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Summary

To reduce time-to-market associated costs and not stall the rest of the system’s
development, ICs designers frequently employ memory compilers to produce the
desired memory with different dimensions and configurations rapidly. Memory
design methodology in the academic environment is often insufficient: most process
design kits (PDKs) do not include a memory compiler. Commercial tools are
also not possible for researchers due to university funding limitations, especially
for modern technology nodes. Besides, the customization of memory and cell
dimensions and specific peripherals is constrained by these industrial options.
Moreover, its internal function and the generated memory layout is commonly
inaccessible. Although open-source compilers are reported in the literature, they
lack bit-cell customization, do not support the most recent cell layouts, and are
not integrated in standard IC design tools. Most memory compilers provide only
two possible cell dimensions, one optimized for density and one optimized for
performance. Since many different size arrays can be produced (mainly constrained
by system data storage need, area, power, and performance), it is practically
impossible to have a perfectly tailored bit-cell for the specific system requirements
with modern compilers.

This project intends to overcome this obstacle by designing a simple, modular
and flexible SRAM memory compiler that uses a 6T-SRAM cell in 180 nm TSMC
technology with customizable transistor widths: in this way, the system designer can
select the desired transistor sizes in the cell, optimized for the system requirements
and size of the array. This bottom-up approach permits to fulfil designer’s specific
needs without renouncing flexibility, transparency and integration with most used
IC design tools in industry and academy.

Several reasons led to the choice of SRAM for this project. SRAM is vastly
used in every-day electronic devices: CPUs, MCUs, ASICs, caches, and many more.
Its speed, energy consumption, and reliability are often preferred characteristics
in specific applications, especially when high-density memories, such as DRAM,
are not needed. An added benefit of SRAM is that it is manufactured using a
standard technology process, so it does not require additional masks and process
steps, reducing the cost (other than different design rules). Those characteristics of
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SRAM cannot be achieved by other standard memories such as DRAM and Flash.
On-chip CPU SRAM memory can occupy up to 50% of the area: consequently,
the design of SRAM cell and array impacts heavily on system performance, power
efficiency and cost. Moreover, the static nature of SRAM memory makes timing
definition a lot easier than DRAM: due to its dynamic essence (hence the need to
be cyclically refreshed), several timing parameters should be respected.

This thesis starts by analysing the most used SRAM circuits in literature. 6T-
SRAM cell is compared with 4T2R-SRAM one: the first is commonly prefered in the
industry due to its superior stability, performance, power consumption, and simple
process. The attention is focused on cell read stability and write-ability, which are
conflicting requirements. Cell stability is also a primary concern in deep-submicron
technology nodes: in-die transistor threshold voltage variations (that can be caused,
among others, by oxide thickness and random dopants fluctuations) can strongly
affect cell stability. Static Noise Margin (SNM) is one of the possible metrics
to measure stability (easily obtained by SPICE DC sweep simulations), which is
greatly influenced by cell transistors dimensions. SNM during the hold, read and
write operations, read/write time and power/energy consumption are analysed
varying cell transistor sizes and an optimal trade-off among these parameters have
been found. A study on different cell layouts reported in the literature is also
carried on: the two most common layout, tall cell and wide cell (also known as thin
cell), are compared. Due to its lithographically friendly pattern, the fact that all the
transistors have the same orientation (hence improving reproducibility and threshold
voltage matching) and reduced cell height (so a decreased bit-line length/cell), thin
cell layout exhibits better performances and lower power consumptions; so it has
been chosen for the compiler development.

To simulate an array properly, the essential column peripheral circuits are
analysed and designed. Bit-line precharge circuits are needed to have bit-lines
fixed to a known voltage level before starting reading the cell. Due to its simplicity
and less susceptibility to threshold variations, a static PMOS precharge circuit
has been preferred to the dynamic or NMOS counterpart. The sense amplifier
is another essential circuit: it amplifies the small differential voltage drop across
bit-lines that occurs during a read operation, speeding up data output delay. A
latched differential sense amplifier is used for this compiler because of its superior
performances. Finally, the write driver circuit is analysed: it is needed to lower
the voltage of one bit-line to ground during a write operation. One possible write
driver circuit is designed: minimum transistor count and smallest area influenced
the choice.

Cadence Virtuoso suite is one of the primary tool used in the industry for
designing ICs. Since the developed compiler’s main characteristic is flexibility,
it is designed to be perfectly integrated with the aforementioned software. In
pursuance of this, Cadence proprietary SKILL scripting language is used to develop
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the compiler software. SKILL scripts perform cell, peripherals and array schematic
cell-view creation and cell layout cell-view creation. By means of a bash script
then, DRC, LVS and parasitic extraction of the wanted SRAM cell are carried out
using Calibre software. Once the extracted cell-view is available, a test-bench is
automatically created, instantiating SRAM array, column peripherals and voltage
generators. Test-bench timing parameters can be customized by the user, thanks
to which minimum setup/hold times, pulse widths and word-line period can be
easily found. Then, a complete write/read SPICE simulation of the test-bench is
performed using an OCEAN script (Cadence SKILL extension for simulation with
Spectre), and the results are stored. Thanks to this approach, the designer can
access simulation results easily and perform optimization of the cell, peripheral
circuits sizing, array dimensions and timing parameters. The user can also decide
to use or not the extracted cell-view during the simulation: this can be helpful to
have quick estimations, very useful in preliminary design stages and to know how
the designed array impacts system performance and power consumption. Although
for large arrays, where delay and consumption due to bit-lines and word-lines wiring
can be predominant, the use of the extracted cell-view could be necessary to have
reliable simulation results.

Lastly, compiler performances are analysed in generating and simulating different
array sizes. Compilation time is not affected by array dimension, since the software
must perform DRC, LVS, and, particularly, parasitic extraction (i.e. the most
computationally intensive) only for the single cell layout and not for the entire
array. Simulation time strongly depends on array dimension: considering that each
cell comprises six transistors, even small arrays can contain up to tens of thousands
of transistors. For this reason and due to limited server capabilities, only small
and medium sized arrays (up to 4 kbit) have been simulated, for which optimal
timing parameters have been found. Moreover, read/write delays, peak currents,
absorbed energies, and static currents are analysed for the different array sizes and
compared for Typical-NMOS/Typical-PMOS (TT) and Slow-NMOS/Fast-PMOS
process corners. The last is a worst-case process corner for this particular SRAM
design, in which a faster static PMOS precharge transistor can slow down bit-lines
discharge carried out by slower NMOS transistors during read and write operations.
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Chapter 1

Introduction and
Motivations

SRAM is vastly used in every-day electronic devices: CPUs, MCUs, ASICs,
caches, and many more. Its speed, energy consumption, and reliability are often de-
sired characteristics in certain applications, especially when high-density memories,
such as DRAM, are not needed. ITRS (and then IRDS) predicted SRAM to use
more than 90% of high-performance SoC area in next years [1]. Since its ubiquity,
it is crucial to integrate SRAM arrays in electronic systems easily. Moreover,
designing and manually laying out even a small array can be prone to errors and
very time-consuming, besides the fact that it requires specialized know-how.

In order to reduce time-to-market related costs and not to slow down the de-
velopment of the rest of the system, ICs engineers often use memory compilers to
generate the desired memory block. In fact, the repetitive architecture of memories
allows relatively simple design automation that can produce different dimensions
and configurations rapidly, even if it is difficult to accomplish with different tech-
nology nodes. In the academic environment, there is a lack of memory design
methodology: most process design kits (PDKs) does not come with an included
memory compiler. When a memory compiler is publicly available and without cost,
it really only supports a non-fabricable process technology. Commercial options can
also be not feasible for researchers due to university funding limitations. In addition,
the customization of memory dimensions and specific peripherals is constrained by
these industrial options, and the internal function/layout is generally confidential.
Numerous leader industries and foundries have indeed supplied their clients with
memory compilers. Once a non-disclosure agreement (NDA) is signed, memory
compilers typically let users access only simulation data and pin placement. Most
of the memory compilers, which do not permit the user to customize the cell and
peripherals designs, are constrained by licences and typically involve a very high
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Introduction and Motivations

price; hence for most university research programs, this makes them practically
inaccessible [2][3][4]. Although an open-source compiler exists in literature [2], it
lacks bit-cell customization and does not support the most recent cell layouts. Most
memory compilers provide only two possible cell dimensions, one optimized for
density and one optimized for performance. Since many different size arrays can
be produced (mainly constrained by system data storage need, area, power, and
performance), it is practically impossible to have a perfectly tailored bit-cell for
the specific system requirements with modern compilers.

This project aims to handle some of these problems: a simple, modular and flexi-
ble memory compiler is designed, by means of which the user can customize bit-cell
transistors’ widths in order to optimize the array for power, area, and performance,
a desirable feature in academic research. This bottom-up approach permits to fulfil
designer’s specific needs without renouncing flexibility, transparency and integration
with IC design existing tools. The tool produces the desired bit-cell layout, carries
out DRC and LVS, extracts parasitics, and performs SPICE simulation of the
desired array in order to evaluate power consumption and performance. Although
it does not generate a complete array layout, it can be beneficial to have quick and
reliable estimations. Moreover, thanks to its modularity and flexibility, it can be
functional during SRAM architecture design exploration.

The thesis is organized as it follows. In Chapter 2, memory circuits overview
is reported, from SRAM state-of-the-art cell and layout to peripheral circuits. In
Chapter 3, SRAM memory circuits are designed, explaining the stability, timing,
and energy consumption trade-offs in details. Chapter 4 provides a detailed
overview of the compiler design, its structure and its usage. In Chapter 5, compiler
performances and simulation results are described, where three different array sizes
are compared in terms of performances and consumption. Chapter 6 concludes
the work, summarizing all the technical efforts made for the development of this
project and possible future works.
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Chapter 2

Memory Circuits Overview

2.1 Memory Classification
In the design of CMOS circuits, memory components represent essential parts

and are crucial for many devices. They are being used for a vast spectrum of
systems with varying requirements. While all memory is used to store and retrieve
information, depending on how the stored data is accessed, they can be categorized
into three main groups: random access memory (RAM), serial access memory, and
content addressable memory (CAM), as described in Figure 2.1.

Figure 2.1: Memory classification depending on how data are accessed [5]

3
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While data stored in a RAM are accessed through an address that corresponds to
a physical memory location, serial access memory is read and written sequentially;
thus, there is no need for an address. Instead, CAM identifies which address(es)
stores the datum/data equal to the given key; this feature is precious in server
switches for MAC address checking/routing [5]. RAMs can be further classified
into volatile and nonvolatile memories (RAM/ROM distinction is misleading; this
denomination is still used for historical reasons). Volatile memories can maintain
information as long as power is supplied, while nonvolatile memory can retain data
even without power almost endlessly. Given that nonvolatile memories are much
slower than volatile ones, but they can achieve much higher densities (at a lower
cost), they are more suited for secondary storage elements rather than system main
memories.

Since this discrepancy in access times, cost per bit, and density, Personal
Computers (PC) architecture often implements the well-known memory hierarchy
(Figure 2.2), in which fast, small and costly memories (such as register files, caches
and main memory) are inside or near the CPU, while slow, large and cheaper
memories (such as hard drives or solid-state disks) are distant from the processor.
The use of a memory hierarchy is essential in order to fill the gap between processing
unit and memories cycle times while guaranteeing reasonable performances, power
consumption, and costs. In embedded systems, where the main concern is power
consumption and costs, and there is no need for large memories, very small secondary
storage is used and lower levels of memory hierarchy is employed; DRAM is used as
main memory when performances are power are not the main concern [6], otherwise
small SRAM (to prevent cost increase) is preferred.

Figure 2.2: Example of memory hierarchy of a personal computer [1]

4



Memory Circuits Overview

2.1.1 SRAM and DRAM: a comparison

Before describing SRAM in details, it is natural to compare SRAM ad DRAM,
given their similarities and uses in integrated circuits. As pictured in Figure 2.3,
these two memories show a significant difference in cell topology.

Figure 2.3: 6T-SRAM cell (a) and 1T1C-DRAM cell (b) (adapted from [7])

While most of SRAMs use six transistors (two n-type MOSFETs for accessing cell
data nodes, two n-type and two p-type MOSFETs which form two cross-coupled
inverters), DRAM cell uses only one n-type access transistor and a capacitor which
stores the information. This makes DRAM a much denser and cheaper memory
with respect to SRAM. In SRAM the datum is maintained by means of two cross-
coupled inverters (also known as latch): thanks to the positive feedback loop the
information is not lost as long as power is supplied. On the contrary, DRAM uses
the charge stored in a capacitor to represent information; since capacitors and
access transistors have leakage currents, the charge disappears with time, and so
the voltage across the capacitor tends to degrade. Even reading a DRAM cell
makes the charge to vanish, in fact the operation is also called disrupting reading.
Due to these reasons, a DRAM cell needs to be periodically refreshed in order
not to lose its datum. Refreshing means to re-write data in the cells through
special circuits (amplifier and switch) every certain time (usually in the order of
milliseconds) or right after a read operation in order to not corrupt the information
[5][7][8][9]. The fact that DRAM needs to be periodically refreshed represents a
significant drawback: during refreshing, the cell cannot be accessed, and several
clock cycles may be needed for this. Furthermore, some power is dissipated during a
refreshing operation; thus, DRAM is not well suited for very low-power applications.
Another determinant factor is the storing capacitance value: it determines not
only reliability, access time and power consumption but also leakage current; since
refreshing time (and so clock cycle) depends on the latter, it is challenging to
integrate a DRAM array in a system with strict time requirements; this makes
DRAM array design more system dependent. On the contrary, a relatively large
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SRAM array can easily reach access times comparable to logic clock cycles; in
fact, they are commonly used as caches and register files. Even though the SRAM
cell area is larger than DRAM, speed and power benefits surpass cost and area
disadvantages in these applications [10][8].

A modern-day high-density DRAM cell is depicted in Figure 2.4. It uses a
polysilicon plug (or trench) capacitor: it exploits the verticality of very high
aspect ratio holes to reach large surfaces, hence large capacitances, and an Oxide-
Nitride-Oxide dielectric film. The poly-plug is directly connected to the access
transistor drain and acts as a capacitor terminal, and the other is the heavily
p-doped substrate. High aspect ratio trenches can be obtained employing very
costly specialized equipment (such as Deep Reactive Ion Etching tools), and it
requires high quality and uniform deposition of the dielectric. Due to these reasons,
the manufacturing process needs to be carefully tailored and can be unavailable
with more traditional CMOS processes [5][7]. Additional equipment, lithographic
steps and masks can make the DRAM process very costly, especially for low-volume
production. Lower cost DRAM cells are available (such as buried capacitor cell) but
have a larger area and are not suited for embedded DRAM. The trench capacitor’s
main advantages are that the capacitance value can be increased without enlarging
the cell area, and that high-temperature process steps are performed before logic
fabrication; this makes it suitable for embedded DRAM application [10]. These
advanced process steps carry special Design Rules, which are very dependent on
technology and they need to be respected during cell layout for the compiler
development.

Figure 2.4: DRAM trench capacitor cell: Drawing (a) and Cross-section SEM
view (b) (adapted from [5])
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Furthermore, DRAM needs additional signals to be properly controlled, especially
for precharge and refreshing, which are critical for a correct operation. This
complicates timing requirements: in DRAM, tens of timing parameters have to be
respected, particularly for an asynchronous design [11].

Due to the above considerations, SRAM is the best of the two memory categories
for developing a memory compiler. The two types of memory have their strengths
and limitations; both are commonly employed in most computing systems and
are necessary hardware components. Having defined similarities and differences
between SRAM and DRAM, and stressed the motivations of the choice of SRAM
to develop the memory compiler, now the discussion proceeds with an accurate
description of SRAM cell, peripherals and architecture.

2.1.2 SRAM Cells
Understanding the functionality of SRAM cells is essential for a more thorough

description addressed later in this section. The circuit topology of a 6T-SRAM
cell is shown in Figure 2.5. It is made of six transistors: two NMOS (Q5, Q6)

Figure 2.5: 6T-SRAM cell (adapted from [1])

are the access transistors, while two NMOS (Q1, Q2), called pull-down or driver
transistors, and two PMOS (Q3, Q4), called pull-up or load transistors, form
the bistable latch (so two cross-coupled inverters), responsible for maintaining
the information through its positive feedback loop. Without the feedback, any
stored information would be lost with time due to leakages, as it happens with
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DRAM. Through the access transistors, internal latch data voltages (i.e. the
stored datum and its complemented value) are transferred to the bit-lines (BL
and BL) during a read operation. On a strictly theoretical level, there is no
need for two bit-lines and hence two access transistors, but having BL and BL
permits to perform a differential sensing, so speeding up the read operation and
guaranteeing an excellent common-noise rejection, at the expense of an increased
cell area. Moreover, having two sides of the cell that can be accessed improves
cell stability during the read/write operation. The cell is accessed by rising the
word-line signal (connected to access transistors’ gates) to VDD, so letting a current
flow from bit-lines to internal data nodes or vice-versa. Before any read/write
operation, bit-lines are precharged to a known voltage, usually VDD. During a read
operation, supposing to have D equal to VDD and D equal to 0 V, BL remains
to its precharged value, and BL is discharged through the series of access and
pull-down transistors (Q5 and Q1 in this example). When the involved bit-line is
discharged to a sufficiently low voltage level, the small differential voltage across
bit-lines is amplified to the full-swing output level. During a write operation, one
of the two bit-lines is fully discharged by a write driver circuit. Assuming that the
stored datum is a logic ’1’ and that a logic ’0’ is to be written, the internal datum
node is discharged through access transistor Q6; once the node is discharged to
a sufficient voltage level, the inverter made of Q1-Q2 starts switching, and the
positive feedback loop forces the other inverter Q3-Q4 to switch to the opposite
value. Now that the read and write operations are briefly described, it is clear why
the bit-lines need to be precharged to a high voltage value: both read and write
relies on transferring a logic ’0’ to/from bit-lines, and the access transistors are
NMOS, that can pass a strong logic ’0’ but a weak logic ’1’. If the bit-lines were
precharged to a logic ’0’, then the read/write operation would rely on charging
bit-lines/internal nodes to logic ’1’; hence read/write delays would be higher due
to the use of NMOS access transistor. PMOS transistors are not used for accessing
the cell since they would require a higher area due to degraded holes mobility and
the presence of additional n-wells in the cell layout. As shown later, the sizing
of access, pull-down, and pull-up transistors is fundamental to allow correct and
reliable read/write operations. Since bit-lines are already precharged by external
circuitry, pull-up transistors’ only task is to provide low-to-high transition during
switching and to maintain internal nodes to VDD during data hold [1][8].

Another well-known SRAM cell topology is the 4T2R one, depicted in Figure
2.6, also called polysilicon resistor load SRAM cell. It employs only four NMOS
transistors, two for accessing the cell and two for pull-down of the inverters, and
two high-resistive polysilicon loads in place of pull-up transistors. The immediate
drawback is that ratioed inverters present smaller gains around voltage transfer
characteristics switching point; this causes lower noise margins and increases the
time needed to switch from the metastable point. The clear benefit with respect to
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6T-cell is the area, around 30% smaller [1]. The load resistor’s primary purpose is
to counterbalance the leakage currents of pull-down transistors during data hold, i.e.
maintaining the correct datum. The upper bound on the resistance value is fixed by
the necessity to have a pull-up current at least two orders of magnitude higher than
the pull-down leakage current to prevent data loss [8] and by minimum low-to-high
switching times [1]. The lower bound is given by minimum noise margins and
maximum static power consumption. Unfortunately, this cell presents a much
higher static current (due to the presence of a finite load resistor); up to three
orders of magnitudes higher than 6T-cell [8]. Due to these conflicting requirements,
designing a 4T2R-SRAM cell is becoming more difficult, especially with deep
sub-micron technologies. Technological steps, such as doping by implantation and
annealing of polysilicon resistors, cause significant resistance values variability and
do not let resistor area to scale down as transistors one. Moreover, the transition
from constant-voltage scaling to constant-field scaling produced unsustainable
trade-offs for power dissipation and cell stability. Another issue is the need to
introduce additional process steps to produce load resistors, which are not present
in a standard CMOS process; this makes 4T2R cell incompatible with embedded
memory applications, such as caches in CPUs or SoCs. Due to these motivations,
the 6T-SRAM cell is the preferred choice in standard deep sub-micron scaled
systems [1] and it is chosen for the development of this memory compiler.

Figure 2.6: 4T2R-SRAM cell (adapted from [1])
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2.2 SRAM Operations and Stability
Attention is now focused on a thorough analysis of the 6T-SRAM cell during

the read and write operation. Mathematical models based on simple equivalent
circuits are derived and discussed. Definition of cell stability and one of its possible
metrics, i.e. Static Noise Margin (SNM), is also analyzed since it is a significant
concern in deep submicron technology nodes.

2.2.1 Read
The read operation is examined. Figure 2.7 shows a simplified 6T-SRAM cell

circuit in which D is equal to a logic ’1’ and D is equal to a logic ’0’. Transistors

Figure 2.7: Simplified 6T-SRAM cell circuit during read operation
(adapted from [1])

Q2 and Q3, which are in the off state, are idealized with open circuits. BL and BL
parasitic capacitances, which are the effects of all the cells connected to the same
columns and bit-lines wiring capacitances, are modelled by lumped capacitances
CBL and CBL. Since both bit-lines are precharged to VDD before starting a read
operation, only BL is discharged while BL remains at VDD; hence we focus our
attention only on the left side of the circuit. When the word-line is asserted high,
BL starts discharging through the series of Q5 and Q1. Q1 and Q5 form a voltage
divider whose input is initially at VDD, so its voltage output cannot remain at 0 V,
but it will rise to a certain value ∆V . The problem is that this voltage acts as an
input to the second inverter Q3-Q4: if this voltage rise passes the inverter threshold,
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the cell starts switching and the datum is lost, so causing a disruptive read. To
have some safety margin and be sure not to overwrite cell datum, the voltage
∆V should be lower than NMOS threshold voltage Vth,n: to prevent this from
happening, Q5 equivalent resistance should be higher than Q1 one [8]. Assuming
a simple quadratic MOSFET model and ignoring body effect and short-channel
effects, DC currents of Q1/Q5 can be derived and must be equal (ignoring off
transistor contribution)[8]:

Kn,Q5

A
(VDD − ∆V − Vth,n)VDSAT,n −

V 2
DSAT,n

2

B
=

= Kn,Q1

A
(VDD − Vth,n) ∆V − ∆V 2

2

B (2.1)

where Q5 is assumed to be at the edge of saturation (and VDSAT,n is given by
velocity saturation model in short-channel devices) and Q1 in triode region (since
its low VDS = ∆V ). Equation (2.1) can be rearranged to express ∆V as a function
of all the other parameters [8][1]:

∆V =
VDSAT,n + CR (VDD − Vth,n) −

ñ
V 2
DSAT,n (1 + CR) + CR2 (VDD − Vth,n)2

CR
(2.2)

where CR is the cell ratio and is equal to:

CR =
W1/L1

W5/L5
(2.3)

Equation (2.2) is plotted in Figure 2.8, considering TSMC 180 nm parameters
extracted from its PDK documentation. The red line represents the NMOS
threshold voltage Vth,n, approximately equal to 0.4 V. As can be observed, the CR
needs to be almost greater than one to ensure a ∆V lower than Vth,n. A larger CR
makes the read current, sunk by pull-down transistors, higher, providing a faster
bit-line discharge rate and a lower read delay. As shown later in this section, higher
cell ratios give the cell also more stability during a read operation [12][13]. The
main disadvantage is a larger cell, so reducing bit density [1][8]. The above analysis
holds true also for the opposite case (D =’0’ and D =’1’) due to cell symmetry.
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Figure 2.8: ∆V (blue line) as a function of Cell Ratio; red line depicts Vth,n

2.2.2 Write

Figure 2.9: Simplified 6T-SRAM cell circuit during write operation
(adapted from [1])
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The write operation is examined through the simplified circuit shown in Figure
2.9. As before, D is equal to a logic ’1’, D is equal to a logic ’0’ and transistors
Q2-Q3 can be omitted. Supposing that a logic ’0’ is to be written into the cell,
BL is discharged to ground by an external write driver circuit through the access
transistor Q6, once the word-line is asserted. Before the effective toggling starts,
D and D nodes (i.e. Q1 and Q4 gates, respectively) remain at the same voltages.
In theory, once the bistable begins switching, this condition is no more valid; we
can ignore this for the purpose of a simplified analysis. The first aspect to notice is
that in this example the writing operation starts at D node (i.e. the node storing
a logic ’1’); this is because D node voltage cannot be raised high enough due to
non-disruptive reading requirement (low ∆V ) and its resulting sizing restriction
(weak Q5 and strong Q1)[1]. So the attention is focused on the right side of the
circuit: once the toggling starts, the feedback mechanism will force the other side
of the cell to flip. As already stressed in Section 2.1.2, pull-up transistors only task
is to provide low-to-high transition during switching and maintain internal nodes
to VDD during data hold. The cell can be overwritten if the internal node voltage
VD is pulled sufficiently down (below NMOS threshold Vth,n). The problem is that
transistor Q4 tries to keep VD to VDD: to prevent this from happening, transistor
Q6 equivalent resistance should be lower than Q4 one. Assuming a simple quadratic
MOSFET model and ignoring body effect and short-channel effects, DC currents of
Q4/Q6 can be derived and must be equal (ignoring off transistor contribution)[8]:

Kn,Q6

A
(VDD − Vth,n)VD − V 2

D

2

B
= Kp,Q4

A
(VDD − |Vth,p|)VDSAT,p −

V 2
DSAT,p

2

B
(2.4)

where Q4 is assumed to be at the edge of saturation (and VDSAT,p is given by
velocity saturation model in short-channel devices) and Q6 in triode region (since
its low VDS = VD). Equation (2.4) can be rearranged to express VD as a function
of all the other parameters [8][1]:

VD = VDD − Vth,n −

öõõô(VDD − Vth,n)2 − 2µp
µn
PR (VDD − |Vth,p|)VDSAT,p −

V 2
DSAT,p

2
(2.5)

where PR is the pull-up ratio and is equal to:

PR =
W4/L4

W6/L6
(2.6)

Equation (2.5) is plotted in Figure 2.10, considering TSMC 180 nm parameters
extracted from its Process Design Kit (PDK) documentation. The red line repre-
sents the NMOS threshold voltage Vth,n, approximately equal to 0.4 V. As can be
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observed, the PR needs to be almost lower than 3.5 to ensure a VD lower than Vth,n.
This is a very conservative analysis since the cell can also start switching when VD
goes below VDD − |Vth,p|, hence higher pull-up ratios are possible, but it can make
the cell very sensible to process variations. Normally, the pull-up ratio would be
set to one with minimal size access and pull-up transistors to guarantee low cell
area. PR = 1 ensures write-ability due to mobility differences between access and
pull-up transistor, but it could be a problem for slow NMOS/fast PMOS process
corners or a VDD higher than the nominal one. On the contrary, increasing PR
(with constant CR) centres latch inverters switching point, improving read and hold
stability, but can degrade the write time to the point where the cell becomes not
writable. As can be noticed, write-ability and read stability are opposing design
constraints [1][8]. The above analysis holds true also for the opposite case (D =’0’
and D =’1’) due to cell symmetry.

Figure 2.10: VD (blue line) as a function of Pull-Up Ratio; red line depicts Vth,n
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2.2.3 Cell Stability and SNM Analysis
Current SRAMs aim to maximize the number of bits while preserving low

energy consumption, high speed and reliability. These goals involve continuous
scaling of the transistors’ sizes; constant field scaling also forced a reduction of
supply voltage to prevent high power consumption and reliability issues (such as
gate oxide breaking) [1]. Supply voltage and transistor dimensions scaling impose
several challenges for the CMOS manufacturing process; this is particularly true for
large SRAM arrays, where random dopant in-die and within-die fluctuations cause
large threshold voltage variability [14]. Short-channel effects, polysilicon minimum
dimensions, and line edge roughness also have a significant impact on threshold
voltage variations, even among very close transistors [15]: this can lead, among
others, to data stability issues and asymmetric cell behaviour. SRAM stability is
greatly degraded by all the above factors and presents concerning worsening with
technology scaling [14]. Static Noise Margin (SNM) is one of the well-known metrics
for measuring stability. «Noise Margin (NM) is the maximum spurious signal that
can be accepted by the device when used in a system while still maintaining the
correct operation»[1]. When the noise is applied for enough time for the device
to be affected, it is called static (ideally is applied for an infinite time). If a
finite noise impulse is fed to the system, the noise is called dynamic, and the used
metric is Dynamic Noise Margin (DNM); when the noise pulse width becomes
large, DNM decreases asymptotically to SNM. DNM is always greater than SNM,
i.e. considering SNM represents a worst-case analysis [16].

To evaluate SNM, latch butterfly curves are commonly used; they are obtained
from inverter transfer curves: since two back-to-back inverters form a latch, one
inverter presents the standard transfer curve, while the other a mirrored transfer
curve (since its output is the input of the other inverter and vice-versa) [17]. A very
convenient method for deriving SNM from butterfly curves consists of measuring
the full square that can be inscribed in the two lobes of the butterfly curve: since
the cell, in reality, is never perfectly symmetrical, the side of the smaller of the two
squares is the worst-case SNM [17]. The main advantages of this method are that a
simple analytical expression linking SNM to SRAM cell parameters can be derived
and that DC SPICE simulations can easily measure it. One drawback is that it
cannot be measured experimentally because one should have access to internal cell
nodes. Other metrics for measuring stability, such as the N-curve [18], are more
suited for chip testing, but they do not have a relatively simple analytical relation
with cell parameters [12]; hence SNM is the preferred metric in this project.
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The method for deriving SNM consists of inserting voltage noise sources in
the latch feedback loop: as shown in Figure 2.11, these noise sources must have
opposing polarities for describing a worst-case scenario. Practically speaking, SNM
is the minimum noise voltage required to move inverters transfer curves away from
each other to the point where they do not have a stable point [5][12].

Figure 2.11: Bistable latch with opposing polarities noise sources (a) and equiva-
lent SRAM cell (b) (adapted from [1])

A way to measure SNM with DC simulations involves considering latch butterfly
curve, normally plotted in x− y coordinates (i.e. Vin − Vout), and plotting it in a
counterclockwise 45° rotated u− v system, as depicted in Figure 2.12 [1][17][19].

Figure 2.12: Butterfly curve (a) and its 45° rotated plot (b) measuring inscribed
square diagonals (F1 and F2 are inverters curves in the new coordinates)

(adapted from [1], [19])
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Supposing y = F1(x) and y = F Í
2(x) are the normal and mirrored inverters transfer

curves respectively, we can apply a coordinates transformation in the new u− v
system:

x = cos(45°)u+ sin(45°)v = 1√
2
u+ 1√

2
v (2.7)

y = −sin(45°)u+ cos(45°)v = − 1√
2
u+ 1√

2
v (2.8)

substituting Equations (2.7) and (2.8) in y = F1(x) yields to:

v = u+
√

2F1

A
1√
2
u+ 1√

2
v

B
(2.9)

For the second inverter F2 the procedure is similar but with swapped x− y axis:

x = − 1√
2
u+ 1√

2
v (2.10)

y = 1√
2
u+ 1√

2
v (2.11)

substituting Equations (2.10) and (2.11) in y = F2(x) yields to:

v = −u+
√

2F2

A
− 1√

2
u+ 1√

2
v

B
(2.12)

Equations (2.9) and (2.12) are expressions of v as a function of u for both inverters
constituting the latch (plotted in Figure 2.12b). They can be easily obtained
by circuital implementations employing «voltage-dependent voltage sources in a
feedback loop» [17], as shown in Figure 2.13.

Figure 2.13: Circuital implementations of Equations (2.9) (a) and (2.12) (b)
(adapted from [1])

The solution of Equations (2.9) and (2.12) are v1 and v2 in Figure 2.13 (a) and (b),
respectively. Once these are obtained, the difference v1 − v2 is calculated (plotted
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diagonally in Figure 2.12a, similar to a sine wave). The absolute values of the
global maximum and minimum of this curve are the diagonals of the maximum
squares inscribed in the two lobes of the butterfly curve. The SNM is the minimum
side of the two squares, calculated as Dmin√

2 .
Seevink et al. [17] presented also an analytical derivation of SNM based on

the circuit showed in Figure 2.13b. Here the complete derivation is omitted for
conciseness; the resulted formula is:

SNM = Vth,n −
3 1
k + 1

4
·

·

VDD − 2r+1
r+1 Vth,n

1 + r
k(r+1)

− VDD − 2Vth,n
1 + k r

q
+
ò

r
q

1
1 + 2k + r

q
k2
2
 (2.13)

where:

r = βdriver
βaccess

and q = βpull−up
βaccess

,

k =
3

r

r + 1

4Aó
r + 1

r + 1 − V 2
s/V 2

r

− 1
B
,

Vr = Vs −
3

r

r + 1

4
Vth,n ,

Vs = VDD − Vth,n

(2.14)

From the above equations the most important aspect is that SNM is independent
on absolute values of β, but it rather depends only on their ratios. That is why
technology scaling and its increase in transistors’ β values does not improve SNM.
Besides, VDD scaling can make SNM worst from node to node. Particular values
of r and q can be found that make SNM independent on VDD due to the opposite
signs of the coefficients in Equation (2.13). Changing q and r can make SNM
dependency on VDD positive or negative. In general, in order to maximize SNM, r
and q

r
= βp/βd should be maximized. The drawbacks of doing this are an increased

cell area and a poor write-ability due to increased pull-up ratio (as seen in Section
2.2.2). Finally, the direct dependence on threshold voltage makes SNM dependent
on temperature (as temperature increases, Vth,n and SNM decrease). [1][17].

As can be noticed, only SNM during read operation has been evaluated. Similar
considerations can be carried out for hold operation (i.e. when word-line is not
asserted), but the main differences lie in butterfly curves appearance: as shown in
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Figure 2.14a, when the cell is accessed, the zero-level of internal nodes is no more
at ground (as described in Section 2.2.1); this makes the SNM of a read-accessed
cell worse than a not-accessed one [20]. During a write operation, the cell acts
as a monostable circuit, i.e. it presents a single stable point (corresponding to
the datum is being written) (Figure 2.14b) [18]; a write SNM can be still derived
through simulation and reflects the write-ability of the cell [18][21].

Figure 2.14: Read SNM vs. Hold SNM (a) and Write SNM (b)
(reprinted from [1][5])

2.3 SRAM Cell Layout
Many possible 6T-SRAM cell layouts are reported in literature. Figure 2.15

shows different layouts: this categorization divides the layout on the base of
inverters placement and access transistors orientation [22][23]. Type-1a cell, also
called "Tall Cell", was commonly used in industry until 90 nm technology node.
From 90 nm on, a more lithographically friendly layout (type 4), called "Thin Cell",
has been adopted [24]. Type 5 cell, called "Ultra-Thin Cell", has been recently
introduced for sub-22 nm nodes [25]. The latter showed a larger area and some
delay penalty down to 32 nm process node [23]. Since this project employs 180 nm
node, the analysis is now focused on the two most used layouts for this technology,
i.e. tall and thin cell.
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Figure 2.15: Possible 6T-SRAM cell layouts depending on inverters and access
transistor layout (reprinted from [23])

Figure 2.16: Tall Cell (a) and Thin Cell (b) comparison; 6T-SRAM schematic
(c) and layout layers legend (d) are also reported (reprinted from [1])
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2.3.1 Tall vs. Thin Cell
Figure 2.16 shows a comparison between tall and thin cells. It is evident that the

tall cell presents a much higher number of corners of diffusion and M1 layers. Since
lithography, the technique used to transfer pattern using UV-light sources, lenses
and masks to the wafer, did not scale as much as transistors [1], the reproducibility
of complex patterns became a problem; this led to a reduction of pattern quality and
process yield [5]. On the other hand, the thin cell was introduced to mitigate these
problems: its slender layout, without corners in M1 and diffusion layers, led to a
major yield enhancement. Furthermore, all transistors in the thin cell have the same
orientation: this is very important for threshold voltage and width/length matching.
In fact, process variation (such as dopants or oxide thickness gradients) and optical
effects in corners can make matching really challenging [1]. Another advantage
is the shorter cell bit-line: this reduces the wiring capacitance and can reduce
read/write delays. Besides, wide cell has word-lines routed through polysilicon,
while thin cell uses metal layers which have a much lower sheet resistance so
reducing word-line signal propagation delay [1][24]. A comparison of all the types
of cell in Figure 2.15 has been carried out for 65, 45 and 32 nm process nodes:
thin cell always shows comparable or lower read/write delays, minimum cell area,
and comparable power consumption [23]. The fact that all transistors have the
same orientation is also beneficial for designing a customizable cell: changing any
transistors’ width will produce only a change in cell width, thus greatly simplifying
custom layout design. For the above reasons, the thin cell has been chosen for the
development of this project.

2.4 SRAM Architecture
SRAM array is only a part of the complete memory system. Even if this project

focuses on the array, it is important to have an overview of the complete memory
architecture. Figure 2.17 depicts a typical SRAM architecture block diagram [1].
Usually the number of memory locations is much higher than the number of bits
of a word; this would make inappropriate to build a memory array with rows
equal to memory locations and columns equal to word width, because it would
produce a very "long" and "thin" array. Therefore, this would cause very long
bit-lines (thus worsening delays and power consumption) and a non-squared circuit
footprint. To prevent this, a 2D-structure is always employed: address bits, which
are used to access the wanted memory location (usually a word with a certain
number of bits), are split into two parts: the most significant bits (X in Figure
2.17) addresses a row through a row decoder, while the least significant bits (Y
in Figure 2.17) selects the wanted word among all the columns through a column
decoder/multiplexer. Consequently, memory arrays with aspect ratios close to one
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Figure 2.17: SRAM architecture block diagram (reprinted from [1])

can be employed. Column MUXs let sense amplifiers and write drivers circuits to
be shared among multiple columns (usually a power of 2), i.e. reducing area and
power. Memory array can be further divided into blocks, accessed by address most
significant bits (Z in Figure 2.17) through a block decoder. Memory partitioning
can be very advantageous: firstly, power and delay can be drastically reduced due
to diminished capacitance (one could reduce also VDD for a further quadratic power
reduction but with constant delay) [26]; secondly, CPUs often accesses data in a
page manner, hence each page can be easily associated to each block [1]. The main
disadvantage is the area overhead introduced by block decoder, additional column
peripherals, and a more complex control logic. Clearly this technique is convenient
only with large memories, otherwise any added circuitry would increase static power
consumption with a negligible dynamic power minimization. I/O buffers are often
needed to drive large I/O data busses connected to the rest of the system. Timing
block is responsible for correct operation during access, precharge, read and write
operations. Modern-day stand-alone SRAMs are often asynchronous and self-timed.
Asynchronous SRAMs leverage the burden of a clock distribution system, reducing
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routing complexity and power related to clock switching capacitance. Moreover,
deep sub-micron nodes lead to great variability in delays; taking into account all
possible variations would lead to a very relaxed clock frequency to ensure correct
operations in all process corners. A self-timed SRAM, and, in particular, one
employing replica dummy loop technique [27], shows more robustness against these
variations. In embedded SRAMs, where the memory has to be used as a cache,
synchronous pipelined arrays are needed to match CPUs cycle time at the cost of
increased latency [1].

The analysis now proceeds with column peripheral circuits, needed to ensure a
correct operation and test the produced memory array.

2.4.1 Precharge Circuit

As already discussed, these circuits are needed to precharge bit-lines to a known
high voltage. Precharge circuits can be categorized depending on transistors (PMOS
or NMOS) and dynamic or static behaviour (Figure 2.18). NMOS transistors
precharge bit-lines to VDD − Vth,n; this makes them unsuitable for deep sub-micron
nodes since threshold voltage variability can make bit-lines precharged to different
voltage levels. On the contrary, PMOS transistors precharge bit-lines to full VDD.
Dynamic circuits, controlled by a precharghe signal (φ or φ in Figure 2.18), permits
to divide timing phases into precharging and read/write operation. On the other
hand, static circuits constantly try to charge bit-lines even if the cell is being
read or written; this imposes a constraint on how much strong (i.e. low resistive)
precharge transistors can be, because they have a contention with pull-down cell
transistors during a read operation [5]. Instead, stronger precharge transistors

Figure 2.18: Possible precharge circuits: NMOS dynamic (a), NMOS static (b),
PMOS dynamic (c) and PMOS static (d) (adapted from [5])
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provide a higher current and precharge speed, essential especially after a write
operation where bit-lines are completely discharged. Precharge recovery time (i.e.
the time needed to fully charge bit-lines after being discharged) greatly influences
operating frequency. Equalizing pass-transistors connected among bit-lines are
often added to ensure equal precharge voltages before a read operation is started [1].
For this project, a PMOS static precharge circuit has been chosen for its simplicity,
since there is no need for additional control signals.

2.4.2 Sense Amplifier
Sensing is maybe the most critical operation in a memory system. When big

arrays are involved, the higher bit-lines capacitance would make a large-signal
sensing too slow and power hungry [5]. In order to speed-up sensing and not to
completely discharge bit-lines, the small differential voltage is amplified to full-
swing output levels. Sense amplifier’s design constraints can include: delay, gain,
power consumption, minimum sensed differential voltage, minimum common-mode
rejection ratio, voltage/current offsets and layout area [1][8][9]. Figure 2.19 shows
the basic sense amplifier used in integrated circuits, i.e. a current mirror load with
differential pair amplifier. When a sufficient differential voltage is present at its
inputs, Sense Amplifier Enable signal (SAE) is raised in order to properly bias the
amplifier and the amplifier senses which voltage signal is decreasing; the output
inverter is needed to bring internal differential pair output signal, with limited
output swing, to full-swing.

Figure 2.19: Current mirror load differential sense amplifier (adapted from [5])
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The gain of this amplifier is:

A = −gm,n (ro,n ë ro,p) (2.15)

where gm,n is the NMOS transconductance and ro,n and ro,p are the NMOS and
PMOS equivalent output resistances, respectively. Due to gain-bandwidth product
limitations, the gain of the amplifier is not set to a very high value (usually around
ten), since it is more important to have a quick estimation. To increase the gain one
could increase bias current (paying attention to not reducing output resistances or
increasing power consumption too much) or widen differential pair transistors. To
further increase gain without renouncing to speed and to have better output swing,
two-stage differential sense amplifier can be used (Figure 2.20). The clear drawback
is an increased area and power consumption, while the sensitivity (minimum
differential input voltage, typically around 0.5 V) of the amplifier is enhanced [7][8].
SAE signal is used to bias sense amplifier only when needed, so reducing static
power consumption.

Figure 2.20: Two-stage differential sense amplifier (adapted from [5])
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A totally different approach is used in latched sense amplifiers (Figure 2.21).
Since a latch, when in metastable state (i.e. inputs with equal voltages), presents a
very high gain, it can be exploited to perform differential sensing with very small
voltage differences [28][7]. When one of the two output starts going low, the latch
feedback mechanism enhances discharge rate and speeds-up sensing. When SAE is
low, precharged bit-lines are connected to latch inputs. When a read operation is
started and a sufficient differential voltage is created, SAE signal is asserted high;
this causes two effects: NMOS pull down transistor is on and lets a current flow
to ground, secondly, PMOS pass-transistors isolates bit-lines from sense amplifier
outputs. The second effect is crucial, because, when the latch performs sensing, one
of the two outputs is completely discharged; without isolation PMOS transistors,
also the high-capacitive bit-lines would be discharged wasting an incredible amount
of power and time for each read operation. The situation is diametrically opposite
in DRAMs, where bit-lines needs to be discharged to ensure data refresh after a
disruptive read operation [8]. In order to increase speed, W/L ratios and CGS,n/CGS,p
of latch transistors should be maximized and minimized, respectively. For the
NMOS pull-down transistor, a higher W/L ratio lowers its drain voltage before and
after sensing, which again reduces delays but highers the amount of current, that in
turns leads to increased power consumption [9][7]. This topology has been chosen
for this project because of its superior speed, reduced power consumption, and
its simpler design. In order to have memory of previous sensing and drive output
capacitance, a Set-Reset (SR) output latch is added, as shown in Figure 2.22 [7].

Figure 2.21: Latched differential sense amplifier (adapted from [28])
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Figure 2.22: Adding a latch to sense amplifier outputs (adapted from [7])

2.4.3 Write Driver
The write driver circuit has the task to rapidly discharge one of the bit-lines

during a write operation and is normally activated by a write enable signal (WE).
Figure 2.23 shows possible implementations of this circuit [1]. Figure 2.23a shows
a circuit where bit-lines are actively driven to VDD or ground thanks to inverters
(1 and 2); the data are transferred to bit-lines through transmission gates (TG1
and TG2), activated by WE signals. The use of transmission gates is mandatory
since here both ’1’ and ’0’ have to be driven correctly. In Figure 2.23b WE signal
controls upper pass-transistors (Q3 and Q4); when WE is low, the write driver
outputs are in high-impedance, thus disconnected from bit-lines. When WE signal
is high, upper transistors are on and one of the two bit-lines is grounded by a lower
pass-transistor (Q1 or Q2), enabled by input datum through inverters 1 and 2. The
circuit in Figure 2.23c exploits two AND gates, enabled by WE signal and input
datum through inverters (1 and 2), to turn on one of the two pass-transistors (Q1
and Q2) and ground one bit-line. Both circuits (b) and (c) do not need transmission
gates, since only one bit-line is set to ground during a write operation, while the
other remains at its precharged value. The circuit in Figure 2.23b has been chosen
for the development of this project due to its lower transistors count.

Figure 2.23: Possible write driver circuits (reprinted from [1])
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Chapter 3

SRAM Circuits Design

The thesis now focuses on SRAM cell and peripherals design. Even though more
attention is drawn to a careful cell design since the project proposes designing a
compiler with a customizable bit-cell, peripheral circuits are nevertheless essential to
properly test the produced array schematic; hence, these circuits are also analyzed
and designed. In the first sections, an overview of the used Electronic Design
Automation (EDA) tools and programming languages is provided.

3.1 Software Framework
Many EDA tools are available in the industry, and each one is specialized for

some type or part of the design flow. Cadence Virtuoso is widely considered the
leader in full custom IC digital and analogue design. Calibre, by Mentor Graphics,
is generally used for physical verification (e.g. DRC, LVS, LPE and others). Other
tools are more suited for digital synthesis (such as Synopsys) or radio-frequency
design (such as PatchWave from Keysight). In this project, Cadence Virtuoso suite
and Calibre are used for schematic entry and simulation, layout and verification,
and post-layout simulation. SKILL and OCEAN, two Cadence proprietary scripting
languages, are used to design the memory compiler and perform simulations of the
produced test-bench.

3.1.1 Cadence Virtuoso and Calibre
All Cadence design files are arranged as libraries, cells and views. The library

is the highest hierarchy level, with each library usually including many designs
(arranged by the user). A cell is a design "tree" containing several views: schematic,
symbol, layout and calibre view (a schematic view that contains all parasitic
elements).
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For a schematic generation, Virtuoso Schematic Editor XL is used (Figure 3.1).
The schematic is the first stage in development with full-custom or semi-custom IC
design flows right after the choice of circuit topology and its required components.
The schematic is a device-level design that shows how the components are related
and their properties, such as capacitance or resistance of passive components, and
width/length of transistors. The tool lets the user set variables as components
properties so that parametric analysis can be performed to find the parameters’
optimal set. In the schematic, the user defines input/output pins, ideal connections
among component, and nets. Once the schematic of the cell is designed, a symbol
representing it can be created so that the cell can be instantiated hierarchically in
other cells or test-benches.

Figure 3.1: Virtuoso Schematic Editor XL with an inverter design example

A further critical aspect of IC design flow is the circuits’ simulation to guarantee
that they operate correctly and have optimized performance. To validate the
circuits designed in this project, Virtuoso ADE (Analog Design Environment)
XL tool is used (Figure 3.2). It can rely on two different simulators: Spectre,
Cadence equivalent of SPICE, and Ultrasim, mixed-signal SPICE based transistor-
level simulator (it can detect digital and analogue portions of the system and
apply different models to speed-up simulation time). In this project, only Spectre
simulator is used. It can perform various analysis (transient, AC, DC, noise,
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Periodic Steady-State and others), depending on designer needs. ADE XL lets
the user decide types of simulation, perform parametric analysis by sweeping
parameters, set specifications (e.g. delay, energy and stability) to be met, run
multiple simulations of different test-benches with the same parameters, and run
corner simulations for the process, voltage and temperature (PVT) variations.

Figure 3.2: Virtuoso ADE XL with multiple corner simulation example

Another tool used in this project is Virtuoso Layout XL (Figure 3.3). It allows
the user to design physically the circuit schematic, instantiating transistors given by
PDKs, drawing geometries of different layout layers (mainly implantation, n-well,
oxide, polysilicon, contacts, and metal), creating pins on different layers (useful for
automatic routing). With the same tool, also parametrized cells (PCells) can be
designed. A PCell allows the user to stretch geometries in all the wanted layers
according to specific parameters [29]. Since this work aims to have customizable
SRAM bit-cells, PCell is the perfect tool to implement them.

During and after the layout design, it is essential to check if it reflects the
connections and the properties of the corresponding schematic and if it respects
all the physical rules, such as minimum width, minimum spacing and minimum
density, that make the design manufacturable. Calibre (Figure 3.4) is used to
perform layout vs schematic checking (LVS) and design rules checking (DRC). After
the layout design is completed and checked, Calibre can also perform parasitic
extraction (PEX) to estimate parasitic resistances and capacitances of the used
layers, thanks to which a much more accurate post-layout simulation can be run.
This accuracy is particularly needed for large memory arrays, in which long bit-lines
and word-lines have a significant impact on delay and power consumption. DRC,
LVS and PEX can be also performed in a batch mode (so without opening a GUI),
particularly useful for an automated memory compiler.
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Figure 3.3: Virtuoso Layout XL with a NAND design example

Figure 3.4: Calibre successful LVS screenshot
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3.2 SRAM Cell Design
Even though this work aims to design a compiler with a customizable cell,

it is crucial to understand how transistors’ sizing for this particular technology
node influences stability, performances, and energy consumption to ensure a good
starting point for the user.

DC simulations employing the circuits described in Section 2.2.3 are used
to evaluate stability. Figure 3.5 shows the test-bench for evaluating SNM while
a logic ’0’ is being written in the cell (i.e. WSNM); this is proved by bit-lines
voltage generators (BL = 0 V and BL = VDD = 1.8 V). A write ’1’ SNM could be
evaluated by merely exchanging BL and BL voltage generators, but this is not
needed since the cell is symmetrical. Hold and read SNM (HSNM and RSNM)
are evaluated by leaving bit-lines floating with WL = 0 V and 1.8 V, respectively.
HSNM and WSNM test-bench schematics are not reported for conciseness since
all those circuits are similar. The common aspect of all those circuits is the imple-
mentation of Equations (2.9) and (2.12): by sweeping the DC source at the node
”u” (lower-left corner in Figure 3.5) from −

√
2VDD to +

√
2VDD, latch inverters

voltage transfer curves (V1 and V2) in the rotated u − v coordinates system are
obtained. By taking the difference of these curves and evaluating its global maxima
and minima, SNMs can be easily measured.

Figure 3.5: Test-bench schematic for evaluating cell WSNM
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To measure read/write delays and energy consumption, a transient simulation is
needed. Figure 3.6 shows the test-bench schematic for four consecutive read/write
cycles (write ’1’, read, write ’0’ and read). In the upper-left part of the schematic,
two ideal switches, controlled by the Read signal, are used. When Read=’0’, the
switches are closed, and bit-line voltage generators write the cell by discharging one
of the bit-lines; after a reasonable amount of time, i.e. after the cell is written, the
discharged bit-line is charged to VDD, emulating precharge circuit action. When
Read=’1’, the switches are open, and the bit-lines are floating: one bit-line is
discharged depending on the previously written datum. During both read and
write cycles, word-line is accordingly asserted. Read/write delays are measured
considering 50% voltage variations of word-line, bit-lines (for read) and cell internal
nodes Q/Q (for write). A 0 V test dc voltage generator is inserted between the
cell and ground to measure the cell’s absorbed current directly. From the current
measurement and knowing initial and final time instants of read/write cycles, the
absorbed energy is evaluated as:

E =
Ú tf

ti
VDDI(t) dt (3.1)

The focus is on energy consumption rather than power because for battery-powered
systems is important to limit energy drawn to extend battery life. Peak power is
considered for heat removal issues or its impact on power delivery networks [30].

Figure 3.6: Test-bench schematic for evaluating cell delays and consumption
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Figure 3.7 shows an example of transient simulation waveforms. The analysis
focuses on sweeping CR and PR to experience how those parameters influence
stability, performance and energy consumption. For example, in Figure 3.7, with
a constant CR, two very different PRs are chosen (i.e. 0.5 and 4) to highlight
their influence on write-ability: when PR is high, the cell becomes unwritable.
As already discussed, cell read stability and write-ability are conflicting design
requirements and this is proved by simulations in Section 3.2.1.

Figure 3.7: Example of transient simulation waveforms of circuit in Figure 3.6
for constant CR and two values of PR (notice how for PR=4 the write-ability is
compromised)
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3.2.1 Stability, Read/Write Delay and Energy Constraints
Since modern-day technological issues, already discussed before, stability is a

significant concern with deep-submicron technologies. Hence SNM is the most
critical parameter to find an optimal design. Other parameters, such as cell area,
read delay/energy and write delay/energy, are considered in second place. Many
different CRs and PRs have been explored, with minimum length (180 nm) for
all the cell transistors. For clarity and conciseness, only simulations results for a
chosen constant CR/variable PR and a constant PR/variable CR are reported.

Constant CR and swept PR

For this analysis, Waccess = 0.84 µm and Wdriver = 1.68 µm (i.e. CR = 2) have
been chosen and PR has been swept from 0.5 to 4. Since PR significantly affects
write-ability, WSNM is firstly analyzed (Figure 3.8). As can be noted, as PR
increases, WSNM dramatically decreases. When PR reaches 3.35, the two inverters
transfer curves touch in other points (evidenced in Figure 3.8 with a thick red line);
this makes the cell unwritable since the circuit acts as a bistable and the WSNM is
zero. The cell exhibits a maximum WSNM for approximately PR = 0.9.

Figure 3.8: WSNM as a function of PR for constant CR (right) and corresponding
butterfly curves (left)

For what concerns HSNM and RSNM, they are shown in Figure 3.9. As expected,
RSNM is always lower than HSNM, since the internal nodes degraded zero voltage
levels during a read operation. On the contrary, as PR increases, both HSNM
and RSNM increases. This is explained by the fact that increasing PR means to
have pull-up transistors beta factors matched with pull-down transistors’ ones;
this makes the inverters transfer curves centred around VDD/2 and increases SNMs.
Therefore read stability and write-ability have opposite trends with increasing PR,
as theoretically described in Section 2.2.3.
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Figure 3.9: HSNM (red line) and RSNM (blue line) as a function of PR for
constant CR

Figure 3.10 shows read/write delays and absorbed energies as functions of PR.
As can be noticed, both read delay and energy are not affected by PR variations;
this is because, during a read operation, pull-up transistors do not play any role,
and only driver transistors will discharge one bit-line. On the other hand, write
delay and energy are significantly affected by pull-up transistors’ width.

(a) Read delay (red line) and write delay (yel-
low line) as a function of PR

(b) Read energy (green line) and write energy
(cyan line) as a function of PR

Figure 3.10: Read/write delay and energy as functions of PR for constant CR
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As PR increases, write delay and energy increase exponentially up to the point where
the cell becomes unwritable (i.e. for PR = 3.35, where the curves show a vertical
asymptote). Write delay increases because, as the pull-up transistor becomes
stronger than the access-transistor, the datum node is pulled down from VDD by a
lower voltage difference, so increasing switching time. Due to this increase of write
delay, switching currents must be maintained for a much longer time. Moreover,
since inverters input fall-time increases, also short-circuit power increases [31][30].
These two factors contribute to a strong increase in write energies.

Having made all the aforementioned considerations, it is convenient to have
PR as low as possible to limit WSNM degradation, area and write delay/energy
without degrading HSNM and especially RSNM too much.

Constant PR and swept CR

For this analysis, Waccess = 0.84 µm and Wpull−up = 0.42 µm (i.e. PR = 0.5)
have been chosen and CR has been swept from approximately 0.2 to 4. Since
CR significantly affects read stability, RSNM is firstly analyzed (Figure 3.11).
As can be noted, as CR decreases, RSNM dramatically decreases. When CR
reaches approximately 0.95, the two inverters transfer curves touch in other points
(evidenced in Figure 3.11 with a thick red line); this makes the cell unstable
since the butterfly curve shows more metastable points. Any measured RSNM
for CR < 0.95 has not to be taken into account since the simulator is measuring
squares inside small lobes between unstable points, so read stability has to be
considered compromised.

Figure 3.11: RSNM as a function of CR for constant PR (right) and corresponding
butterfly curves (left); red thick curve represents an unstable cell while the green
thick curve (CR = 4) the most stable during read
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For what concerns HSNM and WSNM, they are shown in Figure 3.12a. On the
contrary, as CR increases, both HSNM and WSNM decrease. A first straightforward
explanation is that increasing CR means to have pull-up transistors much weaker
than pull-down transistors; this makes the inverters transfer curves less centred
around VDD/2 and decreases SNMs. For WSNM there is another factor contributing
its decrease: an increasing CR makes the zero level voltage degradation less effective;
while this is beneficial for RSNM, during a write operation the butterfly curve
tends to be more "closed", thus further reducing WSNM (Figure 3.12b).

(a) HSNM (red line) and WSNM (blue line) (b) Butterfly diagrams during write

Figure 3.12: HSNM and WSNM as a function of CR for constant PR

Figure 3.13: Read delay (red line) and write delay (yellow line) as functions of
CR for constant PR
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Figure 3.13 shows read/write delays as functions of CR. As expected, read delays
shows a hyperbolic decrease with increasing CR. In fact, the bit-line discharge time
constant, assuming a constant read current and a bit-line voltage drop ∆V from
its precharged value, can be approximated as [1]:

τBL ≈ CBL
∆V
Iread

≈ CBL
∆V

µnCox

2
Wdriver

Ldriver
(VDD − Vth,n)2 (3.2)

Hence an increased CR (i.e. increased Wdriver) makes the discharge time constant
smaller. On the contrary, write delay shows a positive linear relation with CR.
Recalling that at the beginning of a write operation, the driver transistor is off,
its drain voltage is charged to VDD, and it must be discharged through access
transistor before the switching can occur (see Section 2.2.2), the driver transistor
act as a capacitive load for the bit-line driver. Hence any increase in its width will
produce a linear increase of drain capacitance, which in turn makes propagation
delay to rise linearly (tp = ln(2)RC).

Figure 3.14 shows the increasing trend of read/write energies with increasing
CR. Read energy increases mainly due to an increase of read current (sunk by
driver transistor). Write energy increment is due to dynamic power increase during
switching because of the increased internal node capacitance and switching current.

Figure 3.14: Read energy (blue line) and write energy (purple line) as functions
of CR

From the simulations above, CR should be maximized mainly due to RSNM
concerns, without degrading HSNM/WSNM and increasing write delay/energy and
read energy too much.
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After many simulations in which Wdriver, Waccess and Wpull−up have been swept,
an optimal solution has been found. It is the product of a design trade-off among
read stability, write-ability, cell area and energy consumption. The designed cell
transistors’ widths are summarized in Table 3.1, while its measured key parameters
in Table 3.2. Transistors’ length has been kept to its minimum (180 nm) to ensure
best performances, while CR ≈ 1.45 and PR ≈ 0.95 guaranteed a good compromise
of the above simulated parameters. One thing to keep in mind is that these
simulations have been carried out for a single cell, where during a read operation,
bit-lines are completely discharged; this usually does not happen with multiple rows,
where the large bit-line capacitance prevent this from happening. Instead, sense
amplifiers are used to sense small differential voltage drop among bit-lines: this, of
course, influences single bit-cell read delay and energy, which are overestimated in
this analysis. Nevertheless, their trends and relationships with CR and PR remain
the same. On the contrary, during a write operation, bit-lines are completely
discharged; thus, its delay/energy estimation is to be considered accurate.

Transistor parameter Driver Access Pull-up
Length 180 nm
Width 0.64 µm 0.44 µm 0.42 µm

Table 3.1: Transistors parameters of the designed cell

Measured parameter Hold Read Write
SNM 631 mV 294 mV 633 mV
Delay - 52 ps 75 ps

Peak power - 359 µW 197 µW
Absorbed energy - 27 fJ 27 fJ

Table 3.2: Measured parameters of the designed cell
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3.2.2 Cell Layout Design
SRAM cell layout can be very challenging since the very first aim is to design the

smallest cell possible while still guaranteeing manufacturability. Virtuoso Layout
XL is used with TSMC 180 nm PDK. The aim is to produce a customizable cell
layout so that the user can produce a cell with a wanted area, stability, performance
and power consumption. Cadence Virtuoso PCell allows to construct layout with
customizable geometries, specified by user input [29][32]. Figure 3.15 shows a
screenshot of the designed PCell, with cell transistors’ widths specified by the user.
Once the PCell is designed through its GUI, its SKILL code can be dumped; in this
way, the design is portable and can be imported by SKILL commands. The thin cell
layout, already discussed in Section 2.3.1, really simplified the PCell creation: since
all transistors have the same orientation, a change in transistor width produces
only a change in cell width, while the height remains constant; other layers and
instances, such as metal, polysilicon and vias, are stretched or moved according to
the user-specified parameters.

Figure 3.15: Screenshot of SRAM bit PCell instantiation with user-defined
transistors’ widths in Virtuoso Layout XL
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The designed cell of Table 3.1 is shown in Figure 3.16. Metal 1 and polysilicon
layers are used to connect pull-up PMOS transistors with NMOS driver ones.
Driver transistors share drain contacts with access pass-transistor to minimize cell
area. Access transistors’ sources are connected through M1-M2 vias to bit-lines,
vertically routed by metal 2 layer. Word-line is routed by horizontal metal 3 layer
and is connected to access transistors through Poly-M1 via and M1-M3 stacked
vias. VDD line is routed vertically by metal 2 and is connected to pull-up transistors
trough M1-M2 vias, and to n-well through p-tap on top of the cell. Ground line is
routed horizontally by metal 3 and is connected to substrate by n-taps placed on
cell sides. N-taps are connected to pull-down transistors horizontally by metal 1.
Cell parameters can be summarized as:

• Width: 5.82 µm

• Height: 1.48 µm

• Area: 8.61 µm2

• Bit density: 116.14 kbit/cm2

Optimal read stability, write-ability and performances counterbalance area penalty,
noticing that high-density cell in 180 nm technology has an area of 7.38 µm2 [33].
The user can nevertheless lower transistors’ widths to have a more compact and
less power-hungry cell, at the expense of stability and performance. The minimum
width available by this technology is 220 nm. During the layout phase, however, it
has been noticed that transistors change aspect ratios up to 420 nm to maintain
diffusion area constant, constrained by design rules. Hence to have a customizable
cell with a constant height, the minimum transistor width is set to 420 nm.

Figure 3.16: 6T-SRAM cell layout with transistors’ widths defined in Table 3.1
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Bit-cell width and height is measured from vias and transistor contacts centre
lines because, when an array is built, each cell can share vias, and transistors
are abutted; this drastically increases memory density. An example of an array
made of 4 rows and 2 columns is shown in Figure 3.17: adjacent cells are vertically
and horizontally flipped to let transistors share their source contacts; moreover,
p-taps can be repeated every 4 rows, so that pull-up transistors nwell is also shared
vertically among the column cells.

Figure 3.17: 4x2 SRAM array layout; notice that access transistors (red ellipse
1), load transistors (red ellipse 2) and, access transistors (red ellipse 3) share source
contacts, and load transistors shares vertical nwell.

The description proceeds with the design of precharge circuit, sense amplifier
and write driver. Peripheral circuits performances greatly rely on array dimensions.
A lumped capacitance has been added to the bit-lines to speed up simulations
and optimize these circuits for a given array dimension. For 180 nm technology,
bit-line capacitance is approximately 0.5 fF/bit [22]. Hence, to model a relatively
large array of about 1000 rows, a bit-line capacitance of 500 fF has been considered
during simulations for an optimal design.
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3.3 Precharge Circuit Design
Figure 3.18 shows the precharge circuit schematic. As already discussed in

Section 2.4.1, it consists of two PMOS transistors with their gates tied to ground;
this makes it a static circuit, which constantly tries to pull up bit-lines to VDD.
This imposes a constraint on how much precharge transistors can be strong (i.e. low
resistive): the stronger they are, bit-lines will be discharged to a higher minimum
voltage level and they will be charged again rapidly to VDD. In the opposite case
(i.e. weak precharge transistors), the discharge minimum voltage level will be
higher, while they will be charged slowly to VDD. If the minimum bit-line voltage
level is too high, sense amplifier could be not able to sense the differential voltage at
its input. Instead, if the precharge rise time is too slow, more time is needed before
another read/write operation can be started, thus limiting operating frequency.
Moreover, during a read operation, cell internal node voltage rise will depend on
how strong precharge transistors are; so it is important to check if this level can
corrupt information making the cell to switch. Figure 3.19 shows internal node
voltage, minimum bit-line voltage and bit-line rise time as functions of precharge
transistors width Wprch for two bit-line capacitance values. Cell internal node
voltage does not depend on bit-line capacitance, since it is a DC voltage. It mainly
depends on precharge, access and driver transistor widths. As expected, it increases
as Wprch increases, but it never reaches Vth,n (approximately 0.4 V). So any Wprch

value does not corrupt cell datum. On the other hand, asWprch increases, minimum
bit-line voltage increases and its rise time decreases. Wprch = 1 µm has been chosen
for a good trade-off between these two. Transistors length has been set to its
minimum (180 nm) for high speed.

Figure 3.18: Precharge circuit schematic
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Figure 3.19: Internal node voltage, minimum bit-line voltage and bit-line rise
time as functions of Wprch for two bit-line capacitance values: 500 fF (red) and
1 pF (yellow)

3.4 Sense Amplifier Design
Sense amplifier is one of the most critical peripheral circuits. Minimum bit-line

voltage level greatly influences sense amplifier behaviour. Even if latched sense
amplifier can reach very low sensitivities in the order of tens of mV, mismatches
can considerably increase this parameter [34]. On the other hand, if bit-lines are
discharged to a very low voltage level, sensing would be faster and more reliable
but at the expense of an increased read energy due to a higher voltage swing. As
discussed before, Wprch determines bit-line voltage swing. For a bit-line capacitance
of 500 fF and a Wprch of 1 µm, bit-line minimum voltage is about 1.4 V, a good
trade-off considering sensitivity variation and read energy. Figure 3.20 shows
latched sense amplifier schematic. As already discussed in Section 2.4.2, latch
transistors’ widths and SAE transistor width determines sensing speed. Isolation
transistors can be sized with lower widths, since their only task is to precharge
latch outputs before a read operation is started, and to isolate them from bit-lines
during sensing. An SR ouptut latch is implemented with two cross-coupled NAND
gates: they must be sized according to latch output capacitances. The optimal
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sizing of all these transistors, for a bit-line capacitance of 500 fF, is reported in
Table 3.3. Transistors’ length has been set to its minimum (180 nm) for maximum
speed.

Figure 3.20: Sense amplifier circuit schematic

Wlatch,n Wlatch,p Wiso WSAE Wnand,n Wnand,p

5 µm 10 µm 0.5 µm 10 µm 6 µm 12 µm

Table 3.3: Sense amplifier transistors’ widths

An example of transient waveforms is shown in Figure 3.21: when a sufficient
differential voltage is produced, SAE pulse is issued and sense amplifier output
switches accordingly. The simulation has been run for different bit-line capacitances
(up to 2 pF) and the circuit still functions correctly. Figure 3.22 shows sense delays
(i.e. 50% delay between SAE signal and sense amplifier output) as functions of
bit-line capacitance. As expected, the delay needed to sense a logic ’0’ is always
greater than logic ’1’: this is because NAND gates have been used for the output
latch, which have a slower high-to-low transition due to series of NMOS transistors.
The relationship of the delay with bit-line capacitance is not linear as usually
happens because isolation transistors isolate sense amplifier input/output from
bit-line, but a higher capacitance produces lower voltage swing reducing speed.
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Figure 3.21: Sense amplifier transient simulation example

Figure 3.22: Sense delays (red line for logic ’1’, yellow line for logic ’0’) as
functions of bit-line capacitance
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3.5 Write Driver Design
Write driver circuit schematic is shown in Figure 3.23. Write speed depends

on the capability of this circuit to pull-down bit-lines rapidly. High and low pass
transistors must be stronger than precharge transistors, which constantly tries to
pull up bit-lines to VDD. Lower pass transistors could be sized with a higher width
than higher pass transistors for optimal delay. Inverters must be sized accordingly
to drive pass transistors gates: inverter 2 should be stronger than inverter 1 for
optimal delay distribution. Table 3.4 shows optimal write driver transistors’ widths
for a bit-line capacitance of 500 fF.

Figure 3.23: Write driver circuit schematic

Wpass,l Wpass,h Winv1,n Winv1,p Winv2,n Winv2,p

10 µm 6 µm 4 µm 8 µm 6 µm 12 µm

Table 3.4: Write driver transistors’ widths

An example of transient simulation is shown in Figure 3.24. Word-line, write-
enable and input datum pulses are issued for a sufficient amount of time to guarantee
cell writing. Increasing bit-line capacitance causes an increase of bit-line rise time
after a write operation, where bit-lines are completely discharged. As already
underline, this influences operating frequency. Write delay (i.e. 50% delay between
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input datum and rising internal node) as function of bit-line capacitance is shown
in Figure 3.25: its linear dependence is expected since during writing bit-lines are
directly driven by driver pass transistors. Write ’1’ delay is always higher than ’0’
since both the inverters are triggered by input low-to-high transition.

Figure 3.24: Write driver transient simulation example

Figure 3.25: Write delays (red line for logic ’0’, yellow line for logic ’1’) as
functions of bit-line capacitance
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Compiler Design

The exposition now proceeds with the description of the compiler design. Firstly,
SKILL scripting language is briefly described in its essential functions and purposes.
Then, the compiler structure is depicted, and its primary functions are thoroughly
explained. Finally, an example of compiler use is showed and discussed.

4.1 SKILL Scripting Language
The SKILL scripting language was developed by Cadence and is based on the

LISP scripting language. SKILL has some features and a syntax borrowed from C
language, but it remains a scripting, interpreted, and high-level language. SKILL
lets quickly and easily personalize existing CAD software while also assisting in
developing new functions. SKILL includes Application Programming Interface
(API) functions for having access to each Cadence tool [35]. SKILL scripts are of
the ".il" type and are loaded and executed in the Command Interpreter Window
(CIW), which is the Graphical User Interface (GUI) of Cadence software. CIW
is the actual GUI of the SKILL interpreter. Cadence can also be executed in
batch mode, and SKILL scripts can be run from the terminal. SKILL makes use
extensively of two basic data types: atoms and lists. An atom is a pure object that
can represent a number, a string or a boolean. A list is an ordered collection of
data objects: each element can be of any data type, including other lists. Lists are
commonly used to represent x− y coordinates of objects, so they are essential in
layout automation. Manipulating and accessing lists’ elements is the main activity
in SKILL scripting. SKILL variables are dynamic, which means that its type (e.g.
integer, float or string) is defined by the assigned value and has not to be declared.
SKILL control structures are very similar to C ones: "if", "while", and "for" are the
most basic with a C-like syntax, while "foreach" lets the user execute an expression
for each element of a list.
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Procedures can be also declared, specifying its arguments and possible local variables.
Table 4.1 shows most peculiar SKILL basic functions and their description.

SKILL function Description

list( x y ...) or ’( x y ...)
Creates a list with x, y, ... elements. list( x y ...)
function evaluates its arguments, while ’( x y ...)
does not.

car( list( 1 2 3 ) )
=> 1

Accesses the first element of a list1.

cdr( list( 1 2 3 ) )
=> (2 3)

Accesses all the elements of a list except the first1.

cadr( list( 1 2 3 ) )
=> 2

Accesses second element of a list1; equivalent to
car( cdr( list( 1 2 3 ) ) ).

foreach( var_x list_y
expression_1
expression_2
... )

Assigns var_x to an element of list_y and expres-
sion_1, expression_2, ... are evaluated; this is
repeated for each element of list_y.

procedure( func_name(
arg_1 arg_2 ... )
let( x (y val_i) ... )
expression_1
expression_2
... )

Defines func_name procedure with arg_1, arg_2,
... arguments. The let statement defines x, y, ...
local variables, with y initialized with val_i as
initial value. The procedure body is made of ex-
pression_1, expression_2, ... which are evaluated
every function call.

Table 4.1: SKILL most peculiar basic functions

Most of the Cadence tools adopt the Design Framework II (DFII) database: they
interpret every schematic or layout instance (e.g. cell views, pins, nets, lines, layout
rectangles) as software objects, which can be created, accessed and modified by
database (db) functions [36]. Each db function returns a database object identifier
(or ID): using the access operator "~>", each ID property (e.g. library name, cell
name, terminals, layout layer) can be accessed and modified. Table 4.2 shows most
used SKILL db functions in layout and schematic generation. The Open Command
Environment for Analysis XL (OCEAN XL) allows the user to configure, simulate,
and interpret circuit data. OCEAN XL is a text-based scripting language that
can be launched from a UNIX shell or the CIW. It is an extension of SKILL for
running simulation within Virtuoso ADE XL, using Spectre or other simulators
[37]. OCEAN XL most used commands are reported in Table 4.3.

1The symbol "=>" is used to indicate the returned value of the function call.
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SKILL function Description
dbOpenCellViewByType() Opens a cell view of different view types (e.g.

schematic, symbol or layout) in read, write or
append mode.

dbCreateNet() Creates a net, needed for a pin.
dbCreatePin() Creates a pin corresponding to a specified net.
dbCreateTerm() Creates a terminal for pins, specifying whether it

is input, output or input/output.
dbCreateInst() Creates an instance in the cell view; useful for

instantiating lower hierarchy cell views.
dbCreateRect() Draws a rectangle in the wanted layout layer.
dbFlattenInst() Flattens instance down to wanted hierarchy levels;

useful after Pcell instantiation for preserving nets’
names (used later during LVS).

dbSave() Saves a cell view.
schCheck() Checks a schematic cell view; needed to perform

simulations with ADE XL.

Table 4.2: SKILL most used db functions

OCEAN XL function Description
ocnxlTargetCellView() Specifies test-bench cell view name for simulation.
ocnxlBeginTest() Specify ADE XL test name.
analysis() Specifies analysis type (e.g. dc or transient).
envOption(’analysisOrder
list( "dc" "tran" ... )
’switchViewList list( "spec-
tre" ... "calibre" ... )

Specifies analysis order and type of views to
be used for simulation ("calibre" view is the
schematic view with extracted parasitics from
layout).

converge() Specifies nets dc or initial condition voltages; use-
ful for initializing memory content.

ocnxOutputSignal() Chooses which signal to be saved or plotted.
ocnxlOutputExpr() Sets output expression, used to make calculations

(e.g. delay or energy).
ocnxlSweepVar() Sets global variable that can be fixed or swept.
temp() Sets temperature.
ocnxlRun() Runs simulation(s).

Table 4.3: OCEAN XL most used functions

52



Compiler Design

4.2 Compiler Overview
Before describing compiler structure in details, it is helpful to have an overview

of how to use it. Before using the compiler, the user must:

1. Create a working directory in which TSMC 180 nm technology must be loaded,
and Cadence Virtuoso must be opened;

2. Create a library with "tsmc18" technology attached;

3. Unzip "COMPILER" directory in the working directory;

4. Check DRC_runset.bak file: in its first line, "*drcRulesFile:" must be followed
by the correct DRC rule file path;

5. Check PEX_runset.bak file: in its first line, "*pexRulesFile:" must be followed
by the correct PEX rule file path;

6. Check calibreview.setup.bak file: in its fifth line, "cellmap_file :" must be
followed by the correct calview.cellmap file path;

7. Check calibre_drc_pex_script.sh.bak file: the variable "layer_map_path" must
be assigned to the correct "tsmc18.layermap" file path.

After all the above procedures, the SRAM compiler main script must be loaded in
the Virtuoso CIW by typing the following command:

load ( " . /COMPILER/sram_compiler . i l " )

Next, the SRAM compiler main function can be called by following this syntax:
sram_compiler_proc (LIB_NAME CELL_NAME TB_NAME ROWS COLS

W_ACCESS W_DRIVER W_LOAD CALIBREVIEW_YES)

LIB_NAME must be a string containing the working library name, to which
"tsmc18" technology has been attached. CELL_NAME and TB_NAME must
be strings containing memory bit cell view name and test-bench cell view name,
respectively. ROWS and COLS must be two integers representing the number
of rows and columns of the array, respectively. W_ACCESS, W_DRIVER, and
W_LOAD must be floating-point numbers, representing access, driver, and load
transistors’ widths, respectively. Finally, if CALIBRE_VIEW_YES is a string
containing the word "YES", the simulator will use the more accurate extracted
calibre view; otherwise, the schematic view will be used, speeding up simulations
at the expense of accuracy. An example of compiler use is the following:

sram_compiler_proc ( "SRAM_LIB" " 6T_CELL" "TB_ARRAY_1024_256"
1024 256 0 .44 0 .64 0 .42 "YES" )

Table 4.4 summarizes compiler input arguments with their data type and constraints.
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Input argument Type Description

LIB_NAME string Library name to which "tsmc18"
technology must be attached.

CELL_NAME string Memory bit cell view name.
TB_NAME string Test-bench cell view name.

ROWS integer Number of array rows
(must be greater than zero).

COLS integer Number of array columns
(must be greater than zero).

W_ACCESS float
Access NMOS transistor width expressed
in µm; it must be greater or equal than
0.42 µm with increments of 0.01 µm.

W_DRIVER float
Driver NMOS transistor width expressed
in µm; it must be greater or equal than
0.42 µm with increments of 0.01 µm.

W_LOAD float
Load PMOS transistor width expressed
in µm; it must be greater or equal than
0.42 µm with increments of 0.01 µm.

CALIBREVIEW_YES string
If "YES", it uses the extracted
view for simulations; otherwise,
it uses the schematic view.

Table 4.4: SRAM compiler input arguments

4.3 Compiler Structure
Once the mandatory procedures for using the compiler have been defined, its

structure is thoroughly described in this section. The compiler is designed in a
modular way: when the user calls the main procedure, five different sub-procedures
are executed consecutively. Figure 4.1 shows compiler’s main procedure and sub-
procedures flowcharts: the rectangles are the used procedures, while the greyed
writings near them are the corresponding ".il" files where the procedures are defined.
The compilation steps can be summarized in:
1. Cell creation;

2. Peripherals creation;

3. Array creation;

4. Test-bench generation;

5. Test-bench simulation.
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(a) Compiler main flowchart

(b) Cell creation flowchart

(c) Peripherals creation flowchart (d) Array creation flowchart

(e) Test-bench generation
flowchart

Figure 4.1: SRAM compiler and sub-procedures flowcharts
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Cell Creation

Figure 4.1b shows the flowchart of the procedure create_cell_proc(). The first
step is the schematic and symbol cell views creation. The 6T-SRAM cell schematic
view is created with the user-defined transistors’ widths. Afterwards, the designed
memory bit PCell (discussed in Section 3.2.2) is loaded in the working library, and it
is used by the procedure layout_cell_proc(), which creates the layout cell view and
instantiates the PCell with the user-defined transistors’ widths. The instantiated
cell is then flattened to preserve pins and nets names, needed for successful LVS
check. After these steps, schematic and layout are exported to perform DRC, LVS,
and PEX correctly; to do this, calibre_drc_pex_script.sh bash script is executed.
In particular, it firstly adds working directory path, library and cell view names to
si.env file for netlist generation, and calibre runset and setup files for DRC, LVS,
and PEX. Then, it exports netilst in Circuit Description Language (CDL) format,
layout in Graphic Design System (GDS) format, and it performs DRC, LVS and
PEX running Calibre in batch mode, using the following commands:

s i −batch −command n e t l i s t

mv n e t l i s t NETLIST_${COMPILER_CELL_VIEW_NAME}

strmout − l i b r a r y $COMPILER_LIB_NAME −s t rm f i l e LAYOUT_${
COMPILER_CELL_VIEW_NAME} . gds −topCe l l
$COMPILER_CELL_VIEW_NAME −view layout − l o gF i l e strmOut . l og −
layerMap ${ layermap_fi le_path } −case p r e s e rve −convertDot
node

c a l i b r e −gui −drc −runset . /COMPILER/DRC_runset −batch > DRC_${
COMPILER_CELL_VIEW_NAME}_log . txt

c a l i b r e −gui −pex −runset . /COMPILER/LVS_PEX_runset −batch >
LVS_PEX_${COMPILER_CELL_VIEW_NAME}_log . txt

Listing 4.1: Bash commands for exporting netlist and layout, and performing
DRC, LVS, and PEX

As can be observed, the netlist and layout files are saved in the working directory
as "NETLIST_" and "LAYOUT_", respectively, followed by user-defined cell view
name. DRC and LVS/PEX logs are also saved in the working directory, while
detailed reports are saved in the sub-directories "DRC_RUN" and "PEX_RUN".
When all these procedures are completed, the software creates the extracted
"calibreview" that can be used later during simulations. Cell creation can be
skipped by commenting create_cell_proc() in the main script file, if the wanted
cell has been already created.
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Peripherals creation

Figure 4.1c shows the flowchart of the procedure create_periph_proc(). It
executes a series of processes for creating peripherals schematic and symbol cell
views, which will be instantiated in the test-bench. All the schematic cell views
are defined with variables as transistors’ widths: the default dimensions are de-
scribed in Chapter 3, but their values can be changed for simulations in the script
ocean_simulation.ocn . If peripherals have been already created, peripheral creation
can be skipped by commenting create_periph_proc() in the main script file to
reduce compilation time.

Array creation

Figure 4.1d shows the flowchart of the procedure create_array_proc(). It firstly
creates schematic and symbol views for a column of the wanted number of rows by
instantiating the memory bit symbol with the vector notation <0:ROWS-1> (an
example of 128 rows is depicted in Figure 4.2a). Then, it instantiates the single
column symbol view for the wanted number of columns with the vector notation
<0:COLS-1> creating the complete array (an example of 128 rows and 32 columns
array is shown in Figure 4.2b), and it creates its symbol view.

(a) Schematic of a single column of 128 rows

(b) Schematic of an array of 128 rows and 32 columns

Figure 4.2: SRAM array creation schematics
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Test-bench generation

Figure 4.1e shows the flowchart of the procedure tb_generator_proc(). It
generates the test-bench by instantiating the array, the peripherals for each column
(using the vector notation <0:COLS-1>) and it connects them properly. Then, by
means of the sub-procedure stimul_proc(), it creates the input voltage generators
and output capacitances needed for the simulation (an example is reported in
Figure 4.3). Word-Line (WL) signal is supplied only to the first row, while all the
remaining rows are grounded. Input (IN), Write Enable (WE), and Sense Amplifier
Enable (SAE) signals are supplied to each column. Input stimuli are generated by

Figure 4.3: Example of test-bench stimuli generators and output capacitances
for a 128 × 32 array

Piece-Wise Linear (PWL) voltage sources: thanks to this approach, completely
parametric waveforms are generated. The complete transient simulation consists of
Write ’1’/Read/Write ’0’/Read consecutive cycles. An example of a Write ’1’/Read
waveform is shown in Figure 4.4. Red arrows represent all the possible delays,
pulse widths, and setup/hold times (measured from 50% voltage swing) that the
user can customize during simulation; this is crucial for finding optimal timing for
the generated memory array. For simplicity, all signals are supplied with the same
user-defined rise and fall time. Before the input stimuli are supplied, all the signals
are at logic ’0’ from 0 s to tstart time: this can be useful to evaluate memory static
behaviour during transient simulations.
During a write cycle, WL, WE and IN are supplied according to the defined setup,
hold times, and pulse widths. Setup and hold times can also be negative, indicating
a signal’s rising or falling edge in advance with respect to another. Actually, for
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the write cycle, not all the timing parameters are independent: for this reason,
setup and hold times, and WE pulse width are considered independent variables
that can be modified by the user, while the other parameters can be derived as:

tWL,write−cycle = tWL,setup + tWE,pulse width + tWL,hold

tIN,pulse width = tIN,setup + tIN,hold

tIN,delay = tWE,pulse width − tIN,setup

(4.1)

During the read cycle, WL and SAE signals are supplied following the timing in
Figure 4.4. All the read timing parameters are independent of each other. The
delay of SAE with respect to WL can also be negative, meaning that SAE pulse can
be supplied during WL high phase. For example, if tSAE,delay = − tSAE,pulse width,
SAE pulse is supplied right before WL falling edge, and both signals falls at the
same time.
WL period must be greater than the maximum between read and write cycles:

tWL,period > max{tWL,write−cycle, tWL,read−cycle} (4.2)

Furthermore, WL low phase must be sufficiently long to ensure a correct bit-lines
precharge, especially after a write cycle when one of the bit-line is completely
discharged. Timing parameters and output capacitance can be changed by the user
in the simulation script ocean_simulation.ocn; timing parameters can be swept to
find maximum operating frequency, minimum WL read/write cycles, pulse widths,
and setup/hold times.

Figure 4.4: Write ’1’/Read waveform example; black dots represents PWL points,
and red arrows are the delays, pulse widths, and setup/hold times that the user
can customize
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Test-bench simulation

Simulation is the last step of the compiler flowchart in Figure 4.1. It is carried
out by calling the function ocean_simulation_proc(). It creates the ADE XL view
of the test-bench, it defines type of analysis to be run (i.e. dc and transient) and it
set the cell view to be used, either schematic or calibre view. If the calibre view is
to be used, Spectre Advanced Parallel Simulator (APS) is employed: it speeds up
memory simulation using multi-threading and post-layout optimization, very useful
for large arrays. The following part of the code sets calibre view and APS mode:

i f ( CALIBREVIEW_YES_NO = = "YES"
then

envOption ( ’ ana ly s i sOrder l i s t ( " dc " " tran " . . . )
’ switchViewList l i s t ( " s p e c t r e " . . . " c a l i b r e " . . . )

opt ion ( ? categ ’ turboOpts
’ psrSwitch t
’ apsp lus t
’ uniMode "APS"

)
)

Listing 4.2: OCEAN XL commands for using calibre view and APS mode

Then, memory content is initialized using this part of code:

f o r ( i 0 ROW−1
f o r ( j 0 COL−1

. . . ; ( q and qb s t r i n g s d e f i n i t i o n )
i f ( ( i==0)

then
converge ( ’ nodeset q_str ing " 0 " )
converge ( ’ nodeset qb_str ing " 1 .8 " )
converge ( ’ i c q_str ing " 0 " )
converge ( ’ i c qb_str ing " 1 . 8 " )

e l s e
converge ( ’ nodeset q_str ing " 1 . 8 " )
converge ( ’ nodeset qb_str ing " 0 " )
converge ( ’ i c q_str ing " 1 . 8 " )
converge ( ’ i c qb_str ing " 0 " )

)
)

)

Listing 4.3: OCEAN XL commands for initializing memory data
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As can be noticed, the first row of the array is initialized to a logic ’0’ because the
first datum to be written in the simulation is a logic ’1’. All the remaining rows,
which are not accessed, are initialized to a logic ’1’ because this is the worst case
scenario: having opposite data stored, access transistors leakage current will tend
to keep bit-lines to VDD, while the accessed cells tries to discharge them; this will
slow down discharge rate and increase access time [30]. The user can in any case
change this part of the code to initialize the memory to the wanted values. Output
voltages are initialized to 0 V and bit-lines to VDD.
The user can modify timing parameters, output capacitance, and peripherals
transistors’ widths by changing the following part of the code:
ocnxlSweepVar ( " IN_hold_time " " 0 " )
ocnxlSweepVar ( " IN_setup_time " "WE_pulse_width+100p" )
ocnxlSweepVar ( " out_cap " " 50 f " )
ocnxlSweepVar ( " SAE_pulse_width " " 0 . 1 n " )
ocnxlSweepVar ( "SAE_WL_delay" "−SAE_pulse_width " )
ocnxlSweepVar ( " start_time " " 1n " )
ocnxlSweepVar ( " stop_time " " start_time+4∗WL_period " )
ocnxlSweepVar ( " t_ f a l l " " 10p " )
ocnxlSweepVar ( " t_r i s e " " 10p " )
ocnxlSweepVar ( "w_nand_n" " 6u " )
ocnxlSweepVar ( "w_nand_p" " 12u " )
ocnxlSweepVar ( "w_prch " " 1u " )
ocnxlSweepVar ( " w_sa_iso " " 0 . 5 u " )
ocnxlSweepVar ( "w_sa_latch_n " " 5u " )
ocnxlSweepVar ( "w_sa_latch_p " " 10u " )
ocnxlSweepVar ( "w_sa_sae " " 10u " )
ocnxlSweepVar ( "w_wd_inv1_n" " 4u " )
ocnxlSweepVar ( "w_wd_inv1_p" " 8u " )
ocnxlSweepVar ( "w_wd_inv2_n" " 6u " )
ocnxlSweepVar ( "w_wd_inv2_p" " 12u " )
ocnxlSweepVar ( "w_wd_passh" " 10u " )
ocnxlSweepVar ( "w_wd_passl " " 6u " )
ocnxlSweepVar ( "WE_pulse_width " " 0 . 3 n " )
ocnxlSweepVar ( "WL_hold_time" " 0 " )
ocnxlSweepVar ( "WL_read_cycle " " 0 . 8 n " )
ocnxlSweepVar ( "WL_setup_time " "−10p " )
ocnxlSweepVar ( "WL_period " " 1 . 5 n " )

Listing 4.4: OCEAN XL commands for setting timining parameters, output
capacitance and peripherals transistors’ widths

Then, static power consumption, read/write delays and maximum currents are
calculated by output expressions, using built-in calculator functions. The complete
simulation results are stored in the sub-directory "SIM/SIM_RES" and a summary
of the calculated parameters is reported in a ".csv" file in the sub-directory "SIM".
The results can also be accessed via ADE XL GUI in the history tab.
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Results and Discussion

In this section some array sizes have been compiled and simulated, for which an
optimal timing has been found. The designed cell (see Section 3.2.2) has an aspect
ratio equal to:

A/R cell = Widthcell
Heightcell

= 5.82 µm
1.48 µm = 3.93 (5.1)

If an array has the number of rows equal to four times the number of columns, its
aspect ratio is approximately unitary:

A/R array = Widtharray
Heightarray

= #COLs ·Widthcell
#ROWs ·Heightcell

= A/R cell

4 = 0.98 (5.2)

Hence, all the compiled and simulated arrays have this aspect ratio to minimize
wiring parasitic capacitances and resistances, and to have a squared footprint.

5.1 Compiler Performances
Software compilation and simulation times have been evaluated by using the

built-in SKILL function measureTime(). The results are shown in Table 5.1.
Different dimensions have been compiled, from small arrays (256 bit) up to large
ones (512 kbit, not reported in Table 5.1 for conciseness). As expected, compilation
time is practically independent of array dimension since the compiler must extract
parasitics only from the single-cell layout and not from the whole array. Different
CPU workloads and memory availability may cause slight oscillations during
compilation. Simulation time strongly depends on array dimension: considering
that each cell comprises six transistors, even small arrays can contain up to tens of
thousands of transistors. Moreover, the cell schematic extracted from the layout
contains about three hundred parasitic elements and a hundred internal nets: this
makes the mathematical problem solved by the simulator enormously complicated.
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In fact, SRAM memories are usually characterized by employing simple models for
a more rapid estimation of timing parameters at the expense of accuracy. Simply
simulating the memory critical path instead of the whole array can take up weeks
[38]. For the aforementioned reasons and due to limited server capabilities, only
small and medium sized arrays (up to 4 kbit) have been simulated.

Array dimension
Elapsed
time

32 × 8
(256 bit)

64 × 16
(1 kbit)

128 × 32
(4 kbit)

256 × 64
(16 kbit)

512 × 128
(64 kbit)

Compilation 33.9 s 34.1 s 33.9 s 34.1 s 34.6
Simulation 42.2 s 3 min 39 s 39 min 19 s - -

Table 5.1: Compilation and simulation times for different array dimensions

5.2 TT vs. SF Corners
Each array has been simulated for both Typical-NMOS-Typical-PMOS (TT)

and Slow-NMOS-Fast-PMOS (SF) process corners. The SF corner represents a
worst-case scenario for this SRAM memory design (where precharge transistors are
static PMOS), for both read and write operations from a timing point of view. To
understand better why this is true, Figure 5.1 shows an SRAM cell accessed for
read (Figure 5.1a) and write (Figure 5.1b) operations.

(a) Read-accessed cell (b) Write-accessed cell

Figure 5.1: Schematics of an SRAM cell accessed for read and write operations
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For the read operation, suppose the cell content to be a logic ’0’: the cell NMOS
driver transistor is turned on providing the read current, while the PMOS load
transistor is turned off (not drawn in Figure 5.1a for simplicity). Bit-line is initially
at VDD and is constantly charged by PMOS precharge transistor current. When
the cell is accessed (i.e. word-line is asserted high), internal node voltage rises to a
certain ∆V (less than Vth,n for a non-disruptive read) and the read current flows
through the series of driver and access transistors discharging bit-line capacitance
CBL. In an SF process corner, the read current sunk by NMOS transistors is lower,
causing a lower bit-line discharge rate. Moreover, PMOS precharge current will
be higher: this increases achievable minimum bit-lines voltage, increasing sense
amplifier sensing delay. These two factors contribute to increasing read access time.
For the write operation, suppose the cell content to be a logic ’1’ (remember that
write starts at the node storing a logic ’1’ due to non-disruptive read requirement
for the node storing a logic ’0’): the cell PMOS load transistor is turned on keeping
the datum node to VDD, while the NMOS driver transistor is turned off (not drawn
in Figure 5.1b for simplicity). When the cell is accessed, write driver pulls down
bit-line almost to ground and internal node voltage VD below Vth,n (for a reliable
writing) by sinking the write current Iwrite. In an SF process corner, the write
current is lower since write drivers NMOS pass transistors are slower reducing
bit-lines discharge rate. Moreover, PMOS cell load and precharge transistors are
faster, providing higher currents that attempt to keep bit-lines to VDD, slowing
again their discharge. These factors contribute to increasing write delay.

5.3 Simulation Results
Optimal timing parameters have been found for three different array dimensions

(256 bit, 1 kbit, and 4 kbit), and they are reported in Table 5.2. An example
of optimal wave-forms is depicted in Figure 5.2, where the complete consecutive
simulated Write ’1’/Read/Write ’0’/Read cycles are showed. Timing parameters
have been found simulating the arrays with the worst-case SF process corner,
output capacitance of 50 fF and rise/fall times of 10 ps. WL period is increased
for the largest array of 4 kbit (from 1.5 ns to 1.7 ns) mainly due to an increased
precharge rise time (due to increased bit-line parasitics). WL read cycle is increased
for each array size to ensure a correct minimum bit-line voltage level needed to
have reliable and fast sensing. SAE minimum pulse width is 60 ps, and SAE delay
is set to -60 ps: this means that SAE pulse is issued just before WL falling edge
(when bit-lines reach minimum voltage levels), and both signals fall simultaneously.
It is important to limit SAE pulse width to reduce power consumption while still
guaranteeing reliable sensing. For a write operation, minimum hold times are zero,
meaning that WL, WE, and IN signals can fall simultaneously. Minimum WE
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Array dimension

Timing Parameter 32 × 8
(256 bit)

64 × 16
(1 kbit)

128 × 32
(4 kbit)

tWL,period 1.5 ns 1.7 ns
tWL,read−cycle 300 ps 500 ps 700 ps
tSAE,delay -60 ps

tSAE,pulse width 60 ps
tWL,write−cycle 290 ps
tWL,setup -10 ps
tWL,hold 0 s

tWE,pulse width 300 ps
tIN,delay -100 ps
tIN,setup 400 ps
tIN,hold 0 s

tIN,pulse width 400 ps

Table 5.2: Optimal timing parameters found for different array dimensions

Figure 5.2: Optimal wave-forms example for a 64 × 16 (1 kbit) array
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pulse width is 300 ps, and minimum IN pulse width is 400 ps. IN setup time is
set to 400 ps, so that IN delay is -100 ps; this means that IN pulse is issued 100
ps before WE one: this is needed to ensure IN propagation through the two write
driver’s inverters before WE signal rise. Moreover, WL setup time is -10 ps (which
makes WL write cycle equal to 290 ps), so that WL pulse is supplied 10 ps after
WE activation: this is needed to wait for WE pass transistors to turn on before
activating WL. The fact that IN, WE, and WL activate in succession ensures that
only the correct bit-line is discharged: this prevents from wasting energy due to
unintentional bit-line discharge or, in the worst case, writing incorrect datum.

The analysis now proceeds with a comparison of the measured read/write delays,
peak currents, absorbed energies and static current for all the simulated arrays
with both TT and SF process corners.

5.3.1 Read and Write Delays
Figure 5.3 shows read and write delays for the three simulated array sizes. Read

delay is measured as 50% delay from WL signal assertion to a valid output: it can
be thought as a WL access time. Write delay is measured as 50% delay from IN
signal assertion to internal node voltage rise. Focusing on the TT corner (Figure
5.3a), read ’0’ delay is always larger than read ’1’ and their difference increases
with increasing array dimension; this is caused by two factors: i) sense amplifier
output latch has a slower high-to-low transition due to NAND gates, and ii) all the
non-accessed rows have been initialized to a logic ’1’ and their leakage currents
tend to slow down bit-line discharge. The last effect is more evident with increasing

(a) TT corner (b) SF corner

Figure 5.3: Read and write delays for different array dimensions
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number of rows. Write delays instead are similar for both logic ’1’ and ’0’, they are
way smaller than read ones and they slightly increase with increasing array size:
this is because write drivers transistors are larger than cell ones providing much
higher currents. For the SF process corner (Figure 5.3b), as expected, read and
write delays are always larger than TT corner’s ones: this is particularly true for
read, since they are caused by cells pull-down small transistors.

5.3.2 Peak Currents
Figure 5.4 shows read and write supply peak currents for the three simulated

array sizes. An arithmetical mean has been carried out for logic ’1’ and ’0’ energies
since they present similar values. For the TT process corner (Figure 5.4a), read and
write peak currents are always very similar, and both increases as array dimension
increases. Read peak current is primarily caused by sense amplifier switching and
secondly by cells pull-down transistors. Write current is primarily caused by write
driver pass transistors pulling down bit-lines and secondly by switching of the two
inverters driven by input datum. For the SF process corner (Figure 5.4b), read
currents are remarkably reduced, especially for the largest array: this is caused by
reduction of sense amplifiers bias current and cells pull-down transistors current.
For write currents a slight increment can be noticed: this is due to increased
short-circuit current of write driver inverters.

(a) TT corner (b) SF corner

Figure 5.4: Read and write peak currents for different array dimensions
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5.3.3 Absorbed Energies
Figure 5.5 shows read and write absorbed energies for the three simulated array

sizes. An arithmetical mean has been carried out for logic ’1’ and ’0’ currents since
they present similar values. For the TT process corner (Figure 5.5a), read energy is
similar to the write one only for the smallest array, while it is approximately double
than the write one for bigger arrays: this is because of sense amplifiers that sink a
significant amount of current as long as SAE signal is active, while write drivers
sink current only during bit-line discharge that is very rapid. For the SF process
corner (Figure 5.5b), read energies are greatly reduced, especially for larger arrays:
this is because of the significant reduction in read currents which counterbalance
delay increase. For write energies a slight increase is observed, caused by increase
of both write current and delay.

(a) TT corner (b) SF corner

Figure 5.5: Read and write absorbed energies for different array dimensions
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5.3.4 Static Current
Figure 5.6 shows static current consumption for the three simulated array sizes.

As expected, since each array is four times larger than the previous, static current
increases significantly with increasing array size. SF process corner static currents
(Figure 5.6b) are lower than TT ones (Figure 5.6a), especially for larger arrays,
because NMOS pull-down transistors are the main responsible for leakages, since
they are the biggest transistors of the cell.

(a) TT corner (b) SF corner

Figure 5.6: Static current for different array dimensions
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Chapter 6

Conclusions and Future
Work

In this work a modular and flexible array compiler that uses a 6T-SRAM cell in
180 nm TSMC technology with customizable transistor widths has been presented.
Moreover, the software is fully integrated in Cadence Virtuoso suite and each
produced SRAM component can be accessed and modified through its tools by the
user. The following results have been achieved:

• Schematic design of 6T-SRAM cell, considering read-stability and write-ability
opposing constraints. An optimal design has been found, product of a trade-off
among read and hold stability, write-ability, cell area, and energy consumption;

• Layout design of 6T-SRAM cell, employing state-of-the-art "thin" layout.
Cadence PCell concept have been applied, so that each transistor can be
modified in its width. This is fundamental to have a customizable cell area,
so that the user can decide for high density/low power, high performance
memory or a trade-off between the two;

• Schematic design of essential column peripheral circuits (i.e. precharge circuit,
sense amplifier, and write driver), needed to properly test the generated array.
They have been designed with maximum performance and simplicity as main
driving constraints;

• Array compiler design, mainly employing Cadence SKILL scripting language.
SKILL scripts perform cell, peripherals and array schematic cell view genera-
tion and cell layout cell view creation;

• Automated cell DRC, LVS, and parasitic extraction using Calibre software by
means of a bash script, which also extract cell netlist and layout GDS file;
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• Test-bench automated generation with user-customized timing parameters,
thanks to which minimum setup/hold times, pulse widths and word-line period
can be easily found;

• Automated write/read transient simulation of the test-bench using an OCEAN
script, which measure delays, peak currents, absorbed energies, and static
current;

• Comparison of compiler performances and simulation results for three different
array sizes (256 bit, 1 kbit, and 4 kbit) and two process corners (TT and SF).

In conclusion, this work represents a first step towards an open-source, flexible and
highly customizable SRAM memory generator. A lot is still to be done to develop
a complete memory generator.

Future works may include, starting from the most important ones:

• Complete array layout generation, DRC, LVS, and parasitic extraction;

• Layout design of peripheral circuits;

• Schematic and layout design of row decoders and column multiplexers;

• Timing generator design, especially with a self-timed approach;

• Generation of the complete memory layout;

• Generation of liberty files with delay and power reports, useful for digital
synthesis automation;

• Implementation of other cell topologies, such as multi-ported cells used in
register files and caches;

• Compiler porting to more recent technologies, especially FinFET;

• Development of a compiler GUI for a more user-friendly software.
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