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“Adieu, dit le renard. Voici mon secret. 

 Il est très simple : on ne voit bien qu’avec le cœur.  

L’essentiel est invisible pour les yeux.” 

 

Le petit Prince - Antoine de Saint-Exupéry 
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Introduction 

 

As part of my formation as Mechanical Engineering Master's Degree student at 

the “Politecnico di Torino” and Erasmus student at INSA LYON, I chose to carry out my 

final Thesis project at the Ampere Laboratory of INSA LYON.  

The Laboratory combines automatic and mechanical design activities, which aroused my 

interest for the mechatronic aspect, still unknown to me and specially very innovative. 

Following a collaboration between CRNL (Lyon Neuroscience Research Center), 

INSERM (Institut National de la Santé Et de la Recherche Médicale) and Ampère 

laboratory, INSA Lyon, a first prototype was designed and manufactured and then 

continued by two INSA students as part of a PFE in 2017. This prototype aims to set up 

experimental protocols to test proprioception in humans. Proprioception is the perception, 

conscious or not, of the position of the different parts of the body. This prototype consists 

of two symmetrical parts to measure and move the position of the limbs of a subject 

during movements in the sagittal and horizontal planes.  

The expected work is to improve the current prototype. Indeed, following several tests 

with researchers at CRNL, some areas for improvement have been mentioned.  

These are mainly: 

1. Review the design of certain parts that do not allow for simple adjustments; 

2. Complete the motor control part to follow the movement of the limb when the 

subject is active; 

3. Implementation of new sensors to obtain more precise data about the position of 

the mechanical arms; 

4. Improve the overall ergonomics of the prototype; 

5. Improve overall safety for both the subject and the operator. 

This work is therefore very multidisciplinary and requires skills in terms of design and 

control of a mechatronic system. I had to work in a team with both the researchers of the 

Ampère laboratory but also with those of the CRNL.  
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Proprioception 

The proprioception, or deep sensitivity, refers to the perception unconscious of 

the position of different parts of the body, of movement and spatial orientation providing 

CNS information about. It works with many muscle receptors, ligaments and with the 

pathways and nerve centers involved.  

 

In vertebrates, limb speed and movement are encrypted by one group of sensory neurons 

(Type Ia sensory fiber) and another type encode static muscle length (Group II neurons). 

“These two types of sensory neurons compose muscle spindles” [29].  

Muscle spindles are small sensory receptors within the muscle. As the muscle spindles 

lay in the muscle parallel to the muscle fibres, its stretch is proportional to the stretch of 

the muscle. The main components of a muscle spindle are the intrafusal muscle fibres, 

afferent sensory fibre endings and efferent motor fibre endings. The sensory fibres 

endings spiral around the central region of the intrafusal muscle fibres and are responsive 

to stretch of these muscle fibres. γ-motoneurons innervate the intrafusal muscle fibres and 

changes the sensitivity of the sensory fibre endings to stretch. 

A muscle spindle contains three types of intrafusal muscle fibres: dynamic nuclear bag 

fibres, static nuclear bag fibres, and nuclear chain fibres. Two types of afferent sensory 

fibres leave the muscle spindle: primary (Ia) and secondary (II) endings. Primary endings 

are most sensitive to stretch velocity and secondary endings to stretch. Primary endings 

make contact with all three types of intrafusal muscle fibres, the secondary ending make 

contact with static nuclear bag and nuclear chain fibres. 
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Fig.3 – Muscle fibres 

 

 

 

 

“To determine the load on a limb, vertebrates use sensory neurons in the Golgi tendon 

organs: type Ib afferents. These proprioceptors are activated at given muscle forces, 

which indicate the resistance that muscle is experiencing” [9]. 

Golgi tendon organs (GTOs) are sensory receptors located at the junction between muscle 

fibres and tendon. Tendon organs are thin encapsulated structures and have one single 

afferent axon (Ib). The afferent ending diverges into many fine endings, which intertwines 

among the collagen fibres. Stretching of a GTO straightens the collagen fibres, 

compressing the nerve endings and causes them to fire. The stretch of a GTO depends on 

the load, which is proportional to the muscle force, as a GTO is in series with a muscle. 
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Fig.4 – Golgi tendon organs (GTOs) 

 

A third role for proprioceptors is to determine when a joint is in a particular position. In 

vertebrates, this is performed by Ruffini endings and Pacinian corpuscles. These 

proprioceptors are activated when the joint is at a margin, usually at the extremes of joint 

position.  

 

In human motion control one tries to identify the dynamics of the skeleton, muscles, 

sensors, and controller. It is the challenge to find the structure and the parameters of the 

controller and how it handles with different conditions and/or disturbances. 

Position, forces and EMG of the muscles are the variables that can be observed 

noninvasively in humans. Furthermore, position and force disturbances can be ap- plied 

to perturb the posture and to provoke a response. With system identification a model of 

the system (joint dynamics) is obtained by analysis between input (position or force) and 

output (force or position, sometimes EMG). Two types of perturbations (input) can be 

distinguished, i.e. force and position perturbations. For technical systems there is no 

principal difference. However, humans are highly adaptive and need a proper task 

instruction. Force disturbances require a position task and vice versa. 

Position tasks (with force variations) are natural for the subject. They mimic daily life 

situations and are superior to investigate the functionality of proprioceptive reflexes. The 

subject has to actively preserve stability and reflexes contribute to the performance. Note 
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that in human motion control the function of the perturbation is twofold. Firstly it 

provides information necessary to excite the system, allowing identification, and 

secondly the perturbation is part of the conditions to direction reflexive behaviour. As the 

CNS is an adaptive controller, weighting performance against effort, different 

perturbations will give different weights. 

The neuromusculoskeletal system is highly nonlinear by nature, as the skeleton is a multi-

link system and the muscles, proprioceptors, and neurons are all non- linear. Most control 

engineering and system identification tools are only valid for linear systems. It is desirable 

to investigate the human neuromusculoskeletal system in a state that allows linearization, 

so that linear tools can be used. Linearization is allowed when small deviations around 

an equilibrium posture are concerned, for example during postural control. 

 

Proprioceptors can plan reflex circuits with motor neurons to produce speedy feedback 

regarding body and limb position. These mechanosensory circuits are significant for 

flexibly maintaining posture and balance, particularly throughout locomotion. As an 

example, examine the stretch reflex, in which stretch across a muscle is detected by a 

sensory receptor (e.g., muscle spindle, chordotonal neurons), which activates a motor 

neuron to induce muscle contraction and oppose the stretch. During locomotion, sensory 

neurons can reverse their action when stretched, to aid rather than oppose movement. 

 

In humans, a differentiation is formed between conscious proprioception and non-

conscious proprioception: 

• Conscious proprioception is communicated by the dorsal column-medial 

lemniscus pathway to the cerebrum. 

• Non-conscious proprioception is communicated primarily via the dorsal 

spinocerebellar tract and ventral spinocerebellar tract, to the neural structure. 

A non-conscious reaction is visible in the human proprioceptive reflex, or righting 

reflex—if the body slants in any direction, the person will tilt their head back to 

level the eyes beside the horizon. This is observable even in infants as soon as 

they gain control of their neck muscles. This control comes from the cerebellum, 

the part of the brain involving balance. 
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Mechanism 

Proprioception is mediated by mechanically sensitive proprioceptor neurons 

allocated throughout the body. Most vertebrates own three basic types of proprioceptors: 

muscle spindles, which are insert in skeletal muscle fibers, Golgi tendon organs, which 

are situated at the interface of muscles and tendons, and joint receptors, which are low-

threshold mechanoreceptors fixed in joint capsules.  

 

The first appearance of proprioception is the activation of a proprioceptor in the 

periphery. The proprioceptive sense is assumed to be composed of messages from sensory 

neurons located in the inner ear (motion and orientation) and in the stretch receptors 

located in the muscles and the joint-supporting ligaments (attitude). “There are specific 

nerve receptors for this form of perception termed "proprioceptors", just as there are 

specific receptors for pressure, light, temperature, sound, and other sensory experiences. 

Proprioceptors are sometimes known as adequate stimuli receptors. For example, TRPN, 

a member of the transient receptor potential family of ion channels, has been found to be 

responsible for proprioception in fruit flies, nematode worms, African clawed frogs, and 

zebrafish. PIEZO2, a nonselective cation channel, has been shown to underlie the 

mechanosensitive of proprioceptors in mice. The channel mediating human 

proprioceptive mechanosensation has yet to be discovered” [34]. 

 

“Proprioception of the head stems from the muscles innervated by the trigeminal nerve, 

where the GSA fibers pass without synapsing in the trigeminal ganglion (first-order 

sensory neuron), reaching the mesencephalic tract and the mesencephalic nucleus of 

trigeminal nerve” [29][34]. 

 

Temporary defect or impairment of proprioception might happen periodically throughout 

growth, mostly during adolescence. Growth that might also have impact on this would be 

large increases or drops in bodyweight/size due to fluctuations of fat (liposuction, rapid 

fat loss or gain) and/or muscle constitution (bodybuilding, anabolic steroids, 

catabolisis/starvation). It can also appear in those that concern new levels of flexibility, 

stretching, and twist. A limb's being in a new range of motion never tested (or at least, 
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not for a long time since youth perhaps) can interrupt one's sense of location of that limb. 

Possible episodes involve unexpected feeling that feet or legs are missing from one's 

mental self-image; needing to look down at one's limbs to be sure they are still there; and 

falling down while walking, principally when attention is focused upon something other 

than the act of walking. 

 

“Proprioception is occasionally impaired spontaneously, especially when one is tired. 

Similar effects can be felt during the hypnagogic state of consciousness, during the onset 

of sleep. One's body may feel too large or too small, or parts of the body may feel distorted 

in size. Similar effects can sometimes occur during epilepsy or migraine auras. These 

effects are presumed to arise from abnormal stimulation of the part of the parietal cortex 

of the brain involved with integrating information from different parts of the body” [29]. 

 

Proprioceptive misconception can also be inducted, such as the Pinocchio illusion. The 

proprioceptive sense is often unnoticed because people will adjust to a continuously 

stimulus as a result of the typical state of human adaptation. The effect is that 

proprioceptive sensory impressions disappear, even as a scent can disappear over time. 

One sensible advantage of this is that unobserved actions or sensation continue while an 

individual's attention can move to another concern. The Alexander Technique directs 

these unconscious components by transfer attention to them and active a replacement 

movement with concentrate on however it feels to move in the new way. People who 

have a limb amputated may still have a confused sense of that limb's existence on their 

body, known as phantom limb syndrome. Phantom sensations can occur as passive 

proprioceptive sensations of the limb's presence, or additional active sensations like 

perceived movement, pressure, pain, itching, or temperature. There are difference 

theories regarding the etiology of phantom limb sensations and experience. One is the 

theory of "proprioceptive memory", that argues that the brain retains a container of 

specific limb positions which when amputation there is a discord between the visual 

system, that really sees that the limb is missing, and the memory system which remembers 

the limb as a functioning part of the body. Phantom sensations and phantom pain may 

also develop after the removal of body parts other than the limbs, like when after 

amputation of the breast, extraction of a tooth (phantom tooth pain), or removal of an eye 

(phantom eye syndrome). 
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Proprioception is an element of the synesthesia. The synesthesia is a sensorial perception 

phenomenon within the stimulation of one sensory or cognitive route leads automatically, 

involuntary experiences in a second sensory or cognitive experience. Good 

proprioception allows us to write legibly, walk in a straight line, dance to the rhythm of 

the music and do well during physical activity. It is not balance, but it contributes to allow 

an animal to stabilize itself against environment perturbations. 

It is commonly believed that proprioceptive signals convert joint angles. To localize a 

hand (i.e., to find out its position) with respect to the body for instance, the CNS needs to 

know the angles of all joints between that hand and the body and combine these angles 

with the known segment lengths  

"Joint position matching" is a protocol for the measurement of proprioception, and joint 

position sense specifically, without the aid of visual or vestibular information. During 

such assignments, individuals are blindfolded while a joint is moved to a specific angle 

for a given time, returned to neutral, and the subjects are asked to replicate the specified 

angle. Measured by constant and absolute errors, capability to precisely identify joint 

angles over a series of conditions is the most accurate averages of determining 

proprioceptive acuity in isolation to determinate. 

 

Recent investigations have shown that hand dominance, participant age, active versus 

passive matching, and presentation time of the angle can all affect performance on joint 

position matching tasks. Without a measuring instrument, it is difficult, if not impossible, 

to say if there is progress in its own sense. The first problem that scientists have to face 

is that of being able to measure and quantify proprioception. INSERM wanted to study 

proprioception in sensitive subjects such as the elderly or people who had a stroke. In 

fact, after stroke, various neurological disorders lead to motor disorder, balance disorders 

and even proprioceptive anesthesia. 
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Biomechanics of upper limbs 

In order to perform a motion analysis, the upper limb is simplified into a rigid 

body link-segment model with joints that have a fixed center of rotation; although this is 

only an approximation to reality, in most cases it is sufficiently accurate for the purposes 

of the analysis. The upper limb is considered to have seven degrees of freedom, namely 

three at the shoulder (glenohumeral joint), two at the elbow and two at the wrist; the 

scapula and clavicle are each considered to have three degrees of freedom. The difficulty 

is to reduce the complex shoulder and arm geometry into a simple link model.  

Following the principal axis of the rigid body link-segment model: 

- Clavicular axis: The clavicle is assumed to run from the centre of the SC joint to 

the centre of the AC joint. 

- Glenohumeral (GH) joint: The GH joint centre is assumed to lie at the geometric 

centre of the humeral head. In absolute values, the centre is located (depending 

on the study) at a mean distance of 37–45mm inferior, 6–14mm lateral and 0–8 

mm anterior to the AC joint, although a large variability among individuals is 

apparent. 

- Scapular plane: In a link-segment model, the contribution of the scapula lies 

between the AC joint and the GH joint. The plane of the scapula, while easy to 

comprehend conceptually for the relatively flat bone, has been described in many 

different ways when trying to quantify it. The most common description is the 

plane formed by joining AC, TS and AI. 

- Humeral axis: The humeral axis has most often been defined from the 

glenohumeral joint centre to midway between the medial and lateral epicondyles 

at the elbow.  

- Elbow joint: The elbow joint is considered to be a two-degree-of- freedom hinge 

joint, i.e. flexion/extension and pronation/ supination. The flexion/extension axis 

passes through the centre of the trochlea.  

 



 14 

- Carrying angle: An angular offset exists at the elbow called the carrying angle. 

Conceptually the carrying angle is the angle between the ulna and the extension 

of the humerus, when the arm is in the anatomical position. It is typically between 

5 and 15° for men and 10 and 25° for women. This angle occurs due to both a tilt 

in the humeral (flexion/extension) axis at the humeroulnar joint and an angulation 

of the ulna itself, showing large variations among individuals. The path taken by 

the forearm appears to be linear during flexion, at least up to 90° flexion. Although 

it is not usually reported in motion analysis studies, it is a necessary value when 

modelling the arm further. It has been handled differently by different researchers, 

including accommodating it by humeral rotation, assuming that it is due to a pure 

rotation of the humeroulnar axis or calculating it as a Euler rotation. Even those 

who study only the elbow have used three different definitions, which has been 

the source of considerable confusion. The carrying angle is not a degree of 

freedom but must be considered (due to the bony geometry) if the coordinate 

system is to be transformed between the humerus and the forearm. In this 

situation, it is probably best modelled as the second rotation in the elbow rotation 

sequence, following elbow flexion and preceding pronation/supination. The only 

active degrees of freedom that need to be reported, however, are flexion/extension 

and pronation/supination.  

- Wrist joint and hand axis: The wrist is principally a two-degree-of-freedom 

joint including flexion/extension and radial/ulnar deviation although a minor 

amount of rotation is possible. The zero definition is with the third metacarpal 

bone aligned with the radius. The axis is forward of the mid-point between the 

radial and ulnar styloid processes, on the head of the capitate near the 

lunate/capitate articulation; the hand can be flexed back and forth to locate it. This 

axis is translated from the end of the pronation/ supination axis, but a simple hinge 

model is usually assumed. 

-  Pronation/supination axis: The pronation/supination axis passes from the 

capitulum on the humerus through the radial head to the distal end of the ulna; i.e. 

pronation/supination occurs by rotation of the radius about the ulna. Since the 

radial head is not midway between the epicondyles, however, there is a 

translational distance between the humeral axis and the forearm axis. Furthermore, 

the pronation/supination axis is 4–5° off the perpendicular to the flexion/extension 
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axis. Pronation/supination should be measured at the wrist where the radius rotates 

the most around the ulna. A link-segment model of the two-bone forearm is better 

represented by the ulna since this accurately defines elbow flexion/extension, and 

the carrying angle, but the pronation/supination axis then needs correction. 

Peterson treats the ulna and radius separately since a link-segment model with a 

single joint cannot represent pronation/supination accurately.  

 

 

Fig.5 – Biomechanics axis 
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Control behavior of CNS 

Humans exhibit a massive repertoire of motor behavior which permits us to 

interact with many alternative objects under a spread of various environments. From an 

engineering perspective the human neuromusculoskeletal system can be hold as a robot, 

consisting of a linkage system (the skeleton) with motors (muscles), sensors 

(proprioceptors), and a control system (the CNS). The nerves and neurons are the links 

and junctions, which transport the data from the proprioceptors to the CNS and from the 

CNS to the muscles. Studies on our cognitive development reveal that the central nervous 

system (CNS) makes use of internal models in planning, controlling and learning of the 

mechanical behaviors. “In the subject area of control theory, an internal model is a 

process that simulates the response of the system in order to estimate the outcome of a 

system disturbance. The internal model principle was first articulated in 1976 by B. A. 

Francis and W. M. Wonham as an explicit formulation of the Conant and Ashby good 

regulator theorem. It stands in contrast to classical control, in that the classical feedback 

loop fails to explicitly model the controlled system (although the classical controller may 

contain an implicit model).  

Internal models can be controlled through either feed-forward or feedback control. Feed-

forward control computes its input into a system using only the current state and its model 

of the system. It does not use feedback, so it cannot correct for errors in its control. In 

feedback control, some of the output of the system can be feedback into the system’s 

input, and the system is then able to make adjustments or compensate for errors from its 

desired output” [33]. Two primary varieties of internal models have been proposed: 

forward models (FM) and inverse models (IM). In simulations, models can be combined 

together to solve more complex movement tasks. 

 

Forward models capture the forward or causative relationship between inputs to the 

system. A forward dynamic model of the arm, for instance predicts the consecutive state 

(e.g. position and velocity) given the current state and motor command. The actual and 

foretold position of the body might differ due to noise introduced into the system by either 

internal (e.g. body sensors don’t seem optimal, sensory noise) or external (e.g. 

unpredictable forces from outside the body) sources. If the actual and predicted body 

positions contradict, the distinction can be fed back as an input into the entire system 
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additional in order that an adjusted set of motor commands can be figure out to make 

more accurate movements. Such models are planned to be employed in motor learning, 

state estimation and motor control [22][33]. 

 

 

Fig.1 – Internal Forward Model 

 

In contrast, inverse models use the required and actual position of the body as inputs to 

estimate the mandatory motor commands which might rework this position into the 

desired one. Inverse models are, therefore, well compatible to perform as controllers as 

they can supply the motor command necessary to achieve some desired state transition. 

Even control strategies, such as feedback control, which do not expressly invoke an 

inverse model, can be thought of as implicitly constructing an inverse model. It is in this 

area that we can work to understand better the control of Proprioception [22][33]. 

 

 

Fig.2 – Internal Inverse Model 
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Prototype  

 

This thesis deals with postural control. Postural control is a specific case within 

human motion control. The human has to maintain a posture, i.e. an equilibrium position. 

During postural control two independent strategies contribute to stability and 

performance: (1) intrinsic properties of the muscles and (2) proprioceptive reflexes. With 

activation of a muscle not only the generated force increases, but also the viscoelasticity 

increases, i.e. the resistance to external disturbances. By coactivation of antagonistic 

muscles around a joint the joint remains in equilibrium and is less sensitive to 

disturbances. Proprioceptive reflexes from muscle spindles provide information about 

stretch and stretch velocity. This information is fed back to the motoneurons. A stretch 

after a perturbation results in selective activation and deactivation of the antagonistic 

muscles to restore the posture. Co-activation is very energy consuming as the muscles are 

constantly activated. Reflexes are energy efficient as the muscles are only activated in 

response to a present disturbance. Major drawback of reflexes is the time delay; reflexes 

are not instantaneous. It takes time to transport the signals over the nerves and to process 

the information. Also, the force build-up in a muscle takes time (activation dynamics). 

From control engineering it is known that the effectiveness of time delayed feedback is 

limited as oscillations and instability must be avoided. Smaller delay, i.e. faster response, 

gives larger stability margins and consequently can be more effective. 

 

The upper limb can be sketched with 5 degrees of freedom indicated. Only three elements 

constitute an upper limb: the hand, the forearm and the arm. The elements are connected 

to each other by ball joints. 

Nevertheless, in our study we consider that the hand and forearm act together, so they 

remain in the same position with respect to the other limbs during tests. The shoulder is 

fixed in the test, so the only main connection studied is that of the elbow. Another 

hypothesis therefore corresponds to precisely locating the center of rotation of the elbow 

in the upper limb. This center of rotation is considered at the intersection of the axes of 

the arm and forearm, ie approximately in the center of the elbow section. 
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Fig.6 – Degrees of freedom 

Default values 

The subjects tested are of standard height and weight for men and women aged between 

8 and 70 years. We therefore believe that the size and masses of each subject may vary, 

but to a reasonable extent to minimize the number of parameters on the test device. 

The total weight of the limb and hand is considered between 2 and 4 kg, but a more precise 

indication can be issued using the Dempster table: 

 

Structure % of total mass Mass [kg[ Location of gravity Center 

Arm 2,7 2,54 Middle part of humerus 

Forearm 1,6 1,72 
Above the middle part of the 

forearm 

Hand 0,6 0,64 
Middle part of the 3rd 

metacarpal 

Total 4,9 4,90  
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Anthropometric measurements 
Man 

[cm] 

Woman 

[cm] 

Margin 

considered 

Shoulder width 44,5 40 25 – 45 cm 

Forearm length, outstretched hand 47,5 42,5 20 – 40 cm 

Height of the axis of rotation of the 

elbow 
/ / 2 - 4,5 cm 

 

Description of the project 

The goal is to design a device to examine the proprioception of the lims in subjects using 

multi-plane contralateral and ipsilateral tests (sagittal and horizontal plane). 

During the experiments, the subject sits in front of the camera with his limbs attached to 

the support. His eyes are blindfolded to make him use only his arms as sensors. The 

experimenter stands next to the subject, ready to launch acquisitions. 

The first contralateral test consists of passively bending the elbow of the subject's 

dominant limb to reach a certain angle. The subject must therefore reproduce the same 

angle with the other forearm. The proprioception will be qualified by measuring the 

difference between the two acquired angles. The second ipsilateral test is almost identical: 

the elbow of the subject's dominant limb is bent at an angle and then returned to its initial 

position. It is the same limb that has to perform this movement again after the 

initialization of the position. 

The device must be able to integrate these two bending / extension tests of the forearm in 

the sagittal plane of the subject and in the horizontal plane, as shown in the examples a) 

and b) respectively present in the literature. 
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6a) 6b)  

Fig.7 – Horizontal/Vertical test 

 

Device specifications 

The system must have 2 degrees of freedom: a rotation in the sagittal plane and a rotation 

in the horizontal plane. The rotations are independent, the movement is performed only 

on the sagittal plane or only on the horizontal plane, from the initial position. The 

movement is performed in the following places, followed by the same, it is not permeable, 

but it is an advantage, if it is feasible at the same cost. The movement can be controlled 

manually or via actuators. 

 

The device must measure the angles of both rotations. The measurement is made between 

the initial position and the position to be measured in the system. The accuracy of the 

measurement must be at least 0.1 °. The measurement must be stabilized. The methods 

of activation of the measurement must ideally be performed by the subject and must not 

disturb the position of the limb at the time of measurement. 

In its initial position, the limb has the elbow bent at 30 ° in the sagittal plane (angle 

between the forearm and the axis of the arm) as shown in Figure 7a), at 0 ° in the 

horizontal plane, the forearm aligned with the axis of the arm in the horizontal plane as 

shown in Figure 7b). 
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Fig.8 – Initial position of arms 

 

The rotation in the sagittal plane must allow an amplitude ranging from 30 ° to 135 °. 

Measurements will be made with angles of 50 ° and 70 ° (Figure 8a)). 

 

The rotation in the horizontal plane must allow an amplitude ranging from -30 ° to + 30 

°. Measurements will be made with angles of -20 ° and + 20 ° (Figure 8b)). 

 

 

Fig.9 – Angles of rotations 

 

The system must be symmetrical, the two parts can be used as a guide or follower, 

depending on the dominant limb of the subject. 

The entire limb must be firmly attached to the system, the arm and forearm must be 

pressed against the system bracket to avoid distorting the angle measurement. The hand 
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must tighten a handle to remain oriented in the same way with respect to the forearm 

during the tests. 

The distance between the two parts must be adjustable to respect the distance between 

the subject's shoulders. The hand must be able to slide on the support to allow movement. 

The height adjustment of the subject in relation to the camera can be performed outside 

the system or can be performed there. 

The system, positioned on a table, must not move during use. Both parts must respect a 

certain alignment and parallelism to avoid having a measurement error due to the initial 

position. 

The security of the subject must be guaranteed by a software and a mechanical stop 

system. The system must not move the subject's arm in a non-compliant manner that could 

cause dislocation or injury. Furthermore, a certain comfort must be guaranteed for the 

user, especially at the level of the elbow. 

No evidence, on which the subject could rely, should disturb the proprioception. This can 

be caused by engine noise, machine vibrations or movement such as hand slipping on the 

support. It is therefore necessary to prevent any type of test of this type that could distort 

the proprioception test. 

The subjects tested are standard height and weight for people aged 8 to 70 years. The 

weight of the forearm alone is considered between 2 and 4 kg. The additional weight that 

the arm must lift to reproduce the movement must be minimized. In fact, a weight added 

to the movement of the limb can create a positioning error. 

 

First prototype 

A first prototype was designed by the INSERM team and meets the desired primary needs 

but remains inconvenient and requires more functionality. 

As can be seen in Figure 10, the first prototype could make only one movement in the 

sagittal plane. The equipment allows to fix the support of the arm at 20 ° or 40 ° and 

therefore to measure the angles when the subject is tested with an inclinometer. The 

device is not automated and the two parts of each arm are neither connected to each other 

nor fixed to the table. The comfort of the mechanical arm is quite rudimentary, but 

sufficient. The support parts are made of PVC and then glued or screwed together. 
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Fig 10 – First prototype 

 

One of the first traces to improve is the position of the axis of rotation of the support: it 

is too far from the axis of rotation of the elbow and therefore creates a transverse 

movement of the hand on the support during the raising of the forearm. Thus, a slot in the 

support allows the hand to hold a handle that can move freely and follow the movement 

of the hand. Furthermore, the measured angles are read directly by the inclinometers until 

the arm stabilizes. This results in inaccurate measurements, even if the first tests showed 

only plausible results. 

The general form of support should be maintained, but it has been said that it is not 

necessary to limit their creativity to find the best possible design. 

 

State of the art and design ideas 

Secondly, a scan of the existing solutions was performed. Very few devices are designed 

to measure the proprioception of the elbows, however many devices can be used to re-

educate a patient's limb using a design close to our project. 

For example, the Fisiotek device shown in Figure 11 can rehabilitate patients' elbows by 

working on their flexion and extension under different loads. The general shape of the 

device, including the separation between the arm support and the forearm support, which 

allows for better rotation, looks interesting. The idea of a cylindrical support that fits 

better with the shape of the arm also seemed relevant. However, such a support can give 

some sensory cues to the subject during the movement and can therefore disturb the 

results. 
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Fig.11 – Fisiotek device 

 

It is also in the article by Fuentes and Bastian [*] that a camera very similar to the one 

imagined was presented: the KINARM (Figure 12: Photo of the KINARM camera, 

developed in Canada by the BKIN Technologies team, KINARM (Kinesiological 

Instrument for Normal and Altered Reaching Movement) allows the exercise of a 

subject's elbow in the horizontal plane. The design of the device with a metallic 

appearance showed us that it was necessary to design a device that was pleasant to see 

and handle for the subject. To the extreme, the camera should not be scary, as some 

subjects will be children or old people who might be reluctant to insert their arms into a 

"heavy" metal machine. Furthermore, as for KINARM, the device must be easily 

adjustable, without tools or special forces. 

 

Fig.12 – KINARM camera 

 

Finally, when looking for solutions to power the device, the cable solution was found. 

This point will be further investigated later. Figure 13 shows a diagram of the CaMaReS 
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device which should allow a gradual re-education of the patient's limb. Other devices also 

use this system, such as Rosati et. al. o Jin et. al. . The motors placed on a structure around 

the patient control the length of the cables connected to the patient's arm to move it into 

space. The idea of using cables to power a limb is very interesting because it is reassuring 

in the sense that it seems less harsh than the cylinders or the motors close to the patient. 

The use of this cable system in a medical context shows that it is a common process and 

therefore adapted to the device to be used. 

 

 

Fig.13 – CaMaReS device 

Resolutions - Design and connections of the arm support 

In order to rotate in the sagittal plane and in the horizontal plane, two degrees of freedom 

are required on the support. Different solutions are being studied. 

The first two combine a horizontal pin that allows rotation in the sagittal plane and a 

vertical pin that allows rotation in the horizontal plane. Since the connections are in series, 

what differentiates the two solutions is the order of the solutions. The black part that 

represents the frame, the green the horizontal pin and the red the vertical pin, so for the 

first solution (Figure 14a): frame - rotation in the sagittal plane - rotation in the horizontal 

plane; for the second solution (Figure 14b): frame - rotation in the horizontal plane - 

rotation in the sagittal plane. Since the movements are carried out in the two planes in 

different ways, the order has no influence. This will have an influence if the two 

movements are combined without returning to the initial position, but this is not required 
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in the specifications. However, the second solution has the advantage of allowing the 

horizontal pin to be aligned with the axis of rotation of the elbow, unlike the first solution. 

The first two solutions offer links corresponding to the specifications. The third solution 

(Figure 14c) combines links that respect the kinematics of the human limb. The rotation 

in the sagittal plane is simple because it corresponds to the rotation of the elbow, so there 

is no difference for this rotation with respect to the first solutions which remain a 

horizontal pin. However, the movement becomes more complex due to the rotation in the 

horizontal plane. In fact, there is no axis of rotation of the elbow that allows this 

movement to be performed directly, it is a combination of the rotation of the elbow and 

the rotation of the arm on the shoulder. This solution, unlike the first ones, allows to 

combine the two rotations and therefore to create a more complex movement. This 

solution also prevents friction of the mechanical arm on the support during rotation in the 

horizontal plane. However, making the blue link is more complex because it has to be 

done around the arm. 

 

Fig.14 – Different solutions studied 

 

The solution 3, a priori more interesting, proved to be too complex in the design. Since 

the combination of the two rotations was not required in the specifications, the choice of 

solution 2 was made at the end. 

 

Motorization of the system 

To start the support, it was designed to operate the connections directly. 

The first solution is to operate the cardan shafts directly from the engines. However, 

defining a maximum weight of the forearm and hand of 4 kg and a maximum length of 

the forearm of 40 cm, assuming that the center of gravity is at the center of the forearm, 
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a minimum torque of 8 Nm is therefore necessary to lift the forearm in the sagittal plane. 

This requires mounting a large engine and weight on the arm support. 

A second solution was to place a cylinder between the arm and the forearm. However, a 

cylinder with sufficient power and travel is too large and expensive. 

This system can be replaced by a cylinder with a rope that connects the arm and the 

forearm plates. Thanks to an engine that rolls the rope, the forearm can be raised. 

A final solution is a connecting rod system. A connecting rod is in a fixed pivot 

connection on the forearm and in connection to a pin that slides along the arm. The length 

of the connecting rod that is fixed, when moving along the arm, the elbow bends or opens. 

The sliding can be performed by pulley-belt or ball screw (Figure 15). The ball screw 

reduces the engine torque required. 

 

 

Fig.15 – Final solution 

 

However, all these solutions are integrated into the support, which adds weight and 

support to the support and reduces the security of the subject. The choice is therefore to 

extract the motor from the support and simply control it by the handle. For this, the cables 

connected to the handle control the movement. Thanks to the motors that wrap the cables, 

it is possible to position the handle in the space provided by the colleague of the cablles 

instruments. 
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Final solution 

The machine is equipped with two "support" groups (Figure 16b), one for each limb. The 

subject places his limbs on this support, has different settings to adapt to the morphology 

of each person. This support allows two distinct rotations: rotation in the horizontal plane 

and rotation in the sagittal plane. The movement of the mechanical arm is controlled by 

a system of cables connected to the tip of the lancet. The three cables connected to each 

arm are driven by motors that wrap or unroll the cables. The supports, motors and pulleys 

are placed in a cage of 0.9 x 0.7 x 0.6 m (Figure 16a). 

 

 

Fig.16 – Cage and Supports  

 

 

The subject places the limb on the support with a plate under the arm tilted 30 ° from the 

horizontal, a plate under the forearm and a plate under the hand with a handle. 

The plate under the arm is fixed and guarantees the initial position of the arm at 30 °, 

being the forearm plate horizontal. 

 

The subject's arm is held on the support by a strap on the arm plate and on the handle. 
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Adjustments 

For each subject it must be possible to adjust the length of the forearm, ie the position of 

the handle, the height of the axis of rotation of the elbow, as well as the distance between 

the shoulders. 

The length of the forearm must be adjustable between 20 (Figure 17a) and 40cm (Figure 

17b) from the elbow to the handle. This adjustment is carried out using a telescopic 

support with two slides. 

 

 

Fig.17 – Possible adjustments 

 

The forearm support consists of a sheet, an aluminum profile and two rectangular steel 

bars. The bending of the bracket below the maximum weight must be minimized to avoid 

angular measurement errors. At the sheet level, the maximum deformation is calculated 

based on the following section: 
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In this way the arrow is small enough not to interfere with the measurements. 

The height of the axis of rotation of the elbow is adjustable between 2 cm and 4.5 cm.  

It must be adjusted in relation to the forearm and arm plates, so there are two adjustments 

to be made. The first is done by vertically moving the forearm plate with a screw. The 

second for horizontal translation of the forearm on the profile (Figure 18). The distance 

between the shoulders can be adjusted between 25 and 45 cm. The support of each arm 

runs through a bearing on the profile of the cage. 

 

 

 

Fig.18 – Adjustments 
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Rotations 

The rotation in the horizontal plane (Figure 19a) occurs in a range between 30 ° and -30 

°. The rotation in the horizontal plane (Figure 19a) takes place in a range between 30 ° 

and -30 °. Rotation takes place between the vertical shaft and the support block using 

plain bearings. The pins are used as stops at the amplitude limits (Figure 19b). 

 

 

Fig.19 – Rotations 

 

 

An absolute magnetic sensor fixed under the support block allows to measure the rotation 

angle (Figure 20). The sensor consists of two parts: the first part is the card fixed on the 

block of the hole that remains stationary, the second part is the magnet placed on the 

rotating shaft. The card detects the rotation angle of the Hall effect magnet. 

 

 

Fig.20 – Magnetic Sensor 
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The rotation in the sagittal plane (Figure 21) occurs in a range between 30 ° and 135 ° 

according to the specifications. In the initial position, a stop locks the forearm plate 

horizontally, ie at 30 ° of flexion, thus limiting the extension of the mechanical arm and 

thus ensuring the safety of the subject. 

A sensor positioned on the fixed part measures the rotation by means of a magnet that 

moves with the shaft. 

 

Fig.21 – Rotation in the sagittal plane 

Cable control 

The support is set in motion by the end of the handle to which the cables are connected. 

Each cable rises to a pulley fixed on the upper profiles. The pulleys rotate around their 

vertical diameter, which allows the cable to be directed towards the moving handle. The 

pulley returns the cable to the motor, fixed on the lower profiles, which rotates a winch 

on which the cable is wound (Figure 22). 

 

 

Fig.22 – Pulley with cables wound 
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Since the cables are stretched by the weight of thelimb, three cables allow to impose the 

position in the space of the handle, knowing the length of each cable unwound. In this 

way, seen from above, one reaches the space delimited by pulleys. Three cables are 

therefore sufficient to obtain the three degrees of freedom necessary to move in space but 

limit the space that can be reached to a triangle. To have a space that can be reached seen 

from the top, the choice is made to have four cables, but operated by just three motors. 

The last two cables are actually just one, hanging on one side of the upper profile, then 

sliding into the handle ring and returning to the pulley and the engine. 

 

Prototype production 

The manufacture of the raw prototype, without robotics, was carried out by laboratory 

technician Hugues DORGERON. He took care of the preparation of the processing 

operations as a method department and of the processing of the pieces. The assembly of 

the parts was done in collaboration between him and us, because we knew the device 

better. 

The total weight of the device is estimated at 18 kg. The support group of a single arm 

weighs 1.9 kg. It is important to emphasize that the weight of the support to be lifted, 

which had to be reduced to a minimum in order not to require too much effort by the 

subject, is 700 g. 

The parts used are generally aluminum or an equivalent alloy. The good resistance of this 

material combined with its low weight perfectly corresponds to this type of device. 

Furthermore, their processing causes less damage to the tools. Some specific parts are 

made of other materials, such as the PVC handle or polymer sliding bearings. 

Details of each part ordered are available in an attachment table 1. This table describes in 

detail the usefulness of each part, its material, its supplier and a link to the page of the 

supplier part. 
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Table 1 – Summary of the inputs and outputs of the device. 

 

 

Table 2– Spend Review by Supplier 

 

Rotation sensors 

The rotation sensors are the most important parts of the device: they provide the result of 

each experiment. These results will be useful in INSERM. It is therefore necessary to 

have precise parts to obtain a realistic result, and light parts so as not to hinder the subject's 

movements. 

To meet these conditions, magnetic sensors have been used. Their advantages are good 

accuracy, high resolution (0.01°), small size and non-contact measurement. 
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We therefore ordered two different sensors for both rotations from the supplier RLS: 

 

- 2 "Orbis™ absolute rotary encoder" for horizontal rotation 

- 2 " RM08 super small non-contact rotary encoder, RM08I " for sagittal rotation 

 

However, these two sensors have an accuracy indicated by the supplier of ± 0.3°. This 

does not correspond in the first place to the specifications set by INSERM, which required 

an accuracy of 0.1°. In relation to the possible confusion between the resolution (number 

of digits) and the accuracy (difference with the truth) of the INSERM, we found no 

rotation sensors of this accuracy. These first RL" sensors were installed on the machine, 

so it will be necessary to decide whether to use more precise sensors later. 

The sensor in the sagittal plane, supplied with 5V, sends an incremental output. A change 

in the state of the A or B signal increases the angular position by a "count per revolution", 

360/4096° in our case. Signals A and B are out of phase by a quarter of a period. The 

direction of phase shift indicates the direction of rotation. The Z signal sends a pulse when 

the sensor has completed a full revolution. 

 

 

Fig.23 – Signal A,B and Z 

 

The direction of the phase shift induces a different sequence of states. So for [A(n-1) =0 

and B(n)=0] or [A(n-1) =1 and B(n)=1], we will have a first direction of rotation, 

otherwise the other direction. 
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The sensor in the horizontal plane sends a PWM (Pulse Width Modulation) signal. This 

signal therefore has a constant time period but a duty cycle that varies according to the 

angular position. 

  

A minimum high state corresponds to an angle of about 360°, a maximum high state at 

an angle of 0° (Figure 21). In the middle, the width of the high state is proportional to the 

angle, so it is easily found thanks to the following formula: 

 

Since the signal period is 8192 µs, a minimum acquisition frequency of 440 kHz is 

required to have an accuracy of 0.1°. 

A board made by the technician allows this signal to be translated into an analog signal. 

The signal value indicates an angular position. 

 

 

Fig.24 – PWM (Pulse Width Modulation) signal 

 

A minimum high state corresponds to an angle of about 360°, a maximum high state at 

an angle of 0° (Figure 24). In the middle, the width of the high state is proportional to the 

angle, so it is easily found thanks to the following formula: 
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Since the signal period is 8192 µs, a minimum acquisition frequency of 440 kHz is 

required to have an accuracy of 0.1°. 

A board made by the technician allows this signal to be translated into an analog signal. 

The signal value indicates an angular position. 

The motors 

After several camera projects, we chose to motorize the support of the subject's limb with 

cables. The motors rotate a threaded rod that wraps or unwinds the cables to manage their 

length to the handle of the support. 

The choice is made for stepper motors, which allow good positioning accuracy and open 

loop control. 

The calculations on Matlab allow to obtain the torque as a function of the trajectory, the 

speed and weight of the handle, the torque as a function of the speed of rotation of each 

motor. This provides the most critical use case of the engine (Figure 25). The engine 

chosen is the smallest that allows to reach this most critical case, as shown by its operating 

curve (Figure 26). 

 

Fig.25 – Torque as a function of the trajectory 
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Fig.26 – Critical case 

 

This is a standard NEMA 17 size motor, supply voltage 12-24V, rated current 2.1A with 

200 steps per revolution, ordered from Stepperonline reference 17HS24-2104S. 

A driver (Bipolar Stepper Motor Driver Max 3A Current 128 High Subdivision ST-7128) 

adapted to the selected motor allows control of the motor. Connections to the driver are 

made as follows: 

- DC+/DC- : Power supply 12-24V 

- A+/A-/B+/B+/B+/B+/B-: two wires from one motor coil on A, two wires from the other 

coil on B 

- PUL+/PUL- : 0-5V square signal, one pulse turns the motor by one step. 

- DIR+/DIR- : square signal of 0-5V, direction of rotation of the motor, rotates in a 0V 

direction and in 

on the other side at 5V 

- ENA+/ENA-: to be left disconnected 

  

A code per switch allows you to choose the intensity supplied to the motor from 0.6 to 

3.0A, and the microstep mode from full step to 1/128 step. Reducing the pitch obviously 

increases accuracy, but it also reduces the vibrations in the motor, which are very 

important for a whole step. However, this has the disadvantage of reducing the torque 

provided by the motor. 
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Fig.27 – Bipolar Stepper Motor Driver 

 

In this way the motor can be rotated by choosing the direction and speed. The first is set 

by sending a high or low state to the DIR input, the second by varying the frequency of 

the square PUL signal. 

 

Trajectory calculation 

The objective of this part is to set the arm support in motion following a circular trajectory 

of the center of the elbow position. 

The origin of the marker (Oxyz) is on the top of the cage as shown in the figure. 

25. The positions of the pulleys in (xyz) are measured on the device. 

 

The initial position of the bracket for each start of the trajectory is horizontal (zero sagittal 

plane angle) and perpendicular to the shoulders (zero horizontal plane angle). The 

position of the handle in the space at the beginning is known by an initialization phase of 

the device. The x position of the elbow is equal to that of the handle (zero horizontal plane 

angle), the z position is constant on the device and the z position is measured on the device 

and inserted on the interface by the user. 
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The trajectory of the handle tip is calculated from: the chosen plane, the chosen angle, the 

elbow position, the forearm length and the desired speed of rotation. This gives in 

equation: 

 

 

 

with 

- (x,y,z) : handle coordinates at time n*f (mm) 

- (xC,yC,zC) : elbow coordinates (mm) 

- R: forearm length (distance between elbow axis of rotation and handle) (mm) 

- ω : forearm rotation speed (rad/s) 

- f : time of a calculation phase (s) 

- n : number of calculation steps since the beginning of the trajectory 

- α : angle of inclination of the trajectory plane with respect to the plane (yz) 

The spatial position of the handle is first calculated in the plane (Oyz) where the handle 

follows a circular trajectory of centre C (the elbow) (Figure 27a), then projected on an 

inclined plane of α rad with respect to the plane (Oyz) around C (Figure 27b). So to have 

a rotation of the arm in the sagittal plane it is necessary to choose α=0 and for a rotation 

in the horizontal plane α=π/2. 

 

Fig.27 – Spatial position 
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Simulink Programming (MATLAB) 

To function properly, the electronic parts of the device must be connected together. The 

logical connections between each input and output of the device can be managed by the 

MATLAB software via "Simulink". The created model thus connects the three previous 

parts. 

 

The Simulink model called piloting.mdl, illustrated in the following page, has several 

parameters 

from the beginning. Some of them can be modified by the user from the interface: 

- Plane: 0 = sagittal; 1 = horizontal 

- Covered corner 

- Test: 0 = Ipsilateral; 1 = Controlateral 

- Dominant arm: 0 = right; 1 = left 

- Y position of the elbow 

- Maintenance time 

 

Some parameters are constant and cannot be changed by the user interface: 

- Rotation speed: π/6 rad/s 

- Time of a calculation phase 

- Elbow Z position 

- Motor pitch angle: 1.8°. 

- Microstep: 1/8 

 

The program also receives the input signals from the four sensors, which are processed 

to recall the angular values. 

The program outputs a signal for the direction of rotation and a square signal to the motors 

to turn the motor. 
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The program will allow, according to the parameters chosen by the user via the interface 

and the option 

to determine the frequency of the signal to be sent to the motors and the direction of 

rotation. 

The "Lengths" subsystem allows to recalculate in real time the length of the unwound 

cables according to the speed and direction of rotation of the motors. It also allows 

calibration of the cables (Appendix *). 

 

The 'Winding - Unwinding' subsystem makes it possible to control each motor in one 

direction or the other at constant speed (Appendix 1). 

 

The 'Initialisation' subsystem makes it possible to pull the cables to a support position of 

0° in the horizontal plane and 0° in the sagittal plane (Appendix 1). 

 

The 'Trajectory' subsystem allows the engines to be controlled to follow the test mode 

and trajectory chosen according to the parameters entered via the interface. It calculates 

the position of the handle in space at all times according to the trajectory seen above. 

From these positions the length of the cables unwound at all times is deduced. The 

difference in cable length between two moments makes it possible to deduce the speed of 

rotation of the motors at all times (Appendix 1). 
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Fig.28–  Simulink model of the prototype 

 

 

The controls 

Several tests must be performed to validate the use of the device, especially since a human 

subject will introduce his or her limbs into the device. However, the regulations in force 

regarding the use of this machine are not known. The INSERM team that is used to these 

devices is aware of this. 

For the moment, we have performed some basic tests on the physical capabilities of the 

device: 

- The rigidity of the structure seems sufficient. The structure can be easily moved by two 

people thanks to the handles and passes through classic sized doors. 

- The movements of the subject's limbs do not seem to be hindered by parts, especially 

the motors. The only annoyance appears in the case of a contralateral test for a rotation 
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in the horizontal plane with an angle of -20°: the two hands touch each other if the 

shoulders (and therefore the arms) of the subject are not too far apart. 

- The slider connection for shoulder width is correct: everything is rigid, well sized and 

repairable, even if the slider bearings are not "slippery" enough in the profile. 

- The winding system seems to work correctly with polypropylene wires. The wire adapts 

well to the winch groove during winding. The wires remain tight in general. When the 

carabiner is loosened, the wire remains taut behind the pulley and does not unroll the 

winch. We don't have to give it too much play. 

- For a tone of 1/8 of a full pitch, the vibrations of the motor are reduced but remain 

substantial and propagate in the structure. Even running engines make a loud noise. It is 

necessary to find a solution for these problems. 

Subsequently, many tests must be carried out to make sure that the device does not affect 

the measurement. The specifications specified that it required a minimum of sensory 

signals, both tactile and audible, in order not to guide the subjects. These aspects must be 

checked once the unit is fully assembled. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 46 

Zettlex IncOder 

 

During the first meeting with Salam Bahmad, PhD student at INSERM, we have 

discussed about what are the possible implementations to make on the prototype. 

At first time, it was necessary to do a check of the machine to verify what are the problems 

and then we established the main objectives of the work:  

1. Find a better Encoder, with improved accuracy; 

2. Implementation of other sensors (like accelerometers) to obtain more precise data 

about the position of the limb; 

3. Review the design of pieces to block and change mobility of the mechanical arm; 

4. Design new components to improve the control part to follow the movement of 

the arm when the subject is active; 

5. Improve the overall ergonomics of the prototype; 

6. Improve overall safety for both the subject and the operator; 

7. Design ideally how to obtain a new diagonal trajectory for the test. 

 

The first point elaborated followed the rapport on the possible encoders that could replace 

the “RM08I super small non-contact rotary encoder for the sagittal rotation” with another 

one with a better accuracy but, at the same time, not much bigger. 

In general, the system for measuring the angle of rotation is composed of a mechanical 

interface for coupling to the application, from a disk (or other reading source), from 

electronic sensors, and from an electronic interface. In the case of incremental systems, 

the number of divisions (notches) of the disk is generally defined as the number of pulses. 

An incremental system transforms a constant rotation of the motor shaft into a periodic 

signal. The frequency depends on the resolution (number of notches) of the disk. In the 

case of incremental encoders, there is no a priori absolute reference position of the 

measurement signal. An additional reference signal (zero pulse) can be used to uniquely 

define the initial position. 
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The mechanical interface is equipped with an axis that transfers the rotary movement to 

the rotor, of a flange, intended for mechanical coupling and which can be of the fixed 

type, square or servo, and of a "case" or the casing of the encoder. Both male shaft systems 

and hollow and / or through shaft systems are available. 

The main features that define the mechanical system are: 

• the maximum number of revolutions per minute, or the maximum rotation speed; 

• the permissible axial / radial load on the shaft, ie the highest continuous or alternate 

force that can be applied to the shaft without exceeding the specified error limits or 

without impair bearing functionality. 

The electronic interface is used both for the encoder power supply and for data 

transmission between the encoder and the external data processing system (PLC, pulse 

counter, speed and angle indicators). The electronic circuit can also process optional data 

such as diagnostic signals and information relating to position, speed, cams, the location 

of the rotor as feedback for the position control loop and switching of the motor phases. 

Incremental encoders normally use a bar code composed of light / dark fields of equal 

width. For a relative movement of the optical disk with respect to the detection system 

(usually a phototransistor in encoders with optical technology) the acquisition system will 

receive a certain amount of optical pulses which will convert into electrical signals 

(channels). Staggering the light-sensitive surfaces of the detection system, the so-called 

scale increments are scanned twice and generate two electrical signals with a spacing of 

π / 2 corresponding to 90 degrees (a quarter of a period). It is thus possible to recognize 

the direction of rotation or the movement of the graduated scale with respect to the 

detection system. It is also possible to generate sinusoidal signals, which can then be 

digitized or interpolated, to obtain a higher resolution. Counting the sinusoidal signal 

passages from zero or the period fractions during interpolation the relative displacement 

is measured. 

Since, with incremental measurement systems only the relative movement is determined 

and not the absolute position, in most cases a reference notch is applied on the incremental 

scale. Once this mark is exceeded, a reference signal is generated at the output, the so-
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called zero pulse. This value is associated with a certain absolute position or a certain 

angular value. 

 

One of the best encoders found on commerce is Zettlex IncOder: this is non-contact 

device for precise angle measurement. They use an inductive technique, similar to that 

used by electrical transformers.  

The magnetic reluctance system is based on the measurement of changes in the resistance 

of the magnetic circuit caused by the passage of the teeth of the wheel set on the motor 

shaft. The magnetic band system uses a magnetic sensor that detects the field coming 

from a drum covered with a surface material for recordings on which the position signals 

have been engraved.       

                                                                                        Fig.29 – Zettlex Incoder 

It has two main parts each shaped like a flat ring: a 

Stator and a Rotor. The Stator is powered and 

measures the angular position of the passive Rotor. 

A big bore and low axial height allow easy 

integration with through-shafts, slip-rings, direct 

drive motors, optical-fibres, pipes or cables.  

 

IncOders make it easy to achieve high precision, high reliability angle measurement as 

required (±0,1°).  

  

All the electronics receive power and output a signal. The output signal shows the position 

of the Rotor relative to the Stator. Devices with absolute digital outputs, such as SSI, SPI 

etc., are truly absolute which means that they need no motion at power up to determine 

position. IncOders are designed respecting ISO-9001.  

 

It’s necessary to try if the new outputs digital could work with the rest of the system 

without any others modifications. 
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Fig.30 – Technical drawings 
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Table 3 – Technical data 

 

SSI (Synchronous Serial Interface) is a widely used serial interface between position 

sensors and controllers. It is used to transfer digital data from a peripheral device to a 

central unit (PLC or Host), through a minimum number of connections with respect to 

the resources necessary for transferring it in parallel, reducing the cost of wiring and the 

risk of errors. 

This interface complies with the RS422 communication standard and implements a 

differential output for the DATA and a differential input for the CLOCK, which has a 

high immunity to both common and induced disturbances, as communication distances 

can be reached between peripherals and PLCs of considerable length. 
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The PLC sends a specific sequence of pulses to the clock line called the pulse or burst 

packet. This action causes the encoder to send the bits necessary for the formation of the 

data in synchronization with this pulse packet. 

 

 

Fig.31 – Synchronous Serial Interface 

 

Another possibility could be replacing the encoder with inertial sensors. 

Inertial sensors are advanced technological devices able to measure some variables of the 

movement (called kinematic variables) of a body to which they are firmly attached. The 

body we are referring to can be an object or the human body or, more specifically, its 

body segment.  

 

There are two main categories of inertial sensors: accelerometers and gyroscopes. 
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Accelerometer is an instrument for measuring acceleration or for detecting and 
measuring vibrations, there are different type of: 
- Piezoresistive bridge accelerometer: this is a variant of the strain gauge bridge 

accelerometer, where piezoresistive sensors are used instead of strain gauges.  

 

- LVDT Accelerometer: uses an LVDT (Linear Variable Differential Transformer) sensor. 

In these devices, the mass is composed of a ferromagnetic material and flows (suspended 

on springs or other elastic elements) inside a coil generating an induced current in the 

coils. A special circuit detects the position of the core with respect to the coils and 

generates an electrical signal proportional to the displacement.  

 

- Capacitive Accelerometer: exploits the variation of the electrical capacity of a capacitor 

as the distance between its armatures varies. The ground (made of conductive material) 

is an armature, while the other is made on the fixed structure of the device. When the 

mass moves, the capacitance of the capacitor changes (which depends on the distance 

between the armatures) and a special circuit detects the change as a function of the 

position.  

 

- Piezoelectric Accelerometer: uses the electrical signal generated by a piezoelectric 

crystal. The mass is suspended on the piezoelectric crystal, which, in this case, constitutes 

both the sensor and the elastic element. In the presence of an acceleration, the mass 

(which has a certain inertia) compresses the crystal.  

 

- Laser Accelerometer: In this device a laser interferometer measures instant by instant 

the movement of the moving object, a computer connected to it makes the second 

derivative with respect to time, thus obtaining directly the acceleration value. 

 

From accelerometers, as the word itself says, it is possible to derive a measure of the 

(linear) acceleration to which the body is subjected. From this, theoretically, one could 

obtain through a mathematical operation an estimate of speed (linear) and position. 

Unfortunately, these estimates are, at the present state of the art, so affected by errors that 
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they cannot be considered sufficiently reliable for the scientific world, but can be used, 

with appropriate caution, in some particular practical applications. 

 

On the other hand, the gyroscope is a rotating physical device which, due to the law of 

conservation of the angular momentum, tends to maintain its axis of rotation oriented in 

a fixed direction. Essentially it consists of a toroid-shaped rotor that rotates around its 

axis, when the rotor is rotating its axis tends to remain parallel to itself and to oppose any 

attempt to change its orientation. 

The main problem with gyroscopes is the presence of small offsets that cause signal drift 

and unacceptable errors during the integration process necessary to evaluate orientation 

changes.  

 

For the current state of the art, these sensors can be integrated into the mechanical arm 

system for greater control over the initial position but are not able to replace an encoder 

completely due to low accuracy. 
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Design of pieces to block and change rotations 

The second aim of the work is reviewing the design of pieces to block and change 

mobility of the mechanical arm.  

The main feature must be the ease of removal of the pieces in order to change the rotation 

in action. To redesign new pieces, it was necessary to take sizes of the different parts of 

the system and use Solid Edge. The Laboratory Ampere has different type of 3D printers, 

so we decide to use them to test also different components. 

Three-dimensional (3D) printing is one of the most versatile and revolutionary additive 

manufacturing (AM) techniques to create 3D objects with unique structure and many 

properties. Presently, various techniques such as fused deposition modeling (FDM), 

stereolithography apparatus (SLA), continuous liquid interface production (CLIP), digital 

light processing (DLP) and selective laser sintering (SLS) have been developed to form 

stereoscopic objects with complex architecture. 

“In the late 1980s, S. Scott Crump developed FDM 3D printer and it was commercialized 

by Stratasys in 1990. With the 2009 expiration of the patent on this technology, people 

could use this type of printing without paying Stratasys for the right to do so, opening up 

commercial, DIY, and open-source (RepRap) 3D printer applications. Now, FDM has 

become the most widely used 3D printing method due to its simple-to-use, low-cost and 

environment-friendly features and is increasingly used in product development, 

prototyping and manufacturing processes in a variety of industries, including household 

appliances, automobile, toys, architecture, medical appliances, aircraft and aerospace” 

[32].  

The following factors limit the application of FDM 3D printing: the mechanical strength 

of the FDM printed products are usually worse compared with injection modeling due to 

their weakness points between the layers, and also, the thermoplastic materials tend to 

shrink during the cooling process, resulting in warp of the printed products. However, for 

the pieces that we need, 3D printing is the best solution. 

Fused deposition modeling uses material extrusion to print items, where a feedstock 

material is pushed through an extruder. In most fused filament fabrication 3D printing 
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machines, the feedstock material comes in the form of a filament wound onto a spool” 

[32]. 

FDM begins with a software process which processes an STL file (STereoLithography 

file format), mathematically slicing and orienting the model for the build process, created 

with Solid Edge.  

The nozzle can be relocated in horizontal and vertical directions, and is assembled into a 

mechanical stage, that also can be moved in the xy plane. When the nozzle is migrates 

over the table in an establish geometry, it deposits a thin bead of extruded plastic, called 

a “road” which solidifies quickly upon contact with substrate and/or roads deposited 

earlier. Repeating this action, solid layers are generated: the roads are deposited side by 

side within an enclosing domain boundary. Once a layer is completed, the platform is 

lowered in the z direction in order to start the next layer. This process continues until the 

printing of the object is completed. 

During extrusion the thermoplastic filament is set up by mechanical pressure from rollers, 

into the liquefier, where it melts and is then extruded. Flow geometry of the extruder, 

heating method and the melt flow behavior of a non-Newtonian fluid are of main 

consideration in the part. The rollers are the only drive mechanism in the material 

ditribution system: consequently, filament is under tensile stress upstream to the roller 

and under compression at the downstream side acting as a piston. Therefore, compressive 

stress is the driving force behind the extrusion process. 

Usually, for FDM 3D printer are used thermoplastic materials like ABS, nylon, polylactic 

acid (PLA) and their blends. To enhance the mechanical properties of 3D printed 

thermoplastics, fiber-reinforced composites were used. However, addition of fibers often 

results in that the composites are susceptible to fracture during extrusion. Special 

additives may be necessary in the extrusion to help produce continuous and homogeneous 

filaments. In recent years, the emergence of nanocomposites has attracted great interest 

amongst researchers. By using small volume fractions of Nano additives, mechanical 

properties, heat distortion temperature and thermal stability of a polymer matrix can be 

improved.  
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In the Laboratory Primeca at INSA Lyon, it’s possible to use UP mini plus: an original 

standard FDM  3D printing which has been employed for prototyping and final product 

creation in a wide array of industries.  

 

Fig.32 – UP Mini Plus 

“A groundbreaking and time-saving feature, the UP Plus 2 was the first 3D printer in its 

class with an automatic platform calibration system. A probe’s sensor checks nine 

different points on the build surface for irregularities. If there is variation from one point 

to another, compensation settings are automatically entered into UP Studio. Print job 

removal and print surface cleaning are easy with the UP Plus 2. Simply snap the platform 

latches to secure and remove the print surface. Thanks to UP Studio’s custom nozzle and 

platform temperature control, the Plus 2 is capable of printing with a variety of filaments 

to match your purpose: ABS, PLA, PLA Composites, Polycarbonate, Bronze, 

Conductive, Nylon, Wood, ASA, PET, Flexible, Carbon Fiber and more” [30]. 

The best material, that respect our necessity, was the ABS, the right combination of the 

strength and hardness, gloss, toughness, and electrical insulation properties. “ABS is 

derived from acrylonitrile, butadiene, and styrene. Acrylonitrile is a synthetic monomer 

produced from propylene and ammonia; butadiene is a petroleum hydrocarbon obtained 

from the C4 fraction of steam cracking; styrene monomer is made 

by dehydrogenation of ethyl benzene a hydrocarbon obtained in the reaction 

of ethylene and benzene. A variety of modifications can be made to improve impact 

resistance, toughness, and heat resistance. The impact resistance can be amplified by 

increasing the proportions of polybutadiene in relation to styrene and also acrylonitrile, 
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although this causes changes in other properties. Impact resistance does not fall off 

rapidly at lower temperatures” [31]. Stability under load is excellent with limited loads. 

Therefore, by changing the proportions of its components, ABS can be prepared in 

different grades. There are two main categories of ABS: (1) for extrusion and (2) for 

injection moulding, i.e. high and medium impact strength. In general, ABS would have 

useful characteristics in a temperature range of -20 to 80 °C (-4 to 176 °F). ABS offers 

these advantages: 

• Excellent impact, chemical and abrasion resistance 

• Superior stiffness and strength 

• Easily machined and thermoformed 

• Easy to paint and glue 

• Good dimensional stability 

• Excellent electrical properties 

 

Even though ABS plastics are used commonly for mechanical design projects, they also 

have electrical properties that are justly constant over an ample variety of frequencies. 

These properties are little affected by temperature and atmospheric humidity in the 

acceptable operating series of temperatures. ABS can be recycled, although it is not 

accepted by all recycling facilities.  

“ABS is stable to decomposition under normal use and polymer processing conditions 

with exposure to carcinogens well below workplace exposure limits. However, at higher 

temperatures at or above 400 °C (750 °F) ABS can decompose into its constituents: 

butadiene (carcinogenic to humans), acrylonitrile (possibly carcinogenic to humans), and 

styrene. Ultrafine particles (UFPs) may be produced at lower temperatures during the 3D 

printing process. Concerns have been raised regarding airborne UFP concentrations 

generated while printing with ABS, as UFPs have been linked with adverse health effects” 

[31] . When it is used as a filament for the 3D printing process Fused Deposition 

Modeling it is suitable due to the high stability and various post-processing options 

(sanding, painting, gluing, filling), especially for the production of prototypes.  

 



 58 

The primary needs of the prototype were to improve the quality of mechanical 

movements, including the design of new, simple components that could be made with the 

3D printer.  

After studying the mechanical structure and carrying out qualitative tests on the 

movement, it was decided to proceed with the construction of two types of components: 

the first, similar to a clip, to block the vertical bending movement; the second to give 

greater rigidity to the structure and block the degree of freedom of rotation on the 

horizontal plane. 

I began the design by collecting dimensional data from the drawings and directly from 

the machine, so as to limit tolerance errors. I then drew several test components with the 

Solid Edge CAD system and, once I had analyzed and chosen the most suitable ones, I 

converted them into .stl format, which stands for Stereo Lithography format. The .stl file 

is represented by meshes, which are basically triangular surfaces. If the model has a large 

number of meshes, the approximation, and therefore the quality, with which it is 

reproduced will be better. This characteristic is what is known in the modelling field as 

'resolution'. Most modelling software allows you to decide the level of resolution of the 

STL file. 

 

Following the .stl file of the pieces specially drawn on Solid Edge.  

The first ones are the two clips, elastic and at the same time rigid, given their shape, to 

block the vertical rotation of the mechanical arm. 

 

 

Fig.33 – Clip’s drawing 
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The second ones are two components, which together form a rigid piece capable of 

blocking the horizontal rotation of the structure. 

 

             

Fig.34 – Component 1      Fig.35 – Component 2 
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Fig.36/37 – Clips on the prototype 

 

 

Fig.38 – Piece to block horizontal rotation 
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Control 

The aim of this part of the project is to create a computer program, which allow 

to control better and know in real time the position of mechanical arms, to add to the 

sensors system. The first idea was to make a Matlab program, in accordance with the 

control system already in place for dSpace communication, but at the end the choice was 

to work with an OpenMV Camera, introducing a specific device for image detection and 

analysis. 

 

“The OpenMV H7 Camera is a small, low power, microcontroller board which allows 

you to easily implement applications using machine vision in the real-world. It’s possible 

to program the OpenMV Cam in high level Python scripts instead of C/C++. This makes 

it easier to deal with the complex outputs of machine vision algorithms and working with 

high level data structures.  

The OpenMV H7 comes with a OV7725 image sensor is capable of taking 640x480 8-bit 

Grayscale images or 640x480 16-bit RGB565 images at 60 FPS when the resolution is 

above 320x240 and 120 FPS when it is below. Additionally, the OpenMV H7 now 

features removable camera modules which allow you to use the module with Global 

Shutter and FLIR Lepton sensors for serious computer vision applications.  

The STM32H743VI ARM Cortex M7 processor running at 400 MHz with 1MB of RAM 

and 2 MB of flash. All I/O pins output 3.3V and are 5V tolerant. The processor has the 

following I/O interfaces: 

• Full speed USB (12Mbs) interface to your computer. Your OpenMV Cam will appear 

as a Virtual COM Port and a USB Flash Drive when plugged in. 

• μSD Card socket capable of 100Mbs reads/writes which allows your OpenMV Cam to 

record video and easy pull machine vision assets off of the μSD card. 

• SPI bus that can run up to 100Mbs allowing you to easily stream image data off the 

system to either the LCD Shield, the WiFi Shield, or another microcontroller. 

• I2C Bus, CAN Bus, and an Asynchronous Serial Bus (TX/RX) for interfacing with 

other microcontrollers and sensors. 

• 12-bit ADC and a 12-bit DAC. 
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• Three I/O pins for servo control. 

• Interrupts and PWM on all I/O pins (there are 10 I/O pins on the board). 

• RGB LED and two high power 850nm IR LEDs.” [34] 

 

Fig.39 – OpenMV Cam 

The idea of the computer program is to detect a color, draw a box around the area and 

track in real time the position of the center. Given the environmental conditions for testing 

and using the prototype, which are still being defined, it was decided to use yellow, a 

colour that is more easily identifiable in a wide range of colour scales and atmospheric 

light quantities. For this reason, a yellow sticker had to be placed at the base of the 

mechanical arm handle. 

 

 

Fig.40 – Yellow sticker to detect 
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Follow the written program: 

 

# Single Color Code Tracking 

import sensor, image, time, math 

thresholds_index = 0 #for yellow 

# Color Tracking Thresholds (L Min, L Max, A Min, A Max, B Min, B Max) 

# The below thresholds track in general yellow things. 

thresholds = [(50,100,-20,20,30,100)] #generic_yellow_thresholds 

 

sensor.reset() 

sensor.set_pixformat(sensor.RGB565) 

sensor.set_framesize(sensor.QVGA) #320x240 

sensor.skip_frames(30) 

sensor.set_auto_gain(False) # must be turned off for color tracking 

sensor.set_auto_whitebal(False) # must be turned off for color tracking 

clock = time.clock() 

 

# Only blobs that with more pixels than "pixel_threshold" and more area than 

"area_threshold" are returned by "find_blobs" below. Change "pixels_threshold" 

and "area_threshold" if you change the camera resolution. "merge=True" must 

be set to merge overlapping color blobs for color codes. 

 

while(True): 

    clock.tick() 
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    clock.avg() 

    img = sensor.snapshot() 

    for blob in img.find_blobs([thresholds[thresholds_index]], 

pixels_threshold=200, area_threshold=200, merge=True): 

 

            # These values are stable all the time. 

            img.draw_rectangle(blob.rect()) 

            img.draw_cross(blob.cx(), blob.cy()) 

            print("x:", blob.cx(), end='') 

            print(" y:", blob.cy()) 

       print(clock.avg()) 

 

In OpenMV Cam program, the basis of the colour identification system is CIELAB 

technique. 

 

Colors might be noticed in different ways depending on individuals and may be showed 

differently depending on the peripheral display tools.  

 

“The International Lighting Commission (Commission Internationale de l'Eclairage, 

CIE) thus defined standards allowing a color to be defined, independently from the 

peripheral devices used. For this purpose, the CIE defined criteria based on the perception 

of color by the human eye, thanks to a triple stimulus.  

 

In 1931, the CIE worked out the xyY colorimetric system which allows colors to be 

represented according to their chromaticity (X and Y axes) and their luminance (Y-axis). 

The chromaticity diagram (or chromatic diagram), resulting from a mathematical 

transformation, represents pure colors on the periphery, i.e. the monochromatic radiation 

corresponding to the colors of the spectrum (the colors of the rainbow), indicated by their 
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wavelength” [28]. The line connecting the ends of the diagram (thus connecting the two 

ends of the visible spectrum) is known as the line of purples, because it corresponds to 

the color purple, made up of the two monochromatic rays blue (420 nm) and red (680 

nm):  

Fig.41 – CIE system 

The gamut of a display device is generally represented by tracing, in the chromatic 

diagram, a polygon containing all the colors which it is capable of producing.  

 

However, this purely mathematical type of representation does not take into consideration 

physiological factors, i.e. color perception by the human eye, which results in a 

chromaticity diagram that leaves too much space for greens.  

 

Finally, in 1976, in order to overcome the problems with the xyY, model, the CIE 

developed the La*b* colorimetric model (also known as the CIELab), in which a color 

is indicated by three values:  

• L, lightness, expressed as a percentage (0 for black to 100 for white) 

• a and b two color ranges, from green to red and from blue to yellow respectively, with 

values ranging from -120 to +120. 

 

The Lab mode thus covers the entire spectrum visible to the human eye and represents it 

in a uniform way. It is typically used when graphics for print have to be converted from 

RGB to CMYK, as the CIELAB gamut includes both the gamuts of the RGB 

and CMYK color models. Because three parameters are monitored, the space itself is a 

three-dimensional real number space, which enables infinity possible colors. In practice, 

the space is generally mapped into a three-dimensional integer space for digital 

/wiki/Gamut
/wiki/RGB_color_model
/wiki/CMYK_color_model
/wiki/Real_number
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representation, and thus the L*, a*, and b* values are usually absolute, with a pre-defined 

range.  

 

It is a mode that is very much used in industry, but not much favored by most software 

since it is difficult to handle. The CIE models are not intuitive, however the use of these 

guarantees that a color created according to these models will be seen in the same way by 

everyone and it aspires to perceptual uniformity. 

 

Fig.42 – CIELAB model 

The interface, that allow to create a connection tool between the robotics of the device 

and the computer that contains the "Simulink" model, has been created with ControlDesk 

instrumentation and dSPACE testing software. This software allows to quickly develop 

an interface connected to a dSPACE board, which is convenient for our prototype. 

This type of dSPACE board is nothing more than a PACE board (Equivalent to Arduino) 

and it is more suitable for prototyping: the connections are made via BNC cables, so they 

are easily scalable, and the interface is directly associated with ControlDesk without any 

code to write. The last advantage is its direct connection with MATLAB. A Simulink 

model can be loaded into a ControlDesk "experiment", its variables are then directly 

adjustable and the output values of the board (i.e. at the device input) can be viewed. 
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The prototype consists of 6 motors connected to reels that allow to move one of the 

subject's limbs. The latter puts his limb down and holds a handle in his hand. From this 

handle cables connect to the motor reels. Each motor can be controlled independently. 

The program associated with the prototype allows to follow predefined trajectories in 2 

planes (sagittal plane and horizontal plane) according to 2 modalities (ipsilateral and 

contralateral). 

Thus in the horizontal plane, the operator can choose that the subject moves from -20 ̊, -

10 ,̊ 10 ̊ or 20 ̊. Negative angles refer to the abduction movement (the forearm moves 

away from the body's centre line). Positive angles concerning the adduction movement 

(the forearm approaches the body's centre line). 

In the sagittal plane, the operator can choose that the subject moves 20 ̊ou 40 ̊.  

 

 

Fig.43 – Prototype structure 

 

On each motor, a reel is mounted. By turning it in one direction, it rolls up a cable that 

allows the handle and therefore the subject's limb to be moved. By turning in the other 

direction, the cable unwinds and by the action of gravity the mechanical arm moves in 

another direction. Figure 43 shows a schematic diagram of the cables’ prototype. In this 

diagram, only the right arm marking is shown for the sake of clarity in the diagram. For 

the same reason, the cables shown in blue in the diagram are not fully represented, so the 

constant length part connecting the pulley to the reel is not present. 

It should be noted that: 
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- point O is the origin (intersection of the vectors 𝑥0⃗⃗⃗⃗  , 𝑦0⃗⃗⃗⃗   and 𝑧0⃗⃗  ⃗) of the marker linked to 

the right arm. For the left arm the origin is not the same, but the vectors remain in the 

same direction.  

- points A, B, C and D correspond to the position of the pulleys. 

- Point E is the intersection of all cables and corresponds to the center of the ring mounted 

on the 

handle that the subject holds. 

- the cables are named as follows: 

- The cable connecting A, E and B is connected to motor 1 and is called L1.  

- The cable connecting C and E is connected to motor 2 and is called L2. 

- The cable connecting D and E is connected to motor 3 and is called L3. 

For the left arm, the same rule is applied and the lengths are called L4, L5 and L6. 

 

To adapt the prototype to the size of the subject, there are 4 parameters:  

- the width of the shoulders called position x of the elbow: this adjustment is done simply 

by unscrewing one of the two plastic cylinders, called the pad, which blocks the movable 

part along the 𝑥0⃗⃗⃗⃗   axis. Once this block has been removed, it is possible to move the 

movable arm support horizontally. Remember to replace the stud and move the stud on 

the other side to block the movable support. 

The value of this setting can be read directly from the scale. There is a mark on the vertical 

part that indicates the middle of the movable support. This value must be entered in the 

software in the x elbow position box. 

 

- the position of the elbow called the y-position of the elbow: this adjustment is made by 

unscrewing (or screwing) the lever on the left photo in To avoid having to lift the 

prototype, it is possible to pull the joystick outwards. This disengages the lever to return 

to the initial position of the lever and unscrews (or screws) it. Once the bracket is correctly 

positioned, simply screw the lever back on to lock the bracket. 
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The value of this setting can be read on the other side on the scale. There is a mark on the 

vertical part that indicates the middle of the movable support. This value must be entered 

in the software in the elbow position box. 

 

- the height of the elbow called the z position of the elbow: this adjustment is done simply 

by unscrewing (or screwing) the wing nut located in need of the screw as shown in the 

picture opposite. 

The value of this setting can be read directly from the scale. Since the foam is deformed, 

the value to be read is located on the aluminum plate under the foam as shown in the 

picture below. This value - true to be entered in the software in the box z elbow position. 

 

- the length of the forearm called position L arm: this adjustment is done from below. 

Simply unscrew the knob nut, choose the desired length and screw it back in to lock the 

position. 

The value of this setting can be read directly from the scale. The value is read from the 

extremity of the aluminum tray which translates as shown in the picture opposite. This 

value must be entered in the software in the box L arm position. 

 

These parameters are shown in following figure, in this diagram it is the right arm, but 

the same system and nomenclature exists for the left arm. 

 

 

Fig.43 – Axis on the mechanical arms 
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Boxes on display 

Below (Fig. 44) there are the functions of the boxes on the display of ControlDesk 

program control. 

 

Fig.44 – ControlDesk 

 

1. Online / offline 

This allows you to activate/deactivate the online control via the interface. So as long as 

the interface is Offline, pressing a button has no effect. To check the prototype, you must 

first click on Go Online. Once the software is online, it is possible to control the prototype 

in real time. 

The Start Measuring icon will not be used because the measurement will be automatically 

activated when the measurement is taken. However, it may be necessary to use the Stop 

Measuring button. 

 

2. Initialization of geometric parameters 

This allows the geometric parameters of the prototype to be updated. Indeed, the 

prototype must be adjusted to adapt to the size of the subject. For these settings is 

necessary to indicate the 4 measurements made during the prototype settings and click on 
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the Calibration button to validate them. If this step is not performed, the results and 

behaviour of the prototype may be totally false and/or unpredictable. 

 

3. Information on cable lengths 

This allows you to know the length of the cable between the center of the handle ring that 

the subject holds in his hand and the pulley corresponding to the cable concerned. It is 

also possible to wind or unwind one of the 6 cables according to the desired length. A 

priori this area is mainly for information purposes and will not be used during the use of 

the prototype.  

 

4. Initialization of the experiment parameters 

This allows you to define the type of experiment to be performed (ipsilateral or 

contralateral), the execution plane of the movement (horizontal or sagittal), the arm 

concerned (left or right) and the time to hold the arm at the desired angle in the case of 

an ipsilateral experiment (by default this value is equal to 3 seconds). 

 

5. Definition of instructions This allows you to: 

- Define the desired angle according to the studied movement (20 ̊ou 40 ̊ pour a movement 

in the 

sagittal plane and -20 ̊, -10 ̊, 10 ̊ or 20 ̊dans the horizontal plane). 

- Activate the movement of the prototype after pressing the Start button 

- Make a measurement after pressing the Measurement button 

- Define (automatically or manually) the length of the cables to be wound or unwound by 

clicking on the Start Free Mode button.  

 

6. Real-time measurement display 

As the name implies, this area allows you to know the angular value of the sensors and 

therefore the amplitude of the subject's movement. 
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7. Manual control 

This allows each motor to be controlled independently. This may be necessary to prepare 

the prototype, tighten or loosen the cables, reset the prototype. The drawing below shows 

the position of each pulley (and therefore each motor) and their number. 

It is also possible to change the motor speed value during these operations via the sliding 

bar below. However, this operation will rarely be necessary. The default value (1 rpm) is 

generally sufficient. 

 

8. Emergency stop 

In addition to the mushroom button to stop the engines, there is another emergency stop. 

This one is present in the red box where you just have to click on Off in case of problem. 

Before reactivating the prototype, check that the subject is ready, that there is no green 

light on the interface (at the Start and Start Free Mode buttons) and that the initial 

conditions are good (both angles must be at 0 ̊). 
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Execution of tests 

To perform a movement on the prototype, simply click on the Start button. A 

green icon appears on this button to indicate that a movement is in progress, you must not 

touch anything while the icon is on (except the emergency stop button of course). The 

selected arm will move until it reaches the desired value in the desired plane. In the case 

of an ipsilateral test, it will remain in position for N seconds where N is the value indicated 

in the test parameters before returning to its initial position. In the case of a contralateral 

test, it will return to its initial position when the operator has clicked on the Measurement 

button. 

At the first vertical tests in ipsilateral mode, I repeat the execution a lot of times changing 

the position of camera in front of the prototype. In this way was possible detecting that 

the distance of camera is a fundamental parameter for the success of points vision, 

because if the camera is too near to the mechanical arm it identifies a distorted image and 

the box center isn’t recognized on the same y axis (same y pixel).  

Best data were noted at 30 cm of distance from sticker, at a height of 14 cm in relation to 

the plane, in order to have an optimised viewing of the test workstation. 

It’s possible to convert number of pixels in distance in cm with the following formula: 

 

𝑑 [𝑐𝑚] = (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 [𝑝𝑖𝑥𝑒𝑙]

 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐷𝑃𝐼 [
𝑝𝑖𝑥𝑒𝑙
𝑖𝑛𝑐ℎ𝑒𝑠

]
) ∙ 2.54 [

𝑐𝑚

𝑖𝑛𝑐ℎ𝑒𝑠
] 

 

Z pixel X pixel Z [cm] 
169 133 23,6 
168 134 23,5 
161 134 22,5 
155 134 21,7 
148 134 20,7 
142 134 19,8 
136 134 19,0 
130 134 18,2 
124 134 17,3 
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118 134 16,5 
112 134 15,6 
106 133 14,8 
102 133 14,3 
107 134 14,9 
112 134 15,6 
117 134 16,3 
122 134 17,0 
127 134 17,7 
133 134 18,6 
138 134 19,3 
143 134 20,0 
149 134 20,8 
155 133 21,7 
160 133 22,4 
167 133 23,3 
167 134 23,3 
168 134 23,5 

 

The program also prints the time gap between two point detected, with these is possible 

plot the trajectory of the yellow rectangular sticker. 

 

Fig.45 – Trajectory detected  
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Finally, to verify that the data captured by the camera can actually be useful to improve 

the control on the prototype, a geometric check is performed according to the following 

scheme: 

 

ℎ = 𝑙 𝑠𝑖𝑛 𝛼   𝛼 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
ℎ

𝑙
) 

The vertical range length between the maximum height (point A) and the starter point of 

rotation (point B), around the center of rotation (point O), is then calculated, thus defining 

the value h. While as value l, is assumed the length of the moving mechanical arm, in this 

case 30 cm.  

These gives an alpha value equal to 18°, not corresponding to the real value imposed by 

the dSpace computer program.  

This difference is probably due to the type of lens the camera is equipped with (lens 2.8 

mm), which is a fisheye camera: an ultra-wide-angle lens that produces strong visual 

distortion intended to create a wide panoramic or hemispherical image. 



 76 

 

Fig.46 – Different type of cameras 

Fisheye lenses achieve extremely wide angles of view. Instead of producing images with 

straight lines of perspective (rectilinear images), fisheye lenses use a special mapping, 

which gives images a characteristic convex non-rectilinear appearance. 

Optical distortion occurs when the points in the object plane that make up a certain figure 

correspond to images that do not make up a similar figure. This phenomenon is largely 

due to the fact that the outer surfaces of the lenses are curved or spherical. In order to 

correct the distortion, symmetrical optical systems are used so that distortions of the 

opposite sign are introduced into them, which cancel out the distortion present in the 

image. 

In geometric optics, distortion is defined as a deviation from rectilinear projection. It is 

considered as a form of optical anomaly. 



 77 

Even if distortion can be irregular or follow many patterns, the most common ones are 

radially symmetric developing from the symmetry of a photographic lens. These radial 

distortions can usually be classified as either barrel distortions or pincushion distortions.  

 

 

Barrel distortion 

In barrel distortion, image magnification decreases with distance 

from the optical axis. The apparent effect is that of an image which 

has been mapped around a sphere (or barrel). Fisheye lenses, 

which take hemispherical views, utilize this type of distortion as a 

way to map an infinitely wide object plane into a finite image area. 

In a zoom lens barrel distortion appears in the middle of the lens's 

focal length range and is worst at the wide-angle end of the range.  

Fig.47– Barrel vision 

 

 

 

Pincushion distortion 

In pincushion distortion, image magnification increases with the 

distance from the optical axis. The visible effect is that lines that 

do not go through the centre of the image are bowed inwards, 

towards the centre of the image, like a pincushion. 

  Fig.48– Pincushion vision 

 

Mathematically, barrel and pincushion distortion are quadratic, meaning they increase as 

the square of distance from the center. In mustache distortion the quartic (degree 4) term 

is significant: in the center, the degree 2-barrel distortion is dominant, while at the edge 

the degree 4 distortion in the pincushion direction dominates. Other distortions are in 

principle possible – pincushion in center and barrel at the edge, or higher order distortions 

(degree 6, degree 8) – but do not generally occur in practical lenses, and higher order 

distortions are small relative to the main barrel and pincushion effects. 

 

https://en.wikipedia.org/wiki/File:Barrel_distortion.svg
https://en.wikipedia.org/wiki/File:Pincushion_distortion.svg
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A possible solution is to further increase the recording distance to require the movement 

in the top focus area of the sensor. 

 

 

Fig.49– Sensor Array Center 

 

Despite this, in general it’s possible to find a way to correct the barrel distortion, adding 

specific lines in the MicroPython program on OpenMV: 

img = sensor.snapshot().lens_corr(strength=1.8, zoom=1.0) 

 

In this way the effect of the lens, since it's wide angle to see more, it’s correct. The initial 

idea of OpenMV is to have the lens about 110 degree field of view, more than standard 

webcams of about 90, but for our aim it is not useful. 

It’s necessary also to add this: 

sensor.set_framesize (sensor.HQVGA) #240x160 

to reduce the resolution, because at the moment the system doesn’t have enough RAM to 

work with a 320x240 resolution with VGA images and lens correction requires to allocate 

a temporary image.  

After doing again tests, the result is different from the value that we aspect about 0.55°: 

that is the accuracy of this model.  
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This should be improved with the new encoder and also probably with a major space to 

work, putting the camera also far from 37 cm of the yellow sticker (the best distance 

found during tests). 
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Geometrical tests 

A series tests were carried out with the prototype of which I knew exactly the 

distance in centimeters and, through the detection of pixel points and geometric 

transformation, verified that the two dimensions coincided.  

Specifically, I used a fixed metal rod as a support to identify the detected starting point. 

Then I chose a series of other bars at different heights, which I noted down: this is the 

first value useful for comparison.  

 

 

Fig. 50 – Metal rods 

 

During the test, I initially placed the mechanical arm on the fixed bar, noting the starting 

pixel value detected by the program. Afterwards I placed on the starting bar the others of 

which I knew the measure and I placed on this structure composed by the arm of the 

prototype. The distance between the camera and the yellow point is always the same (L= 

37 cm). 

Following the comparisons of values, collected during geometrical tests: 

 

 [pixel] [cm] 

Start pix 112 21,72 

Final pix 101 19,58 

Measured value 2,13 

Expected value 2,1 

Gap 0,03 
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 [pixel] [cm] 

Start pix 113 21,91 

Final pix 88 17,06 

Measured value 4,85 

Expected value 4,5 

Gap 0,35 

 

 

 [pixel] [cm] 

Start pix 112 21,72 

Final pix 69 13,38 

Measured value 8,34 

Expected value 7,5 

Gap 1,03 

 

 

 [pixel] [cm] 

Start pix 112 21,72 

Final pix 63 12,22 

Measured value 9,5 

Expected value 9 

Gap 0,5 
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 [pixel] [cm] 

Start pix 112 21,72 

Final pix 54 10,47 

Measured value 11,25 

Expected value 10 

Gap 1,25 

 

Note how the gap is increasing as the height of the bar positioned on the fixed one 

increases. A possible explanation is that as the mechanical arm becomes more and more 

at an angle to the camera, as the yellow point tilts and is detected with a different shape 

from the camera. As a result, the program prints the coordinates of a box in real time, 

which is actually subject to visual distortion. 

For this reason, I repeat a same test but in the horizontal plane. In this case I used two 

bars of the same height and modified the horizontal distance between them. For greater 

precision, I added lines as indicators of the starting and the end point and then verified 

that the distance measured was equal to that obtained from the camera vision. 

Following the comparisons of values: 

 

 [pixel] [cm] 

Start pix 67 12,99 

Final pix 124 24,04 

Measured value 11,05 

Expected value 11 

Gap 0,05 
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 [pixel] [cm] 

Start pix 79 15,32 

Final pix 105 20,36 

Measured value 5,04 

Expected value 5 

Gap 0,04 

 

 [pixel] [cm] 

Start pix 67 12,99 

Final pix 112 21,72 

Measured value 8,73 

Expected value 8,6 

Gap 0,13 

 

 [pixel] [cm] 

Start pix 61 11,83 

Final pix 133 25,79 

Measured value 13,96 

Expected value 13,8 

Gap 0,16 

 

 

See how the gaps have a very small value and therefore how the optical distortion is not 

actually present in the case of horizontal movement, because the camera does not 

recognize changes in the shape of the box around the yellow point. 
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The method is therefore applicable for ipsilateral tests and to be improved for sagittal 

ones. 

Possible solutions could be a greater distance from the chamber with a more accentuated 

light, in order to improve recognition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 85 

Arduino 

 

In order to try to continuously improve the prototype, it is necessary to create a 

closed control system, so that the data stream produced by the camera can be processed 

in a microprocessor that can analyse them. Arduino, which is widely used in prototype 

development as a microcontroller programmable with the C language, therefore emerged 

as a suitable device to try and implement a replacement for the dSpace board.  

 

Arduino is an open-source board, i.e. with a free license, used to build robotics, 

electronics and automation projects. It is a microcontroller programmable board including 

a software part, or IDE, which runs on a computer and is used to write and load computer 

code (in "C" language) into the board itself.  

The Arduino project was created to allow creative artists, designers and planners to 

prototype and design their ideas without much technical knowledge. At its base there is 

the idea of making the creation of electronic projects faster and easier but above all easy 

and affordable for everyone. 

 

The peculiarity of this product lies mainly in its modularity, expandability and versatility, 

allowing all fans of electronics, robotics or even software/firmware to interface with any 

object of this type. 

There are different versions of this board, which differ in terms of calculation capacity, 

size, mode of communication with outdoor environments, etc.. In this article we will 

focus on the Arduino Mega 2560 version. 

 

This model, compared to the previous ones, is characterized by a greater number of 

input/output ports and a greater memory for sketches (set-up + loop), that is the lists of 

commands that the board will have to process. 

This article will show in detail the hardware features of the board and will also provide 

some hints of the software used to program the board and load the code. 
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How it is made 

The Arduino Mega 2560 consists of an ATmega2560 microcontroller, 54 digital and 16 

analog pins, 4 UART serial ports, a 16 MHz crystal oscillator, a USB port and power 

jack, an ICSP header and a reset button. 

It has three types of memory: Flash, SRAM and EPROM. The card works at a nominal 

voltage of 5V and supports a maximum current of 40 mA. 

As for the physical dimensions, Arduino Mega, compared to its predecessor, is more 

extended especially in length, measuring 101.52 mm, while the width is almost 

unchanged (53.3 mm). The weight is 37g. 

In order to use the board, simply connect it to a PC via a USB cable or power it via an 

external source. Arduino Mega is compatible with most of the expansion boards, the so-

called shields designed for the other versions of Arduino (UNO, Duemilanove, 

Diecimila). In the same way, it is possible to load and run most of the codes developed 

for the other versions, without having to make changes or have compatibility problems. 

 

Microcontroller 

The following figure shows the "brain" of Arduino Mega. 

 

      Fig.51– Microcontroller Arduino Mega 

 

It is an 8-bit microcontroller of AVR-RISC type that integrates a 256 KB flash memory 

for code storage, an 8 KB SRAM and a 4KB EPROM (that can be read through the 

EPROM library), an oscillator, I/O ports and add-ons such as ADC, DAC, counters and 

timers. The device is able to reach a throughput of 16 MIPS at 16 MHz operating at a 

nominal voltage of 5V. 
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ATMega needs a clock with a frequency of 16 MHz to operate; for this reason a high 

frequency oscillating circuit is required. For this reason, we find integrated in the board 

an oscillator, based on oscillations of a piezoelectric material (quartz). 

 

Power supply 

The Arduino Mega can be powered in 2 ways: through the USB port or through an 

external source (AC-DC adapter or battery) using a power jack. In this case you have to 

use a 2.1 mm connector with the positive in the middle. 

Next to the Power Jack there is a voltage regulator, whose task is to make stable (i.e. 

without excessive peaks) the voltage supplied to the components. 

 

 

Fig.52 – Arduino Mega 

 

The operating voltage of the card is between 6 and 22 volts, however, if you supply the 

card with a voltage lower than 7V or higher than 12V there could be malfunctions or 

instability. In fact providing a voltage lower than 7V consequently the 5V pins may not 

reach the nominal voltage value making the card unstable. In the second case, supplying 

the Arduino with a voltage higher than 12V, the voltage regulator could overheat with 

consequent damage to the board. 

The advice is therefore to stay in the 7-12 volts range. 
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As for the output voltage, you can choose between two different values: 5V and 3.3V. 

Four power supply pins are available: 

 

VIN pin, it corresponds to the input voltage of the card when you decide to supply it 

through an external source. More in detail, you can use this voltage in case the input 

arrives through the power jack. 

Pin 5V, is used to power the microcontroller or the other components of the board with a 

voltage stabilized at 5V. 

Pin 3.3V, like the previous one but used in case of components that need this kind of 

voltage. 

GND pin, corresponds to the negative pin, i.e. the mass. 

 

Following the Arduino code, written to create a serial communication with the camera, 

in order to create a buffer data and process these.  

 

#include <SoftwareSerial.h> 

SoftwareSerial mySerial(10, 11); // RX, TX 

void getline(char *buffer, int max_len) 

{ 

  uint8_t idx = 0; 

  char c; 

  do 

  { 

    if(idx >= max_len) return; 

    while (mySerial.available() == 0) ; // wait for a char this causes the blocking 

    c = mySerial.read(); 

    buffer[idx++] = c; 

  } 
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  while (c != '\n' && c != '\r');  

  if(idx >= max_len) return; 

  buffer[idx] = 0; 

} 

void setup() { 

Serial.begin(9600); 

mySerial.begin(9600);  

} 

void loop(){ 

  char buffer [63+1]; 

  int max_len = 63; 

  getline(buffer, max_len); 

  Serial.print(buffer); 

} 

 

 

 

 

Next step will be programming also a communication between Arduino and stepper 

motors of the prototype, to do a double control loop and remove control desk, example 

Fig.53. 
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Fig.53– Arduino Stepper Motor Control 
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Conclusion 

 

During these months, I was commissioned to improve the design of the existing 

prototype at the request of the INSERM medical research team. The device must be able 

to perform contralateral and ipsilateral tests on more planes than the subject (sagittal plane 

and horizontal plane), having more control in the position of the mechanical arms. The 

ultimate goal is to recover the angles from these two planes, thus qualifying the 

proprioception of a subject. 

The visual control part has been completely developed, adaptations are needed to replace 

ControlDesk and DSpace with Arduino. For this, I developed the serial communication 

program, between the camera and Arduino, and I started to develop another Arduino 

program, able to communicate with stepper motors and thus create a double closed loop 

control between camera and Arduino. 

During this project I learned a lot, technical skills but also a better knowledge of project 

management. In fact, during real projects where you have to interact with strangers, the 

delays are longer, you need to anticipate certain tasks. For this reason, it was not possible 

to carry out many precise tests on the prototype with the new Zettlex Encoder, which 

arrived in the laboratory only at the end of January. In this regard I have performed 

geometric tests to better control the movements that can be performed with the arms. 

It is necessary to work in a larger space in order to have more light or homogeneous 

natural light and not have difficulty in identifying the yellow colour, or to fix a small lamp 

on the prototype. In addition, fixing the camera on a specific support, designed and 

printed with 3D printing, similar to the one in Fig. 53, would make the tests faster and 

easier.  

Once all the adjustments have been completed, to fully develop the prototype you could 

work on the control of trajectories not only vertical and horizontal. 

This project at the Ampere Laboratory has allowed me to assimilate practical knowledge 

in the field of medical robotics, an area that has always fascinated me.  

I am satisfied that the work done has been appreciated by my supervisor, who have 

followed me during the months of work, and by INSERM.  
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Finally, the project is being continued by another INSA’s student and I am sure that the 

performance of the prototype will get better and better. 

 

 

 

 

Fig.54 – Possible Camera Support 
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Appendix 

“Trajectories” subsystem 
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“Initialization”  and “Rewind – Unwind” Subsystems 
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Motor Core Control Subsystem 
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“Lengths” and “Angles” Subsystems 
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È arrivato il momento di unire i puntini. Si fa così per diventare grandi. Mi guardo 

indietro e il disegno è un quadro astratto incomprensibile: la linea più lunga, costante e 

tormentata che le mie mani abbiano mai tracciato. Mi guardo indietro e la vedo quella 

linea, tremolante e decisa, cancellata, spezzata e ripresa. Credo sia stato l’anno più 

imprevedibile della mia vita e mai avrei immaginato di raggiungere questo obiettivo, 

dopo cinque anni intensi, in questo modo.  

Quando sono partita per Lione non ero pronta a lasciare casa, i miei amici, la città in 

cui sono cresciuta, la città in cui studiavo, insomma tutti i posti e le persone che ti fanno 

sentire al sicuro. Ma alla fine sono partita, perché dentro di me sapevo che forse avevo 

bisogno di crescere, o forse solo non potevo mollare tutto all’ultimo così. Un misto fra 

malinconia e sensi di colpa.  

Appena arrivata avrei solo voluto un armadio più grande, avrei voluto anche saper fare 

le lavatrici, capire dov’ero, chi fossi davvero e perché intorno a me sentivo solo gente 

che pronunciava suoni gutturali incomprensibili. 

Ho iniziato a dover contare solo su me stessa. Lì ho realizzato che a casa da sempre ho 

accanto persone che mi vogliono bene e forse non l’ho mai detto troppo spesso.  

 

Un grazie ai miei genitori e a mio fratello non basta. Grazie per accettare ogni giorno il 

mio continuo voler “scappare”, per tutti gli scatoloni e i traslochi che ancora dovrò fare. 

Grazie per aver sempre creduto in me, per avermi incoraggiata a raggiungere i miei 
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obiettivi, senza dubitare un attimo che non potessi farcela. Grazie per tutti i sacrifici fatti. 

Grazie perché posso solo immaginare quanto sia stata dura per voi la lontananza durante 

la pandemia. Grazie per avermi coccolata e sostenuta nei momenti di sconforto, quando 

le difficoltà sembravano insormontabili, spingendomi a non mollare mai. Grazie, perché 

senza di voi non sarei mai diventata la persona che sono oggi.  

Grazie per essere il mio faro sempre. 

 

Grazie ai miei amici di sempre, un po’ cambiati un po’ gli stessi. Siete il mio punto fermo 

dove poter tornare, al riparo dalle tempeste. 

Grazie alle mie amiche Giulietta, Agnese, Marta e Chiara. Grazie per essere sempre lì, 

per accogliermi con scoop e qualche bicchiere di vino. Sempre pronte ad abbracciarmi, 

ascoltarmi e capirmi. Grazie per essere le mie fans numero1, per sostenermi in ogni 

momento e in ogni scelta. Grazie per non avermi mai fatta sentire sola anche quando ero 

lontana.  

 

Grazie a Edoardo, per creder in me da sempre, più di quanto non facessi io stessa. Grazie 

per rendere speciale tutto ciò che ti circonda. Grazie per l’amicizia eterna che ci lega. 

Grazie per essere stato il primo a spronarmi ad affrontare un’esperienza lontana da casa. 

Grazie per essere dal primo giorno il mio esempio di pura libertà.  

 

Grazie a Lorenzo, per essermi a fianco sempre, ormai da non so più quanto tempo. Grazie 

per le camminate infinite quando avevamo bisogno l’una dell’altro per schiarisci le idee. 

Grazie per tutte le insicurezze condivise e superate insieme. 

 

Grazie a Giorgia, per essere capace di farmi sorridere in qualunque momento con una 

sola parola in barese. Grazie per tutti i momenti di spensieratezza, per la focaccia bella 

unta e i consigli che non sono mai tardati ad arrivare. Grazie per essere diventata in 

poco tempo una persona su cui potrò sempre contare. 
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A Lione ho iniziato a vedere ciò che mi circondava con occhi diversi: consapevole e 

grata. Ho imparato quanto sia importante capire quando è necessario cambiare idea, 

perché non si smette mai di imparare per poter tirar fuori sempre il meglio di noi stessi.  

All’inizio non ci pensavo, ma avevo appena incontrato le persone che sarebbero diventate 

presto la mia famiglia e ogni minimo barlume di privacy sarebbe presto scomparso per 

sempre.  

 

Grazie Uagliuncielli per tutti gli abbracci arrivati al momento giusto, per le nottate a 

mangiare pancakes, per i pranzetti deliziosi del Grillon, per i caffè dopo pranzo 

condividendo i pochi biscotti italiani ancora rimasti, per le cene della Gvng5, per le birre 

annacquate, per i cicchetti, per il Raggaeton, per tutti i weekend passati nelle aule studio, 

per la pasta con i broccoli della domenica, per il riso salmone avocado e pomodorini, 

per essere piombati in camera mia a qualunque ora, in qualunque momento, senza 

avvisare; per tutte le cene con solo una piastra e bicchieri di plastica presi qua e là, per 

le ”sudate” in palestra, per le cantate a squarciagola, per i computer nella doccia e per 

esserci ammalati tutti insieme alla scoperta degli sciroppi magici di Villeurbanne.  

Non vi ringrazierò mai abbastanza per aver reso ogni momento indimenticabile. 

Grazie per avermi insegnato ad essere felice senza un motivo preciso, per essere capaci 

di emozionarci tutti insieme per le piccole cose, per saper creare una festa in ogni 

momento, per ballare fino ad aver male alle gambe, per il disagio costante, per le 

situazioni più improbabili in cui ci siamo ritrovati. Grazie per essere tutti così 

diversamente instabili e così compatibili. Non mi abituerò mai all’idea di salutarvi, ma 

ogni volta sono sempre più consapevole della fortuna che ho avuto nell’incontrarvi.  

Qualunque cosa succeda, in qualunque posto saremo, so di avervi sempre vicini per 

sentirci un po’ fragili e sperduti come quando ci siamo incontrati per la prima volta al 

Parc de la Tête d’Or, pronti a ridere di ogni problema.  

Vi voglio un bene indescrivibile. 

 

Un grazie speciale a Martina, Sara e Luisa. Per gli hashtag, per la complicità e le risate 

continue. Grazie per essere capaci di portare il sole in ogni situazione, anche nei momenti 
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più grigi. Grazie per non avermi mai lasciato sola un secondo durante i mesi di 

quarantena. Grazie per aver condiviso ogni momento di questa esperienza unica.  

 

 

Siempre están los que se van y los que se quedan, pero sabéis que lo que hemos creado 

es un vínculo que no conoce la distancia. Me di cuenta de que había conocido a un grupo 

de locos, con una vida llena de historias increíbles detrás de ellos. Con vosotros cada 

día fue un descubrimiento. Por tanto, quiero agradecer eternamente a mi Familia Gitana 

Española, por ser capaces de entendernos sin demasiados idiomas, pero tan sólo con una 

mirada, por protegerme y acariciarme siempre. Gracias por enseñarme el peor español 

posible. Gracias por ser capaz de crear una verdadera “Resistencia” en un momento 

complicado y absurdo como en el que nos encontramos. Gracias por superar juntos todas 

las dificultades y por todos los momentos felices de estos meses.  

Y gracias por pronunciar mal mi nombre desde el primer día.  

Os echo mucho de menos a todos. 

 

 

None of this would have been the same without you.  

Tutto ciò non sarebbe stato lo stesso senza di voi. 


