00
PLL	0	0	8	0.00
MMCM	0	0	4	0.00

44

+----------------------+------+-------+-----------+-------+
* Note: Each used BUFGCTRL counts as two GLOBAL CLOCK BUFFERs. This
table does not include global clocking resources, only buffer cell
usage. See the Clock Utilization Report (report_clock_utilization) for
detailed accounting of global clocking resource availability.

7. ADVANCED

+-----------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-----------------+------+-------+-----------+-------+
GTHE4_CHANNEL	0	0	16	0.00
GTHE4_COMMON	0	0	4	0.00
OBUFDS_GTE4	0	0	8	0.00
OBUFDS_GTE4_ADV	0	0	8	0.00
PS8	0	0	1	0.00
SYSMONE4	0	0	1	0.00
+-----------------+------+-------+-----------+-------+

8. CONFIGURATION

+-------------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-------------+------+-------+-----------+-------+
BSCANE2	0	0	4	0.00
DNA_PORTE2	0	0	1	0.00
EFUSE_USR	0	0	1	0.00
FRAME_ECCE4	0	0	1	0.00
ICAPE3	0	0	2	0.00
MASTER_JTAG	0	0	1	0.00
STARTUPE3	0	0	1	0.00
+-------------+------+-------+-----------+-------+

45

9. Primitives

+----------+--------+---------------------+
| Ref Name | Used | Functional Category |
+----------+--------+---------------------+
FDRE	122026	Register
LUT6	39796	CLB
LUT3	14626	CLB
LUT2	14281	CLB
RAMS32	12624	CLB
MUXF7	11695	CLB
LUT4	10314	CLB
LUT5	7023	CLB
CARRY8	5352	CLB
MUXF8	5060	CLB
LUT1	2716	CLB
DSP48E2	601	Arithmetic
SRL16E	570	CLB
RAMB36E2	184	Block Ram
SRLC32E	168	CLB
FDSE	53	Register
RAMB18E2	18	Block Ram
BUFGCE	2	Clock
+----------+--------+---------------------+

10. Black Boxes

+----------+------+
| Ref Name | Used |
+----------+------+

11. Instantiated Netlists

+-----------------+------+
| Ref Name | Used |
+-----------------+------+
| bd_0_hls_inst_0 | 1 |
+-----------------+------+

46

Bibliography

[1] https://www.xilinx.com/html_docs/xilinx2019_1/sdsoc_doc/hls-pragmas (SDSoC
Development Environment Help)

[2] A.Vaswani, N.Shazeer , N.Parmar , J. Uszkoreit , Llion Jones, Aidan N. Gomez , Aidan N.
Gomez ,Attention Is All You Need

[3] Jacob Devlin, Ming-Wei Chang , Kenton Lee , Kristina Toutanova , BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding

[4] Gabriele Prato , Ella Charlaix , Mehdi Rezagholizadeh , Fully Quantized Transformer for
Machine Translation

[5] Fully Quantized Transformer For Improved Tanslation

[6] Jay Alammar, The Illustrated Transformer

[7] Bingbing Li1, Santosh Pandey2, Haowen Fang3, Yanjun Lyv1, Ji Li4, Jieyang Chen5, Mimi
Xie6, Lipeng Wan5, Hang Liu2 and Caiwen Ding, FTRANS: Energy-Efficient Acceleration of
Transformers using FPGA

[8] https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/introductionvitishls

[9] https://huggingface.co/transformers/task_summary.html#text-generation

[10] http://nlp.seas.harvard.edu/2018/04/03/attention.html

[11] Jakob Uszkoreit, A Novel Neural Network Architecture for Language Understanding

[12] Ruibin Xiong,Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai
Zhang, Yanyan Lan, Liwei Wang, Tie-Yan Liu, On Layer Normalization in the Transformer
Architecture

