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                 Astract 
 

In the current electronic industry, logic synthesis that starts from RTL description has been the 
superior method to implement digital systems on both FPGAs and application-specific chips. But 
recently, High-Level Synthesis (HLS) has grown and now is the choice of hardware engineers 
and designers for the implementation of complex digital systems.  

High-Level Synthesis or HLS is an automatic process that accepts synthesizable code written 
using high-level languages such as C, SystemC, OpenCL (Open Computing Language), and C++ 
and then transforming them into an RTL design. Finally, This design is then implemented on 
hardware devices such as FPGAs. FPGA has limited resources of hardware in terms of the logic 
cell, interconnection which contains wires that are routed to the power supply, clock, and signal 
nets. 

In terms of language translation (Italian to English or vice versa) natural language processing, 
RNN (Recurrent Neural Networks) can be used but this method severely suffers from two issues: 
incapable of capturing very long term dependencies and also unable in order to parallelizing 
sequential computation flow. Consider that, models with multi-head attention such as 
Transformer have extreme effectiveness in order to capture the long-term dependencies in a 
variety of sequence modeling tasks. 

Here in this project Transformers applied on FPGA in terms of performing and analyzing time, 
area, and power. The network designed with C++ and applied through the Vivado HLS tools on 
the FPGA board. this work has been depicted by designing a customized hardware accelerator 
for the Transformer by using a High-Level Synthesis. The tool is provided by Xilinx which is 
called Vivado HLS. This accelerator needs to be implemented on the board. For this, the PYNQ 
board has been chosen. It has a dual-core Cortex A9 processor. 
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1.Introduction 
 

Right now there are over 6000 languages which are spoken in the world. A key parameter that 
humans can communicate to each other or do business or travel is translation. a simple idea 
about translation is translating sentences from for example Italian to english word by word till 
the last word. If this method applied as translation technique it has a really low precision and 
even in some case can changes the meaning of the sentence. To solve this issue RNN has been 
introduced as a model for NLP (natural language processing) usages. By relying on RNN 
applications such as next-sentence prediction, question answering, reading comprehension, 
sentiment analysis, paraphrasing, machine translation, document summarization, document 
generation, named entity recognition, speech recognition and biological sequence analysis could 
be process. 

In this thesis, this work has been depicted by designing a customized hardware accelerator for 
the Transformer by using a High-Level Synthesis. The tool is provided by Xilinx which is called 
Vivado HLS. This accelerator needs to be implemented on a board. For this, PYNQ board has 
been chosen. It has a dual-core Cortex A9 processor. 

High-Level Synthesis transform a high-level language (C, C++ or SystemC) design 
specifications into an RTL implementation that can be further synthesized for hardware 
construction on ASIC or FPGA device. High-Level Synthesis is an automated design process, to 
better understand this process. 

 
 

1.1.High-Level Synthesis, Vivado HLS 

 

 High-Level Synthesis is an automated design procedure that converts a high-level design, 
mainly in C/C++ or SystemC, to optimized RTL for hardware implementation. Here in this 
project, the Vivado HLS tool is used that is provided by Xilinx. Xilinx High-Level Synthesis is a 
tool that Vivado HLS converts a C model into a Register Transfer Level (RTL) implementations 
which synthesizes into a Field Programmable Gate Array (FPGA) under Xilinx standards. Users 
can write C requirements in C++, SystemC or an OpenCL API kernel. This FPGA performs a 
desirable parallel architecture with advantages in order of cost, performance and power 
consumption compare to the traditional processors.  

In fact, HLS offers a method that hardware and software providing the following benefits:  
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enhance productivity for hardware designers. Hardware designers are more open hand in order to 
design complex architectures. It is also capable of the developer to develop different multi-
architectural designs without changing the C modules. This enables design space exploration and 
provides needs in finding the optimal implementation.  

On other hand improved system performance for software designers. They have the capability to 
accelerate the intensive parts of their algorithms, which basically take a lot of calculation on a 
goal which here is focusing on FPGA. 

 

1.2.Design Flow  

With the Xilinx Vivado HLS tool first, you can create your design and optimize it and then 
generating an IP block that can be integrated into a hardware system. This IP block could be 
defined as a hardware accelerator which has been done in here this thesis. All parts of the design 
have been performed by C language, but in the case of using Vitis (which has all features of 
Vivado plus some new features) there would be a possibility to add modules in python language. 

Vivado HLS design flow can be expressed:  

In High-Level Synthesis executing C algorithm simulates the function to verify its working 
correctly in terms of functionally and then Synthesize the C algorithm into an RTL 
implementation. Optimization by use of directives and constraints can be added up to direct the 
synthesis process to implement a special optimization. It also generates reports in order hardware 
resource utilization, timing, and analyze the design in all aspects. Vivado HLS uses the C test 
bench to simulate the C functionality to synthesize and to validate the RTL output by use of 
C/RTL Co-simulation and Packaging the RTL implementation in a selection of IP packages. 

 

  

 

1.3.Constraints in HLS 

Vivado HLS is able to support the most kind of the C language but there are still some 
constraints that are not accepted. so these constraints could not be synthesized and can be 
finalized with an error during the design flow. For the design that would be synthesizable, the 
following modifications should be done in the code.  

First of all, the function inside the C code should contain the whole functionality of the design. 
All the function call should be provided with respect to the Vivado rolls, not the operating 
system. One another thing that should be considered is to modify C constructs in terms of being 
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fixed size. Implementations of those constructs have to be unequivocal. Let's take a look at some 
constructs which can’t be synthesized in Vivado HLS.  

 

• Standard Libraries: Many of the C++ standard libraries use dynamic memory allocation 
(Malloc) and recursive function. Accordingly, it could not be synthesizable as well. Memory 
allocation system calls as mentioned above are not supported and should be removed from the 
design code before synthesis. All type of system calls which manage memory allocation within 
the system, such as,  free() and malloc() are using resources which exist inside the memory of the 
operating system and they are generated and released during the run time of the operating system 
that does not support by Vivado. 

 

• System Calls: There are some function calls that are related to the operating system and they 
are not synthesizable because this kind of function has no impact directly on the final design. 
therefore Vivado HLS ignore them. some of these functions are as follow: 
time(),getc(),sleep(),printf(). 

 

• Pointer constraints: Vivado High-Level Synthesis does not support pointer casting, except if it 
would be between native C types. the pointers defined by the function are also not supported. But 
in order to synthesize, pointer arrays are supported. 
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1.4.RTL Validation and Export  

In order to simulate the design, Vivado HLS uses the C test bench to verify the functionality of 
the top-level function. then, it automatically again uses the C test bench to validate the RTL 
output using co-simulation. Vivado HLS creates the files required to use the C testbench during 
the co-simulation. When validation has been complete, the console displays a special message to 
confirm the validation finished successfully. the testbench forces the design and if it returns a 
nonzero value, Vivado HLS reports that the simulation has been failed. Vivado creates the basic 
foundation to provide the C/RTL co-simulation and then executes the simulation by use of one of 
the supported RTL simulators. 

After all synthesizing and simulation has been done correctly, the last step here in the Vivado 
HLS design flow is to make the package as a RTL output as an IP. Here are some options to 
export the final RTL output files as IP in any of the following Xilinx formats. Vivado is able to 
export the RTL as an IP with formats such as Vivado IP Catalog, System Generator for DSP, and 
Synthesized Checkpoint. the final output file format would be .Xo . 

There is a possibility to execute logic synthesis from inside the Vivado HLS to evaluate the final 
design of RTL and its implementation. This confirms that the design can provide our 
requirements or not before the final export for hardware in order to utilizations and timing. 

this project composed of 4 different modules and one Top module to connect all the other 
modules. all modules have their own testbench and they have been simulated and synthesized 
separately to confirm that they are working as well as expected. 

 
 
 
another approach for our design to decreasing the latency is using streaming data interface. 
Without this interface when the design wants to read a data from DDR memory, it produces a 
long latency and when the number of requested data being high then the total delay will increase 
dramatically. 
The principal operation of this core allows the write or read of data packets to or from a device 
without any concern over the AXI4-Stream interface signaling. You can easily manage the 
AXI4-Stream interfaces as they are transparent.it is configurable at most 512-bit that the FIFO 
width could be 32 bits. This core has been designed to develop memory-access to an AXI4-
straem interface which is connected to other IP. 
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	 	 	 	 Figure	1	:		streaming	mechanism 

 
Streaming interface directly controlled with DMA (direct memory access) it means DMA 
streams the data from the DDR memory at each clock cycle you can access to the required data. 
 
One of the problems that I faced during streaming was ERROR: [SYNCHK 200-92], this error 
means axi streams are uni-directional and write-only and there is not possibility to doing 
read/write on the same stream which by considering this point the problem has been solved. 
 
 

 
2.1.Loop unrolling 
 
 
Instead of using single collection of operations, by unroll loops there is ability to create multiple 
independent operations. This pragma by creating multiples copies body of the loop transforms 
loops in the RTL that allows some of the loop or all loops occur in parallel. 
in the C/C++ functions by default Loops are kept rolled. Whenever loops are rolled, then by 
synthesizing it will create logic for one iteration of the loop, and then RTL will execute the logic 
for all iteration of the loop respectively. 
A loop is executed for all number of iterations determined by the loop variable. The number of 
iterations has also to be impacted by logic inside the body of the loop ,for instance break 
conditions or modifications to a loop exit variable.  
 
To increase data access and throughput by using the UNROLL pragma you can unroll loops. The 
UNROLL pragma lets the loop to be completely or partially unrolled. completely unrolling the 
loop creates a copy of the loop in the RTL design for all loop iterations, consequently, the entire 
loop can be run simultaneously. Partially unrolling a loop allows you to determine a factor N, to 
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create N copies of the loop, and therefore decrease the loop iterations. In term of unrolling a loop 
completely, the loop bounds should be known at compile-time and it is not required for partial 
unrolling. Partial loop unrolling does not need N to be a factor of the maximum loop iteration 
count. Vivado HLS automatically adds an exit to ensure that partially unrolled loops are 
functionally similar to the original loop. To getting know more about this pragma let take a look 
at some code: 
 
 
 For (int i=0; i < y; i++){  

pragma HLS unroll factor=2  
  Z [i] = a[i] + b [i]; 
 } 
 
At the mentioned code above, by applying pragma HLS unroll factor 3, at each iteration it will 
run simultaneously 2 loop. Lets take look how the above code work in term of functionality: 
 
 
 For(int i=0; i<y: i++){ 
  Z[i]=a[i] + b[i]; 
  If (i+1 >= y) break; 
  Z[i+1]=a[i+1] + b[i+1] 
  } 
  
 
If take a closer look at the code, we can clearly observe that all the iterations of the loop are 
independent of each other. In fact, each addition is done on different elements of the input arrays 
and it is stored on different elements of the output array. therefore, is it possible to perform 
multiple additions in parallel on different elements?  
yes, and the answer to it, is by unrolling the loop. Loop unrolling in practical means unrolling the 
loop iterations so that, the number of iterations of the loop decreases, and the loop body performs 
extra computation. This technique let the design to expose extra instruction-level parallelism 
which Vivado HLS can exploit in order to hardware implementation. 
The pragma should be placed directly within the loop that we wish to unroll. The pragma also 
allows determining the unrolling factor by which we want to unroll the loop. consider that the 
unrolling factor can be any number from 2 up to the number of iterations of the loop.  
If the factor parameter is not defined, Vivado HLS tries to completely unroll the entire loop. 
However, this could be achieved only if the number of iterations is constant and not dependent 
on dynamic values within the function. To realize how Vivado HLS achieves this, we can look at 
the analysis report.  
 
 
 
 
Here we can clearly observe the Vivado HLS was able to schedule the execution of the two 
floating-point additions as like as the load and store operations completely in parallel! therefore 
this optimization comes at a cost. In term of performing the two floating-point additions fully in 
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parallel, it requires two floating-point adders in the hardware design which increase the overall 
resource consumption of the kernel. Indeed, if taking a look at the resource estimation report we 
can clearly observe the two floating-point adder instances and their corresponding resource 
consumption.  
 
In more complex designs it is very significant to consider the impact on resource consumptions 
when applying optimizations to the kernel. for instance, unrolling by a factor of 2 creates a 
straight 2x reduction in the latency of the loop at the cost of 2x more resources for its 
implementation. consequently, in some cases, it could not be possible to achieve this ideal in 
terms of latency improvement. When performing loop optimizations, there are two potential 
problems that require to be considered: The first one, constraints on the number of available 
memory ports and hardware resources, the second one is available loop-carried dependencies. 
 
 
Disadvantage of unrolling and how to face with it:  
 
At the first glance at unrolling method the basic idea comes in mind that why we do not unrolling 
all the loops by the maximum value of factor (number of loop iteration). the point is when a loop 
unrolled by at least factor 2, the required hardware doubled and consequently power 
consumption increase. 
So in term of unrolling the main point which should be considered is hardware limitation. The 
best idea to using this pragma is first start to find out the most important loop and then applying 
the unrolling just in most inner loop and then controlling the remained hardware and if there 
would be enough hardware apply it on other loop. 
 
 
 
2.2.Interfaces 
 
once the suitable interfaces defined, SDAccel automatically generates FPGA design then connects 
the kernel module to the AXI interconnects of the shell.  
The kernel interfaces could be defined for special reasons. In general, for each argument, for 
example, a, b and res, it defines a couple of Master AXI and AXI Lite interfaces. The AXI Lite 
interface usage is to determine the offset at which the data resides in the onboard DDR and it is 
configured during initialization.  
The AXI Master interface is the actual interface used by the kernel to deliver data to/from the DDR 
memory. consider that it is possible to specify interfaces for scalar arguments, like a simple integer 
argument. In this case, a single AXI Lite interface is enough, the value of the scalar would be set 
on kernel initialization before the execution of the kernel. In addition to the argument interfaces, 
it is also mandatory to specify an AXI lite interface associated with the return, that is needed in 
order to specify the suitable signals to control the status of the kernel. For each HLS interface 
pragma, it is possible to define a bundle name. All the interfaces associated with the same bundle 
have been grouped to the same AXI interface. consider that SDAccel requires a single AXI late 
interface port. meanwhile, all the AXI LITE pragma should refer to the same bundle that here I 
named “control”. On the other hand, it is possible to determine multiple AXI master interface ports. 
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An example about access to DDR and with AXI and read from it and write to it: 
 
 

	
	

Figure	2	:		Interface 
 
By doing different bundle each interface connects to the different memory bank, then the value 
“a” and value “b” read-write exactly at the same time in parallel: 
 
 

 
Figure 3  : Interface with different bank 

 
 

 
Figure 4  : Interface with different bank 
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In this figure gmem0 and gmem1 work in parallel in term of timing 
 
 
 

When implementing the last design with SDAccel, the software automatically define the Master 
AXI port to one of the DDR banks. otherwise, depending on the target platform, multiple DDR 
memory banks could be available and SDAccel allows to bind different AXI master interfaces to 
different DDR. This effectively lets to make full usage of the available bandwidth to the DDR 
bank by reading and writing in parallel across multiple banks.  
In order to leverage multiple memory banks, at the first step, we need to define multiple AXI 
master ports. To do it, it can simply bundle the arguments using different bundle names. In this 
example, I am targetting an Alpha-Data which features two memory banks. Hence, it can 
optimize memory transfers by the use of two distinct interfaces for reading the values of the 
input a and b. Here, specified “gmem0” for argument “a” and “gmem1” for argument 1. Finally, 
argument res is still bound to “gmem0”. As mentioned previously, the “memcpy” calls 
effectively create loops that read all the data elements in a row. In terms of reading in parallel 
both arguments a and b, it can be instructing Vivado HLS to merge the loop that gets created by 
the use of two memcpy. This is done by encapsulating the two “memcpy” call within a simple 
block using churly brackets and using the pragma HLS LOOP MERGE. this pragma tries to 
merge all the top-level loops encountered within the basic block in case that the pragma is 
placed.  
 
 
By observing the performance report from Vivado HLS, it can be now noticed that the two 
“memcpy” loops were collapsed into a single loop taking the same amount of iterations.  
If we look at the schedule, we can realize that the read operations on “gmem0” and “gmem1” are 
actually performed in parallel. At this point we have created a kernel with a couple of AXI 
master interfaces, but, in terms of full design implementation, we still need to tell SDAccel how 
to connect the interfaces with other memory banks available on the platform. 
 
In order to do it, we can set the «sp» argument when running the link phase with the xocc Xilinx 
compiler. This concludes that on interface optimizations.  
We first described the types of architecture targeted with the SDAccel and focused on the 
memory transfer operations included in the workflow of an SDAccel application.  
Then, it presented 3 type of optimizations for the communication between the kernel and  
the on-board DDR memory which are: memory bursts, maximization of AXI interface data 
width and the usage of multiple memory banks. 
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2.3.Pipelining  
 
Pipelining lets operations happening at the same time.in this method each execution step does 
not need to complete all operations before it starts next operation.  
To pipelining Functions or loops are pipelined PIPELINE directive should be used. The directive 
is defined in the place that constitutes the function or the loop. The start points of interval 
defaults to 1 if not declared but may be clearly specified. Pipelining is applied just to the 
specified area and not to the hierarchy. However, all loops which are in the hierarchy are 
automatically unrolled. Any sub-functions which is in the hierarchy, the specified function 
should be pipelined individually. In case that the sub-functions are pipelined, the pipelined 
functions can take benefit of the pipeline performance. subsequently, any sub-function under the 
pipelined top function which is not pipelined, could be the limiting factor in term of pipeline 
performance. There is a difference between pipelined functions and loops behavior.  
• pipelined functions: the pipeline runs all the time and never ends.  
• pipelined loops: pipeline executes till all iterations of the loop are completed. 
 

 
 

 
 

Figure 5 :  Pipeline cycles 
 

 
 
Every stage computes a partial result of the operation and sends its data to the next level.  
Hence, if think about how this loop is executed in hardware, we can clearly observe that we are 
under-utilizing our resources. In fact, a given stage of the floating-point adder is executed once 
every 10 cycles, which means that it is used only 10% of the time! In order to enhance performance 
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as well as resource utilization, we can pipeline the loops, then each loop iteration starts as soon as 
possible instead of waiting for 10 cycles.  
By use of loop pipelining, we switch from a sequential execution of loop iterations to a pipelined 
execution that the loop iterations are overlapped in time. The number of clock cycles between two 
consequent iterations of a pipelined loop is referred to as Initial Interval, or II. The minimum 
possible Initial Interval that can be achieved for a pipelined loop is 1.  
It means that each loop iteration can start at every cycle. therefore, depending on the loop being 
pipelined, it should not be possible to achieve the ideal Initial Interval of 1 cycle.  
When achieving an initial interval of 1, it means after the initial time needed to fill the pipeline, all 
the levels of the operators inside the loop are completely utilized at all clock cycles.  
First, when all the iterations are executed in sequence, the final latency of the loop could be 
calculated by product of the Iteration Latency, mentioned as IL, by the Number of iterations, or 
trip count, N of the loop.  
In other words, the latency of the pipelined loop can be derived as follow. We need Initiation 
Interval times N–1 cycles to start the first N–1 loop iterations, by adding the time needed to 
complete the last iteration that takes 10 cycles, that is the iteration latency of the loop.  
consider that, compared to unrolling, loop pipelining does not considerably increase the resource 
consumption of our design, in fact with pipelining we are making better use of under-utilized 
hardware resources.  
With Vivado HLS we can use the HLS PIPELINE pragma inside the loop which we want to 
pipeline. As we can observe from the latency report, The 1 cycle difference compared to the 
previous formula is due to the fact that Vivado HLS accounts for such cycle inside the function 
body instead of the loop itself.  
a function which is pipelined continuously read new input and write new output. In contrary, 
because first loop should finish all the operations inside the body loop before starting the next loop, 
a pipelined loop causes a bubble in data stream. For instance a point that no new input is read as 
the loop completes the execution of the final iterations, and a point which no new output is written 
as the loop starts new loop iterations. 
Pipelines continue to execute until data is available at the input and If there is not any data  
available to process, pipeline will stall.   
 
 
2.4.Array partitioning:  
 
Arrays are defined as block RAM that only has at most two data ports. This can reduce the 
throughput of a write or read (or store/load) intensive algorithm. The bandwidth can be increase 
by splitting the array (one block RAM as a resource) into some smaller arrays (some block 
RAMs), consequently extending the number of ports. Arrays are partitioned by use of the 
ARRAY_PARTITION directive. Vivado_HLS prepares three kinds of array partitioning, as 
depicted in the following figure. 
 The three styles of partitioning are:  
• block: The original array is split into same-sized blocks of elements of the original array.  
• cyclic: The original array is split into the equal size blocks elements of the original array.  
• fully partitioning: The default is to split the array into its exclusive elements. This relates to 
resolving a memory into registers. 
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we have already seen that within a rolling the factor of 2 we managed to reduce the loop latency 
by a factor of 2. compared to the implementation that only uses loop pipelining. In fact within a 
rolling factor of 2, the loop creates two computations in parallel at each iteration. In this kind of 
computation are also pipelines with an initiation interval of 1 clock cycle. But when it tried to 
boost performance more inside a rolling factor of N, we got almost the same performance. In fact, 
while there is the trip count, we also double the initial interval.  
In addition, even if it has a small impact, the iteration latency is also raised by one clock cycle.  
The problem comes from the number of memory ports available for reading/writing data into the 
local arrays. by default each local array gets mapped to local memory on the FPGA up to 2 memory 
ports for reading/writing operations.  
so how we can overcome these limitations? It has mentioned that each array gets mapped to its 
own local memory on the FPGA, So why do not using multiple arrays to increase the number of 
memory boards?  
 
First, in terms of better visualize the problem, it helps to manually unroll the loop instead of using 
the HLS unroll pragma. specially, we need to access the element at position i, i+1, i+2 till i+N. 
Since the local memories just accept two ports, it means that we can only access the elements at 
position i and i+1 in one clock cycle and access i+2 and i+3 in the next iteration.  
It is also considerable to note that the value of i increments with the step of last loop iteration value 
in every cycle. when the elements that need to access change from iteration to iteration. In terms 
of being able to achieve an initiation interval of one clock cycle, a way to access elements 1, 2, 3, 
and so on are needed in parallel, as well as elements 5, 6, and …, N in parallel and so on.  
To achieve this, it could possible by applying the array partitioning technique. The overall idea is 
to reorganize the data of the original array into 2 or even smaller arrays or better partitions so that 
all partitions are mapped to their own memory with these corresponding read/write ports.  
The key element here is to decide how to reorganize that data. the best idea is to perform cyclic 
partitioning.  
 
Especially, here performed cyclic partitioning, It means that by creating partitions from the original 
array. By using cyclic partitioning, the data from the original array is going out to the partitioning 
a cyclic style. The first element is mapped to the first partition. The second element is mapped to 
the second partition, then the cycle repeats.  
all the accesses to the original arrays at addresses I, substituted with accesses to the first partitions. 
And also the accesses to i+1, substituted by accesses to the second partition, and so on.  
 
consider also when accessing the elements inside the partitions, also needs to divide by N (example 
of a number of iteration) the value of variable i.  
Also, need to be sure that the data coming from the external DDR memory bank gets well stored 
in the way intended. similarly, we need to send the data toward the same order we had before 
partitioning. First, we perform all partitions, then we need to change the logic for reading the data 
from the DDR bank memory. Instead of using a simple mem copy, here by writing a pipeline loop 
that at all iterations reads one value from the external DDR and then stores it in the correct partition 
of the local array. In terms of understanding the correct partition to use for the element at the 
address i of the first original array.  
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Figure 6: Array partitioning instruction 

 
 
 
In fact, when using cyclic partitioning with the factor F, the element at address i from the first 
original array will store partition number i modulo F at address i divided by N. consider that here 
means integer division. The final result of an integer division is the result of division without the 
fractional part. Once the data read, then we can now define the calculation using vector. At the 
end, also needs to send back the results. To do it, we need to collect the data from the partitions 
of local results and send them to the external memory bank DDR. The logic here is the same as 
the one used for reading the data from the memory DDR bank. by creating a pipeline loop and at 
all iterations we fetch the current value from one of the partitions. finally, we write the value to 
the external DDR. Again, by using the modulo and the integer division operations to retake the 
correct value from the partitions. 
Thanks to the partitioning method, every iteration of the loop access exactly 1 element from each 
partition, which has its own memory port. Finally, it can define all the read/write operations in 
parallel and make us able to achieve the ideal initial interval of one clock cycle, but is there a 
simple way to achieve the same result without the need to rewrite all this long logic in a coded 
manner? the answer is yes. the array partitioning pragma prepared for this purpose. 
 
 
For cyclic and block partitioning, factor option defines number of arrays which are created. In 
case of using factor of 2, the array has been divided into two smaller arrays. If the number of 
elements in the array is not an integer multiple of the factor, the final array has lower elements. 
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3.1. RNN 
 
It composed set of algorithms which behave as like as human brain and it designed in a way that 
can recognize patterns through labelling and clustering input data with machine perception. 
All the real data such as image, text, sound first should convert to the vectors and then it 
recognize them as a numerical pattern. 
 
Recurrent Neural Network is extension of feedforward NN which has its own internal memory. 
RNN perform same function to the all inputs but its output related to the previous computation 
and when the output has been generated then it will send it into the recurrent network and to 
make final decision it relies on actual input (current value) and the output which learned from 
past input. 

 
 

Figure 7 : RNN procedure 
 
 

By looking at the figure, at the first step it takes x(0) from input and then block “A” generate 
h(0) as output value. At the next step the second “A” block takes x(1) from input and at the same 
time it takes h(0) which was generated through the previous step, it means at each step the 
network learn from the previous output and do computation by current input. 
 
 
 
There are some Transformer based method with  
 
3.2.BERT  
is a bi-directional transformer for pre-training over a some of unlabeled text data somehow to 
learn a language representation that could be used to fine-tune for specific ML tasks. Meanwhile 
BERT outcome the NLP state-of-the-art on some challenging tasks, its performance enhancement 
could be attributed to the bidirectional transformer, pre-training tasks of Masked Language Model 
and Next Prediction along with some of data and Google’s compute power. 
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3.3.RoBERTa 
 
 Introduced at Facebook, optimized BERT method RoBERTa, is a retrained version of the BERT 
with enhanced training methodology which is 1000% more data and compute power. To enhance 
the training procedure, RoBERTa method will removes the Next Sentence Prediction (NSP) task 
from BERT’s pre-training and introduced dynamic-masking so which the masked tokens 
modified during the training epoch. Big batch-training sizes are also found to be more 
advantageous in the training procedure. basically, RoBERTa uses over 160 GB of text for pre-
training, including 16GB of Books and Wikipedia used in BERT. an additional data which 
included is CommonCrawl News dataset (around 63 million articles, 76 GB), Web text corpus 
(38 GB) and Stories from Common Crawl (31 GB). This connect with massive 1024 V100 Tesla 
GPU’s running for a day. 
 
3.4.DistilBERT  
learns a distilled version of BERT, re-training 97% performance but using just half  of 
parameter. explicitly, it does not has any token-type embedding, pooler and retains just half of 
the layers from Googles BERT. DistilBERT method uses a technique called distillation, that 
approximates the Google’s BERT, for instance the large neural network by a smaller one. The 
idea is once a large neural network has been trained, its output distributions could be 
approximated using a smaller network. This is similar to posterior approximation. One of the key 
optimization functions which used in Bayesian Statistics is Kulback Leiber divergence and has 
naturally been used here as well. 
 
3.5.XLNet  
is a large bi-directional transformer which uses improved training method, more data and more 
computational power to achieve better result than BERT prediction on over 20 language tasks. To 
enhance the training, XLNet introduces permutation language model, where all the tokens have 
been predicted but in random order. This is in contrary to BERT’s masked language model which 
just the masked (around 15%) tokens are predicted. This is in contrast to the traditional language 
models, which all the tokens were predicted previously in sequential order instead of random one. 
This helps the model to learn bi-directional relationships, therefore better handles dependencies 
between words. In addition, Transformer XL used as the base architecture, which showed 
acceptable performance even in the absence of permutation based training. XLNet was trained 
with around 130 GB of textual data and 512 TPU chips running for 2.5 days. 
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Figure 8 : Comparison of transformer mode 
 
 
 
 
 
 
 
 
 
 
 
4.Transformers: 
 
In term of neural machine translation a ubiquitous method to improve the performance is using 
attention concept. Transformer is a model that uses attention to boost up velocity by training the 
model. By comparing the models, transformer shows that has better performance in neural 
machine translation in some specific tasks. Most beneficial advantage of transformer is 
capability of parallelization. Google is a company which introduced this model and they used it 
in their cloud TPU as reference model. 
 
Let’s break the design and going more in detail to analysis the model. 
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Figure 9 : Transformer architecture 

 
 
The first two main components are encoder and decoder which each one consists of stack of 
encoders and stack of decoder that the number layers in both decoder and encoder should be the 
same and identical in term of structure. 
By opening up encoder we can see it consists of two sublayers which named Feed Forward 
Neural Network and Self-Attention. 
With respect to the model hierarchy the input flow first to the Attention then its output fed the 
Feed Forward layer. 

 
 

 
Figure 10 : Decoder and Encoder 
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Considering the application of this thesis which is NLP, first all the words in the input should 
turn into the vectors. This transformation is essential because most machines need all their input 
as vector instead of string that it can works properly.  
This technique called Embedding word to transform phrases from vocabulary to required vectors 
-this vectors are real numbers- aim to generate vectors with lower dimensional space. 
Word vector are used to taking what does the text means out from the entire text to make neural 
network able to understand it and it should be conscious about the similarity and the different 
between words in term of contextual meaning. 

 
 
4.2. Softmax 
is a computational function which converts a vector of numbers into a vector of probabilities, in 
which the probabilities of each value are proportional to the related scale of each value in the 
vectors. 

The most common use case of the softmax in applied ML is its use as an activation function in a 
neural network model. In fact, the network has been configured to output N values for each class 
in the classification task, and the softmax is used to normalizing the outputs and then converting 
them from weighted sum values into the probabilities which sum to one. Each value in the output 
of the softmax is interpreted as a probability of membership for each class 

 
.4.3.Word2Vec 

 
The input phrases are going through as one-hot encoded vectors. it goes into (hidden layer) of 
linear units, consequently go into the Softmax layer to make a prediction. The idea used is to first 
train the hidden layer weight to find effective representation for words. This matrix is often 
named embedding matrix, and can be queried as a look-up table. 

 
One desirable feature of embeddings is because they’re represented as numbers of contextual 
similarities between words, by doing numerical operation between vectors we can reach to 
meaningful context. an example is subtracting the ‘notion’ of “King” from “Man” and adding the 
notion of “Woman”. The final answer depends on how the design trained before, but you’re 
eventually see one of the top results being the word “Queen”. 

 

 
Figure 11 : Word2Vec concept 
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4.4.Self attention: 

 
“The student didn’t go to Politecnico because it was closed”. In this sentence the “it” refers to the 
Politecnico. Understanding this kind of refers are simple for human but for machine is not simple 
as like as human. The duty of attention layer is processing “it” to associate it with Politecnico. In 
this case because the model processes all the input words, attention layer lets it to take a look 
better at the all words position and their sequence to do encoding words with more accuracy.  
 
4.4.1.Attention calculation: 
 
At the first phase of calculation in attention layer, it creates three vectors for each input of the 
encoder -which are embedding of each word- that they called Key, Value and Query. All those 
three vectors calculated by multiplying matrices which trained before by embedding words 
output. Pay attention that those vectors smaller than embedding vector and mentioned matrices in 
term of dimension because the dimensionality of embedding word and encoder input vectors are 
512 and by multiplying them, the size of Query, Key and Value reach to 64. 
 
What are the key, value and query? 
In term of self-attention calculation we need score of each word in sentence. This score will 
obtain by taking dot-product of query and value of a each word. For instance the word which 
placed at the first position of the sentence (position 1) its score calculated by dot-product of q1 
and k1 and the second one would be dot-product of q1 and k2. 
 
At this phase score should divide by 8 (the square root of the key vectors which declared above 
64). This provide more stable gradients, consequently send the result through a softmax 
operation. The duty of Softmax here is to normalizing the scores which means to be sure they’re 
all positive and add up to one. This Softmax score specify how much each word will be reliable 
at this position. In other word each word at this position has the most softmax score, but 
sometimes it’s better to consider another word that is relevant to the actual word. 
So now scores are ready and this is the time that softmax score should multiply by value vector 
and then by summing up weighted value producing output of self-attention for just first word. 
 
4.6.Feed Forward: 
 
The feed-forward layer weights which are trained during training and the exact same matrix are 
applied to each respective token position. Since it is applied without communication with or 
inference by other tokens position it is an extremely parallelizable part of the model. The duty 
and purpose are to process the output from one attention layer in such a way to better fit the input 
for the next attention layer. 
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4.7.Add and Normalization 
 
State of the art deep neural networks generally requires many days of training. It is possible to 
speed up the learning by computing gradients in different subsets of the training cases on 
different machines or by splitting the neural network itself over, many machines, but this can 
require complex software. It also tends to lead to rapidly diminishing returns as the degree of 
parallelization increases. An orthogonal approach is to change the computations performed in the 
forward pass of the neural network to make learning easier. currently, batch normalization has 
been proposed to reduce training time by adding extra normalization stages in deep neural 
networks. The normalization standardizes all summed input using its mean and its standard 
deviation across the training data. Feedforward neural networks trained by using batch 
normalization converge even faster with simple SGD. In addition to training time improvement, 
the stochasticity from the batch statistics serves as a regulariser during the training step. Despite, 
batch normalization requires running averages of the summed input statistics. In feed-forward 
networks with fixed depth, it is straightforward to store the statistics independently for each 
hidden layer. However, the summed inputs to the recurrent neurons in an RNN often vary with 
the length of the sequence, so applying batch normalization to RNNs comes out to require 
different statistics for different time steps. additionally, batch normalization cannot be applied to 
online learning tasks or to extremely large distributed models which the minibatches have to be 
small. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



28 
 

 
5.Quantization: 
 
Quantization refers to some processes which can reduce the number of bits. By considering the 
deep learning concept for the research, a numerical format of data has been used. 
In the hardware design, the Floating-Point unit uses a huge amount of area and power and the 
first common attempt to reducing the area and power usage is finding a way to use fewer PF 
units. By quantizing weights their format changes from FP to INT which means instead of using 
FP32 units there would be a possibility to do computation with INT8. Note that in this method 
some bits of data will loss and consequently the accuracy will reduce. 
 
As explained before by quantizing the weights the accuracy will decrease so why still it's 
desirable? The main motivation is Efficiency. By comparing the design with and without 
quantization the obvious benefit is energy-saving and area saving.  
Let take look at the comparison: 
 

 
 

 
 
5.2.FP32 VS. Integer 
 
 
In terms of numerical computation there are two kinds of attributes. the first one is a dynamic 
range that related to the size of the representable numbers and the second one is how many bits 
can demonstrate inside the dynamic range which determines the resolution and precision of the 
computation.  
The dynamic range for integer is [−2$%&-1 …2$%&-1] where here “n” represents the number of 
bits which is mean the range starts from -128 to +128 for INT8 and for INT4 this range limited 
to [-8..7]. At this point the number of representable values is  2$ which in the FP32 that the 
dynamic rage is ±3.4x 10)* , 4.2 x10+ values can be represented. 
We can directly see FP32 is much more versatile, in terms of demonstrate a wide range of 
distributions accurately. This is a great property for deep learning models, where the 
distributions of weights and activations are very different. In addition the dynamic range can 
differ between layers in the model. 
 
 
In term of represent these different distributions with an integer format, a scale factor is used to 
lead the dynamic range of the tensor to the integer range. But still we remain with the issue of 
having a significantly lower number of representable values, that is much lower precision. 
Pay attention that scale factor is in most cases, a floating-point number. while, even when using 
integer numerics, some floating-point computations remain. 
 
Comparison of the transformer with and without quantization in terms of resource consumption: 
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Figure 12 : Utilization Before quantization 
 
 
 

 
 

Figure 13 : Utilization After quantization 
 
 
 
 
 
By observing the two reports regarding to the quantization, the value of the BRAM and DSP are 
similar and in case of the FF it decreased 2 percent. In the following column the value of the 
LUT decreased dramatically. Because the FP units provided throught the LUT resource. As 
explained before after quantization the value which has to be computed got round and 
consequently the duration of computation in terms of timing reduced. By observing the tables, 
the timing before quantization in 8.738 and after it reduced to 8.281. 
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Figure 14 : Resource usage before quantization 
 
 

 
 

Figure 15 : Resource usage after quantization 
 
 
 
 
In context of quantization till now talked about quantizing FP32 to INT8, but if we want to 
obtain more efficiency, aggressive quantization is the next idea. At this level the idea is 
quantizing FP32 to INT4 but first issue is facing with significant accuracy degradation. Many 
researches tried to mitigate reduction of accuracy that one of the most famous one is Re-training. 
Its shows by bootstrapping quantized model with the weights that trained with FP32 model. But 
here in this phase I found INT8 more reliable for the design compare to the INT4. 
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Figure 17 : Quantization methodology 

 
 

5.3.IP Block Generation  

The final result of Vivado HLS flow is to convert the design from RTLs into the IP block that 
can be also used with other tools available in the Vivado Design Suite. To carry out this task use 
Export RTL button or menu bar from solution menu. IP packager generates a package that is 
included and used with Vivado IP Catalog. There are some other options available at this step. 
Here at this stage the project can also be finished along with incorporating ‘place and route’ 
option in this step. IP and project files are generated in the ‘impl folder’ which contains ‘IP 
folder’ and .zip file for IP block and Verilog or VHDL folder with “xpr” format file to be used as 
a project. Vivado HLS can generate RTLs in both hardware language Verilog and VHDL as per 
the choice of designer. finaly, project can be exported to other Vivado tools like Design Suite for 
placing this design on a physical FPGA device.  
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6.Conclusions 
 
6.1.Summary 
 
This thesis explained explicitly the basic idea of language translation. When a sentences translate 
from the first language to the second language, the order and the relation between words are 
really matter. By translating word by word the accuracy of translation will reduce dramatically. 
The transformer is a technique that makes translation more intelligent and the final output is 
more close to what the first sentences want to say. In fact, the work of this presented thesis is to 
design a hardware accelerator for the embedded system in terms of reducing the execution time 
and increase the throughput of the design.  

 

6.2.Results 

During this thesis, as explained before, different optimizations were performed for different data 
type to evaluate the latency and execution time. The first optimization was loop unrolling. For 
the experiment, I unrolled all the loops at the maximum factor but after synthesizing I realized 
the design exceeds the resource LUT, and by removing some unrolled loops reached the 
maximum allowed times of unrolling mechanism. As the target of this work is a small embedded 
platform, therefore accelerator adapted is of data type fixed-point 16 that have almost the same 
accuracy and precision results with respect to data types float and double. The design space 
explored while performing extensive fixed-point 16 data-type optimizations using Vivado-HLS. 

At the first step, the design completed I achieved these values of resource consumption. By 
looking at the table, all the resource usage is over 100 percent of the hardware resource. 

Name BRAM_18K DSP48E FF LUT URAM 
Utilization (%)       125    138 121 236 0 

After all optimization pragma applied into the design by add and removing some optimization, 
now the Utilization is far from what I got at the first even with better timing. 

Name BRAM_18K DSP48E FF LUT URAM 
Utilization (%)        23    23 10 24 0 
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At the next step entire design exported into the IP block and can be used in other Vivado tools. 

 

 

Figure 18 : IP export report 

 

A key point about translation is latency. To decreasing the latency for normal usage we need 
powerfull processor. Here in this thesis the transformer applied just on single FPGA. this work 
can continue with multiple PFGAs. In that case the model would be more accurate and reliable in 
terms of timing and precision. 
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7.1.Appendix c attention Layer 
 
#include <math.h> 
#include <ap_fixed.h> 
#include <iostream> 
#include "attention.h" 
 
#define WORDS 10 
#define EMBEDDING 512 
#define WEIGHTS_CHANNEL 64 
#define HEADS 4 
 
 
typedef ap_fixed<16, 4,AP_RND,AP_SAT> DataTypeATT; 
typedef ap_fixed<16, 4, AP_RND,AP_SAT> DataTypeTR_RND; 
typedef ap_int<8> datatypeint; 
using namespace std; 
// In this function, I assume the maximum length of the sentence is with 10 words, THis is a 
multi-head self-attention function. 
void attention(DataTypeTR_RND INPUT6[WORDS*EMBEDDING], DataTypeATT 
Z[WORDS*EMBEDDING], DataTypeATT Keys[WORDS*WEIGHTS_CHANNEL], 
DataTypeATT Values[WORDS*WEIGHTS_CHANNEL], DataTypeATT 
Wq[HEADS*EMBEDDING*WEIGHTS_CHANNEL], DataTypeATT 
Wk[HEADS*EMBEDDING*WEIGHTS_CHANNEL], DataTypeATT 
Wv[HEADS*EMBEDDING*WEIGHTS_CHANNEL], DataTypeATT 
Wz[HEADS*WEIGHTS_CHANNEL*EMBEDDING]) 
{ 
 
#pragma HLS INTERFACE s_axilite port=return bundle=control 
*/ 
 DataTypeATT sum[WORDS][WEIGHTS_CHANNEL*HEADS]; 
//#pragma HLS ARRAY_PARTITION variable=sum cyclic factor=64 dim=2 
 
 DataTypeATT Q[WORDS][WEIGHTS_CHANNEL]; 
//#pragma HLS ARRAY_PARTITION variable=Q complete dim=2 
 DataTypeATT K[WORDS][WEIGHTS_CHANNEL]; 
//#pragma HLS ARRAY_PARTITION variable=K complete dim=2 
 DataTypeATT V[WORDS][WEIGHTS_CHANNEL]; 
//#pragma HLS ARRAY_PARTITION variable=V complete dim=2 
 DataTypeATT IN[EMBEDDING]; 
//#pragma HLS ARRAY_PARTITION variable=IN complete dim=1 
 DataTypeATT WQ[EMBEDDING][WEIGHTS_CHANNEL]; 
//#pragma HLS ARRAY_PARTITION variable=WQ complete dim=1 
 DataTypeATT WK[EMBEDDING][WEIGHTS_CHANNEL]; 
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//#pragma HLS ARRAY_PARTITION variable=WK complete dim=1 
 DataTypeATT WV[EMBEDDING][WEIGHTS_CHANNEL]; 
//#pragma HLS ARRAY_PARTITION variable=WV complete dim=1 
 DataTypeATT WZ[HEADS*WEIGHTS_CHANNEL][EMBEDDING]; 
//#pragma HLS ARRAY_PARTITION variable=WZ complete dim=1 
 DataTypeATT Z_local[EMBEDDING]; 
//#pragma HLS ARRAY_PARTITION variable=Z_local complete dim=1 
 
 cout << "inside the function" << endl; 
 
 // 4 heads self-attention 
 for(int c=0; c<HEADS; c++){ 
 
  //read part of weights on chip 
  for(int i=0; i<EMBEDDING; i++){ 
   for(int j=0; j<WEIGHTS_CHANNEL; j++){ 
//#pragma HLS pipeline 
//#pragma HLS unroll factor=2 
    WQ[i][j] = 
Wq[c*EMBEDDING*WEIGHTS_CHANNEL+i*WEIGHTS_CHANNEL+j]; 
   } 
  } 
  for(int i=0; i<EMBEDDING; i++){ 
 
   for(int j=0; j<WEIGHTS_CHANNEL; j++){ 
#pragma HLS pipeline 
//#pragma HLS unroll factor=2 
    WK[i][j] = 
Wq[c*EMBEDDING*WEIGHTS_CHANNEL+i*WEIGHTS_CHANNEL+j]; 
   } 
  } 
  for(int i=0; i<EMBEDDING; i++){ 
  //#pragma HLS unroll factor=2 
   for(int j=0; j<WEIGHTS_CHANNEL; j++){ 
   //#pragma HLS unroll factor=2 
#pragma HLS pipeline 
    WV[i][j] = 
Wq[c*EMBEDDING*WEIGHTS_CHANNEL+i*WEIGHTS_CHANNEL+j]; 
   } 
  } 
 cout<<"after initialize the weights arrays" << endl; 
  //using trained weights Wq, Wk, Wv to calculate Quries, Keys, Values 
  for(int m=0; m<WORDS; m++){ 
  //#pragma HLS unroll factor=2 
   for(int i=0; i<EMBEDDING; i++){ 
  //#pragma HLS unroll factor=2 
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#pragma HLS pipeline 
    IN[i] = INPUT6[m*EMBEDDING+i]; 
   } 
 
   for(int j=0; j<WEIGHTS_CHANNEL; j++){ 
   //#pragma HLS unroll factor=2 
 
    DataTypeATT Q_sum = 0; 
    for(int i=0; i<EMBEDDING; i++){ 
    //#pragma HLS unroll factor=2 
#pragma HLS pipeline II=3 
     Q_sum += IN[i] * WQ[i][j]; 
    } 
    Q[m][j] = Q_sum; 
   } 
   //cout<<"test" << endl; 
 
   for(int j=0; j<WEIGHTS_CHANNEL; j++){ 
 
    DataTypeATT K_sum = 0; 
    for(int i=0; i<EMBEDDING; i++){ 
     K_sum += IN[i] * WK[i][j]; 
//#pragma HLS unroll factor=2 
#pragma HLS pipeline II=3 
    } 
    K[m][j] = K_sum; 
   } 
 
   for(int j=0; j<WEIGHTS_CHANNEL; j++){ 
 
    DataTypeATT V_sum = 0; 
    for(int i=0; i<EMBEDDING; i++){ 
//#pragma HLS unroll factor=2 
#pragma HLS pipeline II=3 
     V_sum += IN[i] * WV[i][j]; 
    } 
    V[m][j] = V_sum; 
   } 
 
  } 
 
  //using Quries and Keys to calculate Score 
  DataTypeATT Score[WORDS][WORDS]; 
//#pragma HLS ARRAY_PARTITION variable=Score complete dim=2 
  for(int i=0; i<WORDS; i++){ 
//#pragma HLS unroll factor=2 
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   for(int j=0; j<WORDS; j++){ 
    //cout<<"test2" << endl; 
    DataTypeATT score_sum = 0; 
    for(int m=0; m<WEIGHTS_CHANNEL; m++){ 
//#pragma HLS unroll factor=2 
#pragma HLS pipeline 
     score_sum += (Q[j][m] * K[j][m]) >> 3; 
    } 
    Score[i][j] = score_sum; 
   } 
  } 
 
  //calculate the softmax 
  DataTypeATT Score_exp_sum[WORDS]; 
//#pragma HLS ARRAY_PARTITION variable=Score_exp_sum complete dim=0 
  for(int i=0; i<WORDS; i++){ 
//#pragma HLS unroll factor=2 
   //cout<<"test3" << endl; 
   float exp_sum = 0; 
   for(int j=0; j<WORDS; j++){ 
//#pragma HLS unroll factor=2 
#pragma HLS pipeline 
    exp_sum += exp(float(Score[i][j])); 
   } 
   Score_exp_sum[i] = exp_sum; 
  } 
  for(int i=0; i<WORDS; i++){ 
//#pragma HLS unroll factor=2 
 
   for(int j=0; j<WORDS; j++){ 
//#pragma HLS unroll factor=2 
#pragma HLS pipeline 
    Score[i][j] = 
exp(float(Score[i][j]))/float(Score_exp_sum[j]); 
   } 
  } 
 
  //softmax multiply Values 
 
  for(int i=0; i<WORDS; i++){ 
//#pragma HLS unroll factor=2 
   for(int j=0; j<WEIGHTS_CHANNEL; j++){ 
    //cout<<"test4" << endl; 
    DataTypeATT tmp = 0; 
    for(int m=0; m<WORDS; m++){ 
//#pragma HLS unroll factor=2 
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#pragma HLS pipeline 
     tmp += Score[m][j] * V[m][j]; 
    } 
    sum[i][WEIGHTS_CHANNEL*c + j] = tmp; 
   } 
  } 
 } 
 for(int m=0; m<WORDS; m++){ 
//#pragma HLS unroll factor=2 
  //write K, V back to the memory, they will be used from the decoder side 
  for(int j=0; j<WEIGHTS_CHANNEL; j++){ 
//#pragma HLS unroll factor=2 
#pragma HLS pipeline 
   Keys[m*WEIGHTS_CHANNEL+j] = K[m][j]; 
  } 
  for(int j=0; j<WEIGHTS_CHANNEL; j++){ 
#pragma HLS pipeline 
   Values[m*WEIGHTS_CHANNEL+j] = V[m][j]; 
  } 
 } 
 

 
 //The final multiplication to calculate the final output Z 
 for(int i=0; i<WORDS; i++){ 
//#pragma HLS unroll factor=2 
  for(int j=0; j<EMBEDDING; j++){ 
// 
   for(int m=0; m<WEIGHTS_CHANNEL*HEADS; m++){ 
#pragma HLS pipeline 
//#pragma HLS unroll factor=2 
    WZ[m][j] = Wz[j*WEIGHTS_CHANNEL*HEADS+m]; 
   } 
  } 
 
  for(int j=0; j<EMBEDDING; j++){ 
 
   DataTypeATT Z_sum = 0; 
   for(int m=0; m<WEIGHTS_CHANNEL*HEADS; m++){ 
    Z_sum += sum[i][m] * WZ[m][j]; 
#pragma HLS pipeline 
   } 
   Z_local[j] = Z_sum; 
   } 
 
  for(int j=0; j<EMBEDDING; j++){ 
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   Z[i*EMBEDDING+j] = Z_local[j]; 
  } 
 } 
 
} 
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7.2.Utilization Design Information 
 
 
Table of Contents 
----------------- 
1. CLB Logic 
1.1 Summary of Registers by Type 
2. CLB Logic Distribution 
3. BLOCKRAM 
4. ARITHMETIC 
5. I/O 
6. CLOCK 
7. ADVANCED 
8. CONFIGURATION 
9. Primitives 
10. Black Boxes 
11. Instantiated Netlists 
 
 
1. CLB Logic 
------------ 
 
 
+----------------------------+--------+-------+-----------+-------+ 
|          Site Type         |  Used  | Fixed | Available | Util% | 
+----------------------------+--------+-------+-----------+-------+ 
| CLB LUTs                   |  96513 |     0 |    274080 | 35.21 | 
|   LUT as Logic             |  83389 |     0 |    274080 | 30.43 | 
|   LUT as Memory            |  13124 |     0 |    144000 |  9.11 | 
|     LUT as Distributed RAM |  12456 |     0 |           |       | 
|     LUT as Shift Register  |    668 |     0 |           |       | 
| CLB Registers              | 122079 |     0 |    548160 | 22.27 | 
|   Register as Flip Flop    | 122079 |     0 |    548160 | 22.27 | 
|   Register as Latch        |      0 |     0 |    548160 |  0.00 | 
| CARRY8                     |   5352 |     0 |     34260 | 15.62 | 
| F7 Muxes                   |  11695 |     0 |    137040 |  8.53 | 
| F8 Muxes                   |   5060 |     0 |     68520 |  7.38 | 
| F9 Muxes                   |      0 |     0 |     34260 |  0.00 | 
+----------------------------+--------+-------+-----------+-------+ 
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1.1 Summary of Registers by Type 
-------------------------------- 
 
 
+--------+--------------+-------------+--------------+ 
|  Total | Clock Enable | Synchronous | Asynchronous | 
+--------+--------------+-------------+--------------+ 
| 0      |            _ |           - |            - | 
| 0      |            _ |           - |          Set | 
| 0      |            _ |           - |        Reset | 
| 0      |            _ |         Set |            - | 
| 0      |            _ |       Reset |            - | 
| 0      |          Yes |           - |            - | 
| 0      |          Yes |           - |          Set | 
| 0      |          Yes |           - |        Reset | 
| 53     |          Yes |         Set |            - | 
| 122026 |          Yes |       Reset |            - | 
+--------+--------------+-------------+--------------+ 
 
 
 
 
2. CLB Logic Distribution 
------------------------- 
 
 
+--------------------------------------------+--------+-------+-----------+-------+ 
|                  Site Type                 |  Used  | Fixed | Available | Util% | 
+--------------------------------------------+--------+-------+-----------+-------+ 
| CLB                                        |  27020 |     0 |     34260 | 78.87 | 
|   CLBL                                     |  11060 |     0 |           |       | 
|   CLBM                                     |  15960 |     0 |           |       | 
| LUT as Logic                               |  83389 |     0 |    274080 | 30.43 | 
|   using O5 output only                     |    443 |       |           |       | 
|   using O6 output only                     |  77579 |       |           |       | 
|   using O5 and O6                          |   5367 |       |           |       | 
| LUT as Memory                              |  13124 |     0 |    144000 |  9.11 | 
|   LUT as Distributed RAM                   |  12456 |     0 |           |       | 
|     using O5 output only                   |      0 |       |           |       | 
|     using O6 output only                   |  12288 |       |           |       | 
|     using O5 and O6                        |    168 |       |           |       | 
|   LUT as Shift Register                    |    668 |     0 |           |       | 
|     using O5 output only                   |      0 |       |           |       | 
|     using O6 output only                   |    598 |       |           |       | 
|     using O5 and O6                        |     70 |       |           |       | 
| CLB Registers                              | 122079 |     0 |    548160 | 22.27 | 
|   Register driven from within the CLB      |  32011 |       |           |       | 
|   Register driven from outside the CLB     |  90068 |       |           |       | 
|     LUT in front of the register is unused |  54932 |       |           |       | 
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|     LUT in front of the register is used   |  35136 |       |           |       | 
| Unique Control Sets                        |   5609 |       |     68520 |  8.19 | 
     

 
* Note: Available Control Sets calculated as CLB Registers / 8, Review the Control 
Sets Report for more information regarding control sets. 
 
 
 
 
3. BLOCKRAM 
----------- 
 
 
+-------------------+------+-------+-----------+-------+ 
|     Site Type     | Used | Fixed | Available | Util% | 
+-------------------+------+-------+-----------+-------+ 
| Block RAM Tile    |  193 |     0 |       912 | 21.16 | 
|   RAMB36/FIFO*    |  184 |     0 |       912 | 20.18 | 
|     RAMB36E2 only |  184 |       |           |       | 
|   RAMB18          |   18 |     0 |      1824 |  0.99 | 
|     RAMB18E2 only |   18 |       |           |       | 
+-------------------+------+-------+-----------+-------+ 
* Note: Each Block RAM Tile only has one FIFO logic available and 
therefore can accommodate only one FIFO36E2 or one FIFO18E2. However, 
if a FIFO18E2 occupies a Block RAM Tile, that tile can still 
accommodate a RAMB18E2 
 
 
 
 
4. ARITHMETIC 
------------- 
 
 
+----------------+------+-------+-----------+-------+ 
|    Site Type   | Used | Fixed | Available | Util% | 
+----------------+------+-------+-----------+-------+ 
| DSPs           |  601 |     0 |      2520 | 23.85 | 
|   DSP48E2 only |  601 |       |           |       | 
+----------------+------+-------+-----------+-------+ 
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5. I/O 
------ 
 
 
+------------------+------+-------+-----------+-------+ 
|     Site Type    | Used | Fixed | Available | Util% | 
+------------------+------+-------+-----------+-------+ 
| Bonded IOB       |    0 |     0 |       204 |  0.00 | 
| HPIOB_M          |    0 |     0 |        72 |  0.00 | 
| HPIOB_S          |    0 |     0 |        72 |  0.00 | 
| HDIOB_M          |    0 |     0 |        24 |  0.00 | 
| HDIOB_S          |    0 |     0 |        24 |  0.00 | 
| HPIOB_SNGL       |    0 |     0 |        12 |  0.00 | 
| HPIOBDIFFINBUF   |    0 |     0 |        96 |  0.00 | 
| HPIOBDIFFOUTBUF  |    0 |     0 |        96 |  0.00 | 
| HDIOBDIFFINBUF   |    0 |     0 |        60 |  0.00 | 
| BITSLICE_CONTROL |    0 |     0 |        32 |  0.00 | 
| BITSLICE_RX_TX   |    0 |     0 |       208 |  0.00 | 
| BITSLICE_TX      |    0 |     0 |        32 |  0.00 | 
| RIU_OR           |    0 |     0 |        16 |  0.00 | 
+------------------+------+-------+-----------+-------+ 
 
 
 
 
 
 
 
6. CLOCK 
-------- 
 
 
+----------------------+------+-------+-----------+-------+ 
|       Site Type      | Used | Fixed | Available | Util% | 
+----------------------+------+-------+-----------+-------+ 
| GLOBAL CLOCK BUFFERs |    2 |     0 |       404 |  0.50 | 
|   BUFGCE             |    2 |     0 |       116 |  1.72 | 
|   BUFGCE_DIV         |    0 |     0 |        16 |  0.00 | 
|   BUFG_GT            |    0 |     0 |       168 |  0.00 | 
|   BUFG_PS            |    0 |     0 |        72 |  0.00 | 
|   BUFGCTRL*          |    0 |     0 |        32 |  0.00 | 
| PLL                  |    0 |     0 |         8 |  0.00 | 
| MMCM                 |    0 |     0 |         4 |  0.00 | 
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+----------------------+------+-------+-----------+-------+ 
* Note: Each used BUFGCTRL counts as two GLOBAL CLOCK BUFFERs. This 
table does not include global clocking resources, only buffer cell 
usage. See the Clock Utilization Report (report_clock_utilization) for 
detailed accounting of global clocking resource availability. 
 
 
 
 
7. ADVANCED 
----------- 
 
 
+-----------------+------+-------+-----------+-------+ 
|    Site Type    | Used | Fixed | Available | Util% | 
+-----------------+------+-------+-----------+-------+ 
| GTHE4_CHANNEL   |    0 |     0 |        16 |  0.00 | 
| GTHE4_COMMON    |    0 |     0 |         4 |  0.00 | 
| OBUFDS_GTE4     |    0 |     0 |         8 |  0.00 | 
| OBUFDS_GTE4_ADV |    0 |     0 |         8 |  0.00 | 
| PS8             |    0 |     0 |         1 |  0.00 | 
| SYSMONE4        |    0 |     0 |         1 |  0.00 | 
+-----------------+------+-------+-----------+-------+ 
 
 
 
 
 
 
8. CONFIGURATION 
---------------- 
 
 
+-------------+------+-------+-----------+-------+ 
|  Site Type  | Used | Fixed | Available | Util% | 
+-------------+------+-------+-----------+-------+ 
| BSCANE2     |    0 |     0 |         4 |  0.00 | 
| DNA_PORTE2  |    0 |     0 |         1 |  0.00 | 
| EFUSE_USR   |    0 |     0 |         1 |  0.00 | 
| FRAME_ECCE4 |    0 |     0 |         1 |  0.00 | 
| ICAPE3      |    0 |     0 |         2 |  0.00 | 
| MASTER_JTAG |    0 |     0 |         1 |  0.00 | 
| STARTUPE3   |    0 |     0 |         1 |  0.00 | 
+-------------+------+-------+-----------+-------+ 
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9. Primitives 
------------- 
 
 
+----------+--------+---------------------+ 
| Ref Name |  Used  | Functional Category | 
+----------+--------+---------------------+ 
| FDRE     | 122026 |            Register | 
| LUT6     |  39796 |                 CLB | 
| LUT3     |  14626 |                 CLB | 
| LUT2     |  14281 |                 CLB | 
| RAMS32   |  12624 |                 CLB | 
| MUXF7    |  11695 |                 CLB | 
| LUT4     |  10314 |                 CLB | 
| LUT5     |   7023 |                 CLB | 
| CARRY8   |   5352 |                 CLB | 
| MUXF8    |   5060 |                 CLB | 
| LUT1     |   2716 |                 CLB | 
| DSP48E2  |    601 |          Arithmetic | 
| SRL16E   |    570 |                 CLB | 
| RAMB36E2 |    184 |           Block Ram | 
| SRLC32E  |    168 |                 CLB | 
| FDSE     |     53 |            Register | 
| RAMB18E2 |     18 |           Block Ram | 
| BUFGCE   |      2 |               Clock | 
+----------+--------+---------------------+ 
 
 
 
10. Black Boxes 
--------------- 
 
 
+----------+------+ 
| Ref Name | Used | 
+----------+------+ 
 
 
 
 
11. Instantiated Netlists 
------------------------- 
 
 
+-----------------+------+ 
|     Ref Name    | Used | 
+-----------------+------+ 
| bd_0_hls_inst_0 |    1 | 
+-----------------+------+ 
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