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1. Introduction 
 
 
During last years, a new technology of mobile telephony has been discovered, called 5G, due 
to the changing key parameters that have to be satisfied in the next years, such as: 

 Virtualization of most of web devices (switch, routers, …); 

 Increase of the number of mobile devices to be satisfied; 

 Reducing latency; 

 Reducing energy consumption;  

 Increase of transmission speed. 
Each of these goals has been achieved employing some specific technology that I’m going to 
describe here: 

SDN FOR VIRTUALIZATION: 
Virtualization of web devices has been achieved thanks to the introduction of the SDN 
(Software Defined Networking), which basically divide network in 2 types of nodes: edge 
nodes, and central nodes. 
Edge nodes are the user ones, and usually they are “dumb”, since they just have to do what 

central nodes tell them to do. This is the main goal achieved by virtualization: moving the 
complexity from many nodes, to few central intelligent nodes, which have to take decisions 
and communicate them to the user nodes. 
Any time that a dumb node does not know what to do with data, then it asks to controller 
nodes; then it gets answer, and from now on it knows what to do with that type of data. 
Another advantage achieved by this approach, is of course the reduction of costs of web 
devices; basically the user nodes do no take decisions, they do what controllers tell them to 
do, so do not need complex hardware architecture. 
For what concern controller nodes, usually are few, and completely software; sometimes they 
exchange information with neighbour controller nodes in order to better manage data of a 
specific geographic area for example. 

EDGE COMPUTING FOR LATENCY: 
Reducing latency is a crucial point for some type of applications, and in order to achieve it, 
edge computing has been implemented in 5G. 
Edge computing is a network composed by many data centers able to elaborate and memorize 
critical data locally, and then send data to a central data center.  
In this way, time-sensitive data can be elaborated locally, if we have a smart device, or by an 
intermediate server located near to us; non-time sensitive data, instead, can be sent to the 
cloud. 
In small words, critical data, the one asking very low latency, are elaborated and memorized 
by servers near to us, and not by the central cloud, which can be very far from us, reducing 
significantly the latency. 
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In addition, edge computing is good also for privacy, because in this way data can be stored 
locally in intermediate servers, and not all in the central cloud, like happens in cloud 
computing. 

NETWORK DENSIFICATION AND SMALL CELLS: 
One of the main reason to switch from 4G to 5G is the continuous increase of mobile devices 
asking connection to the Internet. This big problem, and the need of increase the transmission 
speed, lead us to network densification and small cells. 
This because having a major number of adjacent cells covering the same area means having 
higher total capacity, which is necessary as the demanding bit rates per user are increasing as 
time pass by.  
In addition, increasing the base station sites means that we can handle higher traffic per 
square meters, because there will be many 5G base stations covering geographical area, and 
this means that the traffic is not directed all to the same cell, like it happens in 4G, where the 
coverage of the area is bigger, but it is directed in different cells; this helps in reducing the 
load of each base station, and as a consequence it allows to deal more traffic in the same 
geographical area. 
Also, the fact that these cells are smaller means that, inside a 5G cell, the distance between the 
base station and the user equipment is smaller than the one of 4G, and it leads to higher per-
user bit rate. 
Each cell works on a specific range of frequencies: the higher the frequencies are, the higher 
the transmission speeds, but lower coverage. This turns into 3 possible type of cells: 

 Small band cells:  in these cells, working frequencies are around 700/800 MHz, and the 
achievable data rate is pretty low, 30/250 Mbps. On the contrary, their coverage area 
is very high, then can be implemented in places where we do not expect so much 
traffic. 

 Medium band cells: here the working frequencies are of a few GHz (2/3), and the 
achievable data rate is 100/900 Mbps. These cells will be very common in 
metropolitan scenarios, and has been already implemented in some cities. 

 Large band cells: these cells are the ones which really makes possible the network 
densification. Working at frequencies around 25/39 GHz, they can achieve very high 
bit rate, of the order of 1Gbps. They use mmWaves, which can be easily blocked by 
walls, meaning that the coverage area is very small, and that’s why they are also called 

SMALL CELLS. The idea is to put these type of cells in places where we expect a lot 
of traffic, and cover areas by have many adjacent SMALL CELLS. 

Unfortunately, it’s not so easy to switch all the 4G technologies to the new 5G ones, it is 

much easier to mix both technologies before changing definitely to 5G. 
The best way to do so, is to put a 5G small cell in an area covered already by a 4G macro cell, 
producing a heterogeneous network (HetNet). In particular, it is convenient to place the small 
cell where it is expected to have high traffic of users, called Hotspot.  
The customers entering the macro cell, then, will face four possible scenarios: 

1. They will finish their service in the macro cell; 
2. They will move to the small cell, performing then a handover before finishing the 

service; 
3. They will move to another macro cell, performing handover again. 
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Unfortunately, planning a HetNet is very complex, especially because we have to answer to 2 
questions: 
1) Is the presence of a small cell effective in the same way on different kinds of traffic (elastic 
and inelastic traffic)? 
2) How effective is the presence of a small cell in a macro cell? 
Once these questions have been answered, then it will be possible to dimension and position 
small cells in such a way that densification brings the desired benefits. 
This thesis will be focused on the first question, but in order to achieve reliable results, it is 
necessary to create an accurate simulation model. 
The thesis, then will be structured in the following chapters: 

- Queueing model for cells with mixed traffic: in this chapter the analytic queueing model 
which describes the situation to study has to be created; 

- Simulation model: once the analytic model is ready, then it has to be implemented in a 
simulation environment, which will be Omnet++. Omnet++ is an extensible, modular, 
component-based C++ simulation library and framework, primarily for building 
network simulators. Its functionalities will be described in a clear way, such that the 
generated code will be easily understandable. 

- Results for one cell: here it is reported how the small cell acts in presence of both 
inelastic and elastic traffic. Here all the statistics computed by the simulation will be 
plotted, and the results will be studied and analysed in order to get proper conclusions; 

- Appendix: in here is present the code generated to simulate the different scenarios, and 
it is explained step by step.  

- Conclusions. 
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2. Queueing model for cells with mixed traffic 
 
 
In this scenario we are interested in the behaviour of a base station loaded with two classes of 
services: inelastic and elastic. 
Our base station has a finite capacity that has to be shared between these 2 types of services. 
Inelastic services require a fix bit rate, a continuous data flow (like video conversation or 
video streaming); the service data rate is fixed by the rate at which data are produced at the 
source, and cannot be increased or decreased by the network. 
Instead, elastic ones are transmitted at the maximum bit rate possible, but only if this one is 
greater than the minimum rate they ask. In this case, the data is available at the source, and the 
data rate is constrained by the network capabilities, as well as the source and destination 
capabilities of transmitting/receiving data, and the characteristics of the network protocols. 
In conclusion, an elastic service requires a minimum data rate, and, on top of that, equally 
share all the capacity not used by inelastic services with the other elastic ones.  
From now on, the base station will be simulated by using a queue, where packets will be 
stored until they end up their service or perform handover. 
Each time a service enters our queue, it has 2 possibilities; either it completes its task, or it 
performs handover; in this model, handovers represents the mobility of users, because after a 
period of time we assume that the user moves into another cell, so outside the coverage of our 
base station. If a service performs handover, it has to start again from the beginning the 
service in the new cell. 
Since the arrivals can be either elastics or inelastics, it is convenient to describe a queue 
model with 2 possible streams of customer arrivals: inelastic customers with rate i , and 
elastic ones with rate e . We initially will assume that the generation processes are Poisson 
ones, so this implies we got i  inelastic arrives per second, and e  elastic arrives per second 
on average. 
It is important to notice that not each service that arrives at the queue enters it; it depends if 
the amount of available capacity is enough to serve it. 

In particular, if we assume that the queue has a total capacity C, and iR  is the bit rate required 
by each inelastic customer, and eR  is the minimum bit rate required by each elastic service, 
then a service will be accepted if and only if: 

 If customer is inelastic, it will be only accepted if: 

ieeii RRNRNC    (2.1) 

Where iN  and eN  represent the number of inelastic and elastic customers in service 
respectively. 
This equation can be summarized as follows: if we subtract from the total capacity C, 
the bit rate occupied by already in service inelastic customers ( ii RN ), and the bit rate 
that would be occupied by the elastic services if each one was working at its minimum 
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accepted bit rate eR  ( ee RN ), we obtain the residual available capacity. If this one is 
greater than iR , then this customer can be served, otherwise it is discarded. 

Notice that it is not mandatory that elastic services work at eR , this rate just need to 
understand if in the worst situation for the elastic, the inelastic one can be served or not; 
if yes, then elastic customers equally share the capacity that is not used by inelastic 
ones, and this value can be larger than eR . 

 If customer is elastic, it will be only accepted if: 

eeeii RRNRNC    (2.2) 

 The explanation is exactly the same of the case above. 
We will further assume that an inelastic service size is exponentially distributed with mean 

i

1  bits, and a service time exponentially distributed (at least at the beginning) with mean 
i

1  

seconds; in this way, the relation between these two quantities is the following: 

i

i

i

R



1   (2.3) 

For what concern elastic customers, things are a little bit different. Their packet sizes are 

exponentially distributed with mean 
e

1  bits, but this time, we cannot say in advance how its 

service time is distributed; this one depends on the number of inelastic and elastic customers 
actually in service, and so it’s a value continuously changing. 
This value, anyway, will be included among 2 values: 

 
eC

1 , this value occurs in the best case, when the elastic service uses all the capacity C, 

meaning that it’s the only service in the queue, leading to the minimum service time; 

 
eeR 

1 , on the contrary this value represents the case in which the elastic customer has to 

work at its minimum accepted rate eR , leading to the maximum service time for 
elastic customers. 

Up to now, I described how are distributed packet sizes, service and generation times; but, as 
I said before, a customer has 2 options when enters the queue: either it completes its service 
with rates just computed, or it performs handover. 

Handover is just represented with a random variable exponentially distributed with mean 
H

1  

seconds; it easily means that each service remains on average 
H

1  seconds in our cell; if the 

service time is less than this value, then the customer completes its task, otherwise it leaves 
the cell (and the queue) without completing. 
At each point, the state of the queue can be described by: 

),( ei NNS    (2.4) 
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Since both handover and service time are exponentially distributed, for now, the minimum 
between these two random variables has a rate which is the sum of the 2 rates, and so the 
individual service rate of an inelastic customer is: 

iHeii NN  ),(    (2.5) 

While for an elastic customer it becomes: 

e
e

ii
Heie N

RNCNN 
)(),( 

   (2.6) 

This because, as explained by the formula 2.3, the rate of service time should be the product 
between the bit rate associated to each elastic service, and the inverse of the mean of the 
elastic packet size ( e ). Since the bit rate of elastic customer changes as the number of 
customers in service, then it has to be computed on the base of how many inelastic and elastic 
services are present in the queue in that moment.  
In order to compute the elastic data rate, it is necessary to equally share the capacity not used 
by inelastic customers ( ii RNC  ) among all elastic customers in service ( eN ). 

So, if we want to compute the total service rate, in a specific queue state, of inelastic 
customers is: 

iiHeiTi NNN )(),(     (2.7)  

While, the total service rate for elastic ones is: 

eiieHeiTe RNCNNN  )(),(    (2.8) 

These two formulas are obtained, respectively, simply multiplying the equations 2.5 and 2.6 
by iN  and eN . 

In addition, there cannot be more than i  inelastic customers in the queue, and more than e  
elastics. 
The analysis of the queueing model so can be performed either by a simulation model, which 
is what I did and will be shown after, or by a CTMC in the case of exponential distributions 
(which is our initial case). 
In this way, the results given by the simulator can be checked studying the Markov-Chain 
associated. 
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3. Simulation model 
 
 
The simulation model of the scenario described above has been designed using the simulator 
OMNET++. This type of simulator creates different modules, and each module can work 
standalone like a usual c++ code, or it can communicate and exchange information to the 
modules to which it is connected to. 
The structure of modules of the simulation is represented as: 
 

 
Figure 3.1: Topology of the modules composing the network 

 
So, we got 3 types of modules, each simulating a specific part of our scenario: generator, 
server and sink. 
Each one of these modules is described by 3 types of files created by the simulator: 

 NED FILE: this file is used to create the physical topology connecting different 
modules; here we specify the connections among modules, the speed at which they 
exchange information, delay, the gates that are involved in the connections, and also 
parameters associated to them. 

  INI FILE: this file is where all the initial parameters with their values are collected; 
each parameter is associated to a module. 
For example, if in the NED file we declared that the generator has a parameter called 
inel_prob, then in the INI file, in order to assign this parameter a value, we have to do 
as following: 
Generator.inel_prob=VALUE WE DECIDE 
This allows us to run different scenarios simply changing the values in the INI file, 
without need to change from scratch our code. 

 C++ FILE: this file is the hearth of the modules; here is where we decide exactly what 
each module has to do when receives information.  
Differently from the INI and NED files, which are common to all the modules, the 
C++ files are specific for them; so each one has its own C++ file. 
In addition, each of these C++ files is divided in 3 main parts of code: 

o Initialize part: this part is the one in which we assign values to the variables 
of our code; it runs just once, as soon as the simulation starts. 
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o HandleMessage part: this one is the core of the module, because here we 
have all the procedures that we want our module to run. This part runs each 
time the module receives a message in input, which can be a self-message (if 
the module sent a message to itself, explained after), or a message coming 
from another module. 

o Finish part: this part, obviously, it is entered only at the end of our simulation. 
In particular, OMNET++ allows us to decide for how many simulated seconds 
we want our simulation to run (this value is specified in the INI file with the 
name sim-time-limit=VALUES IN SECONDS). 
We will change often this value, in order to understand how the scenario works 
for different time intervals, or to have more accurate statistics. 
Well, once the simulation reaches the end of the seconds, the code of each 
module enters the finish part, and usually here we want display at screen the 
statistics computed on the run.   

Now let’s describe exactly what each module does: 

 GENERATOR: it simulates the arrival of new customers in our cell. It uses a specific 
technique of this simulator called self-message, which basically is a message that the 
module sends to itself after a certain amount of time. 
Once it receives this message, then it triggers an action, which in our case is the 
generation of a packet to send to our output module, which is the server. 
The time between 2 self-messages is the interarrival time between 2 customer arrivals; 
so, if we decided to distribute customer arrivals through exponential random variables, 

then the self-message must be received, on average, after 


1  seconds where   is the 

rate of customer arrivals. 
So in the initialize part of the generator, we send a self-message, and as soon as it is 
received, we enter its handleMessage part. 
Here, in our specific case, we have to decide if the arrival is an elastic or inelastic one; 
once we decided, we sent this packet to the server module, and we send another self-
message, so the cycle continues. 

 SERVER: it basically simulates the behaviour of the base station. So as soon as it 
receives a message from the generator, it will take decisions on how and if this 
customer has to be served. In this module we also collect useful statistics to analyse 
the base station behaviour. 
If the customer finishes its service without performing handover, then we send this 
one to the sink; otherwise, if it performs handover, then it will be deleted after its 
dwell time expires. 

 SINK:  this one simply confirms us that the customer finished its service and we don’t 

need any more to serve it.  
Now, that we know which are the modules, what they simulate, and how are they connected 
among themselves, it can be explained how the simulation works. 
Later on, it will be shown in the code the presence of 2 matrices in the C++ code of the server 
(simulating the base station); in particular, one matrix for elastic services and the other one for 
the inelastic ones. 
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The number of rows of the matrices is the maximum number of inelastic/elastic customers 
simultaneously present in the queue allowed, so respectively i  and e . 

In this way, each row is linked to a specific customer, and the cells contain parameters 
referring to it, in particular: 

 First columns contain how many bits are remained to transmit for that customer; 

 Second columns contain the remaining dwell time of that customer, that is how much 
time remains before that customer performs handover; 

 Third columns contain the time needed to transmit the residual bit of that customer; 

 Fourth columns contain, just for elastic ones, the bit rate associated to that customer, 
which will be the same for all elastic ones, since they equally share the residual 
capacity. This value is necessary for them since it’s varying each time each customer 

enters/leaves the queue; instead, since the bit rate associated to an inelastic service is 
always the same, this value doesn’t need to be specified for them. 

How these values are exactly computed is explained below when the code is studied; the 
importance of these values is now explained. 
Since each customer can both perform handover or complete the service, we cannot know in 
advance which of these 2 situations will be chosen for each customer; so at each change of 
state, we collect in the matrices these times for each service with the updated values. 
The values of times keep decreasing, until one arrives to 0; when this happens it means that: 

If the 0 is in the second column: a handover has to be performed for that customer; 

If the 0 is in the third column: that customer has completed its services. 
So, at each time, we have to compute the minimum among all remaining dwell and 
completion times, in order to know which will be the first time to arrive to 0; once we know 
which is the minimum time, a self-message will be scheduled after exactly that time. In this 
way as soon as we receive the self-message, we know that a handover or a completion has to 
be performed. 
In both cases, the row linked to that customer is reset to -1, so from now on that row can be 
associated to a new customer. 
Notice that if a new arrival happens before the scheduled departure message expires, then the 
scheduled message has to be deleted, and sent again once the new arrival has been assigned 
the reserved capacity; this is necessary because, as soon as a customer arrives, the residual 
capacity changes, and so also the bit rate associated to each elastic customer, and as a 
consequence also their completion times. So, as soon as a new arrival happens, we check if 
there is a scheduled message, if yes is deleted, and then we update whole residual times and 
bit to transmit and associated bit rate for each customer. 
This procedure will go on until the simulation time ends. 
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4. Results for one cell 
 
 
At the begin, I started in simulating just one cell, with mixed traffic, in different scenarios, in 
order to understand how things change if parameters change. 
Different cases have been studied, and they are reported below. 
 

4.1 First studied case: low arrival rate 
The first studied case has the following parameters: 
 

Table 4.1. Parameters of the first tested case 

Parameters Value Unit of measure 

Max # inelastics 1 Pure number 

Max # elastics 10 Pure number 

Interarrival rate (λ) 20 1/seconds 

Probability a service is 
inelastic 

0.5 Pure number 

Mean of dwell time 1 Seconds 

Capacity of the queue 100 Kbit/s 

Rate asked by inelastics 100 Kbit/s 

Minimum rate asked by 
elastics 

0 Kbit/s 

Mean of packet size of 
inelastic services 

100 Bits 

Mean of packet size of 
elastic services 

100 Bits 

 
The first important aspect to notice is that in this particular case, the minimum rate needed by 
elastic services is 0Kb/s; this means that when an inelastic customer arrives, and there are no 
other inelastic in service, then it will take the whole capacity (100Kb/s). Instead, all the elastic 
customers in service, and the ones that will enter the queue (accepted up to a maximum of 10 
elastics), will temporarily get 0Kb/s, increasing their completion time to infinity. 
Obviously, as soon as the inelastic service ends, then all the elastic ones will change their rate 
in such a way they equally share the capacity; this implies that, in this specific tested case, the 
elastic customers are discarded if and only if there are already 10 of them in service. 
Another important observation that can be done, is that, given this specific choice of 
parameters, the behaviour of inelastic services is perfectly independent from the one of the 
elastics; this because their behaviour is not affected by how many elastic customers we have 
in service. 
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This is because, again, if we have no inelastic customers in service, as soon as one of them 
arrives, it doesn’t matter how many elastics are present in the queue, because they can always 
adjust their rate to 0, given then priority to the inelastic customer. 
Thanks to this observation, the behaviour of inelastics can be predicted by taking into account 
the M/M/m/0 case, where m in this case is 1 since there can be at maximum 1 inelastic in 
service. In particular: 







10

0
0),0(

e

e

N

N
eNP    (4.1) 

Where 0  is the probability of being in the 0 state of the M/M/1/0 queue. The formula to 
compute a state probability, for that queue is: 






 mi

i

i

k

k

i

k

0 !

!




   (4.2) 

Where   simply is the ratio between the arrival and service rate of inelastic customers. 

So, the formula 4.2, if we are interested in the 0 state probability, change as follows: 











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
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
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
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!

1
1

0

0 i

i

i

i

  (4.3)  

In the formula 4.3 particular attention should be focused on the parameters   and  , because 
as already mentioned before, this queue is simply modelling the inelastic behaviour, and so it 
means that we are referring just to them; that’s why both   and   are not the general ones, 
but are the inelastic ones. 
In particular: 

]/1[105.0]/1[20 ssprobineli     (4.4) 

As can be seen by formula 4.4, the inelastic arrival rate is computed by multiplying the 
overall arrival rate and the probability that the customer is inelastic. The same could be done 
to compute the elastic arrival rate, and that means, basically, that our arrival process can be 
seen as two arrival processes (one for inelastics and one for elastics) working in such a way 
that their arrival rates, summed up, give the overall one.   
For what concerns, instead the inelastic service rate, then: 

iHis     (4.5) 

By reading formula 4.5, we understand that the rate of inelastic service is the sum between the 
dwell rate and the service one, and this is because the choice performed by the inelastic packet 
is the one with minimum time, and so its rate is the sum of the two because they are both 
exponentially distributed. 

Dwell rate H , since the dwell time is exponentially distributed, is simply the inverse of the 
mean of the dwell time, and reading table 4.1 we get that it is 1 second; so it turns that 

]/1[1
][1

1 s
sH     (4.6) 
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Instead, the service rate i  is not specified by parameters, but thanks to the formula 2.3 we 
get : 

]/1[1000
][100
]/[105

s
bit

sbitR iii     (4.7) 

In formula 4.7 both iR  and i  value can be read from table 4.1, but iR  has been converted 
from Kbit/s to bit/s.  
So now, putting together the results of 4.6 and 4.7, the formula 4.5 gives the following 
result:   

]/1[1001]/1)[10001( ssis     (4.8) 

So, finally, we can compute 0  by means of the formula 4.3, using the values given by 4.4 
and 4.8: 

99.0
]/1[1011
]/1[1001

]/1)[101001(
]/1[1001

0 






s
s

s
s

iis

is




    (4.9) 

As a consequence, by formula 4.1, we get that the sum of all the state probabilities with 0 
inelastics is 0.99, meaning that for 99% of the time there will be no inelastic customer in the 
queue. This result may seem wrong, but it is due to the fact that the state (0,0) has a 
probability equal to 0.98, while all the other state probabilities are extremely low. 
This is because the service rate is much higher than the arrival one, and so as soon as a service 
enters the queue, it will be immediately served, and a long time pass before a new arrival 
happens. Since very small probabilities, of the order of 810 , cannot be seen by the simulator, 
it will turns out as if that probabilities are 0, turning in low accuracy results; this is the main 
reason for which we proceeded in the next case. 
Anyway, some key statistics have been computed, and it is shown in this table: 

 
Table 4.2. Results of the first tested case 

Statistic Value Unit of measure 

Inelastic losses 24766 Pure number 

Elastic losses 0 Pure number 

Inelastic handovers 2462 Pure number 

Elastic handovers 2652 Pure number 

Inelastic completed services 2472893 Pure number 

Elastic completed services 2497635 Pure number 

Average inelastic customers 
in service 

0.00987818 Pure number 

Average elastic customers in 
service 

0.010294 Pure number 

Average inelastic fraction of 
capacity (%) 

0.987818 Pure number 
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Average elastic fraction of 
capacity (%) 

0.999165 Pure number 

Average queue load 1986.98 Bit/s 

Average elastic bit rate 994.08 Bit/s 

 
The following results make sense, and let’s analyse them one by one; first of all, we can 
notice we do not have any elastic customer lost. This is perfectly reasonable because the rate 
of arrival is 20, meaning 20 arrivals per second on average, in which 10 of them are elastic; 
but the completion time (service time), is much lower, because is computed as the ratio 
between the packet size of an elastic customer, and its associated rate, which will be almost 
always equal to whole the capacity, due to high service rate with respect to arrival one. 
As for inelastic, under the assumption that the elastic customer is the only one in service, it 
will get whole the capacity, and so it means, as explained in formula 4.7, that its service rate 
will be 1000; this value, compared to the value of  , turns out to be much bigger. 

This leads to a scenario in which often as soon as a customer enters the queue, it will 
immediately be served even before some other one can enter the queue, explaining the high 
probability of state (0,0). 
In addition, the minimum rate of elastics here is 0Kb/s, so even if there is an inelastic 
customer in service when an elastic one arrives, this last one will not be lost, but it will be 
accepted in the queue and assigned its minimum rate 0 Kb/s. So, the only way to have elastic 
losses is to reach Max #el customers in service, but this scenario will never happen because 
service rate is much higher than interarrivale one, as explained before. 
On the contrary, inelastic losses can happen because it is exceeded the max # inelastic 
customers allowed, which is 2; so, in order to have a loss, it is sufficient that an inelastic 
arrives when there is already another inelastic in service, which is not so frequent, but it 
happens. That explains why the losses are so small with respect to the completed services. 
In addition, also the handovers turns out to be not so frequent with respect to the completed 
services; this is because the dwell time is exponentially distributed with a mean of 1 sec, 
while, as said before, the service time, when we are the only one in the queue (most of the 
time), is 310  seconds. So the service time, on average, its 1000 times smaller than the 
average dwell time, and so the completed events will be of the order of 1000 times bigger 
than the handovers, as demonstrated. It is also possible to sum up handovers, losses and 
completions of both inelastics and elastics, in order to check that these 2 values are almost 
equal, respecting the 0.5 probability of having inelastic services. 
For average customers in service, both inelastic and elastic, we get values around 0.01, 
meaning that, on average, there is 0.02 customers per second, or better, there is 1 customer 
every 50 seconds. This is perfectly reasonable, because   is 20 and  is 1000 (if the 
customer is the only one in the queue), so the arrival rate is exactly 50 times smaller than the 
service rate. As a consequence, it can be notice also that the average queue load is respecting 
this criterion; in fact, its value (1986) is 50 times smaller than the overall capacity (100Kb/s), 
that’s because 1 time over 50 there is a customer taking all the capacity, so there is a capacity 
usage of 100Kb/s over an interval of 50 seconds, with available capacity which is 50 times 
larger. 
In addition, when there is just a customer in the queue, it has 50% possibility of being elastic, 
and so it makes perfectly sense that the average elastic rate is half the average queue load; it 
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simply follows the same criterion of queue load, but it has to be halved in order to consider 
just the elastic ones. 
In the end, for what concerns the average fraction of capacity, if we assume to be most of the 
time with just 1 customer in the queue, again we can assume it will get all the capacity; 
unfortunately, as already mentioned before, it happens 1 time every 100 for both inelastics 

and elastics, so it follows that they use just 
100

1  of the total capacity, so around 1%. 

So now, in order to have more accurate results, we move to the second case. 
 

4.2 Second tested case: increasing arrival rate 
This case has exactly the same parameters of table 4.1, except for , which now is 1000 
instead of 20. 
In this way, the probability of the state (0,0) is expected to be significantly reduced, while the 
other states are expected to be more probable, in such a way the simulator is able to give 
reliable state probabilities. 

Formulas 4.1, 4.2 and 4.3 are still valid for this case, but now   has changed,  and as a 
consequence also the inelastic arrival rate changed, in particular it becomes: 

]/1[5005.0]/1[1000 ssprobineli      (4.10) 

The service rate, instead, does not change, so it does not need to be computed again. 
By using the value given by the formula 4.10, and putting it in the formula 4.9, we obtain a 
different 0 , which is: 
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  (4.11) 

By looking at formula 4.11, we can conclude that, in this case, there will be no inelastic 
customers in service for 66% of the time. 
This is the theoretical result; let’s see if the simulator gives the same values: 
 

Table 4.3. State probabilities of the second simulated case 

State probabilities 
for 500 ei   

Analytic results Simulation results Error (%) 

P(0,0) 1,811533E-01 1,807240E-01 -0,24 

P(0,1) 1,205879E-01 1,204550E-01 -0,11 

P(0,2) 9,016861E-02 9,019070E-02 0,02 

P(0,3) 6,982462E-02 6,993070E-02 0,15 

P(0,4) 5,455086E-02 5,467800E-02 0,23 

P(0,5) 4,267993E-02 4,277860E-02 0,23 
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P(0,6) 3,337343E-02 3,336530E-02 -0,02 

P(0,7) 2,606739E-02 2,612890E-02 0,24 

P(0,8) 2,033531E-02 2,035790E-02 0,11 

P(0,9) 1,584310E-02 1,581840E-02 -0,16 

P(0,10) 1,230431E-02 1,230990E-02 0,05 

P(1,0) 6,038437E-02 6,022180E-02 -0,27 

P(1,1) 6,031053E-02 6,023220E-02 -0,13 

P(1,2) 5,013937E-02 5,017010E-02 0,06 

P(1,3) 3,996537E-02 4,002950E-02 0,16 

P(1,4) 3,148280E-02 3,159540E-02 0,36 

P(1,5) 2,469947E-02 2,478350E-02 0,34 

P(1,6) 1,933794E-02 1,932920E-02 -0,05 

P(1,7) 1,511743E-02 1,514880E-02 0,21 

P(1,8) 1,180211E-02 1,185050E-02 0,41 

P(1,9) 9,224557E-03 9,212990E-03 -0,13 

P(1,10) 1,064731E-02 1,068880E-02 0,39 

 
First of all, an interesting check can be performed summing up the probabilities from P(0,0) 
to P(0,10); it comes out 0.666, confirming the theoretical prediction. 
In addition, I computed the error, which is the difference between the analytic results and the 
simulation ones; it is nice to see that errors are very small, this is thanks to the choice of the 
parameter  . 

The choice of this   equal to 1000 is such that the arrival rate is bigger than the service one; 
that’s why, as already mentioned before,  is 1000 if and only if we are the only one in 
service, which is not definitely the case anymore. This means that queue fills up in a frequent 
way, giving us state probabilities greater than the previous simulated case. 
Other statistics computed on this scenario are: 
 

Table 4.4. Results of the second tested case 

Statistic  Value Unit of measure 

Inelastic losses 4168896 Pure number 

Elastic losses 287458 Pure number 

Inelastic handovers 8414 Pure number 

Elastic handovers 69680 Pure number 

Inelastic completed services 8333827 Pure number 

Elastic completed services 12146356 Pure number 
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Average inelastic customers 
in service 

0.333263 Pure number 

Average elastic customers in 
service 

2.79224 Pure number 

Average inelastic fraction of 
capacity (%) 

33.3263 Pure number 

Average elastic fraction of 
capacity (%) 

48.601 Pure number 

Average queue load 81927.3 Bit/s 

Average elastic bit rate 22591.2 Bit/s 

 
First of all, as can be noticed, the number of losses is increased with respect to the first case, 
and now we also have elastic losses; this is obvious, because we increased lambda to 1000, so 
it means on average 1000 arrivals per second instead of 20, and in addition, now as 
highlighted in the table 4.3, it can happen we have up to 10 elastic customers in service, 
leading to an elastic loss if a new one arrives. The reason because inelastic losses are much 
more than the elastic ones is because there can be just 1 inelastic in the queue; it means that, if 
there is already an inelastic customer in the queue, as soon as a new one arrives, then it is an 
inelastic loss. Instead, there can be up to 10 elastic customers in service, and given the fact 
that elastic and inelastic are equiprobable, it means that is much more frequent to have an 
inelastic loss instead of an elastic one, and for the same reason the inelastic completed 
services are much less than elastic ones. 
For what concerns handovers, an exponential increase for elastic ones can be noticed; this 
happens because in this scenario usually we have more than one elastic customer in service, 
and so their assigned rate will not be anymore 100 Kb/s, but it will decrease as the number of 
elastic customers in the queue increases. As a consequence, their completion time increases, 
and the probability that it’s bigger than the dwell time increases as well. That’s why the 

handover increase is much more evident for elastic customers than inelastic ones. 
Anyway, in order to check the correct functioning of the simulation code, it is possible to sum 
up handover, losses and completed services both inelastic and elastic, in order to confirm the 
probability of having one or the other is 0.5. 
As expected, rates and fraction and number of customers in service increases in this scenario, 
and in particular, it can be verified that in this special case, the average elastic fraction can be 
also theoretically computed doing: 

53.48100))0,0()0((  PP    (4.12) 

This is because we have elastic rate different from 0 if and only if there are no inelastics in 
service ))0,0()0(( PP  , that’s because the overall capacity is exactly equal to the rate asked 

by inelastic customers, so if there is just one of them in queue, it will occupy all the capacity. 
Given that, the elastic fraction, in these cases, will be always equal to the whole capacity 
since there are no inelastics in queue, so they can adjust their rate to equally share the whole 
capacity. In a similar way can be computed theoretically the inelastic fraction: 

33.33100))0(1(100)1(  PP    (4.13) 
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The result given by formula 4.13 is obvious, since we can have just 1 inelastic in service, and 
will take all the capacity. 
An interesting observation can be done summing up elastic and inelastic fraction; the result is 
not 100%, but: 

%9273.81)%3263.33601.48(____ usedcapacityoffractionTotal   (4.14) 

By formula 4.14 turns out that just 82% of the capacity has been used, and since it is 
sufficient that just one inelastic or elastic customer is in the queue in order to maximize the 
queue load, it means that 18% of the capacity has not been used because there were no 
customers in queue. This is confirmed checking up the value of P(0,0) in the table 4.3; it is 
exactly the residual amount of capacity not used by customers (around 18%). 
As a consequence, can be easily checked the result of the average queue load; this because the 
queue load will always be the total capacity, except in the case (0,0). 
This can be explained in a simple way: since the rate needed by an inelastic customer is equal 
to whole the capacity, then it doesn’t matter how many inelastics or elastics we have in the 
queue, the average load will always be the maximum one. Because if we have an inelastic 
one, it will use all the capacity, instead, if we don’t have it, the elastics will adjust their rate in 

order to use all the bit rate; so anyway there will be no free capacity left.  
For this reason, we can claim we have 100 Kb/s average load always, except the case (0,0), 
so: 

]/[6.81927]/[9276.81]/[100))0,0(1( sbsKbsKbP     (4.15) 

Notice that the value obtained by formula 4.15, could also be obtained by the formula 4.14. 

The elastic average bit rate, instead, can be computed knowing that in all the states  ),1( eNP  
it will be 0; so we have to consider only the states ),0( eNP , except )0,0(P . 

It is sufficient to multiply the probability of one of this state (reported in the table 4.3), by the 
rate associated to each elastic; so if 1 then 100 Kb/s, if 2 then 50 Kb/s, and so on so forth, and 
then summed up this values, so basically, written in formula, can be theoretically computed 
by: 
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   (4.16) 

In the end, the average number of inelastic services can be easily checked by taking into 
account the fraction of capacity used by them; since their rate will be fixed to 100Kb/s, then it 
is sufficient to divide the inelastic capacity used, by their rate; it will turn out the value in the 
table 4.4. Notice that it is exactly the same value of the inelastic fraction of capacity, which 
make perfectly sense there can be at maximum one inelastic customer in the queue. 
On the contrary, the average elastic services in the queue are much more difficult to be 
checked, because their rate is not fixed, and so cannot be computed by taking into account 
their fraction of capacity. Anyway, since all the other results are consistent, and make all 
sense, it is sure that also the average number of elastic customers in service is correct. 
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4.3 Third tested case: a realistic scenario 
in this scenario we started to simulate a more realistic scenario, in which more elastic and 
inelastic customers can enter the queue, in particular the parameters are: 
 

Table 4.5. Parameters of the third tested case 

Parameters Value Unit of measure 

Max # inelastics 30 Pure number 

Max # elastics 30 Pure number 

Interarrival rate (λ) 20 1/seconds 

Probability a service is 
inelastic 

0.5 Pure number 

Mean of dwell time 50 Seconds 

Capacity of the queue 10 Mbit/s 

Rate asked by inelastics 300 Kbit/s 

Minimum rate asked by 
elastics 

50 Kbit/s 

Mean of packet size of 
inelastic services 

500 KBits 

Mean of packet size of 
elastic services 

500 KBits 

 
The biggest difference with respect to the other 2 scenarios is the rate needed by 
inelastic/elastic customers; now, an inelastic customer does not require all the capacity, and 
on the contrary, the minimum rate needed by an elastic one is not anymore 0, so the situation 
is pretty different.  
The state probabilities are not reported in the following, due to the large number, instead, the 
statistics computed on this case are the following: 
 

Table 4.6. Statistics of the third simulated case 

Statistic Value Unit of measure 

Inelastic losses 2965 Pure number 

Elastic losses 60881 Pure number 

Inelastic handovers 80554 Pure number 

Elastic handovers 58869 Pure number 

Inelastic completed services 2417708 Pure number 

Elastic completed services 2381104 Pure number 

Average inelastic customers 16.1165 Pure number 
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in service 

Average elastic customers in 
service 

11.8752 Pure number 

Average inelastic fraction of 
capacity (%) 

48.3496 Pure number 

Average elastic fraction of 
capacity (%) 

47.6093 Pure number 

Average queue load 9.59589e+006 Bit/s 

Average elastic bit rate 955797 Bit/s 

 

First of all, running the simulation, can be noticed that the probabilities from )27,29(P  to 
)30,29(P , and from )21,30(P  to )30,30(P  are exactly 0, and that is because they will exceed 

the total capacity of 10 Mb/s. 
It can be noticed also, that some other probability will seem to be 0, but in reality it’s not; 

they are showed to be 0 on the simulator due to the very small value they have, and so the 
program is not able to give a good accuracy to them, as explained before. As the number of 
inelastic customers increases, the state probabilities are bigger and bigger, before starting to 
decrease again when the inelastic customers are more or less above 20; that is verified by the 
results of the simulation, in fact it is showed that the average number of inelastics in service is 
16, so the probabilities with inelastic customers around this value will be bigger. 
Again, from the results, can be easily checked that the average queue load will be the sum of 
the inelastic and elastic fractions, which turns to be a value very near to the maximum 
capacity. 

In addition, since the   tested in this case is the same of the first simulated case, then we 
expect they have the same number (more or less) of elastic/inelastic generated services, and 
this is confirmed by checking the values in the table 4.2 and 4.6; if we sum up, in both tables, 
the handovers, completed services and lost ones, both inelastic and elastic, we obtain, more or 
less, always 2500000. 
The first big difference between these 2 cases is given by the number of elastic losses; now 
there are many of them, with respect to the first case when they were exactly 0. This is due to 
the fact that the minimum rate needed by elastics is no more 0Kb/s, but 50Kb/s; this means 
that now elastic packets can also be discarded because there is no enough capacity to serve 
them, and this has a big impact on this result. On the contrary, instead, turns out that inelastic 
losses reduce in this case, and this is obvious given the fact that in this case the queue can 
guest up to 30 inelastic services, instead of just 1 of the first case.  
For what concern, instead, the handovers in this case, are increasing both for inelastic and 
elastic with respect to the first tested case. It can seem wrong, because now the mean of the 
dwell time is 50 seconds instead of 1 of the first case, but it has to be considered that the 
packet size has a strong impact on this statistic, and now is 3 order of magnitude greater than 
the one of the first case, as can be noticed by tables 4.2 and 4.6. This increase in packet size 
has a much stronger impact on the handovers with respect to their mean, leading to the 
increase noticed.  
 



 23 

4.4 Fourth tested case: changing packet distributions 
in this case, we run a simulation with the same parameter of the previous scenario, except for 
the dwell time, which now increases to 300 seconds (5 minutes). In addition, we test for 4 
different combinations of distributions, in particular changing the duration of the service time, 
both inelastic and elastic, that means to vary the file distribution of them. 
In these situations, different curves have to be drawn, for different values of lambda, for: 

 probability of inelastic losses 

 probability of elastic losses 

 average number of inelastic customers in the queue 

 average number of elastic customers in the queue 

 average elastic rate 
The resulting curves are: 

 

 
Figure 4.1: Probability of inelastic losses with different types of service distributions 
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Figure 4.2: Probability of elastic losses with different types of service distributions 

 

 
Figure 4.3: Average inelastic services with different types of service distributions 
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Figure 4.4: Average elastic services with different types of service distributions 

 

 
Figure 4.5: Average elastic rate with different types of service distributions 

 
For all 5 statistics the following values of lambda have been used: 20, 30, 40, 50, 70, 90, 100, 
250, 500, 750, 1000. 
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The first thing that can be immediately noticed is that, in all the statistics analysed, the curves 
drawn for different combination of distributions are overlapping. It is necessary to zoom a lot 
inside the pictures in order to see very small differences among them. 
This leads to a very simple conclusion: changing the distribution of the file size (inelastic or 
elastic) do not affect neither the loss probability, average services, nor the average elastic rate. 
In particular, I tested the exponential and deterministic distributions. 
Anyway, an interesting observation can be done comparing the first 2 curves: both have a 
positive-exponential shape, but the first one (probability of inelastic losses) has a slower 
increase with respect to the second one. In particular, the probability of elastic losses 
increases very fast when lambda changes from 20 to 30; it has a jump from around 5% to 
around 60%. 
This situation can be matched with the curve related to the average elastic services; again, a 
huge jump from 20 to 30 happens; it changes from 14 elastic services in the queue to around 
29. This makes sense with the big increase of elastic losses.   
As a consequence, the average elastic rate drastically decreases when lambda changes from 
20 to 30; it varies from around 700 Kb/s, to around 100 Kb/s, as shown in the last curve.  
In conclusion, by choosing these parameters, big changes happen when the arrival rate is 
between 20 and 30. 
So, since all the combination of distributions give almost the same results, the statistics 
computed for this scenario are: 

 

Table 4.7. Statistics of the fourth simulated case for 20  

Statistic Value Unit of measure 

Inelastic losses 454 Pure number 

Elastic losses 12039 Pure number 

Inelastic handovers 1410 Pure number 

Elastic handovers 1226 Pure number 

Inelastic completed services 248855 Pure number 

Elastic completed services 237092 Pure number 

Average inelastic customers 
in service 

16.4901 Pure number 

Average elastic customers in 
service 

14.3669 Pure number 

Average inelastic fraction of 
capacity (%) 

49.7618 Pure number 

Average elastic fraction of 
capacity (%) 

47.4869 Pure number 

Average queue load 9.72487e+006  Bit/s 

Average elastic bit rate 781290 Bit/s 
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Table 4.7 refers to the case with   equal to 20, instead when it becomes 30: 
 

Table 4.8. Statistics of the fourth simulated case for 30  

Statistic Value Unit of measure 

Inelastic losses 30246 Pure number 

Elastic losses 216993 Pure number 

Inelastic handovers 1967 Pure number 

Elastic handovers 2398 Pure number 

Inelastic completed services 343684 Pure number 

Elastic completed services 156891 Pure number 

Average inelastic customers 
in service 

22.8772 Pure number 

Average elastic customers in 
service 

29.1558 Pure number 

Average inelastic fraction of 
capacity (%) 

68.5831 Pure number 

Average elastic fraction of 
capacity (%) 

31.4156 Pure number 

Average queue load 9.99987e+006 Bit/s 

Average elastic bit rate 108626 Bit/s 

 
An important observation arises: completed elastic services decreases even though lambda 
increases; in fact, the increase of the elastic losses is exponential, as shown by means of the 
graphs above. These turns into an unbalanced system, because 68% of the capacity will be 
reserved for inelastic customers, on average; on the contrary, for lambda equal to 20, the 
situation was more balanced, where both inelastic and elastic services were using around 48% 
of the capacity. 
The explanation is given by the fact that, as soon as inelastic services increase, the rate 
associated to the elastic drastically reduces, and so they will stay in the queue for a much 
longer time; so, when new elastic customers arrive, they will probably find the capacity 
empty, or the maximum number of elastic customers in service, and then they will get lost. 
Instead, the increase of completed inelastic services is much more linear, because their rate is 
fixed. 
As a conclusion, then, the more we increase the arrival rate, the more elastic losses we will 
have, resulting in an unbalanced system which tends to favour inelastic customers.  
Also the increase of completed inelastic services gets slower and slower as lambda increases; 
so, it is inefficient to increase lambda too much; it will just result in many customers to get 
lost, the only advantage is the usage of most of the capacity, which increases more and more. 
On the contrary, if we are interested to get a balanced system, or to minimize the percentage 
of losses, a lower value of arrival rate would be reasonable. 
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In the end, also the 95% confidence intervals have been computed; in order to do so, it’s been 

necessary to compute, first of all, the mean among all the 4 combination of distributions, and 
then computing the standard deviation. Then, the next step was to take the right value of the 
t_student function from the relative tables, in this case it was the one associated to the third 

row, and column under 0.025; respectively, the number of samples minus one, and 
2

95.01 . 

Once all these parameters have been computed, the confidence intervals can be computed by 
performing: 
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Where N, in our case, is 4, since we got 4 combination of distributions. 
The confidence intervals, obtained for the different statistics, are hard to be shown on a plot, 
because, again will be values very near to the computed one, so it is more useful to show them 
in tables: 
 

Table 4.9. Inelastic losses (%) confidence intervals 

0.1342 7.9230 23.094 35.983 53.317 63.279 66.765 86.517 93.250 95.495 96.622 

0.2243 8.3962 23.548 36.520 53.712 63.420 66.982 86.632 93.294 95.538 96.641 

 
 

Table 4.10. Elastic losses (%) confidence intervals 

3.603 57.439 75.717 82.985 89.135 91.843 92.777 97.270 98.649 99.106 99.326 

6.140 58.265 76.426 83.421 89.454 92.106 92.969 97.346 98.693 99.135 99.351 

 
 

Table 4.11. Inelastic services confidence intervals 

16.535 22.849 25.449 26.431 27.166 27.438 27.513 27.845 27.927 27.952 27.965 

16.643 22.941 25.517 26.473 27.179 27.440 27.520 27.846 27.928 27.953 27.965 

 
 

Table 4.12. Elastic services confidence intervals 

14.394 29.121 29.664 29.788 29.875 29.910 29.921 29.971 29.986 29.990 29.993 

14.843 29.172 29.672 29.795 29.880 29.913 29.923 29.972 29.986 29.991 29.993 

 
 

Table 4.13. Elastic rate confidence intervals 

6.84e5 1.07e5 7.92e4 6.91e4 6.17e4 5.91e4 5.83e4 5.49e4 5.40e4 5.38e4 5.36e4 
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8.24e5 1.09e5 8.00e4 6.96e4 6.20e4 5.92e4 5.83e4 5.49e4 5.40e4 5.38e4 5.36e4 

 
Basically, these intervals mean that: given that mean, and that standard deviation, for each 
statistic, if we run many simulation, then 95% of the times the value given by the simulator 
will fall in the specific confidential interval associated to that statistic. 
In addition, it is possible to compute the accuracy (or error) with respect to the mean, 
associated to each confidential interval; it’s computed as: 

mean
boundlowerboundupperAccuracy __ 

    (4.18) 

The lower this value is, the more reliable the results are, because it basically computes the 
distance between the mean and the bounds. 
In order to improve the accuracy, a possible solution could be to run many simulations; in this 
way, the confidential intervals will automatically shrink, and so the distance from the mean 
will be lower. 
The error associated to our confidential intervals are: 
 

Table 4.14.  Error on inelastic losses (%) confidence intervals 

0.5030 0.0580 0.0195 0.0148 0.0074 0.0022 0.0032 0.0013 4.715 
e-4 

4.4201 
e-4 

2.0303 
e-4 

 
 

Table 4.15.  Error on elastic losses (%) confidence intervals 

0.5206 0.0143 0.0093 0.0052 0.0036 0.0029 0.0021 7.7817 
e-4 

4.4087 
e-4 

2.8596 
e-4 

2.5430 
e-4 

 
 

Table 4.16.  Error on inelastic services confidence intervals 

0.0065 0.0040 0.0027 0.0016 4.986 
e-4 

8.337 
e-5 

2.406 
e-4 

4.572 
e-5 

2.849 
e-5 

1.972 
e-5 

9.292 
e-6 

 
 

Table 4.17.  Error on elastic services confidence intervals 

0.0307 0.0018 2.673 
e-4 

2.412 
e-4 

1.387 
e-4 

1.107 
e-4 

7.439 
e-5 

3.126 
e-5 

1.733 
e-5 

1.812 
e-5 

8.664 
e-6 

 
 

Table 4.18.  Error on elastic rate confidence intervals 
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0.1848 0.0105 0.0099 0.0082 0.0045 0.0016 0.0014 2.904 
e-4 

1.005 
e-4 

1.940 
e-4 

1.011 
e-4 

 

As can be noticed, the error decreases as   increases, that’s because as   increases, the 
bounds of the confidential intervals tend to shrink, and, as a consequence, it results in higher 
accuracy. 
 

4.5 Fifth tested case: testing lognormal distribution 
As we have already tested deterministic and exponential distribution for packet size, it is 
interest to see what happens in the case of a high-variance distribution, such as the lognormal 
one. 
This type of distribution is described such as its logarithm is normal distributed with 
parameter  , which is the mean, and  , which is the standard deviation. In particular, we 
want to test this distribution with the same mean of the exponential packet size, but with 
variance bigger 10 times with respect to that case. 
In order to do so is necessary to apply some formula; first of all, it is necessary to know which 
are the mean and the standard deviation of an exponential distribution, they are described as 
follows: 




1
   (4.19) 

2
2 1


    (4.20) 

Formula 4.19 says that the mean is the inverse of the parameter of the distribution, while the 
4.20 means that the variance is the inverse of the square of the parameter. 
By knowing that, since we had a packet size that is, on average, 500000 bits, as can be read in 
the case 4.3, then applying 4.19, the parameter   is: 

]/1[102
][500000

11 6 bit
bit




   (4.21) 

So now, using formula 4.20, it is possible to compute its variance: 

][105
]/1[102

11 211
2122

2 bit
bit







   (4.22) 

As we sad previously, we want to test a lognormal distribution which has a variance 10 times 
bigger that the exponential case, so reading 4.22, it means we want a lognormal distributions 
with variance equal to ][105 212 bit . 

Once we know that, it is necessary now to know how the mean and the variance of the 
lognormal distribution are computed: 

)
2

exp(
2

 Mean    (4.23) 

))2)(exp(1)(exp( 22  Variance    (4.24) 
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In formula 4.23 and 4.24,   and   are, respectively, the mean and the standard deviation of 
the underlying normal distributed function, and they are our unknowns. In order to compute 
them, it is necessary to create a system of 2 equations and 2 unknowns, where the equations 
are formula 4.23 and 4.24. This is possible because we know exactly which values of mean 
and standard deviation of the lognormal we expect. 
Since this is a system of non-linear equations, I used Matlab to solve it, by the following 
code: 
syms x y %%x=mu and y=sigma 
eqn1 = exp(x+(y^2)/2) == 5e+5; 
eqn2 = (exp(y^2)-1)*exp(2*x+y^2) == 5e+12; 
  
[solx,soly] = solve(eqn1, eqn2) 

In this way, we got solx which contains  , and soly which contains  . 

Now, given these 2 parameters, the resulting lognormal distribution is the following: 
 

 
Figure 4.6: Lognormal distribution with mean 500000 bits, and 12105  

 

Once we know the parameters   and  , we can apply the lognormal distribution to the 
simulation code by simply writing: 
Act_1.Server.packetSize_inel = lognormal(11.6,1.744856) 

The values in the parenthesis are respectively   and  . 

After the run ends, as usual, the values are collected and copied in Matlab, so that we can plot 
the figures of the statistics in which we are interested to. 
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It turned out that: 
 

 
Figure 4.7: Probability of inelastic losses implementing the lognormal distribution 

 
 

 
Figure 4.8: Probability of elastic losses implementing the lognormal distribution 
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Figure 4.9: Average inelastic services implementing the lognormal distribution 

 
 

 
Figure 4.10: Average elastic services implementing the lognormal distribution 
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Figure 4.11: Average elastic rate implementing the lognormal distribution 

 
As can be observed by the figures from 4.7 to 4.11, the implementation of the lognormal 
distribution as packet size, and so as service time, does not change significantly the statistics. 
The only difference, which is negligible, is represented by figures 4.7 and 4.8; the loss of the 
packets is slightly bigger when their sizes are exponentially distributed. In fact, curves red and 
blue are slightly above the others in figure 4.7; the same happens in figure 4.8 for the blue and 
black ones. 
Anyway, the Matlab code which generates all these figures will be written in the Appendix, 
so that the figures could be zoomed. 
 

4.6 Sixth tested case: changing dwell time 
In this specific case we tested the same values of   of the case 4.4, but we took into account 
just the combination of exponential file size distributions. In addition, 5 values of the mean of 
the dwell time have been tested, which are: 50, 100, 300, 500 and 1000 seconds. In this way, 
it is possible to understand which is the impact of the dwell times on the statistics. The figures 
are: 
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Figure 4.12: Probability of inelastic losses with different dwell time means 

 
 

 
Figure 4.13: Probability of elastic losses with different dwell time means 
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Figure 4.14: Average inelastic services with different dwell time means 

 
 

 
Figure 4.15: Average elastic services with different dwell time means 
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Figure 4.16: Average elastic rate with different dwell time means 

 
Like in the case 4.4, changing this parameter does not affect so much these statistics, some 
little difference can be notices by looking at figures 4.12 and 4.13, in which we can see that 
probability of losses is slightly increasing as dwell means; for what concern, instead, figure 
4.14, 4.15, and 4.16, no significant changes arise. It would be necessary to zoom a lot in order 
to notice some difference in the curves. 
Since a packet can both perform handover or complete its service, if we increase the mean of 
the dwell time, it will probably complete its service in a reasonable time, such that it does not 
affect so much the losses.  
 

4.7 Seventh tested case: testing extreme dwell time of 1 second 
The previous case demonstrated that changing the dwell time does not affect the statistics; 
anyway, if we have smaller dwell times, we expect to have lower load in the cell, because the 
services will remain in the cell for a smaller time, and as a consequence there should be less 
customers in service, and so less losses. 
So, why this conclusion is not matched by the previous case? 
First of all, let’s think to two different situations: low arrival rate, and high arrival rate. In the 
first case, there will be almost always few customers in the queue, meaning that each one will 
have a low service time, in particular, given the parameters of the case 4.4 and assuming that 

there is only one customer in the queue, it would be ][67.1
]/[300000

][500000 s
sbit

bit
   for inelastics, 

which is almost 30 times less than 50 seconds, which is the minimum dwell time tested in the 
case 4.6. This means, that varying the dwell time from 50 to 1000 seconds does not change 
the statistics because the service times are significantly smaller, and so the handovers do not 
affect the behaviour of the inelastic customers in service most of the time. This result is even 
more evident for elastic services, because assuming there is just one elastic customer in the 
queue, it will take the whole capacity, resulting in a service time which is much smaller than 
the dwell time. 
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For what concerns, instead, the high arrival rate case, the scenario does not change for 
inelastic customers, because their rate is not affected by the number of services in the queue, 
and as a consequence their service time remains 1.67 seconds, again much smaller than the 
minimum tested dwell time. Instead, the things change for elastic ones; now, it is true that low 
dwell time implies lower load in the cell, but, since we are working at high arrival rate, as 
soon as a client performs handover and exit the queue, then a new one will take its place, and 
so the queue will be overloaded again, so the advantage is negligible, and that’s why there are 

no big differences in the figures from 4.6 to 4.10. The only small difference can be noticed in 
the figures 4.6 and 4.7; because, even if there will be more or less almost the same number of 
customers in the queue, this means that if we are working at low dwell times, then there will 
be both handover and losses, while if we have high dwell times, then the packets exiting the 
queue will be almost always lost.  
In order to make the dwell time change the statistics, it has to be of the same order of 
magnitude of the service time; so, if we consider the service time of inelastic customer, which 
is 1.67 second, we could try to run a simulation with a dwell time equal to 1 second, so that 
handover and completion times should be almost equal on average. 
The figures of the statistics are the following: 
 

 
Figure 4.17: Probability of inelastic losses with dwell 1 second 
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Figure 4.18: Probability of elastic losses with dwell 1 second 

 
 

 
Figure 4.19: Average inelastic services with dwell 1 second 
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Figure 4.20: Average elastic services with dwell 1 second 

 
 

 
Figure 4.21: Average elastic rate with dwell 1 second 

 
As expected, now the statistics change a lot; the average number of customer in service is 
smaller for small values of  , while for higher values there are more or less the same number 
of customer in the queue for the reason I explained before. The big difference is that, now, 
even if the queue is full, it does not necessary mean that customers are lost, because dwell 
time is very low, and as soon as the service time becomes longer, the handover becomes much 
more probable because it’s only 1 second. 
As a consequence, the average elastic rate, for high arrival rate, is more or less the same, 
while for small rates, since there are less customers, is much bigger. 

 



 41 

4.8 Eighth tested case: changing elastic size 
We have tested different combination of distributions and dwell means; in this case, now, we 
see how the statistics computed change as we increase or decrease the mean of the elastic 
packet size, in particular its tested values are: 50, 100, 300, 500, and 1000 Kbits. 
The different curves refer to a specific value of elastic size, and the figures are the following:  

 

 
Figure 4.22: Probability of inelastic losses with different elastic sizes 

 

 
 

 
Figure 4.23: Probability of elastic losses with different elastic sizes 
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Figure 4.24: Average inelastic services with different elastic sizes 

 

 
 

 
Figure 4.25: Average elastic services with different elastic sizes 
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Figure 4.26: Average elastic rate with different elastic sizes 

 
As expected, the statistics regarding inelastic customers do not change so much as the elastic 
size changes, as it can be noticed by figure 4.22 and 4.24. 
Anyway, an interesting observation can be done by looking at the figure 4.24; for all the 
elastic sizes, the behaviour of the curve is similar to a positive exponential shape, except for 
the case 50 Kbit. In that case, it seems there is an initial phase in which the average number of 
inelastic customer in service exponentially increase, and then, around 70 , it starts to 
exponentially decrease, and, in the end, it stabilizes around the same value of the other curves, 
which is more or less 28.  
A possible explanation of this behaviour could be the following; since the elastic packets, in 
the black curve, are, on average, 10 times smaller than inelastic ones, it means that usually 
they are very fast in being served, with respect to inelastics. So, at the beginning, inelastic 
services accumulate in the queue, but, around 70 , many elastic customers are stored in 
the queue, as can be noticed by figure 4.25. In particular they increase from 5 (for 50 ) to 
22 (for 70 ). It means that it is not possible anymore to have so many inelastic customers 
in queue, otherwise it would exceed the total capacity, and so we can observe the 
exponentially decrease, above described, before the stabilization around 28. 
For what concern, instead, elastic statistics, we can observe at first the figure 4.23. It 
represents the probability of elastic losses, and it clearly show that the they increase as the 
elastic size increases. 
This is true, because as the size increases, it means that elastics need more and more time to 
complete their services; so, it means that each elastic, on average, will stay in the queue for a 
longer time, and these turns in a queue with no available capacity to room the new arrival 
ones. 
This situation is confirmed by the figure 4.25, in which we see that the number of average 
elastic customers in the queue will always stabilize around 30, but this value is reached sooner 
as the elastic size increases. 
For what regards the elastic rate, its behaviour is reported in figure 4.26, and something very 
strange happens. 



 44 

All the 5 curves will tend, at the end, to a value near to 50Kb/s, which happens when we have 
all 30 elastic customers in the queue; but the interesting thing, is the value that each curve 
assumes when we have low values of  , such as 20, 30, 40, 50 and 70. If we try to zoom 
figure 4.15, we see that from 70  each curve assumes, more or less, the same values, and 
at the end they stabilize to a common value. 

Instead, if we consider low values of  , each curve has a very different behaviour from each 
other; considering these low arrival rates, we can notice that, up to an elastic size equal to 300 
Kb/s, an increase in the elastic bit rate happens, and then from sizes greater than 500 Kb/s, 
instead, the elastic bit rate decreases. 

The reason of the increase, up to the case 300 Kb/s, is because, for small values of  , if the 
size is too small, then they will be immediately served, even before a new elastic customer 
arrives, leaving no elastic customers in queue for a reasonable amount of time, and so 0 
elastic associated rate for that interval of time; that’s why, in this specific scenario, the more 

is the elastic size, the more is the elastic rate. 
But, if the packet size becomes too large, then it means that each customer will require too 
much time to get served, and so they will remain in the queue for a longer time; this will 
cause a huge increase in the average number of elastics in service (notice figure 4.25), leading 
the customers to be served to a rate near to the minimum asked one, which is 50 Kb/s. 
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5. Appendix 
 
 
The simulations of all the scenarios and cases have been tested by means of a code written in 
Omnet++, which is a simulation library and framework, primarily for building network 
simulators. 
In this framework, it is possible to create networks composed by modules; each module is 
descripted by 3 type of codes, as already mentioned before: 

 .INI: this file contains all the values of the parameters that will be used by the module. 
The grammar to do that is: 

<module_name>.<parameter_name>=VALUE 

 .NED: this file designs the topology of the network and assigns parameters to the 
modules. 

 .C++: this is the core of each module, because here is written what each module do by 
using its parameters, or local variables of the code. 

This means that each module has its own C++ code, while the .INI and .NED files are 
common to all of them. 
Obviously, in order to simulate a network, it is necessary to assign at each module a precise 
task, so that, at the end, the connection among all of them simulates a network model. So, this 
means that modules need to exchange messages among each other, and in Omnet++ they are 
of type cMessage. 
This class of messages allows us to use different functions, called “methods”; each method is 

used to modify or to see the parameters associated to that message. For example: 

<message_name> -> isSelfMessage() 
This method returns 1 if the message is a self-message, which means if the message has been 
generated and received by the same module. 
Once the cMessage has been received by the module, then it can also be converted in a 
cPacket, by means of the line of code: 

check_and_cast<cPacket*>(message_name) 
This performs a cast from the class cMessage to cPacket, which allows us to inspect 
additional parameters of the message, such as getting its dimension in bit by doing: 

<packet_name> -> getBitLength() 
Unfortunately, the parameters in the class cPacket were not sufficient to simulate well the 
network; that’s why I needed to create another type of file, which is of type .MSG, and the 

code is the following: 
packet myPacket extends cPacket 
{ 
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 int flowId; //integer value: if it is assigned to 1 means pkt is inelastic, to 2 means elastic 
 int position; //integer value: used to know the packet to which row of the matrix is 
linked to 
 int overallPosition; //integer values: position of pkts in the queue. VALUE NOT USED 
}; 
Reading the first row can be noticed that this type of file is creating a new class of packets 
called “myPacket”, which is an extension of the class cPacket. It basically has all the 

parameters associated to the cPacket class, but in addition, it also has the new parameters that 
I created, which in this code are: 

 flowId: it is equal to 1 if the packet is an inelastic one, or 2 if it’s an elastic one; 

 position: this parameter will be explained later 
Coming back to the other files, the first one that has to be written is the .NED; this is because 
it creates the topology of the network and assign the parameters to the modules. 
My .NED code is: 
simple generator 
{ 
    parameters: 
        volatile double interArrivalTime @unit(s); //arrival time in seconds taken as parameter 
        double inel_prob; //probability that the generated customer is inelastic, taken as 
parameter 
    gates: 
        output out; //output gate of generator 
} 
 
simple server 
{ 
    parameters: 
        int capacity; //maximum capacity of server, taken as parameter 
        int needRate_inel; //rate needed by an inelastic service, taken as parameter 
        int needRate_el; //minimum rate needed by an elastic service, taken as parameter 
        int MAXinel; //maximum number of inelastic services in the queue, taken as parameter 
        int MAXel; //maximum number of elastic services in the queue, taken as parameter 
        volatile double dwell_time @unit(s); //dwell time in seconds taken as parameter 
        volatile double packetSize_inel @unit(b); //pkt size of inelastics in bits, taken as 
parameter 
        volatile double packetSize_el @unit(b); //pkt size of elastics in bits, taken as parameter 
    gates: 
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        input in; //input gate of the server 
        output out; //output gate of the server 
} 
 
simple sink 
{ 
    parameters: 
    gates: 
        input in; //input gate of sink 
} 
 
network Act_1 //our network 
{ 
    //here I create the modules 
    @display("bgb=538,152"); 
    submodules: 
        Gen: generator { //module of generator(Inelastic) 
            @display("p=67,85"); 
        } 
        Server: server { //module of server 
            @display("p=251,85"); 
        } 
        Sink: sink { //module of sink 
            @display("p=466,85"); 
        } 
    connections: 
        Gen.out --> Server.in; //output gate of generator sends pkts to input gate of the server 
        Server.out --> Sink.in; //output gate of server sends pkts to input gate of the sink 
} 
I decided to divide my network in 3 modules: 

 GENERATOR: it creates the packets, and simulates the arrival of both inelastic/elastic 
customer in the cell; 

 SERVER: it elaborates the packets; so it discard/completes the service/perform 
handover on the base of the current situation in the cell, so it simulates the base 
station. 
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 SINK: basically confirms that a packet finished its service, and does not need any more 
to be served. 

So, in first place, it is necessary to create these classes of modules with their respective 
parameters, and input/output gates (modules are connected among each other through gates); 
this part is performed by writing: 

simple <name_of_module_class> 
{ 
 parameters: 
  LIST OF PARAMETERS 
 gates: 
  LIST OF INPUT/OUTPUT GATES 
} 
Then we create the modules assigning them the class in which we are interested to; in my case 
one module of the class of generators, one of server and one of sink. Once all modules have 
been created, then the connections among them have to be specified (indicating exactly which 
input gate is connected to which output gate). The code of this procedure is: 

network <name_of the_network> 
{ 
 submodules: 
  <module_name>: <name_of_module_class> 
 connections: 
 <mod_name>.<out_gate> -> <mod_name>.<in_gate> 
}  
Once the network is set, then the parameters of the modules have to be specified in the .INI 
file; in particular, my file is: 
[General] 
 
network = Act_1 #name of the network to simulate 
seed-0-mt = 14 #seed from which values of random variables will be chosen 
sim-time-limit =25000s #simulation time in seconds 
 
Act_1.Server.capacity = 10000000 #capacity of the queue expressed in bps 
Act_1.Server.needRate_el = 50000 #minimum rate needed by an elastic service in bps 
Act_1.Server.needRate_inel = 300000 #rate needed by an inelastic service in bps 
Act_1.Server.dwell_time = exponential(300s) #dwell time exponentially distributed (mean in 
seconds) 
#Act_1.Server.dwell_time = 0 # for testing just services without dwells 
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Act_1.Server.packetSize_inel = exponential (500000b) #pkt size of inelastic services (mean in 
bits) 
Act_1.Server.packetSize_el = exponential (500000b) #pkt size of elastic services (mean in 
bits) 
Act_1.Server.MAXel = 30 #maximum number of elastic services in the queue 
Act_1.Server.MAXinel = 30 #maximum number of inelastic services in the queue 
 
#Act_1.Gen.interArrivalTime = exponential(5e-2s) #interarr. time exp distributed (mean 
1/lambda) 
Act_1.Gen.interArrivalTime= exponential(${lambda=5e-2s,3.33e-2s,2.5e-2s,2e-2s,1.42e-
2s,1.11e-2s,1e-2s,4e-3s,2e-3s,1.33e-3s,1e-3s}) 
#Act_1.Gen.interArrivalTime = exponential(1e-3s) # for testing lambda=1000    
Act_1.Gen.inel_prob = 0.5 #probability that the generated customer is inelastic 
#Act_1.Gen.inel_prob =  # for testing just elastic 
The first thing to set is the name of the network; in this way, we can assign modules to a 
specific network simply declaring it in the .NED, as I did; my net name is Act_1. 
Now, it is necessary to decide how long the simulation will run, in seconds; it is important to 
notice that these are not real seconds, but they are simulation seconds, which run much faster 
than real ones. In the end, a seed is necessary to take random numbers from that pool, when 
needed. 
Now that general parameters have been decided, we can assign values to parameters of each 
module. In my specific case, I assigned, first of all, to server: 

 Capacity of queue/base station in bps; 

 Rates needed by inelastic/elastic customers in bps; 

 Dwell time in seconds; 

 Packet size of inelastic/elastic customers in bits; 

 Max number of inelastic/elastic customer. 
Concerning the generator, then: 

 Interarrival time in seconds: different values could be run in the same simulation by 
putting them in {} brackets; this is useful when we want to test different values of 
lambda; 

 Probability that a customer is inelastic. 
Now that both topology and parameters are set, it is possible to write C++ code of each 
module. 
I start explaining the generator code: 
#include <omnetpp.h> 
#include "myPacket_m.h" 
#include <time.h> 
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using namespace omnetpp; 
 
class generator : public cSimpleModule 
{ 
    private: 
        cMessage *MESSAGE; // self-message of the generator, which trigger the transmission 
of a message on the output gate 
        myPacket *pkt; // message to be sent on the output gate, which is server 
        double inel_prob; //this is the probability that a generated customer is inelastic 
 
    public: 
        // constructor 
            generator(); // constructor 
            virtual~ generator(); // destructor 
 
    protected: 
            virtual void initialize(); 
            virtual void handleMessage(cMessage *msg); 
            virtual void finish(); 
}; 
 
Define_Module(generator); 
 
generator::generator() { 
    // init all msgs to NULL 
} 
 
generator::~generator() { 
    // delete messages with cancelAndDelete() 
} 
 
void generator::initialize() 
{ 
    srand ( time(NULL) ); //this is useful to generate different random numbers at each run 
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    inel_prob=par("inel_prob"); //assign prob that generated service is inelastic (written in .ini) 
    MESSAGE = new cMessage("generate"); //initialize the self-message 
    //schedule the first message after a time according to our Poisson process 
    scheduleAt(simTime()+par("interArrivalTime"),MESSAGE); 
} 
 
void generator::handleMessage(cMessage *msg) 
{ 
    pkt = new myPacket("PDU"); //generate the pkt of type myPacket to send out 
    //I generate a random float number from 0 to 1; if this value is less than inel_prob 
    //then the generated customer is inelastic, else it's elastic. 
    if(((double)rand()/(double)RAND_MAX)<inel_prob) //means inelastic service 
    { 
        pkt->setFlowId(1); 
    } 
    else //means elastic service 
    { 
        pkt->setFlowId(2); 
    } 
    send(pkt,"out"); //send pkt to the output gate, which is the server 
    //schedule the next message after a time according to our process 
    scheduleAt(simTime()+par("interArrivalTime"),MESSAGE); 
} 
 
void generator::finish() 
{ 
 
} 
As I explained before, the C++ code of the modules are divided in 3 parts: initialize, 
handleMessage and finish. 
In the initialize part, I just set up the cMessage and assigned the value of inelastic probability 
from the parameter. The scope of the generator is to schedule message to the future, so as 
soon as it arrives, it triggers the action in the handleMessage part; for that reason, the last row 
in the initialize part is the scheduling row. 
From now on, as soon as a message is received by the module, it will enter the 
handleMessage part; since I scheduled a cMessage in the initialize, it will enter in the 
handleMessage. Once we are in, it means that a packet is ready to be sent to the server/base 
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station, simulating a customer arrival in the cell. So, I created a packet of type myPacket, so I 
can exploit the additional parameters of this class, and then I decide if it’s an inelastic or 

elastic one. 
In order to decide so, I generated a random number varying from 0 to 1, by the line of code: 

((double)rand()/(double)RAND_MAX) 
The function rand() basically generates a random number, taken from the seed declared in the 
.INI, ranging from 0 to RAND_MAX, which is a variable already present in the C++ library; 
in this way, if we divide this number, by RAND_MAX itself, I get a random number ranging 
from 0 to 1. 
Now, if this number, which is a float, is less than the variable representing the inelastic 
probability, then I decided that this customer is inelastic, otherwise it’s an elastic one. It is 

important to noticed that, in order to do that, I exploited the method “flowId” of my class 
myPacket; in this way, if I recognize a packet is inelastic, I simply assign 1 to the value of the 
parameter “flowId”, by doing: 

pkt->setFlowId(1); 
Otherwise I assign 2 if it’s an elastic one. 
This is very useful, because next modules can simply understand which type of packet is by 
simply doing: 

pkt->getFlowId(); 
Again if they get 1 it’s inelastic, otherwise not. 
So now that I generated the packet, and I decided if it’s inelastic or elastic, then it is ready to 

be sent to the module of the server by: 

send(pkt,<name_of_output_gate>); 
In the end, a new customer arrival has to be scheduled, by: 

scheduleAt(simTime()+par("interArrivalTime"),MESSAGE) 
It basically schedules the next arrival to “interArrivalTime” seconds, starting from the current 
simulation time. 
In this way, a loop has been created; as soon as a packet is sent to the server, a new one is 
scheduled, simulating exactly customer arrivals in a cell. 
So now the packets will be received by server, which has the following code: 
#include <omnetpp.h> 
#include <time.h> 
#include "myPacket_m.h" 
 
using namespace omnetpp; 
 
class server : public cSimpleModule 
{ 
    private: 



 53 

        int MAXel; //maximum number of elastic customers allowed 
        int MAXinel; //maximum number of inelastic customers allowed 
        double** matrix_elastic; //create the matrix that will containt the elastic times 
        double** matrix_inelastic; //create the matrix that will contain the inelastic times 
        int k; 
        int j; 
        int needRate_inel; //bit rate needed for an inelastic service 
        int needRate_el; //minimum  bit rate needed for an elastic service 
        int inel_services; //number of inelastic customers currently in service 
        int el_services; //number of elastic customers currently in service 
        simtime_t dwell_time; //dwell time 
        int tot_capacity; //total capacity(in BITS) of our queue 
        double tmp; 
        simtime_t previous_time; //simTime of the previous change of state 
        double min; //minimum time among all dwell and completion ones 
        int min_pointer; //number of the row of the matrix containing the minimum time 
        simtime_t time_to_next_departure; //it's the same of min 
        simtime_t time_to_next_arrival; 
        int INEL; //INEL=1 means the minimum time is associated to an inelastic customer 
        int EL; //EL=1 means the minimum time is associated to an elastic customer 
        cMessage *DEPARTURE; //self-message that will trigger the departure of service out of 
queue 
        int HANDOVER; //HANDOVER=1 means the minimum time is a dwell, so handover 
happens 
        int SERVICE; //SERVICE=1 means the minimum time is a completion, so it ends the 
service 
        myPacket *pkt; //packet representing out packet, of type myPacket 
        int capacity; //capacity currently free in the queue 
        double comparator[4]={-1,-1,-1,-1}; 
        int last_inserted; //will contain the number of the row in matrix of last entered service 
        cQueue buffer; //simulates our queue, collecting the packets 
        int el_handover; //number of elastic handovers performed 
        int inel_handover; //number of inelastic handovers performed 
        int el_completed; //number of elastic services completed 
        int inel_completed; //number of inelastic services completed 
        int discarded_inel; //number of discarded inelastic customers 
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        int discarded_el; //number of discarded elastic customers 
        cStdDev inel_stats; //collect each time #inelastics in service (used to compute avg at end) 
        cStdDev el_stats; //collect each time #elastics in service (used to compute avg at end) 
        cStdDev fraction_inel; //collect each time fraction of capacity used by inelastics 
        cStdDev fraction_el; //collect each time fraction of capacity used by elastics 
        cStdDev queue_load; //collect each time the capacity used (used to compute avg at end) 
        cStdDev el_bitrate; //collect each time the bit rate associated to elastic customers 
        cStdDev inel_loss; 
        cStdDev el_loss; 
        cStdDev inelastic_services; 
        cStdDev elastic_services; 
        cStdDev average_elastic_rate; 
        double size; //size of packets in float number 
        int size_real; //used to round the packet sized to an integer value 
        simtime_t** states; //matrix containing the times spent in each state 
        //double proves[100][6]={-1.0}; 
        int overall; 
        double inel_avg_serv; 
        double el_avg_serv; 
        double inel_avg_fract; 
        double el_avg_fract; 
        double avg_queue_load; 
        double avg_el_br; 
 
    public: 
    // constructor 
            server(); // constructor 
            virtual~ server(); // destructor 
 
    protected: 
            virtual void initialize(); 
            virtual void handleMessage(cMessage *msg); 
            virtual void finish(); 
}; 
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Define_Module(server); 
 
server::server() { 
    // init all msgs to NULL 
} 
 
server::~server() { 
    // delete messages with cancelAndDelete() 
} 
 
void server::initialize() 
{ 
    for(k=0;k<4;k++) 
    { 
        EV << comparator[1,k] << " "; 
    } 
    EV<<endl; 
    MAXel=par("MAXel"); //assign the max #elatics in queue (specified in .ini file) 
    MAXinel=par("MAXinel"); //assign the max #inelatics in queue (specified in .ini file) 
    matrix_elastic=new double *[MAXel]; //creates the pointer to each row of elastic matrix 
    matrix_inelastic=new double *[MAXinel]; //creates the pointer to each row of inelastic 
matrix 
    states=new simtime_t *[MAXinel+1]; //creates the pointer to each row of states matrix 
    //HERE EACH ROW OF ELASTIC MATRIX HAVE BEEN ASSIGNED 4 CELLS 
INITIALIZED TO -1 
    for(k=0;k<MAXel;k++) 
    { 
        matrix_elastic[k] = new double[4]; 
        for(j=0;j<4;j++) 
        { 
            matrix_elastic[k][j]=comparator[1,j]; 
        } 
    } 
    //HERE EACH ROW OF INELASTIC MATRIX HAVE BEEN ASSIGNED 4 CELLS 
INITIALIZED TO -1 
    for(k=0;k<MAXinel;k++) 
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    { 
        matrix_inelastic[k] = new double[4]; 
        for(j=0;j<4;j++) 
        { 
            matrix_inelastic[k][j]=comparator[1,j]; 
        } 
    } 
    //HERE EACH ROW OF STATES MATRIX HAVE BEEN ASSIGNED MAXEL+1 
CELLS INITIALIZED TO 0.0 
    for(k=0;k<MAXinel+1;k++) 
    { 
        states[k] = new simtime_t[MAXel+1]; 
        for(j=0;j<MAXel+1;j++) 
        { 
            states[k][j]=0.0; 
        } 
    } 
    needRate_inel=par("needRate_inel"); //assign the rate needed by inelastics (written in .ini) 
    needRate_el=par("needRate_el"); //assign the minimum rate needed by elastics (written in 
.ini) 
    inel_services=0; //initialize to 0 the number of current inelastic customers in service 
    el_services=0; //initialize to 0 the number of current elastic customers in service 
    tot_capacity=par("capacity"); //assign the value of the capacity of the queue (written in .ini) 
    capacity=tot_capacity; //initialize the value of free capacity to total capacity 
    INEL=0; //initially there's no minimum time, so INEL=0 
    EL=0; //initially there's no minimum time, so EL=0 
    HANDOVER=0; //initially there's no minimum time, so HANDOVER=0 
    SERVICE=0; //initially there's no minimum time, so SERVICE=0 
    DEPARTURE = new cMessage("Departure"); //initialize the self-message representing a 
departure 
    previous_time=0.0; //initialize the simulation time of the previous change of state to 0 
    el_handover=0; //initialize the number of elastic handovers to 0 
    inel_handover=0; //initialize the number of inelastic handovers to 0 
    el_completed=0; //initialize the number of completed elastic services to 0 
    inel_completed=0; //initialize the number of completed inelastic services to 0 
    discarded_inel=0; //initialize the number of discarded inelastic services to 0 
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    discarded_el=0; //initialize the number of discarded elastic services to 0 
    overall=0; 
    tmp=0; 
 
    inel_avg_serv=0.0; 
    el_avg_serv=0.0; 
    inel_avg_fract=0.0; 
    el_avg_fract=0.0; 
    avg_queue_load=0.0; 
    avg_el_br=0.0; 
 
    inel_stats.setName("Inel_Serv_Stats"); //Give a name to all the statistics 
    el_stats.setName("El_Serv_Stats"); 
    fraction_inel.setName("Inel_Fraction_Capacity"); 
    fraction_el.setName("El_Fraction_Capacity"); 
    queue_load.setName("Queue_Load"); 
    el_bitrate.setName("Elastic_Bitrate"); 
    inel_loss.setName("Inelastic_Losses"); 
    el_loss.setName("Elastic_Losses"); 
    /*inelastic_services.setName("Inelastic_Services"); 
    elastic_services.setName("Elastic_Services"); 
    average_elastic_rate.setName("Average_Elastic_Rate");*/ 
} 
 
void server::handleMessage(cMessage *msg) 
{ 
    if(!msg->isSelfMessage())//if pkt is not a self message means arriving service 
    { 
        EV <<"New packet arrived" <<endl; 
        pkt=check_and_cast<myPacket*>(msg); //here I cast from type msg to type myPacket 
        if(pkt->getFlowId()==1) //means inelastic service (FlowId=1 means inelastic, 2 elastic) 
        { 
            avg_el_br=avg_el_br+tmp*(simTime().dbl()-previous_time.dbl()); 
            
avg_queue_load=avg_queue_load+(inel_services*needRate_inel+el_services*tmp)*(simTime
().dbl()-previous_time.dbl()); 
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            inel_avg_serv=inel_avg_serv+inel_services*(simTime().dbl()-previous_time.dbl()); 
            
inel_avg_fract=inel_avg_fract+(inel_services*(double)needRate_inel/(double)tot_capacity)*(
simTime().dbl()-previous_time.dbl()); 
            el_avg_serv=el_avg_serv+el_services*(simTime().dbl()-previous_time.dbl()); 
            el_avg_fract=el_avg_fract+(el_services*tmp/tot_capacity)*(simTime().dbl()-
previous_time.dbl()); 
            //if there is enough capacity and there are not already the max #inelastics in service 
            if(((tot_capacity-needRate_inel*inel_services-
needRate_el*el_services)>=needRate_inel) && inel_services<MAXinel) 
            { 
                overall++; //increase the counter of total services in queue 
                buffer.insert(pkt); //the packet is inserted in the queue 
                size=par("packetSize_inel"); //assign the value of size of packet according to .ini 
                size_real=((int)round(size)); //round from a double value to an integer 
one(NEEDED) 
                EV <<"Inelastic service of " <<size<<" bits starts receiving "<<needRate_inel/1000 
<<" kbps over a capacity of "<<capacity/1000<<" kbps"<<endl; 
                pkt->setBitLength(size_real); //assign to the packet the INTEGER size 
                //here I update the time spent in the previous state 
                states[inel_services][el_services]=states[inel_services][el_services]+(simTime()-
previous_time); 
                inel_services++; //increase by 1 the number of inelastic customers currently served 
                dwell_time=par("dwell_time"); //assign the value of dwell time 
                //HERE I'M LOOKING FOR FIRST FREE ROW (WHERE -1) IN MATRIX TO 
ASSIGN THIS CUSTOMER 
                k=0; 
                while((matrix_inelastic[k][0]!=-1) && k<MAXinel) 
                { 
                    k++; 
                } 
                pkt->setPosition(k); //as soon as I found, I assign this value to method Position 
                pkt->setOverallPosition(overall-1); 
                last_inserted=k; //last inserted service has been assigned the number of the row 
                matrix_inelastic[k][0]=pkt->getBitLength(); //assign pkt size to the first cell 
                matrix_inelastic[k][1]=dwell_time.dbl(); //assign dwell time to the second cell 
                matrix_inelastic[k][2]=(matrix_inelastic[k][0])/needRate_inel;//compl.time in 3 cell 
                matrix_inelastic[k][3]=simTime().dbl(); //current simulation time in fourth cell 
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                //if there are elastics in service,their rate must be adjusted once inelastic enters 
                if(el_services>0) 
                { 
                    tmp=(tot_capacity-needRate_inel*inel_services)/el_services; 
                    el_bitrate.collect(tmp); //collect value of bit rate assigned to each elastic 
                    average_elastic_rate.collect(avg_el_br); 
                } 
                capacity=tot_capacity-needRate_inel*inel_services-tmp*el_services; //free capacity 
                queue_load.collect(tot_capacity-capacity); //collect value of the queue load 
            } 
            else //means that inelastic service cannot enter the queue 
            { 
                last_inserted=200; //last inserted has been assigned a random value very big 
                //here I update the time spent in the state 
                states[inel_services][el_services]=states[inel_services][el_services]+(simTime()-
previous_time); 
                discarded_inel++; //increase by 1 the counter of discarded inelastic services 
                EV << "Inelastic service lost because asking for " << needRate_inel/1000 << " 
kbps, but available capacity is " << capacity/1000 << " kbps"<<endl; 
                EV << "Inelastic services " << inel_services << " over a maximum of " << 
MAXinel << endl; 
                delete pkt; //delete the packet 
            } 
        } 
        else //means elastic service 
        { 
            avg_el_br=avg_el_br+tmp*(simTime().dbl()-previous_time.dbl()); 
            
avg_queue_load=avg_queue_load+(inel_services*needRate_inel+el_services*tmp)*(simTime
().dbl()-previous_time.dbl()); 
            inel_avg_serv=inel_avg_serv+inel_services*(simTime().dbl()-previous_time.dbl()); 
            
inel_avg_fract=inel_avg_fract+(inel_services*(double)needRate_inel/(double)tot_capacity)*(
simTime().dbl()-previous_time.dbl()); 
            el_avg_serv=el_avg_serv+el_services*(simTime().dbl()-previous_time.dbl()); 
            el_avg_fract=el_avg_fract+(el_services*tmp/tot_capacity)*(simTime().dbl()-
previous_time.dbl()); 
            el_services++; //increase by 1 the number of elastic customers currently served 
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            //if there is enough capacity such all elastics can adjust their rate to a value bigger 
            //than the minimum, and there are less elastics in service than the maximum allowed, 
            //then the elastic customer can enter the queue 
            if((((tot_capacity-needRate_inel*inel_services)/el_services)>=needRate_el) && 
el_services<=MAXel) 
            { 
                overall++; 
                buffer.insert(pkt); //the packet is inserted in the queue 
                size=par("packetSize_el"); //assign the value of size of packet according to .ini 
                size_real=((int)round(size)); //round from a double value to an integer 
one(NEEDED) 
                //it is then necessary to update the bit rate associated to each elastic customer 
                tmp=(tot_capacity-needRate_inel*inel_services)/el_services; 
                el_bitrate.collect(tmp); //collect the bit rate associated to each elastic customer 
                average_elastic_rate.collect(avg_el_br); 
                EV <<"Elastic service of "<<size<<" bits starts receiving "<<tmp/1000 <<" kbps 
which is greater than minimum rate "<<needRate_el/1000<<" kbps"<<endl; 
                pkt->setBitLength(size_real); //assign to the packet the INTEGER size 
                dwell_time=par("dwell_time");//assign the value of dwell time 
                //HERE I'M LOOKING FOR FIRST FREE ROW (WHERE -1) IN MATRIX TO 
ASSIGN THIS CUSTOMER 
                k=0; 
                while((matrix_elastic[k][0]!=-1) && k<MAXel) 
                { 
                    k++; 
                } 
                pkt->setPosition(k); //as soon as I found, I assign this value to method Position 
                pkt->setOverallPosition(overall-1); 
                last_inserted=k+100; //last inserted service has been assigned number of row+100 
                matrix_elastic[k][0]=pkt->getBitLength(); //assign pkt size to the first cell 
                matrix_elastic[k][1]=dwell_time.dbl(); //assign dwell time to the second cell 
                if(tmp!=0) //if the bit rate associated to each elastic is different from 0 
                { 
                    matrix_elastic[k][2]=(matrix_elastic[k][0])/tmp; //completion time in 3 cell 
                } 
                else 
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                { 
                    matrix_elastic[k][2]=10000.0; 
                    //compl.time has been assigned a random very big value,to avoid to get infinity 
                } 
                matrix_elastic[k][3]=tmp;//bit rate assigned to each elastic written in fourth cell 
                capacity=0; //free capacity will be 0, since elastic use all the residual capacity 
                queue_load.collect(tot_capacity); //collect value of the queue load (=all capacity) 
                //here I update the time spent in the previous state 
                states[inel_services][el_services-1]=states[inel_services][el_services-
1]+(simTime()-previous_time); 
            } 
            else //means that elastic service cannot enter the queue 
            { 
                last_inserted=200; //last inserted has been assigned a random value very big 
                discarded_el++; //increase by 1 the counter of discarded elastic services 
                EV << "Elastic service lost because " << (capacity/el_services)/1000 << " kbps is 
less than the minimum elastic rate " << needRate_el/1000 << " kbps"<<endl; 
                EV << "Elastic services " << el_services << " over a maximum of " << MAXel << 
endl; 
                el_services--; //decrease el_services by 1, since we did +1 before the check 
                //here I update the time spent in the state 
                states[inel_services][el_services]=states[inel_services][el_services]+(simTime()-
previous_time); 
                delete pkt; //delete the packet 
            } 
        } 
        el_stats.collect(el_services); //collect number of elastic customers currently in service 
        inel_stats.collect(inel_services); //collect number of inelastic customers in service 
        inelastic_services.collect(inel_avg_serv); 
        elastic_services.collect(el_avg_serv); 
        //here I collect the fraction of capacity used time by time by inelastic/elastic customers 
        
fraction_inel.collect((((double)(inel_services*needRate_inel))/((double)(tot_capacity)))*100); 
        fraction_el.collect((((double)(el_services*tmp))/((double)(tot_capacity)))*100); 
        //THE FOLLOWING PART IS NEEDED TO UPDATE TIMES(IN A DECRESCENT 
WAY) AT EACH CHANGE OF STATE 
        k=0; 
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        while(k<MAXel) 
        { 
            if(matrix_elastic[k][0]!=-1 && (k!=last_inserted-100)) //except for last inserted 
            { 
                //update both dwell and completion times by the quantity simTime-previous_time 
                //where previous time is the time referred to the previous change of state. 
                //So simTime-previos_time gives us exactly the quantity of time past between 
                //these 2 change of state. Consequently update also the remaining bit to TX. 
                matrix_elastic[k][0]=matrix_elastic[k][0]-(simTime().dbl()-
previous_time.dbl())*matrix_elastic[k][3]; 
                matrix_elastic[k][1]=matrix_elastic[k][1]-(simTime().dbl()-previous_time.dbl()); 
                if(tmp!=0) 
                { 
                    matrix_elastic[k][2]=(((matrix_elastic[k][0])*el_services)/(tot_capacity-
inel_services*needRate_inel)); 
                } 
                else 
                { 
                    matrix_elastic[k][2]=10000.0; 
                } 
                matrix_elastic[k][3]=tmp; 
            } 
            k++; 
        } 
        k=0; 
        while(k<MAXinel) 
        { 
            if(matrix_inelastic[k][0]!=-1 && (k!=last_inserted)) 
            { 
                matrix_inelastic[k][0]=matrix_inelastic[k][0]-(simTime().dbl()-
previous_time.dbl())*needRate_inel; 
                matrix_inelastic[k][1]=matrix_inelastic[k][1]-(simTime().dbl()-
previous_time.dbl()); 
                matrix_inelastic[k][2]=(matrix_inelastic[k][0])/needRate_inel; 
                matrix_inelastic[k][3]=simTime().dbl(); 
            } 
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            k++; 
        } 
        previous_time=simTime(); //previous time has been assigned the current simulation time 
        min=100.0; //initialize the minimum time to a big value, so it will be easily changed 
        EV << "INELASTIC MATRIX:"<<endl; 
        for(k=0;k<MAXinel;k++) 
        { 
            if(matrix_inelastic[k][0]!=-1) 
            { 
                for(j=0;j<4;j++) 
                { 
                    EV <<matrix_inelastic[k][j]<<" "; 
                } 
                EV<<endl; 
            } 
        } 
        //here I check for each row of the inelastic matrix different from -1 
        //the minimum time among all dwell and completion times 
        k=0; 
        while(k<MAXinel) 
        { 
            if(matrix_inelastic[k][0]!=-1) 
            { 
                if(min>matrix_inelastic[k][1])// && dwell_time!=0) 
                { 
                    min=matrix_inelastic[k][1]; 
                    min_pointer=k; //min_pointer assigned the value of the row of the minimum time 
                    INEL=1; //minimum is inelastic 
                    EL=0; 
                    HANDOVER=1; //minimum is dwell, so an handover 
                    SERVICE=0; 
                } 
                if(min>matrix_inelastic[k][2]) 
                { 
                    min=matrix_inelastic[k][2]; 
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                    min_pointer=k; 
                    INEL=1; 
                    EL=0; 
                    HANDOVER=0; 
                    SERVICE=1; //minimum is completion, so service is finished 
                } 
            } 
            k++; 
        } 
        EV << "ELASTIC MATRIX:"<<endl; 
        for(k=0;k<MAXel;k++) 
        { 
            if(matrix_elastic[k][0]!=-1) 
            { 
                for(j=0;j<4;j++) 
                { 
                    EV <<matrix_elastic[k][j]<<" "; 
                } 
                EV<<endl; 
            } 
        } 
        //again I search for the minimum time among all times (now for elastics) 
        k=0; 
        while(k<MAXel) 
        { 
            if(matrix_elastic[k][0]!=-1) 
            { 
                if(min>matrix_elastic[k][1])// && dwell_time!=0) 
                { 
                    min=matrix_elastic[k][1]; 
                    min_pointer=k; 
                    EL=1; //minimum is elastic 
                    INEL=0; 
                    HANDOVER=1; 
                    SERVICE=0; 
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                } 
                if(min>matrix_elastic[k][2]) 
                { 
                    min=matrix_elastic[k][2]; 
                    min_pointer=k; 
                    EL=1; 
                    INEL=0; 
                    HANDOVER=0; 
                    SERVICE=1; 
                } 
            } 
            k++; 
        } 
        //at the end of this check, the value of min will be the minimum among all the times 
        //so I schedule the departure for min seconds. 
        time_to_next_departure=(simtime_t)min; 
        if(DEPARTURE->isScheduled()) //if departure is already in schedule, then has to be 
deleted 
        { 
            cancelEvent(DEPARTURE); 
        } 
        scheduleAt(simTime()+time_to_next_departure,DEPARTURE); 
    } 
    else //means departure 
    { 
        avg_el_br=avg_el_br+tmp*(time_to_next_departure.dbl()); 
        
avg_queue_load=avg_queue_load+(inel_services*needRate_inel+el_services*tmp)*(time_to_
next_departure.dbl()); 
        el_avg_serv=el_avg_serv+el_services*(time_to_next_departure.dbl()); 
        
el_avg_fract=el_avg_fract+(el_services*tmp/tot_capacity)*(time_to_next_departure.dbl()); 
        inel_avg_serv=inel_avg_serv+inel_services*(time_to_next_departure.dbl()); 
        
inel_avg_fract=inel_avg_fract+(inel_services*(double)needRate_inel/(double)tot_capacity)*(
time_to_next_departure.dbl()); 
        /*inelastic_services.collect(inel_avg_serv); 
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        elastic_services.collect(el_avg_serv);*/ 
        previous_time=simTime(); //assign to previous_time the departure time (change of state) 
        //update again the value of the bit rate assigned to each elastic customer 
        if(el_services>0) 
        { 
            tmp=(tot_capacity-needRate_inel*inel_services)/el_services; 
            el_bitrate.collect(tmp); 
            average_elastic_rate.collect(avg_el_br); 
        } 
        else 
        { 
            tmp=0; 
        } 
        //again updates all times and bit residual in both matrices 
        k=0; 
        while(k<MAXel) 
        { 
            if(matrix_elastic[k][0]!=-1) 
            { 
                matrix_elastic[k][0]=matrix_elastic[k][0]-
(time_to_next_departure.dbl())*matrix_elastic[k][3]; 
                matrix_elastic[k][1]=matrix_elastic[k][1]-(time_to_next_departure.dbl()); 
                if(tmp!=0) 
                { 
                    matrix_elastic[k][2]=(((matrix_elastic[k][0])*el_services)/(tot_capacity-
inel_services*needRate_inel)); 
                } 
                matrix_elastic[k][3]=tmp; 
            } 
            k++; 
        } 
        k=0; 
        while(k<MAXinel) 
        { 
            if(matrix_inelastic[k][0]!=-1) 
            { 
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                matrix_inelastic[k][0]=matrix_inelastic[k][0]-
(time_to_next_departure.dbl())*needRate_inel; 
                matrix_inelastic[k][1]=matrix_inelastic[k][1]-(time_to_next_departure.dbl()); 
                matrix_inelastic[k][2]=(matrix_inelastic[k][0])/needRate_inel; 
                matrix_inelastic[k][3]=simTime().dbl(); 
            } 
            k++; 
        } 
        if(min<100.0) 
        { 
            time_to_next_departure=(simtime_t)min; 
            //update the time spent in the previous state 
            
states[inel_services][el_services]=states[inel_services][el_services]+time_to_next_departure; 
            EV <<"MIN: " << time_to_next_departure << "EL: "<<EL<<"INEL: 
"<<INEL<<endl; 
            if(EL==1) //minimum is elastic beacuse EL=1 
            { 
                if(el_services==1) //if there are no others elastic, then free capacity increases 
                { 
                    capacity=capacity+matrix_elastic[min_pointer][3]; 
                } 
                else //free cap is 0 because elastics adapt rates using all the residual capacity 
                { 
                    capacity=0; 
                } 
                //free the row assigned to the leaving service, so put all -1 
                matrix_elastic[min_pointer][0]=-1; 
                matrix_elastic[min_pointer][1]=-1; 
                matrix_elastic[min_pointer][2]=-1; 
                matrix_elastic[min_pointer][3]=-1; 
                k=0; 
                while(k<buffer.getLength()) //to define queue_length 
                { 
                    pkt=check_and_cast<myPacket*>((cMessage*)(buffer.get(k))); //take the pkt 
                    //if the pkt we are considering has flowId=2 (means elastic) and 
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                    //has Position=min_pointer, then it's the pkt we are interested in 
                    if(pkt->getFlowId()==2 && pkt->getPosition()==min_pointer) 
                    { 
                        pkt=check_and_cast<myPacket*>((cMessage*)buffer.remove(buffer.get(k))); 
                        //as soon as we detect, remove the pkt from the queue and stop while cycle 
                        break; 
                    } 
                    k++; 
                } 
                if(HANDOVER==1) //means handover 
                { 
                    delete pkt; //delete the packet 
                    el_handover++; //increase the counter of elastic handovers 
                    EV <<"Elastic service in position "<<min_pointer<<" has done handover"<< 
endl; 
                } 
                else 
                { 
                    send(pkt,"out"); //send the packet to the sink 
                    el_completed++; //increase the counter of elastic completed services 
                    EV <<"Elastic service in position "<<min_pointer<<" has finished"<< endl; 
                } 
                el_services--; //reduce by 1 the number of elastic customers in service 
            } 
            else //minimum is inelastic 
            { 
                //do all the same steps exlained before for elastic ones 
                if(el_services==0) 
                { 
                    capacity=capacity+needRate_inel; 
                } 
                else 
                { 
                    capacity=0; 
                } 
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                //capacity=capacity+needRate_inel; 
                matrix_inelastic[min_pointer][0]=-1; 
                matrix_inelastic[min_pointer][1]=-1; 
                matrix_inelastic[min_pointer][2]=-1; 
                matrix_inelastic[min_pointer][3]=-1; 
                k=0; 
                while(k<buffer.getLength()) //to define queue_length 
                { 
                    pkt=check_and_cast<myPacket*>((cMessage*)(buffer.get(k))); 
                    if(pkt->getFlowId()==1 && pkt->getPosition()==min_pointer) 
                    { 
                        pkt=check_and_cast<myPacket*>((cMessage*)buffer.remove(buffer.get(k))); 
                        break; 
                    } 
                    k++; 
                } 
                if(HANDOVER==1) 
                { 
                    delete pkt; 
                    inel_handover++; 
                    EV <<"Inelastic service in position "<<min_pointer<<" has done handover"<< 
endl; 
                } 
                else 
                { 
                    send(pkt,"out"); 
                    inel_completed++; 
                    EV <<"Inelastic service in position "<<min_pointer<<" of matrix has 
finished"<< endl; 
                } 
                inel_services--; 
            } 
            EV << "New capacity is: " <<capacity<<endl; 
            //IMPORTANT IS TO UPDATE RATE ASSIGNED TO EACH ELASTIC SERVICE 
AFTER EACH DEPARTURE 
            if(el_services>0) 
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            { 
                tmp=(tot_capacity-needRate_inel*inel_services)/el_services; 
                el_bitrate.collect(tmp); 
            } 
            else 
            { 
                tmp=0; 
            } 
            EV << "INELASTIC MATRIX:"<<endl; 
            for(k=0;k<MAXinel;k++) 
            { 
                if(matrix_inelastic[k][0]!=-1) 
                { 
                    for(j=0;j<4;j++) 
                    { 
                        EV <<matrix_inelastic[k][j]<<" "; 
                    } 
                    EV<<endl; 
                } 
            } 
            EV << "ELASTIC MATRIX:"<<endl; 
            for(k=0;k<MAXel;k++) 
            { 
                if(matrix_elastic[k][0]!=-1) 
                { 
                    matrix_elastic[k][2]=(matrix_elastic[k][0])/tmp; 
                    matrix_elastic[k][3]=tmp; 
                    for(j=0;j<4;j++) 
                    { 
                        EV <<matrix_elastic[k][j]<<" "; 
                    } 
                    EV<<endl; 
                } 
            } 
            //exactly as done after an arrival, we have to collect statistics after a departure 
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            el_stats.collect(el_services); 
            fraction_el.collect((((double)(tot_capacity-capacity-
(inel_services*needRate_inel)))/((double)(tot_capacity)))*100); 
            inel_stats.collect(inel_services); 
            
fraction_inel.collect((((double)(inel_services*needRate_inel))/((double)(tot_capacity)))*100); 
            queue_load.collect(tot_capacity-capacity); 
        } 
        //set all indices to 0, and start again the search of the minimum time 
        INEL=0; 
        EL=0; 
        HANDOVER=0; 
        SERVICE=0; 
        min=100.0; 
        if(buffer.getLength()>0) 
        { 
            k=0; 
            while(k<MAXinel) 
            { 
                if(matrix_inelastic[k][0]!=-1) 
                { 
                    if(min>matrix_inelastic[k][1])// && dwell_time!=0) 
                    { 
                        min=matrix_inelastic[k][1]; 
                        min_pointer=k; 
                        INEL=1; 
                        EL=0; 
                        HANDOVER=1; 
                        SERVICE=0; 
                    } 
                    if(min>matrix_inelastic[k][2]) 
                    { 
                        min=matrix_inelastic[k][2]; 
                        min_pointer=k; 
                        INEL=1; 
                        EL=0; 
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                        HANDOVER=0; 
                        SERVICE=1; 
                    } 
                } 
                k++; 
            } 
            k=0; 
            while(k<MAXel) 
            { 
                if(matrix_elastic[k][0]!=-1) 
                { 
                    if(min>matrix_elastic[k][1])// && dwell_time!=0) 
                    { 
                        min=matrix_elastic[k][1]; 
                        min_pointer=k; 
                        EL=1; 
                        INEL=0; 
                        HANDOVER=1; 
                        SERVICE=0; 
                    } 
                    if(min>matrix_elastic[k][2]) 
                    { 
                        min=matrix_elastic[k][2]; 
                        min_pointer=k; 
                        EL=1; 
                        INEL=0; 
                        HANDOVER=0; 
                        SERVICE=1; 
                    } 
                } 
                k++; 
            } 
            time_to_next_departure=(simtime_t)min; 
            scheduleAt(simTime()+time_to_next_departure,DEPARTURE); //again, schedule for 
min time 
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        } 
    } 
} 
 
void server::finish() 
{ 
    //free all the memory dynamically allocated for the matrices 
    for (k=0;k<MAXel;k++) 
    { 
        delete [] matrix_elastic[k]; 
    } 
    for (k=0;k<MAXinel;k++) 
    { 
        delete [] matrix_inelastic[k]; 
    } 
    delete [] matrix_elastic; 
    delete [] matrix_inelastic; 
    //display on the screen the computed statistics 
    EV << "LOSS_INELASTIC: "<< discarded_inel <<" .LOSS ELASTIC: " << discarded_el 
<< endl; 
    EV << "HANDOVER INELASTIC: " << inel_handover <<" .HANDOVER ELASTIC: " 
<< el_handover << endl; 
    EV << "COMPLETED INELASTIC SERVICES: " << inel_completed <<" .COMPLETED 
ELASTIC SERVICES: " << el_completed << endl; 
    EV << "AVERAGE INELASTIC SERVICES: " << inel_stats.getMean() <<" .AVERAGE 
ELASTIC SERVICES: " << el_stats.getMean() << endl; 
    EV << "AVERAGE INELASTIC FRACTION: " << fraction_inel.getMean() <<" 
.AVERAGE ELASTIC FRACTION: " << fraction_el.getMean() << endl; 
    EV << "AVERAGE QUEUE LOAD: " << queue_load.getMean() << endl; 
    EV << "AVERAGE ELASTIC BIT RATE: " << el_bitrate.getMean() << endl; 
    EV << "AVERAGE INELASTIC SERVICES IN CONT. TIME: " << 
inel_avg_serv/(simTime().dbl()) << endl; 
    EV << "AVERAGE ELASTIC SERVICES IN CONT. TIME: " << 
el_avg_serv/(simTime().dbl()) << endl; 
    EV << "AVERAGE INELASTIC FRACTION IN CONT. TIME: " << 
(inel_avg_fract/(simTime().dbl()))*100 << endl; 
    EV << "AVERAGE ELASTIC FRACTION IN CONT. TIME: " << 
(el_avg_fract/(simTime().dbl()))*100 << endl; 
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    EV << "AVERAGE QUEUE LOAD IN CONT. TIME: " << 
avg_queue_load/(simTime().dbl()) << endl; 
    EV << "AVERAGE ELASTIC BIT RATE IN CONT. TIME: " << 
avg_el_br/(simTime().dbl()) <<endl; 
 
    for(k=0;k<MAXinel+1;k++) 
    { 
        for(j=0;j<MAXel+1;j++) 
        { 
            EV << "Probability of state ("<<k<<","<<j<<") is: "<<states[k][j]/simTime()<<endl; 
        } 
    } 
    k=0; 
    for (k=0;k<MAXinel+1;k++) 
    { 
        delete [] states[k]; 
    } 
    delete [] states; 
 
    
inel_loss.collect((double)discarded_inel/(double)(discarded_inel+inel_handover+inel_comple
ted)); 
    el_loss.collect((double)discarded_el/((double)discarded_el+el_handover+el_completed)); 
    recordScalar("Inel_loss_probability",(inel_loss.getMean())*100); 
    recordScalar("El_loss_probability",(el_loss.getMean())*100); 
    recordScalar("Average_inel_services",inel_avg_serv/(simTime().dbl())); 
    recordScalar("Average_el_services",el_avg_serv/(simTime().dbl())); 
    recordScalar("Average_elastic_rate",avg_el_br/(simTime().dbl())); 
} 
First of all, the code creates a cQueue object, which is basically a container where the arriving 
packets will be stored.  
The queue got a maximum capacity, which value is specified in the .INI file; the packets will 
be inserted in the queue if and only if there is enough room to serve them. In particular, the 
following check has to be done: 

 If the packet is inelastic, then if the available capacity is larger than the rate needed by 
the inelastic, the customer can be served; 

 If the packet is elastic, the situation is a little bit different, because the elastic rates 
change. So, when a elastic customer wants to enter the queue, it is necessary to check 
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if the capacity not occupied by the inelastics is enough to assign to each elastic 
customer at least the minimum needed rate, which written in formula is: 

 

((tot_capacity-needRate_inel*inel_services)/el_services)>=needRate_el 
 
Where: 

o tot_capacity is the total capacity of the queue; 
o needRate_inel is the rate asked by each inelastic; 
o inel_services is the number of inelastics; 
o el_services is the number of elastics; 
o needRate_el is the min rate asked by elastics; 

If the answer is yes, then the elastic customer can join the queue, and the elastics equally 
share the capacity not occupied by inelastics; instead, if it’s not, the customer is discarded. 
Now, in order to decide, time by time, which is the customer that finishes service or performs 
handover, I created 2 matrices, one for inelastic services, and one for elastic ones. 
The inelastic matrix will be composed by MAXinel rows, where MAXinel is the maximum 
number of inelastic customers simultaneously allowed (specified in the .INI file), and 4 
columns; alternatively, the matrix associated to the elastics is made of MAXel rows and 4 
columns.  
The idea is to assign a row of the matrix to each customer that enters the queue, so that there 
we can write key parameters of each service, in order to take decisions. 
In particular, the matrices will contain: 

 First column: number of bits of that customer that has to be transmitted yet; 

 Second column: the remaining dwell time associated to that service; 

 Third column: the time necessary to transmit the residual bits; 

 Fourth column: for elastics, it’s the elastic rate, while for inelastics is the current 

simulation time. 
How these matrices work has been already described when I was presenting the simulation 
model. 
Anyway, an important notification is that, during the declaration part, I do not know yet how 
many rows they have, because I will know only after I read the value from .INI parameters in 
the initialize() phase; that’s why it is necessary to dynamically allocate memory for them, by 

doing: 

double** matrix_elastic; 
matrix_elastic=new double *[MAXel]; 
for(k=0;k<MAXel;k++) 
    { 
        matrix_elastic[k] = new double[4]; 
        for(j=0;j<4;j++) 
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        { 
            matrix_elastic[k][j]=comparator[1,j]; 
        } 
    } 
The first row is to create a pointer to a pointer to a double; then, after the MAXel has be read 
as parameter, it is possible to create MAXel pointers to double rows. In the end, all the rows 
have been assigned the same value of comparator vector, which is just -1, so all rows are 
initialized to -1. 
Now that matrices are ready, and all .INI parameters have been read and assigned to variables, 
then it is possible also to declare some statistics variable that will be used at the end to analyse 
some results. The statistics computed are: 

 Number of inelastic and elastic customers in service; 

 Fraction of the queue capacity, in percentage,  reserved for inelastics/elastics over time; 

 Queue load in bps; 

 Elastic rate in bps; 

 Probability of inelastic/elastic losses; 
These statistics will be updated each time an event occurs. 
In addition, a third matrix is needed, which refers to the state probabilities; it will have 
MAXinel rows and MAXel columns, so that each cell refers to a specific state of the queue. 
Each cell will contain the time spent in that specific state, and at the end of the simulation, 
that value divided by the simTime(), will return the probability that queue will be in that state. 
Now that we have initialized everything, as soon as a message arrive to the module, it will 
enter the handleMessage part. 
The first thing to do is to cast the message received from the class cMessage to myPacket; in 
this way, it is possible  to check if this packet is inelastic or not, by doing: 

pkt->getFlowId() 
If this method returns 1, then it means the packet is inelastic, otherwise is elastic. 
 
 
Once I know which type of customer is, then I can perform the corresponding check to see if 
there is enough capacity to serve it. 
If yes, then I assign to the packet a size, which respects the parameter in the .INI, and I 
generate a value for the dwell time; so now, as soon as I found the first row different from -1 
in the respective matrix, then I write the parameters related to that customer. 
It has to be noted that a specific scenario must be taken into account; if the rate assigned to 
each elastic is 0, then I cannot compute the time to transmit residual bits, otherwise I would 
obtain infinity, which does not make any sense, so I decided to put a very big value which 
will change only as soon as the elastic rate becomes different from 0. This happened in the 
first scenario tested. 
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Apart from this special case, all the statistics are updated each time a new arrival or departure 
happens. This is performed thanks to the variable previous_time; basically, each time a new 
arrival or departure from the queue happens, then I save the current simulation time in that 
variable. In this way, when the next event (arrival/departure) happens, I can exactly compute 
how much time past from 2 consecutive events by performing: 

simTime()-previous_time 
Once I know this value, I can update all statistics by this amount. 
In addition, also the value in the table, such as dwell times, completion times and bit residual 
must be updated by this quantity, in order to be always updated on the base of what happens. 
The only thing to notice is that I do not have to update the parameters of the packet just 
entered the queue, and so I used the variable last_inserted. 
Each row in the matrices different from -1 will be updated by the quantity simTime()-
previous_time, except for the row referring to the last_inserted; so, if last_inserted is 2, then 
the second row will no be updated. A tricky thing is that, for elastic, the last_inserted is 
row+100; this has be done in order to differentiate if the last arrived is elastic or not. 
Basically, if the last arrival is inelastic, then last_inserted-100 will never match an elastic row, 
because it will be a negative value, and so all the elastic rows will be updated, as I want; on 
the contrary, if the last arrival is elastic, then last_inserted will be greater than 100, and so an 
inelastic row will never match its value, updating then all inelastic rows. Of course this 
technique works just if the MAXinel and MAXel are less than 100; if they are greater, it is 
sufficient to modify the last_inserted to row+MAX(MAXinel,MAXel) for elastic customers, 
and put in the if check of elastics just: 

K!=last_inserted-MAX(MAXinel,MAXel) 
The last parameter to explain is pkt->setPosition(k); this parameter is useful to know the 
packet to which row of the matrix is linked to, and it will be used a lot during the departure 
phase of the code. 
Of course as soon as each packet (inelastic or elastic) enters the queue, the rate associated to 
each elastic has to be updated, and as a consequence its statistics. 
Instead, if the packet cannot be accepted in the queue, then the packet is discarded, and 
last_inserted is put equal to -1; in this way, nor elastic or elastic rows can ever be equal to it, 
meaning that all rows will be updated, as I wish. 
Once that the matrices are updated time by time, then the next step is to look for the minimum 
time among all; in particular, we have to search for the minimum among all the second and 
third columns of the matrices, which represents, respectively, the dwell and completion time. 
If the minimum is in the second column, then it means than a handover is performed, instead 
if it’s the third, it means that service has been completed. In particular, in the code, at the 

begin the variable min contains a very big number, so that could not be the minimum; at each 
loop, if the current value is lower than the minimum, then it becomes the minimum.  
In addition, I keep track of which is the rwo related to the minimum, by putting min_pointer 
equal to its row number; then, if the minimum is inelastic the variable INEL will be 1, 
otherwise the variable EL will assume the value 1, and the same criteria work for variables 
HANDOVER and SERVICE. In this way, we know all about the minimum. 
Once the minimum has been discovered, then we have to schedule the self-message triggering 
the departure with a time equal to the minimum found before. It is important to notice that, if 
the self-message DEPARTURE is already scheduled, then has to be deleted, and sent again, 
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because it was being sent in the past, but now the situation of the times has changed, and so 
could not be the minimum anymore. 
So, we now know, that if we receive a self-message is because a departure has to be 
performed. The first thing to do if we receive a self-message is to update all the statistics and 
parameter in the matrices by the time time_to_next_departure, which is the time needed to 
perform the departure of the customer.  
Then, reading the values of the variable of EL/INEL, HANDOVER/SERVICE and 
min_pointer, I exactly know which is the row of the matrix containing the minimum, so I can 
put it all equal to -1, because the customer is releasing it, and modify the free capacity 
accordingly. 
But now comes the problem, how do I know the row of the matrix to which packet of the 
queue is related to? This is possible thanks to the parameter pkt->getPosition(); it will returns 
the row to which the packet is referred to, and together with pkt->getFlowId(), we know to 
which matrix the packet refers to. 
So, after I found the row to delete, I immediately know which is the packet related to it, and 
so I proceed eliminating it from the queue, and I update the elastic rate. 
Now, the search of the minimum starts again, in the same exact way of before, creating then a 
cycle. 
This loop will go on until the simulation time ends, and in that moment the code enter in the 
finish() part. 
Here I just print the statistics computed, and I free the memory dynamically allocated for the 
matrices. 
The last module of the network is the sink, but its code is pretty empty, it contains just print 
messages to notify that customer has finished correctly its service. 
Once all the codes of the simulation part are ready, then the results are stored in variables, and 
displayed to the output, which is the screen; in addition, the results are copied in a Matlab 
code, such that it can draw the pictures of the curves in which we are interested to. The code 
is the following: 
clc 
clear all 
close all 
  
lambda=20; 
  
lambdas=[20,30,40,50,70,90,100,250,500,750,1000]; %%lambda tested values 
dwells=[50,100,300,500,1000]; %%dwell tested means 
elsizes=[50,100,300,500,1000]; %%Kbit, el sizes 
%%ALL THE VALUES ARE TAKEN FROM THE OUTPUT OF THE SIMULATOR 
%%THE FOLLOWING VALUES ARE THE ONES OBTAINED FOR BOTH 
EXPONENTIAL DISTRIBUTIONS 
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prob_inel_losses_expexp=[0.158751,8.11781,23.1179,36.0461,53.3362,63.3447,66.8639,86.5
591,93.2788,95.5092,96.623]; 
prob_el_losses_expexp=[4.4995,57.6006,75.7725,83.0226,89.1748,91.8913,92.8524,97.2847,
98.6623,99.1147,99.3313]; 
avg_inel_serv_expexp=[16.5931,22.8566,25.4538,26.4331,27.1672,27.4397,27.5166,27.8459
,27.9282,27.9529,27.9651]; 
avg_el_serv_expexp=[14.4993,29.1609,29.6654,29.7888,29.8767,29.9108,29.922,29.9719,29
.9864,29.991,29.9932]; 
avg_el_rate_expexp=[760058,108839,79958.9,69677.6,62047.5,59202.4,58363.8,54938,5408
1.4,53826.4,53698.3]; 
%%THE FOLLOWING VALUES ARE THE ONES OBATINED FOR INEL SIZES EXP. 
AND EL SIZES DETERMINITSIC 
prob_inel_losses_expdet=[0.221171,7.96953,23.3297,36.2199,53.5373,63.292,66.7811,86.53
22,93.2519,95.5023,96.6335]; 
prob_el_losses_expdet=[5.86049,58.0394,76.2513,83.3236,89.388,92.044,92.915,97.3276,98.
6833,99.129,99.3465]; 
avg_inel_serv_expdet=[16.5463,22.8937,25.4878,26.4608,27.1759,27.4383,27.5144,27.8451,
27.9278,27.9529,27.9652]; 
avg_el_serv_expdet=[14.6156,29.1324,29.6686,29.7927,29.8789,29.9126,29.923,29.9724,29.
9866,29.9912,29.9934]; 
avg_el_rate_expdet=[803304,108891,79621.3,69306.9,61875.7,59154.6,58368.2,54942.4,540
84.2,53822.8,53696.2]; 
%%THE FOLLOWING VALUES ARE THE ONES OBATINED FOR DETERMINITSIC 
INEL SIZES AND EL SIZES EXP. 
prob_inel_losses_detexp=[0.170448,8.30333,23.4284,36.2893,53.5643,63.3637,66.9309,86.6
101,93.2792,95.5285,96.6351]; 
prob_el_losses_detexp=[4.01622,57.6598,76.032,83.1723,89.2497,91.9158,92.7981,97.2918,
98.6577,99.112,99.3334]; 
avg_inel_serv_detexp=[16.6296,22.9057,25.5055,26.4608,27.1721,27.4399,27.5187,27.8459,
27.9279,27.9532,27.9653]; 
avg_el_serv_detexp=[14.8185,29.1608,29.6686,29.793,29.8772,29.9109,29.9215,29.9718,29.
9864,29.9908,29.9933]; 
avg_el_rate_detexp=[696794,108266,79383.9,69325,61903.1,59141.5,58332.6,54931.9,5408
1.4,53821.4,53694.8]; 
%%THE FOLLOWING VALUES ARE THE ONES OBTAINED FOR BOTH 
DETERMINISTIC DISTRIBUTIONS 
prob_inel_losses_detdet=[0.166836,8.24783,23.4111,36.4536,53.6216,63.3982,66.9186,86.5
989,93.2805,95.5279,96.6366]; 
prob_el_losses_detdet=[5.1116,58.1104,76.2324,83.2951,89.3658,92.0473,92.9281,97.3306,9
8.6836,99.1283,99.3455]; 
avg_inel_serv_detdet=[16.5891,22.9254,25.4866,26.4553,27.1764,27.4395,27.5188,27.8459,
27.9276,27.9532,27.9652]; 
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avg_el_serv_detdet=[14.5437,29.1338,29.6715,29.7939,29.8794,29.9127,29.9228,29.9723,29
.9862,29.9909,29.9933]; 
avg_el_rate_detdet=[758500,108231,79512.2,69333.2,61850.3,59134.9,58313.5,54932.3,540
84.5,53818.5,53694.6]; 
  
%%THESE VALUES ARE GENERATED USING DIFFERENT DWELL 
MEANS(Exponentials) 
  
%%DWELL=1 
  
prob_inel_losses_dwell_1=[0,0,0.000998379,0.0528922,3.26538,13.3865,19.3253,64.8232,8
2.1755,88.1321,91.069]; 
prob_el_losses_dwell_1=[0,0,0.000600402,0.126884,9.50951,26.6975,33.9176,73.5367,86.7
314,91.1671,93.3568]; 
avg_inel_serv_dwell_1=[6.22024,9.35932,12.4893,15.6264,21.2326,24.3738,25.2036,27.482,
27.7861,27.8663,27.9025]; 
avg_el_serv_dwell_1=[1.1208,3.1634,7.80786,14.2488,24.6347,27.5603,28.1419,29.6168,29.
8431,29.9017,29.9283]; 
avg_el_rate_dwell_1=[3.02259e+6,2.55696e+6,1.20317e+6,465203,153471,98512.6,87172,5
9310.4,55778.1,54858.7,54444.6]; 
  
  
%%DWELL=50 
prob_inel_losses_dwell_50=[0.116908,7.07251,21.8709,34.7472,52.3216,62.2904,65.7926,8
6.1916,93.0743,95.4012,96.526]; 
prob_el_losses_dwell_50=[2.21062,52.9985,72.8692,80.9341,87.7331,90.7934,91.7931,96.8
817,98.4682,98.9859,99.2341]; 
avg_inel_serv_dwell_50=[16.1103,22.5443,25.3254,26.3565,27.1413,27.4127,27.4941,27.84
09,27.9256,27.9517,27.964]; 
avg_el_serv_dwell_50=[11.7236,28.9856,29.6123,29.7597,29.8578,29.8975,29.91,29.9676,2
9.9844,29.9897,29.9922]; 
avg_el_rate_dwell_50=[962372,112901,81408.9,70516.6,62326.3,59482.3,58620.8,54995.5,5
4113.2,53838.9,53710.4]; 
  
%%DWELL=100 
prob_inel_losses_dwell_100=[0.174989,7.54891,22.7054,35.583,52.9549,62.8662,66.4862,8
6.3796,93.1779,95.4571,96.5826]; 
prob_el_losses_dwell_100=[3.88943,55.8795,74.6173,82.2823,88.6473,91.4865,92.4109,97.
1318,98.5763,99.0581,99.2963]; 
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avg_inel_serv_dwell_100=[16.3795,22.7291,25.4118,26.4113,27.1538,27.4292,27.5063,27.8
431,27.9268,27.9525,27.9647]; 
avg_el_serv_dwell_100=[13.5989,29.0957,29.6434,29.7805,29.8703,29.9059,29.9172,29.970
3,29.9855,29.9905,29.9929]; 
avg_el_rate_dwell_100=[835508,110846,80432.4,69897.8,62152.5,59297.1,58473.6,54974.8,
54097.6,53829.3,53702.2]; 
  
%%DWELL=500 
prob_inel_losses_dwell_500=[0.206859,8.15638,23.4152,36.3079,53.4278,63.2881,66.8623,
86.6148,93.2723,95.5166,96.6297]; 
prob_el_losses_dwell_500=[5.04061,57.7803,76.202,83.2646,89.3597,92.0015,92.891,97.31
71,98.6839,99.131,99.342]; 
avg_inel_serv_dwell_500=[16.5981,22.8419,25.4749,26.4475,27.172,27.4363,27.5156,27.84
58,27.9281,27.953,27.9651]; 
avg_el_serv_dwell_500=[14.8458,29.1676,29.6744,29.7917,29.8794,29.9118,29.9228,29.972
,29.9865,29.9912,29.9933]; 
avg_el_rate_dwell_500=[747945,108961,79656.2,69475.7,61910.9,59193,58357.9,54933.7,5
4078.7,53823.2,53696.5]; 
  
%%DWELL=1000 
prob_inel_losses_dwell_1000=[0.18047,8.25655,23.1788,36.4251,53.6497,63.3141,66.9813,
86.6019,93.2945,95.5265,96.6442]; 
prob_el_losses_dwell_1000=[4.96425,58.1947,76.2991,83.3867,89.4025,92.0482,92.9705,97
.3453,98.6938,99.1309,99.3492]; 
avg_inel_serv_dwell_1000=[16.6231,22.9439,25.4588,26.4563,27.1767,27.4376,27.5182,27.
8464,27.9284,27.9533,27.9652]; 
avg_el_serv_dwell_1000=[15.0914,29.1942,29.6785,29.7961,29.8793,29.9125,29.9231,29.97
25,29.9868,29.9912,29.9934]; 
avg_el_rate_dwell_1000=[725248,107648,79790.5,69383.3,61872.7,59181.4,58340.6,54932.
9,54077.8,53819.2,53695.2]; 
  
%%THESE VALUES ARE GENERATED USING DIFFERENT ELASTIC 
SIZES(Exponentials) 
  
%%SIZE=50Kbit 
prob_inel_losses_elsize_50k=[0.0778869,5.30227,18.9371,32.2512,51.4062,62.4209,66.1881
,86.5596,93.2848,95.5119,96.6227]; 
prob_el_losses_elsize_50k=[0,0,0.0113963,0.612801,14.8769,29.1261,35.2988,73.7046,86.9
855,91.3932,93.5319]; 
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avg_inel_serv_elsize_50k=[16.5099,23.6867,26.9271,28.1539,28.3283,28.0334,27.958,27.87
75,27.9324,27.9541,27.9656]; 
avg_el_serv_elsize_50k=[0.121459,0.505049,1.75844,5.86812,21.5116,25.9516,26.9327,29.5
308,29.8346,29.9011,29.9287]; 
avg_el_rate_elsize_50k=[473107,614982,605488,418656,78804.6,61794.1,60128.8,55453.8,
54332.7,53977.4,53812.5]; 
  
%%SIZE=100Kbit 
prob_inel_losses_elsize_100k=[0.0961099,5.04935,20.0239,35.1443,53.1928,63.2114,66.798
7,86.5408,93.2634,95.5228,96.6239]; 
prob_el_losses_elsize_100k=[0,0.0279143,4.74655,22.6709,48.2322,60.9498,65.1002,86.749
4,93.466,95.6784,96.7601]; 
avg_inel_serv_elsize_100k=[16.5204,23.5922,26.5293,26.9165,27.2886,27.4874,27.5512,27.
8475,27.9282,27.9533,27.9651]; 
avg_el_serv_elsize_100k=[0.282483,2.1172,14.8965,25.4367,28.6401,29.2208,29.3554,29.83
97,29.9289,29.9543,29.9663]; 
avg_el_rate_elsize_100k=[886764,898270,287651,84393.8,63558.9,60121.5,59178.8,55179.
4,54191.9,53889.9,53749]; 
  
%%SIZE=300Kbit 
prob_inel_losses_elsize_300k=[0.086808,7.705,23.2114,36.1588,53.4003,63.1968,66.8773,8
6.4909,93.2558,95.5162,96.6283]; 
prob_el_losses_elsize_300k=[0.0139834,29.8651,60.4388,72.061,82.2542,86.6714,88.1985,9
5.5316,97.8075,98.5479,98.9039]; 
avg_inel_serv_elsize_300k=[16.5224,22.9085,25.5057,26.4438,27.1687,27.436,27.5158,27.8
448,27.9279,27.953,27.9652]; 
avg_el_serv_elsize_300k=[2.09607,26.3715,29.2629,29.5873,29.7782,29.8431,29.864,29.952
9,29.9774,29.9851,29.9889]; 
avg_el_rate_elsize_300k=[1.73094e+6,140702,80843.4,70092.9,62222.5,59356.3,58498.2,54
987.5,54102.3,53833.9,53706.2]; 
  
%%SIZE=1000Kbit 
prob_inel_losses_elsize_1000k=[0.269063,8.07981,23.2315,36.2869,53.4017,63.2608,66.822
5,86.5231,93.2904,95.4958,96.6237]; 
prob_el_losses_elsize_1000k=[48.3347,78.4213,87.7515,91.2924,94.5058,95.8596,96.2732,9
8.5992,99.3154,99.5444,99.6597]; 
avg_inel_serv_elsize_1000k=[16.4589,22.8652,25.4596,26.4611,27.1728,27.4356,27.5155,27
.8452,27.9283,27.9529,27.9651]; 
avg_el_serv_elsize_1000k=[28.8268,29.7139,29.8559,29.9031,29.9407,29.9564,29.9606,29.9
855,29.993,29.9954,29.9966]; 
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avg_el_rate_elsize_1000k=[177359,106076,79281.1,69056.3,61801,59102.9,58290.5,54921,
54072.1,53815.7,53691.9]; 
  
  
  
  
%%HERE I COMPUTE THE CONFIDENCE INTERVALS 
%%FIRST OF ALL COMPUTE THE MEAN OF THE STATISTICS 
  
mean_inel_losses=(prob_inel_losses_expexp+prob_inel_losses_expdet+prob_inel_losses_det
exp+prob_inel_losses_detdet)/4; 
mean_el_losses=(prob_el_losses_expexp+prob_el_losses_expdet+prob_el_losses_detexp+pro
b_el_losses_detdet)/4; 
mean_inel_services=(avg_inel_serv_expexp+avg_inel_serv_expdet+avg_inel_serv_detexp+a
vg_inel_serv_detdet)/4; 
mean_el_services=(avg_el_serv_expexp+avg_el_serv_expdet+avg_el_serv_detexp+avg_el_s
erv_detdet)/4; 
mean_el_rate=(avg_el_rate_expexp+avg_el_rate_expdet+avg_el_rate_detexp+avg_el_rate_d
etdet)/4; 
  
%%THEN COMPUTE THE SQUARED STANDARD DEVIATIONS  
  
stdDev_inel_losses=(((prob_inel_losses_expexp-
mean_inel_losses).^2)+((prob_inel_losses_expdet-
mean_inel_losses).^2)+((prob_inel_losses_detexp-
mean_inel_losses).^2)+((prob_inel_losses_detdet-mean_inel_losses).^2))/3; 
stdDev_el_losses=(((prob_el_losses_expexp-mean_el_losses).^2)+((prob_el_losses_expdet-
mean_el_losses).^2)+((prob_el_losses_detexp-mean_el_losses).^2)+((prob_el_losses_detdet-
mean_el_losses).^2))/3; 
stdDev_inel_services=(((avg_inel_serv_expexp-
mean_inel_services).^2)+((avg_inel_serv_expdet-
mean_inel_services).^2)+((avg_inel_serv_detexp-
mean_inel_services).^2)+((avg_inel_serv_detdet-mean_inel_services).^2))/3; 
stdDev_el_services=(((avg_el_serv_expexp-mean_el_services).^2)+((avg_el_serv_expdet-
mean_el_services).^2)+((avg_el_serv_detexp-mean_el_services).^2)+((avg_el_serv_detdet-
mean_el_services).^2))/3; 
stdDev_el_rate=(((avg_el_rate_expexp-mean_el_rate).^2)+((avg_el_rate_expdet-
mean_el_rate).^2)+((avg_el_rate_detexp-mean_el_rate).^2)+((avg_el_rate_detdet-
mean_el_rate).^2))/3; 
  
%%NOW TAKE THE VALUE OF THE T-STUDENT (t3,0.025) FROM TABLES 
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t_student=3.182446; 
  
%%NOW COMPUTE THE CONFIDENTIAL INTERVALS, BOTH LOWER AND UPPER 
BOUNDS 
  
conf_inel_losses(1,:)=mean_inel_losses-t_student*((sqrt(stdDev_inel_losses))/(sqrt(4))); 
conf_inel_losses(2,:)=mean_inel_losses+t_student*((sqrt(stdDev_inel_losses))/(sqrt(4))); 
conf_el_losses(1,:)=mean_el_losses-t_student*((sqrt(stdDev_el_losses))/(sqrt(4))); 
conf_el_losses(2,:)=mean_el_losses+t_student*((sqrt(stdDev_el_losses))/(sqrt(4))); 
conf_inel_services(1,:)=mean_inel_services-
t_student*((sqrt(stdDev_inel_services))/(sqrt(4))); 
conf_inel_services(2,:)=mean_inel_services+t_student*((sqrt(stdDev_inel_services))/(sqrt(4))
); 
conf_el_services(1,:)=mean_el_services-t_student*((sqrt(stdDev_el_services))/(sqrt(4))); 
conf_el_services(2,:)=mean_el_services+t_student*((sqrt(stdDev_el_services))/(sqrt(4))); 
conf_el_rate(1,:)=mean_el_rate-t_student*((sqrt(stdDev_el_rate))/(sqrt(4))); 
conf_el_rate(2,:)=mean_el_rate+t_student*((sqrt(stdDev_el_rate))/(sqrt(4))); 
  
%%NOW LET'S TRY LOGNORMAL DISTRIBUTION 
  
%%LOGNORMAL-EXPONENTIAL 
  
prob_inel_losses_lnexp=[0.222478,6.44334,21.0564,33.81,52.137,61.7517,65.72,85.9467,93.
0195,95.3442,96.4982]; 
prob_el_losses_lnexp=[5.13969,55.581,75.0495,82.8036,89.1794,91.8043,92.8107,97.2985,9
8.6727,99.1098,99.3355]; 
avg_inel_serv_lnexp=[15.9543,22.3514,25.2217,26.3071,27.127,27.4009,27.4903,27.8378,27
.9254,27.9512,27.9637]; 
avg_el_serv_lnexp=[12.8114,29.0749,29.6512,29.7868,29.877,29.9098,29.9219,29.9718,29.9
865,29.9909,29.9932]; 
avg_el_rate_lnexp=[1.02253e+6,114750,82334.4,70920,62389.1,59542.6,58618.6,55020.5,54
110.6,53840.5,53711.1]; 
  
%%EXPONENTIAL-LOGNORMAL 
  
prob_inel_losses_expln=[0.143514,8.08217,23.2202,36.2263,53.2827,63.315,66.8894,86.540
3,93.2667,95.5058,96.6292]; 
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prob_el_losses_expln=[1.4878,53.4742,73.187,80.7999,87.688,90.7577,91.873,96.901,98.47
96,98.9915,99.237]; 
avg_inel_serv_expln=[16.573,22.9054,25.4655,26.4499,27.1701,27.4363,27.5183,27.8455,27
.9278,27.953,27.9652]; 
avg_el_serv_expln=[11.24,29.0263,29.6123,29.7546,29.8572,29.8965,29.9108,29.9677,29.98
46,29.9898,29.9922]; 
avg_el_rate_expln=[926861,109046,79987,69542.9,61983.2,59243.8,58378.3,54951.6,54086,
53823.8,53698]; 
  
%%LOGNORMAL-LOGNORMAL 
  
prob_inel_losses_lnln=[0.159959,6.53374,20.4957,33.355,51.266,61.6179,65.3051,85.9553,9
3.0324,95.3079,96.4779]; 
prob_el_losses_lnln=[1.99827,51.502,72.297,80.6707,87.4605,90.6515,91.8564,96.891,98.46
18,98.9851,99.2366]; 
avg_inel_serv_lnln=[15.8996,22.4088,25.1692,26.2755,27.1048,27.3997,27.4831,27.8377,27
.9252,27.9509,27.9634]; 
avg_el_serv_lnln=[10.2968,28.9002,29.5895,29.7535,29.854,29.8954,29.91,29.9675,29.9843,
29.9897,29.9922]; 
avg_el_rate_lnln=[1.11646e+6,115509,83199.7,71324.8,62697.3,59613.6,58735.4,55025.9,5
4114.1,53846.8,53716]; 
  
%%FIGURE OF PROBABILITY OF INELASTIC LOSSES 
figure(1) 
plot(lambdas,prob_inel_losses_expexp) 
hold on 
plot(lambdas,prob_inel_losses_expexp,'*b') 
hold on 
plot(lambdas,prob_inel_losses_expdet,'r') 
hold on 
plot(lambdas,prob_inel_losses_expdet,'*r') 
hold on 
plot(lambdas,prob_inel_losses_detexp,'g') 
hold on 
plot(lambdas,prob_inel_losses_detexp,'*g') 
hold on 
plot(lambdas,prob_inel_losses_detdet,'k') 
hold on 
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plot(lambdas,prob_inel_losses_detdet,'*k') 
hold on 
plot(lambdas,conf_inel_losses(1,:),'*y') 
hold on 
plot(lambdas,conf_inel_losses(2,:),'*y') 
xlabel("Lambda") 
ylabel("Losses [%]") 
legend("Expexp","Expexp(real points)","Expdet","Expdet(real 
points)","Detexp","Detexp(real points)","Detdet","Detdet(real 
points)","Location","southeast") 
title('Probability of inelastic losses') 
  
%%FIGURE OF PROBABILITY OF ELASTIC LOSSES 
figure(2) 
plot(lambdas,prob_el_losses_expexp) 
hold on 
plot(lambdas,prob_el_losses_expexp,'*b') 
hold on 
plot(lambdas,prob_el_losses_expdet,'r') 
hold on 
plot(lambdas,prob_el_losses_expdet,'*r') 
hold on 
plot(lambdas,prob_el_losses_detexp,'g') 
hold on 
plot(lambdas,prob_el_losses_detexp,'*g') 
hold on 
plot(lambdas,prob_el_losses_detdet,'k') 
hold on 
plot(lambdas,prob_el_losses_detdet,'*k') 
hold on 
plot(lambdas,prob_el_losses_lnexp,'c') 
xlabel("Lambda") 
ylabel("Losses [%]") 
legend("Expexp","Expexp(real points)","Expdet","Expdet(real 
points)","Detexp","Detexp(real points)","Detdet","Detdet(real 
points)","Location","southeast") 
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title('Probability of elastic losses') 
  
%%FIGURE OF AVERAGE INELASTIC SERVICES 
figure(3) 
plot(lambdas,avg_inel_serv_expexp) 
hold on 
plot(lambdas,avg_inel_serv_expexp,'*b') 
hold on 
plot(lambdas,avg_inel_serv_expdet,'r') 
hold on 
plot(lambdas,avg_inel_serv_expdet,'*r') 
hold on 
plot(lambdas,avg_inel_serv_detexp,'g') 
hold on 
plot(lambdas,avg_inel_serv_detexp,'*g') 
hold on 
plot(lambdas,avg_inel_serv_detdet,'k') 
hold on 
plot(lambdas,avg_inel_serv_detdet,'*k') 
hold on 
plot(lambdas,avg_inel_serv_lnexp,'c') 
xlabel("Lambda") 
ylabel("Avg services") 
legend("Expexp","Expexp(real points)","Expdet","Expdet(real 
points)","Detexp","Detexp(real points)","Detdet","Detdet(real 
points)","Location","southeast") 
title('Average inelastic services') 
  
%%FIGURE OF AVERAGE ELASTIC SERVICES 
figure(4) 
plot(lambdas,avg_el_serv_expexp) 
hold on 
plot(lambdas,avg_el_serv_expexp,'*b') 
hold on 
plot(lambdas,avg_el_serv_expdet,'r') 
hold on 
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plot(lambdas,avg_el_serv_expdet,'*r') 
hold on 
plot(lambdas,avg_el_serv_detexp,'g') 
hold on 
plot(lambdas,avg_el_serv_detexp,'*g') 
hold on 
plot(lambdas,avg_el_serv_detdet,'k') 
hold on 
plot(lambdas,avg_el_serv_detdet,'*k') 
hold on 
plot(lambdas,avg_el_serv_lnexp,'c') 
xlabel("Lambda") 
ylabel("Avg services") 
legend("Expexp","Expexp(real points)","Expdet","Expdet(real 
points)","Detexp","Detexp(real points)","Detdet","Detdet(real 
points)","Location","southeast") 
title('Average elastic services') 
  
%%FIGURE OF AVERAGE ELASTIC RATE 
figure(5) 
plot(lambdas,avg_el_rate_expexp) 
hold on 
plot(lambdas,avg_el_rate_expexp,'*b') 
hold on 
plot(lambdas,avg_el_rate_expdet,'r') 
hold on 
plot(lambdas,avg_el_rate_expdet,'*r') 
hold on 
plot(lambdas,avg_el_rate_detexp,'g') 
hold on 
plot(lambdas,avg_el_rate_detexp,'*g') 
hold on 
plot(lambdas,avg_el_rate_detdet,'k') 
hold on 
plot(lambdas,avg_el_rate_detdet,'*k') 
hold on 
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plot(lambdas,avg_el_rate_lnexp,'c') 
xlabel("Lambda") 
ylabel("Avg elastic rate [b/s]") 
legend("Expexp","Expexp(real points)","Expdet","Expdet(real 
points)","Detexp","Detexp(real points)","Detdet","Detdet(real 
points)","Location","northeast") 
title('Average elastic rate') 
  
%%FIGURE OF PROBABILITY OF INELASTIC LOSSES (CHANGING DWELL TIMES) 
figure(6) 
plot(lambdas,prob_inel_losses_expexp) 
hold on 
plot(lambdas,prob_inel_losses_dwell_50,'k') 
hold on 
plot(lambdas,prob_inel_losses_dwell_100,'r') 
hold on 
plot(lambdas,prob_inel_losses_dwell_500,'g') 
hold on 
plot(lambdas,prob_inel_losses_dwell_1000,'c') 
xlabel("Lambda") 
ylabel("Losses [%]") 
legend("Expexp(dwell=300)","Expexp(dwell=50)","Expexp(dwell=100)","Expexp(dwell=50
0)","Expexp(dwell=1000)","Location","southeast") 
title('Probability of inelastic losses') 
  
%%FIGURE OF PROBABILITY OF ELASTIC LOSSES (CHANGING DWELL TIMES) 
figure(7) 
plot(lambdas,prob_el_losses_expexp) 
hold on 
plot(lambdas,prob_el_losses_dwell_50,'k') 
hold on 
plot(lambdas,prob_el_losses_dwell_100,'r') 
hold on 
plot(lambdas,prob_el_losses_dwell_500,'g') 
hold on 
plot(lambdas,prob_el_losses_dwell_1000,'c') 
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xlabel("Lambda") 
ylabel("Losses [%]") 
legend("Expexp(dwell=300)","Expexp(dwell=50)","Expexp(dwell=100)","Expexp(dwell=50
0)","Expexp(dwell=1000)","Location","southeast") 
title('Probability of elastic losses') 
  
%%FIGURE OF AVERAGE INELASTIC SERVICES (CHANGING DWELLS) 
figure(8) 
plot(lambdas,avg_inel_serv_expexp) 
hold on 
plot(lambdas,avg_inel_serv_dwell_50,'k') 
hold on 
plot(lambdas,avg_inel_serv_dwell_100,'r') 
hold on 
plot(lambdas,avg_inel_serv_dwell_500,'g') 
hold on 
plot(lambdas,avg_inel_serv_dwell_1000,'c') 
xlabel("Lambda") 
ylabel("Avg services") 
legend("Expexp(dwell=300)","Expexp(dwell=50)","Expexp(dwell=100)","Expexp(dwell=50
0)","Expexp(dwell=1000)","Location","southeast") 
title('Average inelastic services') 
  
%%FIGURE OF AVERAGE ELASTIC SERVICES (CHANGING DWELLS) 
figure(9) 
plot(lambdas,avg_el_serv_expexp) 
hold on 
plot(lambdas,avg_el_serv_dwell_50,'k') 
hold on 
plot(lambdas,avg_el_serv_dwell_100,'r') 
hold on 
plot(lambdas,avg_el_serv_dwell_500,'g') 
hold on 
plot(lambdas,avg_el_serv_dwell_1000,'c') 
xlabel("Lambda") 
ylabel("Avg services") 
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legend("Expexp(dwell=300)","Expexp(dwell=50)","Expexp(dwell=100)","Expexp(dwell=50
0)","Expexp(dwell=1000)","Location","southeast") 
title('Average elastic services') 
  
%%FIGURE OF AVERAGE ELASTIC RATE (CHANGING DWELLS) 
figure(10) 
plot(lambdas,avg_el_rate_expexp) 
hold on 
plot(lambdas,avg_el_rate_dwell_50,'k') 
hold on 
plot(lambdas,avg_el_rate_dwell_100,'r') 
hold on 
plot(lambdas,avg_el_rate_dwell_500,'g') 
hold on 
plot(lambdas,avg_el_rate_dwell_1000,'c') 
xlabel("Lambda") 
ylabel("Avg elastic rate [b/s]") 
legend("Expexp(dwell=300)","Expexp(dwell=50)","Expexp(dwell=100)","Expexp(dwell=50
0)","Expexp(dwell=1000)","Location","northeast") 
title('Average elastic rate') 
  
%%FIGURE OF PROBABILITY OF INELASTIC LOSSES (CHANGING EL SIZE) 
figure(11) 
plot(lambdas,prob_inel_losses_expexp) 
hold on 
plot(lambdas,prob_inel_losses_elsize_50k,'k') 
hold on 
plot(lambdas,prob_inel_losses_elsize_100k,'r') 
hold on 
plot(lambdas,prob_inel_losses_elsize_300k,'g') 
hold on 
plot(lambdas,prob_inel_losses_elsize_1000k,'c') 
xlabel("Lambda") 
ylabel("Losses [%]") 
legend("Expexp(ElSize=500k)","Expexp(ElSize=50k)","Expexp(ElSize=100k)","Expexp(ElS
ize=300k)","Expexp(ElSize=1000k)","Location","southeast") 
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title('Probability of inelastic losses') 
  
%%FIGURE OF PROBABILITY OF ELASTIC LOSSES (CHANGING EL SIZE) 
figure(12) 
plot(lambdas,prob_el_losses_expexp) 
hold on 
plot(lambdas,prob_el_losses_elsize_50k,'k') 
hold on 
plot(lambdas,prob_el_losses_elsize_100k,'r') 
hold on 
plot(lambdas,prob_el_losses_elsize_300k,'g') 
hold on 
plot(lambdas,prob_el_losses_elsize_1000k,'c') 
xlabel("Lambda") 
ylabel("Losses [%]") 
legend("Expexp(ElSize=500k)","Expexp(ElSize=50k)","Expexp(ElSize=100k)","Expexp(ElS
ize=300k)","Expexp(ElSize=1000k)","Location","southeast") 
title('Probability of elastic losses') 
  
%%FIGURE OF AVERAGE INELASTIC SERVICES (CHANGING EL SIZE) 
figure(13) 
plot(lambdas,avg_inel_serv_expexp) 
hold on 
plot(lambdas,avg_inel_serv_elsize_50k,'k') 
hold on 
plot(lambdas,avg_inel_serv_elsize_100k,'r') 
hold on 
plot(lambdas,avg_inel_serv_elsize_300k,'g') 
hold on 
plot(lambdas,avg_inel_serv_elsize_1000k,'c') 
xlabel("Lambda") 
ylabel("Avg services") 
legend("Expexp(ElSize=500k)","Expexp(ElSize=50k)","Expexp(ElSize=100k)","Expexp(ElS
ize=300k)","Expexp(ElSize=1000k)","Location","southeast") 
title('Average inelastic services') 
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%%FIGURE OF AVERAGE ELASTIC SERVICES (CHANGING EL SIZE) 
figure(14) 
plot(lambdas,avg_el_serv_expexp) 
hold on 
plot(lambdas,avg_el_serv_elsize_50k,'k') 
hold on 
plot(lambdas,avg_el_serv_elsize_100k,'r') 
hold on 
plot(lambdas,avg_el_serv_elsize_300k,'g') 
hold on 
plot(lambdas,avg_el_serv_elsize_1000k,'c') 
xlabel("Lambda") 
ylabel("Avg services") 
legend("Expexp(ElSize=500k)","Expexp(ElSize=50k)","Expexp(ElSize=100k)","Expexp(ElS
ize=300k)","Expexp(ElSize=1000k)","Location","southeast") 
title('Average elastic services') 
  
%%FIGURE OF AVERAGE ELASTIC RATE (CHANGING EL SIZE) 
figure(15) 
plot(lambdas,avg_el_rate_expexp) 
hold on 
plot(lambdas,avg_el_rate_elsize_50k,'k') 
hold on 
plot(lambdas,avg_el_rate_elsize_100k,'r') 
hold on 
plot(lambdas,avg_el_rate_elsize_300k,'g') 
hold on 
plot(lambdas,avg_el_rate_elsize_1000k,'c') 
xlabel("Lambda") 
ylabel("Avg elastic rate [b/s]") 
legend("Expexp(ElSize=500k)","Expexp(ElSize=50k)","Expexp(ElSize=100k)","Expexp(ElS
ize=300k)","Expexp(ElSize=1000k)","Location","northeast") 
title('Average elastic rate') 
  
%%FIGURE OF PROBABILITY OF INELASTIC LOSSES (LOGNORMAL 
DISTRIBUTION) 
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figure(16) 
plot(lambdas,prob_inel_losses_expexp,'b') 
hold on 
plot(lambdas,prob_inel_losses_lnexp,'k') 
hold on 
plot(lambdas,prob_inel_losses_expln,'r') 
hold on 
plot(lambdas,prob_inel_losses_lnln,'g') 
xlabel("Lambda") 
ylabel("Losses [%]") 
legend("Expexp","Lnexp","Expln","Lnln") 
title('Probability of inelastic losses') 
  
%%FIGURE OF PROBABILITY OF ELASTIC LOSSES (LOGNORMAL 
DISTRIBUTION) 
figure(17) 
plot(lambdas,prob_el_losses_expexp,'b') 
hold on 
plot(lambdas,prob_el_losses_lnexp,'k') 
hold on 
plot(lambdas,prob_el_losses_expln,'r') 
hold on 
plot(lambdas,prob_el_losses_lnln,'g') 
xlabel("Lambda") 
ylabel("Losses [%]") 
legend("Expexp","Lnexp","Expln","Lnln") 
title('Probability of elastic losses') 
  
%%FIGURE OF AVERGARE INELASTIC SERVICES (LOGNORMAL DISTRIBUTION) 
figure(18) 
plot(lambdas,avg_inel_serv_expexp,'b') 
hold on 
plot(lambdas,avg_inel_serv_lnexp,'k') 
hold on 
plot(lambdas,avg_inel_serv_expln,'r') 
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hold on 
plot(lambdas,avg_inel_serv_lnln,'g') 
xlabel("Lambda") 
ylabel("Avg services") 
legend("Expexp","Lnexp","Expln","Lnln") 
title('Average inelastic services') 
  
%%FIGURE OF AVERGARE ELASTIC SERVICES (LOGNORMAL DISTRIBUTION) 
figure(19) 
plot(lambdas,avg_el_serv_expexp,'b') 
hold on 
plot(lambdas,avg_el_serv_lnexp,'k') 
hold on 
plot(lambdas,avg_el_serv_expln,'r') 
hold on 
plot(lambdas,avg_el_serv_lnln,'g') 
xlabel("Lambda") 
ylabel("Avg services") 
legend("Expexp","Lnexp","Expln","Lnln") 
title('Average elastic services') 
  
%%FIGURE OF AVERGARE ELASTIC RATE (LOGNORMAL DISTRIBUTION) 
figure(20) 
plot(lambdas,avg_el_rate_expexp,'b') 
hold on 
plot(lambdas,avg_el_rate_lnexp,'k') 
hold on 
plot(lambdas,avg_el_rate_expln,'r') 
hold on 
plot(lambdas,avg_el_rate_lnln,'g') 
xlabel("Lambda") 
ylabel("Avg elastic rate [b/s]") 
legend("Expexp","Lnexp","Expln","Lnln") 
title('Average elastic rate') 
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%%FIGURE OF PROBABILITY OF INELASTIC LOSSES (DWELL OF 1 SEC) 
figure(21) 
plot(lambdas,prob_inel_losses_expexp) 
hold on 
plot(lambdas,prob_inel_losses_dwell_1,'r') 
xlabel("Lambda") 
ylabel("Losses [%]") 
legend("Dwell = 300 secs","Dwell = 1 sec","Location","southeast") 
title('Probability of inelastic losses') 
  
%%FIGURE OF PROBABILITY OF ELASTIC LOSSES (DWELL OF 1 SEC) 
figure(22) 
plot(lambdas,prob_el_losses_expexp) 
hold on 
plot(lambdas,prob_el_losses_dwell_1,'r') 
xlabel("Lambda") 
ylabel("Losses [%]") 
legend("Dwell = 300 secs","Dwell = 1 sec","Location","southeast") 
title('Probability of elastic losses') 
  
%%FIGURE OF AVERAGE INELASTIC SERVICES (DWELL OF 1 SEC) 
figure(23) 
plot(lambdas,avg_inel_serv_expexp) 
hold on 
plot(lambdas,avg_inel_serv_dwell_1,'r') 
xlabel("Lambda") 
ylabel("Avg services") 
legend("Dwell = 300 secs","Dwell = 1 sec","Location","southeast") 
title('Average inelastic services') 
  
%%FIGURE OF AVERAGE ELASTIC SERVICES (DWELL OF 1 SEC) 
figure(24) 
plot(lambdas,avg_el_serv_expexp) 
hold on 
plot(lambdas,avg_el_serv_dwell_1,'r') 
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xlabel("Lambda") 
ylabel("Avg services") 
legend("Dwell = 300 secs","Dwell = 1 sec","Location","southeast") 
title('Average elastic services') 
  
%%FIGURE OF AVERAGE ELASTIC RATE (DWELL OF 1 SEC) 
figure(25) 
plot(lambdas,avg_el_rate_expexp) 
hold on 
plot(lambdas,avg_el_rate_dwell_1,'r') 
xlabel("Lambda") 
ylabel("Avg elastic rate [b/s]") 
legend("Dwell = 300 secs","Dwell = 1 sec") 
title('Average elastic rate') 
  
error_inel_losses=(conf_inel_losses(2,:)-conf_inel_losses(1,:))./mean_inel_losses; 
error_el_losses=(conf_el_losses(2,:)-conf_el_losses(1,:))./mean_el_losses; 
error_inel_services=(conf_inel_services(2,:)-conf_inel_services(1,:))./mean_inel_services; 
error_el_services=(conf_el_services(2,:)-conf_el_services(1,:))./mean_el_services; 
error_el_rate=(conf_el_rate(2,:)-conf_el_rate(1,:))./mean_el_rate; 
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6. Conclusions 
 
 
As I explained in the introduction, the main scope of this thesis is to understand how a base 
station deals with different type of services, inelastic and elastic ones. 
Thanks to the first scenario tested, it turned out that if the generation process is too slow with 
respect to the service time, the system will be almost always empty, meaning that our cell is 
underutilized. Then, it can never happen that we got elastic losses, since there will never be 
more than 10 elastic services in the queue; while, on the contrary, losses happen for inelastics 
because there cannot be 2 or more of them in the cell. In addition, since most of the time there 
will be just one customer in the queue, its service time will be very short, and so it is very 
difficult that it performs handover before finishing the service.  
So, from the case 4.1. we got that if the customer arrival process is too slow, it is good in 
terms of completed services and losses, but not in terms of utilization of the network, because 
we are using just a little part of it, and if we assume that it is pretty expensive to install a 5G 
base station somewhere, it will be a waste of money to have such a great capacity that cannot 
be used. 
That’s why we moved into the second tested case increasing the arrival rate; there is, of 
course, an increase of the losses, but at the same time an increase of the completed services, 
especially for what concern the elastic ones. We can say, that elastics benefit of this increase 
in the speed of customer arrivals, because there can be up to 10 of them in the queue, so 
having more customers means more completed services, while, on the contrary, for inelastic 
ones the situation get worse. This because there can be just 1 of them in the cell, and so if we 
are increasing the rate of the arrivals, it means we are increasing the probability of having 
more than 1 inelastic in the queue, resulting in an inelastic loss, in fact there are much more 
inelastic losses than elastic ones. 
In addition, since there are so many entering customers, the utilization of the queue increases 
a lot, meaning that we are better exploiting its resources. 
But, in order to get into some more realistic scenario, we need to increase the maximum 
number of customers (both inelastic and elastic), in order to simulate a base station of a 
crowded place. 
In the case 4.3 we tested a maximum number of inelastic and elastic customer equal to 30, 
with an arrival rate equal to the case 4.1. It can be noticed that inelastic losses reduce, due to 
the possibility of having up to 30 inelastic customers in the queue, instead of just one, while 
the elastic ones are increasing. Of course, handovers increase, since having more customers in 
the queue means more probability that one of them moves into another cell before finishing 
its service.  
From now on, the following scenarios start from the same parameters of the case 4.3, 
changing each time a different parameter, in order to see how it affects the statistics computed 
for different values of the arrival rate. 
In the case 4.4, we tested different distributions, in particular the exponential and the 
deterministic one, for the packet sizes, and, as a consequence changes also the service time 
distributions. 
It can be noticed from the output figures that different distributions do not affect the statistics 
computed, and it is interesting to notice it. Our queue is a mix of two different queues: a 



 100 

M/M/m/0 which describes the behaviour of inelastic customers, and a M/M/1-PS which 
describes the behaviour of the elastic ones. 
Both of them are insensitive to the service distributions, and our queue seems to be insensitive 
to it too. 
The same conclusion can be deducted from the case 4.5, in which we test a high variance 
distribution for the packet size, a lognormal distribution, and the statistics do not change 
again. 
The next parameter to be studied has been the dwell time; in particular, in the cases 4.6 and 
4.7. In the case 4.6, the dwell time does not seem to change anything, in fact the curves for 
different values of it are overlapping, meaning that no changes arise. In reality, this is due to 
the choice of the mean of the dwell time; in this specific scenario it was too big compared 
with the average service time. In this case, due to the particular choice of parameters, it turned 
out that there were almost always few customers in the queue, meaning high bit rate for each 
one of them, and so low service times. 
Since, on average, the service was much smaller than the dwell time, it does not matter how 
small the latter is, because handover would be performed few times. 
In order to see some changes, the dwell time has to be of the same order of magnitude of the 
average service time, and that’s why the case 4.7 has been studied. 
It is possible to see that, in this case, the choice of the dwell changes a lot the statistics, and in 
particular, lower dwell time means less queue load on average, because customers exit the 
queue much more times. 
Most of the changes happen for smaller values of the arrival rate, that’s because as soon as the 

arrival rate becomes bigger and bigger, the fact that one customer stays in the queue or 
performs handover does not change the overall situation, because there will be a new arriving 
customer taking its place. 
As a consequence, especially for smaller arrival rates, we can notice less losses, because, on 
average, there will be less customers in the queue. 
So, in order to notice some change, the dwell time has to be of the same order of magnitude of 
the service time. 
The last tested case, instead, shows us how the statistics vary as the elastic size increases. The 
inelastic statistics do not change so much, while the elastic losses increase as the packet size 
increases, and the same happens for the average number of elastic customers in the queue. 
In conclusion, we can claim that not all the changes affect the statistics, in particular our 
queue turns out to be insensitive to the service distribution, while the dwell time is relevant 
when is less, or at least of the same order of magnitude of the service time; it means that if a 
customer is moving slower than the service speed, then it will finish the service regardless of 
how slow it is. 
Finally, changing the elastic packet sizes affects the elastic statistics, especially when we have 
low arrival rate; the changes are negligible when the customer arrival is high because the 
queue will fill anyway, so the behaviour is more or less the same.  
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