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Abstract

The field of soft robotics is a relatively new one which has recently developed thanks to
the solutions it offers to the limitations of rigid robots: these include the wider possibilities
they have in the area of human-robot interaction since their soft and lightweight bodies
are intrinsically safe for humans. The biggest effort of the research community has been on
the development of innovative materials and designs to build new soft robots but designing
controllers that are employable for them is still an open challenge. This is due to the fact
that the control and modelling paradigms used on rigid robots are not applicable on soft
robots because of their highly nonlinear dynamics which are difficult to model on account
of the small degree of stochasticity they often incorporate. These reasons have opened the
door to new data-driven controllers based on neural networks which, while being suboptimal
for their rigid counterparts, have proven to be effective on soft robots. The main trend right
now is to use static controllers that rely on the kinematic models of these manipulators;
these have the advantage to be relatively simple to create but their drawbacks are the
limitations on the speed and efficiency of the robot. This thesis is an effort to create both
open-loop and closed-loop dynamic controllers, with the closed-loop architecture being the
main objective, for tracking tasks on a soft robotic manipulator purely based on data. The
first method described is based uniquely on data gotten from the robot and its aim is to
design an open-loop controller: initially, static data are collected to approximate its inverse
kinematic model that in turn is used to generate trajectories in the task space of the robot
at a higher frequency; these trajectories will later serve as input for a new network that
includes the error caused by the dynamics effects ignored by the kinematics. The second
method is instead thought for making a closed-loop controller which makes the tracking of
a moving object resistant to changes of the forward model of the robot: a very important
feature considering the high variability of the structure of this kind of manipulators which
could experience deformations of their pneumatic actuators when put under prolonged
actuation stress. Using a state-of-the-art reinforcement learning algorithm (Trust Region
Policy Optimization), the controller is trained on an environment which consists of the
soft robot’s forward dynamic model, previously derived using a Long-short Term Memory
recurrent neural network. The two methods proved to be effective: both the open-loop and
the closed-loop controllers applied to the real soft robot are able to follow a 3D trajectory
with an average error in the cartesian space of below 6mm; the closed-loop controller also
proved to be resistant to moderate changes of the forward model of the robot. The work
done in this thesis offers quick and easily applicable ways to generate precise tracking using
model-free, neural network-based, controllers. The fact that these rely uniquely on data
makes the pipelines to obtain them applicable to virtually any soft robot, and the high
accuracy with which they achieve dynamic tracking will be paramount for more complex
tasks such as grasping and pick-and-place.
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Chapter 1

Introduction

1.1 Objectives
Soft-robotics is a field that saw a surge in popularity in the past 15 years thanks to their
intrinsically safe applications in human-robot collaboration. The differences with rigid
robots generate the necessity of developing controllers which are appropriate for these
newly thought manipulators; this problem that made way to fairly unconventional control
strategies that include the usage of neural networks.

In fact, although their benefits with respect to rigid robots are numerous, one of the
most evident downside is the difficulty in modeling both their kinematics and dynamics
due to continuous and elastic structures that increase their dimensions drastically.

To overcome the main modelization and control problems of this field, I employed only
model-free strategies that include the usage of recurrent neural networks and reinforcement
learning, a branch of artificial intelligence that I have been fascinated with and that I
studied in the past year. The main goal of these approaches is to achieve performances
that are comparable to model-based strategies accompanied by a much easier way to attain
them, and the objective of the thesis was to develop a dynamic controller able to fulfill the
tracking of a moving object.

I initially focused on doing this with an open-loop controller based on long-short term
memory networks, and later closed the loop with the employment of a state of the art
reinforcement learning algorithm.

Once I achieved both of these objectives on the first simpler manipulator I used, I focused
on finding a way to make the closed-loop controller resistant to disturbances that might
incur in the deployment of these robots, and proving that the methods are employable on
different soft-manipulators.

1.2 State of the Art
Considering the young age of soft robotics, the research work about it is still relatively
scarce. Furthermore, the papers on soft and continuum robots are largely focused on the
structural designs of these manipulators, trying to employ new materials to implement
properties such as inherent compliance, variable stiffness, and higher dexterity in tough
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Introduction

environments.
If these developments are paramount for their application in industrial, service, and

assistive scenarios, an even more important role will be played by the development of
kinematic and dynamic controllers that guarantee accurate and reliable control.

This is an extremely challenging task due to the non-linearity of the materials that
soft manipulators are build with, which generate phenomena like bending, extension, con-
traction, torsion, and buckling of the bodies, and give rise to essentially infinite degree-of-
freedom motions.

The work on controls for soft and continuum robots can be divided in two ways: based
on whether they rely or not on individuating the parameters of the models (model-based or
model-free), and on the steady-state assumption, or lack thereof (kinematic or dynamic).

• Model-based kinematic controllers presently are the most used and investigated ones.
The most common way to model the kinematics of such robots is through constant
curvature (CC) [2] [3]. This is due to the low computational complexity of this
strategy that allows to extrapolate a very good approximation of the manipulators’
model. The limitations of the CC approach arise when the robot’s body is non-
symmetric and when torsional effects arise.
More complex modeling approaches have been explored, such as :

– piecewise constant curvature (PCC) models [4], an evolution of CC for multi-
sectional manipulators

– beam theory [5], which include large-deflections dynamics and axial extensibility
to achieve accurate setpoint tracking

– Cosserat rod theory [6] [7], an advanced mathematical approach to the modeliza-
tion of complex continuum and nonlinear bodies.

Even though these methods are theoretically more sound and should guarantee a
better accuracy, they’re oftentimes computationally burdening. Other downsides are
that they’re platform specific and, considering that most of them require feedback
from the configuration space, they demand lot of sensory data (especially in the case
of pneumatic actuation)

• Model-free kinematic controller. The main advantage over their model-based coun-
terpart is that they don’t require to define the parameters that map the task space
to the operating space of choice (joint, configuration, or actuation space). This task
can in fact be burdening and sometimes mathematically challenging for certain non-
linear, nonuniform, and low-budget robot. It is on these types of soft manipulators
that the model-free solution fares equally well or often better. The downside is that
it is impossible to establish convergence of the controller or even a stability analysis
due to the lack of a clearly parameterized model.
For the approximation of the model, more recent research tend to favor neural net-
works (such as in [8] and [9]) where the authors successfully employ a neural network
to approximate either the global or the local differential inverse kinematics.

• Model-based dynamic controllers: moving to a non-steady-state approach, the chal-
lenges posed by the high dimensionality of these robots become even more evident.
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1.3 – Organization of the Thesis

Dynamic controller are still in their nascent stage, and for this reason the research
on this topic is still sparse. Most of the work done until now stems from the same
constant curvature methods used for the kinematic counterparts of these controllers.
Notably, a PD torque controller was applied in [10], while a sliding mode controller
was employed in [11].

• Model-free dynamic controllers. Lastly, the most unexplored type of controller in the
list: these methods have clear advantages, such as being a relatively simpler path to
develop a dynamic model and being virtually platform-independent, but also clear
disadvantages, like the training time and the impossibility of reaching the stability
that a classic controller guarantees.
Very little has been done in this area, two of the most impressive ones are by the
same author: in the first one [12] sequential quadratic programming is used to pro-
duce a learning based-open loop dynamic controller, and in the second one [13] a
NARX (nonlinear autoregressive exogenous model) is used to learn from a dataset of
trajectories produced with the same method as in the first paper. Considering that
the optimization does not allow the loop to be closed because of the computational
expensiveness, training a model (or a network) to do the same task is a valuable
workaround to the problem.

Among the most valuable references I underline the work done in [9], in which the
author uses a two-module version of the first manipulator I used (described in section 2.1),
and very similar to the second manipulator described in section 2.2, although controlled
through cable actuations instead of pneumatic ones as did in this thesis. In this paper the
author develops a learning-based closed-loop kinematic controller that achieves a position
error of about 10mm± 5mm.

A second paper developed using the same platform used in my experiments, although
only one of the two modules was pneumatically actuated while the proximal one was left
passive, is [12]. The open-loop dynamic controller presented here achieves a tracking error
of about 50mm for a circle and 21mm for an infinity symbol, which are the same benchmark
I used to test the goodness of the controller developed by me.

Lastly, the work that is more closely related to the one presented in this thesis is [13], in
which a closed-loop dynamic controller is learned using a technique that merges aspects of
supervised and unsupervised learning. Although this paper served as source of inspiration
for the research I did, the results obtained regard exclusively tasks of point-reaching, which
are hard to compare with the point-to-point tracking task that I explored.

For a more detailed outline of the state of the art of this field, I recommend this valuable
survey ([1]).

1.3 Organization of the Thesis
This is a brief overview of the chapters’ content:
Chapter 1 explains the thesis’ objectives and summarization of the methodologies used.
Chapter 2 presents the soft robots used during the thesis development, with a detailed
explanation of the fabrication and control mechanism.
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Chapter 3 offers an overview of machine learning fundamentals and introduces the networks
used. These are Artificial Neural Networks (ANN), Recurrent Neural Networks (RNN),
and the more advanced versions of them which are applied to both the methodologies pre-
sented: Long-Short Term Memory (LSTM) networks.
Chapter 4 prepares the reader to the main fulcrum of the thesis, a novel artificial intelli-
gence paradigm called Reinforcement Learning (RL). After an initial outline that presents
the principal components of classical RL, including also the specific vernacular used, this
chapter moves on to the more current branch of RL called Deep Reinforcement Learning
(DRL). A few words are spent to establish the differences it has with RL, and then the
method used in the thesis, the Trust Region Policy Optimization (TRPO) algorithm, is
analyzed in great detail.
Chapter 5 is about the first of the two methodologies developed by me. It is aimed at
the production of a model-free, neural network-based, open-loop controller. This chapter
was developed in the first months of work, and improved in the later ones, to provide a
way to allow accurate control of soft robots, no matter what the actual platform used is.
A thorough description of the process is provided, in chronological order, as well as the
results obtained.
Chapter 6 is instead about the second methodology. This one has the goal of creating a
closed-loop dynamic controller, again model-free, trained using TRPO, the deep reinforce-
ment learning algorithm explained in chapter 4. Once more, the process is outlined in
chronological order and the results are provided at the end.
Chapter 7 concludes the thesis with my considerations over the methods I developed and
their future potential.
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Chapter 2

Soft-robots

The branch of soft robotics started developing in 2009; the main drive of its pioneering
stages was the observation of how biological beings move in complex and unpredictable en-
vironments thanks to structural paradigms that differ substantially from the ones used in
the conventional rigid robotics. In fact, if rigid robots are extremely capable of performing
fast and precise tasks thanks to their metallic composition and their electromagnetic com-
ponents, they inherently provoke issues when handling unexpected environmental changes
or interactions with humans. The scope of soft robots is to solve these congenital faults
of their rigid counterparts not with complex control systems but with the morphology and
material properties of their bodies.

Considering the differences between rigid and soft robots, I find it necessary to redefine,
where possible, the operating spaces for continuum as did in [1]:

Table 2.1: Definition of the operating spaces

Operating Space Definition Pneumatic Tendon-driven
Actuator space τ ∈ Rk Pressure applied to the

chambers
Motor positon or torques

Joint space ς ∈ Rl Hard to define possibly
the volume in the cham-
bers

Cable length or tension

Configuration space ζ ∈ Rm The independent physiscal parameters that
define the configuration of the manipulator

Task space x ∈ Rn Position and/or pose of the end-effector

During the development of this thesis I used two distinct soft-robots to demonstrate the
adaptability of the methods presented to virtually all robotic platforms. Said soft-robots
have intrinsic structural similarities but their actuation-space and task-space have different
dimensions.
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Soft-robots

Figure 2.1: Difference between rigid-linked robots and hyperredundant robots, which en-
close continuum robots and soft robots. Figure curtesy of [1]

2.1 I-Support
The first soft robotic manipulator is made of only one module, composed by three pairs of
McKibben-based actuators and three cables which are alternately displaced at an angle of
60◦ along a circle with a radius of 3 cm, and kept together with a set of perforated plastic
rings. The total length of the manipulator is ∼ 20 cm while the total weight is 160 g.
Considering that the cable and pneumatic actuators are decoupled, in all the experiments
conducted I used uniquely the pneumatic ones.

The pneumatic chambers are McKibben actuators, a type of pneumatic artificial mus-
cles (PAMs), each composed of:

• An external chamber, consisting of a polyester braided sheath with a diameter of 3
mm. Said sheath is deformed through the application of a mechanical compression to
a bellow shape, which is then memorized via the application of cyclical uniform heat

• An internal chamber, consisting of a latex balloon. The internal chamber is fit inside
the external one and then sealed using Parafilm (a semi-transparent flexible film)

The insertion of the internal chamber in the external one allows it to expand only longi-
tudinally and not radially, producing an elongation of the actuator whenever a pressure is
applied to it.

The robot is actuated through an actuation box (as seen in Fig.2.2a) made up by three
parts:

• The pneumatic actuators: constituted by 3 proportional pressure micro-regulators
which map a voltage in the range of 0-10V to a pressure in the range of 0-3 bar, and
1 air filter regulator to set the pressure input at 4bar.

• The control unit: composed by an Arduino Due and a custom electronics board that
includes a DAC and an amplifier to manage the pressure micro-regulators.

12



2.2 – AM-I-Support

(a) Maximum elongation (b) Maximum bending

Figure 2.2: Actuation results

• The power supply: 24V for the micro regulators, and 6V for the custom electronic
board

To input the actuations to the manipulator, the Arduino is interfaced with MATLAB
through a serial communication. The inputs are given from MATLAB in the form of digits
from 0 to 255, which are then converted to Volts (from 0-5V) to be fed to the pressure
regulators that hold a range of 0-1.5bar.

2.2 AM-I-Support
This evolution of the previously presented I-Support [14] is composed by two identical
modules, called proximal and distal, connected to each other through nuts and bolts to
allow complex movements and a larger task-space. Like in its previous version, each AM-
I-Support module is actuated only through its three pneumatic chambers, even if the
manipulator allows more degrees of actuation through cables pulled by three DC motors.

This second robot is fabricated following a Design for Additive Manufacturing (DfAM)
approach: the materials used to 3D print the manipulators are two:

• A thermoplastic polyurethane with Shore A hardness equal to 80 (TPU 80A LF), for
the pneumatic actuator chambers and the rings

• Polylactic acid for the terminals

The choice of TPU 80A LF allows large elongations and deformations thanks to its tensile
module of 17 MPa and elongation at break of 471%, but also thanks to the bellow-like
shape of the chambers

Each module has a resting length L0 of about 20 cm and an activation range that goes
from 0 to 4 bar. When actuating all the chambers at once with 4 bar, the module reaches

13



Soft-robots

Figure 2.3: AM-I-Support 3D design (Figure courtesy of [14])

(a) Maximum elon-
gation

(b) Maximum bending

Figure 2.4: Actuation results (Figure courtesy of [14])

its maximum elongation ∆Lmax ≈ 47%L0 as seen in Fig. 2.4a, while actuating only one
chamber at 4 bar achieves maximum bending, with an angle θmax ≈ 137◦ as seen in Fig.
2.4b.

Even considering that the fabrication method employed for this manipulator is thought
for repeatability, the two modules employed have slightly different values of elongation ∆L
and bending angle θ for the same values of pressure input in the pneumatic chambers, as
can be seen in Figures 2.5.
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2.2 – AM-I-Support
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Figure 2.5: Elongation and bending values for the two modules (Figure courtesy of [14])
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Chapter 3

Neural Networks

In this chapter I will describe the neural networks that I used in the methods presented
in the thesis. These are Artificial Neural Networks (ANN), and Long-short Term Memory
(LSTM) Recurrent Neural Networks (RNN).

Most of the formulas in this chapter are taken from two free Deep Learning books: [15]
by Ian Goodfellow and Yoshua Bengio, and [16] by Michael Nielsen.

3.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) are computing systems that take inspiration in their
structure from the brains of biological brains.

Brief History of Neural Networks

Their birth can be traced back to 1943 when neurophysiologist Warren McCulloch and
mathematician Walter Pitts created a simple electrical circuit to implement a computa-
tional model based on threshold logic [17].

Their work was then expanded on by psychologist Frank Rosenblatt, which was the first
to come up with the idea of the Perceptron back in 1958 [18], while trying to quantify the
decision making processes of flies.

The Perceptron was applied to make the first networks that solved real world problems,
provoking a surge in popularity of this new technology. That lasted until 1969 when Mar-
vin Minsky published his book "Perceptrons" [19] in which he concluded that Rosenblatt’s
approach couldn’t be employed in large scale neural networks because of the limited com-
puting power that computers had back then, and that perceptrons were unable to compute
the exclusive-or (xor) logical operation, making them useful only to learn how to separate
linearly separable classes, but not non-linearly separated ones (in fact the first usages of
NNs were used for classifications, not regressions).

Minsky’s work brought many institutions to deny funds for Artificial Intelligence (AI)
research, causing what’s known as "the AI winter", a period that lasted about 15 years and
in which the progress in this field slowed down dramatically.
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The next huge step in machine learning was taken in the 1980s when backpropagation,
a method that alongside gradient descent makes the backbone of the NNs’ learning, was
brought back to light after digging in the past decades’ literature [20].

After the basic structure of ANNs had been laid down, the work starting from the
1990s, higly regarded as the golden era of machine learning discoveries, until the present
day brought neural networks to be used in an immeasurable variety of fields.

Structure of Artificial Neural Networks
Every ANN is composed by neurons which are vertically stacked to create the so called
layers. With reference to Figure 3.1 he layers can be of three types:

• Input layer: it’s the first layer of the network, it directly connects with the input
signals.

• Hidden layers: these are layers of neurons which are connected neither with inputs
nor outputs, but only with neurons of other layers. There can be as many hidden
layers as the user wants.

• Output layer: the last layer of the network, it connects with the last hidden layer and
its output is the final output of the network.

a

Figure 3.1: Artificial Neural Network scheme
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Every jth neuron of every l layer has outputs alj , generally called activations, and inputs
zlj , might they be the input signals provided by the user or the activations coming from
previous neurons.

Each neuron of each layer is connected with all the neurons of the next layer (except
the output layer), and each one of these connections can be imagined to carry a weight
wljk that should be read as "the weight that the output of neuron k of the (l − 1)th layer
has on neuron j’s input, with neuron j belonging to the lth layer". In fact, every neuron
is essentially comprised of an activation function σ which in the original perceptron was
a step function with discrete output 0 or 1 and later took more complex (see the next
subsection). The activation of each neuron is thus the output of its activation function:

alj = σ

(∑
k

wljka
l−1
k + blj

)

where the sum is over all neurons k in the previous layer (l−1)th. Every neuron has a bias
blj , which alongside the weights form the so called parameters of the network.

Activation Functions
The activation functions for the neurons of a neural network can be many; the first one
historically was the step (or binary) function:

σ(z) = f(z) =
{ 0 if z < 0

1 if z ≥ 0

with z being the generic input to any neuron. This function has two big drawbacks: it can
only produce a binary output, meaning that the neuron will be either off or fired up, and
the function is not differentiable in 0. The motivation for this last drawback will be clearer
in the next subsection about backpropagation.

Considering the abundance of activation functions, I’ll only report the 4 I used or quoted
during the thesis:

• Sigmoid: this is the function that historically resolved the problems posed by the step
function. Its output varies smoothly with the input x provided, and saturates at 0
and +1 for values of x→ − inf and x→ + inf respectively.

σ(x) = σ(x) = 1
1 + e−x

• Hyperbolic tangent: it is very similar to the sigmoid function in shape, the differences
in performance between the two are not always easy to determine.

σ(x) = tanh(x) = ex − e−x

ex + e−x

The reason why tanh is practically better is explained in the backpropagation sub-
section
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• Rectified Linear Unit (ReLU): one of the most widely used functions in machine
learning. Its strength rely in its simplicity, in fact it turns out that silencing the
neurons for values that are unimportant to the model is an excellent way to improve
the rejection of outliers. Furthermore, it is much more computationally advantageous
to use ReLU with respect to a sigmoid or tanh function, both for calculating its
output and for obtaining its derivative.

σ(x) = f(x) =
{ 0 if x < 0
x if x ≥ 0 = max (0, x)

• Linear: this is the simplest activation function. It is used uniquely for the output
layer as it would be ineffective for the hidden ones:

σ(x) = f(x) = ax

Figure 3.2: Activation functions
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Gradient Descent and Backpropagation
The first step towards the optimization of a network’s parameters (weights wij and biases
bj) is to define a cost function. A cost function can be any function that is differentiable
to the first order, but the most widely used (and the one used in this thesis), is the Mean
Squared Error:

C(w, b) = 1
2n
∑
x

‖y(x)− a‖2

where the 2 at the denominator is introduced only for mathematical convenience. In this
cost function y(x) is the desired output of the networks (the ground truth or labels),
whereas a is the actual output of the network. The better the network is, the closer the
estimated values will be to the desired ones, an thus the smaller the cost function will be.

This lays the foundation for a minimization problem: in fact, the cost function depends
on the weights and biases of the network. This means that the update of the parameters
should follow the direction of steepest descent, given by the partial derivative of the cost
function for that given parameter:

wj → w′j = wj − η
∂C

∂wj

bj → b′j = bj − η
∂C

∂bj

where η is defined as learning rate, and is responsible for the speed of descent towards the
minima of the cost function.

To get to the value of the partial derivatives ∂C
∂wl

jk

and ∂C
∂blj

it’s necessary to follow these
steps (taken from chapter 2 of [16]):

1. Calculate the error for the output layer:

δLj = ∂C

∂aLj
σ′
(
zLj

)
this equation is made by the partial derivative ∂C

∂aLj
, which measures the rate of change

of the cost function w.r.t. the jth output activation, and the derivative σ′
(
zLj

)
, which

in turn measures the rate of change of the activation function at zLj .
In matrix form it becomes:

δL = ∇aC � σ′
(
zL
)

2. Calculate the layer’s error δl as a function of the next layer’s error δl+1:

δl =
((
wl+1

)T
δl+1

)
� σ′

(
zl
)

where wl+1 contain all the weights of the (l + 1)th layer.
This equation is extremely important because it allows to propagate the error back-
ward through the network, which is the scope of backpropagation.
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3. Calculate the rate of change of the cost with respect to the network’s biases:
∂C

∂blj
= δlj

4. Calculate the rate of change of the cost with respect to the network’s weights:
∂C

∂wljk
= al−1

k δlj

By repeating step 2 for all the L layers of the network, and for each of them update the
layers’ parameters using step 3 and 4, we get a backpropagation pass.

Having the values of ∂C
∂wl

jk

and ∂C
∂blj

does not mean that the weights and biases are
updated at every pass; in fact, the technique used here is not properly gradient descent
but stochastic gradient descent, which essentially means that the parameters are updated
once every m backward passes:

wl → wl − η

m

∑
x

δx,l
(
ax,l−1

)T
bl → bl − η

m

∑
x

δx,l

Feature Scaling
A common practice is to normalize the inputs, or features, of the neural network using a
technique called feature scaling (or more commonly normalization).

Even if the network is theoretically able to approximate any function by virtue of the
universal approximation theorem [21], having data in the input belonging to significantly
different ranges, might lead to an inefficient training or, in some cases, failure to localize
the global optima.

The reasons behind normalization are practical: it prevents the algorithm from getting
stuck in local optima and makes the training faster.

The three most prevalent methods to do so are:

• Rescaling also called min-max normalization, scales the data between 0 and 1:

x′ = x−min(x)
max(x)−min(x)

where x′ is the normalized value and x the original one. The range of the normalized
data can also be between two value sa and b chosen by the user:

x′ = a+ (x−min(x))(b− a)
max(x)−min(x)

• Mean normalization:

x′ = x− x̄
max(x)−min(x)

with x̄ being the mean value of the data to be normalized.
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• Z-score normalization most commonly known as standardization. The result of this
type of feature scaling is having the values of each feature (input type) in the data
have zero-mean and unit-variance:

x′ = x− µ(x)
σ(x)

with µ(x) being the mean of feature x and σ(x) being its standard deviation.

3.2 Recurrent Neural Networks
A Recurrent Neural Network (RNN) is a type of Artificial Neural Network that is built
specifically to have as inputs a time-series or, more generally, any type of sequential data.

Unlike a classic feedforward neural network, a RNN has a hidden state (also referred
to as memory) which allows it to utilize previous outputs (or for more complicated archi-
tectures, fractions of them) alongside the current input to predict the final output of the
network.

tanh

xt

ht

ht-1 ht

Figure 3.3: RNN cell

The original and simplest version of a RNN cell is shown in Figure 3.3. The input
xt is generally speaking a mono-dimensional array of dimension N (usually referred to as
number of features), while the hidden state ht has a dimension M (usually referred to as
number of units) specified by the user as a hyperparameter. By considering the RNN cell
as frozen in time, it can be seen that it is basically a feedforward neural network with M
neurons activated through a hyperbolic tangent (tanh) function; the input of said network
is the concatenation between the features xt and the past hidden state ht−1, which results
in an array of dimension N + M . Consequentially, the RNN cell will have (N + M) ·M
weights and M biases, for a total of M2 +NM +M parameters.

A cell is the fundamental unit of a Recurrent Neural Network: depending on the type
of data the network has to train on, the user decides a number T of timesteps to include
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in the input, which will have dimension TxN ; in Figure 3.4 I show how multiple cells, in
this case three, are connected.

tanh

xt-2

ht-3

ht-2 ht-1

tanh

xt-1

tanh

xt

ht

ht

Figure 3.4: RNN cell connections

The total number of parameters of the whole network will be T (M2 +NM +M).
The output of an RNN layer coincides with a subset of the hidden spaces [ht−T+1, ..., ht];

in case of a deep recurrent neural network, multiple RNN layers are stacked on top of each
other so that the input for the next layer becomes the previous layer’s output.

In case of a shallow RNN, the subset of hidden states (generally just the last one
ht) passes through an output layer whose output dimension is the one desired and whose
activation is usually Softmax, if the domain is discrete, or linear, if the domain is continuous.

These "vanilla" RNNs are nowadays outdated, mostly because of the vanishing gradient
problem. This phenomenon occurs during the backpropagation pass to update the weigths
of the network: referencing Figure 3.5 the derivative of the error E3, which is a function
of the output Y3, with respect to the hidden state’s weight is by virtue of the chain rule
dependent on all the previous states:

∂E3
∂Wh

=
(
∂E3
∂Y3
· ∂Y3
∂h3
· ∂h3
∂Wh

)
+(

∂E3
∂Y3
· ∂Y3
∂h3
· ∂h3
∂h2
· ∂h2
∂Wh

)
+(

∂E3
∂Y3
· ∂Y3
∂h3
· ∂h3
∂h2
· ∂h2
∂h1
· ∂h1
∂Wh

)
more generally, for a RNN with N cells, the gradient will be:

∂EN
∂Wh

=
N∑
k=0

∂EN
∂YN

∂YN
∂hN

 N∏
j=k+1

∂hj
∂hj−1

 ∂hk
∂Wh

Considering that the hidden states are bounded between -1 and +1 by the tanh activation
function and hence their derivatives are bounded between 0 and 1, the product in the
middle of the above formula becomes smaller as the hidden states get further back in the
past with respect to the output. This leads the gradient to become very small, hence the
name vanishing gradient, and the update of the weights ineffective. It has been proven
that this type of RNN becomes inadequate for networks of more than 6-8 cells: this can
be summarized by saying that "vanilla" RNNs inherently forget information too far back
in the past.
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h1 h2 h3
Ws Ws Ws

Wy

y3

Figure 3.5: Simplified backpropagation scheme

3.3 Long-Short Term Memory Network
The solution to the vanishing gradient problem is to modify the structure of the cell.

A new cell architecture, called Long-Short Term Memory (LSTM), was presented in
[22]; it introduces a more complex layout that grants the network the ability to withhold
in its state only valuable informations from the past states.

xt

ht

ht-1 ht

�

x

�

+

tanh

x x

tanh

ct

�

ft it ot
c̃t

ct-1

Figure 3.6: LSTM cell

The first new feature to discuss is the introduction of a cell state Ct, which contains
informations related to the long term memory; the cell state is updated in two points of
the cell:

1. The first one is through the red multiplication gate that we see in Figure 3.6: the
array composed by the concatenation of the input xt and past hidden state ht−1 passes
through a sigmoid layer (generally called forget gate), which produces as output an
array ft defined as follows:

ft = σ (Wf · [ht−1, xt] + bf )

This array ft will determine which information of the cell state Ct have to be forgotten
and by which degree, by "masking" it through element-wise multiplication.
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2. The second one is through summation of the new array to be stored: the array
resulting from the concatenation of xt and ht passes first through another sigmoid
layer (called input gate) that is responsible for which values of C̃t are going to be
added to the cell state; C̃t is, in turn, the output of a hyperbolic tangent layer that
generates a vector of candidate values.

it = σ (Wi · [ht−1, xt] + bi)
C̃t = tanh (WC · [ht−1, xt] + bC)

Lastly, the new cell state is obtained by summing the old state, multiplied by the
forget array, with the new candidate state, multiplied by the input gate:

Ct = ftCt−1 + itC̃t

Once the cell state is well defined, the hidden state is nothing else but a "filtered version"
of it: the cell state passes through a hyperbolic tangent layer and is then multiplied by the
output of the output layer ot, as follows:

ot = σ (Wo [ht−1, xt] + bo)
ht = ot · tanh (Ct)

By stacking more than one LSTM cells in parallel we get to a LSTM network that
looks like the one in Figure 3.7. Considerations similar to the ones made for the RNN
parameters can be made for the LSTM network, having 4 layers inside a cell, the total
number of parameters will be: 4T (M2 +NM +M).

xt-2

ht-2

ht-3

x +

tanh

x x

tanh

x +

tanh

x x

tanh

xt

ht

� � � � � �

xt-1

ht-1

Ct

ht

x +

tanh

x x

tanh

�

Ct-3

� �

Figure 3.7: LSTM cell connections
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Chapter 4

Deep Reinforcement Learning

4.1 Introduction to Reinfocement Learning

Reinforcement Learning (RL) is a subfield of machine learning whose first stages can be
tracked down to the early 1980s, and that has seen an enormous surge in popularity in
the last ten years thanks to the promising results shown when applying its techniques to
videogames. The essential elements of RL are:

• An agent: it’s the "learner" of the process, the entity that is trained to fulfill a specific
set of tasks.

• An environment: it’s the world in which the agent is located.

• Actions: they’re steps that the agent takes in the environment and that result in a
change of state of said agent.

• Rewards: they’re "prizes" or "punishments" given to the agent based on how good the
last action taken was, based on the task to be carried out.

• Observations: what the agent can see of the environment at every time-step: they
are pieces of information about the current state of the agent.

The goal of RL is to learn an optimal policy, which is the mapping between the states
and actions, that maximizes the expected sum of rewards received during a trial (generally
called a rollout). By putting all these elements together a closed-loop training process is
obtained: the agent gets an observation from the environment, the state changes and a
reward which is a function of it is returned to the agent. This training process consists in
a trial and error procedure in which the agent balances the exploration of the environment
with the exploitation of the policy being trained: this is of fundamental importance because
an agent that is too "greedy" and chooses the best action based on the current policy will
fail to explore the environment, and thus to find the global optimum (or more generally
speaking, a better local minimum).
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Markov Decision Process

The Markov decision process (MDP) provides a mathematical framework which includes
the elements of an environment. A MDP is based on the Markov property, which says that
each state should be dependent only on the state and action immediately prior to it; a
MDP is a tuple (S,A,P ,R, γ) where S is the state space, A is the action space, P is the
state probability function:

Pass′ = P [st+1 = s′ | st = s, at = a]

R is the reward function:

Ras = E [rt+1 | st = s, at = a]

where s ∈ S and a ∈ A and γ is a discount factor bound between 0 and 1 : γ ∈ [0,1)

Figure 4.1: Markov decision process

Rewards and Policy

As said earlier in the introduction, the goal of the agent is to maximize the rewards during
a rollout. To be more precise, the goal ηt to be maximized is the cumulative sum of the
discounted rewards (also named return) obtained during the rollout :

ηt =
T∑
k=0

γkrt+k+1

where T is the length of the rollout in time-steps. Common values of γ in RL fall in the
range [0.9,1), given that a value proximal to 0 will make the agent blind to the expected
rewards that will come in the future, and a value of 1 will prevent the algorithm from
converging to a solution for values of T →∞.

The policy is substantially the agent’s strategy: it’s a probability distribution over
actions given states: π(a|s), or in other words, the likelihood of every action when an
agent is in a defined state.
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State-Value and Action-State Functions
The state-value function conveys how good each state s ∈ S is by calculating the expecta-
tion of the discounted sum of rewards:

vπ(s) = Eπ [ηt | st = s] = Eπ

[ T∑
k=0

γkrt+k+1 | st = s

]

where the notation Eπ [·] is the expected value given the agent’s policy.
The action-state function is quite similar: it’s still the expectation under the agent’s

policy over the sum of rewards, but given the action alongside the state:

qπ(s, a) = Eπ [ηt | st = s, at = a] = Eπ

[
T∑
k=0

γkrt+k+1 | st = s, at = a

]

Having defined these two functions, it is possible to outline the concept of optimal
policy π∗, which is generally non-unique and leads to optimal state-value and action-state
functions:

v∗(s) = max
π

vπ(s),∀s ∈ S

q∗(s, a) = max
π

qπ(s, a),∀s ∈ S

v∗(s) = max
a∈A(s)

qπ∗(s, a)

4.2 Deep Reinforcement Learning
In the first RL attempts, the values of the state-value and action-state functions were saved
in tabular form; the table was then updated after many exploration episodes that lead to
an optimal version of it to be used by the agent to navigate the environment in the most
advantageous way.

The limitations of this approach become evident when the environment becomes very
large, making the table extremely resource consuming both in matter of data stored and
time, given that sweeping such a large array of values becomes computationally expensive.
Moreover, when the environment is continuous, the tabular method turns out to be alto-
gether impossible to apply unless a discretization is made, which would still result in a loss
of information.

The solve this problem function approximators are used to estimate both the state-value
and the action-state functions. Although a number of approaches can be employed, such
as tile-coding or radial-basis functions in the early beginnings of RL, the most obvious
one consists in the usage of deep neural networks, hence the name Deep Reinforcement
Learning (DRL).

Neural networks are trained to predict how valuable certain actions and states are from
samples of their respective spaces; the parameters to be optimized for said task are the
weights and biases of the network, generally represented as θπ,v,q ∈ Θ, with Θ being the
parameter space, and the subscript of θ being the function to which the parameters belong:
either the state-value function, the action-state function or the agent’s policy π.
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Policy Gradient
As said before, the goal of RL is to find a policy πθ that maximizes the expected sum of
discounted rewards:

max
θ
η (πθ) = E

τ∼πθ

[
T∑
t=0

γtrt

]

where E
τ∼πθ

[·] is the estimation given a trajectory τ = (s0, a0, s1, a1, ..., sT , aT ) sampled from
the current policy πθ.

To do so, the policy gradient (PG) method calculates the direction of steepest ascent
to the global maximum; this is possible by calculating the gradient g as:

g = ∇θη (πθ) = E
τ∼πθ

[
T∑
t=0

γt∇θ log πθ (at | st)Aπθ (st, at)
]

(4.1)

where Aπθ (st, at) is called advantage function:

Aπθ (s, a) = Qπθ (s, a)− V πθ (s)

Seeing that the advantage function is the difference between the value function and the
Q-value function redwrite that they can also be called like this in the previous chapter, it’s
intuitive to understand that it provides a measure of how good an action is (given by the
Q-value), given the estimation of the best outcome for a certain state ( given by the value
function); in fact, the advantage is always non-positive, with it being 0 for an optimal
policy.

Having calculated the gradient g, the parameters update will be:

θk+1 = θk + αg

with α being the learning rate.
The PG methods have a few intrinsic problems:

• When the objective function to be optimized η (πθ) is highly dimensional and highly
non-linear, too large of a step in the steepest ascent direction could cause the opti-
mization procedure to drop in a valley, wasting the progress done until that last step.
It is a very common problem in RL known as catastrophic forgetting .

• For such complicated optimization function it is impossible to choose a value for the
learning rate α that would suit the whole training process: in fact, a value too large
would result in catastrophic forgetting whereas a step too small would slow down the
learning phase to an unacceptable time.

• It’s not possible to update the policy every timestep or every few timesteps: doing so
would fail to generalize the gradient direction for the whole episode, it would instead
point it in the optimal direction for that subset of states and actions explored in
those few timesteps. Considering that an episode could be made of hundreds if not
thousands of timesteps, the PG method has an extremely low sample efficiency, one
of the most discussed problems of RL and possibly the biggest challenge today.
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4.3 Trust Region Policy Optimization
Trust Region Policy Optimization [23] is an advanced DRL algorithm first presented in
2015; it is to date one of the best performing algorithms invented alongside its derivative
PPO which makes it scalable to larger policy networks.

Being fairly complicated from the mathematical point of view I’ll first break down its
features to make it more tractable.

Minorize-Maximization Algorithm
The minorize-maximization (MM) is a well known process to construct an optimization
algorithm in an iterative way. The core concept is that it maximizes a function that is
a lower-bound of the original optimization objective; for it to be effective, it is necessary
that the step taken in the ascending direction of the lower bound function is small enough
to respect the locality of the approximation. If this constraint is satisfied, the MM method
guarantees policy improvement every time and will eventually lead to the optimal policy.

A further benefit of using MM is that it can reduce computational expensiveness of
the optimization by a great deal: in fact the usual choice for the lower-bound function is
quadratic, which is convex and easily optimizable. Its form is:

M(θ) = g · (θ − θold )− β

2 (θ − θold )T F (θ − θold )

with θold being the current policy’s parameters and theta being the new one’s.

Trust Region
Trust region is an alternative optimization method to line search, which gradient ascent
is part of. In this method the optimization takes place within a subset of the region
of the objective function, which in this case is defined by the the n-sphere of radius δ.
For example, let mk (s) be the approximation to the original objective function f (s), the
optimization will be:

max
s∈Rn

mk(s)

s.t. ‖s‖ ≤ δ

It is to be noted that this new optimization strategy by itself does not solve the problems
of PG listed earlier in the chapter: to control the learning speed it would still be necessary
to shrink and expand the radius δ to allow more or less liberty in the update of the policy;
this means that to prevent catastrophic forgetting it’s still necessary to adapt δ based on
the curvature of the function to be optimized.

Considering how expensive it can be to do this, a workaround is used in TRPO to
modify the trust region span based on how different the new policy is with respect to the
new one: to prevent forgetting the limit on the divergence between the two policies is
reduced.
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Importance Sampling
If the introduction of a trust region is a step towards solving the problem of forgetting,
importance sampling has the role of solving the sample inefficiency of policy gradient
methods; this is a technique for estimating the properties of a distribution, while only
having samples generated from another distribution that has to be "similar" to the first
one.

It is possible to use this technique to obtain the expected value of a function f(x) where
x belongs to a desired distribution of probability density function p(x) by sampling x from
a p.d.f. of a "biased" or "sampling" distribution q(x):

Ex∼q
[
f(x)p(x)

q(x)

]
where the term p(x)

q(x) is called importance sampling weight for x. By calculating the variance
of the above estimation we get:

var (µ̂q) = 1
N

var
(
p(x)
q(x)f(x)

)
= 1
N

(
E
x∼q

[(
p(x)
q(x)f(x)

)2]
− E

x∼q

[
p(x)
q(x)f(x)

]2)

= 1
N

(
E
x∼p

[
p(x)
q(x)f(x)2

]
− E

x∼p
[f(x)]2

)
where, in the last expression, p(x)

q(x) is the decisive factor for the tightness of the variance of
the estimation.

By applying the importance sampling to Eq.4.1 we obtain:

g = E
τ∼πθ′

[
T∑
t=0

P (τt | θ)
P (τt | θ′)

γt∇θ log πθ (at | st)Aθ (st, at)
]

The issue now is the last expression P (τt|θ)
P (τt|θ′) which can lead to an extremely misleading

estimation even when there’s a small difference between the two probabilities; in fact in
can be proven that:

P (τt | θ)
P (τt | θ′)

=
t∏

t′=0

πθ (at′ | st′)
πθ′ (at′ | st′)

which indicates that the longer the trajectory τ is, the more obvious the error will become.
This phenomenon is known as exploding or vanishing importance sampling weights, and just
as the catastrophic forgetting problem, can be solved by limiting the divergence between
the new and the old policies, and thus between their distributions: respectively the desired
one and the sampling one.

So all the techniques described so far have a caveat: the new policy has to be similar
to the old one for the update to be effective an monotonicly improving. To add this last
property to the update, the authors of TRPO first modified the optimization function and
then added a term that limits the difference between the two policies called Kullback-Leibler
divergence.
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Kullback-Leibler Divergence
For the last step, it is necessary to first modify the optimization function. To do so, the
authors introduced the relative policy performance identity, defined as follows:

η (π′)− η(π) = E
τ∼π′

[ ∞∑
t=0

γtAπ (st, at)
]

= 1
1− γ E

s∼dπ′

a∼π

[
π′(a | s)
π(a | s) A

π(s, a)
]

(4.2)

where dπ is defined as the discounted future state distribution sampled from the policy π
(the notation πθ′ was simplified to π′).

The intuitive reason for this change of optimization function is to better exploit the
relationship between the performances of the two policies, making it easier to bound the
difference between them and making more evident the improvement from one to the other.
It can easily be proven that maximizing π′ for η(π′) or η(π′)− η(π) is the same, given that
η(π) can be treated as a constant.

The last step is to change the state sampling distribution (s ∼ dπ
′) in Eq.4.2. The way

it is done, once again, is by assuming that dπ′ ≈ dπ, making the objective function:

η (π′)− η(π) ≈ 1
1− γ E

s∼dπ
a∼π

[
π′(a | s)
π(a | s) A

π(s, a)
]
.= Lπ (π′)

Naturally dπ′ ≈ dπ is valid only when the policies are similar; this recurrent problem is
finally solved by bounding the relative policy performance with a term dependent on the
Kullback-Leibler (KL) divergence, as follows:

|η (π′)− (η(π) + Lπ (π′))| ≤ C
√

E
s∼dπ

[DKL (π′‖π) [s]] (4.3)

Putting the KL divergence between the two policies as an upper bound limits the max-
imum acceptable difference between them; in fact, the KL divergence, also called relative
entropy, is a measure of how one probability distribution is different from a second refer-
ence probability distribution. The mathematical definition states that: given to discrete
probability distributions P and Q, the relative entropy from Q to P is defined as:

DKL(P‖Q) =
∑
x

P (x) log P (x)
Q(x)

with:

• DKL(P‖P ) = 0

• DKL(P‖Q) ≥ 0

• DKL(P‖Q) /= DKL(Q‖P )

In our case:

DKL (π′‖π) [s] =
∑
a∈A

π′(a | s) log π
′(a | s)
π(a | s)
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Now that the inequality in Eq.4.3 is explained, the last step is to change the objective
function from the relative policy performance identity on the left:

maximize
π′

η (π′)− η(π)

to its lower bound on the right, by virtue of the minorize-maximixation method:

arg max
π′
Lπ (π′)− C

√
E

s∼dπ
[DKL (π′‖π) [s]]

which is expressed in the paper as:

arg max
π′
Lπ (π′)

s.t. E
s∼dπ

[DKL (π′‖π) [s]] ≤ δ
(4.4)

It can be proven that the term on the right of Eq.4.3 is 0 when the two π′ = π, which
leads to:

η (π′)− η(π) ≥ 0

and hence is proof of monotonic improvement of the policy.

Gradient computation
The optimization problem in Eq.4.4 is well defined, the last element to add is the method-
ology for computing the solution to it, or to be more precise, for computing the update of
the policy’s parameters θ ∈ Θ.

Firstly, the terms Lπ (π′) and DKL (π′‖π) [s] are expanded using a second-order Taylor’s
series, where the authors drop the second-order term of L for being insignificant to the
result.

Lθk(θ) ≈ Lθk (θk) + gT (θ − θk)

D̄KL (θ‖θk) ≈ D̄KL (θk‖θk) +∇θD̄KL (θ‖θk) |θk (θ − θk) + 1
2 (θ − θk)T H (θ − θk)

where the constant term of both L and DKL, and the first-order term of DKL are zero,
making the series:

Lθk(θ) ≈ gT (θ − θk) g
.= ∇θLθk(θ)|θk

D̄KL (θ‖θk) ≈
1
2 (θ − θk)T H (θ − θk) H

.= ∇2
θD̄KL (θ‖θk)

∣∣∣
θk

By substituting in Eq.4.4 what just obtained, we get the expression of the optimization
problem in terms of policy network’s parameters:

θk+1 = arg max
θ
gT (θ − θk)

s.t. 1
2 (θ − θk)T H (θ − θk) ≤ δ
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which is a quadratic equation whose analytic solution is:

θk+1 = θk +
√

2δ
gTH−1g

H−1g (4.5)

The fundamental property of this last equation is that the term H−1g provides a gradi-
ent direction that is independent from the parametrization used to compute it. This means
that substituting the model used to calculate H will not modify the parameter change ∆θ.

The hessian of the KL divergenceH is also called Fisher information matrix, it measures
the curvature of the log probability of the policy as follows:

H = E
s,a∼θk

[
∇θ log πθ(a | s)|θk ∇θ log πθ(a | s)

∣∣∣T
θk

]

Truncated Natural Policy Gradient
The problematic aspect of Eq.4.5 is that the Hessian of the KL divergence H can be com-
putationally burdening for larger policy networks: its space complexity is O(N2) whereas
the time complexity for its inversion is O(N3). A workaround for the inversion of H is to
use the conjugate gradient (CG) method: the given xk = H−1

k gk for any of the k step of
the training is transformed in an optimization problem for a quadratic equation, by virtue
of H being symmetric and positive-definite:

Hkxk = gk → min
xk∈RN

1
2x

T
kHkxk − gTk xk

This trick lowers the time complexity from O(N3) to O(N) making it partially scalable
to bigger networks with a higher number of parameters, but comes with some minor com-
plications. The quadratic simplification might lead to violations of the KL divergence and
the trust region constraints. By expanding the trust region slightly and implementing
an if-statement to check whether or not the update θk+1 improves the policy (Lθk (θk+1))
and satisfies the KL constraint (D̄KL (θk+1‖θk) ≤ δ); if the new candidate parameters
don’t respect said constraints, the natural policy gradient is decayed by a factor αj with j
increasing starting from 0 every time the if-statement returns false.
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Chapter 5

Open-loop dynamic controller
using Recurrent Neural
Networks

5.1 Summary of the Method
This chapter is about the first method I developed during the thesis period. It’s aimed
at creating an open-loop dynamic controller for soft robots through the exploitation of
artificial neural networks (ANN).

The first step towards obtaining controller is to collect a static dataset through pseudo-
random motor babbling, which will then serve as training data for an ANN that approx-
imates the inverse kinematic (IK) model of the robot. Once the IK model is obtained, a
few hundred trajectories are generated by randomly sampling points in the task-space of
the manipulator and then interpolating them with a spline; then, these trajectories in the
task-space are transformed into the actuation-space using the IK network just trained.

After that, said actuations are given as input to the robot at a frequency that is non-
static, in this case 10Hz, and the corresponding task-space positions are recorded. The
trajectories outlined by the end-effector end up being significantly different from the desired
ones by virtue of the dynamic effects that are present at higher frequencies and are not
encompassed by the IK network.

For this reason, the dataset collected at 10Hz is used in a second training of a network
with similar structure to the first one.

The result is an open-loop dynamic controller that achieves a very good precision both
when tested on random trajectories which were not included in the training, and bench-
mark trajectories that will be used for comparison with the closed-loop dynamic controller
developed later on.

5.2 Static Dataset Collection
The collection of a training dataset is the initial step towards obtaining the final controller.
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To achieve a good exploration of the task space, I used pseudo-random actuations
after each of which a pause of two seconds is required to allow the soft manipulator to stop
oscillating; once the oscillations come to an end, the position of the end-effector is recorded
with the corresponding actuation in the dataset.

The dataset is comprised of 4000 entries, which makes the process to obtain it slightly
longer than two hours; the considerations in the next section clarify that it is possible to
reduce the number of entries and thus the time taken to gather them, with minor losses in
the accuracy of the inverse kinematics network trained later.

Algorithm 1 outlines the process.

Algorithm 1 Static Dataset Generation
max_range=100;
min_range=0;
δ%=0.1;
δ=δ%(max_range-min_range)
τ 1

0=0; τ 2
0=0; τ 3

0=0;
max_limit_reachedi=0 with i=1,2,3
min_limit_reachedi=0 with i=1,2,3
dataset=[ ];
while t<4000 do

while t%200!=0 do
for i=1:3 do

if τ it−1 < min_rangei + δ then
min_limit_reachedi=2

else if τ it−1 > max_rangei − δ then
max_limit_reachedi=2

if min_rangei > 0 then
τ it= τ it−1+random_uniform(0,δ)
min_limit_reachedi-=1

else if max_rangei > 0 then
τ it= τ it−1+random_uniform(−δ,0)
max_limit_reachedi-=1

else
τ it= τ it−1+random_uniform(−δ,δ)

end
pause(2s)
manipulator.input([τ 1

t ,τ 2
t ,τ 3

t ]);
VICON.read([xt,yt,zt]);
dataset.append([τ 1

t ,τ 2
t ,τ 3

t ],[xt,yt,zt]);
end

end
τ it=random_uniform(min_range,max_range) with i=1,2,3
t+=1

end

Essentially there is a random repositioning of the end-effector once every 200 actuations
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to ensure proper exploration; in fact, a range of actuation variation δ that is too high would
result in stronger oscillations that would produce a noisy dataset, but on the other hand
a δ that is too low would not guarantee that the end-effector visits the whole task-space.
Secondly, the if-statements in the pseudocode make sure that whenever an actuation τi is
about to saturate, the next two variations ∆i leads τi away from the either saturating to
the maximum or the minimum.

5.3 Inverse Kinematic Model with ANN

Once the dataset is collected, it becomes training data for the inverse kinematics (IK)
network, which is a straightforward artificial neural network with the three end-effector
coordinates [xt,yt,zt] as inputs and the three actuations [τ 1

t ,τ 2
t ,τ 3

t ] as outputs. The ANN
is composed by a hidden layer of 64 neurons with a hyperbolic tangent (tanh) activation
function and an output layer with linear activation.

Trying different network architectures by modifying hyperparameters (such as the ac-
tivation functions, the number of neurons, and the gradient descent type) has proven to
make a very small difference; this is to be expected considering the relatively simplicity of
the IK of this manipulator, for which the 835 parameters of the chosen network are more
than enough, and the length of the dataset gathered.

Two strategies that have proven effective are instead the optimization of the batch size
fed to the network during the training, and the expansion and normalization of the dataset.

The batchsize that proved to be more effective without extending the training time
excessively is 64, and to expand the dataset I simply appended to it the mid-point between
each end-effector position and their successive ones, doing the same for the corresponding
actuations.

Even if the first assumption on the true IK model of the robot is that it is higly non-
linear, linearizing it for very small segments of the task-space is acceptable; that wouldn’t
have been true if the δ in Alg. 1 were higher than 10%. After having expanded the dataset
to a length of 8000, I normalized the inputs to the network (i.e. the end-effector positions)
using a standard scaler.

The training was done on 80% of the dataset, while the remaining 20% was half ded-
icated to the validation set, and half to the test set. After 500 epochs of training using
Adam gradient descent with a mean square error loss function, the error on each actuation
was:

|τ i − τ̂i| ≈ 1.5%± 1% with i = 1,2,3

where the percentage is over the total actuation span.
The error shows that the accuracy of the approximated IK model is good enough to be

used; a better way to test its goodness would have been to feed the actuations ouputted
by the IK network and calculate the euclidean distance between the desired and actual
position of the end-effector, but given that this was not the final scope of the method I
omitted this type of test and accepted the individual actuation-space errors as proof of
acceptability.
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5.4 Open-loop Controller
The next step is to create a dataset of dynamic trajectories that will be used to train the
open-loop controller. To do this, n = 5 points are randomly sampled from the task-space
of the manipulator: these and the resting position of the end-effector are then interpolated
to create the trajectories. The set of points are interpolated using a cubic spline and the
resulting trajectory is saved only if it satisfies the task-space boundaries (as the interpola-
tion might fall outside of it). The dataset x ∈ Ttar

x is made of 200 trajectories, composed
either of 60 or 90 points to ensure that it comprises a sufficiently large diversity of step
sizes ∆x

Then, the IK network previously trained is used to map the trajectories from the task-
space to the actuation-space, generating another dataset Tτ that will serve as inputs to
the soft manipulator, given at a frequency to which the dynamic effects can no longer be
ignored (in this case, f=10Hz). The entries in the actuations dataset [τ1, τ2, τ3] ∈ Tτ are
used as target values for the training of the controller network, which will have as inputs
the positions obtained feeding said actuations to the manipulator (x ∈ Tee

x ), as shown in
Fig. 5.1

��
���

� ��
��

inputs

Ground truth

Generate trajectories

IK

Controller network

Figure 5.1: Open-loop controller training overview

An example of a trajectory generated by the script can be seen in Figure 5.2: the brown-
to-black trajectory is the desired one (x ∈ Ttar

x ) and the yellow-to-red one is the one traced
by the end-effector at 10Hz (x ∈ Tee

x ). The dynamics effects are responsible for the error.
The controller, being open-loop, coincides with an approximation of the manipulator’s

inverse dynamic (ID) model. Considering that making assumptions over the degree of de-
pendency of the dynamics with the past is a hard task with this type of robot, I approached
the problem of chosing the inputs to the model in an empirical way; more precisely, the
issue to solve is the length of the horizon over the past end-effector positions. The inputs
will have the form:

[xt+1,xt, ...,xt−T ]
with xt+1 being the next target position, xt, ...,xt−T being the past end-effector positions
inside the horizon length T .

I tried two different types of neural networks: an ANN like the one used for the inverse
kinematics approximation, and an LSTM. In fact, the choice of architecture is not obvious:
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Figure 5.2: Trajectory example

an LSTM should be better for the task at hand considering the predisposition of said
networks to predict outputs from a time-series, but considering the limited length of the
horizon, an ANN could work just as fine, if not better considering the more limited amount
of parameters to optimize.

To compare the two architectures, I use the same number of epochs (N=1000), the
same batchsize (b=128) and the same activation function (tanh). The dataset is composed
by 240 trajectories, half of 60 points and the other half of 90, which when divided in
windows of the same length as the horizon length T , produce a dataset of dimensions
[∼ 170 000, T + 2,3] for the LSTM, and one of dimension [∼ 170 000, (T + 2) · 3] for the
ANN.

The dataset is then split into training data and testing data, the latter including 15
trajectories not seen during training. The index used to evaluate the performance of the
networks is the average of the errors µ(∆e) and their standard deviation σ(∆e) where:

∆e =
{

∆eit : ∆eit = |τ̂ it − τ it | for i = 1,2,3 and t = 1, ..., |dataset|
}

The results in Table 5.1 show that the LSTM outperforms the ANN for any horizon
length T , achieving the lowest error of just above 1% of the total actuation range for T=2
(i.e input=[xt+1,xt,xt−1,xt−2] ). It’s debatable whether such a relatively low performance
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improvement is worth having such a wider parameter space, but considering the limited
activation frequencies that make the computational expensiveness less paramount, it’s
better to opt for the best performing network.

Table 5.1: Inverse dynamics results

Net Horizon length µ(∆e) [%] σ(∆e) [%]

ANN 0 2.07 1.62
LSTM 0 1.92 1.54
ANN 1 1.68 1.35
LSTM 1 1.48 1.21
ANN 2 1.40 1.11
LSTM 2 1.13 0.91

5.5 Results
To test the dynamic controller, I first transferred the LSTM to MATLAB, from which the
soft manipulator is controlled. The way it is deployed is shown in Figure 5.3, where the test
trajectory is either one of the 15 random trajectories in the test dataset, or a benchmark
trajectory (either a circle or the infinity symbol).

��
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Δ


Figure 5.3: Open-loop configuration on the robot

Firstly I tested the controller on the trajectories in the test dataset; this provides a proof
of the improvement of the performances when going from the IK controller to the newly
trained ID controller. As can be seen from comparing Fig. 5.4 and Fig. 5.2, the former
being ID controller’s result and the latter being the IK controller’s one, the refinement of
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Figure 5.4: Random trajectory example

the execution is immediately evident.
More specifically, the IK produces an average error µ(∆XIK) ≈ 10.6mm, with ∆XIK

being:

∆XIK =
{

∆xit : ∆xit = ‖x̂it,IK − xit‖2 i = 1,2,3; t = 1, ..., |trajectory|; xit ∈ Ttar(TEST )
x

}
whereas the ID controller gets an average error, calculated as above, µ(∆XID) ≈ 3.2mm.

To be more precise, the average absolute errors in three dimensions x, y, z, for both
cases are:

Table 5.2: Open-loop’s errors on x,y,z, random trajectory

IK ID
µ(∆x) 6.8 mm 2.6 mm
µ(∆y) 6.5 mm 1.8 mm
µ(∆z) 1.1 mm 1.1 mm

The results for the other random test trajectories are more or less consistent with the
example shown above.
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The benchmark trajectories are a circle and an infinity symbol, both at constant velocity
and both repeated twice. They are 2D, meaning that the end-effector has to drop a few
centimeters from its starting position, and then draw them on a plane. The result for the
infinity symbol can be seen in Figure 5.5, and the errors for both of them are reported in
Table 5.3.

Figure 5.5: Infinity symbol in open-loop

Table 5.3: Open-loop’s errors on x,y,z, benchmark trajectories

Infinity Circle
∆x 2.6 mm 2.9 mm
∆y 1.8 mm 2.1 mm
∆z 1.1 mm 0.9 mm
∆X 3.8 mm 4.0 mm
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Chapter 6

Closed-loop Dynamic
Controller using TRPO

This second method was tested both on the I-Support (see section 2.1) and on the more
complex AM-I-Support (see section 2.2); I tried to make the distinction between the two
as clear as possible.

The chapter is presented in the chronological order of the steps that belong to the
method. For clarity sake, I am going to explain them in logical order: the objective
of the method is to train a controller using a RL algorithm called Trust Region Policy
Optimization (see section 4.3). To do that, it is necessary to have an environment to train
in; ideally this would be the real robotic platform but, due to reinforcement learning’s
biggest downside, the sample inefficiency, it would take days if not weeks of continuous
training. This is of course unacceptable, so the controller must be trained in silico on an
approximation of the robot’s dynamic model. To obtain said model, I employed a Long-
short term memory (LSTM) network (see 3.3) which necessitates a dataset to be trained
on. The dataset collection is hence the first thing to do in chronological order to arrive at
the final result: the closed-loop dynamic controller.

6.1 Gathering the Dataset
The first step to be taken is to gather a dataset on which to train the dynamic forward
model. To do so, I generated a set of pseudo-random actuations; the nomenclature "pseudo"
is due to the fact that adopting a completely random exploration policy (i.e. allowing the
inputs to go from the bottom to the top of the actuation range) wouldn’t create a dataset
usable to get the Forward Model, due to the excessive stochasticity. On the other hand,
allowing an insufficient rate of change, hence producing smoother input curves in time,
would result in a better prediction of the next end-effector position, but wouldn’t permit
exploration of the environment by the Reinforcement Learning agent during training; this
last factor is of paramount importance: without a forward model able to predict the
end-effector position after sudden actuation changes, the Value Function estimated in the
training process would be largely random in case of sudden changes, making it impossible
to descend its gradient to produce an effective control policy.
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The dataset is taken at 10Hz; at each timestep a number i = 1, ..., k ,with k being the
dimension of the actuation-space, of ∆τi, uniformly sampled in a range going from -20%
to +20% of the total actuation range ([−0.2,0.2] · (τmax− τmin)), are added to the previous
actuations. If the actuations exceed the extremes of the actuation range, they are clipped
to said extremes. The actuations are then given as input to the soft robot, and almost
simultaneously the position of the end-effector is read by the VICON, meaning that the
actuations τ 1,...,k

t , while in position xt will lead the end-effector to position xt+1. The steps
described above are summarized by Algorithm 2, whereas the task-spaces for both robots
can be seen in section 6.5.1.

Algorithm 2 Dataset Generation
τ i0=0; with i = 1, ..., k
δ%=0.1;
δ=δ% · (τmax − τmin)
dataset=[ ];
for t=1:10000 do

for i=1:3 do
∆τ i=random_uniform(−δ,δ)
τ it=min(τmax,max(τmin, τ it−1 + ∆τ i))

end
manipulator.input([τ 1

t ,...,τkt ]);
VICON.read([xt,yt,zt]);
dataset.append([τ 1

t ,...,τkt ],[xt,yt,zt]);
pause(0.1s))

end
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6.2 Getting the Forward Model

6.2.1 Artificial Neural Network
Once the dataset is gathered, the Forward Model has to be obtained. To do so, I initially
employed a simple Artificial Neural Network (ANN) whose inputs are:

• For the I-Support: the last set of actuations τ 1,2,3
t ∈ R3, the last end-effector position

xeet ∈ R3, and the previous end-effector positions until the T th timestep in the past
xeet−1...xeet−T ∈ R3T , where T is the horizon length:

InputANN = [xeet , τ
1,2,3
t ,xeet−1...xeet−T ] ∈ R6+3T (6.1)

and whose output is the predicted position of the end-effector at the next timestep:

OutputANN = xeet+1 ∈ R3 (6.2)

• For the AM-I-Support: the last set of actuations τ 1,...,6
t ∈ R6, the last end-effector

position xeet ∈ R3, the last mid-section position xmidt ∈ R3, the previous end-effector
positions for T timesteps in the past xeet−1...xeet−T ∈ R3T , and the previous mid-section
positions for T timesteps in the past xmidt−1 ...xmidt−T ∈ R3T :

InputANN = [xee,midt , τ1,...,6
t ,xee,midt−1 ...xee,midt−T ] ∈ R12+6T (6.3)

and whose output are the predicted positiond of the end-effector and the mid-section
at the next timestep:

OutputANN = [xeet+1,xmidt+1 ] ∈ R6 (6.4)

The first step towards the training of the network is to normalize the inputs in the
dataset. Considering that the outputs of the forward dynamic model will be a subsest of
the inputs of the controller, I normalized them too; this step shouldn’t have any effect on
the training of this network, but I did it for convenience (I would have had to do it before
the training of the controler’s network). The method of normalization was considered as a
hyperparameter of the network to be optimized. I tried two different methods: standard-
ization and min-max normalization (from -1 to 1 for the positions of the end-effector and
the mid-sections, and from 0 to 1 for the actuations, see the dedicated subsection "Feature
Scaling" in Section 3.1).

To get the best prediction accuracy as possible, I firstly selected the best horizion length
T by fixing the other hyperparameters of the neural network; said hyperparameters are
shown in Table 6.1.

I split the dataset in Training set, Validation set, and Test set with a ratio of 75%-10%-
15%. The results obtained from the analysis of the horizon length effects are written in
Table 6.2 and shown in Figure 6.1. The errors reported are in the cartesian space:

‖∆x‖2 = ‖xee − x̂ee‖2 (6.5)
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Table 6.1: ANN’s hyperparamters

Number of neurons 64 Number of hidden layers 1
Inputs’ scaler Standard Loss function MSE
Outputs’ scaler Standard Optimizer Adam

Activation function tanh Batch size 64
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with xee being the ground truth value in the test dataset and x̂ee being the prediction of
the neural network.

It should be noted that I only made this analysis on the I-Support, given that the
experiments took place earlier; I assumed that the results would be valid for the AM-I-
Support too.
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Figure 6.1: Analysis of the effect of the horizon length

Table 6.2: Different horizon results

Horizon length Mean error [mm] Error’s standard deviation [mm]

1 6 3.3
2 3.9 2
3 3.3 1.8
4 3.3 1.7

As it can be seen from the aforementioned, the model behaves very poorly when the
horizon covers uniquely the first timestep in the past, and gets better by extending it to
the first two. The model I found more suitable was the one with an horizon of T = 3, for
a few reasons:

• The improvement from T = 3 to T = 4 is almost imperceptible given that it provides
an betterment of the error’s standard deviation in the order of a 10th of millimiter

• Said improvement is not worth aggravating the model with an extra degree of freedom,
looking at it from a performance-complexity ratio point of view.
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• From T = 4 onward, the network tends to go in overfitting during training, as can
be seen from Figure 6.2. This is proof that the extra timesteps in the past from the
third are not worthy of consideration.
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Figure 6.2: Training results

I omit the hyperparameter study results for brevity’s sake, but I report the different
values tried for each one of them:

• Number of neurons: 64,128

• Inputs’ scaling: Min-Max or Standard

• Outputs’ scaling: Min-Max or Standard

• Activation function: ReLu, tanh, or sigmoid

• Outputs’ scaling: Min-Max or Standard

• Loss function: MSE or RMSE

• Batch size: 64, 128, or 256

The best configuration is the one shown in Table 6.1. The results obtained for the AM-
I-Support forward model are fairly similar: the prediction error is 3.4 ± 1.8mm for the
end-effector position, and 2.0± 1.0mm for the mid-section position.

6.2.2 Long-Short Term Memory Network
To improve the performances of the controller, a fruitful path is to improve the predic-
tion power of the Forward Model. The neural network architecture that I adopted is a
Long short-term memory (LSTM) recurrent neural network (RNN) which is better suited
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for time-series predictions with respect to a standard feedforward network. For a light
introduction to RNNs and LSTMs I redirect the reader to sections 3.2 and 3.3 respectively.

In addition to the inputs specified in Eq. 6.1, this new forward model recieves as inputs
also the past actuation included in the time horizon:

• for the I-Support:

InputLSTM = [xeet ...xeet−T , τ
1,2,3
t , ..., τ 1,2,3

t−T ] ∈ R6(T+1) (6.6)

• for the AM-I-Support:

InputLSTM = [xee,midt ...xee,midt−T , τ1,...,6
t , ..., τ 1,...,6

t−T ] ∈ R12(T+1) (6.7)

whereas the output remains the same as in Eq. 6.2.
A graphical explanation on how a recurrent neural network differs from a normal feed-

forward network is shown in Figure 6.3

(a) Unrolled representation (b) Classic representation

Figure 6.3: LSTM network scheme

As it can be seen from the classic representation of an LSTM (Fig. 6.3b), the input to
each cell of the network is the current actuation and the output is the next position of the
end-effector; alongside inputs and outputs there are 2 informations that are propagated
forward in time:

• The hidden state, which in a shallow LSTM (only one layer) is essentially the output
of the previous cell

• The cell state, which withholds data from the past that is useful to sharpen the
prediction accuracy in the "present cell". The array constituted by the cell state,
unlike the one of the hidden state, has only an intrinsic meaning to the network but
no physical one.

For sake of clarity, I included a representation "unrolled" in time (Fig. 6.3a), which further
explains what said above: for simplicity the hidden state is represented directly as a feed-
back from the output of the past cell. From Figure 6.3a it’s possible to understand that
the input of the network during training is not:

InputANN=[batch size,input size] ∈ R64x24
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anymore, but it becomes a 3-dimensional array:

InputLSTM=[batch size,timesteps,input size] ∈ R64x4x6

for the I-Support, in case T = 3.
A graphical comparison between this new forward model and the one presented in

Section 6.2 is shown in Figure 6.4.

(a) Simple Forward Model
(b) Expanded Forward Model

Figure 6.4: Forward Model Schematics

I used the same procedure described in Section 6.2 to get the best horizon length for
the inputs; once again I only did this for the I-Support and assumed the same applied for
the AM-I-Support.

The hyperparameters are very similar to the ones in Table 6.1, with the notable addic-
tion of the recurrent activation function being sigmoid. The considerations to be made by
looking at the results written in Table 6.3 and shown in Figure 6.5 are comparable to the
ones I already made; the errors presented are again in the cartesian space (Eq.6.5). In this
case, once the horizon length goes over T = 3, there is actually a performance drop.

Table 6.3: Different horizon results

Horizon length Mean error [mm] Error’s standard deviation [mm]
1 4.3 2.4
2 1.6 0.9
3 1.4 0.8
4 1.5 0.8

Once again the results obtained for the AM-I-Support forward model similar to the ones
attained on its simpler counterpart: the prediction error is 2.0±0.9mm for the end-effector
position, and 0.9± 0.4mm for the mid-section position.
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Figure 6.5: Analysis of the effect of the horizon length

6.3 Obtaining the Controller
To obtain the controller the steps I followed are:

1. Decide the shape of the controller: specifically what are going to be the feedforward
and feedback inputs to it.

2. Build a suitable environment that simulates the robot: this is based on the Forward
Model obtained. It should give observations and rewards to the controller which
in Reinforcement Learning terms is the agent to be trained; this agent will output
actuations (or actions from the training point of view) to be fed to the enviroment.

3. Train the agent/controller using Trust Region Policy Optimization (TRPO).

4. Test the trained agent/controller on two benchmarks (a circle and the infinity symbol)
first on the obtained Forward Model and then on the real soft robot.

To fully understand this section, I strongly recommend to first read chapter 4, which is
about deep reinforcement learning, and more specifically section 4.3, which encompasses
an accurate description of the specific algorithm used during training.

In this section I will always refer to the experiments done on the I-Support. However, the
same structure of the controller can apply to the AM-I-Support even if I implemented on the
latter only the best controller structure chosen in this next section. A few considerations
have to be kept in mind to apply the controllers to the AM-I-Support:

• The actuation space has a dimension of 6 instead of 3 as in the I-Support

• The inputs of the controller are not going to be xeet as in the I-Support, but they’re
going to include also the mid-section position: xee,midt

• The outputs of the controller are going to change from xeet+1 to xee,midt+1 as well
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• The target position xtart refers instead always to the end-effector’s desired position,
hence it is 3-dimensional for both robots.

• The same can be said for the reward function, it is always a function of the target
position and the current end-effector position: in the AM-I-Support it won’t include
the mid-section’s position.

6.3.1 Choosing the Controller
As said above, the first step to be taken is to decide what the agent is allowed to know
about the environment, that’s to say what are the inputs to our controller to be trained. I
came up with a few controller structures, whose inputs and representations are summarized
in Table 6.4.

My first approach was to limit the controller’s inputs uniquely to the target and the
current end-effector position, following the work already published on similar topics [13].
Even though the agent is able to learn a control policy (even faster than the other models,
considering that its network has less parameters) I later realized that with this particular
model the agent does not have informations about how well of a job it’s doing so far,
meaning that it’s oblivious of the tracking error. Furthermore it wouldn’t be able to adapt
to environment changes, such as an external disturbance or a alteration of the robot’s
dynamics, because the network actually learns the correspondence between a couple of
points in the task-space (xtart+1 and xeet ,) and the correct actuation to go from one to the
other; for example, in case of a change of environment, let’s say a 10% pressure drop
in one of the chambers, this correspondence would be slightly different, but given that
the controller does not receive any supplementary information, it would just select the
actuations as if the forward model were the one it trained on, maintaining a constant
error.

Following this reasoning, I added to both Model 3 and 4 the current tracking error
et = xtart − xeet .

Table 6.4: Models’ summary

Inputs Figure

Model 1 [xtart+1,xeet ] Fig. 6.6a
Model 2 [xtart+1,xeet ,xeet−1,xeet−2,xeet−3] Fig. 6.6b
Model 3 [xtart+1,xeet , et] Fig. 6.6c

Model 4 [xtart+1,xeet , et, τ
1,2,3
t−1 ] Fig. 6.6d

6.3.2 Training setup
The next phase consists in setting up the learning environment for the agent/controller.
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(a) (b)

(c) (d)

Figure 6.6: Controller shapes

The training procedure is composed by episodes which are in turn composed by steps.
In this particular case, the steps are taken with the same frequency with which the dataset
was gathered, 10Hz; at each step, the agent is provided with an environmental observation
(i.e. the target position, the current end-effector position, etc.) after which the agent
has to choose an action/actuation that maximizes a reward Rt. An episode is instead a
randomly generated trajectory of N points which are sampled at each step to supply the
target to the agent as explained at the beginning of section 5.4. The reward has to be
engineered to provide the controller’s desired result, naturally, but also to speed-up the
training process; I experimented with various reward functions:

• The simplest reward function for a tracking task is the opposite of the distance be-
tween target and end-effector at each timestep:

R(t) = −‖xtar(t)− xee(t)‖2 = −‖∆x(t)‖2 (6.8)

• The reward function above can be expanded with an additional reward whenever the
end-effector gets within a sphere of a certain radius surrounding the target:

R(t) = −‖∆x(t)‖2 +
{

0.25, if 3mm < ‖∆x(t)‖2 < 10mm.
1, if ‖∆x(t)‖2 < 3mm

(6.9)

• A further way to expand Eq. 6.8 is to include a punishment whenever the action
chosen leads the end-effector further away from the target:

R(t) = −
{
‖∆x(t)‖2, if ‖∆x(t)‖2 < ‖∆x(t− 1)‖2.

1, if ‖∆x(t)‖2 ≥ ‖∆x(t− 1)‖2.
(6.10)
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I ended up using the simplest version of the above (Eq. 6.8) because the advantages of
Eq. 6.9 were insignificant from the performance perspective and small from the training
speed one. Regarding Eq. 6.10, the training time was improved slightly more significantly,
but I decided to avoid it after considering that it notably impedes the exploration of the
task space, meaning that the agent is denied taking wrong decisions which lead the end-
effector away from the target. This consideration is a speculation that might be wrong,
but never the less led me to avoid this reward function.

I expected, while building the environment and coming up with its reward function,
that its lack of dependence on the variation of actuation could possibly lead to unsmooth
actuation curves while following a smooth trajectory; if that were the case, I would have
used a reward function like the following:

R(t) = −‖∆x(t)‖2Q‖∆x(t)‖T2 − ‖∆τ (t)‖2R‖∆τ (t)‖T2 (6.11)

where Q and R would have been 3x3 diagonal matrices whose elements would have
become hyperparameters of the learning architecture. This was not the case: the actuations
coming out of the controller trained using the reward function in Eq. 6.8 were already
smooth; this is due to how the TRPO architecture works: the maximization is in fact not
of the reward at a single time instant, but of the cumulative sum of the expected rewards
in the future, discounted by a factor γ. This means that an outlying set of actuations
would have a negative effect on the future rewards that the agent would receive, hence it
is avoided by default.

Once the reward function is decided, I put together the environment as explained in
Algorithm 3.

The hyperparameters for the TRPO’s training and for the controllers’ networks are
presented in Table 6.6 and Table 6.5 respectively.

Table 6.5: Cotrollers’ networks hyperparameters

Number of hidden layers 2
Neurons per hidden layer 64
Hidden layers’ activation tanh

Output activation linear

Total number of parameters
Model 3 Model 4

4995 5187
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Algorithm 3 Environment overview
task_space=dataset.load()
FM_simple=forward_model_network.load()
FM_expanded=forward_model_expanded_network.load()
for episode=1:7500 do

N=random_integer(60...120) .Random number of trajectory points
task_space_points=task_space.sample(5) .Pick 5 points from the task space
trajectory=task_space_points.interpolate(N) .Get a trajectory of N equidispaced points
xeet−3, ..., x

ee
t =trajectory(1)...trajectory(4)

xtart+1=trajectory(5)
τt−3, ..., τt−1=[0,0,0]...[0,0,0]
∆xt= [0,0,0]
for t=6:N do

Observation=[xeet , xtart+1,∆xt]
τt=agent.choose_action(Observation)
if t<9 then

.Use the simple F.M. to fill the buffer of the expanded F.M.
x̂eet+1=FM_simple.predict([xeet−3, ..., x

ee
t , τt])

end
else

x̂eet+1=FM_expanded.predict([xeet−3, ..., x
ee
t , τt−3, ..., τt])

end
∆xt = x̂eet+1 − xtart+1
xeet−3, ..., x

ee
t−1 = xeet−2, ..., x

ee
t

xeet = x̂eet+1
xtart+1=trajectory(t)
τt−3, ..., τt−1 = τt−2, ..., τt
Rt = −‖∆xt‖2

end
end

Table 6.6: TRPO’s Hyperparameters

Hyperparameter Value

γ 0.99
Max KL 0.005

λ 0.98
Timesteps per batch 1024
Number of episodes 75000
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6.4 Disturbance Resistant Controller
The fact that the trained controller is able to work on the real robot while being trained
on an imprecise forward model, is the proof that it is resistant to changes of its forward
model; this is one of the objectives that I started from: unlike a rigid robot, whose direct
dynamics and kinematics are very unlikely to change, a soft robot is much more susceptible
to internal damages or, more generally, is prone to deform and change its body under the
structural stress provided by prolonged actuations.

A second objective was to make it resistant to more substantial changes in its forward
model, such as the ones coming from hanging a weight to its end-effector. This kind of
disturbance rejection was not acheived by the controller: hanging a 25g weight to its bottom
leads to very poor performances, meaning that the circle is reproduced in a shrunk version,
proving that it’s unable to make up for the missing pressure required. It has to be said that
the dataset was taken with a maximum input of 100 (which is equal to a pressure of about
0.85bar), while its theoretical limit is 1.2bar; considering that for the circle benchmark the
actuations reach alternately their saturation point, it would be impossible for the robot
to reproduce the same circle if the limit remained 100, hence during the weighted test I
removed this saturation point, expanding it to 150. The trained neural network creates
a policy which should, theoretically, be able to generalize also for outliers of the training
dataset; this theoretical feature has proven to be false, probably due to the fact that the
neurons, actuated by tanh, clip their output to a saturation point.

Initially I imagined that shrinking the benchmark trajectories to a size that is reachable
both with and without the weight attached would solve this problem. This wasn’t the case:
even with a smaller circle the controller fails to increase the actuations to counteract the
weight effect on its dynamics, proving definitively that the controller is not resistant to
large changes of the manipulator’s forward model.

Clearly the model had to include an input that could help the agent identify the mag-
nitude of the disturbance being applied to the robot. For this reason I decided to mimic
a very diffused control technique that includes the forward model in the controlling archi-
tecture to provide a prediction of the expected end-effector position. As shown in Figure
6.7, the forward model receives the actuation τt alongside all the inputs indicated in Eq.
6.1 and 6.6 for the I-Support and in Eq.6.3 and 6.7 for the AM-I-Support; in the outline
shown in Fig. 6.7 [...] encompasses all the inputs shown in Fig. 6.4, dropped for sake of
compactness.

The predicted end-effector position at the next time step x̂eet+1 is used to calculate the
magnitude of the disturbance, indicated as δm. The reason why I chose to calculate δm as:

δim = x̂i,eet+1/x
i,ee
t+1 for i = 1, ..., k or δm = x̂eet+1 � (xeet+1)−1

and not by simply using the difference between the two is because, considering that the
task space has been normalized so that the resting position of the end-effector is at [0,0,0],
a δm > 1 would point to and expansion of the task space whereas a δm < 1 would instead
characterize a contraction of it. To train the controller the environment had to include
the disturbance in it; this can be achieved by adding a random multiplying factor δm to
the output of the forward model during the training: at the beginning of every episode
the factor is sampled randomly from a uniform distribution δm = U(0.6, 1), and every
prediction of the next end-effector position is multiplied by it for the entire duration of the
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Figure 6.7: Control strategy that includes the forward model’s prediction

episode:
x̂eet+1 = δm · FM([xeet−3, ...,xeet , τt−3, ..., τt]) for t = 4...N.

As said before, the predictions coming from the forward model belong to a standard dis-
tribution, so the multiplication has a deforming effect, rather than the translational one
that it would have on the unscaled cartesian coordinates (a similar result could be achieved
by setting the origin of the reference system coinciding with the rest position of the end-
effector). A graphical overview of this procedure is shown in Figure 6.8.

The goal of this procedure was to augment the span of forward model modifications
that the controller can reject, and to make it even less dependant on the model on which
it trained.

I tested three variants of this methods:

1. The first one is the one briefly described above: the deformation δm is sampled
uniformly in the range [0.6,1], and for the duration of the episode is kept constant.
This means that if the episode was comprised of a circular trajectory, that trajectory
would be perfectly shrunk by a factor δm.

2. The second is similar to the first one: the deformation δm is still sampled at the
beginning of the episode, but instead of applying it as is to every step’s prediction,
there is a 50% chance that the environment adds a random factor to the deformation
as: δ′m = δm + p, with p ∼ U(−0.1,0.1).

This should mimic a realistic scenario in which the prediction from the forward model
is not 100% consistent with the actual output of the plat (the manipulator). Consid-
ering that the model is an approximation, the prediction error can vary significantly
between one step and the other.
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3. The third is a simplified version of the first approach: the deformation δm is not
sampled uniformly in the range [0.6,1] but is instead chosen uniquely from either 1
(the undisturbed scenario) and 0.6 (which happens to be the value of δm obtained
empirically by attaching the 25g weight to the end-effector).
The value δm = [0.6,0.6,0.6] was obtained by feeding the robot the actuations to
make a perfect circle in open-loop; firstly they’re fed without any disturbance, and
then with the weight attached. Each point of the disturbed trajectory is then divided
by the corresponding point of the undisturbed one. The mean value of the array
obtained turned out to be ∼ 0.6:

µ(Dm) ≈ [0.6,0.6,0.6] with Dm =
{

δtm|δtm =
[
xdt
xut
,
ydt
yut
,
zdt
zut

]
for t = 1, ..., N

}
(6.12)

with N being the length of the trajectory, and the superscripts d and u meaning
disturbed and undisturbed respectively.
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Figure 6.8: Overview of the domain randomization approach

6.5 Results

6.5.1 Task spaces
The actuations for the I-Support robot produced by algorithm 2 can be seen in Figure 6.9;
the ones for the AM-I-Support are made in the same way.

Scattering all the 10000 end-effector positions of the I-Support produces Figure 6.10;
as can be seen, its task space is fairly limited: it is included in a cube of size 15x15x10cm.

On the other hand, the end-effector positions of the AM-I-Support, as shown in Figure
6.11, define a much larger task space. In Fig. 6.11a both the positions of the mid-section
(in blue) and of the end-effector are plot; while the mid-section is very limited in its
movements due to the weight of the distal module below it, the end-effector defines a task
space included in a cube of size 50x50x17cm.
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Figure 6.9: First 150 actuations for the I-Support
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Figure 6.10: Task Space of the I-Support
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Figure 6.11: Task Space of the AM-I-Support
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6.5.2 Training results
The training initially took place entirely on a GPU Nvidia 1050Ti with 6 GB of dedicated
memory and each; with this configuration 1000 training steps, which are equivalent to 100
seconds in real time on the robot, took averagely 2 seconds to complete.

This training time, even if already satisfactory, can be further reduced by parallelizing
multiple environments on as many CPUs, leaving to the GPU only the duty of descending
the gradients for the policy and value function optimization. I did this to optimize the the
procedure, running 8 parallel rollouts of the same policy; with this distributed configuration
the time taken for 1000 steps went down to 0.8 seconds, improving the training time of
about 60%. The reason why the time is not reduced by a factor of 8, as one would
expect, is to be found in the time overhead provoked by the communication between the 8
environments, as well as the bottlenecks created by slower rollouts.

The training for the two robots took different times: for the simpler I-Support 750 000
timesteps, equivalent to ∼10 minutes, were sufficient for the average tracking error to
converge on a satisfactory result. On the more dimensionally more complex AM-I-Support,
on the other hand, a much longer training of 3 000 000 timesteps, equivalent to∼45 minutes,
was required for the convergence.

In Figure 6.12b and 6.13b it’s possible to observe how the total episode reward:

T

N

N∑
t=1

Rt = − T
N

N∑
t=1
‖x̂eet+1 − xtart+1‖2

{
with N = 60...120 , T = 120 for I-Support
with N = 120...240 , T = 240 for AM-I-Support

(6.13)
stabilizes on a value of ∼ 420 for the I-Support and on a value of ∼ 1600 for the AM-I-
Support. The cumulative reward is normalized on a standard length of 120 for the I-Support
and 240 for the AM-I-Support, otherwise the episodes’ different lengths wouldn’t provide
an intuitive learning curve.

In Figure 6.12a and 6.13a it’s possible to see every steps’ target/end-effector distance; it
can be seen that, even if it decreases until an average value of about 3.5mm for the I-Support
and 8.5mm for the AM-I-Support, there is a great variability between adjacent steps. This
is due to the fact that,during training, the agent does not always pick the optimal action
that the current policy outputs, but it samples from a normal distribution that has µ
coinciding with the current optimum; the variance σ of the distribution is reduced the
further it gets into the training, making the agent less prone to random exploration, but
still allowing it to do so.

The timesteps specified for the training on the two platforms is an indicative number
after which the continuation of the training leads to insignificant improvements. For ex-
ample, an extra million timesteps for the training of the AM-I-Support only improves the
average episode reward from 1600 to 1400 (equivalent to an improvement of less of a mil-
limiter on the tracking error). Even if this might seem promising, testing controllers that
trained for longer times proved that their performances when applied to the real robots
decrease. A probable reason for this phenomenon is that after a certain amount of training
the RL agent starts to overfit on the approximated environment, meaning that it adapts to
the erroneously predicted positions of the end-effector to drive the error down. Although
this is just an hypothesis, a proof of it comes by looking at the actuations generated in the
tests run in-silico: these are much more fluttery with respect to the ones coming from a less-
trained controller, a sign that the controller tries to reach every mispredicted point along
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the trajectory; when transfering this on the robot, the fluttery and unsmooth actuations
prove to be detrimental for the performance because of the oscillations they provoke.

(a) Distance vs. Timesteps (b) Total episode reward vs. Timesteps

Figure 6.12: Training plots for I-Support

(a) Distance vs. Timesteps (b) Total episode reward vs. Timesteps

Figure 6.13: Training plots for AM-I-Support

6.5.3 Testing results on the Forward Model
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Figure 6.14: Testing overview (on Forward Model)

Once the training stops, the model is ready to be tested on two benchmarks: a circle
and the infinity symbol, both made twice. The first test is run in-silico, on the same
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forward model on which the controller was trained (Fig. 6.14); the utility of this is to
verify whether the training procedure was capable to produce a controller that works on
every subspace of the task space.

I-Support

The results for the I-Support are shown in Figure 6.15.
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Figure 6.15: Test results on the Forward Model (I-Support)

As it can be seen, the controller works as well as it was shown in the training plots;
the errors are very low, more precisely: ‖∆x‖2 = 3.5 ± 2mm even if it’s clear that they
accumulate in the upper right corner of the circle from Figure 6.15b. This is further proved
by looking at the actuations in Figure 6.16: τ3 clearly saturates in the same points, given
that the circle is repeated twice.

The circle benchmark is still valuable despite this problem; considering only the points
for which the actuations don’t saturate, as expected, returns a better error distribution:
‖∆x‖2 = 3.0± 1.8mm

Very similar results are obtained for the other benchmark, the infinity symbol, which I
won’t show for brevity’s sake.
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Figure 6.16: Actuations from the test on the Forward Model

AM-I-Support

Similarly, the results for the I-Support are shown in Figure 6.15.
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Figure 6.17: Test results on the Forward Model (AM-I-Support)

Once again the test reflects the final distance values in the training plots: the tracking
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error while doing a circle is ‖∆xee‖2 = 8.5±2.5mm, while for the infinity symbol the error
is ‖∆xee‖2 = 6.8± 2.4mm.

6.5.4 Testing results on the Soft Robot
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Figure 6.18: Testing overview (on the robot)

The second and most significant test is run by applying the controller to the real robot
(Fig. 6.18).

After exporting the trained network from Tensorflow to MATLAB, with which the
robot is given the inputs, I used the same benchmarks explained earlier as the objective
trajectory; to be clear, the benchmark trajectories are actually shifted to accommodate
changes in the reference system of the VICON, which happen fairly often.

I-Support

The results, as shown in Figure 6.19 and 6.20, are satisfactory: the data about the errors
is shown below, in table 6.7:

Table 6.7: Errors on the robot

Infinity Circle

∆x [mm] 3.9 ± 2.5 3.9 ± 2.5
∆y [mm] 3.4 ± 1.9 3.3 ± 2.0
∆z [mm] 1.2 ± 0.9 3.1 ± 2.4
∆x [mm] 5.9 ± 2.0 6.6 ± 2.9
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Where:

∆x = µ± σ with µ = 1
N

N∑
t=1
|xtart − xeet | and σ =

√√√√ 1
N

N∑
t=1

(|xtart − xeet | − µ)2 (6.14)

and the same for ∆y and ∆z, whereas:

∆x = µ± σ with µ = 1
N

N∑
t=1
‖xtart − xeet ‖2 and σ =

√√√√ 1
N

N∑
t=1

(‖xtart − xeet ‖2 − µ)2

(6.15)
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Figure 6.19: Test results on the robot
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Figure 6.20: ∆x,∆y, and ∆z errors
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AM-I-Support

The results on the AM-I-Support are similar to the one gotten on the I-Support.

(a)

(b) (c)

Figure 6.21: Closed-loop trajectories on the AM-I-Support

The resulting trajectories for the two benchmarks used so far, a circle of radius 15cm and
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an infinity symbol of width 30cm, and a star of similar dimensions are shown in Figure 6.21.
The average tracking errors for the circle and the star are 10mm and 12mm respectively,
while on the infinity symbol it is slightly higher, more precisely of 15mm.

The errors are about twice as high as the ones achieved on the I-Support; this is to be
expected, considering that the actuation space is double the size its simpler counterpart,
and the task space is considerably larger. Ultimately, the performance of the controller is
a consequence of the precision of the forward model obtained: lower prediction errors from
the forward model allow the controller to train on a more accurate simulation of the model
and hence attain better results.

6.5.5 Testing Results with Disturbances
Of the three variants of the controller developed to be resistant to the disturbances gener-
ated by hanging a 25g weight to the end-effector (explained in section 6.4), only the third
one proved to be successful in completing a circle both in an undisturbed situation and in
the disturbed one, with the weight present.

(a) Disturbed trajectory (b) Undisturbed trajectory

Figure 6.22: Trajectories with a 25g weight attached and without

As it can be seen from Figure 6.22, the new architecture of the controller is able to
distinguish between the undisturbed and the disturbed rollout thanks to the prediction
error δm.

The average error in the cartesian space ∆x (as defined in Eq.6.15) is as low as 6.2mm
for the trajectory without disturbance, and stays in that interval for the trajectory with
the disturbance, more precisely th average error for this scenario is ∆x = 6.8mm .

In Figure 6.23 it can be seen how the actuations are substantially different: although
they keep the same overall shape, as it is to be expected, during the test trial with the
weight attached they span a larger portion of the actuation-space, reaching the saturation
value of 150 for τ2.

Although the results are satisfactory, it has to be underlined that the controller is trained
to reject only this precise disturbance, which was identified empirically by giving the same
actuations to the manipulator in an undisturbed and disturbed scenario, and then assessing
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Figure 6.23: Actuations with a 25g weight attached and without

how the taskspace is consequentially shrunk. The reason why training the controller on
a span of disturbances that go from a null one to the one generated by the 25g weight
proves to be unfruitful is related to prediction error δm. In fact, although the controller
sees only constant values of δm during training, during the test on the real manipulator
said values are far from being constant because they include the inherent prediction errors
of the precise, yet not perfect, forward model. These intrinsic errors cause the values of
δm to oscillate around the ones that the controller sees during training, making different
disturbed scenarios impossible to discern from one another. These oscillations of δm do
not affect the performances of the controller trained on only two scenarios, because the
distinction between the two is big enough not to be influenced by the forward model’s
errors.

This is a big limitation that could be solved by filtering the noise generated by the
model inherent errors, feeding to the controller a constant δm; this is a strategy that I plan
to test in the future.
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Chapter 7

Conclusions

The goal of this thesis was to explore data-driven control strategies using neural networks
and reinforcement learning.

I presented two different methods: one to achieve an open-loop controller using recurrent
neural networks (as shown in chapter 5), and one to attain closed-loop one using a state-
of-the-art reinforcement learning algorithm (as shown in chapter 6). I used two robotic
platform to test these methodologies: a simpler one, the I-Support, and a more dexterous
manipulator called AM-I-Support; given that one of the priorities I started with was to
develop a closed-loop controller that is platform independent, I only tested this one on
both robots.

The open-loop controller (in chapter 5) was the first one to be developed; despite its
simplicity, it manages to produce extremely low tracking errors: under 4mm on the I-
Support manipulator. While I’m more proud of the second method produced, considering
that it was my first intent at the beginning of the thesis, I still consider that the proce-
dure to achieve the open-loop controller has great potential; to make said procedure more
streamlined, I would direct a possible future effort to eliminating the need to train two
distinct networks (one for the kinematic and one for the dynamic behavior), potentially
through a short and partial re-training of the first network. Furthermore, I did not conduct
an analysis of the amount of static data needed to train the first kinematic network; con-
sidering that it is the most time-consuming part of the method, a thorough investigation
on this detail would aid enormously its efficiency.

The closed-loop controller is instead obtained through the training of a reinforcement
learning agent; this method manages to transfer the learned control policy from the approx-
imated environment on which it trains to the actual robot that it is intended to control.
The controller attains a tracking error of about 6mm on the I-Support, and of under 13mm
on the AM-I-Support, partially proving that it is platform-independent. It must be said
that although it works well on an undisturbed manipulator, it proved not to be successful
in rejecting disturbances such as weights applied to the robot’s body. I was later able to
develop a variant of the controller that trains on an environment that simulates distur-
bances; this new controller showed promising results, managing to track a trajectory both
in an undisturbed and in a disturbed situation.

In conclusion, I reckon I reached the goals that I set at the beginning of the thesis,
succeeding in exploring and expanding the field of neural network-based controllers. The
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results obtained are on par to the ones belonging to closely related researches (presented
in the last part of section 1.2 regarding the state-of-the-art), often proving to achieve
better results, although it is hard to make a direct comparison due to the slightly different
configurations. The paper that is closest to the experimental set-up and objectives I used is
[12], in which an open-loop dynamic controller obtained through learning based techniques
attains worse results for the benchmarks proposed for my controllers, even though the
manipulator used is a partially actuated version of an I-Support with two modules.

These methods are particularly useful for low-budget robots and, more generally, for
robots whose manufacturing process does not allow the repeatability of kinematic and
dynamic properties in every individual manipulator.
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