
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Design of a benchmarking
platform for Logic-In-Memory

architectures based on
ferroelectric HfO2

Relatore:
prof. Mariagrazia Graziano

Candidato:
Luca Mozzone

Aprile 2021

Summary

Silicon devices have undergone a massive down scaling process in the last decades,
this brought transistors near the physical limitations introduced by quantum me-
chanics. In this area the boundaries of conventional computation are stretched to
their limits in order to increase performances and decrease power consumption. This
path is rapidly becoming more expensive and major breakthroughs are more diffi-
cult to reach. In this scenario different technologies are being investigated to fill the
holes left by silicon, especially computing technologies that can be non-volatile.
Hafnium dioxide (HfO2) stands out in this landscape because of its ferroelectric
properties that make of it an intrinsic memory. Moreover, its use as high K insula-
tor in modern CMOS processes makes it perfect for integration with existing devices
and production steps.
At the same time evolution in computing architectures has been minimal with re-
spect to the one of the hardware: modern systems still implement fined tuned
versions of the Von Neumann architectures. This introduced a mismatch in per-
formances, mainly created by the huge amount of time and energy spent on commu-
nications between the memory and the processor unit, the so called Von Neumann
bottleneck. The task to explore the design space is impressive given the numerous
degree of freedom introduced by both device and system level. This thesis proposes
a benchmarking platform designed in SYSTEMC. Its aim is to speed up the process
by simulating and then comparing different solutions both in the technological and
in the architectural department. At the same time the estimation must remain as
faithful as possible to the nature of different implementations.
Furthermore, the platform could be employed to find strengths and weaknesses of
the various emerging technologies with respect to each other and CMOS. This could
initiate a feedback loop with device level research to help to improve the technolog-
ical nodes and by reflection the overall performances.
This thesis is divided in three chapters. The first one is devoted to the ferroelec-
tric properties of HfO2, since it is the main target technology for this stage of the
project. The physical phenomenon is introduced, the role of this material in CMOS
processes is underlined and an overview of the main ferroelectric devices is given.

iii

The second chapter provides an exhaustive taxonomy of the ever-growing Logic-in-
Memory (LiM) architectures field. The most important paradigms are explained
and compared with each other.
The last chapter focuses on the realization of the simulation platform. The design
of the structure is unraveled, the different components are analyzed together with
how they interact.
The current state of the platform allows for LiM simulations in both CMOS and
ferroelectric technology with different architectures, but the quantitative results are
still incomplete due to the platform not being mature enough. However, they prove
how this tool has the potentialities to rise up to the challenge.

iv

Contents

Summary iii

1 Technology 1
1.1 Physical phenomenon . 1
1.2 Ferroelectricity in HfO2 thin films . 6

1.2.1 Technological processes . 8
1.3 Ferroelectric devices . 12

1.3.1 Ferroelectric RAM . 14
1.3.2 FeFET . 16

2 Logic In Memory 19
2.1 Von Neumann architecture . 20
2.2 LIM paradigms . 22

3 Benchmarking platform design 31
3.1 Platform anatomy . 33

3.1.1 Overview . 33
3.1.2 Benchmark . 34
3.1.3 Output analysis . 38

3.2 Simulation structure . 40
3.2.1 Architectural design . 41
3.2.2 Modules . 46

3.3 Simulation validation and results . 53
3.3.1 Further work . 58

3.4 Conclusions . 59

Bibliography 61

v

Chapter 1

Technology

Ferroelectricity is the property of some materials of having an intrinsic electric po-
larization. This effect can be exploited to create new kind of memory devices and
variable capacitors, because of this reason the research on them is grown in the
last decades. This chapter, after a general introduction of the phoenomena, will be
focused on HfO2 ferroelectric thin films due to their great compatibility with the
CMOS technology, concluding the chapter with an overview of the main devices
developed exploiting this effect.

1.1 Physical phenomenon

The term ferroelectric determines a material which, in absence of external electric
field, exhibits a spontaneous electric polarization. The name is derived by the anal-
ogy with ferromagnetism, when it’s been observed for the first time by Valasek in
Rochelle salt in 1920 [1], where the presence of an intrinsic magnetic moment is the
key characteristic.

When an electric field (E) is applied to a material it exhibits a polarization
density (P) that can be different based on its properties. The majority of materials
have a linear relationship between the two quantities, as shown in Fig 1.1, they
are called dielectrics. Paraelectric materials have instead a nonlinear correlation in
which the polarization slope is not constant with the electric field, their characteristic

1

1 – Technology

response can be seen in Fig. 1.2.

P

E

Figure 1.1. Dielectric polarization
response.
From https://tinyurl.com/yxrj3l55

E

P

Figure 1.2. Paraelectric polarization
response.
From https://tinyurl.com/y5tasxx8

Ferroelectric ones differs from the latter because of the presence of a remaining
polarization, it can be reversed if exposed to a suitable electric field. This means
that a ferroelectric response is not only influenced by the applied field but also by
the current state of the polarization, this dependency on the material history gives
rise to an hysteresis loop (Fig. 1.3).

P

E

Figure 1.3. Ferroelectric polarization response. From https://en.wikipedia.
org/wiki/File:Ferroelectric_polarisation.svg

2

https://tinyurl.com/yxrj3l55
https://tinyurl.com/y5tasxx8
https://en.wikipedia.org/wiki/File:Ferroelectric_polarisation.svg
https://en.wikipedia.org/wiki/File:Ferroelectric_polarisation.svg

1.1 – Physical phenomenon

When the electric field is not applied the polarization can be defined as:

þP =
Ø þp

V
(1.1)

where þp is the dipole moment of the single molecule and V is the total volume. If the
atoms are considered point charges Qi the dipole moment can be further expanded
into:

þp =
Ø

i

Qi
þRi (1.2)

in which the þRi is the i-th atom position.
From this representation we can see that the presence of asymmetry in the material’s
basic cell is a key component for ferroelectricity to be exhibited. In fact if the crystal
was symmetric the various opposite position vectors would cancel each other out
resulting in a null dipole.

The ferroelectric crystal structure produces in this way preferential axis along
which the various dipoles align resulting in a lower energy state and therefore they
are preferred by the system. Taking as an example a one dimensional crystal, com-
posed by two kinds of atoms with opposite charge, we can foresee two stable states:
one in which the dipoles are all aligned towards the left, and one in which they are
aligned towards the right; since they are equivalent they have the same resulting en-
ergy. The configurations of the system that places in between these two have higher
energy, resulting in a potential barrier to be overcome in order to switch between
the two.

We can induce a state change applying an electric field and changing therefore
the electric polarization energy Ep = − þP · þE breaking the balance between the
two energy states. If the electric field is strong enough to overcome the barrier the
crystal switches state into the most stable one. This is the basic principle that gives
rise to the hysteresis loop as shown in Fig. 1.4. In fact after the electric field is
removed the energy local minimums return to be equal again but the polarization
is now in the opposite direction.

3

1 – Technology

Figure 1.4. Visual representation of the hysteresis loop. When an electric field
is applied the energy level are tilted until the barrier is overcome switching the
system’ state. From Litlewood, 2002 [2].

If we instead consider a thin film of ferroelectric material it can be seen as a 2D
system. In these circumstances the polarization axis can be parallel to the film plane
or orthogonal to it; the former case is referred to as a in-plain polarization while the
latter as out-of-plane. In order to induce a state switch in a 2D ferroelectric system
also the orientation of the electric field must be correct, if this is orthogonal to the
polarization axis it won’t be able to influence the system.

The various cells organize themselves into ordered structures inside the material.
The directions of their axis depend on the electrostatic and mechanical conditions
of the crystal. The region in which the spontaneous polarization axis are aligned is
defined as ferroelectric domain, the regions between two different domains are called
domain walls [3].
During phase transitions a surface charge accumulates creating a depolarizing elec-
tric field Ed oriented in the opposite direction with respect to the spontaneous
polarization, its intensity can reach a level for which a single domain is no more
energetically preferable. If that happens the system arranges itself into different do-
mains with opposite P in order to minimize electrostatic energy. When a mechanical

4

1.1 – Physical phenomenon

stress is present the axis of the basic cells tend to point orthogonally to it, while in
the areas not affected by it the axis remains parallel, minimizing in this way elastic
energy.

In the end the material is composed by different domains with different preferred
directions for polarization, this influences drastically the global polarization since it
is no more a two state system but given the high number of domains that usually
are formed into a macroscopic crystal it’s more similar to a continuous one. The
axis into an as-grown crystal can be in random order resulting in a negligible net
polarization. The various dipole can be oriented through an electric field as shown
in Fig. 1.5.

Figure 1.5. On the left single crystal square polarization vs. a smooth polycrys-
talline one. On the right a representation of aligned domains through an external
electric field and resulting macroscopic polarization. From Lomenzo, 2016 [4].

5

1 – Technology

1.2 Ferroelectricity in HfO2 thin films

Ferroelectricity is a property typical of those materials that present a non-centrosymmetrical
crystal structure. This produces a charge asymmetry in the basic cell, resulting in an
electric field. In particular bulk hafnium dioxide is usually in its monoclinic phase,
it is stable at room conditions and it’s centrosymmetrical thus does not present fer-
roelectric behaviour.
In thin film form the different influence of surface energy makes more stable a differ-
ent phase of HfO2, the tetragonal one, usually not present in considerable quantities
in bulk samples. The latter is still symmetrical, so it is still a dielectric phase.
It has been observed that HfO2 thin films, deposited through atomic layer deposi-
tion, nucleates in a tetragonal phase changing eventually to a monoclinic one during
cooling through a process that involves an expansion and the shearing of the basic
cell [5]. If the process is mechanical constrained through TiN electrodes, deposited
by chemical vapor deposition, they prevent the physical deformation of the cells and
allow the formation of a different phase: the orthorhombic one . The transition can

Figure 1.6. Tetragonal to orthorhombic phase transition. Oxygen atoms are red,
hafnium ones are light blue. From Böscke et al. 2011 [5].

6

1.2 – Ferroelectricity in HfO2 thin films

be appreciated in Fig. 1.7 where two 10 nm thick films of Si:HfO2 doped with 3%
molar content of SiO2 are compared, one is been grown without capping electrode
and the other one with it. Analyzing the samples through x-ray diffraction it is
evident as in the former the monoclinic phase is predominant while in the latter the
diffraction peaks suggest an orthorhombic crystallization structure.

Figure 1.7. Grazing incidence x-ray diffraction measurements of two Si:HfO2 sam-
ples. Crystallization is been induced with and without capping electrode, blue line
and red one respectively. SiO2 molar content is 3%. From Böscke et al. 2011 [5].

The cells produced by the martensitic phase transition are still symmetrical but
several dopants, such as silicon, yttrium, aluminum, and zirconium [6], are capa-
ble of producing a ferroelectric effect breaking the symmetry, resulting in a crystal
structure of the space group Pbc21 [6].
The total amount of doping determines the material response to an external elec-
tric field, taking as an example the Zr case we can appreciate in Fig. 1.8 how
the simple HfO2 is purely dielectric, this is due to the predominance of the stable

7

1 – Technology

monoclinic phase. Increasing amount of zirconium the stability of the orthorhombic
phase increases showing a polarization response typical of ferroelectric materials,
an hysteresis loop. The maximum of the maintained polarization is 17 µC/cm2 and
it’s reached when there’s an equal amount of HfO2 and ZrO2 in the mixture with
a coercive field of 1 MV/cm. Increasing further the doping towards pure zirconium
oxide the characteristic shrinks at zero bias and exhibiting double-loop typical of the
antiferroelectrics materials. In this samples the predominant phase is the tetragonal
one [6].

Figure 1.8. P vs. V hysteresis at 1 kHz and small signal CV hysteresis at 10 kHz
(50 mV level) of 9 nm thin HfO2 to ZrO2 based metal-insulator-metal capacitors at
room temperature. From Müller et al. 2012 [6].

1.2.1 Technological processes

The technological processes used in thin film deposition are numerous and they can
differ a lot in the followed procedure, however they share the same basic specifi-
cations: they have to be able to deposit a thin film on a target substrate having
control over the thickness produced. A thin film is defined as a layer of material
having a thickness in the range from fraction of a nanometer (monolayer thin film)
to few micrometers.

8

1.2 – Ferroelectricity in HfO2 thin films

Deposition techniques from vapor phase are the most common in hafnium dioxide
thin films production. They can be grouped into two macro-categories based om
the fundamental method with which the material is deposited:

• Chemical Vapor Deposition (CVD)

• Physical Vapor Deposition (PVD)

The former, CVD, is usually realized by inserting gas precursors into a chamber
where the substrate it’s present. It is heated to work as a catalyst for a chemical
reaction to happen on the surface, this allows the precipitation to grow on the sam-
ple. The reaction’s byproduct are then extracted by the chamber concluding the
deposition.
In the latter, PVD, the material to be deposited is instead broken apart using phys-
ical procedure, usually it’s heated to the vaporization temperature or bombarded
with ions. The atoms ejected in the chamber then lands on the substrate forming a
coating.
For the production of HfO2 thin films the most common used techniques are: Atomic
Layer Deposition (ALD) and RF sputtering.

Atomic Layer Deposition Atomic Layer Deposition is a particular type of CVD
technique which involves gaseous precursors. In a normal Chemical Vapor Deposi-
tion process the reactants are present in the chamber at the same moment while in
ALD they are alternate in different moments. The gasses interact with the surface
producing a self-limiting reaction, in fact the single phase can proceed until there
are reactive sites on the sample’s surface.
It is defined a pulse when a precursor is pumped into the reaction chamber, while a
purge is when the reactant is removed completely from the chamber’s atmosphere
before introducing the next one. A complete ADL cycle is composed by the pulse
of the first precursor, the purge of it, the second one’s pulse and it’s relative purge
(Fig. 1.9).

Ideally after a single cycle a single monolayer is been deposited on the target
surface. ALD performance are described using the growth per cycle parameter
instead of the growth rate, typical of CVD which have a more steady growth. The

9

1 – Technology

cycle duration depend mostly on two parameters: the precursor pressure and the
sticking probability [7], the growth rate can vary drastically on the ALD specific
process but is generally slow compared to other thin films deposition techniques. The
advantages of Atomic Layer Deposition are mainly the great control and reliability
over the thickness of the layer, the purity of the grown crystal and the conformity
obtained through this process are remarkable.

Figure 1.9. Diagram representing an Atomic Layer Deposition cycle.
From Säynätjoki, 2012 [8].

RF sputtering The sputtering deposition technique is part of the PVD class. The
target is placed in a chamber with controlled atmosphere, on two electrical terminals
are placed the sample to be coated, on the anode, and the target to be sputtered,
on the cathode. Plasma is then produced in the region near the cathode and a DC
voltage is applied between the two terminals to sustain it. The ions produced are
then accelerated towards the target. here they create a chain of collisions between
the various atoms in the material and if some of them are pushed away from the
target with an energy that is higher than the binding energy then they are ejected
(Fig 1.10).
The most suitable choice for the gas to be ionized is argon due to a trade off between
a mass and cost. A larger mass is desirable to have more kinetic energy transmitted
to the material [9].

10

1.2 – Ferroelectricity in HfO2 thin films

A disadvantage of this specific deposition technique, DC sputtering, is that if the
target material is not a good conductor the ions bombarding the material cannot
be discharged. The accumulation of those charges can produce an electric field that
grows until the ion are repulsed from the cathode. Because of this reason the DC
sputtering is a suitable technique mainly for metal deposition. Radio Frequency
(RF) sputtering avoid charge accumulation using an voltage with a fixed frequency
of 13.56 MHz [9]. The sputtering, both in DC or AC, can be combined with the use
of a magnetron, it creates a magnetic field to keep confined the secondary electrons
emitted from the sputtered material. These are kept close to the surface increasing
the local plasma density.

Figure 1.10. Representation of atoms’ collision chain during sputtering. From
http://www.plasmaquest.co.uk/the-technology/sputtering-basics/.

11

http://www.plasmaquest.co.uk/the-technology/sputtering-basics/

1 – Technology

1.3 Ferroelectric devices

The most important and diffused electronic device is without doubt the Complemen-
tary Metal Oxide Semiconductor field Effect Transistor (CMOS FET). Its relevance
is due to its great performances united with good scalability and relatively low power
consumption if compared with other semiconductor devices.
The increasing push towards portable electronic devices made low static consump-
tion of paramount importance and in this optic the search for a non-volatile memory
able to compete with Dynamic Random Access Memory (DRAM) performances it’s
become an hot topic in research.
Ferroelectric memories are good candidates for this position because of their charac-
teristics: in fact they are, of course, non-volatile, they have low power consumption
and write time while having high endurance. They also integrate well in the stan-
dard CMOS processes [10]. In particular hafnium dioxide happens to be a particular
good choice because it is already used in CMOS as gate oxide, being an high k di-
electric.

For more than 40 years CMOS obeyed Moore law, doubling the number of tran-
sistors into integrated circuits every year [11], this implied an exponential decrease
of the minimum feature size every year bringing the oxide thickness to the order
of magnitude of a single nanometer. Using SiO2 as dielectric the leakage current
due to tunneling effect through the oxide energy barrier generated an unacceptable
static power consumption.
Since this current is exponentially proportional to the thickness of the oxide and the
gate capacitance of a FET device can be expressed as:

C = Ô0KA

t
(1.3)

where A is the area of the capacitor, Ô0 is the vacuum permittivity and K is the
relative permittivity of the oxide used.
In order to get the same value of capacitance while reducing the amount of static
power consumption became important the concept of equivalent oxide thickness

12

1.3 – Ferroelectric devices

(EOT) in terms of SiO2.
EOT = KSiO2

Kox
tox (1.4)

From this is evident that if the chosen material has an higher relative permittivity
than silicon dioxide, the same capacitance can be achieved having an higher thick-
ness, therefore reducing the tunnel effect current.
HfO2 is used in CMOS processes for this purpose, in fact having KHfO2 = 25 and
KSiO2 = 3.9 the gate oxide thickness can be increased by a factor of over six with
respect to silicon dioxide [12]. In Fig. 1.11 can be seen the side by side compari-
son of a SiO2 and high K oxide gate stack obtained through transmission electron
microscopy (TEM).

Figure 1.11. SiO2 (left) and HfO2 (right) gate stack images obtained through
TEM. From Robertson et al. 2015 [12].

This key characteristic makes hafnium dioxide a good candidate for integration
of ferroelectric devices with the actual CMOS technology, in particular two type
of them are important: the ones that uses capacitors such as ferroelectric random
access memories (FeRAM) and ones that integrate ferroelectic materials into CMOS
technology like ferroelectric field effect transistors (FeFET).

13

1 – Technology

1.3.1 Ferroelectric RAM

Ferroelectric RAM exploits ferroelectric capacitors in order to store information in a
non-volatile fashion. The bit is in fact encoded in the orientation of the ferroelectric
polarization.

The basic cell of FeRAMs is similar to the one of DRAMs, in fact the most sim-
ple cell is constituted by just one transistor and one capacitor (1T1C), its schema
is showed in Fig. 1.12. Two operation modes can be distinguished: write and read
operations. The former is executed activating the transistor, it charges the capacitor
plates producing an electric field on the ferroelectric material. This forces the inner
polarization in one of the two stable states that can be encoded as ’0’ and ’1’.
The read operation is performed, again, activating the transistor to force the capac-
itor’s electric field in one specific orientation (e.g. the one corresponding to ’0’) and
reading the current on the output line. If the cell state is already ’0’ no current is
produced, when the state is ’1’ the rearranging of atoms in the ferroelectric material
produces a peak of current that is read by a sense amplifier. The read operation is
a destructive process because overwrite the content of the cell, because of that data
must be stored back in the cell after reading it.

The speed performances of FeRAM in storing and reading data are comparable
to DRAM ones even though the ferroelectric effect is much faster in setting to a
stable state. While DRAMs are limited by the time needed to charge the capacitor
FeRAMs are instead limited by overall switching delay of the control circuits.
In terms of density they are still comparable due to the great integrability of HfO2

into CMOS processes, however they are limited by the fact that when the layer
become too thin it lose its ferroelectric properties [14]. The major advantage of
FeRAMs devices over DRAM is the low static power consumption.
The read/write endurance of 1T1C cell memories is been observed to be in the order
of 1024 cycles making this devices effectively endurance-free [15]. Most of DRAM
power dissipation is due to a process called refresh, the charge accumulated on the
capacitor plates leaks through the dielectric material and through the switching
transistor. Because of this reason the data retention in the cell is quite short and

14

1.3 – Ferroelectric devices

Figure 1.12. One transistor, one capacitor (1T1C) FeRAM cell. (a) diagram of
the cell, (b) hysteresis loop and retained polarization. From Ou et al. 2020 [13].

the bit must be periodically read and written back to avoid lost of information. In
FeRAM, since the information is encoded in the retained polarization, the leakage
of charges is not a problem and a refresh operation is not needed, greatly reducing
static power consumption.

15

1 – Technology

1.3.2 FeFET

FeFET transistors represent an evolution of CMOS devices with hafnium dioxide as
high K dielectric. The oxide layer is doped with zirconium to get the ferroelectric
properties and the process differs from the standard one just by two masks [16].
When a voltage higher than the coercive voltage Vc is applied to the gate terminal
the intrinsic polarization of the thin layer is changed according to the electric field
generated. This produces an accumulation or a depletion of electrons in the channel
depending on the state, this results in a shift of the threshold voltage Vth between
two levels. The low Vth level corresponds to a programmed state, or a ’1’, the high
Vth level is instead assumed as an erased state, or a ’0’. The difference between the
two voltage levels is called memory window. The state of the system can be sensed
through the transistor drain current amplitude as shown in Fig. 1.13.
The presence of a back bias electrode in this design allows for further flexibility in
the choice of the the threshold voltage opening the possibility of programmable logic
gates.

Figure 1.13. A fully depleted silicon on insulator (FDSOI) FeFET representation
in both states. On the left its ID vs.VR response. From Dünkel et al. 2017 [16].

FeFET memories present a non destructive reading, removing the need for a

16

1.3 – Ferroelectric devices

rewrite operation unlike the FeRAM implementation. They present a smaller ele-
mentary cell which can have a competitive area footprint of 0.036 µm2 but they lack
in terms of endurance. FeFET devices have been reported to be able to sustain up
to 105 write/read cycles (± 3.5 V pulses for 10 µs) [16].
The two main factors of ferroelectric memories’ degradation are aging and fatigue
of the material. They are both caused by impurities and point defects accumulated
in the material but they differ in the condition they develop and in the effects on
the material polarization response to an external electric field.
As shown in Fig. 1.14 the former, aging, evolves after time without electrical stress
on the material, it presents on the characteristic curve of the material as a pinching
of central portion of the hysteresis loop, making the response more similar to the one
of an antiferroelectric material. The fatigue effect it’s developed after polarization
cycles, like memories’ write and read operations. It causes a reduction of the total
remaining polarization, compressing the loop along the vertical axis [17].

17

1 – Technology

Figure 1.14. Effect of aging (a) and fatigue (b) on ferroelectric P vs. E curve.
From Geneko et al. 2015 [17].

18

Chapter 2

Logic In Memory

The increasing popularity of Internet Of Things (IOT) has introduced, in recent
years, a shift in computation locality paradigm. From a centralized approach, where
a big server is in charge of all the computations, a more decentralized paradigm is
rising, pushing towards edge computing. In this case to the object connected to the
internet is not only demanded to generate useful data through its sensors but also to
perform precomputations and decisions based on local parameters to be later sent
to the cloud system.
This has some consequences, including lowering communications’ frequency and
reducing the amount of data sent through internet, increasing overall speed perfor-
mances. The drawback is that a great static power efficiency is required, especially
because of the poor energy budget that these devices usually have since most of
those are portable devices. In fact low leakage current and non-volatile memory are
essential to the applications and different new technologies are being investigated
in order to solve these issues, among which ferroelectric is a promising candidate.
Furthermore, the great cost of communications between processor and memory, the
so called Von Neumann bottleneck, has to be minimized.

Because all of these needs a shift in the architectural paradigm is considered:
moving the computations inside or closer to the memory can overcome part of the
obstacles. In this chapter, after explaining what the Von Neumann bottleneck is, a
brief taxonomy of innovative logic-memory paradigms is exposed.

19

2 – Logic In Memory

2.1 Von Neumann architecture

Most of modern machines are all based on various evolution of the Von Neumann
architecture, inheriting both its best and worst aspects.
These architectures present some key elements: a central processing unit, an inter-
nal memory, a mass storage unit and a input and output interface. The central
control unit is in charge of two tasks: to perform arithmetic and logic operations
together with decoding and executing commands. The memory stores both data
and program’s instructions. I/O is needed to take input from the external and store
outputs on a mass storage unit.

Figure 2.1. Von Neumann architecture. From https://tinyurl.com/y2x4xs5y.

The main characteristic of the Von Neumann architecture is the single bus to
communicate with the internal memory, this makes the overall system simpler but
has a crucial drawback. In fact the fetch or store of information and data must be
sequential, this increments the number of communication needed to perform a single
instruction and, of course, the time it takes to execute it increases.
If we take a basic operation like the multiplication as an example, it needs four

20

https://tinyurl.com/y2x4xs5y

2.1 – Von Neumann architecture

elementary assembly operations to be performed:

• load the first variable inside the CPU registers;

• load the second variable inside the CPU registers;

• execute the multiplication;

• store the result back in the main memory;

The CPU has to read each operation from the memory itself, starting from the first
load, this is the first communication between memory and processing unit. Then
the pointer to the address where the variable is stored inside the memory is read
and subsequently the value itself. Only this operation requires three different com-
munications to be performed.
The multiplication instruction needs only to be read from memory since the logic
operation is executed inside the CPU.
In the end the store requires again three communications to be performed: one for
the instruction itself, one for the address to store the result and one to actually store
it.
A simple multiplication is then completed requiring the single data bus to the mem-
ory to be used ten times in total, while the address bus is used for every one of the
above mentioned read/write operations, requiring ten additional communications
(Table 2.1).
The typical communication cost is in the order of 1 pJ/bit/mm while the cost of com-
putation ranges from 1 aJ/bit to 10 aJ/bit, in the case of a 32-bit multiplication the
total amount of energy consumed for communication only is equal to 640 pJ mm−1,
that’s equivalent to the 95% of total energy consumption required [18].

The overabundance of processor-memory interactions is the Von Neumann bot-
tleneck and it’s a factor that can severely affect performances if not mitigated. It’s
consequences on those have been also exacerbated by the great imbalance of per-
formances improvement in the last decades between the two types of devices. It’s
generally both slower and more energy demanding to consult memory than it is to
resolve computations.

21

2 – Logic In Memory

Table 2.1. Number of memory-processor communication needed for a
multiplication operation.

operation data address total
load #1 3 3 6
load #2 3 3 6

multiplication 1 1 2
store 3 3 6
total 10 10 20

2.2 LIM paradigms

The concept of an enhanced memory capable of performing computation or logic
operations is called Logic-in-Memory (LiM).
The net separation between processor and memory of the Von Neumann architec-
ture is abandoned to mitigate the effect of its limitations, mainly focusing on trying
to reduce the energy requirement.
Various approaches have been investigated and all of them fall under the definition
of LiM even if they present very different key features, because of that the need for
a classification inside the topic itself is needed.
A rigorous and universal definition of these concepts still does not exists, because
of that the taxonomy adopted is briefly exposed.

The classification adopted here is based both on the complexity of the operations
carried on by the memory itself and on the integration between logic and memory
functions, we can distinguish three cases main cases [19]:

• Processing-in-Memory (PiM);

• In-Memory Computing (IMC);

• Logic-in-Memory (LiM).

22

2.2 – LIM paradigms

Processing In Memory The first straightforward approach is to place a small
processor inside or very close to the memory module. Its purpose is to execute small
but frequent tasks since it’s able to fetch and store data in a fast way because of its
proximity, Fig. 2.3 a).
A key characteristic is that the operations carried out by the module are complex,
because of that a proper processor is required, complete of an instruction set, a
control unit and an instruction register.
The main CPU can then offload part of the task to the local processor reducing
communication frequency but increasing the memory footprint.
Memory and processing devices are close but still both logically and physically sep-
arated.

An example of the above class is showed in the work of Pugsley et al. 2014 [20]
where PiM applications for big data distributed computation are investigated.
The approach used is the one of Near Data Computing, where the processor is placed
very close to the memory elements in order to reduce both latency and communi-
cation energy consumption. The application involves a great level of parallelism to
handle the huge workload of the processes, to further increase performances on the
local level technique of 3D stacking are exploited.
The Hybrid Memory Cube from Micron is been used since it stacks DRAM dies on
logic circuits connecting the two of them with Through Silicon Via. These are ver-
tical connections created through the various insulator layers of the die formed by
a hole filled with conductor material. Exploiting the vertical dimension they ensure
a short and narrow connection, permitting a superior bandwidth with respect to
DDR3 and DDR4 RAMs [20].

Given the complexity and diversity of the operations required by the application
requires the use of energy efficient general purpose processors.
This PiM architecture is been observed to reduce execution time by a factor of 15
and system energy by a factor of 18 [20].

23

2 – Logic In Memory

Figure 2.2. Representation of a DRAM banks stack connected to the logic layer.
From Pugsley et al. 2014 [20].

In Memory Computing The memory module has integrated some elementary
computing operations, in this case the CPU asks for an operation between two or
more stored variables and the memory replies with the result, Fig. 2.3 b).
The tasks are smaller and the amount of communications between memory and
processor to send control signals are higher with respect to the previous case but
memory area is reduced.

Logic In Memory The properly called Logic In Memory differs from the two pre-
vious definitions because it performs operations without the need to add dedicated
logic operators but only with existing memory resources.
This can be subsequently subdivided into two categories: coarse-grain and fine-grain
LiM. The former, coarse-grain Logic In Memory, has the peculiarity of not executing
logic into the memory at all. Frequent tasks’ results are stored into the non-volatile
memory to be read; this is placed very close to the processor in order to obtain
fast access. For complex functions are available different strategies to remove some
stored elements, while this greatly reduce the area footprint further elaborations on
the results may be required depending on the case this removes the need for inter-
mediate communications.

24

2.2 – LIM paradigms

I/O I/O

Memory

Elementary
operation

a) b)

Memory

Processor

Figure 2.3. a) Processing In Memory representation, the processor is placed in-
side the memory device but they are different entities. b) In Memory Computing
representation, logic and data storage are still separated but the former is simpler
and does not require a control unit.

This non-volatile lookup table (LUT) approach removes the needs for operands to
be sent to the processing unit and having the same speed of a L1 cache it mitigates
the effect of the Von Neumann bottleneck.

The latter category is fine-grain Logic In Memory. Here very small blocks of
memory are connected to logic circuits to achieve new functions.
Those components can well suit applications in which there are a set of fixed pa-
rameters that are locally used to perform frequent operations like in Finite Impulse
Response digital filters or convolutional neural networks.
An example of integration can be few non-volatile flip-flops added to input ports
of logic gates to perform re-programmable logic or, more specifically to the FeFET
application in fine-grain Logic In Memory, the exploitation of the intrinsic mem-
ory capability of the device to perform logic operation between two input bits, one
stored in the ferroelectric capacitor and one sent to the transistor’s gate.

An example of coarse-grain LiM is the work presented by Chen et al. in 2018
[21].

25

2 – Logic In Memory

Figure 2.4. Non-volatile Logic In Memory representation. (a) coarse-grain (b)
fine-grain. From O’Connor et al. 2018 [19].

The proposed architecture exploits an array of non-volatile ferroelectric memory ex-
plicitly designed as a look-up table.
The elementary cell proposed is composed by a single FeFET (Fig. 2.5) and a cus-
tom write/read scheme is been designed together with the architecture.
The proposed LUT leverages the great integration of FeFET with CMOS processes
to obtain an highly area-efficient circuit with respect to other non-volatile technolo-
gies. It also takes advantages of the near-zero current of FeFET in the off state, one
of the key characteristic of the technology.
It’s been proved that for 6-bit inputs LUT the area-power-delay product is 6.2×
better than designs based on static Random Access Memory (SRAM), 3.9× better
than Magnetic Tunnel Junctions (MTJ) LUTs and 2× better Resistive Random
Access Memory (RRAM) LUTs [21]

An example of fine-grain LiM are the FeFET reprogrammable logic gates pre-
sented in the work of O’Connor et al. [19] depicted in Fig. 2.6.
The basic principle exploited is that one input bit is stored into the ferroelectric
layer as the polarization direction, it’s written sending a write/erase pulse to the
FeFET gate. The other input bit is sent to the gate as a readout voltage low enough
to not change the former.

26

2.2 – LIM paradigms

Figure 2.5. Array of elementary LUT cells. From Chen et al. 2018 [21].

The state in which the device is set shifts the threshold voltage, changing the re-
sponse to the input. In the ’0’ state, or high resistance state the threshold voltage is
higher and represented as a solid line in Fig. 2.6 b), in the ’1’ state, or low resistance
state, it’s lower and represented with a dashed line.
A further degree of freedom is introduced by the back bias voltage that can shift all
the response, changing the logic behaviour of the gate, keeping the same readout
voltage levels.
In particular the scheme exposed in Fig. 2.6 a) represents a NAND/NOR gate: in
one state of the back bias we get the Id −Vg curve shifted toward the positive voltage
axis and the FeFET produces an AND response. In this case the output is coded
into the amplitude of the Id current, if the transistor is on and the Id current is not
negligible and it is considered an on state or a ’1’, in the opposite case is an off state
or a ’0’.
The presence of a pull up resistance act as an inverter while transducing the output

27

2 – Logic In Memory

again into a voltage: if the transistor is off the output terminal is no longer con-
nected to the ground and the resulting output voltage is dictated by the pull up
circuit to VDD setting a ’1’, when the transistor connects the output terminal to the
ground the output voltage drops to almost zero resulting into a ’0’ state.
These results are showed in table 2.2.

Table 2.2. Truth table for NAND/NOR 1-FeFET logic gate. When back bias is
set to ’0’ the logic function implemented is NOR, when ’1’ is NAND.

back bias A B Id Vo

NOR


0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0

NAND


1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 0

It is evident how the proposed taxonomy divides the subject into categories based
on the complexity of the operations handled by the memory, ranging from complex
macro tasks proper of PiM to the bit by bit operations of fine-grain LiM, but at the
same time the level of integration between logic and memory components changes
as well, ranging from completely different devices placed close to each other to a
very intimate mix of the two.
The enormous variety in those paradigms reflects itself into infinite degrees of free-
dom in the design of Logic In Memory devices and an efficient way to compare those
different approaches in a meaningful way is of paramount importance when choos-
ing the best architectural structure for a specific target operation. The proposed
benchmarking platform tries to fill this gap, offering a fair way to analyze different
approaches to the same problem in a single tool.

28

2.2 – LIM paradigms

Figure 2.6. a) 1-FeFET reprogrammable NAND/NOR logic gate schematic with
its basic functionality depicted in b). c) 2-FeFET XOR logic gate. d) 2-FeFET
XNOR logic gate. From O’Connor et al. 2018 [19].

29

Chapter 3

Benchmarking platform design

The great number of possibilities in LiM architectural development, combined with
the different technologies emerging in the last decade, gave rise to an overwhelm-
ingly vast design space in which is easy to get lost or to miss the optimal solution
for a specific use case.
Because of this the need for a trustworthy and reliable method to compare different
approaches, even before the experimental step, is of paramount importance in the
design of a LiM architecture.
This project proposes a platform that offers itself to tackle this impressive task.

The result here detailed is incomplete and groundbreaking numerical results are
still absent. Anyway, the ones that are present prove its capability of becoming an
important addition in the tool belt of researchers focusing in the field.
The platform design is based upon three fundamental concepts:

• abstraction;

• scalability;

• modularity.

The first, abstraction, is needed for being able to simulate systems that are funda-
mentally different between them. High level system simulations on the components
are performed in order to extract performance estimations to be evaluated. These
are based on physical parameters typical of the technology node taken in exam.

31

3 – Benchmarking platform design

The second, scalability, is important for the platform to be able to accommodate
different benchmarking specifications based on the chosen use case.
The latter, modularity, permits to create custom simulations with only the compo-
nents chosen for the analysis and to include in the future new features and function-
alities.
The platform is developed with extreme flexibility in mind, for future compatibility
and to be able to satisfy the maximum number of scenarios required by the eclectic
nature of LiM architectures.

The platform is divided in three parts: first the benchmarking algorithm is cho-
sen and, if needed, translated in a format that the platform can elaborate. The
input syntax is defined and later discussed in more details.
The instructions are then read by the actual platform which performs the simulation
and returns the figures of merit. In the end a final stage is performed in which the
results are cleaned of unnecessary information, confronted if needed with previous
simulations and plotted.
The interfaces formats between those stages are rigorously defined, in this way the
single parts can grow independently one from the others, granting the modularity
of the complete system.

The platform, given its high level of abstraction, is able to switch between differ-
ent technologies or different implementation of the same module. The parameters
received through various operational cards capture the physical aspect of the simu-
lation, allowing to include all of them in the same framework in a reliable manner.

32

3.1 – Platform anatomy

3.1 Platform anatomy

In this section a more detailed overview of the platform structure is given, focusing
on the benchmarking algorithm and the results elaboration. The simulation plat-
form will be thoroughly discussed in section 3.2.

3.1.1 Overview

The whole system is divided into three parts that share inputs and outputs through
written files. The three main macro-component can be seen in Fig. 3.1 and they
are: benchmark, simulation platform and output handling.

The first, benchmark, consists in a text file listing all the operations that the
platform needs to perform, resulting in a very basic compiled version of the chosen
benchmark in a syntax comprehensible by the simulator.
The following phase is the actual simulation, the executable parse the instructions
and computes the results while recording power consumption, latency and others
figures of merit. The platform is implemented utilizing the SystemC library for the
language C++, this is a full-fledged Hardware Description Language (HDL).
The choice of an HDL is mainly due to two reasons: it permits a more flexible degree
of simulation accuracy while guarantying the modular nature of the platform. In
fact a single module can be considered at a very high system level, just emulating the
logical behaviour and estimating general parameters, or the description can descend
into further details, using a Register Transfer Level (RTL) representation. This gives
the opportunity to test and confront different implementations of the same logical
unit.
The output of this stage is a file reporting the traces of important signals present
in the given simulation.
The last stage takes as input those traces and, after a decoding step, it plots them.
It presents a feature which permits to display more simulation results in the same
plots, facilitating the confront between architectures.
The graphs produced are stored in a specific repository.

33

3 – Benchmarking platform design

Benchmark

Memory
accesses

Signal
traces

Plots

Platform

Plot

Figure 3.1. Schematic representing the different steps involved in a single
simulator run. Memory accesses are in txt format, traces in vcd format
and plots in svg format.

3.1.2 Benchmark

Arguably one of the most important aspects of a simulation platform are the bench-
mark that it’s capable of running.
Since the platform is designed as a coprocessor it must receive memory accesses and
operation instructions from the main computing unit, those information are stored
into a file that is later given as input to the simulation program.
The platform is totally independent from the benchmark origin system, this permits
a further degree of flexibility because, as long as the operation are coded in the

34

3.1 – Platform anatomy

syntax understood by the platform, the benchmark is guaranteed to be executed as
intended.
Traces can be generated by custom made programs, by industry standard programs
at runtime or they can be extracted through compiler instrumentation.
The current encoding is been kept as linear and simple as possible to have the best
performances and to maintain forward compatibility with further enhancements of
the platform.

At the current state a Python script is in charge of creating the instructions for
the LiM accelerator, the algorithm chosen is squared matrix multiplication. This
was the obvious starting choice because of his paramount importance and elevate
frequency.
The basic functionality of the script is to take as input a file called matrices.dat
containing two signed integers matrices and to write the operations needed for exe-
cuting the multiplications in the file matrix_multiplication_inputs_[nwb/wb].txt.
The script can takes as input different optional parameters:

• --nwb: this parameter set the output as a No-Write-Back (NWB) process
(default mode);

• --wb: this parameter set the output as a Write-Back (WB) process;

• --new: this parameter ask to use new matrices that are stored in the matrices.dat
file;

• --d: this parameter set the dimension of the square matrices through an
integer.

The script is designed to make the LiM hardware perform the whole computation
and store the results. This is not the most efficient way in terms of energy and speed
but it was necessary for two main reasons: first of all the optimal implementation
would consider the synergy with a main processor that is absent in this stage of the
project, moreover this configuration makes possible the computation of a numerical
result, giving us the opportunity to extrapolate figures of merit for the error intro-
duced by the device.

35

3 – Benchmarking platform design

Because of this design choice the resulting instructions file can be divided into three
main parts: the first is the storing of the input data inside the memory, the second
is the operations needed to perform the calculations and the third is the reading of
the obtained results. The last one is needed for error calculations and for debugging
purposes.

The output contains a single instruction per line, implemented in a simple syn-
tax. The operation needed is coded into one character and it’s followed by other
information needed by it. A comprehensive list of available operations is present in
table 3.2, .
There are three main templates for benchmark instructions: one for NWB opera-
tions, one for WB ones and the last is reserved to memory I/O.
NWB instructions have a total of two parameters representing the operation operands,
they are separated from themselves and from the operation character with a space.
Taking as an example a NWB addition between the numbers 5 and 7 it would be
encoded as:

aüûúý
operation

5üûúý
in 1

7üûúý
in 2

If the instruction is WB an additional input parameter is provided representing
the platform memory address in which the result must be stored at the end of the
process.
A WB multiplication between 20 an 14 that must be stored in the 1340-th memory
position would be encoded as:

Müûúý
operation

20üûúý
in 1

14üûúý
in 2

1340ü ûú ý
address

Read and write memory operations are simpler because they need less parameters:
the former instruction needs just the memory address to be read while the latter
requires a target address together with data to be stored.
The memory write operation is unique because has two different operating modes
that can be detected at simulation runtime. The first one is the default writing
operation, the second is to store back the last output of the simulation platform.

36

3.1 – Platform anatomy

This is a feature implemented to permit the platform to reuse intermediate results
and to carry into further computations errors introduced by the system. It’s strictly
related to the absence of a main CPU in the simulation.
A recap of the different templates is present in table 3.1.

Table 3.1. Table summarizing the different benchmark instruction tem-
plates. Op stands for operation character, in1 and in2 for the input
operands while add for address.

Templates
NWB op in1 in2
WB op in1 in2 add
read op add
write op [add]

Table 3.2. Table of character used to encode the different possible oper-
ations inside the platform.

Coding character Operation description
w Write operation
r Read operation
a Addition NWB
A Addition WB
m Multiplication NWB
M Multiplication WB
i Interpolation NWB
I Interpolation WB

37

3 – Benchmarking platform design

3.1.3 Output analysis

The output analysis is a mandatory step to convert the simulation results into a
more significative and readable format. The platform’s output consists of a Value
Change Dump (vcd) file format which is a non coded text file in which the state
changes of different signals are stored. The platform signals considered as outputs,
together with the debug signals if needed, are set to be logged on that file.
The plotting scripts is divided in three main parts: first of all the vcd file is parsed,
then total energy and total power consumption are computed, in the end data are
plotted and saved.
The script accepts three types of parameters:

• -f: this parameter set the path of the vcd file to process and the prefix to
assign to its graphs;

• --cmppower: this parameter indicates to perform, if multiple files are present,
the plot with the various total power consumptions;

• --cmpenergy: this parameter indicates to perform, if multiple files are present,
the plot with the various total energy consumptions.

The data interpreting step consists of parsing the vcd file mapping the encoded key
to the signals name. After having acquired the initial values for those it saves cou-
ples of data containing its value for any given unit of time. Value zero for the time
axis corresponds to the beginning of the simulation. These couples are stored in
various array, which are needed for the plots.
All signals present are taken into account for the plots but only if they belong to
two categories: boolean types and real number types. Buss signals are ignored due
to the difficulties to represent and compare different values with each others.

The simulation platform is designed to always output two main signals: dynamic
energy consumption and static power consumption.
These two are used to compute the total energy and the total power of the simulation.
At first total static energy consumption is computed, it’s expression at time i is:

Est,i = Est,i-1 + ∆t · Pst,i-1

38

3.1 – Platform anatomy

where Est,0 = 0, ∆t is the minimum time step possible in the simulation, it’s value
is set to 1 ps. Pst,i-1 is the static power consumption at the time step i − 1.
Then total energy consumption is computed as:

Etot,i = Est,i-1 + Edyn,i-1

where Edyn,i-1 is the dynamic energy consumption at the time step i − 1. Lastly the
total power consumption is computed as the incremental ratio of Etot:

Ptot, j = Etot, j − Etot, j-1

∆tj

where ∆tj = 5 · ∆t. This is due to the fact that the delay times of the components
analyzed so far are at least of the order of 1 ns, the use of a bigger time step intro-
duced a negligible accuracy error while greatly increasing the program performances.

The last step is to perform the plots of all the signals found in the vcd file. All
the graphs are plotted against time and saved in Scalable Vector Graphics (svg) file
format inside the graphs directory.

39

3 – Benchmarking platform design

3.2 Simulation structure

The heart of the benchmark platform is composed by an executable designed to
perform high level simulations of a generic LiM hardware accelerator. It’s structure
permits it to remain as flexible and modular as possible while still being able to
faithfully report results for different architectures and technologies.
The project is been developed into C++, using the SystemC library for two main
reasons: first of all is repurposing of already existing code and, most importantly, to
permit the integration of RTL level description of modules. This is especially impor-
tant to be able to implement a full fledged main computing architecture, permitting
in this way to extensively evaluate the full spectrum of LiM hardware accelerators
interactions.

The aim of this tool is to offer a fair method to compare intrinsically different
technologies and architectures in order to fasten the exploration of the design space
for researchers in this field.
This is accomplished by separating the architectural implementation from the hard-
ware used. At runtime an operation card is loaded and used to perform the compu-
tations, this is a file containing the necessary parameters for each given technology
and they are stored in a library fashion.
Swapping between different cards permits to compare the performances of the same
architecture against all the available technologies, even different technology nodes
can be implemented to have a finer level of detail.
Those parameters can be extracted from literature, low level simulations or from
measurements and they can be updated without having to modify the program in-
ner parts.
The architectural level is organized to be as modular as possible: all the compo-
nents designed are available in each simulation. Different configurations are defined
at runtime to be able to perform different tests in a batch of runs. At the moment
only two architectural paradigms are implemented (WB and NWB logic in memory)
but the platform is designed for forward compatibility and extensions.

The program is also intended as a test bench for new technologies: comparing

40

3.2 – Simulation structure

them side by side with more mature and developed ones their strength, but most
importantly their weaknesses, can be unveiled more easily. The prospect is to report
back to hardware research closing a feedback loop that would speed the practical
implementation up, making at the same time better devices and choosing the most
effective application.

The system at the current state focuses on delivering figures of merit for energy
and power consumption together with overall latency and error with respect to
the expected result. This is just the basic set of output and will be expanded
in the future, since every internal signal can be set as an output it can be easily
accomplished.

3.2.1 Architectural design

In this section the overall structure of the simulation platform is explained referring
to the target architectures. The detail of the single modules will be analyzed in
details below.

In this first stage of the project the high level simulation focused mainly on two
types of Logic-in-Memory architectures:

• No-Write-Back;

• Write-Back.

They both belong to the LiM family of architecture, explained in chapter 2.2, but
they differ in one key aspect: the former returns the computed result to the main
computing architecture for further manipulations. The latter stores it back without
having to receive additional instructions from the external, avoiding additional cpu-
memory communications, a schematic representation of both is shown in Fig. 3.2.
The simulation platform, after some design iterations, it’s been settled to a generic
configuration able to perform both architectural paradigms even in a mix configu-
ration, performing both types of operation in the same run. The internal macro-
structure is organized around the module representing the memory and its showed

41

3 – Benchmarking platform design

Operation

Result

Memory

Operation
module

Operation

Result

Memory

Operation
module

a)

b)

Figure 3.2. Diagram representing: a) No-Write-Back (NWB) and b) Write-
Back (WB) architectures.

42

3.2 – Simulation structure

in Fig. 3.3.

At the moment a pure coarse grain approach is implemented, because of that
no logic is performed inside the memory itself. The operations are carried on in
separated components instead, leaving the memory cell structure unaltered. It’s
important to underline that this division is purely logical, as long as the compo-
nents are not intertwined the physical location of the components in the final dies
impacts only on the communication energy consumption. This aspect is neglected
at this stage being that communication in the same chip are much smaller than com-
munication between the CPU and memory or than the energy needed to perform
operations.
The overall structure implements asynchronous communications. This allows for an
easier individuation of bottlenecks in terms of latency.

Incoming instructions are interpreted by a decoder, it’s function is strictly related
to the high level nature of the simulation. Using an instruction decoder would
produce a minor impact when new modules will be added to the platform, resulting
in greater flexibility for further extensions. At the same time the architecture is
not tied to a single configuration as would it be if the input logic would have been
described at RTL level. The input logic power consumption and overall latency are
negligible with respect to the memory ones and very dependent on the architecture
so they are not been taken into account at the moment.

Instructions, converted into control signals, reach the memory which performs
only read and write operations.The data extracted are then redirected to the output
or to operational modules based on the received inputs.
Depending on the instruction performed a multiplexer (MUX) choose where to route
the operands. The operation now available to the accelerator are:

• addition;

• multiplication;

• multiplication via interpolation.

Each one of them can be performed in both WB and NWB mode with the bench-
mark instructions showed in table 3.1.

43

3 – Benchmarking platform design

After the computations are completed the output is sent to the output manager
component. It is a purely logical component as the decoder, it doesn’t concur to the
performance estimation but it permits to implement the write back logic. Similarly
to the input decoder it’s contribution is neglected for the sake of abstraction and
flexibility.
This module is capable, in the case that the operation requires a write operation
back to memory, to raise the memory control signals. The address sent together
with the instruction is used to store the final result correctly.

The simulation executable can take two main input parameters:

• -b is followed by the path to the benchmark file to parse for instruction;

• -n is followed by the prefix for the output file referring to this simulation.

In addition to those explicit inputs the platform exploits other parameters that can
be overwritten using environmental variables before runtime. Those are related to
the modules and will be explained in details in section 3.2.2.
The operational cards used by modules to define low level parameters are stored in
specific files and they are loaded at run time.

44

3.2 – Simulation structure

Decoder Memory

Adder

Multiplier

Interpolator

Output
manager

Operation

Result

Figure 3.3. Diagram representing the internal structure of the platform. In green
is marked the memory module and in blue are the operational modules, compo-
nents concurring to energy estimations. Non-operational modules are in red, their
purpose is to ensure a correct simulation and have no performances associated.

45

3 – Benchmarking platform design

3.2.2 Modules

Inside the simulation platform are present various modules with different charac-
teristics They can be grouped into three main categories: operational modules,
non-operational modules and the memory. Operational modules are high level rep-
resentations of hardware components that perform logic on input data and return
a result, together with performances estimations. The second ones, non-operational
modules, are components that take the place of input nd output interface logic.
Figures of merit deriving from those are considered negligible with respect to those
resulting from memory interrogation and CPU-memory communications. Further-
more the design of those components is heavily architectural dependent, resulting
in an unnecessary step in the early phases of the project.

All modules present input and output signals, control signals and configuration
parameters that are deeply connected to the nature of the module. All of them will
be discussed in details in the following sections.

Non-operational modules

Non-operational modules category comprehends:

• input decoder;

• output manager.

The former is essential for the correct interpretation of the input signals. At
its core there is a thread that reads the benchmark file. Every line is parsed and
for each command received the correct set of control signals is dispatched. This
thread is sensible to all the ready signals of other modules. When those are set to
an high value it means that the component is no more busy and it can handle the
next operation. This prevent synchronization issues given the asynchronous nature
of the platform.
The energy consumed by address communications to the platform is also estimated
into this component and reported into the output signal address_energy. The
default parameter used for address energy estimation is 1 pJ/bit and it’s value is

46

3.2 – Simulation structure

bounded to the environmental variable ENERGY_ADDR [18]. It is important to under-
line that this energy consumption is not produced by the logic simulated by this
module, it is calculated here for a matter of convenience.

Table 3.3. Table summarizing configuration, input and output parameters
of the input decoder module.

env. variables ENERGY_ADDR Address bus energy consumption per bit
WORD_SIZE Bit number of memory word

input signals

ready_mem Memory ready signal
add_ready Adder ready signal
mul_ready Multiplier ready signal
interp_ready Interpolator ready signal

output signals

on_off Signal to turn on or off the memory
read Memory control signal to start read operation
write Memory control signal to start write operation
mul_operation Multiplier signal to start operation
add_operation Adder signal to start operation
interp_operation Interpolator signal to start operation
out_operation Output manager signal to start operation
mux_select Selection signal for memory input MUX
mux_select_address Selection signal for address MUX
addr Address bus
data Data bus
out_select Signal to discern NWB from WB operations
address_energy Address energy signal

The output manager is in charge of routing the output data depending on the
type of operation, which is communicated through the select input signal. In case
of a NWB instruction it is set to ’0’, the output is redirected to the external through
the bus named external_output. In case of value ’1’ it is rerouted to the memory
using memory_output. This module can also drive the control signals to write into
memory.
Another important function of this component is to apply the rounding logic. The
connections inside the platform are fixed to a 32 bit width and because of that when

47

3 – Benchmarking platform design

the output is stored or returned it must be adjusted to simulate finite precision
arithmetic. In case of overflow the result is capped to the maximum or minimum
number representable by the number of bits defined by WORD_SIZE, implementing a
saturated arithmetic. In every other occasion the number is truncated.

Table 3.4. Table summarizing configuration, input and output parameters
of the output manager module.

env. variables WORD_SIZE Bit number of memory word

input signals
input Input data to the module
select Signal to discern NWB from WB operations
output_operation Signal to start the operation of the module

output signals

memory_output Output data towards the memory
external_output Output data towards the exterior
memory_write Memory control signal to start read operation
mux_select Selection signal for memory input MUX

Operational modules

The operational modules are the one performing computations on the data stored
in the memory. They are three at the current state:

• adder;

• multiplier;

• interpolator.

Combining the three of them with the memory it is also possible to perform Multiply
And Accumulate (MAC), even if it’s not implemented as an explicit input command.
The various elementary instructions have to be sent in order to perform it.
The first two, adder and multiplier are very similar having as only difference the
arithmetic operation performed. They present one input bus from which operands
are acquired, this is due to the memory structure having only one output bus forc-
ing a two read cycle to obtain the desired data. As soon as the second number is

48

3.2 – Simulation structure

acquired the operation is performed asynchronously and, after the logic latency is
elapsed, the result is exposed on the output bus. The operation is simulated on a
high level and no RTL simulation is performed. Energy and time parameters are
set by an operational card and can be changed independently from all the others to
perform parametric simulations if required.

A thread is instantiated with the component, this is sensitive to two signals:
add_operation and load. The former communicates to start the operation with
it’s positive front, the latter that the input data is ready to be sampled in order to
get the correct information.
Inside the same thread the energy parameters are updated and then exposed through
a signal representing a real number.

Table 3.5. Table summarizing configuration, input and output parameters of the
adder and multiplier modules.

env. variables WORD_SIZE Bit number of memory word

input signals
add/mul_input Input bus
add/mul_operation Signal to start the operation of the module
load Signal to load the input data

output signals
add/mul_result Output data bus
add/mul_energy Total energy consumption of the module
add/mul_ready Signal for module availability

operational card
n_bits Module precision
energy_bit Energy consumption per bit
latency Time delay introduced

The last operational module is the interpolator. It performs multiplication be-
tween two signed integers operands by reading a partial result from a sparse LUT
placed in memory and recovering the result through a bilinear interpolation.
The number of bits of the operand is defined by INPUT_RANGE, while the degree
of sparsity of the LUT is defined by the SPACING_LUT environmental variable. In
memory are stored all the multiplications between operands representable in a word
of length equal to INPUT_RANGE in two’s complement. In other words they can range

49

3 – Benchmarking platform design

from −2INPUT_RANGE−1 to 2INPUT_RANGE−1 − 1. The incremental step between two
consecutive operands is 2SPACING_LUT.
Taking as an example INPUT_RANGE = 4 and SPACING_LUT = 2 the results stored
would look like:

−8 × −8, −8 × −4, . . . − 8 × 4, −4 × −8, −4 × −4, . . . 4 × 0, 4 × 4

As a consequence of this the length of the memory word must be twice he value of
INPUT_RANGE to be able to store the whole result of the multiplication. With those
parameters the platform can span from a dense LUT using
SPACING_LUT = 0 to an empty one, entirely calculating the output, using
SPACING_LUT = INPUT_RANGE.
The number of stored results is equal to 2INPUT_RANGE−SPACING_LUT which multi-
plied by WORD_SIZE gives the maximum total number of bits occupied by the LUT.
The memory initialization is performed at the beginning of the simulation if an in-
stance of interpolator is present in the architecture.

When the interpolation operation begins the operands are parsed to extrapolate
the memory address to interrogate. The partial result is then fetched and the exact
result is reconstructed through the interpolator logic.
The only operation performed inside the interpolator are register shifts and addi-
tions, keeping the introduced latency low. Energy and delay estimations are com-
puted using one of the adder operational card, neglecting shifts consumptions. The
former is exposed to the component output interface through the energy signal.

Memory

The memory is the central part of the platform and it’s the module from which
every operation starts. Its architecture presents one input and one output data bus.
It is composed of one main thread waiting for a power on signal. Once the start up
time is elapsed athe ready signal is raised to listen for instructions. As soon as one
of the two operation signals, read and write, are set to an high value the proper
instruction is performed. After the correct delay is elapsed the action is performed.

50

3.2 – Simulation structure

Table 3.6. Table summarizing configuration, input and output parameters
of the interpolator module.

env. variables INPUT_RANGE Operands number of bits
SPACING_LUT Sparsity of the LUT

input signals

operation Signal to start the operation of the module
input Input bus from memory
operand_a First operand bus from the input decoder
operand_b Second operand bus from the input decoder

output signals

ready Signal for module availability
output Output data bus
addr Memory address bus
energy Total energy consumption of the module

In the end the ready signal is raised again and the module falls into an idle state
until the next input.
At the beginning of the simulation the interpolator LUT section is initialized storing
all the results in the expected format. The process is explained in detail in 3.2.2.

Energy consumption is updated on the energy_consumption_total signal to-
gether with static_power_consumption. In order to have a finer level of detail in
the output estimations the various components of the energy consumption are also
exported.
They are: energy_consumption_cells, energy_consumption_interconnect and
energy_consumption_manager.
The former is the only one exploited at the current stage of the project, the others
are handled but give no contribution. They are present for forward compatibility
with future enhancements of the simulator.
Parameters for these estimations comes from the chosen operational card. Two of
them are available at the moment, one for DRAM cell technology and one for 1T-1C
Ferroelectric cell technology.

51

3 – Benchmarking platform design

Table 3.7. Table summarizing configuration, input and output parameters
of the memory module.

env. variables

WORD_SIZE Bit number of memory word
MEMORY_SIZE Number of word present
INPUT_RANGE Input range bit for data
SPACING_LUT Sparsity of interpolator LUT

input signals

on_off Power up signal
addr Address bus
read Signal to start read operation
write Signal to start write operation
data_in Input data bus

output signals

ready Signal for module availability
data_out Output data bus
energy_consumption_total Total energy consumption
energy_consumption_cells Cells energy consumption
energy_consumption_interconnect Connections energy consumption
energy_consumption_manager Control logic energy consumption
static_power_consumption Static power consumption

operational card

energy_read_0 Energy to read a ’0’
energy_read_1 Energy to read a ’1’
energy_write_0_to_0 Energy to write a ’0’ on a ’0’
energy_write_0_to_1 Energy to write a ’0’ on a ’1’
energy_write_1_to_0 Energy to write a ’1’ on a ’0’
energy_write_1_to_1 Energy to write a ’1’ on a ’1’
power_keep_0 Power to keep a ’0’ stored
power_keep_1 Power to keep a ’1’ stored
energy_restart Energy to restart
read_latency Latency for read operation
write_latency Latency for write operation
shutdown_latency Latency for shutdown
restart_latency Latency for restart
retention_time Retention time for DRAM

52

3.3 – Simulation validation and results

3.3 Simulation validation and results

In the process of validating and collecting feedback on the platform functionality
different benchmarks have been prepared.
All the following simulations have been performed with low level parameters derived
by literature [22, 23, 24].

Matrix multiplication benchmark The first algorithm ran on the simulation
platform is a matrix multiplication benchmark.
Five-by-five matrices of 8-bits signed integers elements are used as input. Both
NWB and WB configuration are tested to compare the architectures’ performances.
The parameters used in 1T-1C memory cells operational card are showed in table
3.8.

Table 3.8. Parameters used in 1T-1C memory cells operational card. They are
derived by low level CAD simulations.

Parameter Value
energy to read ’0’ 1 nJ
energy to read ’1’ 2.5 nJ

energy to write ’0’ over ’0’ 0.5 nJ
energy to write ’0’ over ’1’ 2 nJ
energy to write ’1’ over ’0’ 2 nJ
energy to write ’1’ over ’1’ 0.5 nJ

power to store ’0’ 0.1 mW
power to store ’1’ 0.1 mW
restart energy 5 nJ
read latency 20 ns
write latency 20 ns

shutdown latency 200 ns

In Fig. 3.4 is shown the total energy consumption of the platform for both
configurations. A relatively small difference is visible and it’s due to the output
bus been used in the NWB operations to send back the result, increasing the total
amount with respect to the counterpart.

53

3 – Benchmarking platform design

It is important to specify that in the NWB benchmark, in order to compute the
total error, results are stored back into memory for subsequent use. This means an
additional write operation for each addition and multiplication is needed, increasing
the total energy consumption.
This is definitely a consequence of the absence of a central computing unit inside the
simulation. Having to handle all the data transformations by itself, the platform is
forced to drift apart from the ideal benchmark. In further developments this would
be a crucial enhancement.
In Fig. 3.5 is shown the distribution of relative error with respect to the expected
output for the same benchmark for each matrix element. It is computed iterating
the algorithm with different inputs each time and registering the various distances,
depicted in the graph. It is clear from the picture that for 32-bits memory words
the precision is sufficient for an exact computation, while for 16-bits the error is
been kept inside acceptable boundaries from the implementation of a saturated
arithmetic.

54

3.3 – Simulation validation and results

 8 bits 16 bits 32 bits
 0.05

 0.1

 0.15

 0.2

 0.25

 Word size

 T
ot

al
 e

ne
rg

y
co

ns
um

p
tio

n
[

 μ

J]

 Energy consumption Vs. Memory word size

 NWB

 WB

Figure 3.4. Platform energy consumption plotted against memory word size after
the execution of matrix multiplication benchmark. Five-by-five matrices of ran-
dom 8-bits signed integers elements used as input. In blue depicted the NWB
architecture, in red WB architecture.

 16 bits 32 bits
 -0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 Word size

 R
el

at
iv

e
er

ro
r

d
is

tr
ib

ut
io

n
[%

]

 Relative error distribution Vs. Memory word size with 8 bit input data

Figure 3.5. Output relative error distribution of matrix multiplication benchmark
for 16 and 32 bits memory words.

55

3 – Benchmarking platform design

Interpolator simulations Another way equally useful to exploit the simulator is
to perform tests on the actual performances of emerging technologies nodes when
placed into a full system. We can compare those to CMOS equivalents utilizing the
same benchmark in order to understand if new designs are competitive. If that’s
not the case we can look for bottlenecks or weak points on which further research
can focus on.
Extensive simulations were performed on the interpolator to discover its perfor-
mances dependency when varying the physical parameters underneath.
The aim was to understand if the utilization of such a computing module was more
advantageous with respect to using a more standard multiplier. In case of a negative
response the next interest would it be how much the technology node would have
to improve in order to accomplish that.

The module is been analyzed at first with the full range of 8-bits numbers and
later with pseudo-random generated inputs. Those sets of operands are tested with
different degree of LUT sparsity. This physically modify the dimensions of the
memory matrix needed to store partial results, this is reflected on the amount of
calculations required to retrieve the final one that decrease with a denser matrix.
For the memory cells a ferroelectric 1T-1C structure is been considered.
The trend depicted in Fig. 3.6 emerged from the simulations, where the average
energy consumption per operation is plotted against the normalized area:

A = ALUT

Acell

The first point (A = 0) is used as reference since is the result obtained without a
look-up table, therefore using just the logic operations like a normal multiplier.
By opposition the last value is the one with minimal sparsity, in other words utilizing
a pure LUT approach.
It’s clear from the graph that the current memory technological node, in blue, is not
mature enough to compete in terms of energy with a dedicated hardware multiplier.
After a parametric sweep on the physical characteristics is been individuated a point
in which this stops being the case.
With a 80% reduction in the energy required from the ferroelectric cells to perform

56

3.3 – Simulation validation and results

a reading operation we can see how the interpolator starts to be advantageous for
a matrix larger than 1024 words. The upper bound of the sparsity imposed on the
LUT can be defined by other means, for example an Energy-Area trade-off. This
result is to be interpreted as a proof of the platform flexibility and as an example of
integration of it in a wider workflow to help the development of emerging technologies
both on a low, physical, level and an higher, architectural, one.

 10 0 10 1 10 2 10 3 10 4 10 5
 5

 10

 15

 20

 25

 30

 Normalized area

 E
ne

rg
y

co
ns

um
p

tio
n

p
er

 o
p

er
at

io
n

[n
J]

 Interpolator energy consumption per operation Vs. normalized area

 current tech. node

 80% reduction

Figure 3.6. Energy consumption per operation vs. normalized area of the in-
terpolator module where 8-bits pseudo-random signed integers used as input for
the benchmark. In blue the actual ferroelectric 1T1C ferroelectric technological
node, in orange an 80% reduction in read parameters, where an advantageous
use of the LUT starts to emerge.

57

3 – Benchmarking platform design

3.3.1 Further work

Results provided by the platform until this point are promising but they are far
from optimal. There is a great margin from improvement in various areas of the
system and given the generality of the tasks performed by it the path that could be
walked are very different. Obviously the implementation of a computing unit inside
the simulation would grant far more accurate estimations in terms of performances
of the accelerator. In fact this would permit to use benchmarks that are closer to
the real implementation, allowing the platform to stop reproducing operations that
it should not execute.
Furthermore it would permit to take into account the energy saved by offloading
computations alongside offering a traditional simulation for comparison.
Another side effect would be a more reliable simulation of energy consumption due
to communications between the two modules.

The second area of enhancements it’s in the benchmark phase. Actually few cus-
tom ones are performed but the simple interface created could be compatible with
different inputs method. An interesting tool that could lower the barrier to simu-
lations would be a modified compiler, aware of the LiM accelerator, to be able to
automatically convert industry standard benchmarks into usable simulation inputs.

Finally, in the scope of the 3ÔFerro project, an integration into an automated
design space exploration pipeline could be developed.

58

3.4 – Conclusions

3.4 Conclusions

In this thesis the design of a simulation platform able to extract performance esti-
mation across a wide range of LiM architectures is been presented. The simulator
must be able to easily switch between different technologies as well, having a fine
detail of modularity.
The main goal of this project is to provide a solid ground for its future development.

The actual state of the simulator is heavily focused on ferroelectric technology
in order to be exploited in a design space exploration workflow in the context of the
existing 3ÔFerro.

The results exposed into chapter 3.3 are not groundbreaking but they are proof
of the extreme flexibility that this tool can provide in both comparing architectures
and technologies between them.
In order to execute faithful high level estimations further development are needed,
the most important one being the addition of a main computing unit to direct the
accelerator operations.This would allow for more accurate benchmark to be exe-
cuted, resulting in better estimations of the LiM structure.

The platform proved itself capable of giving useful insights on the technology
used. This could be a game changer for establishing optimization pipelines on those
parameters. Hardware could be developed having system level performances in
mind, speeding up the overall workflow.
In this context a custom compiler able to delegate operations to the accelerator
would be a great addition. Being able to use industry standard benchmarks would
allow for an easier comparison of the results obtained with existing figures of merit,
together with a wider spectrum of target applications.

59

Bibliography

[1] J. Valasek, “Piezo-Electric and Allied Phenomena in Rochelle Salt,” Physical
Review, vol. 17, pp. 475–481, Apr. 1921.

[2] Littlewood P.B., “Physics of ferroelectrics,” Jan. 2002.
[3] M. Panjan, “Ferroelectrics and ferroelectric domains,” p. 17, Apr. 2003.
[4] P. D. Lomenzo, “Ferroelectric and antiferroelectric properties of hfo2-based thin

films,” p. 209, 2016.
[5] T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelec-

tricity in hafnium oxide thin films,” Applied Physics Letters, vol. 99, p. 102903,
Sept. 2011.

[6] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger,
L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,”
Nano Letters, vol. 12, pp. 4318–4323, Aug. 2012.

[7] Hans-Jürgen Butt, Karlheinz Graf, and Michael Kappl, Physics and Chemistry
of Interfaces. third ed., Apr. 2013.

[8] A. Säynätjoki, “Atomic-layer-deposited thin films for silicon nanophotonics,”
SPIE Newsroom, May 2012.

[9] O. Oluwatosin Abegunde, E. Titilayo Akinlabi, O. Philip Oladijo, S. Akinlabi,
and A. Uchenna Ude, “Overview of thin film deposition techniques,” AIMS
Materials Science, vol. 6, no. 2, pp. 174–199, 2019.

[10] H. Takasu, “The Ferroelectric Memory and its Applications,” p. 12, 2000.
[11] G. Moore, “Cramming More Components Onto Integrated Circuits,” Proceed-

ings of the IEEE, vol. 86, pp. 82–85, Jan. 1998.
[12] J. Robertson and R. M. Wallace, “High-K materials and metal gates for CMOS

applications,” Materials Science and Engineering: R: Reports, vol. 88, pp. 1–41,
Feb. 2015.

61

Bibliography

[13] Q.-F. Ou, B.-S. Xiong, L. Yu, J. Wen, L. Wang, and Y. Tong, “In-Memory
Logic Operations and Neuromorphic Computing in Non-Volatile Random Ac-
cess Memory,” Materials, vol. 13, p. 3532, Aug. 2020.

[14] J. Junquera and P. Ghosez, “Critical thickness for ferroelectricity in perovskite
ultrathin films,” Nature, vol. 422, pp. 506–509, Apr. 2003.

[15] W. Ahn, D. Jung, Y. Hong, H. Kim, Y. Kang, S. Kang, H. Kim, J.-H. Kim,
W. Jung, J. Jung, H. Ko, D. Choi, S. Kim, E. Lee, J. Kang, C. Wei, S. Lee,
K. A, and H. S. Jung, “A methodology to characterize device-level endurance in
1T1C (1-transistor and 1-capacitor) FRAM,” in 2008 17th IEEE International
Symposium on the Applications of Ferroelectrics, (Santa Re, NM, USA), pp. 1–
4, IEEE, Feb. 2008.

[16] S. Dunkel, M. Trentzsch, R. Richter, P. Moll, and C. Fuchs, “A FeFET based
super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and
beyond,” in 2017 IEEE International Electron Devices Meeting (IEDM), (San
Francisco, CA, USA), pp. 19.7.1–19.7.4, IEEE, Dec. 2017.

[17] Y. A. Genenko, J. Glaum, M. J. Hoffmann, and K. Albe, “Mechanisms of aging
and fatigue in ferroelectrics,” Materials Science and Engineering: B, vol. 192,
pp. 52–82, Feb. 2015.

[18] I. O’Connor, L. Mozzone, M. Cantan, A. Bosio, D. Deleruyelle, and C. Marc-
hand, “Granularity Exploration for Logic in Memory,” 2020. Publisher: Un-
published.

[19] I. O’Connor, M. Cantan, C. Marchand, B. Vilquin, S. Slesazeck, E. T. Breyer,
H. Mulaosmanovic, T. Mikolajick, B. Giraud, J.-P. Noel, A. Ionescu, and
I. Stolichnov, “Prospects for energy-efficient edge computing with integrated
HfO2-based ferroelectric devices,” in 2018 IFIP/IEEE International Confer-
ence on Very Large Scale Integration (VLSI-SoC), (Verona, Italy), pp. 180–183,
IEEE, Oct. 2018.

[20] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the impact of
3D-stacked memory+logic devices on MapReduce workloads,” in 2014 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), (CA, USA), pp. 190–200, IEEE, Mar. 2014.

[21] X. Chen, M. Niemier, and X. S. Hu, “Nonvolatile Lookup Table Design Based on

62

Bibliography

Ferroelectric Field-Effect Transistors,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), (Florence), pp. 1–5, IEEE, 2018.

[22] M. Jhamb, Garima, and H. Lohani, “Design, implementation and performance
comparison of multiplier topologies in power-delay space,” Engineering Science
and Technology, an International Journal, vol. 19, pp. 355–363, Mar. 2016.

[23] T. Vogelsang, “Understanding the Energy Consumption of Dynamic Random
Access Memories,” in 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, (Atlanta, GA, USA), pp. 363–374, IEEE, Dec. 2010.

[24] D. Sinha, K. Deepmala, T. Sharma, K. G. Sharma, M. Tech, and M. Tech,
“New Design for Low Power High Performance 8T Full Adder,” p. 4.

[25] J. Wang, H. P. Li, and R. Stevens, “Hafnia and hafnia-toughened ceramics,”
Journal of Materials Science, vol. 27, pp. 5397–5430, Oct. 1992.

63

	Summary
	Technology
	Physical phenomenon
	Ferroelectricity in HfO2 thin films
	Technological processes

	Ferroelectric devices
	Ferroelectric RAM
	FeFET

	Logic In Memory
	Von Neumann architecture
	LIM paradigms

	Benchmarking platform design
	Platform anatomy
	Overview
	Benchmark
	Output analysis

	Simulation structure
	Architectural design
	Modules

	Simulation validation and results
	Further work

	Conclusions

	Bibliography

