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Abstract 

This thesis project has been done at AVL Italia Srl. in collaboration with AVL 

Deutschland GmbH. AVL is the world’s largest independent company for the development, 

simulation, and testing of all types of powertrain systems, their integration into the vehicle and 

is increasingly taking on new tasks in the field of assisted and autonomous driving as well as 

data intelligence. 

One area of focus at AVL is testbeds automation done with a very complex system 

known as PUMA Open. PUMA Open can take over the whole control of a testbed in terms of 

executing the tests, controlling the actuators used for the automation, taking the signals from the 

sensors during a test and many more. PUMA Open supports several interfaces with the field, 

namely wired connections by dedicate I/O modules, connection by field bus and via industrial 

Ethernet based protocols. Among these industrial Ethernet based protocol the EtherCAT 

protocol is acquiring ever greater importance due to its great performances and because 

EtherCAT powered devices are increasingly produced and spread. When connected to a 

EtherCAT segment PUMA Open acts as a Master so it can configure the network and hold the 

control. 

Following the principle of concurrent engineering it is very important to be able to 

include simulated models of not yet built components in the developing and testing process. To 

meet this need AVL has developed a set of applications by which it is possible to engage 

simulated components in the test loop. The main result has been achieved with the application 

Testbed.CONNET which can be used to run any customer’s simulated model even in real-time. 

Testbed.CONNECT uses the PUMA Open core engine so it leverages all the features provided 

by the latter like the ability to connect to the testbed field buses and, in particular, to an 

EtherCAT network. Unfortunately, Testbed.CONNECT, like PUMA Open, implements only 

the master functionalities so as per protocol specification they cannot connect on the same 

EtherCAT network segment at the same time.  

Until now the coexistence of the two systems has been guaranteed using a master-master 

coupler, but the deploy is not always simple moreover customers do not fully understand the 

involved complexity. As the product management foresees the system getting more complex, 

some shortcomings are become apparent. 

The thesis project was done primarily to investigate the feasibility of the natural solution 

to the problem, that is, eliminating one master in place of a EtherCAT client to be integrated 

directly in the Testbed.CONNECT so that the coupler is no longer needed. 
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Notation 

In the present document the following notation is used. These conventions aim to making 

the consultation and reading of this report easier. 

▪ The italic font is used to introduce key concepts or reference specific terms of importance. 

▪ The bold font is used to emphasize important names and keywords. It is also used for 

choices in menu like File | Save As …  

▪ The courier new font is used to provide either snippets of code or computer 

instructions. It also indicates the output of the execution of an application. 

▪ The code snippets are presented with line numbers so that they can be referenced in the 

description. A code example is shown below. 

1 #include <iostream> 

2  

3 int main void(int argc, char * argv[]) 

4 { 

5   std::cout << “Hello world” << std::endl; 

6   return 0; 

7 } 
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Terms and definitions 

For the purpose of this thesis these terms and definitions apply. 

 

ABCC Anybus CompactCom 

ASIC Application Specific Integrated Circuit 

ADI Application Data Instance 

API Application Data Instance 

ARP Address Resolution Protocol 

CAN Controller Area Network 

CIE Compression Ignition Engine 

CLI Common Language Infrastructure 

COM Component Object Model 

CPU Central Processing Unit 

CRC Cyclic Redundancy Check 

CSMA Carrie Sense Multiple Access 

CSMA/CD Carrier Sense Multiple Access with Collision Detection 

DLL Dynamic Link Library  

DMA Direct Memory Access 

DOCSIS Data Over Cable Service Interface Specification 

ECU Electronic Control Unit 

EEPROM Electrically Erasable Programmable Read-Only Memory 

ENI EtherCAT Network Information 

ESC EtherCAT Slave Controller 

ESI EtherCAT Slave Information 

ESM EtherCAT State Machine 

ETG EtherCAT Technology Group 

FBD Function Block Diagrams 

FCS Frame Check Sequence 

F-FEM Fast Front End Module 

FFMU Fieldbus Memory Management Unit 

FPGA Field Programmable Gate Array 

GUI Graphic User Interface 

HAL Hardware Abstraction Layer 

HW Hardware 

ICE Internal Combustion Engine 

IDE Integrated Development Environment 

IDL INpact Driver Library 

IEC International Electrotechnical Commission 

IL Instructions List 
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I/O Input/Output 

IP Internet Protocol 

ISO International Organization of Standardization 

LAD Ladder Diagrams 

LAN Local Area Network 

MAC Media Access Control 

MTU Maximum Transmission Unit 

NOVRAM Non-Volatile Random-Access Memory 

OEM Original Equipment Manufacturer 

OLE Object Linking and Embedding 

OS Operating System 

OSI Open Systems Interconnection 

PCI-E Peripheral Component Interconnect-Express 

PCB Process Control Block 

PDO Program Data Object 

PLC Programmable Logic Controller 

PPP Point-to-Point Protocol 

RT Real Time 

RTOS Real Time Operating System 

SFC Sequential Function Charts 

ST Structured Text 

SW Software 

TCP Transmission Control Protocol 

TDM Time-Division Multiplexing 

UDP User Datagram Protocol 

UI User Interface 

USB Universal Serial Bus 

UUT Unit Under Test 

VCI Virtual Communication Interface 

XAE TwinCAT eXtended Automation Engineering 

XAR TwinCAT eXtended Automation Runtime 

XAT TwinCAT eXtended Automation Technology 

XML eXtensible Markup Language 
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1. Introduction and objectives 

 

1.1 Scope of the thesis 

AVL manufactures various testbeds such as engine- and powertrain-testbeds as well as 

the associated automation. To connect testbeds or individual automation components AVL uses 

EtherCAT for a fast and stable communication. The automation system is defined as an 

EtherCAT master. If two automation systems are now connected with each other, special 

couplers are required, since a Master/Master-connection is not provided according to the 

EtherCAT protocol. To eliminate these additional components, an EtherCAT slave 

implementation is to be integrated into the automation system. For the implementation, a special 

EtherCAT slave hardware must be used, which communicates with the system via an application. 

This application/driver must be programmed within this thesis. 

 

1.2 Thesis organization 

This thesis consists of seven chapters and one appendix. The concepts are presented in a 

logical order so the reader can easily understand the whole picture. The thesis is organized into 

three parts. 

 

Part one introduces the objectives of the present work and the world of the automotive. 

Chapter 1 is an overview of the rationale behind the thesis and explains how the thesis is 

organized. Chapter 2 introduces the automotive industry and explains how the AVL company 

supports Original Equipment Manufacturers (OEMs) in the design and development of 

automotive products. 

 

Part two lays the background by explaining the core concepts behind the EtherCAT 

Slave implementation by reporting all the stuff learnt while working on this topic. Chapter 3 

explains what a computer network is and how it is organized, then it focuses on the data link 

layer and introduces the Ethernet technology, the concept of Industrial Ethernet and concludes 

with the explanation of the EtherCAT fieldbus technology. Chapter 4 explains what operating 

systems are, what they do and the difference between non real-time e real-time operating 

systems. It also introduces INtime as the real-time extension for Microsoft Windows operating 

system. Chapter 5 introduces the world of the Programmable Logic Controllers (PLC) and 
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explains how those special purpose devices have been superseded by standard PC thanks to the 

TwinCAT technology. 

 

Part three deals with the EtherCAT Slave implementation and draws the obtained results. 

Chapter 6 covers the implemented solution in terms of the used hardware and the developed 

code. Chapter 7 discusses the results as well as the future work. 

 

The appendix provides all the source code written in the development phase. 
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2 Automotive and AVL 

 

2.1 Introduction 

The automotive industry is one of the world’s largest industries by revenues. It began in 

the 1860s and comprises a wide range of companies and organizations involved in the design, 

development, manufacturing, marketing, and selling of motor vehicles. The word automotive 

comes from the Greek autos (self), and Latin motivus (of motion), referring to any form of self-

powered vehicle whether they are standard automobiles, sport cars, tractor-trailers, marine 

vehicles, off-road vehicles and more. Members of the automotive field have developed skills 

related to engine construction, fuel and ignition, brakes, power trains, electronic and diagnostic 

equipment, and many others. 

Automotive technology and computer science are going hand in hand since a long time. 

Initially mechanical components were replaced by computers, microcontrollers, and electronics 

(e.g., replacement of carburetor to fuel injection controlled by ECU) for better performance and 

compliance with regulations about engine emissions aimed to reduce the air pollution. Over time, 

computers and computer applications have also gained in importance in the field of vehicle 

testing and simulation-based design. The design of automotive systems using simulation tools 

has been proved to feature cost reduction and quality enhancement. 

This chapter will introduce the AVL company, the simulation-based design and the 

testbed field. Then it will describe two of AVL’s major software products which are primarily 

involved in this thesis work.   

 

2.2 The AVL company 

AVL, or Anstalt für Verbrennungskraftmaschinen (Institute for Internal Combustion 

Engines) List, is an Austrian-based automotive consulting firm as well as an independent 

research institute.  

AVL is the world’s largest privately owned company for the development of powertrain 

systems (hybrid, combustion engine, transmission, electric drive, batteries, fuel cell and control 

technology) for passenger cars, commercial vehicles, construction, large engines and their 

integration into the vehicle. 

The company has decades of experience in the development and optimization of 

powertrain systems for all industries. As a global technology leader, AVL provides complete 
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and integrated development environments, measurement, and test systems as well as state-of-

the-art simulation methods. 

AVL was founded by Professor Doctor Hans List in 1948, after he became an 

independent engineer. The company was primarily focused on diesel truck engines, and after 

great success, branched out in 1960 to include an instrumentation division. Funds from the 

famous American Marshall Plan for reconstruction after the World War II were the key to 

establishment of AVL. 

In 1969, AVL developed a revolutionary test bed which allowed for comprehensive data 

acquisition and analysis. 

Throughout the 1970, AVL’s diesel engine performance and data acquisition capabilities 

continued to improve, while its PUMA test bed software began to give the company an 

international reputation. The founder’s son Helmut List became the management chairman in 

1979. After more innovations and more success in the 1980s, AVL opened its Advanced 

Simulation Technology division in 1987. 

AVL has technical centers around the world namely Graz, Germany, Italy, Slovenia, 

Croatia, Sweden, Japan, Korea, France, US, Hungary, India, UK, Turkey and Brazil with more 

than 11500 employees. 

AVL is increasingly taking on new tasks in the field of autonomous driving (connectivity, 

ADAS, CCAD, etc.) especially on the basis of subjective human sensations (driveability, 

performance attributes, etc.). 

 

2.3 Simulation based design of automotive systems 

Automotive industries are competing to conquer ever larger slices of the market, so a 

great variety of vehicles are developed in shorter and shorter periods. It is clean to see that the 

classical method of design via intensive experimental testing of prototypes is no longer 

economically feasible. Therefore, the dynamical behavior of a vehicle must be simulated during 

the development process simultaneous with the overall design of the final product. The 

simulation-based design is a very advanced method, and it is part of Concurrent Engineering 

defined as an approach for designing and validating a product, its manufacturing process, and 

its quality control, all at the same. Concurrent Engineering is superior to the traditional 

sequential engineering with respect to the time required for the development of a new product; 

this is achievable thanks to an integrated information processing resulting in an essential time 

saving. 
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Each component can be modelled in terms of equations and simulated to analyse its 

dynamic behavior against a set of input. The generated output can be collected, charted, and 

even provided as input to the other models in the whole project. It has been proven that 

symbolically generated equations of motion are computationally more efficient that numerically 

derived equations. This is valid not only for time integration during simulation but also for 

parameter variation during optimization or sensitivity analysis, respectively. 

To support simulation-based design and development several commercially distributed 

computer programs were developed. The available applications show different capabilities: 

some of them generate only the equations of motion in numerical or symbolical form, 

respectively, some of them provide numerical integration and simulation codes, too. Moreover, 

there are also extensive software systems on the market which offer additionally graphical data 

input, animation of body motion, and automated signal data analysis. There is no doubt that the 

professional user, particularly in the automotive industry, prefers the most complete software 

system for dynamically multibody system analysis. 

While all this process can be done entirely in the office, there comes the time when the 

physical system must be manufactured and tested in the “real-world” to assess its compliance 

with the simulated model. The next section will introduce the concept of testbed where real 

components (e.g., an engine, transmission elements) are automatically tested in a controlled 

environment. Since not all the components could be available in their physical realization it 

would be nice if it were possible to include related components model in the test. This is actually 

possible and will be explained in the remainder of this chapter when the AVL solution will be 

presented.  

 

2.4 Testbed for automotive systems 

In the automotive domain, a testbed is a platform for conducting rigorous, transparent, 

and replicable testing either of vehicle components or of the entire vehicle. In general, a testbed 

is organized in one or more rooms (to ensure safety and comfort) where the equipment and 

subsystems of the bed are located. The testbed layout is very application dependant, but it can 

be schematized as in Figure 2.1. The test room is where the UUT is placed and connected to all 

the sensors and actuators used to collect the signals of interest and control the test cycle, 

respectively. The UUT is also connected to the necessary subsystems and services. The control 

room is where the automation and control systems are at disposal of the operators. The technical 

room is where all the service systems, like cooling systems, power supply systems, and 
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instrumentation can be located. All the subsystems, sensors and actuators are connected by 

different bus technologies. The testbed normally has connections with the rest of the plant. The 

different subsystems are connected to what is called a laboratory LAN which in turn can be 

interconnected to the company network allowing tests plans, test outcomes collection and other 

management tasks. A safety control system is also present to ensure a safe working environment.    

 

 

Figure 2.1 An example of testbed layout 

 

Figure 2.2 shows an example of test room for ICE/CIE testing. In this configuration the 

engine is connected to a brake connected with the analysed object, accompanied by the essential 

systems: fuel, gas, anti-fire, and cooling systems. There is also a system for collecting exhaust 

gases resulting for the combustion. These gases can be provided to special analyser for 

concentration analysis before being guided outside the room through a chimney. Different 

sensors can be mounted on the engine depending on the performed test. Data are collected by 

the automation system which also control the test execution in a very precise and repeatable 

way. 
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Figure 2.2 An engine testbed powered by AVL 

 

Signals from sensors and to actuators, as we saw in the previous section, can be sent, and 

generated by any model, respectively. For example, in the case of an engine testbed, imagine 

you are working on a new generation ECU for the fuel injection control for which only the 

model that describes its logic is available. If the control system were able to run the model, the 

input from the sensors could be feed to such model, and the output of the model to the inputs 

could be provided to the other subsystem no matter if they are physically available or simulated. 

As can be understood the ECU behavior, in this case, can be analyzed even before the real device 

is available. 

In the next two sections the AVL’s applications for test results automation and the 

control of subsystems and for the incorporation of simulation models, namely PUMA Open and 

Testbed.CONNECT will be presented. 

 

2.5 PUMA Open 2™ 

The workstation-based automation system AVL PUMA Open 2™ supplies the common 

AVL automation platform with a broad range of test application, providing the appropriate 

software and hardware for each testing task. 

The software is available in predefined software packages for different applications and 

can be easily extended by modern functions and testing methods. State-of-the-art automation 

systems for testbeds in the automotive industry allow the combined execution of all relevant 

software processes in a fully integrated environment. In order to meet all test system 
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requirements, critical tasks have to run under real-time conditions, while others put their focus 

on user interaction with a conventional graphical user interface. 

To assure a maximum of performance, the AVL PUMA Open 2™, is based on the AVL 

Real Time Environment using tenAsys INtime® as integrated real-time extension of Microsoft 

Windows operating system.  The software combines the advantages of the real-time world and 

common technologies with the operating philosophy of the familiar office environment. 

The AVL PUMA Open 2™ software runs on a dedicated AVL Testbed Workstation 

hardware and provides the basis for all automation, control, and simulation functions on one 

hardware. On one hardware a real time operating system (INtime®) and Microsoft Windows 

operating systems are running. The Figure 2.3 shows the basic architecture of the AVL PUMA 

Open 2™ software. 

 

 

Figure 2.3 Basic architecture of the AVL PUMA Open 2™ software 

The AVL real-time environment is named COBRA. 

AVL PUMA Open 2™ software comes with one tool for quick and intelligent locating 

and editing of all testbed data and parameters. This tool is called AVL Navigator and it is based 

on the well-known Microsoft Office user experience to allow an easy usage. The navigator offers 

four sections for operation: managing parameters the describe the testbed, managing the library 

parameter blocks, managing test field data and managing test results. Out of the AVL Navigator 

all functions of AVL PUMA Open 2™ are described using a common parameter editor. The 

parameter editor offers a logical consistency check of parameter blocks in the office. 

A test run is defined using the parameter editor in a graphical way. Programming 

knowledge is not required. Graphical configuration of test runs is a central element of the AVL 

PUMA Open 2™ operating philosophy. It is also possible to export an existing step sequence 

data file with CSV format to be post processed with other tools like Microsoft Excel. In addition, 
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demand value tracks and standard control modes can easily be taken over in an existing step 

sequence. 

Every AVL PUMA Open 2™ installation (either testbed installation or office installation) 

contains a tool to analyse testbed log files out of AVL Navigator, several testbed log file types 

can be analysed: message history logfiles, testbed tracer logfiles and test run execution log files. 

In order to control the testbed, all the test equipment and to retrieve the data from the 

field the AVL PUMA Open 2™ is able to interface with various type of instrument and hardware 

using the state-of-the-art high-end technology. Multiple field bus and serial interfaces provide 

powerful communication performance to peripheral measuring equipment, conditioning units, 

operating panels, automatic calibration system and to the inverter for the dynamometer. 

The following interfaces are supported: 

▪ Ethernet 

▪ RS232 Adapter / USB 

▪ IEEE 1394 Adapter 

▪ EtherCAT 

▪ iLinkRT 

▪ 4xRS422 Multilinkboard 

▪ Controller Area Network (CAN) Interface Board PCI-E 

▪ Profibus 

▪ Profibus DP/DP Coupler 

▪ OLE Process Control PCI-E 

Regarding the EtherCAT interface, AVL PUMA Open 2™ software acts as master on the 

network segment. As a prerequisite for the integration of third-party I/O, the supplier must 

provide the EtherCAT Slave Information (ESI) file. If the slaves (described by ESI file) have a 

fixed IO layout, ECAT Console can scan the bus and create an EtherCAT Network information 

(ENI) file based on the bus scan and on the ESI files. If the slaves have a dynamic IO layout a 

third-party tool must be used to create an ENI file based on the bus scan and the ESI files. 

Finally, this ENI file can then be directly used to assign the physical I/O channels to PUMA. 

In the online system the I/O modules (slaves) must be connected to the master in a linear daisy 

chain topology (each slave is connected in sequence to the prior one). 

Modular I/O systems for high accuracy measurement, demand value output and control, 

designed for use in testbed environments are also provided by AVL as integral part of the system. 

These I/O modules are known as Fast Front End Modules (F-FEMs), and they also are available 
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in specialized version for specific measurement tasks like high-voltage measurement (up to 1000 

VDC), thermo-dynamic measurement and more. 

The physical I/O channels can be easily assigned to PUMA “quantities” which represent 

the point of contact between the hardware and the software. 

 

2.6 Testbed.CONNECT™ 

Numerous vehicle and driveline variants, an extensive integration of complex systems, 

and high requirements for safety, efficiency and comfort mean that shifting development tasks 

from road to testbeds has become a necessity, not just an option. 

While most sub-disciplines already use advanced simulation models in the office for 

frontloading purposes only a few of these models find their way into the overall vehicle 

development process. On the one side this is due to the limited capabilities of the testbed but 

also due to existing department boundaries. Utilizing these models allows for a whole new 

holistic testing approach in early development phases by replacing missing real components 

with already existing simulation models. Therefore, the simulation capabilities of testbeds are 

getting more important than ever. In addition, to the testbed capabilities OEM’s face another 

challenge when implementing sustainable frontloading: overcoming department boundaries and 

ensuring a seamless connection between the advanced office simulations and their utilization in 

the test field. 

The AVL solution to the challenging scenario described above is found in the 

Testbed.CONNECT™ hardware and software. Testbed.CONNECT™ helps to harness the 

benefits of model-based testing. As an open platform it facilitates early integration tests by 

connecting simulation model to the testbed. One of the major benefits provided by the 

Testbed.CONNECT™ is preventing long wait times for prototype components and vehicles and 

allows for quicker and more powerful decision-making throughout the entire development cycle. 

Testbed.CONNECT™ offers flexibility that reduces testbed down-times due to task 

changes to a minimum. It is possible to rely on safe and stable testbed operations, and focus on 

value-adding tasks, such as testing the numerous variants in the project in an early stage of 

development. Especially by utilizing advanced office models, configuration changes are done 

within minutes right at the testbed. By feeding the rest results back to the office, the quality for 

the system models can be improved with each version. For example, many applications as RDE, 

engine start/stop strategy evaluation or electric drivetrains can already be tested on the testbed 
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by using existing in-house simulation models to gain comparable results throughout the 

development process. 

Testbed.CONNECT™ comes in two flavours: for non-real time hardware and software 

and for real time software on PUMA Open 2™. 

Testbed.CONNECT™ for non-real time allows the execution of models in non-real time 

execution environment (Microsoft Windows). The model execution is synchronized by 

sophisticated coupling algorithms to the real-time communication with the testbed. The coupling 

to a testbed automation system is performed via CAN bus. Windows for displaying online values 

of model inputs and outputs can be created and multi-line graphics are available. For analysis, 

a recorder allows the storage of several online values with time stamp at their native frequency. 

Testbed.CONNECT™ hardware includes a powerful CAN bus to able to exchange data 

with the testbed automation system in real time. The high-performance CAN Interface Board 

supports up to four CAN-lines and the CAN standard ISO 11898 (5 Volt). The CAN bus includes 

a real-time driver, which can be connected to four independent networks in parallel. Each of 

these may be parametrized via an ASAM-MCD2 (A2L) interface description file or a Vector 

file (DBC). The parametrization effort of the interface is kept to a minimum thanks to advanced 

features such as auto-mapping of signals, online manual interface, fault avoidance or error 

detection. 

For the non-real-time model execution environment, the simulation models are co-

simulated in Model.CONNECT™, the AVL’s open model integration and co-simulation 

platform able to interlink simulation model into a consistent virtual prototype, running in 

Microsoft Windows. Sophisticated coupling algorithms, including the Advanced CO-simulation 

Methods for Real-Time Application (ACoRTA) methodology, allow the direct connection of 

offline-co-simulation (“soft real-time”) to hard real-time systems. ACoRTA is seamlessly 

integrated in Testbed.CONNECT™ real-time system and uses the patented so called “model-

based coupling algorithm” to perform synchronization of offline-co-simulation to hard real-time, 

compensation of randomly occurring time delays, reduction of communication time delays and 

noise suppression in measurement signals. 

Testbed.CONNECT™ real-time software is an extension to AVL PUMA Open 2™ for 

the execution of MATLAB Simulink-based models as real-time application on the testbed 

workstation. The general model will be automatically started with AVL PUMA Open 2™ or can 

manually be integrated in PUMA Open operating state MONITOR and MANUAL via the 

Testbed.CONNECT™ Explorer component. The model is executed in hard real-time with a 

frequency of up to 10 kHz when the model is only executed in real-time environment. An 
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interconnection of the simulation models resulting in a system simulation configuration can also 

be executed. 

The Testbed.CONNECT™ Explorer is a tool for the visualization and debugging for 

model-internal signals and parameters for MATLAB Simulink-based real-time applications. All 

signals and parameters can additionally be displayed in an integrated multi-line graphic, which 

allows model developers to test their real-time applications easily and conveniently. The 

executed model internals are shown in a tree structure and all relevant actions are listed in a 

message window. At run-time single models or model configurations can be started and stopped 

via the Explorer. 

 

 

Figure 2.4 Testbed.CONNECT™ Explorer 

 

2.7 Summary 

This chapter has introduced the word of the automotive and the AVL company which is 

one among the wide range of companies and organizations involved in the field. The new trend 

in the design by simulation and how the systems are tested on testbed have been discussed. 

It also described two of the main products made by AVL to support the various 

manufacturer in the design, development, test, and homologation phases of a vehicle’s life cycle.  
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3 From Ethernet to EtherCAT  

 

3.1 Introduction 

The name EtherCAT stands for “Ethernet for Control Automation technologies”. 

EtherCAT is an Ethernet based fieldbus protocol invented by Beckhoff GmbH. The protocol 

has been standardized and is being widely used. The main principle behind EtherCAT is to 

transmit large amounts of data that require short update cycle and with negligible jitter. 

This chapter will introduce the main network concepts, from basic introduction to OSI 

model to Ethernet then the EtherCAT protocol operating principles will be explained in detail. 

 

3.2 Computer Networks and the Internet 

Without any doubts, today’s Internet is arguably the largest engineered system ever 

created by mankind. There are hundreds of millions of connected computers, communication 

link with billions of users connected with any kind of digital devices and with an array of new 

Internet-connected gadgets such as sensors, web cams, game consoles, and almost all appliances 

one can think at. Indeed, the term computer network is beginning to sound a bit dated, given the 

many non-traditional devices that are being hooked up to a network. All these devices are called 

end systems and the connection is made possible thanks to a set of communication links and 

packet switches. 

There are a many types of communication links, which are made of different types of 

physical media, including coaxial cable, copper wire, optical fiber, and radio waves. Different 

links are characterized by different performances in terms of transmission rate for instance. 

When one end system needs to send data to another end system, the sending end sytem segments 

the data and adds headers bytes to each segment. The resulting packages of information, known 

as packets, are then sent through the network to the destination, where they are reassembled in 

the original data. It is clear, from what has been said above, that the end systems and the other 

pieces of the network run some type of protocols to control the sending and receiving of 

information. The Transmission Control Protocol (TCP) and the Internet Protocol (IP) are two of 

the most important protocols on the Internet just to mention a couple among the others. 
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3.2.1 Network protocol 

In computer network we always find an important word: protocol. Here we introduce the 

concept of protocol and explain what a protocol is used for. 

A good explanation of a protocol can be provided by considering some human analogy, 

since we humans execute protocols all the time. Consider the very common situation where a 

person needs to know the time of the day and to achieve such information, he/she must ask 

another person. Human protocol dictates that one first offers a greeting to initiate the 

communication with someone else (here we are considering a good manners people). The typical 

response to the greeting is a returned greeting, this is got as an indication that the conversation 

can proceed. Of course, the answer to the greeting could be something different, not very polite 

for instance, and in this case, it might indicate the unwillingness or inability to communicate. 

Sometimes one gets no response at all, in which case one may either gives up asking for the 

time or tries once again with the greeting hoping to be listened this time. As can be seen, in 

human protocol, there are specific messages we send, and specific actions we take in response 

to the received message or other events (such as no reply within some given amount of time). It 

is very important to understand that to have two people interoperate it is necessary that both run 

the same protocol. For instance, if two people speak different languages there is no way to get 

a something useful accomplished. The same is true in networking: it takes two communicating 

entities running the same protocol to accomplish a task. 

All in all, a network protocol is like a human protocol, except that the entities exchanging 

messages and taking actions are hardware or software components. All activity in a network is 

governed by a protocol. 

Now that we have a better idea of a protocol, we can introduce the following formal 

definition: 

A protocol defines the format and the order of messages exchanged between two or more 

communicating entities, as well as the action taken in the transmission and/or receipt of a 

message or other events. 

In a network different protocol are used to accomplish different communication task. 

Some protocols are simple, while others are complex and intellectually deep. 
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3.2.2 Packet-Switched Networks 

In a network, end systems exchange messages with each other. Messages may perform 

a control function or can contain data. To send messages from a source to a destination, the 

source end system breaks long messages into smaller chunks of data known as packets. Between 

source and destination, each packet travels through communication links and packet switches 

(for which there are two predominant types: routers and link-layer switches).  

There are two fundamental approaches to moving data through a network of links and 

switches circuit switching and packet switching. In circuit-switched network the resources 

needed along a path to provide for communication are reserved for the duration of the 

communication session between the end systems. In packet-switched network, these resources 

are not reserved. Although the circuit switching and the packet switching are both prevalent in 

today’s telecommunication networks, the trend has certainly been in the direction of packet 

switching. 

Clearly, this is not without criticism since people often argued that packet switching is 

not suitable for real-time services because its variable and unpredictable end-to-end delay. On 

the other hand, proponents of packet switching argue that it offers better sharing of transmission 

capacity than circuit switching, and it is simpler, more efficient, and less costly to implement. 

Packet switching is more efficient because differently from the circuit-switching which 

pre-allocates use of the transmission resources regardless the demand, with allocated but 

unneeded link time going unused, allocates resources on demand. Link transmission capacity 

will be shared on packet-by-packet basis only among those users who have packets that need to 

be sent over the link. 

 

3.2.3 Delays in Packet-Switched Networks 

Computer networks are far from being ideal whereas much data as we want are moved 

between any two end systems instantaneously, without any loss of data. In reality, instead, 

computer networks necessarily constrain throughput between end systems, introduce delay 

between end systems, and can actually lose packets. 

As a packet travels from one host to another host through several nodes along the path, 

it suffers from several types of delay at each node. The most important of these delays are the 

nodal process delay, queuing delay, transmission delay, and propagation delay; together, 

these delays accumulate to give a total nodal delay. The performances of many network 
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applications are greatly affected by network delays; for example, real-time applications are hard 

to deal with since the total nodal delay is not predictable. 

Processing delay is the time required to examine the packet’s header and determine 

where to direct the packet. The processing delay can also include other factors, such as the time 

needed to check for bit-level errors in the packets. Processing delay in high-speed routers are 

typically on the order of microseconds or less. 

Queuing delay is experienced by the packet because it may wait in the transmission 

queue of the outbound link. The length of the queuing delay will depend on the number of 

earlier-arriving packets that are queued and waiting for transmission. Thus, the queuing delay is 

a function of the intensity and nature of the traffic and can be on the order of microseconds to 

milliseconds in practice. 

Transmission delay represents the amount of time required to push all the packet’s bits 

into the link. Denoting the length of the packet by L bits, and the transmission rate of the link 

between the current node and the next by R bits/sec, the transmission delay is defined as L/R 

seconds. Transmission delay are typically of the order of microseconds to milliseconds in 

practice. 

Propagation delay is the time required to propagate from the beginning of the link to its 

end. The propagation speed depends on the physical medium of the link and it is in the range of 

2 ∙ 108 𝑚 𝑠𝑒𝑐⁄  ÷  3 ∙ 108 𝑚 𝑠𝑒𝑐⁄  which is equal to a little less than the speed of light. The 

propagation delay is nothing more that the length l of the link divided by the propagation s of 

the link i.e., 𝑙 𝑠⁄  𝑠𝑒𝑐. Propagation delays are on the order of milliseconds. 

It is worth clarifying the difference between transmission delay and propagation delay. 

The difference is subtle but important. The transmission delay is the amount of time required 

for a not to push out the packet; it is a function of the packet’s length and the transmission rate 

of the link but has nothing to do with the distance between two nodes. The propagation delay, 

on the other hand, is the time it takes a bit to propagate from one node to the next, it is a function 

of the distance between the two nodes but has nothing to do with the packet’s length or the 

transmission rate or the link. 

If we let 𝑑𝑝𝑟𝑜𝑐, 𝑑𝑞𝑢𝑒𝑢𝑒, 𝑑𝑡𝑟𝑎𝑛𝑠, and 𝑑𝑝𝑟𝑜𝑝 denote the processing, queuing, transmission, 

and propagation delays, then the total nodal delay is by: 

𝑑𝑛𝑜𝑑𝑎𝑙 = 𝑑𝑝𝑟𝑜𝑐 + 𝑑𝑞𝑢𝑒𝑢𝑒 + 𝑑𝑡𝑟𝑎𝑛𝑠 + 𝑑𝑝𝑟𝑜𝑝 

The contribution of these delay components can vary significantly. 
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3.2.4 Protocol Layers 

In a network there are numerous applications and protocols, various types of end systems, 

and various types of link level media. This gives a very high complexity. Fortunately, there is a 

way to organize the network architecture so that the complexity can be managed. 

Even in this case, just to organize our thoughts we can resort to a human analogy. 

Actually, we deal with complex systems all the time in our everyday life. Imagine for example 

how would you describe an airline system. One way to describe this system might be to describe 

the series of actions taken when you fly on an airline. Normally we purchase a ticket, check our 

bags, go to the gate, and eventually get loaded onto the plane. The plane takes off and is routed 

to the destination. After our plane lands, we deplane at the gate and claim our bags. This scenario 

is shown in the Figure 3.1. 

 

 

Figure 3.1 Actions taken in an airplane trip 

 

Similarly, a packet goes from source host to destination in a network. But this is not quite 

the analogy we are after. We are looking for some structure in Figure 3.1. We note that there is 

a ticketing function at each end; there is also a baggage function for already-ticketed passengers, 

and a gate function for the already-ticketed and already-baggage-checked passengers. For 

passengers who have made it through the gate there is a take-off and landing function, and while 

in flight, there is an airplane routing function. In a nutshell, we can look at the functionality in 

Figure 3.1 in a horizontal manner, as shown in Figure 3.2. 
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Figure 3.2 Layering of airline actions 

 

 

Figure 3.2 has divided the airline functionality into layers, providing a framework in 

which we can illustrate how an airline travel works. Note that each layer, combined with the 

layers below it implements some service. For instance, at the baggage layer and below, baggage-

check-to-baggage-claim transfer of a person and bags is accomplished, importantly, for an 

already-ticketed person. Each layer provides its service by performing some actions within the 

that layer and by using the services of the layer directly below. 

A layered architecture has many advantages: it allows to discuss a well-defined, specific 

part of a large and complex system, it provides modularity making it much easier to change the 

implementation of the service provided by the layer (as long as the layer provides the same 

service to the layer above it and uses the same services from the layer below). 

To provide structure to the design of the network protocols, network designers organize 

the protocols in layers. Each protocol belongs to one of the layers and provides its service by 

performing certain actions within that layer and by using services from the layer right below it. 

A protocol layer can be implemented in software, in hardware or in a combination of the 

two. Moreover, a layer n protocol is distributed among the end system, packet switches, and 

other components that make up the network. That is, there is often a piece of a layer n protocol 

in each if these network components. 

As we already seen protocols layering has conceptual a structural advantage. Despite 

that, some researchers and engineers are opposed to layering. One potential drawback of 

layering is that one layer may duplicate lower-layer functionality (e.g., error recovering on both 

a per-link basis and an end-to-end basis). A second potential drawback is that functionality at 

one layer may need information that is present only in another layer (e.g., time stamp or lower 

layer packet sizes); this clearly violates the goal of separation of layers. 
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Figure 3.3 The Internet protocol stack (a) and the OSI reference model (b) 

 

When taken together, the protocols of the various layers are called the protocol stack. 

The Internet protocol stack consists of five layers: the physical, link, network, transport, and 

application as shown in the Figure 3.3. As we can see from the Figure 3.3 the Internet protocol 

is not the only protocol stack around. In particular, back in the late 1970s, the International 

Organization of Standardization (ISO) proposed that computer networks be organized around 

seven layers, called the Open System Interconnection (OSI) model. This ISO OSI model took 

shape when the protocols that were to become the Internet protocols were in their infancy and 

were but one of many different protocol suites under development; in fact, the inventors of the 

original ISO OSI model probably did not have the Internet in mind when creating it. The seven 

layers of the ISO OSI reference model, shown in Figure 3.3 are: application layer, presentation 

layer, session layer, transport layer, network layer, data link layer and physical layer. 

We will briefly discuss the various layer in the Internet protocol and provide a short 

description of the two more layers found only in the ISO OSI model then, in the next section we 

will describe the link layer in more details since it will be the layer where the Ethernet protocol 

resides in. 

 

Application Layer 

 The application layer is where network applications and their application-layer protocols 

reside. This layer includes many protocols, such as the HTTP protocol used for Web document 

request and transfer, SMTP used for the transfer of e-mail messages, and FTP for the transfer of 

files between two end systems. An application-layer protocol is distributed over multiple end 
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systems, with the application in one end system using the protocol to exchange packets of 

information with the application in another end system. Packets of information at the application 

layer are called messages. 

 

Transport Layer 

 The transport layer transports application-layer messages between application endpoints. 

On the Internet there are two transport protocols, TCP and UDP, either of which can transport 

application-layer messages. TCP provides a connection-oriented service to its applications. This 

service includes guaranteed delivery of application-layer messages to the destination and flow 

control so that there is a sender/receiver speed matching. TCP also breaks long messages into 

shorter segments and provides a congestion-control mechanism, this way a source throttles its 

transmission rate when the network is congested. On the other hand, UDP provides a 

connectionless service to its applications. This is a no-frills service that provides no reliability, 

no flow control, and no congestion control. Packets in the transport layer are called segments. 

 

Network Layer 

 The network layer is responsible for moving network-layer packets known as datagrams 

from one host to another.  The transport-layer protocol (TCP or UDP) in a source host passes a 

transport-layer segment and a destination address to the network layer which provides the 

service of delivering the segment to the transport layer in the destination host. The Internet’s 

network layer includes the very famous IP protocol, which defines the fields in the datagram as 

well as how the end systems and routers act on these fields. There is only one IP protocol, and 

all the Internet components that have a network layer must run the IP protocol. The Internet’s 

network layer also contains many routing protocols that determine the route that datagrams take 

between sources and destinations. 

 

Data Link Layer 

 To move a packet from one node to the next node in the route, the network layer relies on 

the services of the link layer. The services provided by the link layer depend on the specific link-

layer protocol that is employed over the link. For example, some link-layer protocols provide 

reliable delivery, for transmitting node, over one link, to receiving node. Example of link-layer 

protocols include Ethernet, WiFi, and the cable access network’s DOCSIS protocol. As 

datagram typically need to traverse several links to travel from source to destination, a datagram 

may be handled by different link-layer protocols at different links along its route. For example, 
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a datagram may be handled by Ethernet on one link and by PPP on the next link. Link layer 

packets are referred to as frames. 

 

Physical Layer 

 The job of the physical layer is to move the individual bits within the frame from one node 

to the next. This includes defining the transmitting medium (electrical cable, optical fiber), 

connector assignment, type of modulation, transmission rate, and signal level as well as further 

physical parameters such as the length of cable and similar. The protocols in this layer are again 

link dependent and further depend on the actual transmission medium of the link.  

 Let us now consider the two additional layers present in the ISO OSI reference model, 

namely the presentation layer and the session layer. 

 

Presentation Layer 

 The role of the presentation layer is to provide services that allow communicating 

application to interpret the meaning of data exchanged. These services include data compression 

and data encryption as well as data description. 

 

Session Layer 

 The session layer provides for delimiting and synchronizing of data exchange, including 

the means to build a checkpointing and recovery scheme. 

 

At this point any smart reader could ask itself a couple of questions. Since the Internet 

lacks two layers found in the ISO OSI reference model: Are the services provided by the 

presentation layer and the session layer not so important? What if an application needs one of 

these services? The Internet’s answer to both of these questions is the same – it is up to the 

application developer to decide if a service is important, and if the service is important, it is up 

to the application developer to build the functionality into the application. 

 

3.2.5 Encapsulation 

Before moving on to in-depth link layer analysis laying the foundation for the Ethernet 

protocol discussion, it is mandatory to discuss another important concept in the networking that 

is the encapsulation. Figure 3.4 shows a hypothetical physical path taken by data down from a 

sending end system’s protocol stack up the protocol stack at the receiving end system. 
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Figure 3.4 Different set of layers and encapsulation 

Information flows from the sending end system (the source) to the receiving end system 

(the destination) passing through a router which is a packet switch device. Like end systems, 

routers organize their networking hardware and software into layers. But, as can be seen, the 

router does not implement all the layers in the protocol stack; it typically implements only the 

bottom layers. Routers implement layers 1 through 3, while other devices like link-layer 

switches for instance implement even less layers, namely layers 1 and 2. The difference in the 

implementation provides different devices with different capabilities; for example a router is 

capable of implementing the IP protocol which is a layer 3 protocol. Note that the host 

implement all five layers; this is consistent with the view that the Internet architecture puts much 

of its complexity at the edges of the network. 

As anticipated at the beginning of the section, Figure 3.4 also illustrates the important 

concept of encapsulation. At the sending host, an application-layer message (M in Figure 3.4) 

is passed to the transport layer. In the simplest case, the transport layer takes the message and 

appends additional information (so-called transport-layer header information, Ht in Figure 3.4) 

that will be used by the receiver-side transport layer. The application-layer message and the 

transport-layer information together constitute the transport-layer segment. The transport-layer 

segment thus encapsulates the application-layer message. The added info might include 

information allowing the receiver-side transport layer to deliver the message up to the 

appropriate application, and error-detection bits that allow the receiver to determine whether 

bits in the message have been changed in route. The transport layer then passes the segment to 

the network layer, which adds network-layer header information (Hn in Figure 3.4) such as 

source and destination end system addresses, creating a network-layer datagram. The datagram 

is then passed to the link layer, which will add its own link-layer header information and create 

a link-layer frame. In the end, at each layer, a packet has two types of fields: header fields and 
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a payload field. The payload is typically a packet from the layer above. Of course, the process 

of encapsulation has been simplified here, it can be more complex: a large message may be 

divided into multiple transport-layer segments which might themselves each be divided into 

multiple network-layer datagrams. At the receiving end, such fragmented information must then 

be reconstructed from its constituent parts. 

 

3.3 The Link Layer 

In the previous sections the network layers stack has been roughly introduced and, in 

particular, we saw that the network layer provides a communication service between any two 

network hosts. Between the two hosts, datagrams travel over a series of communication links, 

either wired or wireless, starting at the source host, passing through a series of packet switches, 

and ending at the destination host. In this section we will move down the layers stack by one 

level and will discuss the link layer in detail so that we will be ready to consider the Ethernet, 

by far the most prevalent wired LAN technology, in the next section. 

Broadly speaking there are two different types of link-layer channels. The first type is 

broadcast channels, which connect multiple hosts in wireless LAN, satellite networks, and 

hybrid fiber-coaxial cable access networks. Since many hosts are connected to the same 

broadcast communication channel, a so-called medium access protocol is needed to coordinate 

frame transmission. The second type of link-layer channel is the point-to-point communication 

link, such as that often found between two routers connected by a long-distance link, or between 

a user’s office computer and the nearby Ethernet switch to which it is connected. 

From now on, any device that runs a link-layer protocol will be referred to as node. 

Nodes include host, routers, switches, and WiFi access points. Communication channels that 

connect adjacent nodes along the communication path will be referred to as links. In order for a 

datagram to be transferred form source host to destination host, it must be moved over each of 

the individual links in the end-to-end path. Over a given link, a transmitting node encapsulates 

the datagram in a link-layer frame and transmits the frame into the link. 

Although the basic service of any link layer is to move a datagram from one node to an 

adjacent node over a single communication link, the details of the provided service can vary 

form one link-layer protocol to the next. Possible services that can be offered by the link-layer 

protocol include: 

▪ Framing. Almost all link-layer protocols encapsulate each network-layer datagram 

within a link-layer frame before transmission over the link. A frame consists of data 
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field, in which the network-layer datagram is inserted, and other header fields. The 

structure of the frame is specified by the link-layer protocol. 

▪ Link access. A medium access control (MAC) protocol specifies the rules by which a 

frame is transmitted onto the link. For point-to-point link the MAC protocol is either 

very simple or not existent, basically the sender can send a frame whenever the link is 

idle. The more interesting case is when multiple nodes share a single broadcast link in 

the so-called multiple access scenario. In this case the MAC protocol serves to 

coordinate the frame transmission of the many nodes. 

▪ Reliable delivery. When the link-layer protocol provides reliable delivery service, it 

guarantees to move each network-layer datagram across the link without error. Similar 

to a transport-layer reliable delivery service (such as TCP), a link-layer reliable 

delivery service can be achieved with acknowledgments and retransmissions. This 

kind of service is often used for links that are prone to high error rates, such as a 

wireless link, with the goal of correcting an error locally rather than forcing an end-

to-end retransmission of the data. However, link-layer reliable delivery can be 

considered an unnecessary overhead for low bit-error links, including fiber, coax, and 

many twisted-pair copper links. For this reason, many wired link-layer protocols do 

not provide a reliable delivery service. 

▪ Error detection and correction. Since there is no need to forward a datagram that has 

an error, many link-layer protocols provide a mechanism to detect bit errors. This is 

achieved by having the transmitting node include error-detection bits in the frame and 

having the receiver node perform an error check. Error detection in the link layer is 

sophisticate and is implemented in hardware. Error correction is similar to error 

detection, except that a receiver not only detects when bit errors have occurred in the 

frame but also determines where in the frame the errors have occurred and then 

corrects them. 

 

For the most part, the link layer is implemented in a network adapter, also sometimes 

known as a network interface card (NIC).  
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Figure 3.5 Network adapter and its relationship to protocol stack functionality 

As the Figure 3.5 shown, at the heart of the network adapter is the link-layer controller, 

usually a single, special-purpose chip that implements many of the link-layer services (framing, 

link access, error detection, and so on). Thus, much of the link-layer controller’s functionality 

is implemented in hardware. Until the late 1990s, most network adapters were physically 

separated card but increasingly, network adapters are being integrated onto the host’s 

motherboard – a so-called LAN-on-motherboard configuration. 

On the sending side, the controller takes a datagram that has been created and stored in 

host memory by the higher layers of the protocol stack, encapsulates the datagram in a link-

layer frame, and then transmits the frame into the communication link, following the link-access 

protocol. On the receiving side, a controller receives the entire frame, and extracts the network-

layer datagram. If the link layer performs error detection, then it is the sending controller that 

sets the error-detection bits in the frame header and it is the receiving controller that performs 

error detection. Although most of the link layer is implemented in hardware, on some host part 

of the link layer is implemented in software that runs on the host’s CPU. The software 

components of the link-layer implement higher-level link-layer functionality such as assembling 

link-layer addressing information and activating the controller hardware. On the receiving side, 

link-layer software responds to controller interrupts, handling error conditions and passing a 

datagram up to the network layer. Thus, the link layer is a combination of hardware and 

software; it can be seen as the place in the protocol stack where software meets hardware. 
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3.4 Ethernet 

Ethernet has pretty much taken over the wired LAN market. In the 1980s and the early 

1990s, Ethernet faced many challenges from other LAN technologies, including token ring, 

FDDI, and ATM. Some of these other technologies succeeded in capturing a part of the LAN 

market for a few years. But since the invention in the mid-1970s, Ethernet has continued to 

evolve and grow and has held on to its dominant position. Today, Ethernet is by far the most 

prevalent wired LAN technology, and it is likely to remain so for the foreseeable future. There 

are many reasons for Ethernet’s success. First, Ethernet was the first widely deployed high-

speed LAN, so network administrators became very familiar with this technology and were 

reluctant to switch over to other LAN technologies when they came on the scene. Second, token 

ring, FDDI and ATM were more complex and expensive than Ethernet, which further 

discouraged network administrators from switching over. Third, the most compelling reason to 

switch to another LAN technology was usually the higher data rate of the new technology; 

however, Ethernet always fought back, producing versions that operated at equal data rates of 

higher. Switched Ethernet was also introduced in the early 1990s which further increased its 

effective data rates. Finally, because Ethernet has been so popular, Ethernet hardware has 

become a commodity and is remarkably cheap. 

The original Ethernet LAN was invented in the mid-1970s by Bob Metcalfe and David 

Boggs. The original Ethernet LAN used a coaxial bus to interconnect the nodes. Ethernet with 

a bus topology is a broadcast LAN where all transmitted frames travel to and are processed by 

all adapters connected to the bus. By the late 1990s, most companies and universities had 

replaced their LANs with Ethernet installation using a hub-based star topology. In such an 

installation the hosts (and routers) are directly connected to a hub with twisted-pair copper wire. 

A hub is a physical-layer device that acts on individual bits rather than frames. When a bit, 

representing a zero or a one, arrives form one interface, the hub simply re-creates the bit, boosts 

its energy strength, and transmits the bit onto all the other interfaces. Thus, Ethernet with a hub-

based star topology is also a broadcast LAN. 

In the early 2000s Ethernet experienced yet another major evolutionary change.  Ethernet 

installation continued to use a star topology, but the hub at the center was replaced with a switch. 
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3.4.1 Ethernet Frame Structure 

 A lot of information about Ethernet can be achieved by examining the Ethernet frame, 

which is shown in Figure 3.6. 

 

Figure 3.6 Ethernet frame structure 

In the following discussion about Ethernet frames we consider sending an IP datagram 

between two hosts on the same Ethernet LAN. We assume that the sending adapter, adapter A, 

have the MAC address AA-AA-AA-AA-AA-AA and the receiving adapter, adapter B, have the 

MAC address BB-BB-BB-BB-BB-BB. The sending adapter encapsulate the IP datagram 

withing an Ethernet frame and passes the frame to the physical layer. The receiving adapter 

receives the frame from the physical layer, extracts the IP datagram, and passes the IP datagram 

to the network layer. We will examine the six fields of the Ethernet frame in the context we have 

just defined. 

▪ Preamble (8 bytes). The Ethernet frame begins with an 8-bytes preamble field. Each 

of the first 7 bytes of the preamble has a value of 10101010; the last byte is 10101011. 

The first 7 bytes of the preamble serve to “wake up” the receiving adapters and to 

synchronize their clock to that of the sender’s clock. The synchronization is needed 

because there will always be some drifts from the target rate, a drift which is not known 

a priori by the other adapters on the LAN. A receiving adapter ca lock onto adapter 

A’s clock simply by locking onto the bits in the first 7 bytes of the preamble. The last 

2 bits on the eighth byte of the preamble (the first two consecutive 1s) alert adapter B 

that the “important stuff” is about to come. 

▪ Destination address (6 bytes). This field contains the MAC address of the destination 

adapter, BB-BB-BB-BB-BB-BB in our context. When adapter B receives an Ethernet 

frame whose destination address is either BB-BB-BB-BB-BB-BB or the MAC 

broadcast address, it passes the contents of the frame’s data field to the network layer; 

if it receives a frame with any other MAC address, it discards the frame. 

▪ Source address (6 bytes). This field contains the MAC address of the adapter that 

transmits the frame onto the LAN, in this example, AA-AA-AA-AA-AA-AA. 

▪ Type field (2 bytes). The type field permits Ethernet to multiplex network-layer 

protocol. This is useful because hosts can use other network-layer protocols besides 
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IP, and it is also needed to recognize ARP packets which will be demultiplexed up to 

the ARP protocol. Basically, the type field is analogous to the protocol field in the 

network layer datagram and the port-number field in the transport-layer segment; all 

of these fields serve to glue a protocol at one layer to a protocol at the layer above. 

▪ Data field (46 to 1500 bytes). This field carries the IP datagram.  The maximum 

transmission unit (MTU) o Ethernet is 1500 bytes. This means that if the IP datagram 

exceeds 1500 bytes, then the host has to fragment the datagram. The minimum size of 

the data field is 46 bytes. This means that if the IP datagram is less than 46 bytes, the 

data field has to be “stuffed” to fill it out to 46 bytes. The network layer uses the length 

field in the IP datagram header to remove the stuffing. 

▪ Cyclic redundancy check (CRC) (4 bytes). The purpose of this field is to allow the 

receiving adapter, adapter B, to detect bit errors in a frame. This field is also called 

Frame Check Sequence (FCS). 

All of the Ethernet technologies provide connectionless service to the network layer. 

That is sending adapter just send frames without first handshaking with receiving 

adapter. Ethernet technologies provide an unreliable service to the network layer so 

when the receiving adapter runs the received frame through the CRC check it neither 

sends a positive acknowledgment when the frame passes the check nor sends a negative 

acknowledgment when the frame fails the check. This lack of reliable transport (at the 

link layer) helps to make Ethernet simple and cheap. But it also means that the stream of 

datagrams passed to the network layer can have gaps. 

 The ability of the application at the receiving host to detect gaps in the stream 

depends on whether the application is using UDP or TCP. If the application is using 

UDP, then the application is the receiving host will indeed see gaps in the data. On the 

other hand, if the application is using TCP, then the TCP in the receiving host will not 

acknowledge the data contained in discarded frames, causing the TCP in the sending 

host to retransmit. Clearly when TCP retransmits data, the data will eventually return to 

the Ethernet adapter at which it was discarded. So broadly speaking, Ethernet does 

retransmit data, although Ethernet is unaware of whether it is transmitting a brand-new 

datagram with brand-new data, or a datagram that contains data that has already been 

transmitted at least once. 
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3.4.2 Ethernet Technologies 

 Ethernet comes in many different flavors which have been standardized by the 

IEEE 802.3 CSMA/CD (Ethernet) working group. Ethernet technologies are indicated 

with acronyms such as 10BASE-T, 10BASE-2, 100BASE-T, 1000BASE-LX and 

10GBASE-T. The first part or the acronym refers to the speed of the standard: 10, 100, 

1000, or 10G, for 10 Megabit per second (Mbps), 100 Mbps, 1 Gigabit per second 

(Gbps), and 10 Gbps respectively. “BASE” refers to the baseband Ethernet, meaning 

that the physical media only carries Ethernet traffic. The final part of the acronym refers 

to the physical media itself; Ethernet is both a link-layer and a physical-layer 

specification and is carried over a variety of physical media including coaxial cable, 

copper wire, and fiber. Generally, a “T” refers to twisted-pair copper wires. 

 To conclude the discussion about Ethernet it is mandatory to consider that the 

today’s Ethernet is very different from the original Ethernet conceived more than 30 

years ago. In the days of bus topologies and hub-based star topologies, Ethernet was 

clearly a broadcast link in which frame collisions occurred when nodes transmitted at the 

same time. To deal with these collisions, the Ethernet standard included the CSMA/CD 

protocol, which is very effective for a wired broadcast LAN spanning a small 

geographical region. But, today, as we saw, the prevalent use of Ethernet is a switch-

based star topology using store-and-forward packet switching. A switch coordinates its 

transmissions and never forward more than one frame onto the same interface at any 

time. Furthermore, modern switches are full duplex, so that a switch and a node can each 

send frames to each other at the same time without interference. So, in a switch-based 

Ethernet LAN there are no collision and, therefore, there is no need for a MAC protocol. 

 

3.5 Industrial Ethernet  

Ethernet allows computers to connect over a network, and without this technology 

the communications as we know them would not be possible. From its inception Ethernet 

has undergone a lot of improvements and today almost any device can be connected to a 

network thanks to it. In industrial automation, sensors and actuators powered with Ethernet 

capabilities are standard the facto so they can be easily connected over a LAN. 

Specialized protocols based on Ethernet, as well as dedicated cables and connectors, 

provide all the necessary properties for application in industrial contexts giving live to the 

Industrial Ethernet. The main Industrial Ethernet protocols are POWERLINK, PROFINET, 
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MODBUS/IP and recently the EtherCAT which has gained a strong reputation thanks to its 

peculiar characteristics like hard real-time support.   

For example, an engine testbed plant using industrial Ethernet automation 

technology can send torque demand data over the network to ensure that the engine is being 

controlled as intended. Such messages are very crucial and must be delivered in real worth 

a disaster.  

In this section we will see how the Ethernet, in its “industrial” version came to the 

scene and we will discuss its characteristics. 

 

3.5.1 Fieldbus Technology 

When dealing with an industrial plant is it necessary to control and monitoring all the 

devices involved in the process, to attain the desired result a connection between the plant and 

the control room must be established. 

In the old days, this kind of connection was obtained by directly wiring the control 

system with the devices that provides the measurement or that actuate the machinery. The 

advancement of the technology and the complexity of the industrial processes have requested 

an increase in the data exchanged with the consequent increment of the number of the wire to 

connect and manage. Clearly this type of connection turned unsustainable very soon because it 

could not be easily handled and extended.    

 

 

Figure 3.7 Cable installation based on conventional wiring. 

A first benefit was given by the introduction of fieldbuses. With fieldbus the components 

were no longer connected with wires but just connected to a common bus using a well-defined 

interface. Adding or removing components became very simple as well as troubleshooting 

management. 
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Figure 3.8 Cable installation based on a fieldbus. 

The main drawback related to the fieldbus technology was the transmission speed, from 

few Kbps to several Mbps, which became the bottleneck as soon as the amount of data 

exchanged increased further due to the increased complexity of automation processes. 

3.5.2 Ethernet for the industry 

Nowadays, the field components are getting smarter and able to take in charge of 

automation tasks in a distributed and decentralized fashion. 

This kind of intelligent devices requires new kind of communication protocols aimed to 

deal with their integrated data exchange needs and capabilities. 

When fieldbus technologies are used it is necessary to deploy gateways to make the 

communication between the field and the systems in the upper levels of the automation hierarchy 

which are based on Ethernet.  Unluckily gateways introduce delay in the transmission, so it is 

not possible to obtain integrated high-speed communications. 

 

 

Figure 3.9 Conventional system extension operating different fieldbus systems 
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To get rid of the gateways and their related drawbacks, Ethernet protocols must be used 

also at the low levels. This also brings other benefits like reduction of complexity, use of just 

one protocol uniformly, simplification in the maintenance and troubleshooting, overall 

reduction of costs, use of standardized hardware such as cables and connectors.   

 

 

Figure 3.10 System extension based on Ethernet/Industrial Ethernet 

 

Ethernet can not be used as is in an industrial context, indeed it must be modified to be 

suitable for industrial applications, nevertheless the gained advantages are countless: high 

transmission speed (up to 1Gbps), compatibility between devices from different manufactures, 

different protocols can be used seamlessly and at the same time just to mention a few 

 

3.6 EtherCAT 

EtherCAT is a real-time Industrial Ethernet technology originally developed by 

Beckhoff Automation. The protocol is suitable for hard and soft real-time requirements in 

automation technology, in test and measurement and many other applications. EtherCAT was 

introduced in April 2003, and few months later (November 2003) the EtherCAT Technology 

Group (ETG) was founded. Since its foundation ETG has grown into the world’s largest 

Industrial Ethernet and fieldbus organization. 

The focus during the development of EtherCAT was on short cycle times (≤ 100 µs), 

low jitter for accurate synchronization (≤ 1 µs) and low hardware costs. 

 



 

33 

 

3.6.1 Functional principle 

EtherCAT technology overcomes inherent limitations of other Ethernet solutions using 

a new communication approach. In EtherCAT an Ethernet packet is no longer received, then 

interpreted and copied as process data at every connection. The newly developed Fieldbus 

Memory Management Unit (FMMU) in each I/O terminal sees the frame through a narrow 

data window, reads the data addressed to it “on the fly” and inserts its data in the frame as the 

frame is moving downstream. Each frame is delayed only by hardware propagation delay time, 

that is only few nanoseconds. 

The EtherCAT protocol allows for a single device acting as master within a segment, 

while all other devices are slaves. The master is the only node allowed to actively send an 

EtherCAT frame, all other nodes merely forward frames downstream, the last node in a segment 

detects an open port and sends the frame back to the master using Ethernet technology’s full 

duplex feature. This concept prevents unpredictable delays and guarantees real-time capabilities.  

 

 

Figure 3.11 “on the fly” datagram processing 

Since an Ethernet frame reaches the data of many devices both in send and receive 

direction, the usable data rate increases to over 90 %, and due to the utilization of the full duplex 

feature, the theoretical effective data rate is even higher than 100 Mbps (up to 90 % of two times 

100 Mbps). 

EtherCAT master devices use a standard Ethernet MAC without an additional 

communication processor. This allows a master to be implemented on any hardware platform 

with an available Ethernet port, regardless of which real-time operating system or application 

software is used. The types of available master implementations and their supported functions 

varies. Depending on the target application, optional functions are either supported or purposely 

omitted to optimize the resources utilization. For this reason, EtherCAT master devices are 
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categorized in two classes: Class-A-Master and Class-B-Master. While Class-A-Master is a 

standard EtherCAT master device, the latter is a master device with fewer functions 

recommended for cases in which the available resources are insufficient to support all 

functionalities, such as in embedded systems. 

EtherCAT Slave devices use inexpensive EtherCAT Slave Controller (ESC) in the 

form of an ASIC, FPGA, or integrated in a standard microcontroller, to process frames on the 

fly and entirely in hardware, making network performance predictable and independent of the 

individual slave device implementation. Simple slave devices do not even need an additional 

microcontroller, because the I/Os can be directly connected to the ESC.  
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3.6.2 The EtherCAT protocol 

The EtherCAT protocol is optimized for short cyclic process data (PDO) and its payload 

is embedded in a standard Ethernet frame. The frame is identified thanks to a special identifier 

(0x88A4) in the Type field. An EtherCAT frame may consists of several sub-datagrams, each 

serving a particular memory area of the logical process images that can be up to 4 gigabytes in 

size. The data sequence is independent of the physical order or the Ethernet terminals in the 

network; address can be in any order. 

The Figure 3.12 shows how an EtherCAT payload is embedded in a standard Ethernet 

frame while the Figure 3.13 shows the relationship with the process image. 

 

 

Figure 3.12 EtherCAT in a standard Ethernet frame (according to IEEE 802.3) 

 

As shown in the Figure 3.12, the EtherCAT telegram starts with an Ethernet header, 

followed by the EtherCAT data. The telegram is terminated by a frame check sequence (FCS). 

The EtherCAT data start with an EtherCAT header, followed by EtherCAT datagrams. If the 

entire frame is smaller than 64 bytes, between 1 and 32 padding bytes are inserted at the end of 

the EtherCAT data. The EtherCAT data can contain up to 15 datagrams. A datagram consists of 

a header the data to be read or written and a working Counter. 

The EtherCAT Header is divided into a length specification field (11 bits), one reserved 

bit and a field (4 bit) that specifies the protocol type. EtherCAT slave controllers (ESCs) only 

support EtherCAT commands (type = 0x1). 

The Datagram Header contains information for the EtherCAT command type (8 bits), a 

numerical identifier field (8 bits) used by the master for identifying duplicates of lost datagrams, 

and an address specification field (32 bits). This is followed by a length specification (11 bit) 

indicating the length of the subsequent data within the datagram, two reserved bits, one bit to 
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prevent circulating frames, another reserved bit, another bit to indicate whether another 

EtherCAT datagram follows, and finally an EtherCAT event request register (16 bit). 

Position addressing should only be used during the start-up of the EtherCAT system to 

scan the fieldbus. Later, position addressing should only be used to detect newly added slaves. 

The datagram contains the position address or the address slave device as a negative 

number. Each slave increments this address. The slave that reads this address as zero is 

addressed and will execute the corresponding command as soon as it receives it. 

Node addressing is typically used for register access to individual devices that have 

already been identified. The configured station address is assigned by the master at the start-up 

and cannot be changed by the EtherCAT slave. The configured Station Alias address is stored 

in the EtherCAT slave information EEPROM (ESI-EEPROM) and can be changed by the 

EtherCAT slave. The Configured Station Alias must be activated by the master. The respective 

command is executed if the node address either matches the Configured Station Address or the 

Configured Station Alias. 

Logical addressing supports bitwise assignment of data. Logical addressing reduces 

unnecessary communication content in process data communication. All devices read form and 

write to the same address range of the EtherCAT telegram. Each slave uses a mapping unit, the 

FMMU, to map data from the logical process data image to its local address and memory area. 

The master configures the FMMUs of each slave during start-up. By using the configuration 

information of its FMMUs, a slave knows which part of the logical process data image are to be 

mapped to which local address area and memory area. Different amounts of data can be 

exchanged with each slave, from one bit to a few bytes, or even up to kilobytes of data. 

The Working Counter field is incremented if an EtherCAT device was successfully 

addressed and a read operation, a write operation or a read/write operation was executed 

successfully. Each datagram can be assigned a value for the Working Counter that is expected 

after the telegram has passed through all devices. The master can check whether an EtherCAT 

datagram was processed successfully by comparing the value to be expected for the Working 

Counter with the actual value of the Working Counter after it has passed through all devices. 
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Figure 3.13 Data mapping with the process image 

With EtherCAT, the master device only needs to fill a single frame with new output data 

and send the frame via automatic Direct Memory Access (DMA) to the MAC controller. When 

a frame with new input data is received via the MAC controller, the master device can copy the 

frame again via DMA into the computer’s memory, this avoids that the CPU is actively involved 

in the process. Even if the master controls the flow of data, there are two approaches for slave-

to-slave communication. A slave device can send data directly to another slave that is connected 

further downstream in the network. Since the EtherCAT frames can be processed going forward, 

this type of direct communication strongly depends on the network’s topology. Freely 

configurable slave-to-slave communication always requires the master intervention and takes 

two bus cycles. Despite that, due to EtherCAT high performances, this type of communication 

is still fast. 

 

3.6.3 EtherCAT network topology  

EtherCAT allows for a very flexible network setup by supporting almost all of 

topologies: line, tree, star, or daisy-chain. Network segments or individual node can be either 

connected or disconnected during operation (Hot Connect feature). Very short detection times 

guarantees a smooth changeover. 

EtherCAT also provides a lot of flexibility regarding cable types, this is very important 

because this way each segment in the network can use the type of cable that best meets its needs 

(e.g., fiber optics). Furthermore, the protocol addition EtherCAT P enables the transmission of 

data and power via one cable. 
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Up to 65535 devices can be connected to one segment, that means networks expansion 

is basically unlimited. 

 

3.6.4 Distributed Clocks for High-Precision Synchronization 

Normally, in an industrial plant various device are spatially distributed to fit the desired 

layout and above all because they cannot all occupy the same physical space. In such a scenario, 

if simultaneous actions are required, exact synchronization is extremely important in order to 

get the whole process done. 

The EtherCAT solution for node synchronization is based on the accurate alignment of 

Distributed Clocks (DC), as described in the new IEEE 1588 standard, which have a high degree 

of tolerance for jitter in the communication system. 

With EtherCAT, the data exchange in fully base on a pure hardware machine. Since the 

communication utilizes a logical ring structure, the mother clock can determine the run-time 

offset to the individual daughter clock (Δt in Figure 3.14) in an extremely accurate way. The 

distributed clocks are adjusted based on this value, which means that a very precise network-

wide time base with a jitter of significantly less than 1 µs is available. Besides synchronization 

the high-resolution distributed clock is also used to provide accurate information about the local 

timing of the data acquisition with a resolution of up to 10 ns. 

 

 

Figure 3.14 Distributed Clock (DC) synchronization method. 

 

3.6.5 EtherCAT State Machine 

The state of the EtherCAT slave is controlled via the EtherCAT State Machine (ESM). 

Depending upon the state, different functions are accessible or executable. The EtherCAT 

master must send specific commands to the slave in each state. 
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Figure 3.15 EtherCAT State Machine (ESM) 

As shown in the Figure 3.15 the states that make up the state machine are the following: 

▪ Init. Represents the starting state. The EtherCAT slave goes in this state just after the 

switch-on. No mailbox or process data communication is possible in this state. 

▪ Pre-Operational. During the transition from the Init state, the EtherCAT slave checks 

whether the mailbox was initialized correctly. In this state mailbox communication is 

possible, but not process data communication. The master initializes the synch manager 

channels for process data, the FMMU channels and, PDO mapping assignment only if 

the slave supports configurable mapping. The settings for the process data transfer are 

also transferred. 

▪ Safe-Operational. During transition from the Pre-Operational state, the EtherCAT slave 

checks whether the sync manager channels for process data communication and, if 

required, the distributed clocks settings are correct. Before it acknowledges the change 

of state, the EtherCAT slaves copies current input data into the associated DP-RAM 

areas of the EtherCAT slave controller (ECSC). In this state mailbox and process data 

communication is possible, although the slave keeps its outputs in a safe state, while the 

input data are updated cyclically. 

▪ Operational. Before the EtherCAT master switches the slave from Safe-Operational to 

Operational it must transfer valid output data. In the Operational state the slave copies 

the output data of the masters to its outputs. Process data and mailbox communication is 

possible. 

▪ Bootstrap. In this state the slave firmware can be updated. This state is reachable only 

from the Init state.  
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3.6.6 EtherCAT network configuration 

To operate a network, the EtherCAT master requires the cyclic process data structure as 

well as boot-up commands for each slave device. These commands can be exported to an 

EtherCAT Network Information (ENI) file with the help of an EtherCAT configuration tool, 

which uses the EtherCAT Slave Information (ESI) files from the connected devices. As 

shown in Figure 3.16, the master uses the information from the ENI file to initialize and 

configure the EtherCAT network.  

 

 

Figure 3.16 EtherCAT network configuration 

 

The ESI files are provided by the vendor of each device. They contain information about 

the device functionality and its setting. The ESI files are processed by a configuration tool to 

generate the ENI file. The ENI file, as shown in Figure 3.17, is parsed by the EtherCAT master 

and the information are used to initialize and configure the network. 

 

 

Figure 3.17 EtherCAT Master architecture 
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An ENI file is in XML format and describes the network topology, the initial commands 

for each device, and commands which must be sent cyclically. This file is provided to the master, 

which sends commands according to this file. The file is created after a network discovery, 

which can be exported or imported. A scan and compile should be redone, if the network 

changes, to regenerate the ENI file. 

 An ESI file is a device description in XML format. This is a fixed file provided by the 

supplier of a given EtherCAT device. The ESI file contains information about the device’s 

functionality and settings. EtherCAT device vendors must provide an ESI file, which is used by 

the configuration tool to compile the network information (e.g., process data structure, 

initialization commands) and create the ENI file. 

 

3.7 Summary 

In this chapter a lot of ground has been laid to understand how a computer network is 

organized and which was the rationale behind the switch from fieldbus to industrial Ethernet in 

the automation domain. EtherCAT has been also introduces. There is a lot to say about the 

arguments covered in this chapter, unfortunately there is not so much space. Anyway, the 

important aspects have been introduced. 
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4 Realtime Operating System and INtime 

 

4.1 Introduction 

This chapter will introduce the concept of Operating Systems (OS), explaining why they 

have been introduced and why they are an essential part of any computer system. The CPU 

scheduling concept and algorithms are also introduced because they are essential to understand 

the difference between OSs. After the OSs have been discussed, the chapter will introduce an 

important family of OSs, namely the real-time OSs (RTOSs) and will compare them with the 

not real-time version. The review of tenAsys’ INtime, the real-time extension for Microsoft 

Windows OS, will conclude the chapter.   

 

4.2 Operating Systems 

An OS is defined as a set of computer programs that act as intermediaries between the 

user of a computer and the computer hardware. The main purpose of an OS is to provide an 

environment in which a user can execute programs in a convenient and efficient manner. 

Internally, OSs are large and complex and vary greatly in their makeup, since they are organized 

along many different lines. In order to better define the OS’s role in the overall computer system 

it is useful to divide the latter roughly into four components, as shown in Figure 4.1: the 

hardware, the OS, the application programs and the users. 

 

 

Figure 4.1 Components of a computer system 

The hardware provides the basic computing resources for the system. The application 

programs define the way in which these resources are used to solve users’ computing problems. 

The OS controls the hardware and coordinates its use among the various application programs 
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for the various users. An OS does not perform useful function by itself, but it provides an 

environment within which other programs can do useful work. 

 

4.2.1 Defining Operating Systems 

Computes are ubiquitous. They are the basis for game machines, music player, cable TV 

tuners, and industrial control systems. Early computers where fixed-purpose systems for 

military and governmental uses and quickly evolved in general-purpose, multifunction 

mainframes, and that is when OSs were born. Computers gained in functionality and shrunk in 

size, leading to a vast number of uses and a vast number and variety of OSs. 

In general, there is no completely adequate definition of an operating system. OSs exist 

because they offer a reasonable way to solve the problem of creating a usable computing system. 

The fundamental goal of computer systems is to execute user programs and to make solving 

user problems easier. Computer hardware is constructed toward this goal. Since bare hardware 

alone is not particularly easy to use, application programs are developed. These programs 

require certain common operations, such a those controlling the I/O devices. The common 

functions of controlling and allocating resources are then brought together into on piece of 

software: the operating system. 

In addition, there is no universally accepted definition of what is part of the OS. A 

common definition is that the OS is the one program running all the times on the computer, 

usually called the kernel. Along with the kernel, there are two other types of programs: system 

programs, which are associated with the OS but are not necessarily part of the kernel, and 

application programs, which include all programs not associated with the operation of the 

system. 

The matter of what constitutes an OS became increasingly important as personal 

computers became more widespread and OSs grew increasingly sophisticated. Today, however, 

if we look at OSs for mobile devices, we see the once again the number of features constituting 

the OS is increasing. Mobile OSs often include not only a core kernel but also middleware, a set 

of software frameworks that provide additional services to application developers. 

One of the most important aspects of OSs is the ability to multiprogram. A single 

program cannot, in general, keep either the CPU or the I/O devices busy at all times. Single 

users frequently have multiple programs running. Multiprogramming increases CPU utilization 

by organizing jobs (code and data) so that the CPU always has one to execute. Multiprogrammed 

systems provided an environment in which the various system resources are utilized effectively, 
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but they do not provide for user interaction with the computer system. Time sharing (or 

multitasking) is a logical extension of multiprogramming. In time-sharing systems, the CPU 

executes multiple jobs by switching among them, but the switches occur so frequently that the 

users can interact with each program while it is running. A time-sharing OS uses CPU 

scheduling and multiprogramming to provide each user with a small portion of a time-shared 

computer. Each user has at least one separate program in memory. A program loaded into 

memory and executing is called a process. Making the decision on which job to load in memory 

and which job to execute involves what is called job scheduling and CPU scheduling, 

respectively. 

 

4.2.2 Operating-System Operations 

Modern OSs are interrupt driven. If there are no processes to execute, no I/O devices to 

service, and no users to whom to respond, an OS will sit quietly, waiting for something to happen. 

Events are signalled by the occurrence of an interrupt or a trap. A trap is a software-generated 

interrupt caused either by an error or by a specific request from a user program that an OS service 

be performed. To ensure proper execution of the OS, user-defined code and OS code must ne 

distinguished. The most common approach is to provide hardware support that allows for 

different mode of execution. 

 

 

Figure 4.2 Transition from user to kernel mode 

At very least, two separate modes of operation are needed in order to distinguish between 

a task that is executed on behalf of the OS and one that is executed on behalf of the user. These 

modes are called user mode and kernel mode. As shown in Figure 4.2, when the computer 

system is executing on behalf of a user application, the system is in user mode. However, when 

a user application requests a service from the OS (via a system call) the system must transition 

from user to kernel mode to fulfil the request. 
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At system boot time, the hardware starts in kernel mode. The OS is then loaded and starts 

user applications in user mode. Whenever a trap or interrupt occurs, the hardware switches from 

user mode to kernel mode, where the system gain control of the computer. The dual mode or 

operations provides the means for protecting the OS from errant users. Systems calls are very 

important because they provide the means for a user program to ask the OS to perform task 

reserved to OS on the user program’s behalf in a secure and controlled way. 

 

4.2.3 Processes, Threads and CPU Scheduling 

A time-shared system executes user programs. Even on a single-user system, a user may 

be able to run several programs at one time. Formally a program is a passive entity, such as a 

file containing a list of instruction stored on disk (often called an executable file), it becomes an 

active entity when it gets executed in a computer system, in this case it is referred more 

appropriately to be a process. A process is more that the program code, which is known as the 

text section. It also includes the current activity, represented by the program counter and the 

content of the processor’s registers. A process generally also includes the process stack, which 

contains temporary data, and a data section which contains global variables. A process may also 

include a heap, which is memory that is dynamically allocated during process run time. 

As a process executes, it changes state. The state of a process is defined in part by the 

current activity of that process. The states in which a process can be vary across OSs, what it is 

important to realize is that only one process can be running on any process at any instant and 

many processes may be ready to be executed or waiting for some event to occur. The state of 

any processes along with many other associated pieces of information is represented in the OS 

by a Process Control Block (PCB). PCB is a very important data structure since it allows the OS 

to switch between processes during execution. 

The process model discussed above has implied that a process is a program that performs 

a single thread of execution. Most modern OSs have extended the process concept to allow a 

process to have multiple threads of execution and thus to perform more than one task at a time. 

Some changes throughout the system are needed to support threads, for instance the PCB is 

expanded to include information for each thread.  

In a single-processor system, only one process can run at time. Others must wait until 

the CPU is free and can be rescheduled. The objective of multiprogramming is to have some 

process running at all times, to maximize CPU utilization. Several processes are kept in memory, 

when one process has to wait or the time-slice is over, the OS takes the CPU away from that 
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process and gives the CPU to another process. Scheduling of this kind is a fundamental OS 

function. Almost all computer resources are scheduled before use. The CPU is one of the 

primary computer resources. Thus, its scheduling is central to OS design. The CPU scheduler is 

also known as short-term scheduler and it may take place under the following four 

circumstances: 

1. When a process switches from the running state to the waiting state (e.g. I/O request). 

2. When a process switches from the running state to the ready state (e.g. interrupt). 

3. When a process switches from the waiting state to the ready state (e.g. I/O completion). 

4. When a process terminates. 

When scheduling takes place only under circumstances 1 and 4, the scheduling scheme 

is said to be nonpreemptive or cooperative. Otherwise, it is preemptive. Under nonpreemptive 

scheduling, once the CPU has been allocated to a process, the process keeps the CPU until it 

releases the CPU either by terminating or by switching to the waiting state. In the case of 

preemptive scheduling the OS can take a process out of execution at any time, unfortunately this 

can result in race conditions when data are shared among several processes. 

In its simple definition, CPU scheduling deals with the problem of deciding which of the 

process ready to be executed in to be allocated the CPU. Different CPU-scheduling algorithms 

have different properties, and the choice of a particular algorithm may favour one class of 

processes over another. Many criteria have been suggested for comparing CPU-scheduling 

algorithms. The criteria include CPU utilization, throughput, turnaround time, waiting time and 

response time. It is desirable to maximize CPU utilization and throughput and to minimize 

turnaround time, waiting time, and response time. In most case, the average measure is 

optimized but under some circumstances the optimization focus is on the minimum or maximum 

values. For example, to guarantee that all users get good service, it is important to minimize the 

maximum response time. 

In the following several CPU-scheduling algorithms are shortly described. 

▪ First-Come, First-Served Scheduling (FCFS). It is by far the simplest scheduling 

algorithm. With this scheme, the process that requests the CPU first is allocated the CPU 

first. The implementation of the FCFS policy is easily managed with a First In First Out 

(FIFO) queue. On the negative side, the average waiting time under the FCFS policy is 

often quite long. Also, the FCFS scheduling algorithm is nonpreemptive. Once the CPU 

has been allocated to a process, that process keeps the CPU until it releases the CPU, 

either by terminating or by requesting I/O. The FCFS algorithm is thus particularly 
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troublesome for time-sharing systems, where it is important that each user get a share of 

the CPU at regular intervals. 

▪ Shortest-Job-First Scheduling (SJF). This algorithm associates with each process the 

length of the process’s next CPU burst. When CPU is available, it is assigned to the 

process that has the smallest next CPU burst. The SJF scheduling algorithm is provably 

optimal, in that it gives the minimum average waiting time for a given set of processes. 

The real difficulty with the SJF is knowing the length of the next CPU request, indeed it 

is approximated as an exponential average of the measured lengths of previous CPU 

bursts. The SJF algorithm can be either preemptive or nonpreemptive. 

▪ Priority Scheduling. With this schema, a priority is associated with each process, and 

the CPU is allocated to the process with the highest priority. Priority scheduling can be 

either preemptive or nonpreemptive. A major problem with priority scheduling 

algorithms is starvation. A process that is ready to run but waiting for the CPU ca be 

considered blocked so a priority scheduling algorithm can leave some low-priority 

processes waiting indefinitely. 

▪ Round-Robin Scheduling (RR). The RR scheduling algorithm is designed especially 

for time-sharing systems. A small unit or time, called a time quantum or time slice, is 

defined. The ready queue is treated as a circular queue. The CPU scheduler goes around 

the ready queue, allocation the CPU to each process for a time interval of up to one-time 

quantum. 

▪ Multilevel Queue Scheduling. This class of scheduling algorithms has been created for 

situations in which processes are easily classified into different groups with different 

response-time requirements and consequently with different scheduling needs. A 

multilevel queue algorithm partitions the ready queue into several separate queues each 

of which has its own scheduling algorithm. Each queue has a level of priority from high 

level to low level. No process in a low-level queue can run unless the high-level queues 

are not all empty. If a high-level process enters the ready queue while a low-level process 

is running the latter would be preempted. Normally, when this scheduling algorithm is 

used, processes are permanently assigned to a queue when they enter the system. There 

are two slightly different approaches to this schema: time-slice among the queue or 

allows a process to move between queues of different priorities obtaining, in this case, 

the Multilevel Feedback Queue Scheduling version of the algorithm which can be 

configured to match a specific system under design. 
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So far, only the processes scheduling on a single processor system has been considered, 

in general there are also scheduling strategies also for threads inside a process and for system 

on multiple-processor machine. In the next section the RTOS will be introduced and the CPU 

scheduling for real-time will be discussed as well. 

 

4.3 Real-time Operating Systems 

General-purpose systems (hardware and software) are tangible and intangible 

components of computer systems where operations are not subject to performance constraints. 

There may be desirable response characteristics, but there are no hard deadline and no 

detrimental consequences other than perhaps poor quality of the service if the response times 

are unusually long. 

In contrast with general-purpose systems, real-time systems are meant to monitor, 

interact with, control, or respond to the physical environment. The interface is through sensors, 

communications systems, actuators, and other input and output devices. Under such 

circumstances, it is necessary to respond to incoming information in a timely manner. Delays 

may prove dangerous or even catastrophic. 

A real-time system is defined as one where 

1. The time at which a response is delivered is as important as the correctness of that 

response. 

2. The consequences of a late response are just as hazardous as the consequence of an 

incorrect response. 

Those requirements that describe how the system should respond to a given set of inputs 

given the current state of the system and what the expected outputs and change of state of the 

system are described as functional requirements. Other requirements are collectively described 

as non-functional requirements, and these include requirements concerning safety, performance, 

fault tolerance, robustness, scalability and security. 

It is very important to understand that real-time systems are not meant to be fast, per se; 

instead they should be just fast enough to ensure that all functional requirements and non-

functional requirements including, but not limited to, performance requirements. 

The defining characteristic of any real-time system are the timing requirements: not only 

must the system respond correctly to inputs, but it must also do so within a specified amount of 

time. Such requirements can generally be categorized as either absolute requirements where the 
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response must occur at defined deadlines, or relative requirements where the response must 

occur within a specified period of time following an event. 

The consequences of failing to satisfy deadlines allows the following categorization of 

real-time systems: 

▪ Hard real-time. Failure to meet a deadline results in a failure and any response, even if 

correct, following the deadline has no value. 

▪ Firm real-time. Failure to meet the occasional deadline will not result in a failure yet 

any response following the deadline has no value, but such a failure will result in a 

degradation of quality of service. 

▪ Soft real-time. The value of a response drops following the passing of a deadline, but 

the response is not wasted. 

In the case of hard and firm real-time, if it can be determined a priori that the deadline 

will not be satisfied, it may be better to not even begin to calculate the response. 

There are two configurations for real-time systems, programs where access to resources 

is direct through machine instructions, and indirect through an intermediate OS that mediates 

such requests. As we already discussed in the previous section, the benefit of having an OS is 

quite clear: each individual task or thread id not dealing with resource management directly. 

The drawback of this approach is that there is inevitably more overhead since it is no longer 

possible to immediately access any resource the system will be slower. 

A real-time operating system (RTOS) is one that guarantees maximum response time for 

functionality such a responding to interrupts and scheduling. Traditional general-purpose 

operating systems have average response times, but they do not have guaranteed response times, 

consequently making them inappropriate for hard real-time systems. 

RTOSs provide basic support for scheduling, resource management, synchronization, 

communication, precise timing, and I/O. 

CPU scheduling for RTOS involves special issues. Soft real-time systems provide no 

guarantee as to when a critical real-time process will be schedule. They guarantee only that the 

process will be given preference over noncritical processes. Hard real-time systems have stricter 

requirements. In the reminder of the section several issues related to processes scheduling will 

be explored. 
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4.3.1 Minimizing latency 

A real-time system is typically waiting for an event in real time to occur. Events may be 

either software or hardware in nature. When an event occurs, the system must respond to and 

service it as quickly as possible. The amount of time elapsed from when an event occurs to when 

it is serviced is called event latency. Different events have different requirements. 

Two types of latencies affect the performance of a real-time systems. 

Interrupt latency is the amount of time from the arrival of an interrupt at the CPU to the 

start of the routine that service the interrupt. It is crucial for RTOSs to minimize the interrupt 

latency to ensure that real-time task receive immediate attention. For hard real-time systems, 

interrupt latency must be bounden to meet the strict requirements of these systems. 

Dispatch latency it the amount of time required to stop one process and start another. 

Providing teal-time task with immediate access to the CPU mandates that RTOSs minimize this 

latency as well. The most effective technique for keeping this latency low is to provide 

preemptive kernels. 

Since both latencies must be minimized the most important feature of a RTOS is to 

respond immediately to a real-time process as soon as the process requires the CPU. As a result, 

the most important component of a RTOS is the scheduler. Arguably such a scheduler must 

support a priority-based algorithm with preemption. 

In the following details of the schedulers used in a RTOS will be presented, but before 

that it is necessary to define some important characteristics of the processes that are to be 

scheduled. First, the processes are considered periodic. That is, they require the CPU at constant 

intervals (i.e. periods). Once a periodic process has acquired the CPU, it has a fixed processing 

time t, a deadline d by which it must be serviced by the CPU, and a period p. The relationship 

of the processing time, the deadline, and the period can be expressed as 0 ≤ t ≤ d ≤ p. The rate 

of a periodic task is 1/p. Figure 4.3 illustrates the execution of a periodic process over time. 

Schedulers can take advantage of these characteristics and assign priorities according to a 

process’s deadline or rate requirements. 

 

 

Figure 4.3 Periodic task 
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What is unusual about this form of scheduling is that a process may have to announce 

its deadline requirements to the scheduler. Then, using a technique known as an admission-

control algorithm, the scheduler does one of two things. It either admits the process, 

guaranteeing that the process will complete on time, or reject the request as impossible if it 

cannot guarantee that the task will be serviced by its deadline. 

▪ Rate-Monotonic Scheduling (RM). The RM scheduling algorithm schedules periodic 

tasks using a static priority policy with preemption. Upon entering the system, each 

periodic task is assigned a priority inversely based on its period. The rationale behind 

this policy is to assign a higher priority to tasks that require the CPU more often. Another 

important assumption is made by the algorithm, that is the processing time of a periodic 

process is the same for each CPU burst. RM scheduling is considered optimal in that if 

a set of processes cannot be scheduled by this algorithm, it cannot be scheduled by any 

other algorithm that assigns static priorities. 

▪ Earliest-Deadline-First Scheduling (EDF).  The EDF scheduling dynamically assigns 

priorities according to deadline. The earlier the deadline, the higher the priority; the later 

the deadline, the lower the priority. Under the EDF policy, when a process becomes 

runnable, it must announce its deadline requirements to the system. Priorities may have 

to be adjusted to reflect the deadline of the newly runnable process. EDF scheduling does 

not require that processes be periodic, nor must a process require a constant amount of 

CPU time per burst. The only requirement is that a process announce its deadline to the 

scheduler when it becomes runnable. Theoretically, EDF scheduling, is optimal since it 

can schedule processes so that each process can meet its deadline requirements and CPU 

utilization will be 100 percent. In practice, however, it is impossible to achieve this level 

of CPU utilization due to the cost of switching between processes and interrupt handling. 

▪ Proportional Share Scheduling. Proportional share schedulers operate by allocating T 

shares among all applications. An application can receive N shares of time, thus ensuring 

that the application will have N/T or the total processor time. Proportional share 

schedulers must work in conjunction with an admission-control policy to guarantee that 

an application receives its allocated shares of time. An admission-control policy will 

admit a client requesting a particular number of shares only if sufficient shares are 

available.  
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4.4 TenAsys® INtime™ 

TenAsys’ INtime is a popular real-time programming environment used in industry, it 

runs on the PC (an inexpensive target hardware platform) either in the same memory space as 

Microsoft Windows or standalone. INtime application can be developed in a familiar and 

popular programming environment like Visual Studio and. Moreover, INtime provides easy-to-

use development tools that address the needs for real-time programming. 

INtime has had a long history going back to the early days of the microprocessors. Intel 

originally developed RMX-86 back in 1978 fir 8086 and 8088 processors. Intel continued to 

develop different version of the OS which became iRMX®, a proprietary or closed OS for each 

new processor that they developed. As the PC was becoming a popular platform in the 1980s, 

iRMX® was modified to take advantage of the features provided with open OSs, thus developers 

could take advantage of running iRMX® with DOS and UNIX. This meant the developers could 

write DOS our UNIX applications and hoot into the iRMX® kernel to get the real-time 

performance the open OS could not provide. In 1993, iRMX® was integrated to run in Windows. 

Intel eventually sold iRMX® to let a more software-focused company continue development. 

Today, TenAsys Corporation has continued the evolvement or the OS. In 1997, the next 

generation of iRMX® was launched as INtime 1.0 to support Windows MT 4.0. Since that time 

TenAsys has won several industry awards including Partner of the Year awards form Microsoft. 

Many companies use INtime today for a variety of applications such as: 

▪ Industrial Control 

▪ Robotics 

▪ Medical Imaging 

▪ Test & Measurement 

▪ CNC Machining 

▪ Process Control 

▪ Radar & Avionics 

▪ Simulation 
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4.4.1 Topology; Local and/or Remote Nodes 

The most important features offered by INtime are the connection to the Microsoft 

Windows OS and the ability to run standalone. 

INtime software supplies an NT Extension (NTX) library that provides real-time 

interface extensions for the Win32 API that allow Windows threads to communicate and 

exchange data with real-time threads within the application. NTX communicates between 

Windows and real-time portions of INtime applications, whether they reside on a single PC, on 

different cores, or on separate computers accessed via an Ethernet connection. NTX supports 

two transport mechanisms depending on the relationships of the nodes and whether they are 

local or remote nodes: Operating System Encapsulation Mechanism (OSEM) transport for the 

local node, and Ethernet transport for remote nodes. INtime can be installed to run together with 

Windows on one PC: this is called local INtime or the local node. Real-time application and 

non-real-time applications (Windows applications) can run and coexist on the same processor, 

or they can run on independent cores. Windows kernel and INtime kernel communicate via the 

NTX library and OSEM transport, which is nothing more than a device driver. In this 

configuration all threads (real-time and non-real-time) share the same memory so data exchange 

is very efficient, they can even share the same memory blocks. 

A remote node runs INtime in a stand-alone configuration. Connection to the Windows 

host is till made via the NTX library locally or over Ethernet transport, utilizing the real-time 

TCP/IP stack for the connection. 

Thanks to local and remote configurations there is the possibility for different real-time 

application topologies. 

 

4.4.2 Windows and INtime Working Together 

The interaction with Windows is a central design feature of INtime. Best of all, INtime 

uses services and communication driver to interact with Windows, thus Windows itself is not 

modified or changed in anyway. The Figure 4.4 shows both OSs put together in a local node, 

they will be described separately and then as a whole in their combination. 
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Figure 4.4 Windows/INtime Integration 

 

The schema in Figure 4.4 shown the Windows stack on the left and the INtime real-time 

stack on the right. 

Windows was designed to run on a variety of hardware architectures; thus, it sits on the 

Hardware Abstraction Layer (HAL) used to separate the hardware layers from the software. One 

of the key features of the HAL is to prevention of user mode application from directly interacting 

with the hardware. Kernel mode drivers are required to interact with the hardware and act as the 

interface to the hardware for user mode applications. Windows applications use the Win32 

API, .NET runtime, or other runtimes to communicate with the system. Within Windows there 

is no support for real-time requirements. 

INtime, on the other hand, was designed to be deterministic and support real-time 

requirements. INtime employs a layered architecture, where applications written with the real-

time API’s interact with the kernel directly. The kernel, in turn, employs an object-structured 

architecture to handle all elements of a real-time application. INtime allows application to talk 

to the hardware directly. The INtime stack a Real-Time API set, based on the Win32 API, has 

been added to support real-time processes that directly access the real-time kernel. In addition, 

some library and driver additions were made to allow both Windows and INtime to run on a 

single processor. The HAL was modified to guarantee determinism, even from within Windows. 

Concurrent operation of both Windows and the real-time kernel is done through a transport 

mechanism called OSEM on a local for a local node. This is the key component that allows 

INtime to fully integrate with the Windows architecture. An NTX API was developed to 

facilitate the interaction between real-time and non-real-time processes. 
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As shown in Figure 4.4, the result is a dual kernel solution that addresses both real-time 

and non-real-time applications. The combined architecture even allows to create Windows 

applications that call real-time threads. 

The different elements of the combined architecture are: 

▪ Real-Time kernel. Provides deterministic scheduling and execution of real-time threads 

within real-time processes. 

▪ Real-Time API, C, and EC++ libraries. Gives direct access to the Real-Time kernel 

services for real-time threads. 

▪ Transport Driver. A driver that converts information to the protocol needed by the 

specified transport mechanism. 

▪ Transport mechanism. The communication protocol used by NTX to communicate 

between Windows and real-time threads. 

▪ Windows HAL. INtime software intercepts some HAL calls to ensure real-time 

performance. 

 

4.4.3 The INtime Real-Time Kernel 

This section will focus on the INtime kernel to illustrate how real-time concepts have 

been implemented. As already discussed, processes, thread, scheduling, and priority handling 

all play a crucial role in the timing of a real-time application. The INtime Kernel employs several 

of these concepts, thus is important to know what the kernel supports in order to write real-time 

applications. 

The INtime Real-Time Kernel provides features for Object Management to create, 

deleting, and work with object types defined by the kernel; for Time Management including a 

real-time clock, alarm that simulate timer interrupts, and the ability to put threads to sleep; for 

Thread Management including scheduling locks which protect the currently running thread from 

being preempted when required; and for Memory Management implementing memory pools 

from which it allocates memory in response to application requests.  

All these different concepts have been integrated into an object-structured architecture. 

That is, the Real-Time Kernel provides basic objects and maintains the data structures that define 

these objects and their related systema calls.  

The objects available in INtime are: 
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▪ Process. Provides an environment for threads and is used to control the resources 

consumed by threads. 

▪ Thread. Performs the work of the system and is the only executable object. Associated 

with each thread are code, data, and a stack. 

▪ Mailbox. Used for passing information between threads. Both object and data mailbox 

are included. 

▪ Semaphore. Used by threads to synchronize runtime operation. 

▪ Region. Used by threads to provide mutual exclusion. 

▪ Port. The mechanism to communicate with an INtime device driver. Used by threads to 

synchronize operations, pass messages, and access INtime services. 

▪ Dynamic Memory. Addressable blocks of memory that threads can use for any purpose. 

▪ Heap. Provides smaller memory units and has features for memory use with a port. 

 

The heart if the kernel is the thread. The kernel’s main job is managing the threads using 

the different priority and scheduling schemes. 

The most important thing to know about Windows and INtime combination is that the 

complete Windows environment with its Win32 processes and threads are embedded in a single 

real-time thread, running at the lowest real-time priority. This means that real-time threads will 

be given high priority and run before any Windows threads. As result, real-time threads always 

preempt running Windows threads, guaranteeing hard determinism for all real-time activities 

within the system. 

Interrupt processing can happen for either kernel. The modified Windows HAL provides 

an intercept mechanism to trap attempts to modify the system clock rate so that the real-time 

kernel can control the system time base, to trap attempts to assign interrupt handlers to interrupts 

reserved for real-time kernel use, and to ensure that interrupts reserved for real-time kernel use 

are never masked by Windows software. 

The modified HAL has also another very important responsibility, that is to provide 

protection against Windows’ crashes. In a real-time system, indeed, a stop caused by a software 

error is unacceptable not to say hazardous. When Windows crashes, usually as a result of a 

condition in a Windows device driver, it shows a blue screen with information and then halts 

the system. The modified HAL changes this behavior by intercepting the crash condition and 

allowing the INtime to continue with all its real-time threads. The occurrence of a Windows 

crash is reported via an event that a real-time thread can wait for it. It is then up to such a thread 

to decide on a continuation, shutdown, or recovery strategy.    
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4.5 Summary 

An OS is a set of programs that manages the computer hardware, as well as providing 

an environment for applications programs to run. OSs ensure an easy and convenient use of the 

system’s resource ensuring correct operation of the computer system. To prevent user programs 

from interfering with the proper operation of the system, the hardware has two modes: user 

mode and kernel mode. Various instructions are privileged and can be executed only in kernel 

mode. OSs must also be concerned with protecting and securing the operating system and the 

users. 

Real-time OSs are designed for embedded environments, such as consumer devices, 

automobiles, and robotics which have stringent time requirements. As the general-purpose 

computers get more and more involved in automation, RTOSs have found their way out the 

embedded world. INtime has been introduced as real-time extension to Microsoft Windows OS. 
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5 TwinCAT 

 

5.1 Introduction 

In the initial implementation phase of the EtherCAT slave component, the network 

segment was not connected to PUMA Open because the application has to be run on a dedicated 

workstation with well-defined characteristics in terms of hardware and software to guarantee 

the right execution environment. A very simple EtherCAT master has been implemented on a 

Beckhoff embedded PC acting as a Programmable Logic Controller (PLC) and coupled to the 

EtherCAT network segment via the Beckhoff EtherCAT extension module. The hardware will 

be discussed in the Chapter 6 which will deal with the implementation details. 

This chapter will shortly introduce the concept of PLC and how it is possible to run such 

software in a general-purpose PC thanks to the TwinCAT technology which has been used in 

both engineering and runtime versions.  

 

5.2 What is a Programmable Logic Controller? 

Programmable Logic Controllers (PLCs) are in the computer family. They are used in 

commercial and industrial applications. A PLC monitors inputs, makes decisions based on its 

programs, and controls outputs to automate a process or machine. PLCs often need to work in 

harsh environmental conditions, withstanding head, cold, moisture, vibration and other extreme 

conditions while provide precise, deterministic, and real-time controls to the other parts of the 

industrial automation system. 

In its general form a PLC consists of input modules, a CPU, and output modules. An 

input accepts a variety of digital and analog signals from various field devices and converts them 

into logical signals that can be used by the CPU. The CPU makes decisions and executes control 

instruction based on program instructions in memory. Output modules convert control 

instruction from the CPU into a digital or analog signal that can be used to control various field 

devices. 

Prior to PLCs, many of these controls were solved by hard wiring inputs, outputs, and 

other electrical components in a circuit suitable for a specific task. If an error was made, or a 

change in function or system expansion was needed, and extensive component changes and 

rewiring were required. 
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The same, as well as more complex tasks, can be done with a PLC. Wiring between the 

devices is done in the PLC program. Hard wiring is still required to connect field devices, but it 

is less intensive. Modifying the application and correcting errors are easier to handle since it is 

easier to create and change a program in the PCL than it is to wire and rewire a circuit. 

A PLC executes programs sequentially in real time. The program modules are executed 

at a fixed interval known as PLC scan time. The Figure 5.1 shows the flow diagram for the 

basic mode of operation of a PLC. 

 

 

Figure 5.1 PLC scan flow diagram 

 

When power is connected to the PLC it will start up and load the firmware in the system. 

This will assure that the PLC program is familiar with the connected hardware. After startup all 

output modules are set to the value to which are initialize. It is important that all output have the 

right startup value so that the machine does not carry out any unfortunate actions before the PLC 

program has started. After that the data communication is made via fieldbus. Hereby variables 

are received and sent out to other units. There are several types of fieldbus, but they basically 

have equal functions. Values from all sensors, contacts, breaks, instruments, and components 

on the machine are received from the input modules. The PLC programs are the executed once, 

dependent on the scan time, using the status of the inputs. After the programs execution the 

values are written on the output modules, e.g., new settings to motors/engines, valves, lamps, 

and instruments. The sequence from updating the fieldbus to writing out the values will be 
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repeated, which is one program scan. The scan time depends on the size of the program, the 

number of I/Os, and the amount of communication required. 

The execution of the PLC programs only stops either if the PLC program is set to STOP 

mode, if runtime error occurs, if the PLC is powered off, or there is a loss of power.  

Programming a PLC is simply constructing a set of instructions and it can be made, 

theoretically, with any high-level programming languages like C, PASCAL, FORTRAN, etc. 

However, the use of these programming languages requires some skill in programming and 

PLCs are intended to be used by engineers without any great knowledge in this field. Therefore, 

a set of five special-purpose programming languages have been developed and standardized. 

programming languages are ladder diagrams (LAD), instruction list (IL), sequential function 

charts (SFC), structured text (ST), and function block diagrams (FBD). 

ST is a high-level programming language very similar to the programming language 

PASCAL. ST is developed and standardized by International Electrotechnical commission 

(IEC) in IEC 61131-3 international standard in 1993. ST programming has since 2010 been still 

more often published and used as the favourite PLC programming language. 

ST is a very flexible and universal programming language. The source code can easily 

be copied between different PLC types and be sent around as it is based on text and not graphics 

like the LAD does. Because of its very structured nature, ST is ideal for tasks based on complex 

math, code reuse or decision-making. 

Programs are written as a series of statements separated by semicolons. The statements 

use predefined instructions and subroutines to change variables, these being defined values, 

internally stored values or inputs and outputs. 
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5.3 TwinCAT® 3 

Beckhoff, a German company in automation technology, created a global standard for 

automation with the launch of PC-based technology in 1986. On the software side, the TwinCAT 

(The Windows Control and Automation Technology) automation suite forms the core of the 

control system. The TwinCAT software system turns almost any PC-based system into a real-

time control with multiple PLC, NC, CNC and/or robotics runtime systems. Nearly every kind 

of control application is possible with TwinCAT 3. The user can access different programming 

languages of the IEC 61131-3, even programming with the high-level languages C and C++ as 

well as Matlab/Simulink is possible. These and other attributes show why TwinCAT 3 is also 

called eXtended Automation Technology (XAT). 

TwinCAT 3 provides an eXtended Automation Engineering (XAE) and an eXtended 

Automation Runtime (XAR). 

The XAE helps to simplify the software engineering. Instead of developing stand-alone 

tools, the integration into common and existing software development environments provides 

an expandable and future-proof platform. For TwinCAT 3 this development environment is 

Microsoft Visual Studio. 

The XAR offers a real-time environment, where TwinCAT modules can be loaded, 

executed, and administrated. The individual modules need not be created with the same compiler 

and thus can be programmed independently and by different manufactures or developers. The 

generated modules can be called cyclically from task or by other modules. Several tasks can run 

on one control PC. The number of modules that are called from a task have no fixed limitation 

anymore. A further highlight of TwinCAT 3 is the support of multi-core CPUs. Tasks can be 

individually assigned to the different cores of a CPU so the newest multi-core industrial and 

embedded PCs can be used up to its limits. 

 

5.4 Summary 

PLC is the brain of an industrial automation system. It has replaced the hard-wired 

electrical circuit version of the control with great benefits. Programming environment and 

programming languages are broadly available, and they are so important that they are covered 

by a standard. 

TwinCAT technology from Beckhoff has pushed the PLC to a further level by allowing 

almost any general-purpose PC to be used as industrial controllers. Controllers can now co-exist 

in a common runtime on the same hardware with relative independence from one other. The 
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benefits of centralized control technology are low overall costs, high availability, and the 

possibility to access all information in the system without loss of communication. 
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6 EtherCAT slave implementation 

 

6.1 Introduction 

This chapter will discuss the design and implementation of the EtherCAT slave driver 

which will be evaluated to see whether it is suitable for the integration in Testbed.CONNECT 

application. Now that we have all the background set up, we can also review the state of the art, 

that is the current solution based on the deploy on a master-master coupler, discussing its 

implementation, and its limitations. 

The chapter then will describe the hardware used to build the experimental setup and the 

software installed on each component. 

The implementation of the master and the slave software will be finally described in 

detail. 

 

6.2 State of the art: EtherCAT master-master coupler 

PUMA Open and Testbed.CONNECT both behave as EtherCAT master therefore they 

cannot coexist on the same EtherCAT network segment. To allow the communication, over 

EtherCAT, between the two systems a Master-Master EtherCAT bridge enabling 

communication between two EtherCAT Masters is employed. The Master-Master 

communication is achieved by the Master-Master bridge acting as a EtherCAT Slave on both, 

the primary and the secondary side. The device and the configuration schema are shown in 

Figure 6.1. 

 

 

Figure 6.1 Master-Master EtherCAT bridge 

As EtherCAT bridge the Beckhoff’s EL6692 device is used. The device is shown in 

Figure 6.2.    
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Figure 6.2 Beckhoff’s EL6692 EtherCAT bridge terminal 

The EtherCAT bridge terminal enables real-time data exchange between EtherCAT 

segments with different masters. It also enables synchronisation of the distributed clocks of the 

individual segments. The bridge terminal can also be used for integrating subordinate PC system 

as an EtherCAT slave. 

The bridge cannot be parametrized by just scanning the bus, instead both sides, primary 

and secondary, must be scanned and/or configured in separate ENI (.xml) files. They must be 

parametrized externally with TwinCAT 3.0 from Beckhoff. 

In the parametrization phase it is possible to scan both sides at once if TwinCAT is 

properly configured and two lines for TwinCAT are available. The primary side of the bridge 

terminal is connected to the one free Ethernet port on the computer used for the parametrization 

running Windows OS and the TwinCAT XAE. The secondary side of the bridge is also 

connected to the other free Ethernet port if available, otherwise the scan is executed separately 

in a second step. Then the scan of the network is performed, and the retrieved configuration is 

exported into ENI file, which are copied to appropriate PUMA Open folder on the testbed in 

order to be used later on. 

Once the primary and secondary buses have been scanned a layout similar to the ones 

shown in Figure 6.3 and Figure 6.4 is seen. The data exchanged on the network are shown under 

the I/O entry in the project tree on the left side of the interface. 
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Figure 6.3 Scanned primary side example 

 

 

Figure 6.4 Scanned secondary side example 

 

The input and output on the primary and secondary side are then added. The output 

channels on the primary side of the device must be the input channels on the secondary side of 

the device. The order and data type of input channels or primary side must exactly match output 

channels on secondary side. The order and data type of output channels on primary side must 

exactly match input channels on the secondary side. This allows the correct data exchange 

between the two EtherCAT network segments since data written to input channel of the primary 

side of the bridge is internally transferred to the “corresponding in order” output channel on the 

secondary side. 
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Figure 6.5 Adding channels 

 

As said before, when the parametrization is terminated the configuration of the primary 

and secondary side are exported into ENI files as shown in Figure 6.6. 

 

 

Figure 6.6 Export configuration to ENI (.xml) file 

 

One of the exported ENI files, either the ENI file of the primary or the secondary side, 

is used to setup the EtherCAT master on PUMA Open using either a tool called CobraExplorer 

or providing a specifically generated ETC-General block via PUMA Open. The other ENI file 

is used on the other EtherCAT master, namely the Testbed.CONNECT application. 
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6.3 The hardware 

The implementation and the preliminary assessment were done in an experimental 

environment made by hardware and software components that will be discussed in the reminder. 

Figure 6.7 shows a high-level view of the master-slave experimental setup used in the 

implementation phase. 

 

Figure 6.7 High-level view of the experimental setup 

An industrial PC has been used as development platform as well as to fit in the EtherCAT 

Slave Interface. The industrial PC has been also used to program and manage a compact control 

system with the PLC that controls an EtherCAT master to cyclically read input, make simple 

elaboration and write outputs on the EtherCAT network segment. The EtherCAT network itself 

has a very simple topology, that is, the master and the slave are daisy-chained with the slave 

immediately ending the network by having no other slave connected to the output EtherCAT 

port. The industrial PC was also connected to Internet so it could be reached remotely allowing 

me to work also from home via VPN connection. 

 

6.3.1 The Embedded PC 

An emPC-CX+ embedded PC from Janztec has been used as development workstation 

and to accommodate the EtherCAT Slave Interface. Figure 6.8 shows the embedded PC and its 

schematic rear view. The model is equipped with an Intel core i7-6862EQ and features the 

following hardware configuration: 

▪ Two PCIe expansion slots 

▪ Internal CFast Socket for SATA based SSD modules 

▪ Two 10/100/1000 Mbps Ethernet ports 

▪ Four USB interfaces 

▪ 128 kB of M-RAM which does not require battery backup 

▪ Battery backed up RTC 
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▪ DVI-I display connector 

▪ System Power supply 9—34 VDC 

▪ Reset Push Button and Power LED 

▪ Personality Board for IO expansion: one CAN port, one RS232/RS485 port, digital I/Os 

interface  

 

 

Figure 6.8 Janztec emPC-CX+ and its schematic rear view 

 

6.3.2 The EtherCAT Slave Interface 

The EtherCAT slave interface used in this project is the INpact ECT Slave PCIe interface, 

with standard profile, from Ixxat. This interface belongs to the set of products built by Ixxat for 

Ethernet based industrial communication. These slaves are designed to fulfil the high 

requirements of real time Ethernet protocols. The modular approach of the INpact platform 

allows the interface to be customized. The Ixxat INpact Slave PCIe is available as Common 

Ethernet variant or as pre-configurated protocol specific interface. The Common Ethernet 

variant can be flashed with various Industrial Ethernet protocols and therefore provides instant 

connectivity to all major industrial networks with only one interface. The Ixxat INpact ECT 

Slave PCIe interface is shown in the Figure 6.9. 

 

 

Figure 6.9 Ixxat INpact ECT Slave PCIe interface 
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The slave interface comes with pre-configured EtherCAT protocol so there was no need 

to flash the interface. The EtherCAT slave interface supports the following functions: 

▪ CANopen over EtherCAT (CoE) 

▪ Support for Modular Device Profile 

▪ DS301 compliant 

▪ Customizable identity information 

▪ Emergency support 

▪ Up to 57343 Application Data Instances (ADIs) can be accessed from the network as 

Manufacturer Specific Objects and Device Profile specific Objects in generic mode 

▪ Up to 16383 ADIs can be accessed from the network as Manufacturer Specific Objects 

and Device Profile Specific Object if modular device profile is enabled 

▪ Up to 1486 bytes of fast cyclic I/O in each direction 

▪ File access over EtherCAT (FoE) 

▪ Support for process data remap from the network 

 

Figure 6.10 C40 Ethernet 2-Port block diagram 

 

As shown in Figure 6.10 the heart of the EtherCAT interface is the Anybus CompactCom 

C40 high-performance network communication solution in chip format. It consists of the 

Anybus NP40 network processor loaded with the software needed to connect an industrial 

device to the EtherCAT industrial Ethernet network. The Anybus CompactCom C40 solution is 

provided by HMS company and includes all the functionality needed to handle communication 

between a device and any industrial network or fieldbus. The chip-based solution gives a lot of 

freedom to design the hardware and add connectors around the chip. 
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The CompactCom C40 solution with the Anybus NP-40 chip integrates HMS unique 

interface protocol to provide very low latency and deterministic real-time for demanding 

industrial application like motion control. The Real-Time Accelerator (RTA) works on several 

levels form on-the-fly protocol pre-processing on the network controller level to a zero delay 

API which guarantees instant access to network control data. 

The EtherCAT interface has been connected to one of the two PCIe extension slot as can 

be seen in the Figure 6.11. 

 

Figure 6.11 Slave ECT Interface connected in the PCIe slot 

 

6.3.3 The EtherCAT Master 

The EtherCAT Master has been realized using an embedded PC coupled with an 

EtherCAT extension interface from Beckhoff. The EtherCAT master setup is shown in Figure 

6.12.  

 

 

Figure 6.12 The EtherCAT Master setup 

 

The embedded system is the compact full-fledged PC CX9020 by Beckhoff. In its basic 

configuration it provides two MicroSD card slots, two switched RJ45 Gbit-Ethernet interfaces, 
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four USB 2.0 interfaces, and a DVI-D interface. The connection for the Beckhoff I/O systems 

is directly integrated in the CPU module. The unit offers automatic bus system identification 

and independently switches in the corresponding mode. The CX9020 comprises the CPU with 

internal RAM and 128 kB NOVRAM as non-volatile memory. The RJ45 interfaces are 

connected to an internal switch and offer a simple option for creating a line topology without 

the need for additional Ethernet switches. 

The EtherCAT master is coupled to the EtherCAT bus by the Beckhoff EK1110 device. 

The EK1110 EtherCAT extension is connected to the end of the EtherCAT Terminal block. The 

terminal offers the option o connecting an Ethernet cable with RJ45 connector, thereby 

extending the EtherCAT strand electrically. In the EK1110 terminal, the signals are converted 

on the fly to 100BASE-TX Ethernet signal representation. No parametrisation or configuration 

tasks are required. 
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6.4 The software 

In this section we will discuss the different software used to implement the master and 

the client components running on the EtherCAT network segment built for the development and 

for the experimental phase. The software applications are installed on the two embedded 

computers, the Janztec emPC-CX+ and the Beckhoff CX9020 so the discussion will be divided 

referring to the two systems. 

6.4.1 Software on Janztec emPC-CX+ 

The following software has been installed on the Janztec emPC-CX+ industrial PC. 

 

Microsoft Windows 10 

The industrial PC is powered by the Microsoft Windows 10 Pro 64-bit OS. Windows 10 

is developed by Microsoft and released as part of its Windows NT family. It is the successor of 

Windows 8.1, released nearly two years earlier, and broadly provided to the generic public on 

July 29, 2015. 

Windows 10 makes its user experience and functionality more consistent between 

different classes of devices and addresses most of the shortcoming in the user interface that were 

introduced in the previous version. It can reduce its storage footprint, by automatically compress 

system files, by approximately 1.5 GB for 32-bit systems and 2.6 GB for 64-bit systems. 

Windows 10 includes many new features and brings back an improved version of the 

Start Menu, which was removed in Windows 8. Another major change is the introduction of the 

Edge web browser designed to replace Internet Explorer. Other new features include Continuum, 

which automatically optimize the user interface depending on whether an external keyboard or 

a touchscreen is used. Windows 10 also supports multiple desktops on a single monitor. 

 

TenAsys’ INtime 

TenAsys’ INtime version 6.1 is installed as RTOS extension for Microsoft Windows 10. 

With INtime applications running on a single PC, the INtime runtime environment encapsulates 

all Windows processes and threads into a single RT thread of lowest priority as shown in Figure 

6.13. As a result, RT threads always preempt running Windows threads, guaranteeing hard 

determinism for RT activities within the system. 
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Figure 6.13 Threads priority and hardware 

INtime has been configured to use two nodes, namely Node A and Node B. A node is an 

instance of the INtime operating system, including the kernel and the applications that are 

running on it. Hyper-threaded and multicore processors can run several nodes simultaneously. 

Each node may be assigned to a hardware thread. The default configuration of INtime for 

Windows OS 32-bit is for Windows and INtime to share a hardware thread. 63-bit versions of 

Windows require every INtime node to have its own dedicated hardware thread. 

The INtime installation also provides a set of tools created to assist during the 

development of RT applications. 

▪ INtime Configuration Panel Utility provides a way to change INtime parameters, such 

as the size of the memory pool and the location of remote nodes. The utility contains 

smaller applets. 

 

Figure 6.14 INtime Configuration Panel 

▪ INtime Graphical Jitter measures the minimum, maximum, and average time between 

low-level ticks via an Alarm Event handler. 
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Figure 6.15 Jitter Utility 

▪ INScope collects data on thread switching and displays that in various ways. INScope 

helps to see the timing between threads and allows to adjust programs via priority 

levels or time slicing, and debug threading problems. 

 

Figure 6.16 INScope 

▪ INtime Explorer displays object inside an INtime node. The INtime Explorer can be 

connected to more than one node at the same time. An objects tree pane is shown on 

a left pane and the current object’s details are shown in the right pane. Each tree starts 

with the root process for a given node. Directly below the root process, the first-level 

processes and all other objects owned by the root process are shown. Beside its use 

as an explorer of objects, the INtime Explorer can also be used to collect information 

on a crashed process and save it for later analysis.  
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Figure 6.17 INtime Explorer 

▪ RT Application Loader loads an RT application (.rta) into the RT kernel’s memory 

area. The RT kernel then starts the application. 

 

 

Figure 6.18 INtime RT Application Loader 

Microsoft Visual Studio 2019 

Microsoft Visual Studio 2019 is an integrated development environment (IDE) by which 

computer programs can be developed. The IDE provides a powerful code editor supporting code 

completion and code refactoring functionalities. An integrated debugger is also provided. The 

debugger can work both as a source-level debugger and a machine-level debugger. Other built-

in tools include a code profiler, designer for build GUI applications, web designer, class designer, 

and database schema designer. 

A very powerful feature it the ability to accept plug-ins that expand the functionality at 

almost every level as adding new toolsets like editors and visual designers for domain-specific 

languages or toolset for other aspects in the software development lifecycle. 
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Visual Studio supports 36 different programming languages and allows the code editor 

and debugger to support nearly any programming language, provided a language-specific 

service exists. Programming language, solution or tools are not supported intrinsically; instead, 

functionalities are plugged-in coded as a VSPackage. When installed, any new functionality is 

available as a Service. The IDE provides three services: SVsSolution, which provides the ability 

to enumerate projects and solutions; SVsUIShell, which provides windowing and UI 

functionality; and SVsShell, which deals with registration of VSPackages. In addition, the IDE 

is also responsible for coordinating and enabling communication between services. Visual 

Studio uses Component Object Model (COM) technology to access the VSPackages. 

Support for programming languages is added by using a specific VSPackage called a 

Language Service. A language service defines various interfaces which the VSPackage 

implementation can implement to add support for various functionalities (syntax coloring, 

statement completion, brace matching, parameter information tooltips, members lists, error 

markers, and so on so forth). 

The extensibility by plug-ins will turn very useful, as explained in the reminder, because 

will allow us to collect all the different projects making the final products under a single solution, 

 

TwinCAT 3.1 eXtended Automation Engineering 

The TwinCAT eXtended Automation Engineering (XAE) components represent the 

engineering environment of the TwinCAT 3 control software.  It can be installed either as stand-

alone IDE which is based on the Visual Studio 2013 shell or as a plug-in integrated into Visual 

Studio 2017. The XAE supports the native Visual Studio interfaces allowing for complete 

connection to the source code management systems. The development environment provides 

support for the IEC 61131-3 programming languages (e.g., ST) and the corresponding compilers. 

The XAE components enable the configuration, programming and debugging of 

applications providing functionalities like breakpoints management and online variables 

inspection. 

The Figure 6.19 shows the TwinCAT XAE architecture. 
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Figure 6.19 TwinCAT eXtended Automation Engineering (XAE) architecture 

 

INtime SDK 

The INtime SDK is a software development toolkit for the complete development cycle, 

from code entry to debugging, optimization and run time analysis of an INtime software solution 

whether for INtime for Windows or INtime distributed RTOS or both. The INtime SDK runs on 

any Windows PC platform to debug applications on target systems, either on the same host for 

INtime for Windows or on a remote host, via LAN, for INtime Distributed RTOS. The SDK 

provides everything needed to monitor and analyse the application. 

INtime SDK installs as an integral part of the Microsoft Visual Studio IDE, providing a 

very familiar development platform, while eliminating the need to purchase additional tools or 

learn another environment. Microsoft Visual Studio is the core resource utility for writing and 

debugging INtime software applications. INtime SDK wizard accelerate the development from 

application creation to debugging and optimization so the focus is on the solution. Extensive 

product documentation is also integrated in Microsoft Visual Studio, making technical reference 

information easily available. 

The integrated source-level debugger for Microsoft Visual Studio provides real-time 

process and variable monitoring, and debug, with access to the tool’s most powerful features, 

including conditional breakpoints, variable and register inspection, source-level stepping, and 

watch variables. Real-time faults automatically trigger a choice of debug tools to debug different 

types of CPU exceptions. 

The INtime SDK has been obtained with a time-limited license. Once registered on the 

TenAsys website a request for evaluation form has been filled with all the required information 

then, after the request was approved, an email with the approval and full instruction was sent by 

the company. After the approval has been received it the SDK has been downloaded and 
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installed. The SDK provided a functionality to create a system hardware “fingerprint” which 

has been used by tenAsys to create the license to be installed on the PC. 

 

Ixxat INpact Driver 

For the operation of the EtherCAT slave interface a driver is needed. The Virtual 

Communication Interface (VCI) V4 has been downloaded from the www.ixxat.com web site 

and installed on the PC. The VCI is a system extension intended to enable applications uniform 

access to different Ixxat interfaces. The Figure 6.20 shows the VCI structure and components. 

 

Figure 6.20 VCI structure and components 

As a DLL for Windows the VCI forms the interface between the user application and the 

various Ixxat-Interfaces. A special feature it its uniform programming interface, which allows a 

change between various interface types without adapting the user software. The programming 

interface connect to VCI server and the application program using predefined components, 

interface, and functions. The VCI server manages all the devices in a system-wide global device 

list. When the computer is booted or a connection between device and computer is established 

the device is automatically logged into the server. If a device is no longer available, the device 

is automatically removed from the device list. 

It was not necessary to download and updating the interface with protocol-specific 

firmware since the latest firmware files for the desired protocol were already present on the 

interface. If necessary, the firmware can be replaced or updated by the Anybus Firmware 

Manager II tool. The latest version of the Anybus Firmware Manager II is available for the 

download from www.anybus.com. 

The hardware interface has been installed after the driver software. After restarting the 

OS, the hardware wizard started automatically, and Windows recognized the new hardware and 

http://www.ixxat.com/
http://www.anybus.com/
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found the suitable driver. Once the installation finished the interface was visible in Windows 

Device Manager and ready to use. 

 

TeamViewer 

TeamViewer is proprietary software application for remote control, desktop sharing, 

online meetings, web conferencing and file transfer between computers. 

It has been configured to start automatically when the OS started and with a fixed well-

known password to allow connection even when the remote PC is not supervised. 

 

Remote Display Control 

With the aid of the Remote Display Control program CERHOST, a remote connection 

can be established, and an industrial PC with CE OS can be remotely controlled from a host PC. 

The Remote Display has been activated on the target PC using the Beckhoff Device Manager 

web application. 
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6.4.2 Software on Beckhoff CX9020 

The CX9020 Embedded PC can be ordered with different software options. The current 

software configuration can be ascertained by referring to the information on the name plate. The 

nomenclature for the CX9020 Embedded PC is shown in the Figure 6.21. 

 

 

Figure 6.21 Nomenclature for the CX9020 

Since we have used the CX9020-0115 the following software is installed on the 

embedded PC. 

 

Microsoft Windows Embedded Compact 7 

The Windows Embedded Compact, formerly known as Windows Embedded CE, is an 

OS subfamily developed by Microsoft as part of its Windows Embedded family of products. 

Differently from Windows Embedded Standard, which is based on Windows NT, the Compact 

edition uses a hybrid kernel. The current version of Windows Embedded Compact supports x86 

and ARM processors with board support package. 

Originally, Windows CE was designed for minimalistic and small computers and was a 

modular OS that served as the foundation of several classes of devices such Windows Mobile, 

Handheld PC, and more. The OS is optimized for devices that have minimal memory; the kernel 

may run with one megabyte of memory. Windows CE conforms to the definition of RTOS, with 

a deterministic interrupt latency. The fundamental unit of execution is the thread. This helps to 

simplify the interface and improve execution time. 

Since its first version, Windows CE has evolved into a component-based, embedded, 

RTOS. It is no longer targeted solely at hand-help computers. Many platforms have been based 

on the core Windows CE OS as well as many industrial devices and embedded systems. 

A distinctive feature of Windows CE compared to other Microsoft OSs is that large parts 

of it are offered in source code form so that they could be adapted to the underlay hardware. 

However, core components that do not need adaptation to specific hardware environments (other 

than the CPU family) are distributed in binary only form. 
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TwinCAT 3 eXtended Automation Runtime 

The TwinCAT 3 eXtended Automation Runtime (XAR) components make an 

environment available in which the TwinCAT 3 modules can run, no matter if such modules are 

PLC, Robotic control o C code-based modules. The modular TwinCAT 3 runtime is show in 

Figure 6.22. 

 

 

Figure 6.22 Modular TwinCAT 3 runtime 

In addition to user modules, several system modules are already available which provide 

basic runtime functionality (e.g., TwinCAT real-time). These modules have fixed object IDs 

and are therefore accessible from each module. 

Current developments in computer technology, which offer CPUs with more than one 

cores, enables the distribution of tasks across different cores. The TwinCAT 3 XAR 

environment follows this concept. It can be uses to distribute functional units to dedicated cores. 

For each of the cores used by the runtime environment the maximum load as well as the base 

time and therefore the possible cycle times can be set separately. TwinCAT 3 XAR offers the 

support for core isolation by which it is possible to make individual cores exclusively available 

for the use of TwinCAT. The context changes between TwinCAT and Windows are avoided for 

these cores, which increases the attainable performance still further. 
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Figure 6.23 TwinCAT 3 XAR support for multi-core CPU 

The TwinCAT XAR can be in two main states, either the Config Mode or the Running 

Mode. When the system is in the Config Mode it is possible to flash the code to be run, 

configuring the real-time behavior and set up the process variables. When the system in the 

Running Mode the PLC program is being executed and it also possible to inline monitoring the 

value of all the variables involved in the process.  
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6.5 Project implementation 

In this section the project implementation will discussed in detail.  

For the purposes of explanation only relevant snippets of code will be presented. The 

code in the appendix is authoritative.  

As previously stated, since the different development environments are embedded in 

Visual Studio as plugins, all the projects will be part of the same Visual Studio solution. 

Initially an empty solution in Visual Studio was created using the menu File | New | 

Project…. This operation led to the “Create a new project dialog” where the “Other” project 

type was selected, then the “Blank Solution” project was selected. Once the name and the 

location of the new empty solution was configured the IDE created the project for us. 

 

6.5.1 Implementation of the EtherCAT Master 

This section will show how the master application was implemented. The requirements 

were very simple since we just wanted to create some periodic signals for the data types 

supported by the EtherCAT client. The signals are periodic with a period of one second and the 

PLC task was executed with a scan cycle of one millisecond, so each period will contain 1000 

values. The generated signals consisted in a set of scaled sawtooth (ramp) waveforms except for 

the Boolean data type which was a square waveform instead. 

The PLC program was implemented in TwinCAT with ST programming language. 

A new XAE project was added to the solution, this is achieved by right clicking on the 

solution and selecting the Add | New project… from the pop-up menu and selecting the 

“TwinCAT XAE Project”.  After giving the name to the project it was added to the solution as 

shown in the Figure 6.24. 

 

 

Figure 6.24 The XAE project added to the solution  
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The project did not contain any PLC program yet, so a new one was added explicitly. A 

new PLC project was added by right clicking on the PLC node and selecting the Add new item... 

option from the pop-up menu. This action led to the “Add New Item” dialog shown in Figure 

6.25. 

 

 

Figure 6.25 PLC program creation dialog 

The “Standard PLC Project” was selected form category “PLC Template” in the “Add 

New Item” dialog, this way a new PLC project with a task and an empty PLC program was 

created as shown in Figure 6.26. A “MAIN” program, which is called by a task, is automatically 

created by the selected template. Structured Text (ST) is automatically selected as the 

programming language. 

 

 

Figure 6.26 The PLC program folders structure 
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The project tree consisted in the following main nodes: 

▪ SYSTEM: allows to configure TwinCAT runtime system (XAR) with project specific 

TwinCAT system and Real-Time settings like target selection, license management, 

real-time settings, task execution, and manage routes to target systems. 

▪ PLC: contains PLC projects and all the objects required to create a controlled program. 

It is possible to program several PLC projects and run them on a target device. 

▪ References: contains the reference to the used libraries. The library manager is 

automatically selected with some important standard libraries. For example, the 

Tc2_Standard library contains all the functions and function blocks described in 

the IEC 61131-3 standard. 

▪ DUTs (Data Unit Types): contains the user specific data types like structures, 

aliases, and unions. 

▪ GVLs (Global Variables Lists): allows to declare, edit, and display global 

variables that apply to the whole project. 

▪ POUs (Program Organization Units): allows to organize the program in units as 

defined in the IEC 61131-3 standard. Functions, Function Blocks, ad Programs 

can be added under this node. 

▪ Object Referenced Task: allows to define the program blocks to be executed in a 

task.  

▪ I/O: the I/O configuration is an important part of TwinCAT since it allows to 

configure the field bus with I/O modules. 

▪ Devices: lists the configured input devices and configured output devices (field 

bus cards, NOVRAM, system interface, …) in the target system and their process 

images. 

▪ Mappings: lists information about mappings to other I/O Devices or rather their 

process images. 

 

With all these components in place the PLC program implementation was started. First 

thing some custom data types was defined under the DUTs node like the one shown in Listing 

6.1.  
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Listing 6.1 Custom data type definition 

 

In the Listing 6.1 an array of 16 bits integers was defined as Signal16BitsIntVaulesArray 

data type, the same was also done for different data types. The dimension of the array was 

defined using two global constants defined under the GVLs node. Beside constants also other 

global variables was defined in the GVLs node. These global variables represented the data 

generated by the code provided as output from the device and the data accepted as input by the 

device. The variables were mapped at an incomplete address both in input and in output using 

the %I* and %Q* keywords, respectively. This way the storage locations (addresses) of 

variables are assigned and managed internally by the system even if there is the possibility for 

the programmer to assign a fixed address to individual variables if necessary. No matter how 

the addresses are provided the PLC works with symbolic variables. 

 

Listing 6.2 Global variable definitions 

 

The  Listing 6.2 shows the global variables that were declared to contains the different 

waveforms provided in output and the different variables that can be used as input by the PLC 

program. In particular, the code snipped shows some arrays of scaled sawtooth waveform for 

real, 16 bits integers, and 32 bits integer mapped as output values and some arrays of real, 16 

bits integers, and 32 bits integers mapped as input values that can be received by the device. 

// Definition of an array of 16 bits integers data type 

 

TYPE Signal16BitsIntValuesArray :  

 ARRAY[GVL_MASTER.MIN_ARRAY_IDX ..GVL_MASTER.MAX_ARRAY_IDX] OF INT; 

END_TYPE 

 

[…] 

 

(* OTPUT GLOBALS VARIABLES *) 

 

// sawtooth real out scaled values array 

fSawToothRealOutArray AT %Q*: SignalRealValuesArray; 

// sawtooth out 16 bits signed integer out scaled values array 

iSawtooth16BitIntOutArray AT %Q*: Signal16BitsIntValuesArray; 

// sawtooth out 32 bits signed integer out scaled values array 

iSawtooth32BitIntOutArray AT %Q*: Signal32BitsIntValuesArray; 

  

(* INPUT GLOBALS VARIABLES *) 

 

// real in array 

fSawToothRealInArray AT %I*: SignalRealValuesArray; 

// 16 bits signed integer in 

iSawtooth16BitIntInArray AT %I*: Signal16BitsIntValuesArray; 

// sawtooth in 32 bits signed integer out scaled values array 

iSawtooth32BitIntInArray AT %I*: Signal32BitsIntValuesArray; 

 

[…] 
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All the signals provided as output form the device were generated using utility functions. 

The Listing 6.3 shows the function used to generate the values for the real sawtooth waveforms, 

the same was done for the others signals types. 

 

 

Listing 6.3 Real sawtooth waveforms generation functions 

With reference to the code shown in Listing 6.3, the function 

fcGenerateRealSawToothSignal takes in input a real scale factor and the current time tick as the 

value to be scaled and return a real value obtained as the product of the current time tick and the 

current scale factor. The function fcGenerateRealSawtoothSignals takes the real array to be 

filled with values as input/output variable and the current time tick as the value to be used as 

signal sample. The function then executes a for loop over the array and uses the current subscript 

value as scale factor. The result is then a set of samples each containing a scaled version of the 

provided time tick value. 

The main program was implemented accordingly to the requirement previously stated 

by calling the different versions of the functions that generate the different signals waveform. 

FUNCTION fcGenerateRealSawtoothSignal : REAL 

VAR_INPUT 

 // The signal scale factor 

 fScaleFactor: REAL; 

 // The current time tick 

 iTimeTick: INT; 

END_VAR 

 

fcGenerateRealSawtoothSignal := INT_TO_REAL(iTimeTick) * fScaleFactor; 

 

 

FUNCTION fcGenerateRealSawtoohSignals 

VAR_IN_OUT 

 // the generated signals array 

 fSawtoothRealValuesArray: SignalRealValuesArray; 

END_VAR 

VAR_INPUT 

 // The current time tick 

 iTimeTick: INT; 

END_VAR 

VAR 

 iIndex : INT; 

END_VAR 

 

FOR iIndex := GVL_MASTER.MIN_ARRAY_IDX TO GVL_MASTER.MAX_ARRAY_IDX DO 

 fSawtoothRealValuesArray[iIndex] := fcGenerateRealSawtoothSignal(INT_TO_REAL(iIndex), 

iTimeTick); 

END_FOR 
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Listing 6.4 The PLC task source code 

 

As shown in the Listing 6.4, a local variable is declared at line 3 to count the number of 

ticks, the variable is initialized to zero and incremented by one at every task execution. The 

variable is reset to zero when the max number of tick number, defined as a global constant equal 

to 999, is reached so that between two reset points 1000 values are generates. The current tick 

value is passed to the different functions that generate the different sawtooth waveforms for the 

different data types. Since the PLC task cycle will last one millisecond the signals will have a 

period of one second as required. 

From line 11 to line 13 the square waveform is directly generated without any function 

call. Line 37 increased the current time tick by one in every task execution. 

To run the PLC program some configurations were needed, the following steps were 

executed with TwinCAT in config mode.  

1 PROGRAM MASTER_MAIN 

2 VAR 

3     iTimeTick : INT := 0; 

4 END_VAR 

5  

6 IF iTimeTick = GVL_MASTER.MAX_TICK_COUNT THEN 

7 // reset the time tick when the max is reached 

8     iTimeTick := 0; 

9 END_IF 

10  

11 IF (iTimeTick MOD ((GVL_MASTER.MAX_TICK_COUNT + 1) / 2) = 0) THEN 

12     GVL_MASTER.bSawtoothBoolOut := NOT(GVL_MASTER.bSawtoothBoolOut); 

13 END_IF 

14  

15 // Generate the periodic signals 

16 // Real sawtooths 

17 GVL_MASTER.fSawtoothRealOut := fcGenerateRealSawtoothSignal(1.0, iTimeTick);  

18 fcGenerateRealSawtoohSignals(GVL_MASTER.fSawToothRealOutArray, iTimeTick); 

19  

20 // signed integer sawtooths 

21 GVL_MASTER.iSawtooth8BitsIntOut := fcGenerate8BitsIntSawtoothSignal(1, iTimeTick); 

22 fcGenerate8BitsIntSawtoothSignals(GVL_MASTER.iSawtooth8BitIntOutArray, iTimeTick); 

23 GVL_MASTER.iSawtooth16BitsIntOut := fcGenerate16BitsIntSawtoothSignal(1, iTimeTick); 

24 fcGenerate16BitsIntSawtoothSignals(GVL_MASTER.iSawtooth16BitIntOutArray, iTimeTick); 

25 GVL_MASTER.iSawtooth32BitsIntOut := fcGenerate32BitsIntSawtoothSignal(1, iTimeTick); 

26 fcGenerate32BitsIntSawtoothSignals(GVL_MASTER.iSawtooth32BitIntOutArray, iTimeTick); 

27  

28 // unsigned integer sawtooths 

29 GVL_MASTER.uiSawtooth8BitsIntOut := fcGenerate8BitsUIntSawtoothSignal(1, iTimeTick); 

30 fcGenerate8BitsUIntSawtoothSignals(GVL_MASTER.uiSawtooth8BitUIntOutArray, iTimeTick); 

31 GVL_MASTER.uiSawtooth16BitsIntOut := fcGenerate16BitsUIntSawtoothSignal(1, iTimeTick); 

32 fcGenerate16BitsUIntSawtoothSignals(GVL_MASTER.uiSawtooth16BitUIntOutArray, iTimeTick); 

33 GVL_MASTER.uiSawtooth32BitsIntOut := fcGenerate32BitsUIntSawtoothSignal(1, iTimeTick); 

34 fcGenerate32BitsUIntSawtoothSignals(GVL_MASTER.uiSawtooth32BitUIntOutArray, iTimeTick); 

35  

36 // update the time tick 

37 iTimeTick := iTimeTick + 1; 
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First, a route to the target device in the subnet must be setup to load the code and control 

its execution. To add a route the SYSTEM node is double clicked to access the dialog shown in 

Figure 2.1. 

 

Figure 6.27 The system configuration dialog 

 

Under the General tab the Choose Target… button was clicked to access the Choose 

Target System dialog shown in Figure 6.28. 

 

 

Figure 6.28 The Choose Target System dialog 

Initially only the local route was available. To locate any available targets on the subnet 

the Search (Ethernet)… button was clicked. This operation led to the dialog shown in Figure 

6.29. 
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Figure 6.29 The Add Route Dialog window 

From the Add Route Dialog it was possible to perform a broadcast search over the subnet, 

this operation is used to find any occurrence of the XAR environment and provide the found 

instances to the user. As shown in the Figure 6.29 the Beckhoff CX9020 device was found and 

was added as new route. 

 Secondly the real time environment was configured in terms of hardware resources and 

cycle time. The main resource that was configured is the number of cores to be reserved for the 

real time execution and the way they are reserved. The configuration dialog was accessed by 

double click on the Real-Time node locate under the SYSTEM node and it is shown in Figure 

6.30. 

 

 

Figure 6.30 The Real-Time setting dialog 

The device hardware configuration was read directly from the target. The CX9020 

embedded PC is powered by a single core processor so it possible to used it only in shared mode 
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since computation power is also needed to support the Windows CE OS. If more cores were 

available, it would be possible to assign them exclusively for real time execution. In the case of 

shared core, it is possible to fix the maximum percentage (Core Limit) to be used for real time 

operations. The core limit was fixed to 80% to completely fill the TwinCAT real time, the 

reminder is reserved for Windows. The value was set to that very high value since it is 

automatically reset to Windows when the real time task has completed its cycle. 

The core Base Time was fixed to one millisecond, this limited the duration of the shorter 

possible task cycle to one millisecond. 

In the Real-Time setting dialog is also possible to map the PCL task to the different 

available cores and decide the cycles execution times. The PLCTask task that was responsible 

to execute the master program was assigned to the only available core (Core 0) and its cycle 

time was fixed to one millisecond. 

The task settings are controlled in a dedicated window that is accessible by double 

clicking on the relative task node under the SYSTEM’s Tasks sub node. Figure 6.31 shows the 

settings tab for the PLCTask task. 

The Task tab allows to setup different aspects of a task like the task’s name, the auto-

start property, the task’s execution priority (the lower the number, the higher the priority of the 

task), and the cycle time in ticks (depending upon the pre-set TwinCAT Base Time) of the task. 

As can be seen the task cycle time was fixed to one respect to a base time of one 

millisecond so one task cycle was of one millisecond. 

 

Figure 6.31 The Task setting tab. 

 

At this point everything was ready to start the execution of the PLC program. 
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Once the target device was selected from the Visual Studio TwinCAT section in the tool 

bar the IDE automatically understood that the target architecture was ARMV7 so it was possible 

to build the code accordingly and flash it on the device. The auto start after the flash operation 

was selected so the PLC task execution started immediately. 

The Figure 6.32 shows how the input and output variables for the task were mapped. 

 

Figure 6.32 PLC instance variables 

The TwinCAT Visual Studio plugin allows to login into the target device and to inline 

monitoring all the variables values no matter whether they are local to functions or programs, 

or global. The Figure 6.33 and Figure 6.34 show the inline monitoring of the PLC program 

variables and of the global variables, respectively. 
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Figure 6.33 Inline PLC program variables monitoring 

 

 

Figure 6.34 Inline global variables monitoring 

 

To see the signals generated by the PLC program in more qualitative way a TwinCAT 

measure project was creates. Such project type allows to read the signal values form the target 

through a suitable service and plot them in several way. For the signal generated in this project 

a YT Scope project was created to plot signals as function of time. The Figure 6.35 shows the 

plot for the sawtooth waveform and for the square waveform. 
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Figure 6.35 Plots for the square and sawtooth waveforms 

As can be seen from the plots the square waveform is period with a period of half a 

millisecond, while the sawtooth signal is periodic with a period of one millisecond as expected. 

The Figure 6.36 shows the scaled versions of the sawtooth waveform. 

 

 

Figure 6.36 Plots for the scaled sawtooth waveforms 
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6.5.2 Implementation of the EtherCAT Slave for Windows 

In this section the implementation of the EtherCAT slave under Windows will be 

discussed. The main requirement was that the process data exchanged over the EtherCAT 

network could be set up by reading the configuration from an external file either fixed by default 

or provided by the command line. The EtherCAT interface driver must load the data from that 

file and configure itself accordingly. 

As first action, then, the structure of the configuration file was decided as shown in the 

Listing 6.5.  

 

Listing 6.5 The EtherCAT slave configuration file 

The configuration file must be named <file_name>.cfg, no other file extensions are 

accepted by the system. The content of the file is read line by line by during the configuration 

and no information order was forced, that is every line is self-describing and there is no need to 

organize in the content in sub sections (for example the definition for the input and output 

variable can be mixed). It was required to perform some validity checks of the file content so 

that incorrect configurations due to unsupported data types, mapping direction, and duplicate 

variable names are notified and skipped. 

The file content is defined as follow: 

▪ the ‘@’ character indicates a silent comment (not echoed) up to the end of the line. 

@ Configuration instructions 

@ interface: <Interface S/N>; allows to define the slave board interface serial number. 

@ 

@ <varibale_name>:<variable_type>:<map_direction> allows to map a process variable on the 

EtherCAT slave. 

@ Details: 

@ variable_name: a unique variable name. 

@ variable_type: the variable data types < bool | int8 | uint8 | int16 | uint16 | int32 | 

uint32 | float>. 

@ map_direction: the data direction < in | out >. 

@ Lines that starts with the ‘@’ character are silent comment lines 

@ Lines that starts with the ‘#’ character are echoed comment lines 

 

#Interface serial number 

interface: A04A8FF6 

 

# Input from the PLC 

VarIn_A:uint32:in 

VarIn_B:int16:in 

VarIn_C:float:in 

VarIn_D:bool:in 

 

# Output to the PLC 

VarOut_A:int32:out 

VarOut_B:int8:out 

VarOut_C:bool:out 

VarOut_D:bool:out 

VarOut_E:float:out 
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▪ the ‘#’ character indicates a comment up to the end of the line. This type of comments 

is printed out on the standard output and are meant for debugging. 

▪ interface:<interface_S/N> is used to set the EtherCAT slave interface serial number 

needed to access the hardware during the initialization phase. The line consists in two 

tokens separated by a colon. The first token is the keywork interface whereas the 

second is the hardware serial number. 

▪ <variable_name>:<variable_type>:<map_direction> is used to configure a process 

data. The line consists in three tokens separated by colons. The first token indicates 

the variable name which must be unique in the whole configuration. The second token 

indicates the variable data type; the possible values are:  bool, int8, uint8, int16, uint16, 

int32, uint32, and float. The last token is used to indicate the data direction, that is in 

for process data that goes from the master to the slave, and out for the process data 

that goes the from the slave to the master. 

  

The slave implementation was started form a host application example code provided 

with the driver for the purpose of speed up the development process. The host application 

example code includes an Anybus CompactCom driver (ABCC), which acts as a glue between 

the NP40 chip and the application. The driver has an API that defines a common interface to the 

driver. Also included in the example code is an example application which makes use of the 

API to form a simple application that can be used as base for the final product. The Figure 6.37 

shows the component of the example application. 

 

 

Figure 6.37 The host application components 

Starting from the bottom of the Figure 6.37 there is the INpact Slave hardware interface 

which is accessed by the host system through an adaptation layer. On top of the adaptation layer 
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there is the NP40 chip driver which is accessible by an API sitting right on top of it. The ABCC 

is an important component provided as a façade to the driver API. The ABCC component 

provides a simplified access to the interface by hiding all the needed operation behind a simple 

and intuitive abstraction. 

All the logic is contained in a monolithic main loop which statically configure the 

interface and manage the EtherCAT state machine. 

The application as described so far did not match the requirements for several reasons, 

so the following modification was done. 

First, the static configuration related to the provided example was removed as well as all 

the specific related action from the main loop. Then the project, provided as an executable, was 

converted in a static library project with the C interface shown in the Listing 6.6. 
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Listing 6.6 The C library interface 

The new slave application was developed in C++ programming language, so it was 

possible to leverage the object-oriented aspect of the language while was still possible to call C 

code from the library thanks to the gc++ linker capabilities after including the library API with 

the extern “C” harness. 

The EtherCAT slave is managed by the interface shown in Listing 6.6 and by a set of 

C++ objects that load and provide the process data configuration to the lower layers which 

control the hardware interface. 

The shows a swim-lined activity diagram where the involved components are displayed 

along the performed actions. 

#ifndef IDLINTERFACE_H_ 

#define IDLINTERFACE_H_ 

 

#include "abcc.h" 

 

// DATA STRUCTURES AND TYPES 

 

/*----------------------------------------------------------------------------- 

** Pointer to void function called cyclically 

**-------------------------------------------------------------------------------*/ 

 

typedef void (*APPL_Notify)(); 

 

/*------------------------------------------------------------------------------ 

** Status reported by the ABCC handler controlling the ABCC module 

**------------------------------------------------------------------------------ 

*/ 

typedef enum APPL_AbccHandlerStatus 

{ 

[…] 

} 

APPL_AbccHandlerStatusType; 

 

// EXPORTED INTERFACE 

 

// Initialize the hardware 

// Returns 0 in case of success, > 0 in case of failure 

ABCC_ErrorCodeType InitHardware(char* pszHardwareSerial); 

 

// Register the function to be called when the transfer cycle 

// terminates 

void RegisterNotifyer(APPL_Notify notifier); 

 

// Set the slave configuration 

// Return 0 in case of success, > 0 in case of failure 

int InitConfiguration(const AD_AdiEntryType* psAdiEntry, 

  const AD_DefaultMapType* psDefaultMap, UINT16 iNumAdi); 

 

// Execute the slave loop operations 

void ManageSlave(); 

 

// Shoutdown the driver 

void ShutdownDriver(); 

 

// Release the hardware 

ABCC_ErrorCodeType ReleaseHardware(); 

 

 

#endif // IDLINTERFACE_H_ 
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Figure 6.38 Swim-lined slave driver activity diagram 

When the EtherCAT slave is started the parsing of the command line is performed to 

retrieve the hardware interface’s serial number and the path of the configuration file if any is 

provided. 

The configuration file is then opened and the configuration in terms of hardware 

interface and (Program Data Object) PDO is loaded. If the loading operation succeeded the 

library is called to initialize the hardware. The library called the ABCC glue code which use the 

VCI API to enumerate the available interfaces and dealt with the chosen one. 

Given that the interface is found and correctly opened, the data structures containing the 

ADI specifications are initialized by the SlaveConfigurator object and stored inside the library. 

The driver main cycle is then started. The main cycle managed the EFM and went 

through the EtherCAT slave states form INIT to RUN. In the INIT states the ADIs information 

are flashed on the slave interface to be exchanged on the network in read or write mode. 

The main loop also looked for a minimal user interaction aimed to stop the driver if the 

Q key is pressed. 
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In the run state the library will call a notification call back, if configured, so that the data 

extracted from the network are used and the data to be written on the network are generated. 

Upon termination the driver and the hardware are released. 

The interface toward the client of the driver was implemented in C++, the classes and 

their relationships are shown in Figure 6.39.   

 

 

Figure 6.39 EtherCAT slave driver class diagram 

The Logger class is an interface used by different clients to log information useful to 

debug the driver. Currently the ConsoleLogger class is provided as implementation in order to 

see the log output in the standard output. 

The CommandLineParser class parses the command line parameters. If no parameters 

were provided default values for the interface serial number and for the configuration file path 

are returned. 

The ConfigurationLoader class, using the information from the CommandLineParser, is 

used to load the configuration from a file. The Logger interface is used to output the outcome 

of the loading operation. 

The SlaveConfigurator class converts the configuration load from the file into the data 

structures needed by the ABCC layer to initialize the hardware interface. The SlaveConfigurator 

also creates the data wrappers which contain the variable instances whose memory address is 

used to map the process data into the EtheCAT frame. 

DataValuesGenerator and DataReader are support classes used to generate values to be 

sent over the network and to print the values received form the network on the standard output, 

respectively. 
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The slave interface driver flow is mantained using a state machine. The control of the 

state machine is done by a function that is called cyclically from the main loop. When the 

main loop execution starts the driver enters the initialization state where it is possible to setup 

the interface with the data read from the configuration file. 

To configure the EtherCAT interface the driver requires an array of structures shown in 

the Listing 6.7. The AD_AdiEntry structure contains all the information to map a process 

variable inside an EtherCAT frame.  

 

 

Listing 6.7 The application data instance definition structure 

typedef struct AD_AdiEntry 

{ 

   UINT16   iInstance; 

   char*    pacName; 

   UINT8    bDataType; 

   UINT8    bNumOfElements; 

   UINT8    bDesc; 

   uDataType uData; 

#if(ABCC_CFG_STRUCT_DATA_TYPE) 

   const AD_StructDataType *psStruct; 

#endif 

#if(ABCC_CFG_ADI_GET_SET_CALLBACK) 

   ABCC_GetAdiValueFuncType pnGetAdiValue; 

   ABCC_SetAdiValueFuncType pnSetAdiValue; 

#endif 

} AD_AdiEntryType; 
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The structure contains the following data: 

▪ iInstance is the ADI instance number (1-65535) 

▪ pacName is the name assigned to the ADI 

▪ bDataType allows to indicate the data type 

▪ bNumOfElements indicates the number of elements of data type specified in 

bDataType. 

▪ bDesc is the entry descriptor by which it is possible to indicate whether the variable 

is to be written to or read from the EtherCAT frame 

▪ uDataType contains the pointer (pxValuePtr) to the process variable to be mapped 

on the EtherCAT frame 

▪ pStruct points to a data type that allows to map a whole structure as process data 

▪ pnGetAdiValue points to an optional callback function invoked when getting an 

ADI value 

▪ pnSetAdiValue points to an optional callback function invoked when setting an ADI 

value 

Figure 6.40 shows the relationship between the configuration structures and the process 

data as implemented in the slave driver. The variables pointed by the pxValuePtr are contained 

in a vector of DataWrapper objects which are also managed by the DataReader and the 

DataValuesGenerator to show the data arrived from the master and to write data to the master 

respectively.  

 

 

Figure 6.40 EtherCAT Slave configuration data structures 
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When the configuration is completed the driver enters a new state where is waits for the 

interface to signal that it is ready to communicate. After that, the run state is entered, and the 

data are read and written on the network. Upon termination the driver enters the shutdown state 

so that the interface control is closed, and the hardware is released. 

6.5.3 Implementation of the EtherCAT Slave for INtime 

The driver implementation was also ported in INtime RTOS, since it was necessary to 

assess the performances under the conditions where the driver will eventually be used after the 

integration in Testbed.CONNECT. Unfortunately, it was not possible to have the same 

implementation in C++ due to some problems with the development plugin and the version of 

the standard libraries for which INtime provides its own implementation. 

Apart from this difference the same modules developed in the version of the driver for 

Windows OS was developed, of course in a procedural form. 

For reasons related to the test that will be performed later, a further requirement for the 

INtime version of the driver, was introduced. 

Basically, it was asked to manage the incoming data so that they were provided in 

loopback on the network if variables in the write direction are available. An input value is 

provided to an output value performing a data type cast from the origin to the destination as 

shown in Figure 6.41. The assignment is done respecting the variables positions if they are 

available. 

 

Figure 6.41 Coerced data loopback 

If the data in input and the data in output at the same position were configured to be of 

the same type a perfect value loopback is obtained. 
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6.6 Summary 

PUMA Open and Testbed.CONNECT must live on different EtherCAT network 

segment and communicate through a bridge so that both systems can play as masters on the 

respective segments. Before to integrate the EtherCAT slave support in the Testbed.CONNECT 

the evaluation of the slave’s performance must be assessed. An experimental environment was 

setup using dedicate hardware and a specific driver was developed under Windows OS and 

INtime RTOS. In the next chapter tests and evaluation will be made to draw the conclusion and 

to define the next steps toward the final integration in the Testbed.CONNECT product. 



 

105 

 

7 Results and conclusion 

7.1 Introduction 

Once the EtherCAT Slave driver was developed for Windows OS and for INtime RTOS 

a workshop was organized in AVL Italy’s premises. The purpose of the workshop was to assess 

the performance of the driver and to analyse the results. A Testbed.CONNECT system 

consisting of dedicate hardware and software was available together with a system expert. 

This chapter will discuss the tests performed and the obtained results. Final conclusions 

and future work needed to complete the project will also be presented.  

7.2 Testing and performance evaluations 

The first test performed was to verify the EtherCAT Slave configurability feature as it 

was one of the principal requirements. 

The Listing 7.1 shows the configuration file that was prepared and provided to the driver. 

 

 

Listing 7.1 Test configuration file 

In addition to the EtherCAT interface serial number, some process variables are 

configured. Four variables of different data types are read form the EtherCAT frame, and four 

variable of different data types are written in the EtherCAT frame and provided to the network. 

The EtherCAT Slave driver was started with the given configuration. Figure 7.1 shows 

the result of the configuration loading where the configuration is correctly loaded. 

#Interface serial number 

interface: A04A8FF6 

 

# Input from the PLC 

VarIn_UInt32:uint32:in 

VarIn_Int16:int16:in 

VarIn_Float:float:in 

VarIn_Bool:bool:in 

 

# Output to the PLC 

VarOut_UInt32:uint32:out 

VarOut_Int16:int16:out 

VarOut_Float:float:out 

VarOut_Bool:bool:out 
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Figure 7.1 Result of the configuration loading. 

The loaded configuration is provided to the driver, so the configuration is loaded into the 

EtherCAT Slave interface as shown in Figure 7.2. 

 

 

Figure 7.2 Mapping of the process variable in the slave. 

As can be seen in the Figure 7.2, during the INIT state, four ADIs are correctly mapped 

in the “read” direction (mapped read ADI), and four ADIs are correctly mapped in the “write” 

direction (mapped write ADI). The read and write processes data size were also correct since 

eleven bytes of data matched with the used data types: one 32-bits unsigned integer (4 bytes 

long), one 16-bit signed integer (2 bytes long), one floating point (4 bytes), and a Boolean (1 

byte long). 

Once the EtherCAT Slave is configured a network scan was performed from the 

EtherCAT Master. The scan was made inside TwinCAT with the system in configuration mode. 
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Figure 7.3 The result of the network scan 

Figure 7.3 shows the result of the network scan. As can be seen the EtherCAT Slave was 

correctly found and the process data correspond to the given configuration. 

At this point the TwinCAT configurator was used to map the variables to the PLC 

process data and then the configuration was flashed on the Beckhoff PC to be executed in the 

TwinCAT runtime environment. Figure 7.4 and Figure 7.5 show how the data are correctly 

received in both directions. 

 

 

Figure 7.4 Data written by the PLC and received by the slave. 

 

 

Figure 7.5 Data written by the slave and received by the PLC. 
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A second test was performed to assess the time taken by an EtherCAT frame to traverse 

through the network back to the master. This time is called roundtrip time and it is directly 

calculated by TwinCAT in the EtherCAT tab which becomes available when the EtherCAT 

master device is selected in the IO tree. 

 

 

Figure 7.6 The EtherCAT tab 

Figure 7.6 shows the EtherCAT tab. In the table at the bottom the following information 

are available: 

▪ Frame column shows the number of the cyclic transfer frame, which contains the 

respective EtherCAT command. An EtherCAT transfer frame can contain one or 

more EtherCAT commands. 

▪ Cmd column shows the type of the respective EtherCAT command. 

▪ Addr column shows the address of the data section of the EtherCAT slave device that 

addresses the respective command. If the respective EtherCAT command uses logical 

addressing (LRW, LW or LR), then the column specifies the logical address. 

▪ Len column shows the length of the addressed data section. 

▪ WC column shows the expected “working counter”. Each EtherCAT slave device 

addressed by an EtherCAT command increments the “working counter”. In case of 

read/write command 3 means that both operations are successful. 

▪ Sync Unit column shows the name of the Synch Unit associated with the EtherCAT 

command. 

▪ Cycle (ms) column shows the cycle time with which the transfer frame is sent. 

▪ Utilization (%) column shows the EtherCAT load in percent. 
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▪ Size/Duration (µs) column indicates the size of an EtherCAT frame in bytes and the 

time in microseconds that a frame needs to circulate in the network.  

The test was performed by providing different configuration files increasing the number 

of 4 bytes data types up to the maximum length for the data section in an EtherCAT frame. 

The chart in Figure 7.7 shows the variation of the round-trip time as function of the 

number of bytes and number of variables in the EtherCAT frame.  As can be seen a frame with 

the maximum allowed data length has a round-trip time of almost 100 microseconds as stated 

in the EtherCAT specification.  

 

 

Figure 7.7 EtherCAT frame round trip time as function of the data size 

A third and final test was performed using the Testbed.CONNECT system as EtherCAT 

Master and the EtherCAT Slave executed under the INtime RTOS. The EtherCAT Slave was 

configured with the same configuration file used for the test performed under Windows OS. 

Then the ENI file was exported from TwinCAT and provided to the Testbed.CONNECT 

Navigator which is the application used to configure the system. A simple RT model was 

developed to generate a sawtooth signal and then was executed in real time at the maximum 

allowed frequency of 10KHz so that new data are sent with a cycle time of 100 microseconds. 

The generated signal is periodic with a period of one second so the values from 0 to 9999 are 

generated by the real time model. 

Since was not possible to launch the EtherCAT Slave in the Testbed.CONNECT the 

generated sawtooth signal was looped back in the application to achieve the results. 

The Testbed.CONNECT can measure how many cycles (steps) are necessary to see back 

a value sent previously. 

Figure 7.8 shows the setup that was used to execute the final test. 
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Figure 7.8 The setup for the test with Testbed.CONNECT. 

To launch the real time version of the driver application the hardware interface was first 

provided to INtime node for the control. The operation was performed using the INtime 

configuration application.  

 

 

Figure 7.9 Passing the EtherCAT Slave interface to INtime. 

As shown in Figure 7.9 the INtime Device Manager applet is selected to access the 

INtime Device Manager windows, then the INpact PCIe interface node under Windows devices 

was right clicked and the item Pass to INtime using MSI was selected. The operation was applied 

by clicking on the exclamation mark button in the toolbar. The control of the interface was 

successfully transferred to the NodeA under the INtime devices tree as shown in Figure 7.10. 

 

 

Figure 7.10 EtherCAT slave interface passed to INtime. 
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The real time application is launched by the INtime Explorer application which allowed 

to select the desired .rta file from the system and run it on the desired INtime node. The INtime 

Explores is shown in Figure 7.11. 

 

 

Figure 7.11 INTime Explorer to load and launch real time applications. 

The application was left running for 17 hours (overnight test) and the round-trip time 

was measured. 

The Figure 7.12 shows the result of the round-trip time measured during the test in terms 

of execution steps at 10KHz. As can be seen the delay has a mean value of 4 steps with a 

maximum of 5 steps and a minimum of 3 steps; moreover, no drifts were seen over the whole 

test duration. At a frequency of 10KHz the time delays were respectively 400 µsec, 500 µsec, 

and 300 µsec. 

 

 

Figure 7.12 Delay measured with Testbed.CONNECT @10KHz 
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7.3 Conclusion 

In this thesis a prototype of configurable EtherCAT salve was designed and developed 

for Windows OS and INtime RTOS. The EtherCAT Slave interface board from Ixxat was 

selected as hardware due to the support provided for INtime and the well define API. The 

performance of the EtherCAT protocol were assessed and the implementation proved to match 

what is stated in the specification. Successively the INtime implementation was tested to see 

whether the solution can be adopted in the Testbed.CONNECT application. The result was 

impressive since under the most stringent condition of a model executed in real time at 10KHz, 

300 microseconds of delay was obtained as average. Experts stated that the integration in 

Testbed.CONNECT COBRA real time execution environment will add just another step of 

delay which is still a very good result.   

7.4 Future work 

Writing about the future work is very simple in this case: the EtherCAT Slave must be 

integrated in the Testbed.CONNECT application. 

Testbed.CONNECT, as well as PUMA Open from which it derives, is a very complex 

system with a very large codebase. It is organized as a multi-processes application where a main 

process creates and manages the others using the Component Object Model (COM) technology 

as inter-processes communication technique. The code is developed mainly in C++/CLI (C++ 

modified for the Common Language Infrastructure), which is a complete revision of the 

language that simplifies the now-deprecated Managed C++ syntax and, mainly, provides the 

interoperability with Microsoft .NET languages thus, allowing the use of component and 

libraries written in the C# programming language. There are also components specifically 

developed for INtime RTOS, this to allow correct processing for all the data acquired from the 

field. 

At this moment, due to time constraints, it was not possible for me to acquire all the 

necessary knowledge to be able to integrate the EtherCAT Slave in Testbed.CONNECT. For 

this reason, a meeting with the development team responsible for the product was organized and 

all the information, presentations, documentation, and source code was hand overed. 

No matter if the project was already done, they will get a copy of this thesis as well.     
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7.5 Summary 

This chapter concluded the work done for this thesis. The intention was to design and 

develop an EtherCAT Slave to understand whether one can be integrated in the AVL’s 

Testbed.CONNECT system to replace the current solution based on a master-master coupler. 

An experimental system was setup using an industrial PC in which an EtherCAT Slave interface 

from HSM was installed. The EtherCAT network was completed with a master developed using 

a Beckhoff embedded PC. A simple PLC program was executed in the TwinCAT runtime 

environment. 

The performance analysis of the system provided the desired results, so the project was 

delivered to the Testbed.CONNECT development team for integration and release of the 

updated product.  



 

114 

 

8 Appendix: Software Source Code 

 

8.1 EtherCAT Master (ST source Code) 

1) GVLs: GVL_MASTER 

1 // Contains all the global variables and constants 

2  

3 {attribute 'qualified_only'} 

4 VAR_GLOBAL 

5  (* OUTPUT GLOBALS VARIABLES *) 

6  

7  // sawtooth real out value 

8  fSawtoothRealOut AT %Q*: REAL; 

9  // sawtooth 8 bits signed integer out value 

10  iSawtooth8BitsIntOut AT %Q*: SINT; 

11  // sawtooth 16 bits signed integer out value 

12  iSawtooth16BitsIntOut AT %Q*: INT; 

13  // sawtooth 32 bits signed integer out value 

14  iSawtooth32BitsIntOut AT %Q*: DINT; 

15  // sawtooth 8 bits unsigned integer out value 

16  uiSawtooth8BitsIntOut AT %Q*: USINT; 

17  // sawtooth 16 bits unsigned integer out value 

18  uiSawtooth16BitsIntOut AT %Q*: UINT; 

19  // sawtooth 32 bits unsigned integer out value 

20  uiSawtooth32BitsIntOut AT %Q*: UDINT;  

21  // sawtooth bool out value 

22  bSawtoothBoolOut AT %Q*: BOOL := TRUE; 

23   

24  // sawtooth real out scaled values array 

25  fSawToothRealOutArray AT %Q*: SignalRealValuesArray; 

26  // sawtooth out 8 bits signed integer out scaled values array 

27  iSawtooth8BitIntOutArray AT %Q*: Signal8BitsIntValuesArray; 

28  // sawtooth out 16 bits signed integer out scaled values array 

29  iSawtooth16BitIntOutArray AT %Q*: Signal16BitsIntValuesArray; 

30  // sawtooth out 32 bits signed integer out scaled values array 

31  iSawtooth32BitIntOutArray AT %Q*: Signal32BitsIntValuesArray; 

32  // sawtooth out 8 bits unsigned integer out scaled values array 

33  uiSawtooth8BitUIntOutArray AT %Q*: Signal8BitsUIntValuesArray; 

34  // sawtooth out 16 bits unsigned integer out scaled values array 

35  uiSawtooth16BitUIntOutArray AT %Q*: Signal16BitsUIntValuesArray; 

36  // sawtooth out 32 bits unsigned integer out scaled values array 

37  uiSawtooth32BitUIntOutArray AT %Q*: Signal32BitsUIntValuesArray; 

38   

39  (* INPUT GLOBALS VARIABLES *) 

40   

41  // real in value 

42  fRealValueIn AT %I*: REAL; 

43  // 8 bits integer in value 

44  i8BitsIntValueIn AT %I*: SINT; 

45  // 16 bits integer in value 

46  i16BitsIntValueIn AT %I*: INT; 

47  // 32 bits integer in value 

48  i32BitsIntValueIn AT %I*: DINT; 

49  // 8 bits unsigned integer in value 

50  ui8BitsIntValueIn AT %I*: USINT; 

51  // 16 bits unsigned integer in value 

52  ui16BitsIntValueIn AT %I*: UINT; 

53  // 32 bits unsigned integer in value 

54  ui32BitsIntValueIn AT %I*: UDINT; 

55  // bool in value 

56  bBoolValueIn AT %I*: BOOL; 

57  

58  // real in values array 

59  fRealValuesInArray AT %I*: SignalRealValuesArray; 

60  // 8 bits signed integer in values array 

61  i8BitIntValuesInArray AT %I*: Signal8BitsIntValuesArray; 

62  // 16 bits signed integer in values array 

63  i16BitIntValuesInArray AT %I*: Signal16BitsIntValuesArray; 

64  // 32 bits signed integer in values array 

65  i32BitIntInValuesArray AT %I*: Signal32BitsIntValuesArray; 

66  // 8 bits unsigned integer in values array 

67  ui8BitIntValuesInArray AT %I*: Signal8BitsUIntValuesArray; 

68  // 16 bits unsigned integer in values array 

69  ui16BitIntValuesInArray AT %I*: Signal16BitsUIntValuesArray; 

70  // 32 bits unsigned integer in values array 

71  ui32BitIntInValuesArray AT %I*: Signal32BitsUIntValuesArray; 

72 END_VAR 

73  

74 VAR_GLOBAL CONSTANT 

75  // Minimum signal array subscript 
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76  MIN_ARRAY_IDX: INT := 1; 

77  // Maximum signal array subscript 

78  MAX_ARRAY_IDX: INT := 10; 

79  // Max number of time tick before resetting signal values 

80  MAX_TICK_COUNT: INT := 999; 

81 END_VAR 

 

2) DUTs: Signal16BitsIntValuesArray 

1 // Definition of an array of 16 bits integers data type 

2  

3 TYPE Signal16BitsIntValuesArray :  

4  ARRAY[GVL_MASTER.MIN_ARRAY_IDX ..GVL_MASTER.MAX_ARRAY_IDX] OF INT; 

5 END_TYPE 

 

3) DUTs: Signal16BitsUIntValuesArray 

1 // Definition of an array of 16 bits unsigned integers data type 

2  

3 TYPE Signal16BitsUIntValuesArray :  

4  ARRAY[GVL_MASTER.MIN_ARRAY_IDX ..GVL_MASTER.MAX_ARRAY_IDX] OF UINT; 

5 END_TYPE 

 

4) DUTs: Signal32BitsIntValuesArray 

1 // Definition of an array of 32 bits integers data type 

2  

3 TYPE Signal32BitsIntValuesArray :  

4  ARRAY[GVL_MASTER.MIN_ARRAY_IDX ..GVL_MASTER.MAX_ARRAY_IDX] OF DINT; 

5 END_TYPE 

 

5) DUTs: Signal32BitsUIntValuesArray 

1 // Definition of an array of 32 bits unsigned integers data type 

2  

3 TYPE Signal32BitsUIntValuesArray :  

4  ARRAY[GVL_MASTER.MIN_ARRAY_IDX ..GVL_MASTER.MAX_ARRAY_IDX] OF UDINT; 

5 END_TYPE 

 

6) DUTs: Signal8BitsIntValuesArray 

1 // Definition of an array of 8 bits integers data type 

2  

3 TYPE Signal8BitsIntValuesArray :  

4  ARRAY[GVL_MASTER.MIN_ARRAY_IDX..GVL_MASTER.MAX_ARRAY_IDX] OF SINT; 

5 END_TYPE 

 

7) DUTs: Signal8BitsUIntValuesArray 

1 // Definition of an array of 8 bits unsigned integers data type 

2  

3 TYPE Signal8BitsUIntValuesArray :  

4  ARRAY[GVL_MASTER.MIN_ARRAY_IDX..GVL_MASTER.MAX_ARRAY_IDX] OF USINT; 

5 END_TYPE 

 

8) DUTs: SignalRealValuesArray 

1 // Definition of an array of reals data type 

2  

3 TYPE SignalRealValuesArray :  

4  ARRAY[GVL_MASTER.MIN_ARRAY_IDX ..GVL_MASTER.MAX_ARRAY_IDX] OF REAL; 

5 END_TYPE 

 

9) POUs: fcGenerate16BitsIntSawtoothSignal (FUN) 

1 // Generates a 16 bits integer sample multiplying the current time tick 

2 // by a 16 bits integer scale factor  

3  

4 FUNCTION fcGenerate16BitsIntSawtoothSignal : INT 

5 VAR_INPUT 

6  // The signal scale factor 

7  iScaleFactor: INT; 

8  // The current time tick 

9  iTimeTick: INT; 

10 END_VAR 

11  

12 fcGenerate16BitsIntSawtoothSignal := iTimeTick * iScaleFactor; 
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10) POUs: fcGenerate16BitsIntSawtoothSignals (FUN) 

1 // Generates an array of 16 bits integer samples multiplying the current time tick 

2 // by 16 bits integer scale factors each corresponding to current array subscript  

3  

4 FUNCTION fcGenerate16BitsIntSawtoothSignals 

5 VAR_IN_OUT 

6  // the generated signals array 

7  iSawTooth16BitsIntArray: Signal16BitsIntValuesArray; 

8 END_VAR 

9 VAR_INPUT 

10  // the current time tick 

11  iTimeTick: INT; 

12 END_VAR 

13 VAR 

14  iIndex: INT; 

15 END_VAR 

16  

17 FOR iIndex := GVL_MASTER.MIN_ARRAY_IDX TO GVL_MASTER.MAX_ARRAY_IDX DO 

18  iSawTooth16BitsIntArray[iIndex]:=fcGenerate16BitsIntSawtoothSignal(iIndex,              

19                                                                          iTimeTick); 

20 END_FOR 

 

11) POUs: fcGenerate16BitsUIntSawtoothSignal (FUN) 

1 // Generates a 16 bits unsigned integer sample multiplying the current time tick 

2 // by a 16 bits unsigned integer scale factor  

3  

4 FUNCTION fcGenerate16BitsUIntSawtoothSignal : UINT 

5 VAR_INPUT 

6  // The signal scale factor 

7  iScaleFactor: INT; 

8  // The current time tick 

9  iTimeTick: INT; 

10 END_VAR 

11  

12 fcGenerate16BitsUIntSawtoothSignal := INT_TO_UINT(iTimeTick * iScaleFactor); 

 

12) POUs: fcGenerate16BitsUIntSawtoothSignals (FUN) 

1 // Generates an array of 16 bits unsigned integer samples multiplying the current time tick 

2 // by 16 bits unsigned integer scale factors each corresponding to current array subscript  

3  

4 FUNCTION fcGenerate16BitsUIntSawtoothSignals 

5 VAR_IN_OUT 

6  // the generated signals array 

7  uiSawTooth16BitsIntArray: Signal16BitsUIntValuesArray; 

8 END_VAR 

9 VAR_INPUT 

10  // the current time tick 

11  iTimeTick: INT; 

12 END_VAR 

13 VAR 

14  iIndex: INT; 

15 END_VAR 

16  

17 FOR iIndex := GVL_MASTER.MIN_ARRAY_IDX TO GVL_MASTER.MAX_ARRAY_IDX DO 

18  uiSawTooth16BitsIntArray[iIndex] := fcGenerate16BitsUIntSawtoothSignal(iIndex,  

19                                                                              iTimeTick); 

20 END_FOR 

 

13) POUs: fcGenerate32BitsIntSawtoothSignal (FUN) 

1 FUNCTION fcGenerate32BitsIntSawtoothSignal : DINT 

2 VAR_INPUT 

3  // The signal scale factor 

4  iScaleFactor: INT; 

5  // The current time tick 

6  iTimeTick: INT; 

7 END_VAR 

8  

9 fcGenerate32BitsIntSawtoothSignal := INT_TO_DINT(iTimeTick * iScaleFactor); 

 

14) POUs: fcGenerate32BitsIntSawtoothSignals (FUN) 

1 // Generates an array of 32 bits integer samples multiplying the current time tick 

2 // by 32 bits integer scale factors each corresponding to current array subscript 

3  

4 FUNCTION fcGenerate32BitsIntSawtoothSignals 

5 VAR_IN_OUT 

6  // the generated signals array 

7  iSawTooth32BitsIntArray: Signal32BitsIntValuesArray; 

8 END_VAR 
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9 VAR_INPUT 

10  // the current time tick 

11  iTimeTick: INT; 

12 END_VAR 

13 VAR 

14  iIndex: INT; 

15 END_VAR 

16  

17 FOR iIndex := GVL_MASTER.MIN_ARRAY_IDX TO GVL_MASTER.MAX_ARRAY_IDX DO 

18 iSawTooth32BitsIntArray[iIndex] := fcGenerate32BitsIntSawtoothSignal(iIndex, 

19                                                                      iTimeTick); 

20 END_FOR 

 

15) POUs: fcGenerate32BitsUIntSawtoothSignal (FUN) 

1 // Generates a 32 bits unsigned integer sample multiplying the current time tick 

2 // by a 32 bits unsigned integer scale factor  

3  

4 FUNCTION fcGenerate32BitsUIntSawtoothSignal : UDINT 

5 VAR_INPUT 

6  // The signal scale factor 

7  iScaleFactor: INT; 

8  // The current time tick 

9  iTimeTick: INT; 

10 END_VAR 

11  

12 fcGenerate32BitsUIntSawtoothSignal := INT_TO_UDINT(iTimeTick * iScaleFactor); 

 

16) POUs: fcGenerate32BitsUIntSawtoothSignals (FUN) 

1 // Generates an array of 32 bits unsigned integer samples multiplying the current time tick 

2 // by 32 bits unsigned integer scale factors each corresponding to current array subscript 

3  

4 FUNCTION fcGenerate32BitsUIntSawtoothSignals 

5 VAR_IN_OUT 

6  // the generated signals array 

7  uiSawTooth32BitsIntArray: Signal32BitsUIntValuesArray; 

8 END_VAR 

9 VAR_INPUT 

10  // the current time tick 

11  iTimeTick: INT; 

12 END_VAR 

13 VAR 

14  iIndex: INT; 

15 END_VAR 

16  

17 FOR iIndex := GVL_MASTER.MIN_ARRAY_IDX TO GVL_MASTER.MAX_ARRAY_IDX DO 

18  uiSawTooth32BitsIntArray[iIndex] := fcGenerate32BitsUIntSawtoothSignal(iIndex, 

19                                                                              iTimeTick); 

20 END_FOR 

 

17) POUs: fcGenerate8BitsIntSawtoothSignal (FUN) 

1 // Generates a 8 bits integer sample multiplying the current time tick 

2 // by a 8 bits integer scale factor  

3  

4 FUNCTION fcGenerate8BitsIntSawtoothSignal : SINT 

5 VAR_INPUT 

6  // The signal scale factor 

7  iScaleFactor: INT; 

8  // The current time tick 

9  iTimeTick: INT; 

10 END_VAR 

11  

12 fcGenerate8BitsIntSawtoothSignal := INT_TO_SINT(iTimeTick * iScaleFactor); 

 

18) POUs: fcGenerate8BitsIntSawtoothSignals (FUN) 

1 // Generates an array of 8 bits integer samples multiplying the current time tick 

2 // by 8 bits integer scale factors each corresponding to current array subscript  

3  

4 FUNCTION fcGenerate8BitsIntSawtoothSignals 

5 VAR_IN_OUT 

6  // the generated signals array 

7  iSawTooth8BitsIntArray: Signal8BitsIntValuesArray; 

8 END_VAR 

9 VAR_INPUT 

10  // the current time tick 

11  iTimeTick: INT; 

12 END_VAR 

13 VAR 

14  iIndex: INT; 

15 END_VAR 
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16  

17 FOR iIndex := GVL_MASTER.MIN_ARRAY_IDX TO GVL_MASTER.MAX_ARRAY_IDX DO 

18  iSawTooth8BitsIntArray[iIndex] := fcGenerate8BitsIntSawtoothSignal(iIndex, 

19                                                                          iTimeTick); 

20 END_FOR 

 

19) POUs: fcGenerate8BitsUIntSawtoothSignal (FUN) 

1 // Generates a 8 bits unsigned integer sample multiplying the current time tick 

2 // by a 8 bits unsigned integer scale factor  

3  

4 FUNCTION fcGenerate8BitsUIntSawtoothSignal : USINT 

5 VAR_INPUT 

6  // The signal scale factor 

7  iScaleFactor: INT; 

8  // The current time tick 

9  iTimeTick: INT; 

10 END_VAR 

11  

12 fcGenerate8BitsUIntSawtoothSignal := INT_TO_USINT(iTimeTick * iScaleFactor); 

 

20) POUs: fcGenerate8BitsUIntSawtoothSignals (FUN) 

1 // Generates an array of 8 bits unsigned integer samples multiplying the current time tick 

2 // by 8 bits unsigned integer scale factors each corresponding to current array subscript  

3  

4 FUNCTION fcGenerate8BitsUIntSawtoothSignals 

5 VAR_IN_OUT 

6  // the generated signals array 

7  uiSawTooth8BitsIntArray: Signal8BitsUIntValuesArray; 

8 END_VAR 

9 VAR_INPUT 

10  // the current time tick 

11  iTimeTick: INT; 

12 END_VAR 

13 VAR 

14  iIndex: INT; 

15 END_VAR 

16  

17 FOR iIndex := GVL_MASTER.MIN_ARRAY_IDX TO GVL_MASTER.MAX_ARRAY_IDX DO 

18  uiSawTooth8BitsIntArray[iIndex] := fcGenerate8BitsUIntSawtoothSignal(iIndex, 

19                                                                            iTimeTick); 

20 END_FOR 

 

21) POUs: fcGenerateRealSawtoothSignal (FUN) 

1 // Generates a real sample multiplying the current time tick 

2 // by a real scale factor  

3  

4 FUNCTION fcGenerateRealSawtoothSignal : REAL 

5 VAR_INPUT 

6  // The signal scale factor 

7  fScaleFactor: REAL; 

8  // The current time tick 

9  iTimeTick: INT; 

10 END_VAR 

11  

12 fcGenerateRealSawtoothSignal := INT_TO_REAL(iTimeTick) * fScaleFactor; 

 

22) POUs: fcGenerateRealSawtoohSignals (FUN) 

1 // Generates an array of real samples multiplying the current time tick 

2 // by scale factors each corresponding to current array subscript 

3  

4 FUNCTION fcGenerateRealSawtoohSignals 

5 VAR_IN_OUT 

6  // the generated signals array 

7  fSawtoothRealValuesArray: SignalRealValuesArray; 

8 END_VAR 

9 VAR_INPUT 

10  // The current time tick 

11  iTimeTick: INT; 

12 END_VAR 

13 VAR 

14  iIndex : INT; 

15 END_VAR 

16  

17 FOR iIndex := GVL_MASTER.MIN_ARRAY_IDX TO GVL_MASTER.MAX_ARRAY_IDX DO 

18  fSawtoothRealValuesArray[iIndex]:=fcGenerateRealSawtoothSignal(INT_TO_REAL(iIndex,  

19                                                                      iTimeTick); 

20 END_FOR 
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23) POUs: MASTER_MAIN (PRG) 

1 // This is the main program executed in task with cycle time of one millisecond. 

2 // It generates all the ramps and the rectangular boolean signals,  

3 // the signals are periodic with the periodo equal to one second 

4  

5 PROGRAM MASTER_MAIN 

6 VAR 

7  iTimeTick : INT := 0; 

8 END_VAR 

9  

10 IF iTimeTick = GVL_MASTER.MAX_TICK_COUNT THEN 

11  // reset the time tick when the max is reached 

12  iTimeTick := 0; 

13 END_IF 

14  

15 IF (iTimeTick MOD ((GVL_MASTER.MAX_TICK_COUNT + 1) / 2) = 0) THEN 

16  GVL_MASTER.bSawtoothBoolOut := NOT(GVL_MASTER.bSawtoothBoolOut); 

17 END_IF 

18  

19 // Generate the periodic signals 

20  

21 // Real sawtooths 

22 GVL_MASTER.fSawtoothRealOut := fcGenerateRealSawtoothSignal(1.0, iTimeTick);  

23 fcGenerateRealSawtoohSignals(GVL_MASTER.fSawToothRealOutArray, iTimeTick); 

24  

25 // signed integer sawtooths 

26 GVL_MASTER.iSawtooth8BitsIntOut := fcGenerate8BitsIntSawtoothSignal(1, iTimeTick); 

27 fcGenerate8BitsIntSawtoothSignals(GVL_MASTER.iSawtooth8BitIntOutArray, iTimeTick); 

28  

29 GVL_MASTER.iSawtooth16BitsIntOut := fcGenerate16BitsIntSawtoothSignal(1, iTimeTick); 

30 fcGenerate16BitsIntSawtoothSignals(GVL_MASTER.iSawtooth16BitIntOutArray, iTimeTick); 

31  

32 GVL_MASTER.iSawtooth32BitsIntOut := fcGenerate32BitsIntSawtoothSignal(1, iTimeTick); 

33 fcGenerate32BitsIntSawtoothSignals(GVL_MASTER.iSawtooth32BitIntOutArray, iTimeTick); 

34  

35 // unsigned integer sawtooths 

36 GVL_MASTER.uiSawtooth8BitsIntOut := fcGenerate8BitsUIntSawtoothSignal(1, iTimeTick); 

37 fcGenerate8BitsUIntSawtoothSignals(GVL_MASTER.uiSawtooth8BitUIntOutArray, iTimeTick); 

38  

39 GVL_MASTER.uiSawtooth16BitsIntOut := fcGenerate16BitsUIntSawtoothSignal(1, iTimeTick); 

40 fcGenerate16BitsUIntSawtoothSignals(GVL_MASTER.uiSawtooth16BitUIntOutArray, iTimeTick); 

41  

42 GVL_MASTER.uiSawtooth32BitsIntOut := fcGenerate32BitsUIntSawtoothSignal(1, iTimeTick); 

43 fcGenerate32BitsUIntSawtoothSignals(GVL_MASTER.uiSawtooth32BitUIntOutArray, iTimeTick); 

44  

45 // update the time tick 

46 iTimeTick := iTimeTick + 1; 

 

8.2 Windows EtherCAT Slave (C/C++ source Code) 

1) IDL_interface.h 

1 // This file contains the interface to the IDL library 

2  

3 #ifndef IDLINTERFACE_H_ 

4 #define IDLINTERFACE_H_ 

5  

6 #include "abcc.h" 

7  

8  

9  

10 // DATA STRUCTURES AND TYPES 

11  

12 /*----------------------------------------------------------------------------- 

13 ** Pointer to void function called cyclically 

14 **-------------------------------------------------------------------------------*/ 

15  

16 typedef void (*APPL_Notify)(); 

17  

18 /*------------------------------------------------------------------------------ 

19 ** Status reported by the ABCC handler controlling the ABCC module 

20 **------------------------------------------------------------------------------ 

21 */ 

22 typedef enum APPL_AbccHandlerStatus 

23 { 

24  APPL_MODULE_NO_ERROR,         /* Module OK */ 

25  APPL_MODULE_NOT_DETECTED,     /* No module plugged */ 

26  APPL_MODULE_NOT_SUPPORTED,    /* Unsupported module detected */ 

27  APPL_MODULE_NOT_ANSWERING,    /* Possible reasons: Wrong API selected, defect module */ 

28  APPL_MODULE_RESET,            /* Reset requested from ABCC */ 

29  APPL_MODULE_SHUTDOWN,         /* Shutdown requested */ 

30  APPL_MODULE_UNEXPECTED_ERROR  /* Unexpected error occurred */ 

31 } 
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32 APPL_AbccHandlerStatusType; 

33  

34  

35 // EXPORTED INTERFACE 

36  

37 // Initialize the hardware 

38 // Returns 0 in case of success, > 0 in case of failure 

39 ABCC_ErrorCodeType InitHardware(char* pszHardwareSerial); 

40  

41 void RegisterNotifyer(APPL_Notify notifier); 

42  

43  

44 // Set the slave configuration 

45 // Return 0 in case of success, > 0 in case of failure 

46 int InitConfiguration(const AD_AdiEntryType* psAdiEntry, 

47   const AD_DefaultMapType* psDefaultMap, UINT16 iNumAdi); 

48  

49 // Execute the slave loop operations 

50 void ManageSlave(); 

51  

52 // Shoutdown the driver 

53 void ShutdownDriver(); 

54  

55 // Release the hardware 

56 ABCC_ErrorCodeType ReleaseHardware(); 

57  

58  

59 #endif // IDLINTERFACE_H_ 

 

 

2) IDL_interface.c 

1 // This file contains the implementation of the IDL interface 

2  

3 #include "IDL_interface.h" 

4  

5 #include "abcc.h" 

6 #include "appl_adimap_config.h" 

7 #include "appl_state.h" 

8  

9 #define LOOP_RUN   0 

10 #define LOOP_QUIT  1 

11 #define LOOP_RESET 2 

12  

13 static UINT8 RunUi(); 

14  

15 APPL_Notify notifierFunc = NULL; 

16  

17 ABCC_ErrorCodeType InitHardware(char* pszHardwareSerial) 

18 { 

19  return ABCC_HwInit(FALSE, pszHardwareSerial); 

20 } 

21  

22 void RegisterNotifyer(APPL_Notify notifier) 

23 { 

24     notifierFunc = notifier; 

25 } 

26  

27 int InitConfiguration(const AD_AdiEntryType* psAdiEntry, 

28        const AD_DefaultMapType* psDefaultMap, UINT16 iNumAdi) 

29 { 

30  return ConfigureApplicationData(psAdiEntry, psDefaultMap, iNumAdi); 

31 } 

32  

33 void ManageSlave() 

34 { 

35     UINT8 bLoopState = LOOP_RUN; 

36     APPL_AbccHandlerStatusType eAbccHandlerStatus = APPL_MODULE_NO_ERROR; 

37  const UINT16 iSleepTimeMS = 1; 

38     while (LOOP_QUIT != bLoopState) 

39     { 

40         bLoopState = LOOP_RUN; 

41  

42         eAbccHandlerStatus = APPL_HandleAbcc(); 

43  

44         switch (eAbccHandlerStatus) 

45         { 

46         case APPL_MODULE_NO_ERROR: 

47             break; 

48         case APPL_MODULE_RESET: 

49             APPL_RestartAbcc(); 

50             break; 

51         default: 

52             bLoopState = LOOP_QUIT; 

53             break; 

54         } 

55  
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56         if (bLoopState == LOOP_RUN) 

57         { 

58             bLoopState = RunUi(); 

59         } 

60  

61         switch (bLoopState) 

62         { 

63         case LOOP_RESET: 

64             APPL_RestartAbcc(); 

65             bLoopState = LOOP_RUN; 

66             break; 

67         case LOOP_RUN: 

68             if (notifierFunc && GetAppState() == APPL_RUN) notifierFunc(); 

69         case LOOP_QUIT: 

70         default: 

71             break; 

72         } 

73  

74         if (bLoopState == LOOP_RUN) 

75         { 

76             Sleep(iSleepTimeMS); 

77             ABCC_RunTimerSystem(iSleepTimeMS); 

78         } 

79     } 

80  

81  return; 

82 } 

83  

84  

85 void ShutdownDriver() { 

86  ABCC_ShutdownDriver(); 

87  return; 

88 } 

89  

90  

91 ABCC_ErrorCodeType ReleaseHardware() { 

92  return  ABCC_HwRelease(); 

93 } 

94  

95 static UINT8 RunUi(void) 

96 { 

97     static char   cNewInput; 

98  

99     BOOL8         fKbInput = FALSE; 

100     BOOL8         fRun = TRUE; 
101     UINT8         bRet = LOOP_RUN; 
102  
103     if (_kbhit()) 
104     { 
105         cNewInput = (char)_getch(); 
106         fKbInput = TRUE; 
107  
108         if ((cNewInput == 'q') || (cNewInput == 'Q')) 
109         { 
110             /* 
111             ** Q is for quit. 
112             */ 
113             fRun = FALSE; 
114             bRet = LOOP_QUIT; 
115         } 
116         else if ((cNewInput == 'r') || (cNewInput == 'R')) 
117         { 
118             /* 
119             ** Q is for quit. 
120             */ 
121             fRun = FALSE; 
122             bRet = LOOP_RESET; 
123         } 
124         else 
125         { 
126            // Add here action on other characters if necessary 
127         } 
128     } 
129  
130     fKbInput = FALSE; 
131     return bRet; 
132 } 
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3) ApplicationData.h 

1 // macro definition 

2 constexpr auto DATAIN  = "in"; 

3 constexpr auto DATAOUT  = "out"; 

4  

5 constexpr auto STR_DATABOOL = "bool"; 

6 constexpr auto STR_DATAUINT8 = "uint8"; 

7 constexpr auto STR_DATAINT8 = "int8"; 

8 constexpr auto STR_DATAUINT16 = "uint16"; 

9 constexpr auto STR_DATAINT16 = "int16"; 

10 constexpr auto STR_DATAUINT32 = "uint32"; 

11 constexpr auto STR_DATAINT32 = "int32"; 

12 constexpr auto STR_DATAFLOAT = "float"; 

13  

14  

15 // enumerates the type of application data direction 

16 enum class eAppDataDirection : int { 

17  in = PD_READ, 

18  out = PD_WRITE, 

19  all 

20 }; 

21  

22 // enumerates the type of ABP data direction 

23 enum class eAbpDataDirection : int { 

24  in  = ABP_APPD_DESCR_GET_ACCESS | ABP_APPD_DESCR_MAPPABLE_READ_PD, 

25  out  = ABP_APPD_DESCR_GET_ACCESS | ABP_APPD_DESCR_MAPPABLE_WRITE_PD, 

26 }; 

27  

28 // enumerates the application data types 

29 enum class eAppDataType : int { 

30  boolData = ABP_BOOL, 

31  uint8Data = ABP_UINT8, 

32  int8Data = ABP_SINT8, 

33  uint16Data = ABP_UINT16, 

34  int16Data = ABP_SINT16, 

35  uint32Data = ABP_UINT32, 

36  int32Data = ABP_SINT32, 

37  floatData = ABP_FLOAT, 

38 }; 

39  

40  

41 // The following struct contains the application configuration data 

42 struct stAppConfigData { 

43  std::string variableName; 

44  eAppDataDirection dataDirection; 

45  eAppDataType dataType; 

46 }; 

47  

48 using ConfigDataVect = std::vector<stAppConfigData>; 

49 using ConfigDataItr = ConfigDataVect::iterator; 

50 using ConstConfigDataItr = ConfigDataVect::const_iterator; 

51  

52 using AdiEntriesVect = std::vector<AD_AdiEntryType>; 

53 using AdDefaultMapsVect = std::vector<AD_DefaultMapType>; 

54  

55 #endif // APPLICATIONDATA_H 

 

4) CommandLineParser.h 

1 // This class parses the command line arguments if any in order to extract the configuration file 

name. 

2 // The configuration file name is passed by the option -c if no option is provided or no argument 

after the ooption 

3 // a default file name is returned by the class. The file is named "configuration.cfg" 

4  

5 #ifndef COMMANDLINEPARSER_H_ 

6 #define COMMANDLINEPARSER_H_ 

7  

8 #include <string> 

9  

10 class CommandLineParser 

11 { 

12 public: 

13  CommandLineParser(); 

14  ~CommandLineParser() = default; 

15  void ParseCommandLine(int argc, char ** argv); 

16  const std::string& GetConfigurationFileName() const; 

17  const std::string& GetInterfaceSerialNo() const; 

18  

19 private: 

20  std::string mConfigurationFileName; 

21  std::string mIntefaceSerialNo; 

22 }; 

23  

24 #endif // COMMANDLIEPARSER_H 
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5) CommandLineParser.cpp 

1 #include "CommandLineParser.h" 

2 #include "getopt.h" 

3  

4 constexpr char sDefaultConfigFile[] = "configuration.cfg"; 

5 constexpr char sConfigFileOptionStr[] = "c:s:"; 

6 constexpr char sConfigFileOpt = 'c'; 

7 constexpr char sConfigIntefaceSnOpt = 's'; 

8  

9 CommandLineParser::CommandLineParser() 

10  : mConfigurationFileName(sDefaultConfigFile) 

11  , mIntefaceSerialNo("") 

12 { 

13  return; 

14 } 

15  

16 void CommandLineParser::ParseCommandLine(int argc, char** argv) { 

17  if (argc < 3) { 

18   // not enough parameters to be parsed 

19   return; 

20  } 

21  

22  // seach for the configuration file parameter 

23  int opt; 

24  while ((opt = getopt(argc, argv, sConfigFileOptionStr)) != -1) 

25  { 

26   switch (opt) { 

27   case sConfigFileOpt: 

28    mConfigurationFileName.assign(optarg); 

29    break; 

30   case sConfigIntefaceSnOpt: 

31    mIntefaceSerialNo.assign(optarg); 

32    break; 

33   default: 

34    break; 

35   } 

36  } 

37  

38  return; 

39 } 

40  

41 const std::string& CommandLineParser::GetConfigurationFileName() const 

42 { 

43  return mConfigurationFileName; 

44 } 

45  

46 const std::string& CommandLineParser::GetInterfaceSerialNo() const 

47 { 

48  return mIntefaceSerialNo; 

49 } 
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6) ConfigurationLoader.h 

1 // This class loads the configuration from the provided configuration file name. 

2 // The configuration file contains the interface serial number for the slave interface and the  

3 // variable declaration. We use simple data types no structured data type is supported so far 

4  

5 #ifndef CONFIGURATIONLOADER_H_ 

6 #define CONFIGURATIONLOADER_H_ 

7  

8 #include <string> 

9 #include <vector> 

10 #include <unordered_map> 

11 #include <sstream> 

12 #include "ApplicationData.h" 

13 #include "Logger.h" 

14  

15  

16 class ConfigurationLoader 

17 { 

18 public: 

19  explicit ConfigurationLoader(const SharedLogger& logger, const std::string& 

configurationFileName = "", const std::string& insterfaceSerialNo = ""); 

20  ~ConfigurationLoader(); 

21  const std::string GetInterfaceSerialNo() const; 

22  const char* GetInterfaceSerialNoAsCString() const; 

23  void SetConfigurationFileName(const std::string& configurationFileName); 

24  const bool LoadConfiguration(); 

25  const ConfigDataVect& GetConfigData() const; 

26  

27 private: 

28  void clearConfiguration(); 

29  void parseConfigurationLine(const std::string& configurationLine); 

30  const bool isCommentLine(const std::string& line); 

31  const bool isCommentLineNoEcho(const std::string& line); 

32  const bool checkVariableNameForDuplication(const std::string& variableName) const; 

33  const int checkDataDirection(const std::string& dataDirection) const; 

34  const int checkDataType(const std::string& dataType) const; 

35  

36 private: 

37  SharedLogger mLogger; 

38  std::string mConfigurationFileName; 

39  std::string mInterfaceSerialNo; 

40  ConfigDataVect mConfigData; 

41   

42 private: 

43  static const char cCommentLineMarker; 

44  static const char cCommentLineNoEchoMarker; 

45  static const char cSeparator; 

46  static const std::string cFileExtension; 

47  static const std::string cInterface; 

48  static const std::vector<std::string> cDataDirections; 

49  static const std::unordered_map<std::string, eAppDataType> cDataTypes; 

50 }; 

51  

52 #endif // CONFIGURATIONLOADER_H_ 

 

7) ConfigurationLoader.cpp 

1 #include "ConfigurationLoader.h" 

2  

3 #include <fstream> 

4 #include <iostream> 

5 #include <sstream> 

6 #include "FileSystemHelper.h" 

7 #include "Util.h" 

8  

9 constexpr auto FIRST_TOKEN  = 1; 

10 constexpr auto SECOND_TOKEN  = 2; 

11 constexpr auto THIRD_TOKEN  = 3; 

12 constexpr auto ALL_TOKEN_FOUND = 4; 

13  

14 static std::unordered_map<std::string, eAppDataType> sInitUnorderedtMap() 

15 { 

16  std::unordered_map<std::string, eAppDataType> map; 

17  map[STR_DATABOOL] = eAppDataType::boolData; 

18  map[STR_DATAUINT8] = eAppDataType::uint8Data; 

19  map[STR_DATAINT8] = eAppDataType::int8Data; 

20  map[STR_DATAUINT16] = eAppDataType::uint16Data; 

21  map[STR_DATAINT16] = eAppDataType::int16Data; 

22  map[STR_DATAUINT32] = eAppDataType::uint32Data; 

23  map[STR_DATAINT32] = eAppDataType::int32Data; 

24  map[STR_DATAFLOAT] = eAppDataType::floatData; 

25  return map; 

26 } 

27  

28 const char ConfigurationLoader::cCommentLineMarker = '#'; 



 

125 

 

29 const char ConfigurationLoader::cCommentLineNoEchoMarker = '@'; 

30 const char ConfigurationLoader::cSeparator = ':'; 

31 const std::string ConfigurationLoader::cFileExtension = "cfg"; 

32 const std::string ConfigurationLoader::cInterface = "interface"; 

33 const std::vector<std::string> ConfigurationLoader::cDataDirections = { DATAIN, DATAOUT }; 

34 const std::unordered_map<std::string, eAppDataType> ConfigurationLoader::cDataTypes = 

sInitUnorderedtMap(); 

35  

36  

37 ConfigurationLoader::ConfigurationLoader(const SharedLogger& logger, const std::string& 

configurationFileName, const std::string& interfaceSerialNo) 

38  : mLogger(logger) 

39  , mConfigurationFileName(configurationFileName) 

40  , mInterfaceSerialNo(interfaceSerialNo) 

41 { 

42  mLogger->Log(std::string("Initial data for loader: ") + configurationFileName + "\n\t" + 

interfaceSerialNo); 

43  return; 

44 } 

45  

46 ConfigurationLoader::~ConfigurationLoader() 

47 { 

48  return; 

49 } 

50  

51 const std::string ConfigurationLoader::GetInterfaceSerialNo() const 

52 { 

53  return mInterfaceSerialNo; 

54 } 

55  

56 const char* ConfigurationLoader::GetInterfaceSerialNoAsCString() const 

57 { 

58  return mInterfaceSerialNo.c_str(); 

59 } 

60  

61  

62 void ConfigurationLoader::SetConfigurationFileName(const std::string& configurationFileName) 

63 { 

64  mConfigurationFileName = configurationFileName; 

65  return; 

66 } 

67  

68 const bool ConfigurationLoader::LoadConfiguration() 

69 { 

70  bool isConfigValid = false; 

71  // check for the expected file extension  

72  if(filesystemhelper::CheckFilenameExtension(mConfigurationFileName, cFileExtension) == false ) 

73  { 

74   mLogger->Log(std::string("Invalid file extension; ") + mConfigurationFileName + " 

Exptected: *." + cFileExtension); 

75   return isConfigValid; 

76  } 

77  

78  // open the file and read it 

79  std::ifstream configFileStream(mConfigurationFileName); 

80  if (configFileStream.is_open()) { 

81   // clear any previous configuration 

82   mLogger->Log(std::string("Load configuration from: ") + mConfigurationFileName); 

83   std::string line; 

84   while (std::getline(configFileStream, line)) { 

85    parseConfigurationLine(line); 

86   } 

87  } 

88  else { 

89   mLogger->Log(std::string("Could not open the file:") + mConfigurationFileName ); 

90   return isConfigValid; 

91  } 

92  isConfigValid = mConfigData.size() > 0; 

93  if (isConfigValid == false) { 

94   mLogger->Log("No varibles have been configured"); 

95  } 

96  return isConfigValid; 

97 } 

98  

99 const ConfigDataVect& ConfigurationLoader::GetConfigData() const 

100 { 
101  return mConfigData; 

102 } 
103  
104 void ConfigurationLoader::clearConfiguration() 
105 { 
106  mInterfaceSerialNo.clear(); 

107  mConfigData.clear(); 

108  return; 

109 } 
110  
111 void ConfigurationLoader::parseConfigurationLine(const std::string& configurationLine) 
112 { 
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113  // check for empty line and just ignore it 

114  if (configurationLine.length() == 0) return; 

115  // check for comment line 

116  if (isCommentLine(configurationLine) == true || isCommentLineNoEcho(configurationLine) == true) 

return; 

117  // tokenize the configuration line parsing 

118  std::stringstream lineStream(configurationLine, std::ios_base::in); 

119  std::string token; 

120  int tokenNumber = 1; 

121  stAppConfigData configData; 

122  bool interfaceSnFound = false; 

123  while (std::getline(lineStream, token, cSeparator)) 

124  { 

125   token = util::Trim(token); 

126   int infoIdx = -1; 

127   switch (tokenNumber) { 

128   case FIRST_TOKEN: 

129    // look for inteface number 

130    if (token == cInterface) { 

131     if (mInterfaceSerialNo.length() == 0) { 

132      interfaceSnFound = true; 

133     } 

134     else { 

135      mLogger->Log(std::string("Interface S/N already provided: ") + 

mInterfaceSerialNo ); 

136      return; 

137     } 

138    } 

139    else { 

140     // check if it is a new variable name 

141     if (checkVariableNameForDuplication(token) == false) { 

142      configData.variableName = token; 

143     } 

144     else { 

145      return; 

146     } 

147    } 

148    break; 

149   case SECOND_TOKEN: 

150    // it can be the serial number or the data type 

151    if (interfaceSnFound) { 

152     mInterfaceSerialNo = token; 

153     mLogger->Log(std::string("Interface S/N: ") + token); 

154     return; 

155    } 

156    else if ((infoIdx = util::GetValue<std::string>(cDataTypes, token)) >= 0) { 

157     configData.dataType = (eAppDataType) infoIdx; 

158    } 

159    else { 

160     mLogger->Log(std::string("Unknown data type: ") + token + ", for variable: 

" + configData.variableName); 

161     return; 

162    } 

163    break; 

164   case THIRD_TOKEN: 

165    // this case is entered only for the data direction 

166    if ((infoIdx = util::GetIndex<std::string>(cDataDirections, token)) >= 0) { 

167     configData.dataDirection = (eAppDataDirection) infoIdx; 

168    } 

169    else { 

170     mLogger->Log(std::string("Unknown data direction: ") + token + ", for 

variable: " + configData.variableName); 

171     return; 

172    } 

173    break; 

174   default: 

175    mLogger->Log(std::string("Too many attributes for variable: ") + 

configData.variableName); 

176    return; 

177   } 

178   ++tokenNumber; 

179  } 

180  // once the execution arrived here the variable definition could be incomplete 

181  if (tokenNumber == ALL_TOKEN_FOUND) { 

182   mConfigData.push_back(configData); 

183   mLogger->Log(std::string("[OK] ") + util::PrintableAppConfigData(configData) ); 

184  } 

185  else { 

186   mLogger->Log(std::string("Invalid variable definition: ") + configData.variableName); 

187  } 

188  return; 

189 } 
190  
191 const bool ConfigurationLoader::isCommentLine(const std::string& line) 
192 { 
193  if (line[0] == cCommentLineMarker) { 

194   mLogger->Log(std::string("Found comment: ") + line); 

195   return true; 
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196  } 

197  return false; 

198 } 
199  
200 const bool ConfigurationLoader::isCommentLineNoEcho(const std::string& line) 
201 { 
202  return line[0] == cCommentLineNoEchoMarker; 

203 } 
204  
205 const bool ConfigurationLoader::checkVariableNameForDuplication(const std::string& variableName) 

const 

206 { 
207  auto it = std::find_if(mConfigData.begin(), mConfigData.end(), [&variableName](const 

stAppConfigData& configData) { 

208   return (variableName == configData.variableName); 

209   }); 

210  
211  if (it != mConfigData.end()) { 

212   mLogger->Log(std::string("Duplicate varibale name: ") + variableName); 

213   return true; 

214  } 

215  
216  return false; 

217 } 
218  
219 const int ConfigurationLoader::checkDataDirection(const std::string& dataDirection) const 
220 { 
221  return util::GetIndex<std::string>(cDataDirections, dataDirection); 

222 } 
223  
224 const int ConfigurationLoader::checkDataType(const std::string& dataType) const 
225 { 
226  return util::GetValue<std::string>(cDataTypes, dataType); 

227 } 
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8) ConsoleLogger.h 

1 #ifndef CONSOLELOGGER_H 

2 #define CONSOLELOGGER_H 

3  

4 #include "Logger.h" 

5  

6 class ConsoleLogger : 

7     public Logger 

8 { 

9 public: 

10     ConsoleLogger() = default; 

11     ~ConsoleLogger() = default; 

12     virtual void Log(const std::string& message) override; 

13     virtual void Log(const std::vector<std::string>& messages) override; 

14 }; 

15  

16 #endif // CONSOLELOGGER_H 

 

 

9) ConsoleLogger.cpp 

1 #include "ConsoleLogger.h" 

2 #include <iostream> 

3  

4 void ConsoleLogger::Log(const std::string& message) 

5 { 

6  std::cout << message << std::endl; 

7  return; 

8 } 

9  

10  

11 void ConsoleLogger::Log(const std::vector<std::string>& messages) 

12 { 

13  for( const std::string& message : messages ) 

14  { 

15   Log(message); 

16  } 

17  return; 

18 } 

 

10) DataReader.h 

1 // Class for reading a given variable if it exists 

2 // the value si provided back as a string, if the typed value 

3 // is needed it will be necessary to ask for the underling object 

4 // that contains the data 

5  

6 #include<sstream> 

7 #include "DataWrapper.h" 

8  

9 class DataReader 

10 { 

11 public: 

12     DataReader(INamedDataWrapperUmap dataContainerUmap); 

13     ~DataReader(); 

14     const std::string GetDataValue(const std::string& dataName); 

15     const std::string GetAllDataValues(); 

16 private: 

17     void addDataStringValue(std::stringstream& ss, const IDataWrapperShPtr& dataContainer); 

18  

19     void addBoolValue(std::stringstream& ss, const void * dataPtr); 

20     void addFloatValue(std::stringstream& ss, const void* dataPtr); 

21     void addInt16Value(std::stringstream& ss, const void* dataPtr); 

22     void addInt32Value(std::stringstream& ss, const void* dataPtr); 

23     void addInt8Value(std::stringstream& ss, const void* dataPtr); 

24     void addUint16Value(std::stringstream& ss, const void* dataPtr); 

25     void addUint32Value(std::stringstream& ss, const void* dataPtr); 

26     void addUint8Value(std::stringstream& ss, const void* dataPtr); 

27 private: 

28     INamedDataWrapperUmap mDataContainer; 

29 }; 
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11) DataReader.cpp 

1 #include "DataReader.h" 

2  

3 DataReader::DataReader(INamedDataWrapperUmap dataContainerUmap) 

4     : mDataContainer(dataContainerUmap) 

5 { 

6     return; 

7 } 

8  

9 DataReader::~DataReader() 

10 { 

11 } 

12  

13 const std::string DataReader::GetDataValue(const std::string & dataName) 

14 { 

15     std::stringstream ss; 

16     auto it = mDataContainer.find(dataName); 

17     if (it != mDataContainer.end()) 

18         addDataStringValue(ss, it->second); 

19     else 

20         ss << dataName << ": Does not exist"; 

21     return ss.str(); 

22 } 

23  

24 const std::string DataReader::GetAllDataValues() 

25 { 

26     std::stringstream ss; 

27     for (auto it : mDataContainer) { 

28         addDataStringValue(ss, it.second); 

29         ss << "\n"; 

30     } 

31     return ss.str(); 

32 } 

33  

34 void DataReader::addDataStringValue(std::stringstream& ss, const IDataWrapperShPtr& dataContainer) 

35 { 

36     void* dataPtr = dataContainer->GetDataPtr(); 

37     ss << dataContainer->GetDataName() << ": "; 

38     switch (dataContainer->GetDataType()) { 

39     case eAppDataType::boolData: 

40         addBoolValue(ss, dataPtr); 

41         break; 

42     case eAppDataType::floatData: 

43         addFloatValue(ss, dataPtr); 

44         break; 

45     case eAppDataType::int16Data: 

46         addInt16Value(ss, dataPtr); 

47         break; 

48     case eAppDataType::int32Data: 

49         addInt32Value(ss, dataPtr); 

50         break; 

51     case eAppDataType::int8Data: 

52         addInt8Value(ss, dataPtr); 

53         break; 

54     case eAppDataType::uint16Data: 

55         addUint16Value(ss, dataPtr); 

56         break; 

57     case eAppDataType::uint32Data: 

58         addUint32Value(ss, dataPtr); 

59         break; 

60     case eAppDataType::uint8Data: 

61         addUint8Value(ss, dataPtr); 

62         break; 

63     default: 

64         ss << "Unknown data type"; 

65         break; 

66     } 

67     return; 

68 } 

69  

70 void DataReader::addBoolValue(std::stringstream& ss, const void* dataPtr) 

71 { 

72     ss << (*(BOOL*)dataPtr) ? "true" : "false"; 

73     return; 

74 } 

75  

76 void DataReader::addFloatValue(std::stringstream& ss, const void* dataPtr) 

77 { 

78     ss << *(FLOAT*)dataPtr; 

79     return; 

80 } 

81  

82 void DataReader::addInt16Value(std::stringstream& ss, const void* dataPtr) 

83 { 

84     ss << *(INT16*)dataPtr; 

85     return; 
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86 } 

87  

88 void DataReader::addInt32Value(std::stringstream& ss, const void* dataPtr) 

89 { 

90     ss << *(INT32*)dataPtr; 

91     return; 

92 } 

93  

94 void DataReader::addInt8Value(std::stringstream& ss, const void* dataPtr) 

95 { 

96     ss << (int)*(INT8*)dataPtr; 

97     return; 

98 } 

99  

100 void DataReader::addUint16Value(std::stringstream& ss, const void* dataPtr) 
101 { 
102     ss << *(UINT16*)dataPtr; 
103     return; 
104 } 
105  
106 void DataReader::addUint32Value(std::stringstream& ss, const void* dataPtr) 
107 { 
108     ss << *(UINT32*)dataPtr; 
109     return; 
110 } 
111  
112 void DataReader::addUint8Value(std::stringstream& ss, const void* dataPtr) 
113 { 
114     ss << (int)*(UINT8*)dataPtr; 
115     return; 
116 } 
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12) DataValuesGenerator.h 

1 // Generates random values for the different data 

2 // configured in the EtherCAT Slave inteface 

3  

4 #ifndef DATAVALUESGENERATOR_H_ 

5 #define DATAVALUESGENERATOR_H_ 

6  

7 #include "DataWrapper.h" 

8  

9 class DataValuesGenerator 

10 { 

11 public: 

12  DataValuesGenerator(INamedDataWrapperUmap dataContainerUmap); 

13  virtual ~DataValuesGenerator() = default; 

14  void GeneratDataValues(); 

15 private: 

16  void generateValues(IDataWrapperShPtr data); 

17  void generateBool(void* data); 

18  void generateFloat(void* data); 

19  void generateInt16(void* data); 

20  void generateInt32(void* data); 

21  void generateInt8(void* data); 

22  void generateUint16(void* data); 

23  void generateUint32(void* data); 

24  void generateUint8(void* data); 

25  

26 private: 

27  INamedDataWrapperUmap mDataContainer; 

28  

29 }; 

30  

31 #endif // DATAVALUESGENERATOR_H_ 

 

 

13) DataValuesGenerator.cpp 

1 #include "DataValuesGenerator.h" 

2  

3 constexpr auto MIN_FLOAT_VALUE = -10.0f; 

4 constexpr auto MAX_FLOAT_VALUE = 10.0f; 

5 constexpr auto MAX_INT_VALUE = 100; 

6 constexpr auto MIN_INT_VALUE = -100; 

7 constexpr auto MAX_UINT_VALUE = 200; 

8 constexpr auto MIN_UINT_VALUE = 0; 

9  

10 constexpr auto FLOAT_INCREMENT = 0.1f; 

11  

12 DataValuesGenerator::DataValuesGenerator(INamedDataWrapperUmap dataContainerUmap) 

13  : mDataContainer(dataContainerUmap) 

14 { 

15  return; 

16 } 

17  

18 void DataValuesGenerator::GeneratDataValues() 

19 { 

20  for (auto it : mDataContainer) { 

21   generateValues(it.second); 

22  } 

23  return; 

24 } 

25  

26 void DataValuesGenerator::generateValues(IDataWrapperShPtr dataWrapper) 

27 { 

28  void* data = dataWrapper->GetDataPtr(); 

29  switch (dataWrapper->GetDataType()) { 

30  case eAppDataType::boolData: 

31   generateBool(data); 

32   break; 

33  case eAppDataType::floatData: 

34   generateFloat(data); 

35   break; 

36  case eAppDataType::int16Data: 

37   generateInt16(data); 

38   break; 

39  case eAppDataType::int32Data: 

40   generateInt32(data); 

41   break; 

42  case eAppDataType::int8Data: 

43   generateInt8(data); 

44   break; 

45  case eAppDataType::uint16Data: 

46   generateUint16(data); 

47   break; 

48  case eAppDataType::uint32Data: 

49   generateUint32(data); 
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50   break; 

51  case eAppDataType::uint8Data: 

52   generateUint8(data); 

53   break; 

54  

55  } 

56  

57  return; 

58 } 

59  

60 void DataValuesGenerator::generateBool(void* data) 

61 { 

62  *((BOOL*)data) = !(*((BOOL*)data)); 

63  

64  return; 

65 } 

66  

67 void DataValuesGenerator::generateFloat(void* data) 

68 { 

69  if ((*(PFLOAT)data) > MAX_FLOAT_VALUE) 

70   *(PFLOAT)data = MIN_FLOAT_VALUE; 

71  else 

72   *(PFLOAT)data += FLOAT_INCREMENT; 

73  

74  return; 

75 } 

76  

77 void DataValuesGenerator::generateInt16(void* data) 

78 { 

79  if ((*(PINT16)data) > MAX_INT_VALUE) 

80   *(PINT16)data = MIN_INT_VALUE; 

81  else 

82   ++(*(PINT16)data); 

83  

84  return; 

85 } 

86  

87 void DataValuesGenerator::generateInt32(void* data) 

88 { 

89  if ((*(PINT32)data) > MAX_INT_VALUE) 

90   *(PINT32)data = MIN_INT_VALUE; 

91  else 

92   ++(*(PINT32)data); 

93  

94  return; 

95 } 

96  

97 void DataValuesGenerator::generateInt8(void* data) 

98 { 

99  if ((*(PINT8)data) > MAX_INT_VALUE) 

100   *(PINT8)data = MIN_INT_VALUE; 

101  else 

102   ++(*(PINT8)data); 

103  
104  return; 

105 } 
106  
107 void DataValuesGenerator::generateUint16(void* data) 
108 { 
109  if ((*(PUINT16)data) > MAX_UINT_VALUE) 

110   *(PUINT16)data = MIN_UINT_VALUE; 

111  else 

112   ++(*(PUINT16)data); 

113  
114  return; 

115 } 
116  
117 void DataValuesGenerator::generateUint32(void* data) 
118 { 
119  if ((*(PUINT32)data) > MAX_UINT_VALUE) 

120   *(PUINT32)data = MIN_UINT_VALUE; 

121  else 

122   ++(*(PUINT32)data); 

123  
124  return; 

125 } 
126  
127 void DataValuesGenerator::generateUint8(void* data) 
128 { 
129  if ((*(PUINT8)data) > MAX_UINT_VALUE) 

130   *(PUINT8)data = MIN_UINT_VALUE; 

131  else 

132   ++(*(PUINT8)data); 

133  
134  return; 

135 } 
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14) DataWrapper.h 

1 #ifndef DATAWRAPPER_H_ 

2 #define DATAWRAPPER_H_ 

3  

4 #include "IDataWrapper.h" 

5  

6 template<typename T> 

7 class DataWrapper : 

8     public IDataWrapper 

9 { 

10 public: 

11     DataWrapper(const stAppConfigData& configData); 

12     virtual ~DataWrapper() = default; 

13     T getDataValue() const; 

14     void setDataValue(const T& dataValue); 

15 private: 

16     T mDataValue; 

17 }; 

18  

19 #include "DataWrapper_i.h" 

20  

21 template<typename T> 

22 using DataWrapperShPtr = std::shared_ptr<DataWrapper<T>>; 

23  

24 #endif // DATAWRAPPER_H_ 

 

15) DataWrapper_i.h 

1 // Contains inline methods implementations 

2 #ifndef DATAWRAPPER_I_H_ 

3 #define DATAWRAPPER_I_H_ 

4  

5 #include "DataWrapper.h" 

6  

7 template<typename T> 

8 inline DataWrapper<T>::DataWrapper(const stAppConfigData& configData) 

9     : IDataWrapper(configData) 

10     , mDataValue( (T) 0) 

11 { 

12     mDataPtr = &mDataValue; 

13     return; 

14 } 

15  

16 template<typename T> 

17 inline T DataWrapper<T>::getDataValue() const 

18 { 

19     return mDataValue; 

20 } 

21  

22 template<typename T> 

23 inline void DataWrapper<T>::setDataValue(const T& dataValue) 

24 { 

25     mDataValue = dataValue; 

26     return; 

27 } 

28  

29 #endif // DATAWRAPPER_I_H_ 

  



 

134 

 

16) IDataWrapper.h 

1 // This class represents the inteface to a data wrapper 

2  

3 #ifndef IDATAWRAPPER_H_ 

4 #define IDATAWRAPPER_H_ 

5  

6 #include <vector> 

7 #include <memory> 

8 #include <unordered_map> 

9 #include "ApplicationData.h" 

10  

11 class IDataWrapper 

12 { 

13 public: 

14  std::string GetDataName() const; 

15  eAppDataType GetDataType() const; 

16  eAppDataDirection GetDataDirection() const; 

17  virtual ~IDataWrapper() = default; 

18  void* GetDataPtr() const; 

19 protected: 

20  IDataWrapper(const stAppConfigData& configData); 

21 protected: 

22  void* mDataPtr; 

23 private: 

24  stAppConfigData mConfigData; 

25 }; 

26  

27 // Shared pointer to an IDataWrapper 

28 using IDataWrapperShPtr = std::shared_ptr<IDataWrapper>; 

29 // Vector of IDataWrappers 

30 using IDataWrapperVect = std::vector<IDataWrapper>; 

31 // Vector of shared pointers to IDataWrapper 

32 using IDataWrapperShPtrVect = std::vector<IDataWrapperShPtr>; 

33 // Shared pointer to a vector of shared pointers to IDataWrapper 

34 using IDataWrapperVectShPtr = std::shared_ptr<IDataWrapperVect>; 

35 // Unordered map to named shared pointer to IDataWrapper 

36 using INamedDataWrapperUmap = std::unordered_map<std::string, IDataWrapperShPtr>; 

37 #endif // IDATAWRAPPER_H_ 

 

17) IDataWrapper.cpp 

1 #include "IDataWrapper.h" 

2  

3 std::string IDataWrapper::GetDataName() const 

4 { 

5  return mConfigData.variableName; 

6 } 

7  

8 eAppDataType IDataWrapper::GetDataType() const 

9 { 

10  return mConfigData.dataType; 

11 } 

12  

13 eAppDataDirection IDataWrapper::GetDataDirection() const 

14 { 

15  return mConfigData.dataDirection; 

16 } 

17  

18 void* IDataWrapper::GetDataPtr() const 

19 { 

20  return mDataPtr; 

21 } 

22  

23 IDataWrapper::IDataWrapper(const stAppConfigData& configData) 

24  : mDataPtr(nullptr) 

25  , mConfigData(configData) 

26 { 

27  return; 

28 } 
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18) Logger.h 

1 // Defines the interface for data logging 

2  

3 #ifndef LOGGER_H 

4 #define LOGGER_H 

5  

6 #include <string> 

7 #include <vector> 

8 #include <memory> 

9  

10 class Logger 

11 { 

12 public: 

13  virtual ~Logger() = default; 

14  virtual void Log(const std::string& message) = 0; 

15  virtual void Log(const std::vector<std::string>& messages) = 0; 

16 }; 

17  

18 using SharedLogger = std::shared_ptr<Logger>; 

19  

20 #endif // LOGGER_H 

 

19) SlaveConfigurator.h 

1 // This class configures the application ADI to flash into 

2 // the interface depending on the data achieved from the configuration file 

3  

4 #ifndef SLAVECONFIGURATOR_H_ 

5 #define SLAVECONFIGURATOR_H_ 

6  

7 #include<iostream> 

8 #include<vector> 

9 #include "Logger.h" 

10 #include "ApplicationData.h" 

11 #include "DataWrapper.h" 

12  

13  

14 class SlaveConfigurator 

15 { 

16 public: 

17  SlaveConfigurator(const SharedLogger& logger); 

18  SlaveConfigurator(const SlaveConfigurator&) = delete; 

19  SlaveConfigurator(SlaveConfigurator&&) = delete; 

20  SlaveConfigurator& operator=(const SlaveConfigurator&) = delete; 

21  SlaveConfigurator& operator=(SlaveConfigurator&&) = delete; 

22  virtual ~SlaveConfigurator(); 

23  bool ConfigureSlave(const ConfigDataVect& configData); 

24  UINT16 GetNumberOfAdis() const; 

25  AD_AdiEntry* GetAdis(); 

26  AD_DefaultMapType* GetObjMap(); 

27  const INamedDataWrapperUmap GetReadableDataMap() const; 

28  const INamedDataWrapperUmap GetWritableDataMap() const; 

29  const INamedDataWrapperUmap GetAllDataMap() const; 

30 private: 

31  const IDataWrapperShPtr createShDataWrapper(const stAppConfigData& configData) const; 

32  const INamedDataWrapperUmap getDataMap(const eAppDataDirection direction) const; 

33 private: 

34  SharedLogger mLogger; 

35  AdiEntriesVect mAdiEntries; 

36  AdDefaultMapsVect mAdObjMaps; 

37  IDataWrapperShPtrVect mDataWrappers; 

38 }; 

39  

40 #endif // SLAVECONFIGURATOR_H 
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20) SlaveConfigurator.cpp 

1 #include<utility> 

2 #include "SlaveConfigurator.h" 

3 #include "abcc_ad_if.h" 

4  

5 SlaveConfigurator::SlaveConfigurator(const SharedLogger& logger) 

6  : mLogger(logger) 

7 { 

8  return; 

9 } 

10  

11 SlaveConfigurator::~SlaveConfigurator() 

12 { 

13  return; 

14 } 

15  

16 bool SlaveConfigurator::ConfigureSlave(const ConfigDataVect& configData) 

17 { 

18  bool ret = false; 

19  

20  if (configData.size() == 0) { 

21   mLogger->Log(std::string("[Slave Configuration] Nothing to configure!") ); 

22   return ret; 

23  } 

24  

25  UINT16 instanceNo = 1; 

26  

27  for(const stAppConfigData& cData : configData) { 

28   IDataWrapperShPtr dataWrapper = createShDataWrapper(cData); 

29   uDataType dataT; 

30   dataT.sVOID.pxValuePtr = dataWrapper->GetDataPtr(); 

31   dataT.sVOID.pxValueProps = NULL; 

32  

33   AD_AdiEntryType adiEntry = { instanceNo, const_cast<char*>(cData.variableName.c_str()), 

(UINT8)cData.dataType, 1, 0, dataT }; 

34   AD_DefaultMapType defaultMap = { instanceNo, 

static_cast<PD_DirType>(cData.dataDirection), 1, 0 }; 

35   mAdiEntries.push_back(adiEntry); 

36   mAdObjMaps.push_back(defaultMap); 

37   mDataWrappers.push_back(std::move(dataWrapper)); 

38   ++instanceNo; 

39  } 

40  

41  if ((ret = mAdObjMaps.size() > 0)) 

42   mAdObjMaps.push_back({ AD_DEFAULT_MAP_END_ENTRY }); 

43  else 

44   mLogger->Log(std::string("[Slave Configuration] Could no configure the slave")); 

45   

46  return ret; 

47 } 

48  

49 UINT16 SlaveConfigurator::GetNumberOfAdis() const 

50 { 

51  return (UINT16)mAdiEntries.size(); 

52 } 

53  

54 AD_AdiEntry* SlaveConfigurator::GetAdis() 

55 { 

56  return mAdiEntries.data(); 

57 } 

58  

59 AD_DefaultMapType* SlaveConfigurator::GetObjMap() 

60 { 

61  return mAdObjMaps.data(); 

62 } 

63  

64 const INamedDataWrapperUmap SlaveConfigurator::GetReadableDataMap() const 

65 { 

66  return getDataMap(eAppDataDirection::in); 

67 } 

68  

69 const INamedDataWrapperUmap SlaveConfigurator::GetWritableDataMap() const 

70 { 

71  return getDataMap(eAppDataDirection::out); 

72 } 

73  

74 const INamedDataWrapperUmap SlaveConfigurator::GetAllDataMap() const 

75 { 

76  return getDataMap(eAppDataDirection::all); 

77 } 

78  

79 const IDataWrapperShPtr SlaveConfigurator::createShDataWrapper(const stAppConfigData& configData) 

const 

80 { 

81  switch (configData.dataType) { 

82  case eAppDataType::boolData: 
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83   return IDataWrapperShPtr( new DataWrapper<BOOL>(configData) ); 

84  case eAppDataType::floatData: 

85   return IDataWrapperShPtr( new DataWrapper<FLOAT>(configData) ); 

86  case eAppDataType::int16Data: 

87   return IDataWrapperShPtr( new DataWrapper<INT16>(configData) ); 

88  case eAppDataType::int32Data: 

89   return IDataWrapperShPtr( new DataWrapper<INT32>(configData)  ); 

90  case eAppDataType::int8Data: 

91   return IDataWrapperShPtr( new DataWrapper<INT8>(configData) ); 

92  case eAppDataType::uint16Data: 

93   return IDataWrapperShPtr( new DataWrapper<UINT16>(configData) ); 

94  case eAppDataType::uint32Data: 

95   return IDataWrapperShPtr( new DataWrapper<UINT32>(configData) ); 

96  case eAppDataType::uint8Data: 

97   return IDataWrapperShPtr( new DataWrapper<UINT8>(configData) ); 

98  } 

99  

100  return IDataWrapperShPtr(); 

101 } 
102  
103  
104 const INamedDataWrapperUmap SlaveConfigurator::getDataMap(const eAppDataDirection direction) const 
105 { 
106  INamedDataWrapperUmap namedDataWrapperUmap; 

107  
108  for (IDataWrapperShPtr dataWrapper : mDataWrappers) { 

109   if (direction == eAppDataDirection::all || direction == dataWrapper->GetDataDirection()) 

{ 

110    namedDataWrapperUmap.insert(std::make_pair(dataWrapper->GetDataName(), 

dataWrapper)); 

111   } 

112  } 

113  
114  return namedDataWrapperUmap; 

115 } 

  



 

138 

 

 

21) main.cpp 

1 #include <iostream> 

2 #include <memory> 

3 #include <windows.h> 

4 #include <stdio.h> 

5  

6 #ifdef __cplusplus 

7 extern "C" { 

8 #endif 

9   #include "IDL_interface.h" 

10 #ifdef __cplusplus 

11 } 

12 #endif 

13  

14 #include "CommandLineParser.h" 

15 #include "ConsoleLogger.h" 

16 #include "ConfigurationLoader.h" 

17 #include "SlaveConfigurator.h" 

18 #include "DataReader.h" 

19 #include "DataValuesGenerator.h" 

20  

21  

22 SharedLogger appLogger = SharedLogger(new ConsoleLogger); 

23 std::unique_ptr<DataReader> pDataReader; 

24 std::unique_ptr<DataValuesGenerator> pDataWriter; 

25  

26 extern "C" void UpdateInterface() { 

27     system("cls"); 

28     appLogger->Log(pDataReader->GetAllDataValues()); 

29     pDataWriter->GeneratDataValues(); 

30     return; 

31 } 

32  

33 /** 

34     Slave application entry point 

35 */ 

36 int main(int argc, char* argv[]) 

37 { 

38   int outcome = 1; 

39  

40   appLogger->Log("EtherCAT slave stared"); 

41  

42   // 

43   // parse the command line to retrieve the configuration file indication 

44   // 

45   std::unique_ptr<CommandLineParser> CmdLineParser = std::unique_ptr<CommandLineParser>(new 

CommandLineParser); 

46   CmdLineParser->ParseCommandLine(argc, argv); 

47  

48   // load the configuration from file 

49   std::shared_ptr<ConfigurationLoader> cfgLoader = std::shared_ptr<ConfigurationLoader>(new 

ConfigurationLoader(appLogger, CmdLineParser->GetConfigurationFileName(), 

50       CmdLineParser->GetInterfaceSerialNo())); 

51   if (cfgLoader->LoadConfiguration() == false) { 

52       return outcome; 

53   } 

54    

55   outcome = 0; 

56  

57   if (InitHardware(const_cast<char*>(cfgLoader->GetInterfaceSerialNoAsCString())) == 

ABCC_EC_NO_ERROR) 

58   { 

59       appLogger->Log(std::string("\n[OK] Hardware interface initialized")); 

60       // initialize the object to create slave configuration 

61       std::unique_ptr<SlaveConfigurator> slaveConfigurator = std::unique_ptr<SlaveConfigurator>(new 

SlaveConfigurator(appLogger)); 

62       slaveConfigurator->ConfigureSlave(cfgLoader->GetConfigData()); 

63  

64       RegisterNotifyer(UpdateInterface); 

65  

66       if (InitConfiguration( slaveConfigurator->GetAdis(),  

67                              slaveConfigurator->GetObjMap(),  

68                              slaveConfigurator->GetNumberOfAdis())) { 

69           outcome = 3; 

70       } 

71  

72       pDataReader = std::unique_ptr<DataReader>(new DataReader(slaveConfigurator-

>GetReadableDataMap())); 

73       pDataWriter = std::unique_ptr<DataValuesGenerator>( new DataValuesGenerator(slaveConfigurator-

>GetWritableDataMap())); 

74  

75        // ETC slave FSM managment and notifier calling if any 

76       ManageSlave(); 

77  

78       appLogger->Log(std::string("\n[->] Shutdown the driver")); 
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79       ShutdownDriver(); 

80  

81       appLogger->Log(std::string("\n[->] Release the hardware interface")); 

82       ReleaseHardware(); 

83    } 

84   else { 

85       appLogger->Log(std::string("\n[FAIL] Hardware inteface could not be initialized")); 

86       outcome = 2; 

87   } 

88  

89   return outcome; 

90  

91 } /* End of main() */ 
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8.3 INtime EtherCAT Slave (C source Code) 

1) ApplicationData.h 

1 #ifndef APPLICATIONDATA_H_ 

2 #define APPLICATIONDATA_H_ 

3  

4 #define MAX_DATA_COUNT 128 

5 #define MAX_VAR_NAME_LEN 255 

6 #define MAX_FILE_NAME_LEN 512 

7 #define MAX_STRING_LEN 255 

8  

9 #include "abcc_ad_if.h" 

10  

11 typedef struct { 

12  char variableName[MAX_VAR_NAME_LEN]; 

13  PD_DirType direction; 

14  int type; 

15 } stConfigData; 

16  

17  

18 typedef union { 

19  UINT8 uint8Value; 

20  INT8  int8Value; 

21  UINT16 uint16Value; 

22  INT16 int16Value; 

23  UINT32 uint32Value; 

24  INT32 int32Value; 

25  FLOAT32 floatValue; 

26 } uProcessData; 

27  

28  

29 typedef struct { 

30  int type; 

31  uProcessData data; 

32 } stProcessData; 

33  

34 #endif // APPLICATIONDATA_H_ 

 

2) CommandLineParser.h 

1 // This class parses the command line arguments if any to extract the configuration file name. 

2 // The configuration file name is passed by the option -c if no option is provided or no argument 

after the ooption 

3 // a default file name is returned by the class. The file is named "configuration.cfg" 

4  

5 #ifndef COMMANDLINEPARSER_H_ 

6 #define COMMANDLINEPARSER_H_ 

7  

8 // Parses the command line parameters 

9 void ParseCommandLine(int argc, char ** argv); 

10  

11 // returns the configuration file name 

12 const char* GetConfigurationFileName(); 

13  

14 #endif // COMMANDLIEPARSER_H 
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3) CommandLineParser.c 

1 #include "CommandLineParser.h" 

2 #include <string.h> 

3 #include<stdlib.h> 

4  

5 #include "ApplicationData.h" 

6 #include "ConfigurationManager.h" 

7  

8 #define FILE_OPT  "-c" 

9 #define INTERF_OPT "-i" 

10  

11 static char sConfigurationFileName[MAX_FILE_NAME_LEN] = ""; 

12  

13 void ParseCommandLine(int argc, char** argv) { 

14  if (argc < 3) { 

15   // not enough parameters to be parsed 

16   return; 

17  } 

18  

19  // seach for the configuration file parameter 

20  for (int i = 1; i < argc; ++i) 

21  { 

22   if (strcmp(argv[i], FILE_OPT) == 0) 

23   { 

24    // found the -c option 

25    if (i < argc) 

26     strcpy_s(sConfigurationFileName, MAX_FILE_NAME_LEN, argv[++i]); 

27   } 

28   else if (strcmp(argv[i], INTERF_OPT) == 0) 

29   { 

30    // found the -s option 

31    if (i < argc) 

32     SetInterfaceNo(atoi(argv[++i])); 

33   } 

34  } 

35  

36  return; 

37 } 

38  

39  

40 const char* GetConfigurationFileName() 

41 { 

42  return sConfigurationFileName; 

43 } 
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4) ConfigurationLoader.h 

1 #ifndef CONFIGURATIONLOADER_H_ 

2 #define CONFIGURATIONLOADER_H_ 

3  

4  

5 // Loads the configuration from a file. Returns 0 if succeeded 

6 const int LoadConfigurationFromFile( char * configurationFileName); 

7  

8 #endif // CONFIGURATIONLOADER_H_ 

 

5) ConfigurationLoader.c 

1 #include "ConfigurationLoader.h" 

2 #include "ApplicationData.h" 

3 #include "ConfigurationManager.h" 

4 #include "ConsoleLogger.h" 

5  

6 #include <string.h> 

7 #include <stdio.h> 

8 #include <stdlib.h> 

9  

10 #define MAX_LINE_LEN 1024 

11  

12 #define NUM_DATA_TYPES 7 

13 #define NUM_DIRECTIONS 2 

14  

15 #define SILENT_COMMENT_LINE '@' 

16 #define COMMENT_LINE  '#' 

17 #define TOKENS_SEPARATOR ":" 

18  

19 #define FIRST_TOKEN      1 

20 #define SECOND_TOKEN     2 

21 #define THIRD_TOKEN      3 

22 #define ALL_TOKENS_FOUND 4 

23  

24 static int   numOfVariables = 0; 

25  

26 static char* variableNames[MAX_DATA_COUNT]; 

27  

28 static const int _parseFileLine(char* line); 

29  

30 static const int _isCommentLine(char* line); 

31  

32 static const int _searchForString(char* value, char** aSource, uint sourceLen); 

33  

34 static char* _trimToken(char *token); 

35  

36 static void _releaseMemory(const int resCount); 

37  

38 ///////////////////////////////////////////////// 

39 // Errors code: 

40 // 0 = Success 

41 // 1 = Null or empty file name 

42 // 2 = Configuration file not found 

43 const int LoadConfigurationFromFile(char * configurationFileName) 

44 { 

45  ResetConfiguration(); 

46  numOfVariables = 0; 

47  if (configurationFileName == NULL || strlen(configurationFileName) == 0) 

48  { 

49   LogMessage("Invalid configuration file name"); 

50   return 1; 

51  } 

52  

53  FILE* configFile = fopen(configurationFileName, "r"); 

54  if (configFile == NULL) 

55  { 

56   LogMessage("Could not open the configuration file:"); 

57   LogMessage(configurationFileName); 

58   return 2; 

59  } 

60  

61  char configLine[MAX_LINE_LEN]; 

62  while (fgets(configLine, MAX_LINE_LEN, configFile) != NULL && numOfVariables < MAX_DATA_COUNT) 

63  { 

64   // ignore empty lines 

65   if (strlen(_trimToken(configLine)) == 0) 

66    continue; 

67  

68   _parseFileLine(configLine); 

69  } 

70  

71  fclose(configFile); 

72  _releaseMemory(numOfVariables); 

73  
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74  return 0; 

75 } 

76  

77  

78  

79 // static functions implementation 

80 static const int _parseFileLine(char* line) 

81 { 

82  static char* inteface = "interface"; 

83  static char* aDataTypeNames[NUM_DATA_TYPES] = { "uint8", "int8", "uint16", "int16",  

84          "uint32", "int32", "float" }; 

85  static int   aDataTypes[NUM_DATA_TYPES] = { ABP_UINT8, ABP_SINT8, ABP_UINT16, ABP_SINT16, 

86           ABP_UINT32, ABP_SINT32, ABP_FLOAT }; 

87  static char* aDirectionNames[NUM_DIRECTIONS] = { "in", "out" }; 

88  static int   aDirections[NUM_DIRECTIONS] = { PD_READ, PD_WRITE }; 

89  

90  if (_isCommentLine(line) == 0) 

91  { 

92   char* token = strtok(line, TOKENS_SEPARATOR); 

93   int tokenNumber = FIRST_TOKEN; 

94   int interfaceNoFound = 0; 

95   stConfigData configData; 

96   while(token) { 

97    token = _trimToken(token); 

98    int infoIdx = -1; 

99    switch (tokenNumber) 

100    { 

101    case FIRST_TOKEN: 

102     if (strcmp(token, inteface) == 0) 

103     { 

104      if (GetInterfaceNo() < 0) 

105       interfaceNoFound = 1; 

106      else { 

107       LogMessage("Inteface number already provided\n"); 

108       return 1; 

109      } 

110     } 

111     else { 

112      // check if it is a new variable name 

113      if (_searchForString(token, variableNames, numOfVariables) == -1) 

114      { 

115             strcpy_s(configData.variableName, MAX_VAR_NAME_LEN, token); 

116             variableNames[numOfVariables] = malloc(sizeof(char) *  

117                                                                                 (strlen(token) + 1)); 
118       strcpy(variableNames[numOfVariables], token); 

119       ++numOfVariables; 

120      } 

121      else 

122      { 

123       LogMessage(token); 

124       LogMessage(" :is a duplicate variable name\n"); 

125       return 2; 

126      } 

127     } 

128     break; 

129    case SECOND_TOKEN: 

130     // it can be the interface ordinal number or the data type 

131     if (interfaceNoFound) 

132     { 

133      SetInterfaceNo(atoi(token)); 

134      return 0; 

135     } 

136     else if( (infoIdx = _searchForString(token, aDataTypeNames,  

137                                                                  NUM_DATA_TYPES)) >= 0) 
138     { 

139      configData.type = aDataTypes[infoIdx]; 

140     } 

141     else 

142     { 

143      LogMessage(token); 

144      LogMessage(": unknown data type\n"); 

145      return 3; 

146     } 

147     break; 

148    case THIRD_TOKEN: 

149     // this case is entered only for the data direction 

150     if ((infoIdx = _searchForString(token, aDirectionNames, NUM_DIRECTIONS))  

151                                 >= 0) 
152     { 

153      configData.direction = aDirections[infoIdx]; 

154     } 

155     else 

156     { 

157      LogMessage(token); 

158      LogMessage(" :Unknown data direction\n"); 

159      return 4; 

160     } 

161     break; 
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162    default: 

163     LogMessage("Too many attributes found"); 

164     break; 

165    } 

166     

167    // move to the next token if any 

168    token = strtok(NULL, TOKENS_SEPARATOR); 

169    ++tokenNumber; 

170   } 

171   if (tokenNumber == ALL_TOKENS_FOUND) 

172   { 

173    AddConfigEntry(configData); 

174   } 

175   else 

176   { 

177    LogMessage("Invalid variable definition found!\n"); 

178    return 5; 

179   } 

180  } 

181  return 0; 

182 } 
183  
184 // Returns 1 if the line is a comment and already print the log if 
185 // it is not a silent comment. Returns 0 if the line it is not a comment 
186 static const int _isCommentLine(char* line) 
187 { 
188  if(line[0] == SILENT_COMMENT_LINE) 

189   return 1; 

190  if (line[0] == COMMENT_LINE) { 

191   LogMessage(line); 

192   LogMessage("\n"); 

193   return 1; 

194  } 

195  return 0; 

196 } 
197  
198 // Returns -1 if nothing found or the found index 
199 static const int _searchForString(char* value, char** aSource, uint sourceLen) 
200 { 
201  if (value == NULL || aSource == NULL) 

202   return -1; 

203  
204  for (uint idx = 0; idx < sourceLen; idx++) 

205  { 

206   if (strcmp(value, aSource[idx]) == 0) 

207    return idx; 

208  } 

209  
210  // not found 

211  return -1; 

212 } 
213  
214 static char* _trimToken(char *token) 
215 { 
216  char *end; 

217  
218  if (token == NULL)  

219   return token; 

220  
221  // Trim leading space 

222  while (isspace((unsigned char)*token)) token++; 

223  
224  if (*token == 0)  // All spaces? 

225   return token; 

226  
227  // Trim trailing space 

228  end = token + strlen(token) - 1; 

229  while (end > token && isspace((unsigned char)*end)) end--; 

230  
231  // Write new null terminator character 

232  end[1] = '\0'; 

233  
234  return token; 

235 } 
236  
237 // relesase the dynamically allocated memory 
238 static void _releaseMemory(const int resCount) 
239 { 
240  for (int idx = 0; idx < resCount; idx++) 

241   free(variableNames[idx]); 

242  return; 

243 } 
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6) ConfigurationManager.h 

1 #ifndef CONFIGURATIONMANAGER_H_ 

2 #define CONFIGURATIONMANAGER_H_ 

3  

4 // This file centralizes all the data and the interface 

5 // involved in every aspects of the configuration 

6 // from data from the file to the data structures for the  

7 // Slave interface 

8  

9 #include "ApplicationData.h" 

10  

11 // Resets the configuration 

12 void ResetConfiguration(); 

13  

14 // Configures the interface sequential number 

15 void SetInterfaceNo(const int interfaceNo); 

16  

17 // Returns the interface sequential number provided by configuration 

18 const int GetInterfaceNo(); 

19  

20 // Returns the number of ADIs 

21 const int GetAdiCount(); 

22  

23 // Returns the number of Read ADIs 

24 const int GetReadAdiCount(); 

25  

26 // Returns the number of Write ADIs 

27 const int GetWriteAdiCount(); 

28  

29 // Return the pointer to the ADI entries array 

30 const AD_AdiEntryType* GetAdiEntries(); 

31  

32 // Returns the pointer to the ADI mapping array 

33 const AD_DefaultMapType* GetAdiMap(); 

34  

35 // Returns the pointer to the readable data 

36 const stProcessData* GetReadData(); 

37  

38 // Returns the pointer to the writeable data 

39 const stProcessData* GetWriteData(); 

40  

41 // Adds a configuration entry 

42 const int AddConfigEntry(const stConfigData configData); 

43  

44 #endif // CONFIGURATIONMANAGER_H_ 
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7) ConfigurationManager.c 

1 #include "ConfigurationManager.h" 

2 #include "DataManager.h" 

3 #include "appl_adi_config.h" 

4 #include <string.h> 

5  

6 // The slave interface ordinal number 

7 static int _iInterfaceNo = -1; 

8 // The number of ADI 

9 static int _iAdiCount = 0; 

10 // The number of Read ADI 

11 static int _iReadAdiCount = 0; 

12 // The number of Write ADI 

13 static int _iWriteAdiCount = 0; 

14  

15 // The configuration data 

16 static stConfigData _aConfigData[MAX_DATA_COUNT]; 

17 // The slave ADI entries 

18 static AD_AdiEntryType _asAdiEntryList[MAX_DATA_COUNT]; 

19 // The slave ADI mapping 

20 static AD_DefaultMapType _asAdObjDefaultMap[MAX_DATA_COUNT + 1]; 

21  

22 // Array of readable process data 

23 static stProcessData _aReadProcessData[MAX_DATA_COUNT]; 

24 // Array of writable process data 

25 static stProcessData _aWriteProcessData[MAX_DATA_COUNT]; 

26  

27 static UINT8 _aDescArray[] = { APPL_READ_MAP_WRITE_ACCESS_DESC, APPL_WRITE_MAP_READ_ACCESS_DESC }; 

28  

29 // Resets the configuration 

30 void ResetConfiguration() 

31 { 

32  _iInterfaceNo = -1; 

33  _iAdiCount = 0; 

34  _iReadAdiCount = 0; 

35  _iWriteAdiCount = 0; 

36  return; 

37 } 

38  

39 // Configures the interface sequential number 

40 void SetInterfaceNo(const int interfaceNo) 

41 { 

42  _iInterfaceNo = interfaceNo; 

43 } 

44  

45 // Returns the interface sequential number provided by configuration 

46 const int GetInterfaceNo() 

47 { 

48  return _iInterfaceNo; 

49 } 

50  

51 // Returns the number of ADIs 

52 const int GetAdiCount() 

53 { 

54  return _iAdiCount; 

55 } 

56  

57 // Returns the number of Read ADIs 

58 const int GetReadAdiCount() 

59 { 

60  return _iReadAdiCount; 

61 } 

62  

63 // Returns the number of Write ADIs 

64 const int GetWriteAdiCount() 

65 { 

66  return _iWriteAdiCount; 

67 } 

68  

69 // Return the pointer to the ADI entries array 

70 const AD_AdiEntryType* GetAdiEntries() 

71 { 

72  return _asAdiEntryList; 

73 } 

74  

75 // Returns the pointer to the ADI mapping array 

76 const AD_DefaultMapType* GetAdiMap() 

77 { 

78  return _asAdObjDefaultMap; 

79 } 

80  

81 // Returns the pointer to the readable data 

82 const stProcessData* GetReadData() 

83 { 

84  return _aReadProcessData; 

85 } 
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86  

87 // Returns the pointer to the writeable data 

88 const stProcessData* GetWriteData() 

89 { 

90  return _aWriteProcessData; 

91 } 

92  

93 // Adds a configuration entry 

94 // 0 Success 

95 // 1 configuration capacity exceeded 

96 const int AddConfigEntry(const stConfigData configData) 

97 { 

98  if (_iAdiCount == MAX_DATA_COUNT) 

99   return 1; 

100  
101  _aConfigData[_iAdiCount].direction = configData.direction; 

102  _aConfigData[_iAdiCount].type = configData.type; 

103  strcpy_s(_aConfigData[_iAdiCount].variableName, MAX_VAR_NAME_LEN, configData.variableName); 

104   

105  
106  // setup the ADI entry 

107  AD_AdiEntryType* pAdiEntry = &_asAdiEntryList[_iAdiCount]; 

108  pAdiEntry->iInstance = _iAdiCount + 1;   

109  pAdiEntry->pacName = _aConfigData[_iAdiCount].variableName; 

110  pAdiEntry->bDataType = configData.type; 

111  pAdiEntry->bNumOfElements = 1; 

112  pAdiEntry->bDesc = _aDescArray[configData.direction]; 

113  pAdiEntry->uData.sVOID.pxValuePtr = (configData.direction == PD_WRITE) ? (void*) 

114         &_aWriteProcessData[_iAdiCount].data: (void *)&_aReadProcessData[_iAdiCount].data; 
115  pAdiEntry->uData.sVOID.pxValueProps = NULL; 

116  pAdiEntry->pnGetAdiValue = NULL; 

117  pAdiEntry->pnSetAdiValue = (configData.direction == PD_READ) ? ManageData : NULL; 

118  
119  // set the ADI map 

120  AD_DefaultMapType* pMap = &_asAdObjDefaultMap[_iAdiCount]; 

121  pMap->iInstance = _iAdiCount + 1; 

122  pMap->eDir = configData.direction; 

123  pMap->bNumElem = 1; 

124  pMap->bElemStartIndex = 0; 

125  
126  pMap = &_asAdObjDefaultMap[_iAdiCount + 1]; 

127  pMap->iInstance = 0xFFFF; 

128  pMap->eDir = PD_END_MAP; 

129  pMap->bNumElem = 0; 

130  pMap->bElemStartIndex = 0; 

131  
132  if (configData.direction == PD_READ) 

133  { 

134   _aReadProcessData[_iReadAdiCount++].type = configData.type; 

135  } 

136  else 

137  { 

138   _aWriteProcessData[_iWriteAdiCount++].type = configData.type; 

139  } 

140  ++_iAdiCount; 

141  
142  return 0; 

143 } 
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8) ConsoleLogger.h 

1 #ifndef CONSOLELOGGER_H 

2 #define CONSOLELOGGER_H 

3  

4 // Logs a message on the standard output 

5 void LogMessage(char* message); 

6  

7 #endif // CONSOLELOGGER_H 

 

9) ConsoleLogger.c 

1 #include "ConsoleLogger.h" 

2  

3 #include <stdio.h> 

4  

5 void LogMessage(char* message) 

6 { 

7  printf("%s", message); 

8  return; 

9 } 

 

10) DataManager.h 

1 #ifndef DATAMANAGER_H_ 

2 #define DATAMANAGER_H_ 

3  

4 #include "ApplicationData.h" 

5 #include "IDL_hwpara.h" 

6  

7 // Set the hardwar control handler 

8 void SetHardwareControlHandler(IDL_CTRL_HDL hCtrl); 

9  

10 // Callback function for update the interface 

11 void ManageData(const struct AD_AdiEntry* pdAdiEntry, UINT8 uiNumOfElements, UINT8 uiStartIndex); 

12  

13 #endif // DATAMANAGER_H_ 
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11) DataManager.c 

1 #include "DataManager.h" 

2 #include "ConsoleLogger.h" 

3 #include "ConfigurationManager.h" 

4 #include <stdio.h> 

5 #include <string.h> 

6 #include "abcc.h" 

7  

8 static void _cleanScreen(); 

9  

10 static char* _buildStrValue(const struct AD_AdiEntry* pdAdiEntry); 

11  

12 static void _loopbackCoercedData(const struct AD_AdiEntry* pdAdiEntry); 

13  

14 static IDL_CTRL_HDL ghCtrl; 

15  

16 // Set the hardwar control handler; 

17 void SetHardwareControlHandler(IDL_CTRL_HDL hCtrl) 

18 { 

19  ghCtrl = hCtrl; 

20 } 

21  

22 // Callback function for update the interface 

23 void ManageData(const struct AD_AdiEntry* pdAdiEntry, UINT8 uiNumOfElements, UINT8 uiStartIndex) 

24 { 

25  _cleanScreen(); 

26  char *out = _buildStrValue(pdAdiEntry); 

27  LogMessage(out); 

28  free(out); 

29  _loopbackCoercedData(pdAdiEntry); 

30  return; 

31 } 

32  

33 // Static functions implementations 

34 static void _cleanScreen() 

35 { 

36  system("cls"); 

37  return; 

38 } 

39  

40  

41 static char* _buildStrValue(const struct AD_AdiEntry* pdAdiEntry) 

42 { 

43  char * string; 

44  string = malloc(sizeof(char) *  MAX_STRING_LEN); 

45  switch (pdAdiEntry->bDataType) { 

46  case ABP_SINT8: 

47   sprintf(string, "%s: %hd\n", pdAdiEntry->pacName, *pdAdiEntry->uData.sSINT8.pbValuePtr); 

48   break; 

49  case ABP_UINT8: 

50   sprintf(string, "%s: %hu\n", pdAdiEntry->pacName, *pdAdiEntry->uData.sUINT8.pbValuePtr); 

51   break; 

52  case ABP_SINT16: 

53   sprintf(string, "%s: %d\n", pdAdiEntry->pacName, *pdAdiEntry->uData.sSINT16.piValuePtr); 

54   break; 

55  case ABP_UINT16: 

56   sprintf(string, "%s: %u\n", pdAdiEntry->pacName, *pdAdiEntry->uData.sUINT16.piValuePtr); 

57   break; 

58  case ABP_SINT32: 

59   sprintf(string, "%s: %ld\n", pdAdiEntry->pacName,  

60                         *pdAdiEntry->uData.sSINT32.plValuePtr); 

61   break; 

62  case ABP_UINT32: 

63   sprintf(string, "%s: %lu\n", pdAdiEntry->pacName,  

64                          *pdAdiEntry->uData.sUINT32.plValuePtr); 

65   break; 

66  case ABP_FLOAT: 

67   sprintf(string, "%s: %f\n", pdAdiEntry->pacName, *pdAdiEntry->uData.sFLOAT.prValuePtr); 

68   break; 

69  default: 

70   sprintf(string, "%s: unknown data type\n", pdAdiEntry->pacName); 

71   break; 

72  } 

73  return string; 

74 } 

75  

76  

77 static void _loopbackCoercedData(const struct AD_AdiEntry* pdAdiEntry) 

78 { 

79  int writeCount = GetWriteAdiCount(); 

80  int writeData = 0; 

81  if (pdAdiEntry->iInstance <= writeCount) 

82  { 

83   writeData = 1; 

84   stProcessData* pProcessData = GetWriteData(); 

85   switch (pProcessData->type) 
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86   { 

87   case ABP_SINT8: 

88    pProcessData[pdAdiEntry->iInstance - 1].data.int8Value =  

89                                             *((INT8 *)pdAdiEntry->uData.sVOID.pxValuePtr); 

90    break; 

91   case ABP_UINT8: 

92    pProcessData[pdAdiEntry->iInstance - 1].data.uint8Value =  

93                                             *((UINT8 *)pdAdiEntry->uData.sVOID.pxValuePtr); 

94    break; 

95   case ABP_SINT16: 

96    pProcessData[pdAdiEntry->iInstance - 1].data.int16Value =  

97                                             *((INT16 *)pdAdiEntry->uData.sVOID.pxValuePtr); 

98    break; 

99   case ABP_UINT16: 

100    pProcessData[pdAdiEntry->iInstance - 1].data.uint16Value =  

101                                             *((UINT16 *)pdAdiEntry->uData.sVOID.pxValuePtr); 
102    break; 

103   case ABP_SINT32: 

104    pProcessData[pdAdiEntry->iInstance - 1].data.int32Value =  

105                                             *((INT32 *)pdAdiEntry->uData.sVOID.pxValuePtr); 
106    break; 

107   case ABP_UINT32: 

108    pProcessData[pdAdiEntry->iInstance - 1].data.uint32Value = 

109                                             *((UINT32 *)pdAdiEntry->uData.sVOID.pxValuePtr); 
110    break; 

111   case ABP_FLOAT: 

112    pProcessData[pdAdiEntry->iInstance - 1].data.floatValue =  

113                                             *((FLOAT32 *)pdAdiEntry->uData.sVOID.pxValuePtr); 
114    break; 

115   default: 

116    writeData = 0; 

117    break; 

118   } 

119  } 

120  if (writeData) 

121   ABCC_TriggerWrPdUpdate(ghCtrl); 

122  return; 

123 } 
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12) main.c 

1 #include <rt.h> 

2  

3 #include "abcc_td.h" 

4 #include "abcc.h" 

5 #include "ad_obj.h" 

6 #include "appl_abcc_handler.h" 

7  

8 #include "IDL.h" 

9 #include <unistd.h> 

10 #include <stdio.h> 

11  

12 #include "ApplicationData.h" 

13 #include "ConsoleLogger.h" 

14 #include "CommandLineParser.h" 

15 #include "ConfigurationManager.h" 

16 #include "DataManager.h" 

17  

18  

19 extern void IDL_APICALL OSIDL_Sleep ( UINT32 dwMilliseconds ); 

20  

21 IDL_CTRL_HDL hCtrl = 0; 

22  

23 #define APPL_TIMER_MS         1 

24 #define USE_TIMER_INTERRUPT   0 

25  

26  

27 #if( USE_TIMER_INTERRUPT ) 

28 static void TimerIsr( void ) 

29 { 

30    ABCC_RunTimerSystem( hCtrl, APPL_TIMER_MS ); 

31 } 

32  

33 static void SetupTimerInterrupt( void ) 

34 { 

35 } 

36 #else 

37 static void DelayMs( UINT32 lDelayMs ) 

38 { 

39   OSIDL_Sleep(lDelayMs); 

40 } 

41 #endif 

42  

43 static void Reset( void ) 

44 { 

45 } 

46  

47 int main(int argc, char* argv[]) 

48 {  

49   

50  LogMessage("INtime ETC slave started\n\n"); 

51  

52  ParseCommandLine(argc, argv); 

53  if(LoadConfigurationFromFile(GetConfigurationFileName() ) ) 

54   return 1; 

55  

56    APPL_AbccHandlerStatusType eAbccHandlerStatus = APPL_MODULE_NO_ERROR; 

57    

58   if(!ABCC_OpenController(GetInterfaceNo(), NULL, &hCtrl)) 

59   { 

60      LogMessage("ABCC_OpenController failed\n"); 

61      return 0; 

62    } 

63    

64    if( ABCC_HwInit(hCtrl) != ABCC_EC_NO_ERROR ) 

65    { 

66    LogMessage("Could not initialize the hardware\n"); 

67       return( 0 ); 

68    } 

69  

70    LogMessage("[OK] Hardware initialized correctly!\n"); 

71  

72    SetHardwareControlHandler(hCtrl); 

73  

74 #if( USE_TIMER_INTERRUPT ) 

75    SetupTimerInterrupt(); 

76 #endif 

77  

78    while( eAbccHandlerStatus == APPL_MODULE_NO_ERROR ) 

79    { 

80       eAbccHandlerStatus = APPL_HandleAbcc(hCtrl); 

81  

82 #if( !USE_TIMER_INTERRUPT ) 

83       ABCC_RunTimerSystem( hCtrl, APPL_TIMER_MS ); 

84       DelayMs( APPL_TIMER_MS ); 

85 #endif 
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86  

87       switch( eAbccHandlerStatus ) 

88       { 

89       case APPL_MODULE_RESET: 

90          Reset(); 

91          break; 

92       default: 

93          break; 

94       } 

95    } 

96  

97    ABCC_CloseController(&hCtrl); 

98  

99    return 0; 

100 } 
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