
POLITECNICO DI TORINO
Master’s Degree in ICT for Smart Societies

Master’s Degree Thesis

Data-Driven Road Hazard Detection for
Automated Driving

Advisor

Prof. Carla Fabiana CHIASSERINI

Co-advisor

Prof. Jérôme HÄRRI

Candidate

Giuseppe DI GIACOMO

Academic year 2020-2021

i

Summary

Recently, Machine Learning and, more specifically, Deep Learning have become the
state-of-the-art techniques in different domains, such as computer vision, natural
language processing and speech recognition. One of the main drawbacks is the
necessity of a huge amount of data to be trained correctly. So far, the traditional
way consists in gathering samples at only one central infrastructure, which trains
the model. However, if data are recorded by different devices, this process presents
two main disadvantages: first, transmitting all of them requires a great consumption
of network resources and, second, it can expose sensitive information. In such a
context, a new procedure has emerged: Federated Learning.

Basically, Federated Learning leverages the computational power of the agents
collecting data, which, instead of uploading them to the central server in charge
of the model training, keep samples locally and use them for the learning process.
Iteratively, the server only aggregates all the received models.

ML and DL are being increasingly studied also in the transportation field, as
they can be used for ADAS and autonomous driving. Other implementations are
related to the intelligent transportation system, as these techniques may be applied,
for instance, for travel time estimation, to decrease fuel consumption and for traffic
optimization. Thanks to the many contexts in which it may be used, FL has gained
interest also in vehicular networks.

In this work a novel method, named Hybrid Federated Learning, is introduced:
with respect to the standard FL, users are gathered in groups. For each cluster,
the server receives a model that has been sequentially trained by devices of the
ensemble.

Compared to the vanilla FL algorithm, the presented approach shows better
performances in terms of global iterations and number of transmissions. Also, the
communication load on the central server is alleviated.

ii

Table of Contents

List of Tables v

List of Figures vi

Acronyms viii

1 Introduction 1
1.1 Federated Learning . 1

1.1.1 FL in vehicular networks . 3
1.1.2 Vehicular Knowledge Network - VKN 4

1.2 State-of-the-art . 4
1.2.1 Federate Learning . 4
1.2.2 Gossip Learning . 8
1.2.3 Hierarchical FL . 9

1.3 Contributions . 10

2 Hybrid FL 11
2.1 Algorithm design . 11

2.1.1 Grouping strategy . 12
2.2 Context and use case . 12
2.3 FEMNIST simulations . 14

2.3.1 Preliminary experiments . 16
2.3.2 Hybrid FL experiments . 17
2.3.3 Non-IID data . 18
2.3.4 Advantages of proposed methodology 20

2.4 Visual explanation in i.i.d. settings 21
2.4.1 Linear Regression with SGD 22

2.5 Beyond rounds: time and number of transmissions 23
2.5.1 Communication . 26

2.6 CIFAR-10 . 26
2.6.1 Experiments design . 28

iii

2.6.2 IID data . 28
2.6.3 Non-IID data . 29

2.7 Further experiment . 34

3 Trajectory Prediction 37
3.1 Introduction . 37
3.2 Deep Learning: methods summary 38
3.3 Datasets . 39

3.3.1 External camera system . 40
3.3.2 Vehicle camera system . 40

3.4 NGSIM simulations . 41
3.4.1 Related works . 41
3.4.2 Pre-processing . 42
3.4.3 Model . 43
3.4.4 HFL . 43

3.5 Results . 44

4 Conclusions 47
4.1 Future work . 48

Bibliography 49

iv

List of Tables

2.1 Statistics of FEMNIST without letters 16

v

List of Figures

2.1 Scheme representing standard FL and Hybrid FL 13
2.2 CNN used for FEMNIST dataset 15
2.3 FEMNIST without letters - users statistics 16
2.4 FEMNIST without letters - classes statistics 16
2.5 FEMNIST test accuracy w.r.t. number of clients in standard FL

with random selection of clients . 17
2.6 FEMNIST test accuracy with same amount of samples, using

standard FL with data of first 150 users 17
2.7 FEMNIST test accuracy - comparison between SFL and HFL, using

first 150 users . 18
2.8 FEMNIST test accuracy - comparison between SFL and HFL . . . 18
2.9 FEMNIST test accuracy - comparison between SFL and HFL (focus

on accuracy higher than 0.9) . 18
2.10 FEMNIST test accuracy - comparison of test accuracy between

SFL and HFL, with data of first 150 users distributed in a non IID
configuration . 19

2.11 Number of transmissions per round depending on the number of
users and group size . 20

2.12 Scheme for comparison between standard and hybrid FL, with 4
users per round . 21

2.13 Linear regression by using SGD: dataset of user 1 23
2.14 Linear regression for standard and hybrid FL over iterations 24
2.15 FEMNIST test accuracy - comparison between SFL and HFL in

different settings . 27
2.16 CIFAR test accuracy with iid data 29
2.17 CIFAR test accuracy - comparison between SFL and HFL with

non-iid data with respect to rounds 30
2.18 CIFAR test accuracy - comparison between SFL and HFL with

non-iid data with respect to time and transmissions 31

vi

2.19 CIFAR test accuracy - comparison between SFL and HFL with
non-iid data in different settings with respect to rounds, time and
number of transmissions . 33

2.20 Comparison between SFL and HFL with setting of [7] 35

3.1 NGSIM US-101 test accuracy . 45

vii

Acronyms

ML Machine Learning

DL Deep Learning

FL Federated Learning

SFL Standard Federated Learning (referred to FedAvg

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long short-term memory

IID Independent and identically distributed

EMD Earth mover’s distance

QoI Quality of information

WAN Wide Area Network

LAN Local Area Network

BS Base station

SGD Stochastic Gradient Descent

TV Target vehicle

EV Ego vehicle

MSE Mean squared error

MAE Mean absolute error

viii

Chapter 1

Introduction

1.1 Federated Learning

With the technological advance in the last decades, phones, tablets, vehicles,
wearable and IoT devices have become more powerful and provided with an
increasing number of sensors: the amount of data collected by these machines is
huge. For instance, an NVIDIA Deep Learning Data Scientist estimated in 2017
[1] that an autonomous vehicle with only 5 cameras can generate from 1 to 3
TB per hour of raw data; other researches estimate a volume of collected data
between 4 and 20 TB per day, depending on the provided sensors [2] [3]. This is
positive, as these data can be used for traditional Machine Learning and Deep
Learning approaches, which need a lot of samples to be trained efficiently. However,
transmitting such a quantity of information to the server in charge of the model
training could lead to network bottlenecks, thus causing delays, and can be costly
from a communication point of view.

Aside from this, also data security and privacy are now great concerns, reason for
which laws related to the topic are getting more strict: the General Data Protection
Regulation (GDPR) applied in the European Union in 2018 and the Consumer
Privacy Bill of Rights, in the US, are a tangible proof about it [4].

Thus, it is natural to think of an approach that brings the intelligence closer to
nodes, where input information is collected and produced, instead of transmitting
data to a central processing infrastructure. This is done in Federated Learning
(FL), a distributed machine learning paradigm, which consists in training a model
in a decentralized manner.

Generally, to train a model, data are gathered by the central server and then used
for the learning stage; after this process, the final model is deployed to the users to
be utilized for inference. Furthermore, it is also possible to perform the training
in a distributed way, exploiting different computers within the infrastructure: the

1

Introduction

processing is shared across multiple units, but the decisions are still centralized
and a complete system knowledge is exploited [5].

On the other hand, FL approach is still distributed, but also decentralized:
the difference with respect to the previous method is that each node collects its
own data, and instead of sending them to the central server, it keeps them locally
and uses them to learn the model parameters [6]. However, a coordinator is still
employed, but its function is limited, as it is only in charge of aggregating the
received weights and transmitting the resulting model to devices participating to
the successive iteration [6]. The number of aggregations depends on the quantity
of global rounds performed during the training; furthermore, it is important to
notice that at each round, users can process for one or more iterations, which are
referred to as local epochs.

As said, FL prevents data from being transmitted over the network and exploits
hardware of the devices for the processing. Due to these reasons, the main
advantages of FL are:

• privacy and ownership, since data are not shared, but processed locally [7];

• computational power: as the number of involved machines can be high, the
overall computational power of the federated network can be huge; added to
this, devices are provided with increasing processing capacity[8].

By contrast, FL presents also different drawbacks. The main challenges to
address are: [7] [8]

• Non-IID data: devices produce and collect data in a non independent and
identically distributed way among the network nodes.

• Unbalanced data distribution, as also the number of samples across machines
may vary significantly.

• Communication: even if data are not transmitted across the network, FL may
involve an enormous number of devices, thus communication can be much
slower than local computation.

• Systems heterogeneity: as devices are provided with different computational
power and communication capacity, it might be difficult to handle such
heterogeneity within a federated network.

• Privacy: even if data remain locally, a model update may still expose some
private information. Some approaches can alleviate this drawback, but
impacting on the performances; thus, it is important to study and analyze
federated systems to find a good trade-off between efficiency and privacy.

2

Introduction

1.1.1 FL in vehicular networks

In the last years, there has been a great development of the so-called Intelligent
Transport System. Many innovations have been made so far, but a lot of challenges
are still open.

The issues to face are different, but all of them aim to have a better quality of
transportation. This has a lot of implications: more driving safety through hazard
detection and trajectory prediction, traffic optimization, lower fuel consumption,
decreased traffic congestion, shorter trips time and so on and so forth: for most
of them, nowadays, Machine Learning, or rather more specifically, Deep Learning
and Reinforcement Learning have been proved to be the state-of-the-art. For this
reason, Federated Learning has gain popularity also within the transport domain,
as it can be used by vehicular networks.

In this case, besides inheriting the pros and cons explained above, other issues
must be taken into account due to the agents’ high mobility, which causes frequent
and rapid changes in the network connectivity, strongly impacting on the data
collection and on the communication side, as devices can face slow connectivity or
even total lack of it.

Also, it is important to notice that modern vehicles are provided with an
increasingly number of sensors, such as cameras and radar: as already mentioned,
they can generate a great quantity of data, which may be difficult to handle,
both for computational and storage points of view. Moreover, also energy is a
crucial factor: training a ML algorithm requires power, which instead it would be
better to use to increase vehicle autonomy. Just this drawback could lead to a low
participation in the training phase.

To tackle the problem, a strategy to incentivize users is necessary [4]: for example,
in [9] author suggest a method to select users based on their capability, providing
appropriate rewards to clients that take part in the learning process. In [10] a
"Dynamic Federated Learning-Based Economic Framework for Internet-of-Vehicles"
is proposed in order to give the right reward to devices that contribute to the
training. The authors address two issues present in vehicular networks: first, due
to the mobility of users, the network changes very frequently; second, the so-called
Quality-of-Information, QoI, of data collected by vehicles may be very diverse. For
this reason, at each round, the coordinator selects only vehicles that are in areas
of interest and that have a high value of QoI, which is also used to compute the
optimal contracts, necessary to maximize the profits, both of the training devices
and the service provider.

A further consideration regarding FL applied in vehicular networks is related
to the kind of algorithm to perform: a reasonable and functional approach would
imply unsupervised learning or self-supervised algorithms, meaning that labels can
be automatically inferred while driving. As a matter of fact, manual annotation of

3

Introduction

data is impractical, as the driver is of course unable to do it. Even annotating after
driving is not a doable strategy: indeed, the labeling procedure could require a huge
amount of time, since the collected data can be many and difficult to annotate. For
this reason, computer vision tasks, such as semantic segmentation of surrounding
environment, object detection and classification are not indicated for vehicular FL.

This last drawback is also mentioned in [11], a brief report that shows the
challenges of FL for vehicular networks, explaining also which can be feasible
applications. For the latter point, the authors identify a hierarchical structure
for autonomous driving, from the sensing phase to the actuation. Between them,
in order, the layers are object detection, identification and tracking, movement
prediction and driving decisions. The authors claim that FL would be a good
candidate for the higher levels, as labels can be generated by vehicles, in contrast
to the first ones, which need accurate ground truth annotations.

1.1.2 Vehicular Knowledge Network - VKN
As already stated, intelligent vehicles have a lot of sensors and cameras, that they
use to sense the surrounding environment, generating a massive amount of raw
data. The transmissions of such a quantity of information, besides consuming
network resources, may results as redundant or not even necessary [12]. For these
motivations, a new concept has been introduced: each vehicle should collect data
and extract from them a higher knowledge, that can be further exchanged. This
allows the creation of a Vehicular Knowledge Network (VKN).

It is worth noticing the difference between information and knowledge:
information is referred to as everything that can be sensed through sensors or can
be known by sharing data with other nodes of the network; on the other hand,
knowledge is something that is extracted from this information, thus has a greater
level of abstraction [13]. An example of knowledge is given by a trained machine
learning model, characterized by its own parameters. Moreover, knowledge can
also refer to what is generated by applying the above-mentioned model, i.e. the
output of the model itself.

It is understandable that in such a context, Federated Learning could have a
key role in the building of VKNs, as they should be created in such a way to enable
and support the development of federated algorithms.

1.2 State-of-the-art
1.2.1 Federate Learning
The vanilla algorithm for FL is the FedAvg, proposed in [7] by Google, whose
pseudocode is shown in algorithm 1; afterward, in this work, it is also referred to

4

Introduction

as the standard Federated Learning method.
At each global step, named round, the central coordinator randomly picks

users among the available ones and sends to them the model to train. After that
devices perform the local training for a preset number of iterations, named local
epochs, they send back the updated parameters to the central coordinator, which
aggregates them, simply by computing an average weighted on the number of local
samples with respect to the total ones. It has been proved that FedAvg is "robust
to unbalanced and non-IID data distributions" [7].

Algorithm 1: Federated averaging FedAvg
Data: η is the learning rate, nc is the amount of samples of user c, nr is the

total number of samples of all users picked for round r

Initialization of weights w0
for each round r = 1,2 . . . do

random selection of C clients
for each client c in parallel do

wc
r+1 = Client update(wr)

end
wr+1 = qC

c=1
nc

nr
wc

r+1
end

Client update(w):
for each local epoch le = 1,2 . . . do

for each batch b = 1,2 . . . do
w = w − η∇l(w, b)

end
end
return w to server
A lot of research works aim to overcome the above-mentioned issues related to FL.

For example, in [14], to address systems and statistical heterogeneity in federated
networks, authors introduce FedProx, which allows to reach higher stability in
convergence and better accuracy. FedProx shares the principle of working of FedAvg,
as it can be considered a generalization of the latter. The main differences with
respect to FedAvg are two. To cope with system heterogeneity, FedProx tolerates
partial works from users: indeed, it allows different local computational processing,
permitting to sent also partial solutions, which are still aggregated by the central
coordinator. The rationale behind this concept is that in FedAvg all the clients
must perform the same amount of epochs, without considering the diverse resources
of the devices, such as computational power, connectivity and battery capability.
On the other hand, as for statistical heterogeneity, the proposed method introduces

5

Introduction

a proximal term in the local function, which must be minimized. This change
prevents the updates from being very different with respect to the global model,
which is received before starting the training, thus reducing the effect of updates
that can negatively influence the convergence.

In [15], the consequences of non-iid data on the training are investigated. With
more non-iid data, due to the diverse samples’ distributions, the weights computed
by clients are more different among each other; because of this, the so-called weight
divergence increases. The latter is defined by authors as

||wF edAvg − wSGD||
||wSGD||

(1.1)

where wF edAvg and wSGD are the weights obtained respectively with FedAvg and
Stochastic Gradient Descent. The difference between distributions can be measured
by using the earth mover’s distance, EMD: when it increases, the test accuracy
decreases. To overcome this drawback, the authors propose a solution: basically, as
there is "no control on the clients’ data", they "distribute a small subset of global
data containing a uniform distribution over classes from the cloud to the clients".
By increasing the amount of distributed samples, also the test accuracy grows,
while the EMD gets smaller.

In [16] the communication cost issue is faced, with the proposal of two ways
to reduce the uplink transmission load. The explained methods are structured
updates, where the weights are learnt "from a restricted space parametrized using
a smaller number of variables", and sketched updates, in which the model update
is compressed before the transmission to the central coordinator. Such techniques
may still be useful, because there might be a communication bottleneck, due a
huge number of participating devices in FL training and due to the size of the
model to exchange.

As trained model parameters may still expose some private information, in [17],
authors introduce differential privacy, which may be applied also in FL to increase
data security. Other used techniques related to privacy and security are Secure
Multi-party Computation (SMC) and encryption [5]. The purpose of Differential
Privacy, DP, is to prevent "the FL server from identifying the owner of a local
update". Basically, it "adds a certain degree of noise in the original local update
while providing theoretical guarantees on the model quality" [4]. On the other
hand, Secure multi-party computation [18], also simply multi-party computation
(MPC), is a subfield of cryptography. SMPC is a protocol that allows distributed
computation over multiple users, which keep their own data private, without sharing
them among each other.

It is important to notice that as concerns the aggregation made by the central
coordinator, there are two classes of FL, synchronous and asynchronous. In the
first case, which is the most common approach, parameters aggregation occurs only

6

Introduction

at the end of every round, after all participants complete the local training; on
the contrary, the second method relaxes this constraint. However, asynchronous
strategies do not provide convergence guarantees [4] and require an enormous
number of updates [7], reasons for which most of the studies focus on synchronous
FL. For the same motivation, also in this work asynchronous FL is not taken into
account.

Frameworks and datasets

So far, different open source frameworks have been developed for Federated Learning.
The main ones are TensorFlow Federated (TFF) [19], PySyft [20], LEAF [21] and
FedML [22].

TFF is an open-source framework developed by Google, which has used FL
to train a next-word prediction model for mobile keyboards [23]. TFF furnishes
datasets and models for FL and provides a flexible interface for further studies and
development.

PySyft is a Python library for FL, which includes tools for security and privacy
such as Differential Privacy, and Encrypted Computation methods, like Multi-Party
Computation (MPC) and Homomorphic Encryption. Recently, also the support for
TensorFlow has been added. As concerns homomorphic encryption [24], it permits
to perform computations directly on encrypted data, without needing to decrypt
them first. After the processing, the output is still encrypted: its decrypted form
is equal to the result obtained by computing on not crypted data.

LEAF is another open-source framework [21], whose main contribution is
providing datasets build specifically for FL. To date, six datasets are present
in LEAF:

• Federated Extended MNIST, FEMNIST, in which data of EMNIST [25],
consisting of handwritten digits and letters, are divided by writer; characters
are centered in grey-scale images of 28x28 pixels;

• Sentiment140 [26], which collects tweets from different users in order to build
a sentiment analysis dataset;

• Shakespeare, that includes the works of the famous writer, taken from [27] :
here the different users are the roles from each play;

• CelebA [28], which is a collection of face images and attributes of celebrities,
of course partitioned based on the represented person;

• Reddit, which gathers comments published on the platform on December 2017,
dividing posts by authors;

• a synthetic dataset, built specifically for FL. For more details refer to [21].

7

Introduction

Another available library for Federated Learning is FedML. The latter allows
to perform not only simulations on a single machine, but it permits distributed
computing and to train on different kinds of IoT devices and smartphones as
well. Moreover, it provides useful benchmarks for FL and also the possibility to
implement algorithms of vertical FL and split learning.

As concerns Vertical FL, it is a different paradigm with respect to the horizontal
one, which has been implicitly considered in this work. In horizontal FL, users’ data
belong to only one features space and clients are unique; in vertical FL, instead,
users of distinct datasets are the same and each set is characterized by different
features [5]. For instance, horizontal FL may be exploited by different hospitals by
using the same medical tests prescribed to different people. On the other hand,
Vertical FL can be utilized by hospitals that do different medical tests, but to the
same group of patients.

Split learning is another paradigm used in FL: "in this setting each client, (for
example, radiology center) trains a partial deep network up to a specific layer
known as the cut layer" [29]. In [30], the authors compare FedAvg with this method,
named SpliNN, finding that the latter needs much less computation, measured in
TFLOPS, and also fewer transmitted data.

1.2.2 Gossip Learning
Gossip learning is an alternative approach to FL: it also relies on data remaining at
the edge devices, but without the need of a central controller for model aggregation.
The basic implementation involves that each participating node should first initialize
a local model; then, when it receives a model from another user, it updates its local
one, either simply overwriting it, or aggregating both of them, following different
averaging strategies.

In [31], authors find that gossip learning, under a uniform distribution of data
among the nodes, may outperform federated learning. In the other cases, its
performances are actually similar to standard FL. As stated in [31], "the advantages
of gossip learning are obvious: since no infrastructure is required, and there is no
single point of failure, gossip learning enjoys a significantly cheaper scalability and
better robustness."

Besides this, from the literature review it seems that gossiping learning is not
analyzed as much Federated Learning.

A drawback of Gossip Learning is that its performances are strongly dependent
on the network topology, as stated in [32]. For example, in the case of vehicular
networks, data needed to train a model may be possessed by only a few agents,
which can also be geographically sparse, reducing the probability that they will be
close enough to directly communicate with each other. In such a case, there would
be the necessity to connect them by using an extensive infrastructure, but, with

8

Introduction

this premise, Federated Learning can be more indicated. Also, even if agents form
local clusters that can not communicate with each other, they will end up building
specific models that may be not good for the global function optimization.

In this work, a novel method is proposed, named Hybrid Federated Learning, as
in can be viewed as a combination of Gossip and Federated Learning: it leverages
the possibility to exploit locally a mechanism like gossiping, but allowing, thanks
to the global aggregation, to alleviate issues that may arise due to topology of the
network.

1.2.3 Hierarchical FL
Even if a few works can be found in literature, another approach that can be related
to the introduced method is Hierarchical Federated Learning. The basics behind this
strategy are to create a stratified structure of devices, performing model aggregation
also in intermediate layers, placed between users and central coordinator, in a
hierarchical manner. The latter factor is the point that distinguishes Hierarchical
FL from Hybrid, in which merges are only computed by the server and are also less
frequent, as devices receiving a model from another user do not merge it with the
local one, that is instead simply overwritten with the obtained model, becoming
the new starting point for training.

In [33], authors underline the limits of the existing FL systems, which usually
operate within a wide-area network, WAN, as devices can be very widespread,
covering large geographical areas. Indeed, WAN is usually slow and constrained,
causing a communication bottleneck; second, it is also very expensive. Thus, they
propose a hierarchical aggregation mechanism, called LanFL, based on structures
relying on the local-area networks (LANs), as they provide a huge quantity of
bandwidth resources, besides having a cost that is way less with respect to the
WAN. LanFL has been proven to decrease training time and reduce WAN traffic.
Indeed, by applying this framework, global aggregations are much less frequent; on
the contrary, local merges, which are performed by some devices within the LAN,
are very copious.

This approach is also studied in [34], where the authors introduce a "client-edge-
cloud hierarchical Federated Learning system". Between cloud server and users,
also edge servers are exploited. The latter, after a certain amount of local updates,
perform the models aggregation from their own clients. Afterwards, when a definite
number of edges aggregations is computed, the cloud server merges all the edges’
parameters. By using this architecture, less training time is needed compared to
standard FL.

Particularly, in [35], the hierarchical method is applied in mobile networks.
Depending on their position, mobile devices are grouped and assigned to a base
station, BS, to which clients send the computed gradients, instead of transmitting

9

Introduction

them to the central server. The BS average the gradients and the obtained result is
sent back to its associated units. Also in this works, the intra-cluster aggregation
is coupled with inter-cluster model averaging, performed by the coordinator; this
is a crucial step, without which it would be very unlikely to converge to a global
model that can be generally valid, regardless of the BS. The main advantages of
the proposed framework are two: it achieves higher accuracy, and, as this technique
necessitates shorter transmission ranges, communication latency is lower.

1.3 Contributions
The contributions of this work are the following ones. In chapter 2, it is analyzed
how the different simulation settings influence the federated learning, applying
FedAvg, the vanilla algorithm. Then, a novel approach, called Hybrid Federated
Learning, HFL, is introduced. Experiments with FEMNIST and CIFAR-10 datasets
are simulated, to compare and explain the advantages of the presented method with
respect to FedAvg. In chapter 3, both approaches are implemented with NGSIM
US-101 dataset, with the aim of training a trajectory prediction model. The main
objective of this simulation is to prove the feasibility of FL, and more specifically of
HFL, within vehicular networks.Finally, chapter 4 contains the conclusions; ideas
and steps for future work are presented as well.

10

Chapter 2

Hybrid FL

In the context of Federated Learning, a lot of works focus on reducing
communication costs. A natural approach consists in reducing the number of
global rounds, while increasing local computation, but this could lead to worse
performance and delayed convergence [4], as also shown in some experiments of
[7] with non-iid data. For iid case, instead, increasing local computations lead to
improvements, but it is important to recall that generally data are non-iid.

The rationale behind this downside is well explained in [14], where authors
claim that when users have very diverse local objectives (this occurs due to their
sample distributions), a greater amount of local steps may lead each device to only
optimize its own objective function, with the possibility of negative effects on the
global one. Thus, it is important to find a trade-off between global rounds and
local epochs. Other techniques to limit communication costs are the ones cited
before, i.e. structured and sketched updates, explained in [16], but they can cause
issues in accuracy and convergence.

The proposed approach, called Hybrid Federated Learning, is orthogonal to
these works and its main benefit is reducing the number of transmissions needed
for training.

As said, this method can be considered as hybrid between Federated Learning
and Gossip Learning. Indeed, it still relies on a central controller that aggregates
weights, by using a weighted average as in FedAvg. Its peculiarity consists in
gathering users in groups of n members, such that only one of them receives the
updated model from the controller.

2.1 Algorithm design
Figure 2.1 shows the schemes representing the principles of Federated Learning and
the proposed approach, whose pseudocode is shown in algorithm 2. The first step is

11

Hybrid FL

the initialization of the weights; in [7] it has been proven that a shared initialization,
meaning that all starting weights are equal among all users, is beneficial for FL.

For each round, a number C of clients is picked for the training and are grouped
together in G clusters of size N. Only one member per group receives the latest
available model from the central coordinator; then, after the local training, instead
of sending back the learnt parameters to the server, it transmits them to another
user of the ensemble. At this point, this sequential process continues until the
last remaining member of the cluster, after the training, finally sends the obtained
model to the controller. This mechanism is executed in parallel by all groups.

When the server receives from each cluster the updated parameters, it computes
the weighted average based on the total samples of each ensemble; after this stage,
a new round starts, performing the same procedure described above.

2.1.1 Grouping strategy
Regarding the strategy for grouping clients, in pseudocode 2 no specific rules
are present. It is important though to mention the criteria according to which
ensembles may be built, as this is a crucial step for HFL.

The simplest technique is creating clusters randomly, as done in the experiments
based on the FEMNIST and CIFAR-10 datasets. A further strategy consists in
gathering clients according to the kind of samples they have; this approach is
applied in section 2.6.3, in which the simulations are executed using the CIFAR
with non-iid data.

However, in a real case scenario, these methods have a great limitation, since
it must be taken into account the location of the users in order to exploit direct
transmission of the model. Therefore, it is necessary to gather users that are
geographically close to each other. When the position constraints are satisfied, it
may be possible to form clusters in a random manner or also considering the type
of data of each client.

2.2 Context and use case
Hybrid FL can be exploited in different scenarios. For example, consider a rare
event such as a car accident: some vehicles can collect data about it, but due
their mobility, they do not have much time and can gather a limited amount of
information. In such a case, a vehicle can use these data to train a model for
accident prediction; then, it sends the updated parameters to a vehicle next to it
that has stored data about the same accident, maybe even also from a different
perspective. This process is chain repeated in the area around the accident, until
the last member of the local cluster transmits the model to the central server,

12

Hybrid FL

Figure 2.1: Scheme representing standard FL and Hybrid FL

which can merge models coming from different and geographically spread groups
that have collected data of different accidents.

Another situation in which this method can be used is for trajectory forecasting.
By using their sensors, vehicles can continuously detect objects and estimate their
position: with this assumption, it is desired to train a model able to predict the
future location of agents considering their past states. For instance, if vehicles are
driven on highways, they can form groups based on their position, sequentially
exchanging model updates.

On the other side, if one wants to train a general model, valid not only in
highways, since they have a specific mobility pattern, it can be possible to form
ensembles which, besides considering the position, can be built taking into account
other factors, such as the kind of data collected by vehicles. In this way, it
would be feasible to peak agents having different data, such that the model
related to each group would be updated by using heterogeneous inputs, thus
limiting the risk of sending parameters biased due to specific samples distribution.

13

Hybrid FL

Algorithm 2: Hybrid Federated Learning
Data: η is the learning rate, ng is the amount of samples of group g, nr is

the total number of samples of all users picked for round r

Initialization of weights w0
for each round r = 1,2 . . . do

random selection of C clients
grouping C clients in G groups of N members
for each group g in parallel do

wg
r+1 = Group update(wr)

end
wr+1 = qG

g=1
ng

nr
wg

r+1
end

Group update(w):
for each client c ∈ g do

w = Client update(w)
end
return w to server

Client update(w):
for each local epoch le = 1,2 . . . do

for each batch b = 1,2 . . . do
w = w − η∇l(w, b)

end
end
return w

2.3 FEMNIST simulations
For this works, PyTorch framework is used, due to its simplicity and since it
allows great freedom to perform the intended experiment. The used dataset is
the forementioned FEMNIST, in which only digits are considered to limit the
computational load.

At first, experiments are run using it, and CIFAR in the next section, even if they
are not related to the transportation domain and even though FL is not indicated
for supervised learning that needs external sample annotations. Nevertheless, these
two data collections are easy to use, allowing to draw some first conclusions for the
comparison between the standard and hybrid strategy.

For the loss, the Cross Entropy Loss is utilized, while the used optimizer is the

14

Hybrid FL

Stochastic Gradient Descent, with a learning rate equal to 0.01 and momentum
of 0.9. The batch size is set to 8, the number of total rounds is 50 and, finally,
training involves only one local epoch, if not specified otherwise.

The used model architecture, shown in figure 2.2, is simple Convolutional
Neural Network, which is equal to the one present in [36]. It is composed of two
convolutional layers, each of which is followed by max-pooling and ReLU, Rectified
Linear Unit, activation function. Then, the resulting output is passed to a first
fully connected layer, followed by ReLU and a dropout layer. Finally, there is the
last fully connected liner layer, whose output is given to a logarithmic softmax
function; the index of the maximum returned value is the predicted class of the
input data.

It is worth noticing that in all experiments test accuracy is computed using a
test set, which has no data in common with users’ data, by the central coordinator.
This choice has been made just for simplicity, but depending on the use case the
testing phase can be also made by the clients themselves.

Figure 2.2: CNN used for FEMNIST dataset

FEMNIST statistics

Since the original FEMNIST dataset is prepared in order to remove letters, in this
section some details about the final processed dataset are provided. Figure 2.3
shows the users statistics, in particular the number of clients with respect to the
number of samples. As it can be noticed, most of the clients have between 100 and
120 data; just a few users own less than 50 samples. Other relevant information
is given in table 2.1. On the other hand, figure 2.4 shows the distribution of all
samples with respect to the class they belong to: as it is possible to see, the number
of occurrences is quite similar among the digits, meaning that the dataset can be
considered balanced from this point of view.

15

Hybrid FL

Figure 2.3: FEMNIST without letters -
users statistics

Figure 2.4: FEMNIST without letters -
classes statistics

Total number of users 3383
Total number of samples 341873
Mean (samples per user) 101.06

Standard deviation 14.72
Table 2.1: Statistics of FEMNIST without letters

2.3.1 Preliminary experiments

First of all, some simulations are performed in order to understand the influence of
some parameters on the training phase.

Figure 2.5 shows the test accuracy with respect to a different number of users,
which are randomly selected at each round. Apart from the case with only one
client, the trend is the same, but increasing the users the curves become smoother,
presenting much less pronounced oscillations.

Then, the consequence of the splitting of the data is analyzed. To do this, only
the first 150 users are considered, simulating different scenarios. Indeed, users
are gathered in group of x members, in order to put together data from different
clients, simulating fewer devices with more samples, but keeping the overall amount
of data constant. As shown in figure 2.6, training speeds up and reaches better
accuracy when having fewer users, but with more inputs.

However, gathering samples from users is not doable in Federated Learning: the
Hybrid strategy tries to alleviate this limitation, since clients of a group, instead
of transmitting data, share updated weights among each other, so that the model
sent to the coordinator has been trained using more samples.

16

Hybrid FL

Figure 2.5: FEMNIST test accuracy w.r.t.
number of clients in standard FL with
random selection of clients

Figure 2.6: FEMNIST test accuracy with
same amount of samples, using standard FL
with data of first 150 users

2.3.2 Hybrid FL experiments

Figure 2.7 highlights the comparison between the standard approach, i.e. FedAvg,
and the Hybrid FL, using as before only the first 150 users: the plot shows that
grouping clients in ensembles of 2, the test accuracy grows faster and reaches a
higher score, while with groups of 5 agents performances are even better.

Due to the apparent benefits of HFL, other simulations are executed, without
the limitation of using only the first 150 users. Figures 2.8 and 2.9 show a more
fair comparison between the standard approach with respect to the proposed one.
In this case, in each round, 150 users are picked randomly for the training; as it is
possible to see, the hybrid versions, under the same number of epochs, leads to
faster convergence and higher accuracy. Moreover, the plot shows that also in this
experiment, with the same number of epochs, grouping users in ensembles of 5 is
better than having groups of 2 members. Also, both for SFL and HFL considering
the same group size, performances get better when increasing the number of local
epochs.

It is important to notice that in the simulation with only one local epoch and
groups of 2, performances get close to the standard case, but with two local epochs,
i.e. the double of the computation; then, the hybrid case with one epoch and
groups of 5 members largely outperforms the standard case with 2 epochs, while it
is comparable with the standard approach having 5 epochs for each device.

17

Hybrid FL

Figure 2.7: FEMNIST test accuracy - comparison between SFL and HFL, using first
150 users

Figure 2.8: FEMNIST test accuracy -
comparison between SFL and HFL

Figure 2.9: FEMNIST test accuracy -
comparison between SFL and HFL (focus
on accuracy higher than 0.9)

2.3.3 Non-IID data
So far, data are divided by authors: this means that data are non-IID, as each
writer has its own calligraphy.

However, even under these assumptions, handwritten digits are similar among
people; for this reason, another experiment is executed. Data are divided into two
categories, depending whether the number is greater than 4. Basically, each user
has samples belonging to only half of the total available classes; from now on, in

18

Hybrid FL

the case of digits FEMNIST dataset, the non-iid configuration refers to this specific
extreme setting and not on the original one. With this design, the learning process
is much worse than previously, as it is clear from the blue curve in figure 2.10. On
the other hand, the orange and green curves show the trend by applying the hybrid
approach, in which users are gathered in groups of two. The difference between
these last two cases concerns the user getting the updated model from the other
group member. In both cases, the receiving users are picked randomly, but for
the orange curve it is chosen in such a way it has data belonging to the classes
not present in the first client’s dataset; for the green line, instead, this selection is
made purely randomly, without this constraint.

It is interesting to note that in the last case the accuracy grows faster, but in the
end both the green and the orange curves converge to the same values. However,
as concerns the different behaviour during the first rounds, it is worth mention
that the trend can depend on the chosen seed and that, in any case, users are just
divided into two classes, making difficult coming to a valid conclusion about the
strategy to build groups. Anyway, also in this scenario, the introduced approach
brings benefits to the training, as, under the same number of local epochs, the
hybrid strategy outperforms the standard one.

Figure 2.10: FEMNIST test accuracy - comparison of test accuracy between SFL and
HFL, with data of first 150 users distributed in a non IID configuration

19

Hybrid FL

2.3.4 Advantages of proposed methodology

The proposed strategy presents some main advantages: first, with equal rounds,
accuracy is higher with respect to the standard method. This also means that the
accuracy improves more rapidly, allowing to reduce the number of rounds to achieve
the same performances, with a consequent lower amount of communication costs.
Moreover, under the same global rounds and assuming communication among
vehicles is exploited, the number of transmissions is smaller, due to the fact that at
each round the central coordinator does not send and receive the model from every
node involved in the training phase.

Given C users and groups of N members, in the standard approach, at each
round there are 2C transmissions, while this quantity is equal to C+C

N in the hybrid
version. Indeed, the server sends the updated parameters only to one member for
each group, which are C

N , while the C transmissions are due to the users: all of
them, during a round, send the model only once, either to another group’s member
or to the server. Figure 2.11 shows the number of transmissions per round as
function of the number of users and group dimension, which can be considered
equal to one in the case of SFL.

Figure 2.11: Number of transmissions per round depending on the number of users
and group size

Last but not least, this technique may exploit communication among vehicles,
allowing to relax the load on the servers. The advantages from the communication
point of view are better analyzed in section 2.5.

20

Hybrid FL

Figure 2.12: Scheme for comparison between standard and hybrid FL, with 4 users per
round

2.4 Visual explanation in i.i.d. settings
A possible reason that might explain the improvements of the hybrid approach is
explained in this section.

FedAvg introduces a great parallelism, as all the users picked for each round work
at the same time; on the other side, the Hybrid approach breaks this parallelism:
indeed, within a group, training is serialized across members, which have to wait
for the updated parameters from another client. The point is that in i.i.d. scenario,
users may compute roughly the same computations, meaning that updates coming
from different devices will be similar, thus sending to the central coordinator
redundant information. A proof that supports this hypothesis is given in figure 2.5,
which highlights that the trend of test accuracy is mostly the same in the case of
10, 150 or 1000 users.

On the left of figure 2.12, the standard case is represented: the users of the
first round perform their training, after which they send the model to the server,
which averages them; it may happen, especially in i.i.d. condition, that the clients’
models are quite similar among each other, thus to the average model itself. For
the second round, the other users continue the training, after receiving the global
updated weights. On the right, it is represented the hybrid case: users 2 and 4
receive the model directly from user 1 and 3, respectively. Since these models are

21

Hybrid FL

comparable to the average one of the standard case, the computations are quite
the same with respect to users 2 and 4 of the normal version, but only one round
is needed, instead of two.

In non-iid settings, models of 1 and 3 may be not comparable and can be
more diverging. However, users 2 and 4 begin the training starting from updated
models, whose parameters are better for the global objective function with respect
to the ones that devices 1 and 3 received by the controller. Again, in the standard
approach this occurs in the second round, while in the hybrid still in the first one.
Because of that, also in this scenario hybrid approach can help to speed up the
training.

In other words, it is possible to analyze this concept from the coordinator point
of view: in the standard case, the server receives a lot of models, each of which is
the output of the local training, performed only by using the dataset of the relative
device; on the other hand, in the hybrid strategy, the server obtains fewer models,
that are instead the result of a training executed on a higher quantity of data, as
they depend on the sets of more users. This means that every update sent to the
server, as more samples are utilized to get it, carries larger improvements towards
the global optima.

2.4.1 Linear Regression with SGD
To visually explain the concept with iid data, it can be useful to consider a simple
case of linear regression using Stochastic Gradient Descent, SGD. In the example,
there are four different users; each of them has a dataset consisting of 100 points,
which have the x-coordinates in the range [0,2). For each sample k, the y-coordinate
is computed by using the following equation: yk = 4 + 3 ∗ xk + Ô, with Ô random
variable such that Ô ∼ U [−1,1]. Dataset of the first user is represented in figure
2.13; the other ones are similar to it, indeed in this case data are distributed in
an i.i.d. manner. The objective is to perform linear regression through SGD in a
federated way, setting the learning rate equal to 0.01. The standard case, in which
updated weights are averaged after each round, is compared to the proposed hybrid
algorithm as represented by figure 2.14. Specifically, the results of iterations 1, 10
and 50 are shown. At the upper-left angle of each plot, it is possible to see the
points of the different datasets, which are colored according to the user to which
they belong. However, figures relative to the first iteration do not show them, as
the regression line is still far from them.

As it is possible to notice, in the standard case all the lines are mostly overlapping,
thus also their mean value. This basically means that all of them are computing

22

Hybrid FL

broadly the same updates. In the hybrid approach, users 1 and 3 perform their local
training and then share the model respectively with users 2 and 4. Client 1 and
3 make almost the same computation, as proven by the fact that their regression
lines are similar among each other; moreover, these curves are also quite the same
as the ones of the standard case (of course considering the same iteration). On the
other hand, users 2 and 4 perform the regression starting from the weights received
from 1 and 3, avoiding to make computations that would have led to parameters
comparable to the obtained ones, with the consequence that the final average line
is closer to the right solution with respect to the normal case one.

From the plots, it is clear that the hybrid approach is faster with respect to the
number of rounds. Note that at round 50 curves are overlapping also in HFL, but
just due to the zoom level.

Figure 2.13: Linear regression by using SGD: dataset of user 1

2.5 Beyond rounds: time and number of trans-
missions

Until now, all the plots have been made only considering the rounds: this metric
takes into account the number of local computations, as during it, both in SFL and
HFL strategy, the number of devices that train the model is equal to the number
of picked clients. Nevertheless, other factors have to be taken into account, such as
the time and the number of transmissions.

As already said, the hybrid approach breaks the parallelism among all users,
introducing a serialization within the clusters. This has a consequence on the time
aspect, as some users must wait for receiving the updated model from a specific

23

Hybrid FL

Figure 2.14: Linear regression for standard and hybrid FL over iterations

client, which should wait for another user itself. This depends of course on the
number of members per groups.

24

Hybrid FL

Before comparing the different experiments, it is important to mention that
time is expressed in terms of slots: the time slot is intended as the time needed
for computation in a round of FedAvg; on the other hand, in the hybrid approach
a round takes as many slots as the number of members per group. For now, the
time necessary for the model transmission is not taken into account. This choice
is not made just for simplicity: indeed, in this work, due to utilised data, a very
simple CNN is used, thus it would be useless in a real case scenario. Therefore, it
would be necessary to have in mind the use case, the size of the neural network
architecture and, finally, the type of infrastructure for the communication and the
relative transmission rate.

Figure 2.15 contains different plots that show the test accuracy of FedAvg and
the hybrid case with respect to rounds, time and number of transmissions. Each
plot of figure 2.15 presents three curves:

• standard FL, in which 150 users are picked at each global round;

• standard FL, with 75 clients selected at every round;

• hybrid FL, in which 150 users are picked per global round; they are randomly
grouped in clusters of two members.

Observing at figure 2.12, one could claim that assuming an equal number of
users per round, actually at the same time fewer clients are utilized in the hybrid
case. This is exactly the rationale behind the reason for which also the normal case
having half of the users, 75, is taken into account for the comparison. In the latter
case, the number of rounds is 100, such that the time needed to finish the process
is the same as the hybrid version.

Figures 2.15a, 2.15c and 2.15e are referred to the standard FEMNIST dataset:
as regards the rounds, the hybrid approach outperforms the standard one, for which
there are no differences depending on the number of clients chosen at each round,
as already found in plot 2.5.

With respect to time slots, all the three approaches are comparable, but note
that the SFL case with 150 users lasts half of time than HFL: in the latter case,
due to the serialization, a round takes more time, thus with the same number of
global steps the HFL overall training is longer; however, here the focus is on the
test accuracy and, considering the same time interval, its trend is similar to the
SFL one.

For the number of transmissions1, instead, the hybrid method still outperforms

1Recall that the number of transmission is equal to 2C for the normal approach, while it is
C + C

N for the hybrid strategy, where C and N are respectively the total number of users picked
at each round and the number of members per group.

25

Hybrid FL

the other two, even if the difference with the normal case having 75 users is less
noticeable.

As regards the simulations with the dramatic case of non-iid data, whose results
are shown in figure 2.15b, 2.15d and 2.15f, the same conclusions can be drawn, but
apart from them, here there is another advantage: indeed, curves based on normal
FL are very fluctuating, while they are smoother with HFL.

Comparing the hybrid strategy with the standard one having half of users is
fair if one takes into account the number of devices training in the same time, but
actually it is not when considering the amount of data used within a round, since
the aggregated model is derived from fewer users. This has limited implications
with iid or not extreme non-iid data, as shown in figure 2.15e, but with dramatic
non-iid setting using fewer samples in a global round could be not a good strategy,
because this can lead to evident oscillations, as in plot 2.15f.

The negative effects of using fewer data are also experimentally proved in section
2.6.3.

2.5.1 Communication
From a communication perspective, the benefit that the hybrid method brings
does not concern only the number of transmissions, but there is one important
factor not pointed out by the aforementioned plots: indeed, as devices transmit
the model’s parameters to other ones, it is not necessary to exploit communication
channels that link users to the central coordinator. On the contrary, it is possible
to make use of device-to-device communications, relaxing the load on the server.
This is a great advantage, as also mentioned in [33]. Recall that in this paper,
the authors claim that a FL design relying on a wide-area network, WAN, leads
to high communication costs and slower model convergence, since WAN may be
constrained and unstable, making the network a great bottleneck. For this reason,
they propose a hierarchical aggregation design based on local-area network, LAN,
that has the main advantages of greater bandwidth resources, which, moreover, are
cheaper to exploit. This work refers to a model trained by mobile phones; however,
with the right infrastructure, the same conclusions may be drawn also for vehicles,
thus can be extended to the current study, too.

2.6 CIFAR-10
Until now, for the different experiments, the FEMNIST dataset, in which only digits
are considered, has been used. To extend the validity of the proposed approach,
also the CIFAR-10 dataset [37] is utilized. The latter consists of 60000 RGB figures,
having a resolution of 32x32 pixels. There are respectively 50000 and 10000 training
and test images, which belong to 10 different and mutually exclusive classes.

26

Hybrid FL

(a) Native FEMNIST w.r.t. rounds (b) Extreme non-iid data w.r.t. rounds

(c) Native FEMNIST w.r.t. time slots (d) Extreme non-iid data w.r.t. time slots

(e) Native FEMNIST w.r.t. transmissions (f) Extreme non-iid data w.r.t. transmissions

Figure 2.15: FEMNIST test accuracy - comparison between SFL and HFL in different
settings 27

Hybrid FL

The reasons that led to choose this dataset are that figures are small, allowing a
relatively fast training phase. Nonetheless, there is a great difference with respect
to MNIST dataset, another point that has pushed to use CIFAR. Indeed, in MNIST
images, due to the pre-processing, the characters, regardless of the class, are
centered and surrounded by a black background; thus, every client learns that the
sides do not contain relevant information for digit recognition.

On the other side, CIFAR 10 figures, even if they belong to the same category, are
very different from each other and have variegated details, such as the background,
the colors of the subject and of the surrounding environment, the angle from which
the figures are represented. An evidence of it is that, within the same category,
images can be further divided into sub-classes. For example, in the class "ship", it
is possible to see pictures of little boats, cruise ships and even merchantmen.

2.6.1 Experiments design
Also in this case, a CNN is used; the model architecture is the same as the previous
experiments, with just some adjustments to support slightly bigger figures and the
presence of 3 input channels, instead of only 1.

As concern the general design, the test is still done by the central server, while
for the setting of the training datasets the details are given together with the
explanation of each experiment. For the cost function, the Cross Entropy Loss
is used, while the utilized optimizer is the Stochastic Gradient Descent, with
momentum of 0.9 and learning rate equal to 0.01 and 0.001, respectively for iid and
non-iid data. The batch size is set to 16 and training involves only one local epoch.

2.6.2 IID data
The first experiments are run splitting the data among the users in an iid way.
More specifically, the total number of clients is set to 500, each of which has 100
samples. Samples are assigned in a random way, meaning that they are independent
and identically distributed. As in section 2.5, also in this occurrence, 3 cases are
considered: two of the are referred to the standard algorithm, while the last one
is hybrid approach; the number of clients selected at each round is respectively
100, 50 and 100. Results of this simulation are represented in figures 2.16a, 2.16b
and 2.16c, which display the test accuracy trend with respect to the three metrics
mentioned before: the number of rounds, time slots and transmissions.

As it is possible to notice, the conclusion drawn for FEMNIST dataset can
be repeated also in this case. Indeed, as regards the number of rounds, the
hybrid strategy outperforms the two cases of normal FL, which are instead similar,
regardless of the number of devices chosen at each global step. On the other hand,
performances are comparable when considering time, but the hybrid solution is

28

Hybrid FL

(a) Test accuracy w.r.t. rounds (b) Test accuracy w.r.t. time slots

(c) Test accuracy w.r.t. transmissions

Figure 2.16: CIFAR test accuracy with iid data

still better referring to the required amount of transmissions. However, while the
difference is quite marked comparing both methods under the same number of
clients chosen each round, the standard solution in which only 50 users are involved
in the training is just slightly worse than HFL.

2.6.3 Non-IID data
Also with CIFAR-10, some experiments are conducted on non-iid data. This time,
the settings are more extreme with respect to the FEMNIST case, in order to
evaluate the goodness of FL itself and the hybrid approach.

The total amount of created users is still 500, having 100 samples each. For
every client, data are randomly picked from only one class in such a way that every

29

Hybrid FL

class has data spread on an equal number of devices, 50.
Recall that in this case learning rate is set equal to 0.001: indeed, by using a

value of 0.01, due to the data setting, the test accuracy curve would have presented
more accentuate fluctuations.

Figure 2.17: CIFAR test accuracy - comparison between SFL and HFL with non-iid
data with respect to rounds

Figure 2.17 shows the comparison between SFL and HFL, over 500 rounds: for
the first method, the number of users selected at each round is respectively 10, 20,
50 and 100, while for the hybrid strategy the three cases analyzed have all 100
clients per rounds, but grouped in clusters of 2, 5 and 10 members. As it possible
to notice, for all the standard method simulations the test accuracy, at a certain
point, stop increasing and starts to oscillate, even decreasing a little bit, meaning
that with the set parameters the training does not lead to convergence: the reason
should be the data distribution, since, as stated, the non-iid configuration is very
excessive. On the contrary, all three curves of HFL seem to not suffer this issue, as
shown by the growing accuracy; moreover, the performances improve increasing
the number of clients per ensemble.

However, for the same reason, also HFL curves may stop improving in future
rounds and present divergence issue, which would be though delayed, thus allowing
to reach higher accuracy. Therefore, in this case, under the same settings, the
proposed method is more stable and can be helpful to achieve better performances
when dealing with users having much diverse data.

Besides the convergence problem, the same simulations presented in figure 2.17
are compared with respect to time slots and to the number of transmissions, as
shown respectively in figures 2.18a and 2.18b. Note that here, since the test

30

Hybrid FL

(a) Test accuracy w.r.t. time slots (b) Test accuracy w.r.t. number of transmissions

Figure 2.18: CIFAR test accuracy - comparison between SFL and HFL with non-iid
data with respect to time and transmissions

accuracy should be compared in the same range of values, the x-axis of both spans
over a determined interval. This implies that the quantity of rounds is no more
fixed as in the previous image: this would lead to curves of different lengths, since a
round takes a different amount of time and transmissions depending on the number
of users picked at each iteration and on the size of the groups for HFL. Anyway, for
the first plot, figure 2.18a, the behaviour is comparable among all the simulations,
which do not show evident differences.

The most interesting plot is the one showing the test accuracy referred to the
number of transmissions, figure 2.18b. Here, except for the normal case with 100
users, all the other curves as coupled considering the number of devices which train
in parallel at the same time. Thus, the normal case with 50, 20 and 10 users are
respectively associated with the hybrid simulations involving clusters of 2, 5 and
10 members. For each couple, the hybrid version outperforms the corresponding
standard version. Note also that the SFL simulation with only 10 users per round
is the first curve that manifests a clear sign of divergence: this makes sense, as at
each iteration the learning process involves very few devices, which are not enough
to train properly the model.

Nevertheless, it seems that a higher group size for HFL causes larger fluctuations;
thus, it is desirable to find a solution that can limit them. Having this goal in
mind, other simulations are performed, whose results are shown in figures 2.19a,
2.19c and 2.19e, where only the hybrid approach is considered, gathering users in
groups of 5, 10 and 20 members. For each of them, two different cases are taken
into account: in the first one, ensembles are built randomly, while in the second
instance they are made with a criterion. Indeed, for the groups of 5 and 10 devices,
every client has complementary datasets with respect to each other, meaning that

31

Hybrid FL

all samples of a user belong to a class different from those of other clients. Note
also that in the case of 5 members classes of samples are still picked randomly.
Finally, for the case of 20 members within a group, there are exactly 2 users per
each class. The logical principle for this choice is to avoid clusters with similar
data across internal users.

As it is possible to see from figures 2.19a and 2.19e, it seems that curves relative
to non-randomly built groups are a bit smoother than their counterparts. Also in
this occurrence, simulations are comparable with respect to time, represented in
figure 2.19c, even if it seems that performances get slightly worse when enlarging
the group dimension.

However, building ensembles with the presented rationale helps to stabilize
the test accuracy, despite, especially in the first learning stages, performances
are a little lower. In general, grouping users may be a great advantage for the
communication side: if one considers a long and continuous training process that
aims to further improve the accuracy, also after reaching a threshold that can be
acceptable for the examined use case, the hybrid approach would allow to greatly
diminish the total of needed transmissions.

A possible explanation for the smoothing effect with respect to the random
selection of the group members should be sought in a previously presented concept.
It was already stated that, in non-iid settings, a high number of local epochs for
each client can lead to reaching their own local optima, with the risk of worsening
the parameters that should optimize the global objective. This explanation can be
extended also to groups: if within a single cluster there exist different devices with
data belonging to the same class, basically, the group users might have similar cost
function and will send to the server an update good just for this kind of objective
and not for the general one. Thus, as the members of each ensemble are chosen
randomly, it is possible to have many unbalanced groups that can badly affect the
global optimization.

Conversely, gathering clients with diverse data leads to having internally balanced
groups, meaning that all classes are equally represented. Moreover, clusters are
also similar to each other, since all of them are built according to the same logic;
therefore, at each round, training data always follow the same distribution: this
implies that the new model resulting from the global aggregation is coherent with
the previous one, limiting the test accuracy oscillations.

More epochs with non-iid data

As already mentioned, a high number of local epochs can lead the users to optimize
their own objective function, negatively effecting the global one. For this reason, a
further experiment is run executing 5 local epochs, still with non-iid data.

Results as represented in figures 2.19b, 2.19d and 2.19f, which show the curves

32

Hybrid FL

(a) Simulations with 1 epoch w.r.t. rounds (b) Simulations with 5 epochs w.r.t. rounds

(c) Simulations with 1 epoch w.r.t. time slots (d) Simulations with 5 epochs w.r.t. time slots

(e) Simulations with 1 epoch w.r.t. number
of transmissions

(f) Simulations with 5 epochs w.r.t. number of
transmissions

Figure 2.19: CIFAR test accuracy - comparison between SFL and HFL with non-iid
data in different settings with respect to rounds, time and number of transmissions

33

Hybrid FL

related to SFL and HFL, both with random and non random groups. In all cases
the learning rate is set to 0.001 and 100 users are picked each round, with groups
of 10 for HFL.

As it is possible to see, the benefits of the hybrid approaches are still the same,
both with respect to rounds and to the number of transmissions, while in the
considered range of values the normal FL approach does not improve at all. As
regards the time slots (figure 2.19d) the curves should be comparable, but it is not
evident since the SFL curve is shorter for the reasons explained above.

Also in this case it seems that coordination to build clusters according to the
above-mentioned rule leads to some benefits, as the test trend manifests less marked
fluctuations than the simulation with randomly created groups. Therefore, from
these first experiments, it is possible to state that the orchestration for the formation
of the ensembles presents advantages as concerns oscillations.

2.7 Further experiment
So far, all comparisons between SFL and HFL have been made using the same
learning parameters. However, a complete validation of the proposed method
would require a grid search of the best values for the hyperparameters. Since
this operation needs a huge amount of computational resources, for now, it is not
executed. To overcome this drawback, it is replicated the same simulation provided
in [7], where the authors find the best learning rates related to their simulations
settings.

In this work, experiments related to CIFAR-10 dataset are performed dividing
samples across 100 clients, in an IID manner. The total of users picked each round
is 10, the batch size is set to 50 and the number of local epochs is 5. The used model
is the one presented in the TensorFlow tutorial [38], but written using PyTorch
framework. The exploited optimizer is the SGD, with learning rate equal to 0.15
and decay, which is applied every round, set to 0.99.

The obtained results are shown in figure 2.20. The SFL final accuracy values are
lower with respect to the achieved in [7], but the reason should be due to the data
pre-processing, which is not applied in this work, to a smaller number of performed
rounds and to the loss. Indeed, it is not clear which kind of function is used, while
in this study the Cross Entropy Loss is utilized.

Nevertheless, also in this case, the hybrid approach allows achieving higher
accuracy. For the latter strategy, two experiments have been executed, with groups
size of 2 and 5 respectively. Being the users chosen at each round only 10, these
are the only values that are suitable for the simulation.

The case with cluster dimension of 5 grows faster as concerns the rounds and the
quantity of transmission and allows reaching higher accuracy after 200 iterations.

34

Hybrid FL

As regards the time slots, instead, it is a bit worse, even if at a certain point the
curve overtakes the other two.

The experiment involving ensembles of dimension of 2 members is basically the
same as SFL for the time slots; the gain is present when considering the number
of rounds and of transmissions. This is valid especially for the first steps, while
toward the end the accuracy is comparable to the one of SFL.

(a) Loss w.r.t. rounds (b) Test accuracy w.r.t. rounds

(c) Test accuracy w.r.t. time slots (d) Test accuracy w.r.t. transmissions

Figure 2.20: Comparison between SFL and HFL with setting of [7]

In this case, also the test loss is plotted, as shown in figure 2.20a, since it is
important for a further analysis and to understand the reason why in all plots of
figure 2.20 there are two additional curves related to HFL, the ones identified with
the label "different decay". Indeed, using a decay of the learning rate each round
leads the loss for the hybrid approaches to increase at a certain point, meaning
that overfitting may have occurred. In the occurrence with group size equal to 5
this issue is much more evident.

35

Hybrid FL

To overcome this drawback, another strategy for the learning rate decay is
implemented for HFL, where the decay is no more applied each round, but every
time slot. This means that clients training in parallel use all the same value, which
is lower with respect to the one applied by the previous users.

As it can be observed, the results applying this method are basically the same
for the test accuracy with respect to their counterparts, but are much better for
the loss. In fact, the curve corresponding to group size of 5 is always decreasing
and becomes steady after 100 rounds, besides being lower than the SFL loss; on
the other hand, when clusters include only 2 clients each, this advantage is less
noticeable, as the loss increases a bit and finally stabilizes. Nevertheless, in the end
its loss is a little higher than the SFL one, which, starting from the 150th iteration,
also grows up a little.

To conclude, the hybrid method is beneficial also under the presented settings;
however, to prevent the divergence of the loss, it is applied a different learning rate
decay strategy, which does not bring any change to the accuracy, but it is useful
to stabilize the loss. Thus, this also highlights the importance of the decay value,
which is another parameter to be carefully chosen.

36

Chapter 3

Trajectory Prediction

3.1 Introduction

According to the World Health Organization, every year, around 1.35 million people
die due to road traffic crashes, while between 20 and 50 million more people suffer
non-fatal injuries, which in many cases lead to disability [39]. This is one of the
main reasons for which in the last decades, research has put much effort into studies
about Advanced Driver Assistant, ADAS, and autonomous vehicles, which can
improve driving safety. Risk assessment is one of the most important topics related
to this domain, as it is necessary to handle critical situations.

In [40], the authors use the congestion level and risk thresholds to compute the
corresponding risk for the vehicles, in order to safely navigate in the environment.
[41] and [42] study risk assessment in occluded environment to increase safety of
a given trajectory. While the last two works face the problem using data from
real world and modeling the distribution of risk, given the road topology, the
observed vehicles and unobserved regions, [43] uses Deep Reinforcement Learning
to approach the problem of occluded intersections. The issue with Deep RL is that
generally only data coming from simulation are utilized and just a few existing
works are then tested in real-world scenarios [44].

However, a lot of works are not related to the direct computation of risk, but
concern the trajectory prediction, which can be used for risk assessment, in order
to anticipate hazards and avoid them.

[45] is a survey about vehicle behaviour prediction for autonomous vehicles. As
this publication dates back to 2014, only traditional approaches are analyzed, such
as physics models and simple machine learning techniques. The authors divide
methods into three models: physics-based, manoeuvre-based, and interaction-aware.
The first approach faces the problem only considering the laws of physics; the
second one is based on intended manoeuvre prediction, while the latter takes into

37

Trajectory Prediction

account also interactions among vehicles.
Nevertheless, in the last years, deep learning methods have become popular due

to their promising performance in more complex environments compared to the
conventional approaches. The latter include many methods, such as the Kalman
filter, Monte Carlo Simulation or Hidden Markov Models: in [46], authors state that,
while these techniques are accurate for short time predictions, their performances
decay for long term forecasting, "which directly affects the accuracy of decision
making and path planning". As claimed in [47], the reason is that "these methods
typically focus on analyzing objects based on their previous movements and can only
be used in simple traffic scenarios with few interactions among vehicles but such
methods may not work well in scenarios involving heterogeneous types of vehicles
and pedestrians". Evidence of this is also shown in [48] and [49], in which authors
empirically prove that Kalman filter is outperformed by all other approaches that
are taken into account in the respective works.

3.2 Deep Learning: methods summary
This section is a brief summary of work [50], in which Mozaffari et al. present
a detailed survey of most recent approaches, providing an in-depth classification
based on input representation, output type and used model, with an explanation of
the advantages and disadvantages of each method. As regards the input, authors
divide methods as belonging to 4 classes:

• history of the target vehicle, TV, that is the agent whose trajectory must be
predicted. This approach does not take into account the interactions with the
environment and with other agents;

• history of the TV and surrounding vehicles, SVs. This approach uses other
vehicles data to consider their influence on the TV, but the interaction with
the environment is still missing;

• Bird’s Eye View, BEV, that is a map image representing the location of objects
and the road topology. This allows to consider the impact of other agents and
environment;

• raw sensor data, which leads to higher usage of computational resources.

The first three methods are built on a perception model: given raw data, it
must detect and recognize other agents, inferring their position and other useful
information. Because of this, it is clear that the performances of the prediction
model strongly depend on the accuracy of the first pipeline layer. Relating to the
classification made in [45], the last three methods belong to the interaction-aware
models.

38

Trajectory Prediction

Then, the authors classify the different approaches also considering the output
type, which is divided into four classes:

• Manoeuvre intention, which is the simplest method. However, this technique
needs to define a set of possible manoeuvres, factor that limits the power of
the approach as the real trajectory may be not included among the predefined
ones;

• Unimodal trajectory, as it estimates only one trajectory. Also in this case
a set of manoeuvres can be taken into account: even if this presents the
above-mentioned drawback, it prevents the result from being the average of
two modes, that may be an invalid movement. The latter problem is instead
likely when potential intentions are not considered for the prediction;

• Multimodal trajectory, that predicts "one trajectory per behaviour modes
(a.k.a. policy/manoeuvre/intention) alongside the mode probability. [50]"

• Occupancy Map, that divides the road map into cells, predicting their
occupancy. A clear disadvantage is that accuracy depends on the size of
cells.

Finally, as regards the used models, Deep Learning models are the state-of-the-art
approaches. The most used prediction methods are the following:

• Recurrent Neural Network, RNN, which are able to capture temporal patterns,
but they lack in modelling spatial dependencies;

• Convolutional Neural Network, CNN, that, as opposed to RNN, are good in
capturing spatial features, but not temporal ones;

• hybrid methods, that rely on a combination of RNN and CNN, in order to
take advantage of both their capabilities;

• Graph Neural network, that models with a graph the structure of agents in
traffic.

3.3 Datasets
In this section, it is presented a list of the most popular datasets used for trajectory
prediction, divided into two categories. In the first one, data are collected from an
external infrastructure, while in the second one they are gathered by the vehicles
themselves.

39

Trajectory Prediction

3.3.1 External camera system
The disadvantage of these datasets is that recordings are collected using an external
camera system, implying that this type of data is not suitable for approaches that
bring the intelligence on smart vehicles, which are now intensely studied. The most
used datasets are:

• Interstate 80 Freeway Dataset, I-80, [51], which contains trajectory for vehicles
in a US highway, the Interstate 80, for a total of 45 minutes.

• US Highway 101 Dataset [52], US-101: it has the same features as the I-80
dataset, but data are collected in different highway, the Highway 101; together
with I-80, it has been developed by the U.S. Department of Transportation
for the Next Generation Simulation (NGSIM) program;

• HighD[53]: it provides vehicle trajectories recorded at six different locations on
German highways, for a total duration of about 17 hours. Data are collected
by using a drone.

All of them contain data related to different traffic conditions. Recently, the research
team of the HighD has added other two datasets, named InD [54] and roundD
[55]. They contain trajectories of vehicles, pedestrians and bicyclists collected in
Germany, respectively in four different intersections and three roundabouts.

3.3.2 Vehicle camera system
In the last years, technological development has lead to a growing usage of sensors
on cars, such as cameras and radars, in order to collect data and process them
autonomously, allowing the machine itself to sense the environment and take
decisions. For this reason, collections containing data recorded by the vehicles have
increased their interest for research purposes. The most popular datasets are:

• ApolloScape Trajectory [56], consisting of camera images, LiDAR scanned
point clouds and manually annotated trajectories. Data are collected in Beijing,
China, for a total duration of about 2 hours and represented scenarios have
different lighting and traffic conditions;

• Argoverse Motion Forecasting dataset [57], which includes 320 hours of
trajectory data, together with maps encoding geometric and semantic
information. Data are represented as 2D birds-eye-view, BEV, and are collected
in Miami and Pittsburgh, in different times and weather conditions.

• NuScenes [58], which includes recordings from 2 cities, Boston and Singapore,
for a total of almost 6 hours. It provides data from camera and LiDAR,
together with 3D bounding boxes;

40

Trajectory Prediction

• Lyft Prediction Dataset [59], which consists of 1118 hours of traffic scenes,
captured by 20 self-driving vehicles in Palo Alto. The drawback is that data
are collected along a single route, as the authors assume that first applications
of self-driving fleets are likely to be used only in few high-demand routes.
Data are in BEV format and are enriched with an HD semantic map and high-
resolution aerial image of the area: the semantic map contains information
about the road, such as lane segments, and other traffic elements, while the
aerial map gives spatial information of the environment.

3.4 NGSIM simulations
To the best of my knowledge, to date, no one of the above datasets has been
exploited to perform Federated Learning.

In this work, a simple trajectory forecasting model is trained, in order to validate
FL also for a use case related to the vehicular domain. To do this, the NGISM
US-101 dataset is used.

As already stated, this typology of data collection should not be appropriate for
FL, as samples are collected by external cameras. However, with some assumptions,
contrary to the sets of the second class, it possible to process data and make them
appropriate for federated settings.

The main objective is to validate FL and the proposed approach also with this
set, thus the experimented method is straightforward, as explained in the next
sections; indeed, providing a method with performances comparable to the current
state of the art is out of the scope of this work.

3.4.1 Related works
As previously mentioned, in the literature there are no studies with focus on
Federate Learning applied to the NGSIM US-101 dataset, but it is worth citing
related works, which apply centralized Deep Learning approaches.

In [60], authors exploit US-101 dataset features related to the target vehicle,
TV, that are its position, velocity and class, and other information about its
surrounding vehicles, such as the type, the lateral speed, the distance and the
time-to-collision with respect to the target vehicle. As concerns the network, the
reference architecture consists of an LSTM block followed by three fully connected
layers (the last one is the output layer). The objective is to predict the lateral
position and the longitudinal speed of future time steps, given as input data
windows of 100 samples each, corresponding to the 10 previous seconds.

In [46] a similar approach is followed, but using the I-80 NGSIM dataset. Here,
the sequence of past states includes only 50 inputs, thus 5 seconds. The important
point of this paper concerns the architecture, as the authors employ two LSTMs.

41

Trajectory Prediction

The first one, fed with data related to lateral features, is able to recognize if a
vehicle will change the lane or not, while the second network receives in input
the longitudinal features and the output of the first LSTM, aiming to predict the
future lateral position and the longitudinal acceleration. Note that in both works
the longitudinal position is not forecast since its values can be very large.

In [48] a more complicated model is used, still based on LSTM, which predicts
"a multi-modal distribution over future motion". Both the NGSIM US-101 and
I-80 are used. As concerns the architecture, the authors develop an LSTM encoder,
which encodes the past states of the tracked vehicle and of its six surrounding ones.
Then, a maneuver classifier generates a vector encoding the probability of each
maneuver given the past trajectory. Finally, the output of these two blocks are
stacked together and fed to an LSTM decoder which generates the multi-modal
distribution for the position forecasting.

3.4.2 Pre-processing
The NGSIM US-101 datasets provides a collection of vehicles trajectories. For
each agent, associated with an ID, there is a sequence of data over time: for every
sample, related to a specific instant, the features used in this work are the local
lateral and longitudinal position, the velocity, the acceleration, the lane ID, the
space and time headway and, finally, information correlated to the vehicles, which
are the width, length and the class. The native set does not give the speed and
acceleration values with respect to the two directions, but just the scalar value.
Also, it only contains the ID of the following and preceding agents, but data about
other surrounding vehicles are not provided. Thus, a further pre-processing would
be needed to compute the speed and acceleration along the x and y axis and
information about contiguous agents: because of this, for now, these features are
not used and also the preceding and following vehicles are not taken into account.

At this point, it is fundamental to make data suitable for FL, meaning that it is
necessary to simulate that samples are recorded by vehicles and not by an external
system. To do this, it is assumed that each agent is able to sense just vehicles in
a range of 50 meters: with this supposition, every user is associated with a file
containing only data related to those close vehicles; moreover, all values within the
individual files are scaled in the range [-5,5], except for global time and vehicle IDs.

However, this procedure may lead to a drawback, not present in the starting
dataset. Indeed, a sensed vehicle may be less than 50 m far during two non
consecutive time intervals, thus it is necessary to split the two sequences in order
to not mix discontinuous samples when giving them in input to the LSTM.

For each data of all files, features of the sensing vehicle, referred to as ego-vehicle
(EV), are included: specifically, the x and y position, the speed and the acceleration
of EV are attached, such as the difference of these values with respect to those of

42

Trajectory Prediction

the corresponding sample. Of course, the added information refers to the same
time instant of the data to which they are attached.

To feed inputs to the LSTM, for all sequences, windows of 100 samples,
corresponding to 10 seconds, are extracted. They are obtained with a step of
10, therefore two successive windows have 90 examples in common.

3.4.3 Model
The used model is a particular kind of Recurrent Neural Network, named LSTM,
as done in many related works, since they perform well with long sequential data.

The architecture consists of one LSTM layer, followed by 3 fully connected
layers, among which the latter is the output one. The hidden and output size of
the LSTM is set 256; the dimensions of the dense layers are respectively 256, 131
and 2, which is the number of the output features, x and y. The second FC layer
has a size of 131 because it is the result of stacking the output of the first dense
block, having size 128, with other three values, which are the width, length and
the class of vehicles. These features, as they are fixed, are not given in input to
the recurrent layer, which instead learns the temporal patterns. The architecture
is almost equal to the one presented in [60].

Given a sequence of 100 samples, the network uses the first 90 data to predict
the future 10 states, represented by the x and y positions. For the experiments,
the loss function used for the training is the Mean Squared Error, MSE, while
the test error consists in the Mean Absolute Error, MAE, in meters, along the
lateral and longitudinal position. The batch size is equal to 32, while the utilized
optimizer is the Adam: the weight decay is set to 0.1, the parameters β1 and β2
are respectively 0.9 and 0.999 and the starting learning rate is equal to 10−3, with
exponential decay of 0.95 each round.

3.4.4 HFL
As concerns the hybrid approach, a new challenge arises. Indeed, it is not possible
anymore to build groups in a random way, but it is important to take into account
also the position of vehicles, as it would be impossible to directly transmit the
model to a far user. Therefore, it is proposed an alternative to overcome this issue:
a vehicle that has to share its model, should send it to the closest vehicle that has
not been peaked yet for training during that round.

However, in this case, a client may not have any close agent, thus it is unable
to keep propagating the model. For this reason, a solution for this problem is
to permit also smaller groups. In this way, a device that does not have another
machine to which it can transmit its updated parameters, directly sends them to
the server. Nevertheless, both methodologies are implemented in the simulations

43

Trajectory Prediction

for HFL: with groups randomly created and with the distance criterion, allowing
smaller ensembles.

3.5 Results
After the pre-processing step, a total of 5986 vehicles are obtained; among them,
90%, corresponding to 5387 users, is used for training and the remaining 10%,
equivalent to 599 clients, for the test phase. Note that the final amount of vehicles
is lower than the ones actually present in the NGSIM US-101; indeed, vehicles
that have no sequences of 100 consecutive samples or no neighbours (for the model
transmission in the hybrid approach) are discarded.

During training, at every round, 500 devices are peaked, both for SFL and HFL,
in which groups have size of maximum 10 members.

Performing different simulations, features of class, width and length of the target
vehicle badly affect the training; thus, these data are dropped, but certainly they
should be better analyzed. This implies that the last but one fully connected layer
has no more size equal to 131, but of 128 instead.

Also, another change has been made, as the local position x and y of the target
vehicle are no more exploited. This decision has been made for two reasons. First,
the TV position values are related to a local reference point: this makes sense
for the original dataset, since an external infrastructure is used and it is possible
to relate all vehicles position with respect to the place in which camera start to
collect information. For the federated approach, instead, defining a local reference
would not be a good strategy, as it would be difficult to handle when taking into
account vehicles in different geographical spots. Second, the local longitudinal
position spans over a quite large interval of values, while the difference between
TV and EV is, of course, limited, as only agents in a range of 50 meters are sensed
by assumption; this also leads to having a lower error. Therefore, predictions are
computed referring to the position of the respective ego-vehicles.

Figures 3.1a, 3.1b and 3.1c show the test MAE along the lateral and longitudinal
direction (x and y), for SFL and HFL, both with random and non-random created
ensembles. As it is possible to notice, the y error is bigger regardless of the method;
this makes sense, as the longitudinal values are generally higher, thus leading to
greater error.

Concerning the comparison between SFL and HFL, the latter allows to reach
much lower loss values considering the same round or fixing the number of
transmissions. Instead, regarding the time, in the range from 0 to 100, the trend is
the same; the only difference is that in SFL the starting value is much higher, but
after a very quick drop, curves are comparable.

Moreover, both for the x and y errors, the random method is slightly better

44

Trajectory Prediction

(a) Test accuracy w.r.t. rounds (b) Test accuracy w.r.t. time slots

(c) Test accuracy w.r.t. transmissions

Figure 3.1: NGSIM US-101 test accuracy

(for the lateral position the difference is not noticeable from the plots only due
to the used scale). The reason could be that in the random case all ensembles
have the same dimension, while this is not true for the other strategy. This means
that the models obtained by some ensembles may be trained on fewer data, thus
negatively affecting the aggregation performed by the controller, which results in
worse performances over the rounds.

However, errors are quite high, even for HFL, which shows MAE around 0.5
m and 2 m, respectively for the lateral and longitudinal positions. To improve
the results, it would be necessary to train for more epochs and also consider the
surrounding vehicles, as done in other works, because the behavior of each agent is
strongly dependent on the other ones.

45

Trajectory Prediction

For sure, a deeper study of the architecture and the features to use is needed: as
experimentally found in [60], changing one of these factors leads to very different
results. Despite these observations, the benefits of the hybrid algorithm are shown
also in this case.

46

Chapter 4

Conclusions

In this work Federated Learning is presented, an emerging method of Machine
Learning field. The reasons for the increasing interest in this technique are mainly
two. Indeed, it allows to train a model keeping data within the devices, preventing
from sharing them with a central server: first, this implies that data are no more
transmitted over the network, process which, due to their huge quantity, could lead
to a communication bottleneck, and, second, it increases users privacy.

Then, a novel strategy, named Hybrid Federated Learning, is introduced: it
brings a modification to the vanilla algorithm of FL.

Both methods are tested with three datasets, FEMNIST, CIFAR and the NGSIM
US-101, under different conditions: specifically, simulations are performed with
diverse number of local epochs and taking into account both iid and non-iid data
among users samples.

The obtained results are promising and show that the proposed strategy works
and, with respect to the standard approach, considering an equal number of users
picked at every iteration, it leads to the following advantages:

• the hybrid approach outperforms the SFL method in terms of round;

• as concerns the communication side, it requires fewer transmissions to reach
the same accuracy;

• still regarding communication, there is also a major benefit, as it allows to
rely on device-to-device communication, thus limiting the bottleneck due to
the transmissions with the central server.

With respect to time, instead, test accuracy trends of the two strategies are
comparable.

The improvements are also valid in the case of extreme non-iid data, in which
HFL shows better robustness, especially with a high number of local epochs.
Moreover, coordination to build groups seems to be useful in terms of oscillations.

47

Conclusions

4.1 Future work
Results are obtained considering the same training parameters, thus the first step
to fully validate the novel approach is to perform an extensive research of the best
values for both of them and make the comparison. This process, though, would
be very time consuming, since it would be necessary to try with different learning
rates, batch size and, for HFL, also the group dimension. For the latter, as it
is possible to apply the learning rate decay while training the model, maybe it
would also be possible to change dynamically the size of the ensembles during the
learning.

Then, to further validate the proposed method, it may be interesting to use the
state-of-the art models for the given datasets and apply it in more complicated
scenarios, which require developing finer neural network architectures. This would
be useful to also estimate the bandwidth gain when using the hybrid strategy, as
this computation is not performed due to the used models, which are small, thus
not used in practice.

Moreover, it would be worth deepening on the time aspect, taking into account
the time needed for the weights transmission; this can be done either theoretically
or, even better, by implementing on a real platform both the standard FL and the
hybrid approach, in order to compare them.

Related to the transport domain, it would be interesting to address the problem
of mobility, focusing on its impact on the data collection and, for HFL, on the
model transmission among vehicles. Specifically for the hybrid strategy, it would
also be worth to better analyze the effects of the strategy to build groups, to
understand if and which can be the advantages of coordination.

On the other side, related to the trajectory prediction model, a possible extension
concerns the use of information related to the surrounding agents of the target
vehicle; finally, it is possible to use the HighD dataset [53], which provides more
precise data and also information about close vehicles of the TV, without needing
further pre-processing.

48

Bibliography

[1] Adam Grzywaczewski. Training AI for Self-Driving Vehicles: the Challenge
of Scale. url: https://developer.nvidia.com/blog/training-self-
driving-vehicles-challenge-scale (cit. on p. 1).

[2] Chris Mellor. Data storage estimates for intelligent vehicles vary widely.
url: https://blocksandfiles.com/2020/01/17/connected-car-data-
storage-estimates-vary-widely (cit. on p. 1).

[3] Autonomous Vehicles: The Race is On. https://www.accenture.com/
_acnmedia/pdf- 73/accenture- autonomous- vehicles- the- race- is-
on.pdf (cit. on p. 1).

[4] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao,
Ying-Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated
Learning in Mobile Edge Networks: A Comprehensive Survey. 2020. arXiv:
1909.11875 [cs.NI] (cit. on pp. 1, 3, 6, 7, 11).

[5] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated Machine
Learning: Concept and Applications. 2019. arXiv: 1902.04885 [cs.AI] (cit.
on pp. 2, 6, 8).

[6] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian
Makaya, Ting He, and Kevin Chan. Adaptive Federated Learning in Resource
Constrained Edge Computing Systems. 2019. arXiv: 1804.05271 [cs.DC]
(cit. on p. 2).

[7] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. Communication-Efficient Learning of Deep Networks
from Decentralized Data. 2017. arXiv: 1602.05629 [cs.LG] (cit. on pp. 2, 4,
5, 7, 11, 12, 34, 35).

[8] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. «Federated
Learning: Challenges, Methods, and Future Directions». In: IEEE Signal
Processing Magazine 37.3 (2020), pp. 50–60. issn: 1053-5888, 1558-0792.
doi: 10.1109/MSP.2020.2975749. url: https://ieeexplore.ieee.org/
document/9084352/ (cit. on p. 2).

49

https://developer.nvidia.com/blog/training-self-driving-vehicles-challenge-scale
https://developer.nvidia.com/blog/training-self-driving-vehicles-challenge-scale
https://blocksandfiles.com/2020/01/17/connected-car-data-storage-estimates-vary-widely
https://blocksandfiles.com/2020/01/17/connected-car-data-storage-estimates-vary-widely
 https://www.accenture.com/_acnmedia/pdf-73/accenture-autonomous-vehicles-the-race-is-on.pdf
 https://www.accenture.com/_acnmedia/pdf-73/accenture-autonomous-vehicles-the-race-is-on.pdf
 https://www.accenture.com/_acnmedia/pdf-73/accenture-autonomous-vehicles-the-race-is-on.pdf
https://arxiv.org/abs/1909.11875
https://arxiv.org/abs/1902.04885
https://arxiv.org/abs/1804.05271
https://arxiv.org/abs/1602.05629
https://doi.org/10.1109/MSP.2020.2975749
https://ieeexplore.ieee.org/document/9084352/
https://ieeexplore.ieee.org/document/9084352/

BIBLIOGRAPHY

[9] D. Ye, R. Yu, M. Pan, and Z. Han. «Federated Learning in Vehicular Edge
Computing: A Selective Model Aggregation Approach». In: IEEE Access 8
(2020), pp. 23920–23935 (cit. on p. 3).

[10] Yuris Mulya Saputra, Dinh Thai Hoang, Diep N. Nguyen, and Eryk Dutkiewicz.
Dynamic Federated Learning-Based Economic Framework for Internet-of-
Vehicles. 2021. arXiv: 2101.00191 [cs.NI] (cit. on p. 3).

[11] Ahmet M. Elbir, Burak Soner, and Sinem Coleri. Federated Learning in
Vehicular Networks. 2020. arXiv: 2006.01412 [eess.SP] (cit. on p. 4).

[12] Seyhan Ucar, Takamasa Higuchi, Chang-Heng Wang, Duncan Deveaux,
Jérôme Härri, and Onur Altintas. «Vehicular Knowledge Networking and
Application to Risk Reasoning». In: Proceedings of the Twenty-First
International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing. Mobihoc ’20. New York,
NY, USA: Association for Computing Machinery, 2020, pp. 351–356. isbn:
9781450380157. doi: 10.1145/3397166.3413467 (cit. on p. 4).

[13] Duncan Deveaux, Takamasa Higuchi, Seyhan Uçar, Jérôme Härri, and Onur
Altintas. A Definition and Framework for Vehicular Knowledge Networking.
2020. arXiv: 2005.14505 [cs.NI] (cit. on p. 4).

[14] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. Federated Optimization in Heterogeneous Networks. 2020.
arXiv: 1812.06127 [cs.LG] (cit. on pp. 5, 11).

[15] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas
Chandra. Federated Learning with Non-IID Data. 2018. arXiv: 1806.00582
[cs.LG] (cit. on p. 6).

[16] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated Learning: Strategies
for Improving Communication Efficiency. 2017. arXiv: 1610.05492 [cs.LG]
(cit. on pp. 6, 11).

[17] Martín Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. «Deep Learning with Differential
Privacy». In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (2016). arXiv: 1607.00133, pp. 308–318. doi:
10.1145/2976749.2978318. url: http://arxiv.org/abs/1607.00133
(cit. on p. 6).

[18] Wikipedia contributors. Secure multi-party computation — Wikipedia, The
Free Encyclopedia. 2021. url: https://en.wikipedia.org/wiki/Secure_
multi-party_computation (cit. on p. 6).

50

https://arxiv.org/abs/2101.00191
https://arxiv.org/abs/2006.01412
https://doi.org/10.1145/3397166.3413467
https://arxiv.org/abs/2005.14505
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1610.05492
https://doi.org/10.1145/2976749.2978318
http://arxiv.org/abs/1607.00133
https://en.wikipedia.org/wiki/Secure_multi-party_computation
https://en.wikipedia.org/wiki/Secure_multi-party_computation

BIBLIOGRAPHY

[19] TensorFlow Federated: Machine Learning on Decentralized Data. https :
//www.tensorflow.org/federated (cit. on p. 7).

[20] Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso,
Daniel Rueckert, and Jonathan Passerat-Palmbach. A generic framework for
privacy preserving deep learning. 2018. arXiv: 1811.04017 [cs.LG] (cit. on
p. 7).

[21] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub
Konečný, H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar. LEAF:
A Benchmark for Federated Settings. 2019. arXiv: 1812.01097 [cs.LG] (cit.
on p. 7).

[22] Chaoyang He et al. FedML: A Research Library and Benchmark for Federated
Machine Learning. 2020. arXiv: 2007.13518 [cs.LG] (cit. on p. 7).

[23] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy,
Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and
Daniel Ramage. Federated Learning for Mobile Keyboard Prediction. 2019.
arXiv: 1811.03604 [cs.CL] (cit. on p. 7).

[24] Wikipedia contributors. Homomorphic encryption — Wikipedia, The Free
Encyclopedia. 2021. url: https://en.wikipedia.org/wiki/Homomorphic_
encryption (cit. on p. 7).

[25] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik.
EMNIST: an extension of MNIST to handwritten letters. 2017. arXiv: 1702.
05373 [cs.CV] (cit. on p. 7).

[26] Alec Go, Richa Bhayani, and Lei Huang. «Twitter sentiment classification
using distant supervision». In: Processing 150 (Jan. 2009) (cit. on p. 7).

[27] The Complete Works of William Shakespeare. https://www.gutenberg.org/
ebooks/100 (cit. on p. 7).

[28] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. «Deep Learning
Face Attributes in the Wild». In: Proceedings of International Conference on
Computer Vision (ICCV). Dec. 2015 (cit. on p. 7).

[29] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar.
Split learning for health: Distributed deep learning without sharing raw patient
data. 2018. arXiv: 1812.00564 [cs.LG] (cit. on p. 8).

[30] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network
over multiple agents. 2018. arXiv: 1810.06060 [cs.LG] (cit. on p. 8).

51

https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://arxiv.org/abs/1811.04017
https://arxiv.org/abs/1812.01097
https://arxiv.org/abs/2007.13518
https://arxiv.org/abs/1811.03604
https://en.wikipedia.org/wiki/Homomorphic_encryption
https://en.wikipedia.org/wiki/Homomorphic_encryption
https://arxiv.org/abs/1702.05373
https://arxiv.org/abs/1702.05373
https://www.gutenberg.org/ebooks/100
https://www.gutenberg.org/ebooks/100
https://arxiv.org/abs/1812.00564
https://arxiv.org/abs/1810.06060

BIBLIOGRAPHY

[31] István Hegedűs, Gábor Danner, and Márk Jelasity. «Gossip Learning as a
Decentralized Alternative to Federated Learning». In: Distributed Applications
and Interoperable Systems. Ed. by José Pereira and Laura Ricci. Vol. 11534.
Cham: Springer International Publishing, 2019, pp. 74–90. isbn: 978-3-030-
22495-0 978-3-030-22496-7. doi: 10.1007/978-3-030-22496-7_5. url:
http://link.springer.com/10.1007/978-3-030-22496-7_5 (visited on
10/03/2020) (cit. on p. 8).

[32] L. Giaretta and Š. Girdzijauskas. «Gossip Learning: Off the Beaten Path». In:
2019 IEEE International Conference on Big Data (Big Data). 2019, pp. 1117–
1124. doi: 10.1109/BigData47090.2019.9006216 (cit. on p. 8).

[33] Jinliang Yuan, Mengwei Xu, Xiao Ma, Ao Zhou, Xuanzhe Liu, and Shangguang
Wang. Hierarchical Federated Learning through LAN-WAN Orchestration.
2020. arXiv: 2010.11612 [cs.LG] (cit. on pp. 9, 26).

[34] Lumin Liu, Jun Zhang, S. H. Song, and Khaled B. Letaief. Client-Edge-Cloud
Hierarchical Federated Learning. 2019. arXiv: 1905.06641 [cs.NI] (cit. on
p. 9).

[35] Mehdi Salehi Heydar Abad, Emre Ozfatura, Deniz Gunduz, and Ozgur Ercetin.
Hierarchical Federated Learning Across Heterogeneous Cellular Networks. 2019.
arXiv: 1909.02362 [cs.LG] (cit. on p. 9).

[36] Shaoxiong Ji. «A PyTorch Implementation of Federated Learning». In: (Mar.
2018). doi: 10.5281/zenodo.4321561 (cit. on p. 15).

[37] Alex Krizhevsky. «Learning Multiple Layers of Features from Tiny Images».
In: University of Toronto (May 2012) (cit. on p. 26).

[38] Convolutional Neural Network (CNN). https://www.tensorflow.org/
tutorials/images/cnn (cit. on p. 34).

[39] World Health Organization. Road traffic injuries. 2020. url: https://www.
who.int/news-room/fact-sheets/detail/road-traffic-injuries (cit.
on p. 37).

[40] Alyssa Pierson, Wilko Schwarting, Sertac Karaman, and Daniela Rus.
«Learning Risk Level Set Parameters from Data Sets for Safer Driving».
In: 2019 IEEE Intelligent Vehicles Symposium (IV). 2019, pp. 273–280. url:
https://ieeexplore.ieee.org/document/8813842/ (cit. on p. 37).

[41] Ming-Yuan Yu, Ram Vasudevan, and Matthew Johnson-Roberson. «Occlusion-
Aware Risk Assessment for Autonomous Driving in Urban Environments». In:
IEEE Robotics and Automation Letters 4 (2019). arXiv: 1809.04629, pp. 2235–
2241. url: http://arxiv.org/abs/1809.04629 (cit. on p. 37).

52

https://doi.org/10.1007/978-3-030-22496-7_5
http://link.springer.com/10.1007/978-3-030-22496-7_5
https://doi.org/10.1109/BigData47090.2019.9006216
https://arxiv.org/abs/2010.11612
https://arxiv.org/abs/1905.06641
https://arxiv.org/abs/1909.02362
https://doi.org/10.5281/zenodo.4321561
https://www.tensorflow.org/tutorials/images/cnn
https://www.tensorflow.org/tutorials/images/cnn
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://ieeexplore.ieee.org/document/8813842/
http://arxiv.org/abs/1809.04629

BIBLIOGRAPHY

[42] Piotr Franciszek Orzechowski, Annika Meyer, and Martin Lauer. «Tackling
Occlusions & Limited Sensor Range with Set-based Safety Verification». In:
2018 21st International Conference on Intelligent Transportation Systems
(ITSC) (2018). arXiv: 1807.01262, pp. 1729–1736. url: http://arxiv.org/
abs/1807.01262 (cit. on p. 37).

[43] David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and Kikuo
Fujimura. «Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning». In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2018, pp. 2034–2039 (cit. on p. 37).

[44] Ammar Haydari and Yasin Yilmaz. Deep Reinforcement Learning for
Intelligent Transportation Systems: A Survey. 2020. arXiv: 2005 . 00935
[cs.LG] (cit. on p. 37).

[45] Stéphanie Lefèvre, Dizan Vasquez, and Christian Laugier. «A survey on motion
prediction and risk assessment for intelligent vehicles». In: ROBOMECH
Journal 1 (2014), p. 1. url: http://www.robomechjournal.com/content/
1/1/1 (cit. on pp. 37, 38).

[46] Long Xin, Pin Wang, Ching-Yao Chan, Jianyu Chen, Shengbo Eben Li, and Bo
Cheng. Intention-aware Long Horizon Trajectory Prediction of Surrounding
Vehicles using Dual LSTM Networks. 2019. arXiv: 1906.02815 [cs.LG] (cit.
on pp. 38, 41).

[47] Xin Li, Xiaowen Ying, and Mooi Choo Chuah. GRIP++: Enhanced Graph-
based Interaction-aware Trajectory Prediction for Autonomous Driving. 2020.
arXiv: 1907.07792 [cs.CV] (cit. on p. 38).

[48] Nachiket Deo and Mohan M. Trivedi. «Multi-Modal Trajectory Prediction of
Surrounding Vehicles with Maneuver based LSTMs». In: 2018 IEEE Intelligent
Vehicles Symposium (IV) (June 2018). doi: 10.1109/ivs.2018.8500493.
url: http://dx.doi.org/10.1109/IVS.2018.8500493 (cit. on pp. 38, 42).

[49] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi
Nguyen, Tzu-Kuo Huang, Jeff Schneider, and Nemanja Djuric. Multimodal
Trajectory Predictions for Autonomous Driving using Deep Convolutional
Networks. 2019. arXiv: 1809.10732 [cs.RO] (cit. on p. 38).

[50] Sajjad Mozaffari, Omar Y. Al-Jarrah, Mehrdad Dianati, Paul Jennings, and
Alexandros Mouzakitis. «Deep Learning-Based Vehicle Behavior Prediction
for Autonomous Driving Applications: A Review». In: IEEE Transactions
on Intelligent Transportation Systems (2020), pp. 1–15. issn: 1558-0016. doi:
10.1109/tits.2020.3012034. url: http://dx.doi.org/10.1109/TITS.
2020.3012034 (cit. on pp. 38, 39).

[51] U.S. Federal Highway Administration. U.S. Interstate 80 Freeway Dataset.

53

http://arxiv.org/abs/1807.01262
http://arxiv.org/abs/1807.01262
https://arxiv.org/abs/2005.00935
https://arxiv.org/abs/2005.00935
http://www.robomechjournal.com/content/1/1/1
http://www.robomechjournal.com/content/1/1/1
https://arxiv.org/abs/1906.02815
https://arxiv.org/abs/1907.07792
https://doi.org/10.1109/ivs.2018.8500493
http://dx.doi.org/10.1109/IVS.2018.8500493
https://arxiv.org/abs/1809.10732
https://doi.org/10.1109/tits.2020.3012034
http://dx.doi.org/10.1109/TITS.2020.3012034
http://dx.doi.org/10.1109/TITS.2020.3012034

BIBLIOGRAPHY

2006. url: https : / / www . fhwa . dot . gov / publications / research /
operations/06137/ (cit. on p. 40).

[52] U.S. Federal Highway Administration. U.S. Highway 101 Dataset. 2007. url:
https : / / www . fhwa . dot . gov / publications / research / operations /
07030/index.cfm (cit. on p. 40).

[53] Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein. «The
highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on
German Highways for Validation of Highly Automated Driving Systems». In:
2018 21st International Conference on Intelligent Transportation Systems
(ITSC). 2018, pp. 2118–2125. doi: 10.1109/ITSC.2018.8569552 (cit. on
pp. 40, 48).

[54] Julian Bock, Robert Krajewski, Tobias Moers, Steffen Runde, Lennart Vater,
and Lutz Eckstein. «The inD Dataset: A Drone Dataset of Naturalistic Road
User Trajectories at German Intersections». In: 2019 (cit. on p. 40).

[55] Robert Krajewski, Tobias Moers, Julian Bock, Lennart Vater, and Lutz
Eckstein. «The rounD Dataset: A Drone Dataset of Road User Trajectories
at Roundabouts in Germany». submitted (cit. on p. 40).

[56] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, and
Dinesh Manocha. «Trafficpredict: Trajectory prediction for heterogeneous
traffic-agents». In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 33. 01. 2019, pp. 6120–6127 (cit. on p. 40).

[57] Ming-Fang Chang et al. «Argoverse: 3d tracking and forecasting with rich
maps». In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2019, pp. 8748–8757 (cit. on p. 40).

[58] Holger Caesar et al. nuScenes: A multimodal dataset for autonomous driving.
2020. arXiv: 1903.11027 [cs.LG] (cit. on p. 40).

[59] John Houston, Guido Zuidhof, Luca Bergamini, Yawei Ye, Long Chen, Ashesh
Jain, Sammy Omari, Vladimir Iglovikov, and Peter Ondruska. One Thousand
and One Hours: Self-driving Motion Prediction Dataset. 2020. arXiv: 2006.
14480 [cs.CV] (cit. on p. 41).

[60] Florent Altché and Arnaud de La Fortelle. An LSTM Network for Highway
Trajectory Prediction. 2018. arXiv: 1801.07962 [cs.RO] (cit. on pp. 41, 43,
46).

54

https://www.fhwa.dot.gov/publications/research/operations/06137/
https://www.fhwa.dot.gov/publications/research/operations/06137/
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
https://doi.org/10.1109/ITSC.2018.8569552
https://arxiv.org/abs/1903.11027
https://arxiv.org/abs/2006.14480
https://arxiv.org/abs/2006.14480
https://arxiv.org/abs/1801.07962

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Federated Learning
	FL in vehicular networks
	Vehicular Knowledge Network - VKN

	State-of-the-art
	Federate Learning
	Gossip Learning
	Hierarchical FL

	Contributions

	Hybrid FL
	Algorithm design
	Grouping strategy

	Context and use case
	FEMNIST simulations
	Preliminary experiments
	Hybrid FL experiments
	Non-IID data
	Advantages of proposed methodology

	Visual explanation in i.i.d. settings
	Linear Regression with SGD

	Beyond rounds: time and number of transmissions
	Communication

	CIFAR-10
	Experiments design
	IID data
	Non-IID data

	Further experiment

	Trajectory Prediction
	Introduction
	Deep Learning: methods summary
	Datasets
	External camera system
	Vehicle camera system

	NGSIM simulations
	Related works
	Pre-processing
	Model
	HFL

	Results

	Conclusions
	Future work

	Bibliography

