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Abstract 

Continuous advances in simulation systems for analysing metal forming processes are 

expanding the capabilities available for the modelling of materials. There is a wide variety of 

attempts to attain a method that is not only reliable, but can also be used for a vast range of 

materials and forming conditions. Post-necking identification of a material subjected to 

uniaxial loading has been both the subject of debate and a serious challenge for manufactures 

dealing with sheet metal forming processes, especially in automotive industries whenever a 

new material is intended to be used. Up to now, depending on the fidelity level of the simulation 

model in the developing process of a component, the identification can be conducted through 

four main classes of methods. Recent methods are more complicated both to be studied and 

implemented, wherein even complex, non-standardized test methods and experiments are 

needed to be designed so as to derive the necessary parameters of the material model. However, 

even after evaluating the model parameters, a whole new challenge may arise: reliable 

implementation of these parameters for various forming conditions. In this research, the focus 

will be on the post-necking behaviour of 5xxx and 6xxx series of aluminium, as well as AHSSs, 

wherein a first approximation of flow stress curve at large values of strain beyond diffuse 

necking will be studied first and then validated in FEA. 

 

Keywords: sheet metal forming simulation, material characterization, post-necking 

identification, tensile test, hydraulic bulge test, digital image correlation technique, FEA, 

aluminium, AHSS 
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Before embarking upon discussions on ‘goals’ and ‘methodology’ the two important parts 

of this thesis work, ‘material characterization’ and ‘metal forming simulation’ will be looked 

closely first.  

 MACROMECHANICAL MATERIAL CHARACTERIZATION FOR 

STAMPING SIMULATION  

The main purpose of conducting the stamping simulation is to anticipate the level of strain, 

thinning (regarding a forming limit curve), wrinkling and springback during the forming 

process of a metallic sheet. Generally, the material properties of sheet metals alter with respect 

to its rolling direction (anisotropic behaviour), and cold forming is done at room temperature 

with quasi-static strain rates. Hence, yield models and flow curves are employed in order to 

model Deformation, failure is studied by observing material’s forming limit curves, while 

elastic modulus is enough to investigate the springback behaviour (1). 

1.1.1 Yield criteria 

Anisotropic yield models divide into two main categories: quadratic and non-quadratic (2). 

It is generally considered that although defining quadratic models needs fewer number of 

parameters, they are not accurate enough, especially when it comes to lightweight materials, 

like aluminium. On the other hand, Barlat 2000 or Banabic 2005 are the more complex yield 

models; having more parameters, they provide far more accurate matching with experimental 

data, and thus lead to better predictions in forming simulation (3).  

In the following table, the necessary test data required for a selection/calibration of yield 

models are presented, 

Model Type 𝝈𝒚𝟎 𝝈𝒚𝟒𝟓 𝝈𝒚𝟗𝟎 𝝈𝒚𝒃 𝒓𝟎 𝒓𝟒𝟓 𝒓𝟗𝟎 𝒓𝒃 

von Mises Quadratic x        

Hill 48 Quadratic x    x x x  

Barlat 89 Non-quadratic x x x  x x x  

Barlat 2000 Non-quadratic x x x x x x x x 

Banabic 2005 Non-quadratic x x x x x x x x 

Table 1 parameters required for a selection of common yield models 
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Where, 

• σy0, σy45, σy45 : yield stresses in the 0°, 45° and 90° to the grain direction1, 

• r0, r45, r90 : anisotropic parameters in the 0°, 45° and 90° to the grain direction, 

• σyb, rb : biaxial yield stress and biaxial anisotropic parameter respectively. 

Standard sheet tensile tests must be conducted to acquire yield stresses, anisotropic 

parameters and work-hardening indices (n-values), where the required approaches are 

introduced in the following standards, 

• Yield stresses: ISO 6892-1:2019 (tensile testing of metallic materials and defining the 

mechanical properties, both at room temperature and elevated temperature), 

• Anisotropic r-values: ISO 10113:2020 (plastic strain ratio of flat products (sheet and 

strip) made of metallic materials), 

• Work-hardening index, n-values: ISO 10275:2007, (tensile strain hardening exponent 

n of flat products (sheet and strip) made of metallic materials), 

• Biaxial yield and anisotropic parameters are evaluated through bulge tests while the 

measurement process is standardized by ISO 16808:2014, (biaxial true stress-true strain 

curve of metallic sheets having a thickness below 3 mm in pure stretch forming without 

significant friction influence). 

The specimen must be cut at different angles to the rolling direction of the received sheet in 

order to determine yield and anisotropic parameters in different directions. 

1.1.2 Flow stress curve and strain hardening laws 

As it will be observed in chapter two, flow stress curves are drawn by fitting the post-yield 

tensile test data using hardening laws, such as the Swift equation for steels and the Voce 

phenomenological hardening law for aluminium alloys and few grades of high strength steels 

(1) (2).  

𝜎𝑠𝑤𝑖𝑓𝑡 = 𝑪(𝜺𝟎 + 𝜀𝑝)
𝒏 

𝜎𝑣𝑜𝑐𝑒 = 𝑲𝟎 + 𝑸 (1 − exp (−𝛽𝜀𝑝)) 

 
1 Grain direction is a term used to describe the rolling direction of metal after being manufactured into sheet, 

plate or coil. 
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Flow curves are normally considered as isotropic; thus, the n-value evaluated in the rolling 

direction is employed to demonstrate the plastic behaviour in all directions (4). 

1.1.3 Forming limits 

In contrast with the flow stress curve, forming limits are treated as anisotropic and 

standardised tests (ISO 12004 2:2008) are needed to be conducted to evaluate them.  

In the test, specimens of different geometries are bulged using a punch, where considerable 

amount of attention must be paid to the lubrication of the surfaces between the sample and the 

dome-shaped punch in order to minimise the effect of friction. Furthermore, significant amount 

of post-processing work is required before obtaining forming limits (1). Generally, by 

increasing the sheet thickness, forming limits also increases, implying the fact that, for each 

available thickness, the bulge test must be repeated as well (1). The below forming limit curve 

of an aluminium alloy is derived from Nakazima test, 

 

Figure 1 Example of a forming limit curve for an aluminium alloy-CRF data 

 HOW TO CHARACTERIZE MATERIALS  

Generally, to characterize a constitutive material model, two factors are required to be 

known (1),  

• a model that describes a certain behaviour of the material, and  

• the actual data to find the model’s unknown parameters.  
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For instance, in order to describe yielding behaviour of a material, one can implement the 

von Mises yield criterion (as a Model), yet the size of the yield ellipse can be fully determined 

by conducting the uniaxial tensile test (finding the yield stress of the material) (Actual Data).  

Multiple models are normally employed to introduce different aspects of material 

deformation during a forming process; models to describe elasticity, yielding, hardening, 

failure, deformation at different and/or elevated temperatures, variable strain rates, more 

complex models for certain material behaviours such as solidification (casting) (1).  

The fidelity level of the simulation model and the required work to collect the data for 

obtaining model’s parameters will influence the choice of the desired material model. 

Consequently, the required tests to be done will depend on the chosen model (1). 

Automotive manufacturers collect test data from various resources, 

 
Open Repositories 

range from free online databases to data published in literature 

and journals’ articles.  

 
Material Suppliers 

provide only basic material properties that can solely be 

employed in the ‘standard’ material models, such as von Mises 

yield function for modelling the yielding. 

 
Commissioning Tests 

In order to exploit an advanced material model or to validate 

predictions, bespoke tests (tailored and specially-made tests) 

may be requested by the analyst to be conducted. Then, the 

company may enquire another department/firm to retrieve a 

specific test’s results. It is also advisable that, these tests should 

be conducted according to the standards (1). 

However, the analyst is responsible to do ‘due diligence’ on the final data and to ensure that 

the data is permissible to be used in the simulation model (1). This process is done in this study 

in the final chapter, whereby the theoretical post-necking result is used in a FEA to ensure the 

validity of the model. Bespoke tests can be conducted at test houses or universities with 

appropriate equipment. Even standardized tests may include specific details that need to be 

considered a priori (1).  

An analyst should pay a considerable amount of attention to the following points,  

• the requirements of the chosen material model,  

• the capabilities of test facilities,  
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• the chosen test method,  

• the chosen method for data collection during the test, 

• data post-processing procedure.  

Further and even more importantly though, significant amount of time and attention should 

be allocated to convert the format of the test data to the format which is executable in the 

simulation model (a solver-readable format) (1). 

 METAL FORMING SIMULATION 

ontinious development in the field of metal forming processes simulation has 

significantly affected the available capabilities for material modelling (1). Many 

elements must be taken into account in the material characterization for stamping process, 

among which, stamping simulation mainly depends on anisotropic material data for cold 

stamping. The numerical simulation of metal forming processes have been progressively 

employed by automotive industries not only to improve the quality and performance of 

products and processes, but also to reduce the length of product development; as a result, these 

products can be introduced to market in a shorter time span (4). Consequently, ‘how the 

manufacturing process is modelled’ strongly depends on the quality of the input data.  

In order to define a simulation model for a metal forming process, a number of inputs should 

be considered (1), 

• Material deformation and failure descriptions (material model), 

• The geometry of the workpiece (CAD model), 

• The boundary conditions of the model, 

• The adequate number of elements used to describe the geometry of the tooling and the 

component to be manufactured,  

• The simulation time-step, used to define how often the results are needed to be stored 

in the output for post-processing analysis, 

The reliability and accuracy of numerical simulations are significantly affected by the 

validity of the implemented material model (5). It should also be underlined that, material 

models need a lot of hard work to be defined, as they require data collected through physical 

tests (1). 

C 
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1.3.1 The Fidelity of a Simulation Model 

The assessment of ‘How much the simulation model is representative of the actual 

manufacturing process’ is described by the fidelity of a simulation model; the amount of detail 

included in a material model, and the purpose of the simulation itself will influence the fidelity 

of the simulation model (4).  

The acquired knowledge about the forming process, material and tooling extend gradually 

during a product development program. This ‘improved knowledge’ should be exploited by 

analysts to empower the quality of material model and simulation, in order to heighten the 

fidelity of the simulation model (1).  

 
Low fidelity simulation models 

They are used to,  

• estimate deformation modes and the financial feasibility of the process within the initial 

steps of development, 

• demonstrate the overall performance of the process,  

• demonstrate the process sensitivity to BCs and material properties, 

 
Medium fidelity simulation models 

They include accurately defined material models to obtain more precise results. Medium 

fidelity models are employed to foster the process performance, where the predictions can then 

be regarded as the basis for tooling geometries.  

 
High fidelity simulation models 

They normally contain information about the variations in BCs and material parameters so 

as to define a ‘process window’.  
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Higher fidelity simulation models 

They are employed as a ‘digital twin’ of the real process. 

Using information from general datasheets are not acceptable in high fidelity modelling, while 

feeding low fidelity modelling with detailed characterization data seems to be unnecessary (4). 

 MATERIAL MATTERS 

As it is already mentioned, material testing is an important element in providing inputs for 

the simulation of a forming process. Obtaining an accurate material properties from tests leads 

to generating a reliable material model which in turns establishes a link between the material’s 

microstructure and the observed macroscopic behaviour (6).  

However, due to the following factors this approach may not be implemented readily (6), 

• For a certain applications, the relation between the microscale and macroscopic 

behaviour is often physically unknown, 

• Material model may perform well only for a certain nominal state, while it cannot work 

efficiently in many other conditions or larger scales, 

• The complexity of the material, structure and process makes it quite difficult to consider 

all the parameters included. 

In order to overcome the above challenges, tests, either standardized or bespoke, should be 

carried out to generate the required input data. Although conducting tests has always been with 

its own predicaments, such top-down approaches are very helpful to tackle the problems within 

the microscale modelling (6). 

1.4.1 Materials 

Although the micromechanical behaviour of materials does not lie within the scope of the 

present thesis work, a short study on their general properties, development trends, as well as 

applications is almost essential. 

1.4.1.1 Aluminium: Almost infinite 

Aluminium is the third most plentiful element on earth (next to oxygen and silicon) but its 

production cost was quite high until the late 1800s (7).  
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While its lightweighting properties seems to be the main reason for its popularity, 

automotive industries are also fond of aluminium’s good durability, high corrosion resistance, 

and improved maintenance as well (8). 

 

Lightweight 

Lighter vehicles, lower energy consumption and reduced emissions by possessing 

solely 1/3 of the density of steel. Besides, although it has lower tensile strength than 

steel, its specific strengths (i.e. strength-to-weight ratios) is quite satisfying (7). 

 
Recyclability 

It is nontoxic and can be recycled with around 5% of the required energy to produce 

it from alumina. Besides, 75% of all aluminium produced is still in use. From the total 

aluminium produced in 2016, about 25% was entered the transportation industry, another 

25% was used in the packaging (like, aluminium cans), about 15% in construction and 

15% in electrical applications (7). 

 
Formability 

Makes it possible to integrate different technologies into one solution, e.g. in 

buildings. 

 
Corrosion resistance 

Natural oxide layer preserve the metal underneath against corrosion and makes it 

nearly maintenance free (7). 

 
Alloying technology 

Depending on the its application, tailor-made alloys can be developed. For instance, 

benefiting from strengthening mechanisms, aluminium alloys can be made 30 times 

stronger than pure aluminium (7). 
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Impermeability 

It is a perfect barrier against light, odour and contamination. 

 
Conductivity 

An excellent conductor for heat and electricity (twice as good as copper) (8). 

Depending on their chemical composition and properties, automotive aluminium alloys are 

designated by series; aluminium sheet of 2xxx series, 5xxx series, 6xxx series, and 7xxx series 

are often used in automotive body components, where except for 5000 series aluminium alloy, 

the other three series are heat-treated and their strength can be improved by coating and baking 

(9). 

 

Figure 2 aluminium alloys generally employed for body structures (9) 
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Since OEMs demand higher strengths, the supply balance is more towards AA6xxx than 

AA5xxx, according to Innoval Technology2, where it constitutes at least 80% of the supplied 

aluminium to carmakers (9).  

5000 series aluminium is an aluminium-magnesium alloy, in which the magnesium content 

is between 3% and 6%. With regard to the desired application, changing magnesium content 

results in different alloy grade of 5xxx series (10). 

Amongst the advantages of the 5000 series aluminium sheet, the following features stand 

out (10), 

• It is the most resistant to acid and alkali corrosion amongst different series, 

• Its high plasticity and good processing performance makes it suitable for a wide range 

of forming processes, 

• Excellent strength-to-weight ratio, 

• Full recycling compatibility, 

• It has excellent thermal conductivity, 

• Its hardness is the highest amongst different series of aluminium. 

6000 series aluminium is a high quality aluminium-magnesium-silicon alloy product. Its 

manufacturing cost is slightly higher than other series of aluminium sheets because generally 

more advanced equipment and complex production processes are required. 6000 aluminium 

sheet is a heat-treated aluminium forged product, making it a good choice for applications 

requiring high corrosion resistance and oxidation (11). In addition, it has the following 

advantages (11): 

• Strong corrosion resistance, as it contains magnesium and silicon, 

• High toughness,  

• Dense structure and few defects, due to the characteristics of the main alloying 

elements, 6000 series aluminium has a very compact structure, so that during 

forming no defects appear. 

• Good welding performance, 

• Quite suitable for surface treatment,  

 
2 Innoval Technology was formed in 2003, in Oxfordshire, UK, by people from Alcan’s Banbury Technical 

Centre. For seven decades ‘Banbury Laboratories’, as it was known, was responsible for some of the most 

significant technological developments in aluminium, including the leading automotive sheet technology used by 
today’s car manufacturers. 
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• Good performance in the oxidation processing. 

Some examples of common aluminium alloys in automotive industry are as follows (8), 

AA6016A 
- with excess silicon content originally launched by Alusuisse3  
- mainly used in Europe for external panels in vehicles.  
- produced by most of the major aluminium sheet suppliers such as Novelis4, 

Aleris5, Constellium6, Hydro7  

AA6111 

- used in aluminium intensive models developed by Jaguar and Land Rover  
- with copper as an alloying metal (0.5-0.9 wt%)  
- stronger than AA6016A,  
- less corrosion resistant than AA6016A  
- more common in USA 

Comparison between AA6016A and AA6111 

- AA6016A is less stronger but more formable alloy than AA6111 
- AA6016A has a lower bake hardening response than AA6111 
- to obtain the same level of dent resistance, OEMs use AA6016A at rather thicker gauges 

than AA6111 
- AA6111 enabled Jaguar (Jaguar Land Rover) to employ thinner closure panels than most 

German OEMs 

AA6451 

- possesses the features of both AA6111 and AA6016A  
- Novelis introduces it for external panels as Advanz e600 
- Novelis can produce it readily from recycled scrap 
- Advanz e600 is a heat treatable alloy  
- Is designed and optimized for high-strength requirements, both for 

bodywork and structural applications  
- By achieving strengths of around 350 MPa, it is ideal for structural 

applications in chassis and cross member components 

AA6181A 
- Was produced more recently due to recycling features  
- Mostly employed for outer panels in gauges of 0.9-1.0 mm for parts that 

require high strength with good formability 

AA6022 
- Was Alcoa’s choice for outer panels  
- As it is a low copper and iron alloy, it is difficult to produce it from recycled 

stock 

 
3  Alusuisse was a Swiss industrial group founded as Aluminium Industrie Aktien in 1898 in Zurich, 

Switzerland. 
4 Novelis is a subsidiary of Hindalco Industries Limited, an industry leader in aluminium, copper and metals. 
5 Novelis has acquired Aleris, extending its position as the leading producer of flat-rolled aluminium products 

and the world’s largest recycler of aluminium. 
6  Constellium is a global leader in the development and manufacturing of high value-added aluminium 

products and solutions. 
7 Hydro is in a broad range of market segments for aluminium, energy, metal recycling, renewables and 

batteries. 
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AA6061 - Used in car steering knuckles 
- was optimised by adding small quantities of zirconium, zinc and copper. 

AA5182 

AA5754 

 

AlMg5Mn (AA5182) 

- has high magnesium content  
- used for high strength and complex stampings  
- good corrosion resistance and high formability  

AA5754  

- offers very good surface quality  
- used in structural sheet applications 

RC5754 
- Novelis has supplied Jaguar Land Rover with RC5754 
- Novelis produces it from 50% production scrap 
- Is mostly used in truck trailer sheet 

Newly-developed alloys 

ACMZ 

- Created by FCA and the Oak Ridge National Laboratory  
- is resistant at significantly higher temperatures compared to existing 

materials (up to 300°C) making it suitable for some engine components 
- enabling the production of smaller engines with the same power, so lower 

fuel consumption 

AA6056 
- Made by Arconic’s Enduralum  
- With tensile strength of up to 460 MPa 
- Is a lightweight alloy 

C6A1 - Made by Arconic8 and used by FCA 
- Enables automakers to build highly deformable and lightweight components 

Table 2 information about common aluminium alloys in automotive industry (9) 

Regardless of their natural chemical properties, final alloys can obtain more desirable 

properties like higher strength, formability or hemming quality through various techniques, 

such as bake hardening, work and precipitation hardening, heating and annealing (9). 

 

 

 

 
8 a market leader industry in providing aluminium sheet to the North American automotive market. 
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1.4.1.2 DP600 Arcelor 

Arcelor has reported the specifications and applications of its Dual Phase steels in 2020. 

The following paragraphs are extracted from the company’s reports9. 

Characteristics of dual phase steel 

Developed particularly for automotive industries, dual phase steels are one of the advanced 

high strength steels (AHSS). Their microstructure typically consists of a soft ferrite phase with 

dispersed islands of martensite, where the martensite phase is considerably stronger than the 

ferrite phase. Almost using any kind of welding processes, DP steels can be welded; processes 

such as, resistance spot welding, resistance seam welding, arc and laser welding. According to 

the recommendation of Arcelor on DP steels, the specific work hardening and bake hardening 

characteristics of DP steels are required to be carefully employed in FEA of crash models. 

Applications of dual phase steel 

Dual phase steels permits designers to exploit high yield strength steels for automotive 

safety cage; components that are too complex to be produced by higher strength steels. Two of 

the low to intermediate grades of Dual phase steels are introduced in the following, 

DP500 

- 500 MPa tensile strength 
- Designed for exposed body panels: hood, doors and fender. 
- Its excellent formability, high work hardening and bake hardening 

behaviours lead to reduce outer panel gauge and weight, while 
maintaining/improving dent resistance 

- Substantial reduction of closure weight, instead of using more costly and 
lower density materials 

DP 600 

Arcelor 

used in 

chapter four 

- Used in components requiring high energy absorption: the crumple zones, 
front and rear longitudinal rails and supporting structure 

- Its low yield strength keeps the initial deceleration pulse low 
- Its high work hardening rate and excellent ductility absorb larger 

deformation energy than conventional steels 
- Its good formability allows forming complicated shapes 
- Its good weldability allows using in tailored blank and hydroformed tube 

applications 

Components such as, rockers, pillars, pillar reinforcements, roof rails and cross members 

require high yield strength to avoid any intrusion into the passenger safety compartment during 

a collision; the intermediate to highest strength grades of dual phase steels are typically 

exploited in such components in which both extremely high yield strength and adequate 

 
9 This report can be found in the following link, https://usa.arcelormittal.com/~/media/Files/A/Arcelormittal-

USA-V2/what-we-do/markets/automotive/2020-02-DataSheet-DualPhase-v3.pdf  

https://usa.arcelormittal.com/~/media/Files/A/Arcelormittal-USA-V2/what-we-do/markets/automotive/2020-02-DataSheet-DualPhase-v3.pdf
https://usa.arcelormittal.com/~/media/Files/A/Arcelormittal-USA-V2/what-we-do/markets/automotive/2020-02-DataSheet-DualPhase-v3.pdf
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formability are a must. Chemical compositions of a number of low to intermediate DP steels 

are presented in table below, 

 C Mn Si Other 
Hot roll 

DP590/600 0.05 1.2 0.6 Cr 
Cold roll 

DP590/600 0.10 1.0 0.3  
DP690 0.15 1.4 0.3  

Galvanize 
DP590/600 0.09 1.6-1.9 0.2-0.3 Cr, Mo 

DP780 0.09 2.1 0.3 Cr, Mo, Nb 
Table 3 chemical composition of DP600 used in the present work 

1.4.1.3 Complex phase steels 

Similar to DP steel family, Complex Phase (CP) steels are also considered as the transition 

to steel with very high ultimate tensile strengths (12), and were specially developed for roll-

profiling, bending and edging processes (13). 

 

  

Figure 3 Steel Strength Ductility Diagram for Today’s AHSS Grades (includes a comparison of traditional 

low-strength and high-strength steels) (14) 
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Small amounts of martensite, retained austenite and pearlite within the ferrite/bainite matrix 

typically constitutes the microstructure of CP steels. Retarded recrystallization or precipitation 

of microalloying elements like Ti or Nb result in an extreme grain refinement (12).  

Due to its balanced property profile, complex-phase steels are excellent choices for crash 

components when light-weight design also is needed to be considered; high energy absorption, 

high residual deformation capacity, good hole expansion and high resistance to edge cracking 

while maintaining excellent bending properties are among the prominent characteristics of CP 

steel (12). Furthermore, they are also considered in innovative light-weight automotive 

applications such as stiffeners, sills, door impact bars, seat mounting rails and auto chassis 

components (13). 

Some examples of current applications of CP steels can be highlighted based on the 

published documents on CP steels,  

Grade Application 
CP 680/780 Frame rails, chassis components, transverse beams 
CP 750/900 B-pillar reinforcements, tunnel stiffener 
CP 800/1000 Rear suspension brackets, fender beam 
CP1000/1200 Rear frame rail reinforcements, rocker outer 
CP1050/1470 Rocker panels, bumper beams 

Table 4 Current production grades of CP steels and example automotive applications (12) 

1.4.1.4 QP 1180 

Although conventional low-carbon TRIP (transformation-induced plasticity) steels with 

microstructures containing ferrite, carbide-free bainite, retained austenite and small amounts 

of martensite present excellent ductility, they hardly achieve tensile strengths above1100 MPa. 

In order to overcome this shortcoming, while maintaining high ductility, several novel steels 

have been developed recently, such as nanocrystalline bainitic steel (or super bainite), 

maraging-TRIP steel and quenching and partitioning (Q&P) steel (15). 

Quench & Partitioning (QP) steels are characterized by an excellent balance of high tensile 

strength and acceptable elongation, and produced in a quenching and a partitioning step. The 

resultant microstructure mainly entails tempered martensite and retained austenite, so that a 

higher strength can be achieved in comparison with conventional TRIP steels (15). 

1.4.2 Material testing and challenges 

Testing of material makes it possible to capture all the relevant effects around the test. Thus, 

the results are both more comprehensive and more reliable than that of a completely analytical 
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approach. While the numerical or multi-scale procedure for collecting material data leaves us 

with a decision on which effects to include, provided that it is possible to model. Furthermore, 

the analyses of defects and anomalies can be conducted during an experiment. Hence, a more 

reliable material model can be constructed. Exploiting an extended test program, the process 

window (variability of a certain parameter) can be fully studied, especially when a parameter’s 

extreme values should be known to obtain a safety critical behaviour (6).  

A challenge that comes with material testing is that a vast number of experiments are 

required to be done in order to attain a full material response surface regarding all the 

independent variables (6).  

As another predicament, standardization of a test method must be considered when data 

from a variety of test programs are required to be utilized. Standardization can guarantee that 

the same approaches are employed in different test laboratories across the world, and so the 

test results can be aggregated, for example, into a specific material response model. However, 

a key obstacle in this context needed to be dealt with is that there are still some advanced 

material properties used in forming process simulations that are not yet standardised (6).  

Other challenges of testing are the amount of required data and the possibility to reuse data 

across different projects. This field of work is still developing where publishing standards for 

testing and introducing methods to share data will improve the availability of forming process 

simulation (6). 

All in all, undoubtedly, testing materials is the most important means to achieve material 

data needed to simulate forming processes. It is also considered as a complementary approach 

to construct the data from basic physics models, like in multi-scale simulation. The most 

comprehensive approach to obtain material data can be outlined by a combination made of: 

acquiring knowledge regarding the physics of the problem, and data derived from material 

testing so as to find the unknown variables and effects within the process (6).  

 CHALLENGES IN MATERIAL MODEL SELECTION FOR FORMING 

SIMULATION 

The basic approximation to calibrate material parameters in order to implement in forming 

simulation might be to choose a constant yield curve extrapolation method (e.g. Swift) in 

combination with a yield locus that can be obtained particularly through uniaxial tensile testing 

in parallel, diagonal and transverse to the rolling direction (e.g. Hill ´48). The advantages 
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attained via this approach will be multifold if it is able to describe the material behaviour 

sufficiently well (3) (16), 

• The procedure can be readily applied to new materials with few data,  

• Simple variation of parameters in the assessment of process robustness is allowed 

by clear correlations of yield locus shape or hardening,  

• Only a couple of special tests are required in order to obtain certain modelling 

outlines for material groups. 

However, supplementary experiments must be conducted in case the material require 

specific extrapolation methods or yield models (3). Even by executing biaxial bulge test, it is 

still quite problematic to obtain the specific shape of the whole yield locus by running further 

experiments. Test results have demonstrated that, not only the orientation of the additional 

experiment to the rolling direction, but also the number of additional experiments can affect 

the identification of the yield locus. However, with regard to this experimental approach, it 

should be observed that if it is possible to find optimally the yield model parameters for all the 

possible practical forming conditions (3). The studies have shown that, since standard 

experiments are not capable of optimally calibrating complex yield loci, an complementary 

process, such as, optimization approach seems to be quite essential, which also brings the 

possibility of limiting the number of additional experiments (3) (17) (16). 

 GOALS AND APPROACHES 

1.6.1 Scopes 

Having the big picture of ‘the importance of material characterization’ in mind, some 

aspects of this subject will be introduced and dealt with accordingly in this thesis work. 

Focusing on the plastic part of deformation, post-necking behaviour identification is one of the 

most important problems that costs automotive part manufacturers a considerable amount of 

time and money. Although there are some classes of methods to obtain the material’s 

deformation behaviour in a macroscopic scale and in large values of strain, up to now no one 

can safely say that a certain method is the most suitable approach to achieve this goal for any 

kind of forming process simulation. Generally, this is the point where a single method and 

merely a forward approach are not able to produce a remedy for this complicated condition. In 

the other words, for high fidelity simulation models, the material model parameters should 
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come out of a ‘cycle of continuous validation and adjustment’ using both experimental tests 

and FEA until the difference between the last obtained results reaches a negligible amount.  

1.6.2 Methodology 

In order to attain the goals that are primarily set for this thesis work, a preliminary study on 

the post-necking behaviour prediction of some aluminium alloys and AHSSs will be done in 

the following chapters. The optimum identification of the behaviour, even for a certain material 

requires a considerable endeavour, the present work, nevertheless, can be regarded as a brief 

but still fundamental approach before going into the details of the problem; which is not only 

necessary for the sake of the comparison, but it also helps to acquire a general understanding 

of the nature of the subject. Different classes of identification are discussed in the beginning of 

chapter two, providing an outline of the main approaches to tackle this problem. This chapter 

is then followed by an example of the second class of approximation, namely Siebel and 

Schwaigerer’s Model. Chapter three looks at the first class of post-necking identification, 

extrapolation method (EM). On the basis of this method, several hardening laws are firstly 

introduced and then applied to real test data of three aluminium alloys. It will be shown in 

chapter four that with the aid of biaxial test results of one aluminium alloy and a dual phase 

steel, the corresponding uniaxial tests can be extended beyond their limits; wherein, hydraulic 

bulge test is introduced in detail, and different methods are introduced as well to both collect 

and analyse the data. Going through chapter five, Digital Image Correlation technique is used 

to observe the strain field on the surface of two types of AHSS’s test specimen. Although the 

basics of DIC technique does not lie in the outline of this work, a rather deep study will be 

conducted on the results of image processing. As it was discussed, FEA can be exploited both 

to calibrate the material model parameters and validate the outcome of the post-necking 

identification prior to its implementation in the next metal forming simulation. 
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CHAPTER TWO: POST-NECKING FLOW CURVE 

IDENTIFICATION THROUGH TENSILE TESTING 
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 INTRODUCTION: FOUR CLASSES OF METHODS TO IDENTIFY 

POST-NECKING HARDENING BEHAVIOUR 

s long as standard equipment and common analytical formulas are employed to evaluate 

load-elongation data, the hardening behaviour can only be identified up to the point of 

maximum uniform elongation (i.e. the point of diffuse necking).  

With regard to the problem of extended flow curve identification of sheet metal through a 

tensile test numerous approaches have been proposed in the past. However, with the advent of 

Digital Image Correlation (DIC) the strain field inside the diffuse neck can be assessed in a 

considerable detail. Furthermore, the material behaviour hidden in the post-necking regime of 

a tensile specimen can be identified by means of the previously obtained strain fields. Based 

on this, four classes of methods to identify post-necking hardening behaviour of sheet metal 

through tensile testing can be considered (18); the methods are based on, 

• Average values across the neck, 

• Bridgeman correction and modified Siebel/Schwaigerer correction, 

• Complete solution of the general problem, 

• Special case of the Virtual Fields Method (VFM).  

Percy Williams Bridgman 
(1882-1961) 

 
Received the 1946 Nobel Prize 
in Physics for his work on the 

physics of high pressures 

Based on the pioneering work of Bridgman (19) three levels 

of approximation with respect to the problem of diffuse 

necking in a tensile specimen can be highlighted.  

The first class of methods takes necking into account by 

using average values across the diffuse neck and assuming a 

uniaxial stress state.  

The second and more sophisticated class of methods, 

concerned with the distribution of stress and strain across the 

diffuse neck.  

The third class of methods employs the complete solution 

of the general problem and considers the material state and 

the shape of the whole tensile specimen during diffuse necking 

(18). 

A 
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An overview of these methods and a classification with regard to their level of 
approximation are presented in the following. 

 FIRST LEVEL OF APPROXIMATION  

With respect to the problem of diffuse necking, the first level of approximation takes diffuse 

necking into account by averaging strain and stress over the minimum cross section. This 

means that the stress state is assumed to remain uniaxial in the post-necking regime. Moreover, 

the true stress is usually approximated by dividing the total tensile load on the specimen by the 

current minimum cross section. The true strain corresponding with a certain true stress level is 

estimated by, 

𝜀𝑡𝑟𝑢𝑒 = ln (
𝐴𝑚𝑖𝑛
𝐴0

) 
Amin minimum cross section 

A0 initial cross section 

Another common method in this class is to extrapolate the pre-necking hardening behaviour 

to high plastic strains using a phenomenological hardening law. The extrapolation method 

(EM) is considered here as a first approximation which may or may not be valid depending on 

the a priori chosen hardening law. This method will be applied to tensile test data in the next 

chapter and discussed extensively (18). 

 SECOND LEVEL OF APPROXIMATION WITH RESPECT TO THE 

PROBLEM OF DIFFUSE NECKING 

The second level of approximation tries to take the stress and strain distribution across the 

diffuse neck into account. The mathematical analysis is based on describing equilibrium state 

across the diffuse neck and provides a correction to the average stress 𝜎𝑎𝑣𝑔, in order to deal 

with the introduction of transverse stresses (19). Bridgman derived an analytical solution for 

flat specimen as follows, 
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𝜎𝑒𝑞 =
𝜎𝑎𝑣𝑔

(1 +
4𝑅
𝑤
)1/2 𝑙𝑜𝑔 [1 +

𝑤
2𝑅

+ ((
𝑤
𝑅
) (1 +

𝑤
4𝑅
))
1/2

] − 1

 

Geometrical parameters in the diffuse neck (w and R) can be obtained by pausing the 

experiment or by measuring these parameters continuously during the test. Similar to 

Bridgman, Siebel and Schwaigerer also proposed a correction factor for flat specimen (20), 

𝑘𝑓 = 𝜎𝑙
4 𝑅

4𝑅 + 𝑤
 

The disadvantage of the second class, however, is that solely the conditions at the cross 

section of the diffuse neck would be observed; while the shape of the neck and the conditions 

in the remaining plastically deforming areas are ignored. Therefore, in order to take the strain 

heterogeneity into account, a more detailed numerical analysis was performed by Ghosh (21) 

and Ayres et al. (22). Later on, numerical simulations to provide an analytical calculation of 

the true cross section of a flat specimen was also introduced by Zhang et al. (23) (24). Siebel 

and Schwaigerer approach on the extending tensile test data will be discussed in detail in 

section 2.6. 

 THIRD LEVEL OF APPROXIMATION WITH RESPECT TO THE 

PROBLEM OF DIFFUSE NECKING 

The complete solution of the general problem constitutes the third class of methods in which 

both the material state and the shape of the whole tensile specimen during diffuse necking are 

considered (18). Researchers have found that, in order to study the post-necking hardening 

behaviour, a Finite Element-based (FE-based) inverse strategy (25) can also be employed. 

Koc et al. (26) suggested a FE-based inverse procedure based on the measured tensile forces 

during the experiment, so that, a special combined experimental/numerical technique has been 

developed. The technique relied on a comparison between the real material response, and the 
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response obtained from a numerical simulation of the same test. By the proper tuning of 

material constants within the material strain hardening law, the numerical response can be 

drawn close to the measured one. For this purpose a special numerical approach, based on 

mathematical optimization methods was employed. 

Kajberg and his co-workers (27) exploited experimental full-field data to feed the inverse 

procedure. Due to the use of full-field data analysis which also assessed the necking shape, the 

identified behaviour was expected to be more accurate. 

Another possibility to extend the range of application for a material model was proposed by 

Ghouati and Gelin (28) (29), where the FEM was accompanied by an optimisation algorithm. 

The general idea in the papers was to use the forming operation of the material to the parameter 

estimation process. In order to match (using the least-square method) the evaluated response 

from the FEA to the measured response from the forming process, the adjustments of the 

material parameters in the simulation were then made. However, this approach is not practical 

when no physical large-scale or production forming process present for drawing a comparison 

(18). 
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 VIRTUAL FIELDS METHOD 

Another complete solution for identifying constitutive behaviour of materials is the Virtual 

Fields Method (VFM) (30). VFM has also been aimed at avoiding the shortcomings of the FE-

based inverse method; for instance, from a practical point of view, the coupling between the 

experimentally measured quantities and the numerically computed response can be a 

significant challenge. Moreover, the iterative FE simulations to predict the plastic instability 

are always a very time-consuming task (31). VFM is based on the principle of virtual work 

which is written in terms of a number of particular virtual fields. The basic equation for quasi-

static non-linear VFM can be written as (18), 

−∫ �̿�: 𝜀 ∗̿𝑑𝑉 +∫ �̅�. 𝑢∗̅̅ ̅ 𝑑𝑆 = 0
 

𝑆

 

𝑉

 

�̿� : actual stress tensor 
�̅� : actual traction vector  
𝑢∗̅̅ ̅: virtual displacement field10  
𝜀 ∗̿ : virtual strain field, derived from 𝑢∗̅̅ ̅ 

Further and even more importantly though, 𝜎  and 𝜀 ∗̿  are not linked via constitutive 

equations. The virtual displacement field, however, can be any function but a kinematically 

admissible one (KA)11; hence, based on the main rules of the VFM, it is permissible to exploit 

the actual displacement fields in the previous equation as they are defined as KA.  

Based on the principle of virtual work, the work performed by the external forces equals the 

internal work, the following equation holds (18)  

𝑊𝑖𝑛𝑡 = ∫ 𝜎: 𝜀�̿�𝑉 = ∫ �̅�. �̅� 𝑑𝑆 = 𝑊𝑒𝑥𝑡

 

𝑆

 

𝑉

 

�̿� actual stress tensor 
�̅� actual traction vector 
�̅� actual displacement field  
𝜀 ̿actual strain field 

Choosing this particular virtual field (the actual field) results in obtaining an energy balance 

between internal and external work like the above equation. Furthermore, in this particular case 

σ̿  and ε̿  are associated by the constitutive material behaviour (18). Thus, through the 

 
10 A virtual displacement field is defined as the difference between two neighbouring kinematically admissible 

displacement fields. In other words, it is a vector field u which is such that, if u is a kinematically admissible 

displacement field, then so is 𝑢 + 𝛿𝑢. It is furthermore assumed that the virtual displacement field is infinitesimal, 

that is, |𝛿𝑢𝑖,𝑗| ≪ 1. Corresponding to a virtual displacement field 𝛿𝑢 we may define the virtual strain field 𝛿𝜀 by  

𝛿𝜀𝑖𝑗 =
1

2
(𝛿𝑢𝑗,𝑖 + 𝛿𝑢𝑖,𝑗). 

11 A displacement field is called kinematically admissible if it is mathematically well-behaved (for example, 
continuous and piecewise continuously differentiable) and obeys the external and internal constraints, if any. 
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constitutive equations we can write the stress field in terms of the strain field ε̿ as, σ̿ = f (ε̿,q). 

The finite set of unknown parameters q (elasto-plastic material constants) can then be identified 

by the minimization of a cost function as follows, 

𝐶(𝒒) =∑[−∫ 𝑓(𝜀�̿� , 𝒒): 𝜀�̿�  𝑑𝑉 + ∫ �̅�𝑗 . �̅�𝑗  𝑑𝑆
 

𝑆

 

𝑉

]

2

=

𝑙

𝑗=1

∑[−(𝑊𝑖𝑛𝑡)𝑗 + (𝑊𝑒𝑥𝑡)𝑗]
2

𝑙

𝑗=1

 

In which, ε̿ is the actual deformation field, f(ε̿, 𝐪) is the stress associated through the yield 

surface of the material and l is the number of trials. 

Pannier and his co-workers introduced the first application of VFM in metal plasticity by 

employing actual experimental data (32), in order to find the reference parameters of a Voce 

law. This discussion is introduced in Appendix A of this thesis work.  

Exploiting 3D displacement fields, Rossi et al extracted the constitutive parameters of a 

plasticity model at large plastic strains by VFM-based procedure (33). Coppieters and his 

colleagues investigated the possibility of employing actual fields instead of virtual fields to 

study the post-necking hardening behaviour of metallic sheets (34). 

 EXTENDING TENSILE TEST DATA USING SIEBEL AND 

SCHWAIGERER’S MODEL 

Employing Siebel and Schwaigerer’s model, a method to evaluate the strain in the necking 

zone of a tensile specimen was proposed by Hoffmann and Vogl (35), in which  benefiting 

from optical systems the possibility to extend the flow stress beyond necking can be facilitated. 

2.6.1 Methodology 

As it will be seen in chapter six, a median stress-strain curve plus anisotropy values of three 

rolling directions (0°, 45°, and 90° obtained by tensile tests) are normally implemented in the 

numerical simulations. However, the amount of information that one can collect from a uniaxial 

tensile test through measurement systems is always of paramount importance.  

Owing to the necking of the specimen, at the conventional tensile test, only the data up to a 

small amount of equivalent strain can be obtained from the conventional measurement 

equipment. In this way, as it was mentioned, numerical extrapolation based on pre-necking 

data points always comes with inevitably erroneous results in the computer simulation of the 

forming process (35). Likewise, as far as normal anisotropy is concerned, the evaluation must 
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be stopped at the onset of diffuse necking (when the stress reaches the material’s UTS). Despite 

the fact that, normal anisotropy is dependent on the strain level (36), an average value is often 

used to define the anisotropy of material. Therefore, the material properties commonly 

employed in the FEA of forming processes are not accurate enough, especially during large 

deformations. 

Hoffmann and Vogl (35) then verified their results by conducting the stretch forming 

process experiment (Nakazima test) both experimentally and numerically. The simulation 

using improved material properties not only showed a better strain distribution than the results 

using conventional material properties in high strain areas, but also had a good agreement with 

experimental results. Furthermore, forming simulation could be extended, particularly up to 

the large values of strain before failure. It is worth noting that, the implementation of variable 

anisotropy in numerical simulation tools can improve the accuracy of the material failure 

prediction in the forming process (35). 

 

Figure 4 Normal anisotropy variation during deformation, 0° to RD, cold-rolled DC04 steel (35) 

Although in the past the measurement of anisotropy for large values of strain was a 

problematic task (and that is why the normal anisotropy has always been considered as a 

constant), with the advent of optical measurement systems the anisotropy variations with 

current strain level can be captured with less difficulties. 

2.6.2 Measurement setup 

An optical system, entailing two CCD cameras, take pictures of the tensile specimen 

simultaneously in each time interval that previously introduced to the system. Benefiting from 

two back-to-back cameras has demonstrated to be quite important in order to eliminate out-of-
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plane effects (32). The tensile specimen is randomly gridded by a colour spray, so that the 

shape and the position of the spackles can be readily recognized by the computer. Each picture 

is then divided into many small facets12, so that the local strain tensor of each facet can be 

evaluated by the system with a very high accuracy. Employing the volume constancy criterion 

for plastic deformation, the component of strain in the thickness direction can be calculated in 

the next phase. In the meantime, the optical measurement system, then, compares the pictures 

of the two cameras in each corresponding time. Besides, in order to have synchronous data 

collection, the force signal of the tensile test machine is provided to the optical measurement 

system (35).  

2.6.3 Stress-strain curve evaluation 

The longitudinal stress 𝜎𝑙 of each facet is calculated by the following equation, where the 

axial force is read from the tensile test equipment and the local strain is derived from image 

processing software,  

𝜎𝑙 =
𝐹

𝐴
=

𝐹

𝑤 𝑠
=

𝐹

𝑤0𝑒𝜀𝑤  𝑠0𝑒𝜀𝑠
 

F: tensile force 
A: area of the specimen cross section 
w, w0 : current/initial width of the specimen 
s, s0 : current/initial thickness of the specimen 
𝜀𝑤, 𝜀𝑠: transvers/thickness strain of a facet 

Considering the fact that the facets located in the necked zone always possesses maximum 

strain in each time step, in order to reduce the computation time, only the central part of the 

test specimen (where necking occurs later on) can be considered in drawing the stress-strain-

curve (35). The stress value derived from the last equation can be considered as the flow stress 

only before the onset of necking; when necking takes place in the specimen, however, the 

deformation is no longer uniform along the gage length and the state of stress does not remain 

uniaxial.  

The study of the true stress of a ‘constricted cylindrical specimen’ was conducted by Siebel 

and Schwaigerer in 1948, where they closely observed the geometry of the necking area (20). 

It was shown in the work of Banabic and his colleagues that for a flat specimen the flow stress 

can then be modified like the following equation (37).  

 
12 Very small surface marked by the coloured spray 
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𝑘𝑓 = 𝜎𝑙
4 𝑅

4𝑅 + 𝑤
 

𝑘𝑓: modified flow stress 

𝜎𝑙: longitudinal stress 

R: radius of necking 

w: smallest width in the area of necking 

The flow stress for materials with significant neck (such as, cold-rolled steel) can be 

calculated via this relation during the necking of the tensile specimen by monitoring the radius 

and the width of the specimen at neck for each image at given time. However, as it will be 

shown in chapter five, this method is not applicable to a wide range of materials, especially 

those in which necking geometry variation is not quite significant and symmetric during the 

deformation, so that the measurement of the radius of curvature at neck is neither practical nor 

acceptable. 
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 OPTIMIZATION ALGORITHMS FOR MATERIAL MODELLING 

The process of material modelling has evolved gradually; step by step more parameters have 

entered the modelling, and hence the complexity has increased at the same rate. 

 

 

 

Figure 5 material modelling process evolution 

‘New Approach’ in material calibration is mostly concerned with the fact that the 

descriptions of strain hardening and yield criterion are completely interrelated, although they 

were often investigated separately in the past. In order to obtain the material model parameters 

of more complex yield criteria, researchers admit that non-standardized test methods are 

necessary to be set. Thus, after conducting the classic tensile test and hydraulic bulge test, final 

identification of yield locus shape and parameters would be attained by specially designed 

validation experiments (inhomogeneous field problems) which are then simulated by FEM (3). 

The process principle entails both experiment and simulation, making it possible to assess 

models relatively quickly and effectively with regard to modelling real material behaviour 

under forming conditions (3). 

In the new approach, an inverse method in combination with the consideration of strain rate 

sensitivity is exploited to obtain the yield locus in an optimization process. Considering the 

available resources in the lab, the amount of additional experiments can be reduced 

significantly by using this optimization approach. 
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CHAPTER THREE: HARDENING LAWS 

INVESTIGATION ON NOVELIS AA5000, CONSTELIUM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AA5000 AND CONSTELIUM AA6000 



51 
 

 INTRODUCTION 

he tensile test data of three aluminium alloys produced by two different manufacturers 

are investigated in this chapter, so as to study the post-necking material behaviour 

using various strain hardening laws. As a first level of approximation, the following procedures 

is normally adopted to find the material constants in different hardening laws, 

According to the adopted hardening law and theoretical constraints, a number of theoretical 

relations among different material constants can be derived. Moreover, using the least squares 

method, a hardening law will be fitted to pre-necking tensile test data points, by minimising 

the sum of squares of the residuals at every single points.  

Two constraints are considered, 

• First condition, Considère criterion: is one simple mathematical definition for 

diffuse necking point, in which, the first derivative of stress by strain equals to the 

value of stress at that point: 𝑑𝜎1 𝑑𝜀1⁄ = 𝜎1. 

• Second condition, is obtained from the yield point information, where the plastic 

strain is zero. 

For a certain hardening law, upper and lower bounds are imposed to each material constant 

in order to reduce the number of attempts during regression analysis. Then, by minimising the 

sum of squares of the errors, it is possible to find the value of each material constant with which 

the amount of error (RMSE) is the lowest with respect to the pre-necking experimental data. 

In order to obtain flow stress curve out of the raw tensile test data, the following steps should 

be taken, 

1. Raw data from tensile test: “Elongation [%]” and “Engineering Stress [MPa]”, where 

Elongation is defined as, 𝑒 = ∆𝑙 𝑙0⁄ × 100. 

2. Calculating true strain (𝜺 %) from elongation (e %), 𝜀 = 𝐿𝑛(1 + 𝑒

100
) × 100.  

3. True stress derivation, 𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑒𝑛𝑔(1 +
𝑒

100
) . Furthermore, the values above the 

maximum stress (the onset of necking) will be ignored, due to non-uniform distribution 

of strain along the gage length.  

T 
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4. Flow curve, after obtaining engineering plastic strain by subtracting elastic part of the 

strain from the total strain value, the first point of the flow curve will be chosen by 0.2% 

plastic strain offset method; corresponding to engineering plastic strain of 0.002.  

In this way, true stress vs true plastic strain curve, i.e. the plastic behaviour of the material 

along a certain roll angle in tensile test, will be drawn. 

 AN INTRODUCTION INTO COMMON STRAIN HARDENING LAWS 

As the plastic deformation develops in the material, the initial yield surface evolves and can 

be described by a certain hardening law. So that, by parametrizing the material’s post-necking 

hardening behaviour, the next step will then be to optimize a finite set of unknown parameters 

using pre-necking available data points (31). In other words, introducing strain hardening laws 

is aimed at mathematically presenting the true stress-true plastic strain relationship for a certain 

material. Furthermore, the resulted equation can then be exploited to draw the post-necking 

behaviour where no information from tensile test is available. A strain hardening law is 

sometimes a phenomenological law whose parameters possess no physical meaning, and 

clearly there is no guarantee that the extrapolation will be valid beyond the point of uniform 

elongation (38). 

A hardening law, comes in the following general form, 

𝜎𝑒𝑞 = 𝑓(𝜖𝑒𝑞
𝑝𝑙 , 𝒑) 

p is a finite set of unknown hardening parameters, 

𝜖𝑒𝑞
𝑝𝑙  is the plastic equivalent strain. 

The function f can be either phenomenological (i.e. its parameters have nothing to do with 

the micromechanical aspects of the material itself) or can be described by a physics-based 

model tightly connected to micromechanical behaviour of the material (dislocation interaction 

processes which leads to strain hardening in metallic materials) (38). 

Strain hardening representations are often can be grouped as follows,  

• Saturated Law 

The description of the flow curves of FCC metals, such as aluminium and copper, can be 

improved by imposing saturated stress at large strain values through saturated laws such 

as, Voce (39) and Hockett and Sherby (40). 

• Power Law 
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An unbounded stress at high strain levels is produced by this law; in this group, hardening 

laws such as, Ghosh (41) and Swift (42) normally lead to acceptable results for the BCC 

structure. 

Generally, within the large values of strain, the saturated law underestimates the flow stress, 

while the power law may overestimate the flow stress. A number of alternative approaches 

have been suggested, which entails the use of a linear or nonlinear combination of both laws. 

The rest of this chapter is dedicated to conduct the nonlinear regression analysis by 

employing either Excel solver or different algorithms in MATLAB (e.g. lsqnonlin, nlinfit). The 

goodness of the fits will then be compared via RMSE calculation for a number of commonly-

used strain hardening laws. 

3.2.1 Hollomon hardening law 

Shedding light on Hollomon’s hardening law constants,  

𝜎ℎ𝑜𝑙𝑙𝑜𝑚𝑜𝑛 = 𝑲(𝜀𝑝)
𝒎 

An acceptable fitting will be derived only by applying one constraint to the solver as there 

are only two material constants for this hardening law. This constraint results from the 

Considère criterion (diffuse necking), so that 

𝑚 = 𝜀𝑝,𝑑𝑖𝑓𝑓𝑢𝑠𝑒. 

Thus, only one material constant (K) should be solved to obtain the least amount of error. 

The following diagram shows that Hollomon’s hardening law comes with a very good fitting 

when we are working on aluminium, which agrees with the literature mentioned before (43). 
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Figure 6 Hollomon hardening law fitting to an aluminium alloy and the position of corresponding diffuse necking 

3.2.2 Swift hardening law 

The phenomenological Swift power law can describe a monotonic increasing strain 

hardening behaviour, in which there are three material constants, 

𝜎𝑠𝑤𝑖𝑓𝑡 = 𝑪(𝜺𝟎 + 𝜀𝑝)
𝒏. 

Where, C is the stress amplitude, n is the hardening exponent and 𝜀0  is the strain shift 

parameter. In many practical problems the magnitude of plastic strain is much larger than the 

parameter 𝜀0, leading to a simpler power hardening law (44). Again, as these parameters have 

no physical basis, there is no guarantee that the extrapolation is valid for strain values larger 

than maximum uniform strain. 

 

Figure 7 The experimentally measured stress-strain curve and the fit by swift law (44) 
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For a wide range of metals the exponent n has the range of n = 0.1 − 0.3, while the amplitude 

can vary a lot, regarding the grade of steel, for instance (44). 

First condition, diffuse necking (Considère criterion), 

𝑑𝜎1
𝑑𝜀1
⁄ = 𝜎1. 

After applying this criterion to our test data points, we are able to find the true plastic strain 

value in which diffuse necking is going to start, named 𝜀𝑝,𝑑𝑖𝑓𝑓𝑢𝑠𝑒. 

Applying the Considère criterion to swift law, one can obtain the following relationship 

between two of the unknown material constants, n and 𝜀0, 

𝑛 = 𝜀0 + 𝜀𝑝,𝑑𝑖𝑓𝑓𝑢𝑠𝑒 

Second condition, yielding, 𝜀𝑝 = 0 and 𝜎 = 𝜎𝑦; at plastic strain equal to zero (𝜀𝑝 = 0), 

stress is equal to yield stress 𝜎𝑦; thus, we will have, 

𝐶 =
𝜎𝑦

𝜀0
𝑛
. 

While n is already obtained by the first condition, another material constants, C will be 

derived as, 

𝐶 =
𝜎𝑦

𝜀0
(𝜀0+𝜀𝑝,𝑑𝑖𝑓𝑓𝑢𝑠𝑒)

 

This constraint is quite important as it affects the behaviour of the material at the boundary 

point between elastic and plastic region. In the other words, if this is not considered in our 

study, the last data point of elastic region will not coincide on the first data point of plastic 

region, leading to an unacceptable result in FEA. 

With regard to the Excel solver parameters, two constraints are affecting the solver. The 

first one is related to the material constant, C, evaluated at yield point; while, the second 

constraint is describing the hardening exponent, n, benefiting from Considère criterion. Then, 

using least square method, the solver is able to find the proper value for pre-strain 𝜀0. 

As an example, applying Swift hardening law to one of the alloys, the following result is 

obtained, 
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Figure 8 Swift hardening law fitting to a flow curve and the position of diffuse necking 

As can be seen from the above diagram, for this type of material behaviour, due to pre-strain 

term, swift hardening law does not show a good fitting to the experimental data for small 

strains. 

By studying the behaviour of various hardening laws, studies have found that the Swift 

hardening law can be fitted best to the experimental data for austenitic stainless steels for IN 

718 and for SS 304, while for aluminium alloys, the Hollomon hardening law (𝜎ℎ𝑜𝑙𝑙𝑜𝑚𝑜𝑛 =

𝑲(𝜀𝑝)
𝒎) was demonstrated to result in the best fit (43). 

3.2.3 Voce hardening law (classical Voce saturation law) 

Unlike Swift’s hardening law, Voce’s hardening law was derived from micro-mechanical 

considerations. Voce’s law allows to describe strain hardening saturation behaviour which is 

naturally present in some material structures (45). 

The law is defined by the following equation, with three material constants, 

𝜎𝑣𝑜𝑐𝑒 = 𝑲𝟎 + 𝑸 (1 − exp (−𝛽𝜀𝑝)) 

First condition, diffuse necking (Considère criterion), 

𝑑𝜎1
𝑑𝜀1
⁄ = 𝜎1. 

Where, this condition leads to obtain a relation between Q and 𝛽 at diffuse necking strain, 

𝑄 =
𝜎𝑦

(𝛽 + 1) exp(−𝛽𝜀𝑝,𝑑𝑖𝑓𝑓𝑢𝑠𝑒) − 1
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Second condition, yielding, 𝜀𝑝 = 0 and 𝜎 = 𝜎𝑦, 

𝐾0 = 𝜎𝑦 

Considering the solver parameters adopted for Voce material constants, the objective of the 

solver is set to minimise the sum of square of errors up to diffuse necking point on the Voce 

hardening law. However, as it can be seen from the next diagram, since diffuse necking 

occurred beyond the available experimental data point, it was not possible to calculate the sum 

up to diffuse necking as no experimental data was available for the respective Voce fitting 

curve. Thus, it can be said that Voce hardening law will not result in a good approximation of 

diffuse necking for this type of material. In order to find the correct location of diffuse necking 

on the fitted curve, it is vitally important to extrapolate the curve with the same strain increment 

as before, otherwise a wrong evaluation of diffuse necking may result.  

As far as material constants are concerned, 𝐾0 is set to be equal to yield stress, while as it 

was mentioned, Considère criterion will provide us a relation between Q and 𝛽. The least 

amount of error was evaluated by changing the values of Q and 𝛽. 

Voce comes with a good approximation of the diffuse necking point, quite close to the 

experimental diffuse necking. 

 
Figure 9 Voce hardening law fitting to a flow curve and the position of diffuse necking 

It can be seen that both Voce and Swift law provide acceptable fits for small strains, but 

behave quite differently in the extrapolated area. Assuming that the true strain hardening curve 

lies somewhere in between these lower (Voce) and upper (Swift) bounds, a hardening model 
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can be introduced so that it is able to capture both extreme cases as well as intermediate 

behaviour of strain hardening (46). 

3.2.4 Swift-Voce hardening law 

With the assumption that the real post-hardening behaviour is somewhere between saturated 

Voce and Swift hardening law, the linear combination of them can be employed with a proper 

coefficient to describe the behaviour of material beyond diffuse necking using following 

equation, 

𝜎𝑆𝑤𝑖𝑓𝑡−𝑉𝑜𝑐𝑒 = (1 − α) 𝜎𝑉𝑜𝑐𝑒 + α 𝜎𝑆𝑤𝑖𝑓𝑡 

The method followed by the manufacturing team was to work on material constants of Swift 

and Voce laws separately and use the above relation to superimpose the influence of each 

hardening law. Moreover, the number of data points is prescribed to reduce to 50 so as to import 

the flow curve into the FE software.  

For small values of strain, below diffuse necking, different values of 𝛼 will affect the flow 

curve only slightly (figure 7). While for larger strains, with α=0, swift-Voce hardening law 

shows a saturation stress as Voce plays a dominant role; increasing the weight, hardening will 

be more evident and varies quite differently (figure 8). 

 
Figure 10 Swift-Voce hardening law for small values of strain 



59 
 

 
Figure 11 Swift-Voce hardening law for large values of strain 

In order to decide about the proper value of α for Swift-Voce hardening law, we need more 

investigation and evidence, such as complementary bulge test result; herein, based on the 

previous test results, α = 0.7 is prescribed by the research group for aluminium. 

3.2.5 Hollomon-Voce hardening law 

With the assumption that the real post-hardening behaviour is somewhere between saturated 

Voce and Hollomon hardening law, the combination of their effects can be used with a proper 

coefficient to describe the behaviour of material beyond diffuse necking by the following 

equation, 

𝜎𝐻𝑜𝑙𝑙𝑜𝑚𝑜𝑛−𝑉𝑜𝑐𝑒 = α 𝜎𝐻𝑜𝑙𝑙𝑜𝑚𝑜𝑛 + (1 − α) 𝜎𝑉𝑜𝑐𝑒 

Considering small values of strain (smaller than diffuse necking), only small deviations are 

observed when adjusting the value of α, and a good fitting is resulted. Figures below illustrate 

the fitting for both small and large value of strain, 
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Figure 12 Hollomon-Voce hardening law for small values of strain 

 

 
Figure 13 Hollomon-Voce hardening law for large values of strain 

In order to study the goodness of fits, a comparison between Hollomon-Voce and Swift-

Voce hardening laws are made in the following. 

For small strains, and α = 0.75, 
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Figure 14 Hollomon-Voce hardening vs Swift-Voce hardening law for small strains 

For large strains, and α = 0.75, 

 
Figure 15 Hollomon-Voce hardening vs Swift-Voce hardening law for large strains 

The goodness of fits can be studied by comparing the Root Mean Square Error of Hollomon-

Voce law with that of Swift-Voce for α = 0.75. Looking at the results reported in the following 

table, Hollomon-Voce hardening law shows a much better performance, 

 Swift-Voce Hollomon-Voce 
RMSE 4.993 0.242 
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Table 5 goodness of fits: Swift-Voce and Hollomon-Voce laws 

3.2.6 Hockett-Sherby hardening law 

This law, defined by the following equation, normally leads to a good fit for aluminium 

alloys flow curve, 

𝐾𝑓(𝜑) = 𝜎𝑠𝑎𝑡 − (𝜎𝑠𝑎𝑡 − 𝜎0.2)𝑒
−𝑚𝜑𝑐 

Where it can also be written like the following relation, 

𝐾𝑓(𝜑) = 𝐴 − 𝐵𝑒−𝑚𝜑
𝑐, 

There are four material-related constants; 𝜎𝑠𝑎𝑡 is the saturation stress, 𝜎0.2 is the initial yield 

stress, m is the hardening coefficient and c is the material’s hardening exponent. 

First condition, diffuse necking (Considère criterion), 

𝑑𝐾𝑓
𝑑𝜑⁄ = 𝐾𝑓. 

Where, this condition leads to obtain a relation among the material constants at diffuse 

necking strain, 

𝐴 = 𝐵 exp(−𝑚𝜑𝑑𝑖𝑓𝑓𝑢𝑠𝑒
𝑐 ) [1 + 𝑚𝑐𝜑𝑑𝑖𝑓𝑓𝑢𝑠𝑒

𝑐−1 ] 

Having this equation, rather than four constants, the solver only needs to work on three 

constants to find the least amount of error. However, firstly, plastic strain at diffuse necking 

must be found through initial settings of constants. Although reducing the number of constants 

normally leads to hindering the fitting problem, first and second condition must be applied to 

obtain a realistic fit. 

Since the stress-strain curves of some aluminium alloys seem to approach an asymptote 

indicating a saturation of strain hardening, Hockett-Sherby is able to track this behaviour 

benefiting from the 𝑒−𝑚𝜑𝑐 term in its definition. 

Second condition, condition at yield point, does not lead to an acceptable relation for the 

Hockett-Sherby law.  

In conclusion, for small strains the following result is obtained for an aluminium alloy, 
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Figure 16 Hockett-Sherby hardening law for small strains 

And for large values of strain, 

 
Figure 17 Hockett-Sherby hardening law for large strains 

Moreover, it is clear that Hockett-Sherby gives a very good approximation of diffuse 

necking initiation for aluminium. 
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3.2.7 Swift/Hockett-Sherby hardening law 

Imposing Swift hardening law to Hockett-Sherby will result in a reduction in Hockett-

Sherby’s stress saturation with large values of strain. The law is defined as the following 

equation, 

𝜎𝑆𝑤𝑖𝑓𝑡/𝐻𝑜𝑐𝑘𝑒𝑡𝑡−𝑆ℎ𝑒𝑟𝑏𝑦 = (1 − α) 𝜎𝑆𝑤𝑖𝑓𝑡 + α 𝜎𝐻𝑜𝑐𝑘𝑒𝑡𝑡−𝑆ℎ𝑒𝑟𝑏𝑦 

The following diagram shows the behaviour of this law with respect to different weights (𝛼) 

for Swift and Hockett-Sherby terms. 

It can be seen for small plastic strains, (between 2% and 22%, i.e. in the range of valid 

experimental data below diffuse necking), increasing the share of Hockett-Sherby will result 

in a better fitting to the experimental data. This is another evidence that swift law cannot be a 

reliable choice for aluminium alloys.   

 
Figure 18 Swift/Hockett-Sherby hardening law for small strains 

Looking at large values of strain in (figure 16), changing the weight will affect the fitting 

considerably. Thus, the decision about the best value for weight (𝛼), that satisfies both small 

and large values of strain, depends on complementary tests such as bulge test which provides 

us with data for larger values of strain. 
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Figure 19 Swift/Hockett-Sherby hardening law for large strains 

However, considering Swift/Hockett-Sherby law, the observation of the research group advises 
to factor in α = 0.75 for aluminium and α = 0.25 for steel. Applying this instruction, the 
Swift/Hockett-Sherby flow curve will be derived as the following figure, 

 
Figure 20 Swift/Hockett-Sherby hardening law, 𝛼 = 0.75 for aluminium 
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3.2.8 k-exponent function 

The new exponential function (47) can be considered in this study as a phenomenological 

strain hardening law, in order to find a fitting function by means of a nonlinear regression 

analysis of pre-necking data points according to the following relation; where at low t or when 

the deformation parameter 𝜅 approaches the value zero the new exponential function behaves 

like the ordinary exponential function holding (47), 

𝑒𝑥𝑝𝜅(𝑡) = (√1 + 𝜅2𝑡2 + 𝜅𝑡)1/𝜅 
𝑒𝑥𝑝𝜅(𝑡) ≈ exp(𝑡) , 𝑡 → 0 

𝑒𝑥𝑝𝜅(𝑡) ≈ exp(𝑡) , 𝜅 → 0 

By inserting the expression of the new exponential function defined in the above equation 

into Voce’s hardening law, it obtains the following explicit formula defining the new model 

(47), 

𝑦 = 𝑘0 + 𝑄 [1 − (√1 + 𝜅2𝛽2𝑥2 − 𝜅𝛽𝑥)

1
𝜅
]    . 

This formula depends on four fitting parameters (𝑘0, Q, 𝛽, 𝜅). Due to its four parameters 

which makes the process of finding them quite difficult, the applicability of this function as a 

strain hardening law in combination with a yield criterion is still unknown to the writer. 

However, its ability as a fitting function to the pre-necking data will be carefully examined in 

the following section.  

 HARDENING LAWS INVESTIGATION ON NOVELIS AND 

CONSTELIUM DATA SHEETS 

3.3.1 Novelis AA5000 tensile test results 

Looking at Novelis AA5000 data sheet, firstly, Hockett-Sherby hardening law is used to 

construct the flow curve up to 100% plastic strain, then a comparison will be made considering 

Swift-Voce hardening law. Furthermore, in order to import the results into the AutoForm 

software, 50 data points will be extracted from Swift/Hockett-Sherby  approximated flow curve 

only for zero degree roll angle. 
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Material Novelis AA5000 
E 

[MPa] 69573 

Average Thickness 
[mm] 0.895 

 

 True Rupture Stress 
[MPa] 

Ag 
[%] 

A80 
[%] n-Krupkowski r -average 

(4%-Ag) 
Yield stress  

[MPa] 
Rm  

[MPa] 

0° 346.2 22.26 22.73 0.34025 0.743 146.8 291.9 

45° 349.8 25.96 29.51 0.33884 0.925 143.6 282.1 

90° 344.2 24.05 25.91 0.34091 0.811 147.5 283.1 

Table 6 mechanical properties of Novelis AA5000 

In the first column of the table, true rupture stress is given, above which not real test data is 

available (i.e. it is the last data point in the given data set provided by the supplier). 

Furthermore, true rupture stress is reported at Ag where it can be said that necking will start 

above this point. Ag is the percentage of total uniform elongation at rupture; together with true 

rupture stress the stress-strain values at necking are determined. Above this value of elongation, 

necking will take place, where strain distribution is no longer uniform along the gage length. 

A80 is the total engineering elongation at fracture. The following flow curves are obtained, 

based on the 0.2% offset method (i.e. 0.2% engineering plastic strain criterion). 

Due to their crystallographic structure and the characteristics of the rolling process, sheet 

metals generally exhibit a significant anisotropy of mechanical properties. In fact, the rolling 

process induces a particular anisotropy characterized by the symmetry of the mechanical 

properties with respect to three orthogonal planes. Such a mechanical behaviour is called 

orthotropy (48). With respect to the rolling direction, three specimens are normally cut from 

the sheet in order to conduct the tests; zero degree direction, 45° direction, 90° direction. 
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Figure 21 Tensile specimen cut at the angle θ (measured from the rolling direction) (48) 

3.3.1.1 Zero degree roll angle 

At zero degree angle with respect to rolling direction of the sheet, three hardening laws are 

observed in the following paragraphs; Hockett-Sherby, Swift/Hockett-Sherby and Swift-Voce 

laws. Besides, a comparison is made in the end to study the goodness of the fits. 

• Hockett-Sherby hardening law 

Considering the theoretical constraints method described in section 4.1, and by applying the 

first condition, diffuse necking (Considère criterion), it is just needed to solve the problem with 

respect to three material constants, out of total four constants present in the law. 

𝐾𝑓(𝜑) = 𝐴 − 𝐵𝑒−𝑚𝜑
𝑐 

Within the range of small of strains, a good approximation of plastic strain at diffuse necking 

(20.298%) is observed, which is quite close to the true plastic uniform (mentioned in data sheet, 

19.604%). Furthermore, Hockett-Sherby RMSE within the range of experimental data is 

approximated to be, 2.627.  
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Figure 22 Hockett-Sherby hardening law, Novelis AA5000, zero degree roll angle, small strains 

And for larger values of strain, Hockett-Sherby hardening law results in the following 

diagram,  

 
Figure 23 Hockett-Sherby hardening law applied to Novelis AA5000 for large strains 

As no more than 50 data points must be imported into FEA software, based on the derived 

material constants, we redraw the flow curve, this time with 50 data points, 



70 
 

 
Figure 24 50 data points imported into FEA  from Hockett-Sherby law for Novelis AA5000 

No. True Plastic 
Strain HS stress No. True Plastic 

Strain HS stress 

1 0.000 120.3219 26 0.510 394.0887 
2 0.020 183.8139 27 0.531 394.8627 
3 0.041 223.2251 28 0.551 395.5421 
4 0.061 253.0036 29 0.571 396.139 
5 0.082 276.5299 30 0.592 396.6639 
6 0.102 295.5558 31 0.612 397.1261 
7 0.122 311.1746 32 0.633 397.5332 
8 0.143 324.1339 33 0.653 397.8923 
9 0.163 334.9742 34 0.673 398.2091 

10 0.184 344.1009 35 0.694 398.489 
11 0.204 351.8257 36 0.714 398.7364 
12 0.224 358.3933 37 0.735 398.9551 
13 0.245 363.9985 38 0.755 399.1488 
14 0.265 368.7984 39 0.776 399.3203 
15 0.286 372.9209 40 0.796 399.4723 
16 0.306 376.4709 41 0.816 399.6071 
17 0.327 379.5353 42 0.837 399.7267 
18 0.347 382.1862 43 0.857 399.8329 
19 0.367 384.4839 44 0.878 399.9272 
20 0.388 386.4792 45 0.898 400.011 
21 0.408 388.2146 46 0.918 400.0856 
22 0.429 389.7265 47 0.939 400.152 
23 0.449 391.0456 48 0.959 400.211 
24 0.469 392.1979 49 0.980 400.2636 
25 0.490 393.2059 50 1.000 400.3105 

Table 7 50 data points imported into FEA  from Hockett-Sherby law for Novelis AA5000 

• Swift/Hockett-Sherby hardening law 

The combined SHS hardening law is evaluated in this section, where 𝛼 will be considered 

as the weight factor of Hockett-Sherby.  

𝜎𝑆𝑤𝑖𝑓𝑡/𝐻𝑜𝑐𝑘𝑒𝑡𝑡−𝑆ℎ𝑒𝑟𝑏𝑦 = (1 − α) 𝜎𝑆𝑤𝑖𝑓𝑡 + α 𝜎𝐻𝑜𝑐𝑘𝑒𝑡𝑡−𝑆ℎ𝑒𝑟𝑏𝑦 
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Figures below show the influence of 𝛼  on the behaviour of the SHS fitting upon 

experimental data, both for small and large strains respectively, 

 
Figure 25 Swift/Hockett-Sherby hardening law applied to Novelis AA5000 for small strains 

 
Figure 26 Swift/Hockett-Sherby hardening law applied to Novelis AA5000 for large strains 

Following table reports RMSE for different values of α, where for α = 0.75 the best fitting 

to the experimental flow curve in the range of small strains can be obtained,  

 SHS 0.25 SHS 0.5 SHS 0.75 
RMSE 4.882 3.800 2.965 

Table 8 goodness of fits: Swift/Hockett-Sherby law for Novelis AA5000 
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Moreover, as can be observed in the following figure, for α = 0.75, diffuse necking point 

(at true plastic strain of 21.59%) approximated by SHS is beyond the experimental uniform 

elongation point (at true plastic strain of 19.60%),  

 
Figure 27 diffuse necking point for Swift/Hockett-Sherby hardening law 

50 data points exported to AutoForm software are also shown in the figure below, where the 

points are presented in the next table, 

 
Figure 28 50 data points imported into FEA  from Swift/Hockett-Sherby law for Novelis AA5000 

No. True Plastic 
Strain 

SHS 0.75  
stress No. True Plastic 

Strain SHS 0.75 stress 

1 0.000 126.96 26 0.510 411.0828 
2 0.020 187.8157 27 0.531 412.9993 
3 0.041 225.3773 28 0.551 414.8101 
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4 0.061 253.7353 29 0.571 416.5264 
5 0.082 276.3095 30 0.592 418.158 
6 0.102 294.799 31 0.612 419.7134 
7 0.122 310.2299 32 0.633 421.2003 
8 0.143 323.2878 33 0.653 422.6251 
9 0.163 334.4599 34 0.673 423.9936 

10 0.184 344.107 35 0.694 425.3111 
11 0.204 352.5042 36 0.714 426.5819 
12 0.224 359.8661 37 0.735 427.8102 
13 0.245 366.3626 38 0.755 428.9994 
14 0.265 372.1307 39 0.776 430.1527 
15 0.286 377.2814 40 0.796 431.2729 
16 0.306 381.906 41 0.816 432.3625 
17 0.327 386.0798 42 0.837 433.4239 
18 0.347 389.8658 43 0.857 434.4589 
19 0.367 393.3166 44 0.878 435.4695 
20 0.388 396.4765 45 0.898 436.4572 
21 0.408 399.383 46 0.918 437.4235 
22 0.429 402.068 47 0.939 438.3697 
23 0.449 404.5588 48 0.959 439.2971 
24 0.469 406.8786 49 0.980 440.2067 
25 0.490 409.0475 50 1.000 441.0996 

Table 9 50 data points imported into FEA  from Swift/Hockett-Sherby law for Novelis AA5000 

• Swift-Voce hardening law 

A linear relationship with α = 0.25 is considered in this hardening law, as it is advised for 

aluminium alloy, 

𝜎𝑆𝑤𝑖𝑓𝑡−𝑉𝑜𝑐𝑒 = α 𝜎𝑆𝑤𝑖𝑓𝑡 + (1 − α) 𝜎𝑉𝑜𝑐𝑒 

Evaluated error using the Root mean square approach shows a value of 3.678, for α = 0.25, 

 SV 0.25 SV 0.5 SV 0.75 
RMSE 3.597 4.265 4.993 

Table 10 goodness of fits: Swift-Voce law for Novelis AA5000 

The following figures show the Swift-Voce approximated flow curves for small and large 

values of strain, respectively, 
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Figure 29 Swift-Voce hardening law applied to Novelis AA5000 for small strains 

 
Figure 30 Swift-Voce hardening law applied to Novelis AA5000 for large strains 

• Comparing Swift/Hockett-Sherby with Swift-Voce hardening laws for Novelis 

AA5000 zero degree roll angle 
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Figure 31 Swift-Voce vs Swift/Hockett-Sherby for large strains-Novelis AA5000 

For small values of strain, both Swift/Hockett-Sherby and Swift-Voce show almost the same 

trend, although SHS fits better to experimental data according to the RMSE values reported in 

the following table, 

 
Figure 32 Swift-Voce vs Swift/Hockett-Sherby for small strains-Novelis AA5000 

 SV 0.25 SHS 0.75 
RMSE 3.597 2.965 

Table 11 goodness of fits: Swift-Voce vs SHS-Novelis AA5000, zero degree roll angle 
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• k-exponent function 

As it is described before, 𝜅-exponent function is used to fit a function into the pre-necking 

data points. The nonlinear regression command of MATLAB (lsqnonlin) is used, where the 

results are compared with Hockett-Sherby. It is clear from the figure that both provide a very 

good fitting to the experimental data points.  

 

3.3.1.2 45° roll angle 

• Swift/Hockett-Sherby (α= 0.75) 

Figure below illustrates the approximated flow stress curve for experimental data of a 

specimen cut in 45 degree direction with respect to rolling direction, 
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Figure 33 Swift/Hockett-Sherby hardening law, Novelis AA5000, 45 degree roll angle 

• Swift-Voce (α= 0.25) 

After evaluating Swift/Voce (α= 0.25) hardening law’s flow curve for the given tensile test 

data, we can also see a comparison between Swift/Hockett-Sherby (α= 0.75) and Swift-Voce 
(α= 0.25) in the figure below, 

 
Figure 34 Swift-Voce (0.25) hardening law, Novelis AA5000, 45 degree roll angle 

• Comparing Swift/Hockett-Sherby (α= 0.75) with Swift-Voce (α= 0.25) 
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Figure 35 SV (0.25) vs SHS (0.75) hardening law, Novelis AA5000, 45 degree roll angle 

As it can be observed from the figure, SHS hardening law with (α= 0.75) yields a better fitting 

in comparison with SV (α= 0.25) hardening law. 

 SV 0.25 SHS 0.75 
RMSE 3.804 3.186 

Table 12 goodness of fit: SV (0.25) vs SHS (0.75) hardening law, Novelis AA5000, 45 degree roll angle 

3.3.1.3 90° roll angle 

• Swift/Hockett-Sherby 

 
Figure 36 Swift/Hockett-Sherby hardening law, Novelis AA5000, 90 degree roll angle 
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• Swift-Voce (α= 0.25) 

 
Figure 37 Swift-Voce (0.25) hardening law, Novelis AA5000, 90 degree roll angle 

• Comparing Swift/Hockett-Sherby (α= 0.75) with Swift-Voce (α= 0.25) 

Making a comparison between Swift-Voce and Swift/Hockett-Sherby can help us to observe 

the trends of approximated flow curves, where the former has a higher tendency to reach a 

saturated stress at larger strains, 

 
Figure 38 SV (0.25) vs SHS (0.75) hardening law, Novelis AA5000, 90 degree roll angle 
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3.3.1.4 Summary table of Novelis AA5000 

Material constants and RMS errors of Novelis AA5000 are reported in the next table, 

 Law A B m c C 𝜀0 n K0 Q 𝛽 RMSE 

0° 

HS   400.707 280.385 6.561 0.833 - - - - - - 2.627 

SHS      561.562 0.011 0.300 - - - 2.965 

SV         146.874 232.412 10.036 3.597 

45° 

HS   400.059 282.679 5.636 0.819 - - - - - - 2.872 

SHS      537.123 0.0129 0.302 - - - 3.186 

SV  - - - -    144.269 233.112 8.727 3.804 

90° 

HS   406.332 294.171 5.027 0.767 - - - - - - 2.697 

SHS      533.052 0.0128 0.295 - - - 3.008 

SV  - - - -    147.180 227.823 8.960 3.636 

Table 13 summary: material constants and RMS errors of Novelis AA5000 

3.3.2 Constelium AA5000 tensile test results 

Looking at the data provided by Constelium, firstly we throw light on the flow curve up to 

100% of plastic strain using Hockett-Sherby approach, then a comparison will be made with 

Swift-Voce hardening law. 

Material Constelium AA5000 
E 

[MPa] 68087 

Average Thickness 
[mm] 0.902 

 

 True Rupture Stress 
[MPa] 

Ag 
[%] 

A80 
[%] n-Krupkowski r -average 

(4%-Ag) 
Yield stress  

[MPa] 
Rm  

[MPa] 

0° 354.2 25.32 26.63 0.32799 0.685 131.2 283.9 

45° 333.2 23.58 26.82 0.34237 0.754 127.7 277.4 

90° 338.1 25.07 27.46 0.33393 0.559 128.8 277.8 

Table 14 mechanical properties of Constelium AA5000 
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3.3.2.1 Zero degree roll angle 

• Hockett-Sherby hardening law 

Also here benefiting from diffuse necking criterion, and applying the following result to the 

solver, 

𝐴 = 𝐵 exp(−𝑚𝜑𝑑𝑖𝑓𝑓𝑢𝑠𝑒
𝑐 ) [1 + 𝑚𝑐𝜑𝑑𝑖𝑓𝑓𝑢𝑠𝑒

𝑐−1 ] 

Approximated RMS error is lower here (2.384) in comparison with that of Novelis AA5000 

(2.627); moreover, diffuse necking point is estimated quite close to the uniform elongation 

point reported in the data sheet. In more details, diffuse necking is evaluated to be at 22.32% 

of true plastic strain, where based on Constelium data sheet, it yields to be at 22.08% of true 

plastic strain. 

Within the range of small of strains, the following figure shows the HS fitting for 

Constelium AA5000 test results, 

 
Figure 39 Hockett-Sherby hardening law, Constelium AA5000, zero degree roll angle, small strains 
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While for larger values of strain, 

 
Figure 40 Hockett-Sherby hardening law, Constelium AA5000, zero degree roll angle, large strains 

Within the experimental range, Hockett-Sherby estimates the material behaviour quite good, 

although complementary tests are needed to see its efficiency for larger values of plastic strain 

(above 20%).  
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• Swift/Hockett-Sherby hardening law 

With regard to the Swift/Hockett-Sherby hardening law, 

𝜎𝑆𝑤𝑖𝑓𝑡/𝐻𝑜𝑐𝑘𝑒𝑡𝑡−𝑆ℎ𝑒𝑟𝑏𝑦 = (1 − α) 𝜎𝑆𝑤𝑖𝑓𝑡 + α 𝜎𝐻𝑜𝑐𝑘𝑒𝑡𝑡−𝑆ℎ𝑒𝑟𝑏𝑦 

Figure below shows the influence of 𝛼  on the behaviour of the SHS fitting upon 

experimental data, both for small and large strains respectively, 

 
Figure 41 Swift/Hockett-Sherby hardening law, Constelium AA5000, zero degree roll angle, small strains 

 
Figure 42 Swift/Hockett-Sherby hardening law, Constelium AA5000, zero degree roll angle, small strains 
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Following table reports RMSE for different values of α, where for α = 0.75 the best fitting 

to the experimental flow curve in the range of small strains can be obtained,  

 SHS 0.25 SHS 0.5 SHS 0.75 
RMSE 3.685 2.987 2.478 

Figure 43 goodness of fits: Swift/Hockett-Sherby law for Constelium AA5000 

Reducing the number of data points is also applied here;  in this way, one can import the 

data into AutoForm software for further FEA of a body part made of Constelium AA5000, 

 
Figure 4450 data points imported into FEA  from Swift/Hockett-Sherby law for Constelium AA5000 

No. True Plastic 
Strain SHS 0.75 stress No. True Plastic 

Strain SHS 0.75 stress 

1 0.000 125.1458 26 0.510 410.0292 
2 0.020 180.6641 27 0.531 412.2929 
3 0.041 215.4578 28 0.551 414.4248 
4 0.061 242.3047 29 0.571 416.4379 
5 0.082 264.1593 30 0.592 418.3435 
6 0.102 282.4521 31 0.612 420.1516 
7 0.122 298.038 32 0.633 421.8714 
8 0.143 311.4875 33 0.653 423.5106 
9 0.163 323.2078 34 0.673 425.0764 
10 0.184 333.5032 35 0.694 426.5753 
11 0.204 342.608 36 0.714 428.0128 
12 0.224 350.7076 37 0.735 429.3942 
13 0.245 357.9509 38 0.755 430.7239 
14 0.265 364.4596 39 0.776 432.006 
15 0.286 370.334 40 0.796 433.2444 
16 0.306 375.6581 41 0.816 434.4424 
17 0.327 380.5022 42 0.837 435.6029 
18 0.347 384.926 43 0.857 436.7287 
19 0.367 388.9806 44 0.878 437.8222 
20 0.388 392.7094 45 0.898 438.8859 
21 0.408 396.15 46 0.918 439.9216 
22 0.429 399.3349 47 0.939 440.9312 
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23 0.449 402.2922 48 0.959 441.9164 
24 0.469 405.0465 49 0.980 442.8788 
25 0.490 407.6192 50 1.000 443.8198 

Table 15 50 data points imported into FEA  from Swift/Hockett-Sherby law for Constelium AA5000 

• Swift-Voce hardening law 

A linear relationship with factor 𝛼 is considered in this hardening law. Although it is advised 

to use α = 0.25 for aluminium alloys, RMSE values for different values of α (α =0.25, 0.5 and 

0.75) are compared to observe whether the prescribed value of α is valid here or not. 

𝜎𝑆𝑤𝑖𝑓𝑡−𝑉𝑜𝑐𝑒 = α 𝜎𝑆𝑤𝑖𝑓𝑡 + (1 − α) 𝜎𝑉𝑜𝑐𝑒 

The following figures show the flow curves for small and large values of strain, respectively, 

 
Figure 45 Swift-Voce hardening law, Constelium AA5000, zero degree roll angle, small strains 
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Figure 46 Swift-Voce hardening law, Constelium AA5000, zero degree roll angle, large strains 

The goodness of the fit is reported in the following table with respect to the corresponding 

RMSEs, 

 SV 0.25 SV 0.5 SV 0.75 
RMSE 2.542 2.492 3.201 

Table 16 goodness of fits: Swift-Voce law for Constelium AA5000, zero degree roll angle 

As it can be found from the table, within the experimental range, lowest RMSE belongs to 

α = 0.5. In the following sections, both α = 0.25 and α = 0.5 will be considered for Swift-

Voce hardening law. 

• Comparing Swift/Hockett-Sherby and Swift-Voce hardening laws for Constelium 

AA5000, zero degree roll angle 

The following figures demonstrate the behaviour of SHS and SV hardening laws when they 

are applied to Constelium AA5000. Within the range of small strains, 
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Figure 47 Swift-Voce vs Swift/Hockett-Sherby for small strains-Constelium AA5000, zero degree roll angle 

And for the larger values of plastic strain, 

 
Figure 48 Swift-Voce vs Swift/Hockett-Sherby for large strains-Constelium AA5000 

 SV 0.25 SV 0.5 SHS 0.75 
RMSE 2.542 2.492 2.478 

Table 17 goodness of fits: Swift-Voce vs SHS-Constelium AA5000, zero degree roll angle 

 



88 
 

3.3.2.2 45° roll angle 

• Swift/Hockett-Sherby hardening law 

Applying combined Swift/Hockett-Sherby hardening law, the following flow curve will be 

approximated for the given test data of Constelium AA5000 at 45° roll angle, 

 
Figure 49 Swift/Hockett-Sherby hardening law, Constelium AA5000, 45° roll angle 

• Swift-Voce hardening law 

Considering Swift-Voce hardening law, increasing α will reduce the tendency towards the 

stress saturation, while it deteriorates diffuse necking approximation, which could be 

anticipated a priori. Looking at the following table, RMSE is evaluated to be at its minimum 

when α is equal to 0.5; meaning that with this value of α, Swift-Voce is a better option for small 

values of strain, i.e. in the range of tensile test data. 
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Figure 50 Swift-Voce hardening law, Constelium AA5000, 45° roll angle 

 SV 0.25 SV 0.5 SV 0.75 
RMSE 2.431 2.376 3.209 

Table 18 goodness of fits: Swift-Voce law for Constelium AA5000, 45 degree roll angle 

• Comparing Swift/Hockett-Sherby and Swift-Voce hardening laws for Constelium 

AA5000, 45 degree roll angle 

The following figures illustrate the behaviour of SHS and SV hardening laws when they are 

applied to a Constelium AA5000 specimen cut at 45 degree roll angle, 
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Figure 51 Swift-Voce vs Swift/Hockett-Sherby-Constelium AA5000, 45 degree roll angle 

 SHS 0.75 SV 0.25 SV 0.5 
RMSE 2.445 2.431 2.376 

Table 19 goodness of fits: Swift-Voce vs SHS-Constelium AA5000, 45 degree roll angle 

In order to find a hardening law that suits the most, it is needed to rely on complementary 

tests such as Bulge test, as it provides us with test data in a wider range of strain in comparison 

with tensile test. 

3.3.2.3 90° roll angle 

• Swift/Hockett-Sherby hardening law 

 
Figure 52 Swift/Hockett-Sherby hardening law, Constelium AA5000, 90° roll angle 
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• Swift-Voce hardening law  

Throwing light on the Swift-Voce flow curve shows that for α = 0.25, RMSE value is the 

lowest, coming with better approximation for diffuse necking, 

 
Figure 53 Swift-Voce hardening law, Constelium AA5000, 90° roll angle 

 SV 0.25 SV 0.5 SV 0.75 
RMSE 2.428 2.448 3.303 

Table 20 goodness of fits: Swift-Voce law for Constelium AA5000, 90° roll angle 

• Comparing Swift/Hockett-Sherby with Swift-Voce for Constelium AA5000, 90° roll 
angle 

The following figure illustrates the behaviour of SHS and SV hardening laws when they are 

applied to a Constelium AA5000 specimen cut at 90 degree roll angle, 
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Figure 54 Swift-Voce vs Swift/Hockett-Sherby-Constelium AA5000, 90° roll angle 

 SHS 0.75 SV 0.25 SV 0.5 
RMS 2.482 2.428 2.448 

Table 21 goodness of fits: Swift-Voce vs SHS-Constelium AA5000, 90° roll angle 

3.3.2.4 Summary table of Constelium AA5000 

Material constants and RMSE values for Constelium AA5000 are reported in the next table, 

 Law A B m c C 𝜀0 n K0 Q 𝛽 RMSE 

0° 

HS   409.695 286.473 5.443 0.832 - - - - - - 2.627 

SHS      548.427 0.009 0.304 - - - 4.309 

SV         130.919 249.987 9.207 2.492* 

45° 

HS   411.937 293.377 4.879 0.814 - - - - - - 2.248 

SHS      537.435 0.009 0.307 - - - 2.445 

SV  - - - -    127.945 249.499 8.713 2.376* 

90° 

HS   405.488 285.007 5.209 0.829 - - - - - - 2.279 

SHS      534.066 0.009 0.303 - - - 2.482 

SV  - - - -    129.07 248.216 8.728 2.428* 

*lowest is written amongst different values of 𝛼. 
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3.3.3 Constelium AA6000 tensile test results 
Considering the data sheet provided by the Constelium on AA6000, flow curve from Hockett-
Sherby hardening law will be evaluated. Then, Swift-Voce law will be presented to make a 
comparison with the curve of Hocket-Sherby. 

Material Constelium AA6000 
E 

[MPa] 66554 

Average 
Thickness[mm] 0.916 

 

 True Rupture Stress 
[MPa] 

Ag 
[%] 

A80 
[%] n-Krupkowski r -average 

(4%-Ag) 
Yield stress  

[MPa] 
Rm  

[MPa] 
0° 293.9 21.52 26.07 0.27122 0.723 126.6 242.1 

45° 288.2 22.67 28.52 0.27124 0.61 122.5 235.1 

90° 288.3 22.40 28.53 0.27365 0.665 122.6 235.7 

Table 22 mechanical properties of Constelium AA6000 

3.3.3.1 Zero degree roll angle 

• Hockett-Sherby hardening law 

Having in mind the diffuse necking criterion, the following relation describes material 

constant A as a function of the other constants in Hockett-Sherby hardening law, 

𝐴 = 𝐵 exp(−𝑚𝜑𝑑𝑖𝑓𝑓𝑢𝑠𝑒
𝑐 ) [1 + 𝑚𝑐𝜑𝑑𝑖𝑓𝑓𝑢𝑠𝑒

𝑐−1 ] 

This data set (Constelium AA6000) has a much smoother behaviour than the previous ones; 

as a result, the Hockett-Sherby approximation shows a very low amount of RMSE of 0.16826, 

which means the fitting is quite close to the experimental values in the range of given data. 

Figure below shows the result in the range of small values of strain,  
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Figure 55 Hockett-Sherby hardening law, Constelium AA6000, zero degree roll angle, small strains 

Diffuse necking is anticipated at 18.74% of true plastic strain, while according to the data 

sheet, it is predicted to take place at 19.03% true plastic strain. 

For larger values of strain, 

 
Figure 56 Hockett-Sherby hardening law, Constelium AA6000, zero degree roll angle, large strains 

• Swift/Hockett-Sherby hardening law 

Remembering SHS hardening law relation, 

𝜎𝑆𝑤𝑖𝑓𝑡/𝐻𝑜𝑐𝑘𝑒𝑡𝑡−𝑆ℎ𝑒𝑟𝑏𝑦 = (1 − α) 𝜎𝑆𝑤𝑖𝑓𝑡 + α 𝜎𝐻𝑜𝑐𝑘𝑒𝑡𝑡−𝑆ℎ𝑒𝑟𝑏𝑦 



95 
 

The influence of α on the behaviour of the SHS flow curve fitting is shown in the following 

figure, both for small and large strains respectively, 

 
Figure 57 Swift/Hockett-Sherby hardening law, Constelium AA6000, zero degree roll angle, small strains 

 
Figure 58 Swift/Hockett-Sherby hardening law, Constelium AA6000, zero degree roll angle, large strains 

 SHS 0.25 SHS 0.5 SHS 0.75 
RMSE 2.152 1.446 0.747 

Table 23 goodness of fits: Swift/Hockett-Sherby law for Constelium AA6000, zero degree roll angle 
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As it is obvious, SHS 0.75 shows the best fit withing tensile test data range, so by extracting 

50 data points to be used in FEA SW, 

 
Figure 59 50 data points imported into FEA  from Swift/Hockett-Sherby law for Constelium AA6000 

No. True Plastic 
Strain HS stress No. True Plastic 

Strain HS stress 

1 0.000 115.9808 26 0.510 342.4465 
2 0.020 173.6113 27 0.531 343.9209 
3 0.041 203.7836 28 0.551 345.3117 
4 0.061 225.5108 29 0.571 346.6272 
5 0.082 242.3893 30 0.592 347.8745 
6 0.102 256.0289 31 0.612 349.0602 
7 0.122 267.3326 32 0.633 350.1897 
8 0.143 276.8709 33 0.653 351.2682 
9 0.163 285.0317 34 0.673 352.3 
10 0.184 292.0926 35 0.694 353.2891 
11 0.204 298.2592 36 0.714 354.2391 
12 0.224 303.6884 37 0.735 355.1532 
13 0.245 308.5027 38 0.755 356.0341 
14 0.265 312.7988 39 0.776 356.8845 
15 0.286 316.6548 40 0.796 357.7066 
16 0.306 320.1344 41 0.816 358.5026 
17 0.327 323.2899 42 0.837 359.2742 
18 0.347 326.1646 43 0.857 360.0232 
19 0.367 328.795 44 0.878 360.7512 
20 0.388 331.2117 45 0.898 361.4594 
21 0.408 333.4407 46 0.918 362.1493 
22 0.429 335.5042 47 0.939 362.8219 
23 0.449 337.4212 48 0.959 363.4783 
24 0.469 339.2082 49 0.980 364.1196 
25 0.490 340.8791 50 1.000 364.7465 

Table 24 50 data points imported into FEA  from Swift/Hockett-Sherby law for Constelium AA6000 
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• Swift-Voce hardening law 

Swift-Voce hardening law defining by the following relation, with α = 0.75, will be applied 

to Constelium AA6000 data set, 

𝜎𝑆𝑤𝑖𝑓𝑡−𝑉𝑜𝑐𝑒 = α 𝜎𝑆𝑤𝑖𝑓𝑡 + (1 − α) 𝜎𝑉𝑜𝑐𝑒 

The following figures show the flow curves for small and large values of strain, respectively. 

Focusing on the true plastic strain range below 27%, 

 
Figure 60 Swift-Voce hardening law, Constelium AA6000, zero degree roll angle, small strains 

 SV 0.25 SV 0.5 SV 0.75 
RMSE 3.508 2.022 1.646 

Table 25 goodness of fits: Swift-Voce law for Constelium AA6000, zero degree roll angle 

SV 0.75 shows the lowest error within tensile test data; in this section we also consider SV 

0.25 to see the comparison between Swift/Hockett-Sherby, 
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Extending the strain range till 100% plastic strain, 

 
Figure 61 Swift-Voce hardening law, Constelium AA6000, zero degree roll angle, large strains 

• Comparing Swift/Hockett-Sherby with Swift-Voce hardening laws for Constelium 

AA6000 zero degree roll angle 

Comparing the two hardening laws, it is quite obvious that Swift/Hockett-Sherby is 

following the experimental flow curve of Constelium AA6000 with a very low amount of 

RMSE, while Swift-Voce has some deviations with respect to the experimental data, 

 
Figure 62 Swift-Voce vs Swift/Hockett-Sherby for small strains-Constelium AA6000, zero degree roll angle 
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 SV 0.25 SV 0.75 SHS 0.75 
RMSE 3.508 1.646 0.747 

Table 26 Swift-Voce vs SHS-Constelium AA6000, zero degree roll angle 

• k-exponent function 

𝜅-exponent fuction (which is employed as a phenomenological hardening law) is employed 

here in order to fit to the pre-necking data points. Here the nonlinear regression command of 

MATLAB (lsqnonlin) is used to have more control on the fitting parameters of this function. 

Then, the result will be compared with Hockett-Sherby law (as it will be seen that it has the 

lowest RMSE value of all). 

 

Figure 63 comparison between k-exponent function and HS hardening law for pre-necking flow stress curve 
fitting of AA6000, zero degree roll angle 
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3.3.3.2 45° roll angle 

• Swift/Hockett-Sherby hardening law 

 
Figure 64 Swift/Hockett-Sherby hardening law, Constelium AA6000, 45° roll angle 

• Swift-Voce hardening law 

Within the range of small strain,  

 
Figure 65 Swift-Voce hardening law, Constelium AA6000, 45° roll angle, small strain 
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Having a wider vision for the Swift-Voce law up to 100% plastic strain, 

 
Figure 66 Swift-Voce hardening law, Constelium AA6000, 45° roll angle, large strain 

 SV 0.25 SV 0.5 SV 0.75 
RMS 1.638 0.561 1.253 

Table 27 goodness of fits: Swift-Voce law for Constelium AA6000, 45° roll angle 

• Comparing Swift/Hockett-Sherby with Swift-Voce hardening laws for Constelium 

AA6000 45° roll angle 

 
Figure 67 Swift-Voce vs Swift/Hockett-Sherby for small strains-Constelium AA6000, 45° roll angle 
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Figure 68 Swift-Voce vs Swift/Hockett-Sherby for large strains-Constelium AA6000, 45° roll angle 

 SHS 0.75 SV 0.25 SV 0.5 SV 0.5 
RMSE 0.689 1.638 0.561 1.253 

Table 28 Swift-Voce vs SHS-Constelium AA6000, 45° roll angle 
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3.3.3.3 90° roll angle 

• Swift/Hockett-Sherby hardening law 

 
Figure 69 Swift/Hockett-Sherby hardening law, Constelium AA6000, 90° roll angle, small strains 

 
Figure 70 Swift/Hockett-Sherby hardening law, Constelium AA6000, 90° roll angle, large strains 
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• Swift-Voce hardening law 

 
Figure 71 Swift-Voce hardening law, Constelium AA6000, 90° roll angle, small strains 

 
Figure 72 Swift-Voce hardening law, Constelium AA6000, 90° roll angle, large strains 

 SV 0.25 SV 0.5 SV 0.75 
RMSE 2.301 2.367 2.702 

Table 29 goodness of fits: Swift-Voce law for Constelium AA6000, 90° roll angle 
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• Comparing Swift/Hockett-Sherby with Swift-Voce hardening laws for Constelium 
AA6000 90° roll angle 

 
Figure 73 Swift-Voce vs Swift/Hockett-Sherby for small strains-Constelium AA6000, 90° roll angle 

 
Figure 74 Swift-Voce vs Swift/Hockett-Sherby for large strains-Constelium AA6000, 90° roll angle 
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 SHS 0.75 SV 0.25 SV 0.5 SV 0.5 
RMSE 0.817 2.301 2.367 2.702 

Table 30 Swift-Voce vs SHS-Constelium AA6000, 90° roll angle 

3.3.3.4 Summary table of Constelium AA6000 

Material constants and RMS errors of Constelium AA6000 are reported in the next table, 

 Law A B m c C 𝜀0 n K0 Q 𝛽 RMSE 

0° 

HS   338.953 226.881 5.586 0.748 - - - - - - 0.168 

SHS      443.904 0.007 0.251 - - - 0.747 

SV         127.708 204.768 9.609 1.646* 

45° 

HS   349.630 245.521 4.156 0.682 - - - - - - 0.205 

SHS      429.266 0.0070 0.251 - - - 0.689 

SV  - - - -    123.602 185.476 10.916 0.561* 

90° 

HS   331.170 217.980 5.673 0.774 - - - - - - 0.154 

SHS      477.302 0.012 0.306 - - - 0.817 

SV  - - - -    123.669 185.036 11.123 2.301* 

 

Considering the above results it can be inferred that, extrapolation of the pre-necking data 

deep into the diffuse necking regime depends strongly on the phenomenological hardening law, 

while the material behaviour above diffuse necking is completely ignored. Thus, relying solely 

on the EM at large plastic strains cannot be a reliable approach in post-necking flow curve 

identification studies.  
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 INTRODUCTION 

he successful implementation of the finite element simulation in the design phase 

of sheet metal forming process depends on the accuracy of the employed material 

characteristics. Among various different material properties that can affect the simulation 

results, flow stress curve (true stress/true plastic strain curve) of the material has a great 

importance. As it was observed in previous chapter, the hardening law defining the 

relationship between the flow stress and the plastic strain has a significant effect on the 

quality of the numerical results. In order to estimate the flow stress curve of a metal sheet at 

room temperature, tensile and hydraulic bulge tests are the most commonly used 

experiments; however, plane strain compression, shear test, and in-plane compression test 

are also exploited to achieve this purpose (49). 

Bulge test is a destructive test method conducted to obtain the material properties of a 

sheet metal. Due to the state of stress, significantly higher (more than double) maximum 

effective strain can be attained in comparison with the tensile test without any evidence of 

localized necking. 

Hydraulic bulge test13 is employed in the evaluation of the strain hardening properties of 

sheet materials under biaxial tension. During the test, the specimen is fixed at its edges as 

shown in the following figure, and is stretched biaxially and equally against circular die 

when oil/viscous fluid is used as a pressurizing medium. The sheet metal bulges into a 

hemispherical dome until it bursts (49).  

 

h 
Drawing depth/height 
(outer surface) 

p Liquid pressure 

𝜀3 
Degree of forming in the 
direction of thickness  
(at the dome pole) 

Figure 75 a scheme of hydraulic bulge test (50) 

 
13 also known as the viscous pressure bulge test 

T 
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The maximum height of the dome at burst can be used as an index of the Stretchability14 

of the material; the higher the value of dome height prior to burst, the better will be the 

stretchability. In contrast with Nakazima test, there is no effect of friction on the deformation 

of the sheet material in the hydraulic bulge test, leading to an accurate evaluation of the 

stretchability of the material. The stress and strain values in hydraulic bulge test are 

calculated through the measurements of pressure, the curvature and surface extension in the 

center of the disc (49). 

The writer started to study the bulge test with an aim to compare the two main approaches 

for the evaluation of the bulge test flow stress curve: ISO 16808 procedure and Modified 

Kruglov’s method. However, based on the initial goals of this thesis work, post-necking 

behaviour identification through ISO 16808 prescribed method was seemed to be more 

related to this discussion. 

 HYDRAULIC BULGE TEST AND TENSILE TEST 

Uniaxial tensile test can be employed to determine material properties such as flow stress 

data, Young’s modulus, yield stress, ultimate tensile stress, uniform elongation, total 

elongation, and Lankford coefficients (r-value) (51). Tensile test is simple and inexpensive 

to conduct, but, in comparison with hydraulic bulge test, there are some considerations 

which are needed to be taken into account, 

1. Flow stress over very large plastic strain can be studied through hydraulic bulge 
test, 

A major advantage of the bulge test over the uniaxial tensile test is that the stress-strain 

curve can be extended to a wider range of effective strain (more than double) which is 

normally found in forming processes (52). Equibiaxial bulging is a very useful method for 

obtaining the strain hardening behaviour of the material beyond diffuse necking.  

In the hydraulic bulge test (HBT), stress and strain can be obtained up to failure of the 

specimen, while in the conventional uniaxial test, only the uniform strain range can be 

utilized. Since the strains in stamping are normally larger than the uniform strain, the bulge 

test would be a better choice to describe the plastic properties of sheet metal at large strains. 

 
14 Stretchability is the ability of the material to be stretched biaxially without failure. The Erichsen cup 

test, limiting dome height (LDH) test, and hydraulic bulge test are commonly used tests to assess the 
stretchability (49). 
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True strain calculation is only valid when the deformation is uniform along the gage length. 

Uniform elongation has a limited span, and presents between the initial yield point and the 

start of diffuse necking. On the contrary, due to the nature of the deformation process in 

HBT, not only Ludering is less evident, but also in case of having diffuse necking, it does 

not result in non-uniform deformation within the gage zone. Therefore, true stress-strain can 

also be evaluated beyond diffuse necking, up to the advent of localized necking or fracture 

(52). 

2. Extrapolation of test data comes with error, 

Since the range of strain obtained from tensile test is limited, extrapolation of tensile data 

would be quite necessary to conduct if one needs further information on material behaviour, 

causing noticeable errors in the forming simulation using FEM. Bulge test is an alternative 

to obtain a range of deformation wider than tensile test without an urge to use extrapolation 

techniques to achieve material behaviour. As a result, the material data obtained from the 

bulge test is more accurate than the conventional uniaxial tensile test data. Consequently, 

the simulation of the process would be more accurate when flow stress data from the bulge 

test is exploited (53). 

3. Tensile test only provides the stress–strain behaviour of the sheet material under 

uniaxial deformation conditions, so it provides the material behaviour in uniaxial 

strain path.  

In contrast though, in many forming processes such as stamping operation, the material 

deforms under biaxial condition of deformation. Likewise, in other sheet metal forming 

processes such as bending and deep drawing, materials deform in a wide variety of different 

strain paths, ranging from pure shear to biaxial tension. 

4. Improving the material anisotropy measurements, based on a comparison of tensile 

and bulge test stress-strain curves. 

Tensile tests of a metallic sheet show anisotropy in different directions in the plane of the 

sheet. Normal Anisotropy is an important parameter in forming operations. In general, a 

higher through thickness strength is beneficial as the material shows resistance to thinning 

during deformation. However, in order to avoid anomalies, an improved measure can be 

employed on the basis of a comparison between tensile and bulge test stress-strain curves 

(54). 
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5. The bulge test cannot provide flow stress data for low strain values close to the 

yield point. 

Following the importing of data from bulge test assessment into forming simulation, the 

yield point of the material cannot be defined accurately. This can particularly affect the 

elastic behaviour of the material in the simulation and yields inaccurate simulation results, 

especially when springback must be predicted (55). 

6. Combining tests for greater accuracy. 

Despite the fact that HBT is commonly employed to assess the material characteristics of 

metallic sheets, plastic flow curves under bulge test and uniaxial tensile test are different; 

hence, both of these two tests should be performed, not only to obtain material parameters 

needed for satisfactory modelling of forming processes, but also, for determining more 

accurately the flow stress data from the initial yield point up to the largest strain values 

which is achievable by the bulge test, through combining the results from the bulge and 

tensile tests. 

Comparatively more accurate flow stress data at high strain values can be obtained from 

bulge test, while tensile test is only able to provide material properties up to the yield point. 

This fact leads to a useful conclusion that by combining the two tests’ results one can access 

to a better approximation of the flow stress data from yield to the strain at fracture in the 

biaxial stress condition (55). 

Section 4.5 is dedicated to ISO 16808 method and how to combine the results of the two 

tests.  

 BULGE TEST EQUIPMENT 

The bulge test equipment mainly consists of, 

• hydraulic die,  

• test stand,  

• hydraulic power supply,  

• electronic console,  

• measuring unit and data acquisition equipment interfaced to a remotely located 

minicomputer.  
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1 
Measuring system for 

forming 

2 Clamp bead 

3 Liquid chamber 

4 Pressure measuring 
system 

Figure 76 hydraulic bulge test equipment (50) 

The dies assembly is designed in such a way that it is able to clamp the specimen for test, 

and facilitate bulging the specimen with hydraulic fluid and unclamping the specimen after 

the test. Servovalve provides the flow of oil coming from the hydraulic power supply to the 

die. The flow itself is controlled by the electronic console (52).  

 DATA COLLECTION AND ANALYSIS OF HYDRAULIC BULGE 

TEST 

Automated data acquisition systems were not available in the first bulge test setups. 

Therefore, tests must have been conducted through an incremental method, so that, the 

deformation had to be stopped every time for collection of required data, such as, pressure, 

dome height, bulge radius. Incremental data acquisition method came with the risk of creep 

unless the pressure was dropped to  almost 90% before taking the measurements. Automated 

bulge test equipped with sensors and data acquisition systems was designed in the 1970’s 

(56). Continuous measurements (whether optical or mechanical) of  bulge pressure, 

curvature of bulge specimen, its thickness at the pole in parallel with the application of 

membrane theory are used to evaluate the flow stress curve of the material under the test 

(53). 

Among bulge parameters, bulge pressure is normally obtained directly from bulge 

machine itself, while curvature and thickness data may obtain through different approaches. 
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Two procedures are common as far as data collection from bulge test is concerned; indirect 

method and direct method (57). 

4.4.1 Indirect method  

In this section biaxial stress-strain curves by hydraulic bulging tests with circular die will 

be determined indirectly, through the estimation of curvature and/or thickness based on 

analytical equations, while the pressure, polar height and curvature radius are measured 

either in different stages of the deformation process or continuously during the test. Almost 

all of the methodologies in this group are based on analytical formulas describing the polar 

thickness and the curvature radius of the specimen in relation with one or more process 

parameters (58) (59) (60). 

The problem of the hydrostatic bulging of circular diaphragms was first studied in 1948 

by Gleyzal on the basis of the total-strain theory of plasticity (61). 

Two years later, R. Hill developed an analytical 

model of the hydraulic bulging process based on the 

Mises theory (62). The shape of the dome was 

considered to be spherical and he neglected the effect of 

the fillet radius on the geometry of the specimen, RODNEY HILL 
(1921-2011) 

 

 
From a simple kinematical assumption regarding the 

evolution of the specimen surface, Hill also obtained a 

relation for the evaluation of the radius of the curvature 

and polar thickness (62), 

𝜌 =
𝑎2 + ℎ2

2ℎ
     ,   𝑡 = 𝑡0 [

1

1 +
ℎ2

𝑎2

]

2

 

In 1959, Panknin performed experimental studies on the hydraulic bulging in his PhD 

thesis at the university of Stuttgart. The accurate determination of the process parameters 

was his main goal. He suggested a formula for the calculation of the curvature radius, while 
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taking into account the effect of the fillet radius (R) on the dimensional characteristics of 

the dome (63), 

𝜌 =
1

2ℎ
(
𝑑

2
+ 𝑅)

2

+
ℎ

2
− 𝑅   

He found that for large polar heights, a deviation around 10% may be seen in the 

analytical results with respect to experimental data. 

In 1970, by considering the hardening effect, Chakrabarty and Alexander improved the 

accuracy of the formulas previously proposed by Hill. In their paper, the plastic bulging of 

circular diaphragms by lateral fluid pressure was developed by assuming the bulge to be 

spherical and employing Tresca’s yield criterion and the associated flow rule. They 

introduced an unknown parameter (𝜆) into Hill’s formula, which was a function of the strain 

hardening exponent of the material (64), 

𝜆 = 1 − 𝑛 

For all real cases, (𝜆) must be between 0 and 1 to ensure that the rate of plastic work is 

positive. Furthermore, they proposed that the polar (compressive) thickness strain rate can 

be evaluated via (64), 

𝑑𝜀𝑏
𝑑ℎ

= (1 + 𝜆)
2ℎ

𝑎2 + ℎ2
  . 

This equation was integrated to attain the polar thickness strain 𝜀𝑏 as, 

𝜀𝑏 = (2 − 𝑛) ln (1 +
ℎ2

𝑎2
) . 

Since 𝜀𝑏 = −𝜀3, then the thickness at the dome apex was derived as, 

 

𝑡 = 𝑡0 [
1

1 +
ℎ2

𝑎2

]

2−𝑛

 

Figure 77 thickness variation at the dome apex proposed by Chakrabarty and Alexander (64) 
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While Hill's theory was already in line with experimental results of sufficiently work-

hardened materials, Chakrabarty compared his theory with experiments for soft materials 

(64).  

Alharthi and his colleagues improved the accuracy of the Chakrabarty and Alexander 

idea, by considering the effect of the plastic strain ratios instead of the hardening effect. 

Having the constant volume assumption in mind, the principal strains generated during a 

biaxial test can be related to compressive thickness strain. They also found that the biaxial 

strain deformation is sensitive to the plastic anisotropy; thus, instead of the strain hardening 

exponent of the material, they defined 𝜆 as a function of the normal plastic anisotropy (65). 

Min and his co-workers developed a new method to accurately calculate stresses and 

strains for both isotropic and orthotropic sheet materials in circular bulge testing with the 

application of DIC. The method was based on a more accurate calculation of the local 

thickness, by taking into account the spherical or ellipsoidal shape of the metal, and the 

elastic volume change. Although they observed that the stress condition in the bulge test is 

extremely close to balanced biaxial stress, this may not be the case for all anisotropic metals 

(66). 

Shang developed Hill’s analytical model in order to take into account the fillet radius of 

the die insert (67). Thus, the adjusted radius of curvature (𝜌) with respect to Hill’s special 

solution (sharp-edged die) for the profile between the pole and point X (blank-die interface) 

can be achieved from the geometry of the model as follows, 

 

𝜌 =
𝐻2 + 𝑅2

2𝐻
− 𝑏 

 

Figure 78 Shang’s adjusted radius of curvature for analytical model of hydraulic bulging (67) 

He also found that the local shell thickness is influenced by the size of the die shoulder 

only at locations farther from the pole; consequently, the pressure-growth curve will not be 
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affected by the die shoulder radius. Besides, based on his experimental observations, the 

value of the fillet radius has a small influence on the polar strains (67). 

Atkinson also tried to improve the accuracy of the analytical predictions with regard to 

the polar thickness and dome radius (68). 

 

C length of measured chord, 
perpendicular to bulge axis 

C0 original length of measured chord 

D diameter of die aperture 

H height of bulge 

h height of segment defined by 
measured chord 

R mean radius of bulge profile 
within measured chord 

Figure 79 Atkinson’s analytical model for hydraulic bulge test (68) 

According to Atkinson’s assessment, mean thickness of the polar cap defined by the gage 

length (C), highlighted by red, can be described as, 

 
Geometry of polar cap 

𝜏 ≈
𝑅 − √𝑅2 −

𝑡0𝐶0
2

2ℎ
⁄

2
 

t0 : original sheet thickness 

Figure 80 Atkinson’s analytical model for hydraulic bulge test-mean thickness of the polar cap (68) 

Kruglov developed a simple formula for the calculation of the polar strains. This formula 

was based on the assumption that the meridian strain is uniformly distributed on the dome 

surface (69); moreover, there were other hypothesis in his work (69), 

(a) The sheet material is isotropic and incompressible,  

(b) Forming process is isothermal,  

(c) The initial sheet thickness, s0, is considered to be small compared with the envelope’s 

radius R0 (𝑠0 𝑅0⁄ ≪ 0).  
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In this case, the sheet metal under bulge test can be treated as a membrane and so one can 

employ the principal equations of the thin shell theory (membrane theory) in order to analyse 

the superplastic free forming. 

(d) The flow stress is a single-valued function of the strain rate,   

(e) The shape of the deforming shell is considered as a part of a sphere with the radius 

of curvature denoted as 𝜌, 

(f) Since the envelope is made of two sheets by welding, the thickness of the shell in the 

vicinity of the weld is assumed to be constant in its value during the whole process 

of forming (in other words, it is assumed that the weld does not influence the sheet 

deformation). 

 

Thickness at the pole 

𝑠 =  𝑠0  (
𝛼

𝑠𝑖𝑛𝛼
 )
−2

 

Figure 81 Kruglov’s approach for analytical study of the bulging test (69) 

4.4.1.1 Kruglov’s approach: Stress and strain evaluation in hydraulic bulge test 

Both Kruglov and Modified Kruglov approaches are described in the following 

paragraphs in order to derive biaxial stress and strain through hydraulic bulge test. The 

modification takes into account the non-uniform distribution of the strains on the specimen 

surface by means of a correction factor. An improved accuracy was observed from the 

Modified Kruglov’s formula by comparing the results with experiments equipped with 

optical measurement systems (60). 

Table below shows the principle of the Kruglov’s approach for the hydraulic bulging test 

with the following specifications, 
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O, 
P 

current centre and pole of the dome surface 
(approximated by a spherical cap) 

Q, 
V, 
H 

centre and ends of the fillet joining the orifice 
and the bottom surface of the bulging die 

T 
point where the free profile of the specimen 
becomes tangent to the fillet arc of the bulging 
die 

𝑽’, 
𝑯’ 

projections of the points V (Q) and H, 
respectively, on the vertical axis OP 

d diameter of the bulging orifice 

R fillet radius of the bulging orifice 

s0 initial (nominal) thickness of the specimen 

s 
current thickness of the specimen in the polar 
region (point P) 

𝝆 current radius of the dome surface 

h 
height defining the current position of the pole 
P 

𝜶 angle spanned by the arc 𝑇𝑃
⌒

 or 𝑇𝐻
⌒

 (𝛼 is 
expressed in radians) 

 

Figure 82 Schematic representation of the specimen subjected to hydraulic bulging-Kruglov’s approach 

(60) 

Both the diameter (d) and the fillet radius (R) are constants, describing dimensional 

characteristics of the experimental device. In a certain experiment, the initial thickness of 

the specimen (s0) is also constant. All the other quantities mentioned above (s, 𝜌, h, and α) 

are variables depending on the current level of the pressure (p) acting on the bottom surface 

of the sheet metal (60). 

Stress state 

In order to determine the biaxial flow curves, membrane theory is commonly exploited. 

As it was demonstrated in the previous figure, when the sheet is clamped between the die 

and blank holder, the flow curves can be evaluated based on the analysis of measurable 

variables from bulge test; however, membrane theory is only valid when the ratio of the 

sheet thickness to the bulge diameter is small. It assumes that the through thickness stress is 

zero and a relationship can be established using Laplace’s formula (70), 
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𝜎𝑥
𝜌𝑥
+
𝜎𝑦

𝜌𝑦
=
𝑝

𝑠
 

(s) is the sheet thickness at the 
dome apex 

Figure 83 Stresses on double curved element in cross section at the pole (70) 

Based on the membrane theory, the stress state is characterized by two stresses on the 

material surface: meridian stress and tangential stress, where it is assumed that these stresses 

are uniformly distributed along the shell thickness (70).  

It is also important to note that for a bulge test evaluation method with high accuracy the 

influence of bending stresses and through thickness stress at the pole on the force 

equilibrium must be known. Furthermore, although the assumption of an equibiaxial stress 

state will also lead to deviations in accuracy, normally (and also here in this section) the 

bulge test is considered as axisymmetric case for the region quite close to the pole; hence, 

the principle stress can be considered equivalent and equal the membrane stress, i.e. (𝜎1 =

𝜎2 = 𝜎𝑏). The same holds for the curvature radii, i.e. 𝜌1 = 𝜌2 = 𝜌 (70).  

Under these simplifications the current biaxial stress or membrane stress 𝜎𝑏 is defined as 

(70), 

𝜎𝑏 =
𝑝𝜌

2𝑠
 

Strain state 

For strain calculation, the volume consistency assumption is employed, which is based 

on the fact that the plastic deformation in metals and alloys takes place without any 

significant change in volume (60), 

𝜀1 + 𝜀2 = −𝜀3 

Therefore, the corresponding thickness (radial) strain (the so-called biaxial strain 𝜀𝑏) can 

be evaluated using the relationship, 
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𝜀𝑏 = −𝜀3 = 𝑙𝑛
𝑠0
𝑠

 

Analytical expressions for biaxial stress and biaxial strain can be exploited to find a 

biaxial stress-strain diagram only if the quantities p, 𝜌 and s are either measured or derived 

from other experimental data (60).  

The current level of the pressure (p) can be readily measured via a sensor connected to 

the hydraulic chamber; on the contrary, the curvature radius 𝜌 and the polar thickness s 

cannot be obtained directly. Thus, they would be available indirectly by employing 

approximate formulas consisting of the current value of the polar height h. This parameter 

can be monitored continuously either through a displacement sensor (e.g. linear voltage 

displacement transducer (LVDT)) or by digital image correlation (DIC) system (60). 

Experimental results show that areas close to the centre of the bulge has nearly a spherical 

shape, and the area expands as the bulge height increases. Considering the fact that 

membrane solution cannot be accurate enough near the clamped edge, it is reasonable 

estimation that the bulge is quite spherical for large values of strain (64). 

The curvature radius 𝜌 can be evaluated with Panknin’s formula (60) (63), 

𝜌 =
1

2ℎ
(
𝑑

2
+ 𝑅)

2

+
ℎ

2
− 𝑅  . 

The experimental studies performed by other researchers (71) proved that amongst the 

numerous relationships that can be employed to assess the current value of the polar 

thickness (s), Kruglov’s formula (69) leads to the best results. At the level of the polar region, 

volume consistency assumption can be written as follows, where 𝜀𝑚  is the meridian 

(circumferential) strain (60), 

𝜀𝑏 = 2𝜀𝑚  . 

According to Kruglov’s approach, one assumes that 𝜀𝑚  can be calculated using the 

approximation (according to figure 78) (60), 

𝜀𝑚 = 𝑙𝑛
𝑇𝑃
⌒

+ 𝑇𝐻
⌒

𝐻𝐻′
  , 

Provided that the meridian strain were uniformly distributed on the dome surface. 

However, this relation is not valid thoroughly, based on the fact that the local thickness of 

the specimen gradually decreases from the clamping region towards the pole (60). Hence, 

adjustments to this approach was introduced by ‘modified version of Kruglov’s formula’, by 
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taking into account the variation of the thickness. In order to improve its accuracy, the 

modification will be applied by defining the meridian strain as a function of 𝛼 (60). 

The following relations  can be written based on the last equation and the previous figure 

(60): 

𝑇𝑃
⌒

= 𝜌𝛼 , 𝑇𝐻
⌒

= 𝑅𝛼 , 𝐻𝐻′ =
𝑑

2
+ 𝑅  , 

Where according to Panknin’s (𝜌) definition, 

𝑠𝑖𝑛𝛼 =
𝑉′𝑄

𝑂𝑄
=

𝑑
2 + 𝑅

𝜌 + 𝑅
=

𝑑
2 + 𝑅

1
2ℎ
(
𝑑
2 + 𝑅)

2

+
ℎ
2

  , 

i.e. 

𝛼 = 𝑎𝑟𝑐𝑠𝑖𝑛(

𝑑
2 + 𝑅

1
2ℎ
(
𝑑
2 + 𝑅)

2

+
ℎ
2

)  . 

Thus, meridian strain can be rewritten as, 

𝜀𝑚 = 𝑙𝑛
𝛼

𝑠𝑖𝑛𝛼
  . 

By replacing 𝜀𝑚 into biaxial strain relation, one obtains the following expression for the 

polar biaxial strain, 

𝜀𝑏 = 2𝑙𝑛
𝛼

𝑠𝑖𝑛𝛼
 

Which is the formula introduce by Kruglov. In combination with the definition of biaxial 

strain, this relation leads to the evaluation of the current polar thickness (60), 

𝑠 = 𝑠0 exp(−𝜀𝑏) =  𝑠0  (
𝛼

𝑠𝑖𝑛𝛼
 )
−2

  . 

Interestingly, the last two equations only require the measurement of the dome height h, 

as 𝛼  is only a function of dome height. As mentioned previously, although Kruglov’s 

approach leaded to acceptable results in comparison with the experiments, its accuracy can 

be improved further by the modification of the geometrical definition of median strain, 

𝜀𝑚 = (1 + 𝑐𝛼)𝑙𝑛
𝑇𝑃
⌒

+ 𝑇𝐻
⌒

𝐻𝐻′
  . 
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After updating the definition of median strain into biaxial strain definition, the polar 

biaxial strain can be derived as (60), 

𝜀𝑏 = 2 (1 + 𝑐𝛼)𝑙𝑛
𝑇𝑃
⌒

+ 𝑇𝐻
⌒

𝐻𝐻′
  . 

The presence of a correction factor containing the constant parameter c makes this 

formula more attractive with respect to the original Kruglov’s formula. This relation allows 

the evaluation of the updated current polar thickness (60), 

𝑠 = 𝑠0 exp(−𝜀𝑏) =  𝑠0  (
𝛼

𝑠𝑖𝑛𝛼
 )
−2(1+𝑐𝛼)

  . 

It is obvious that in order to implement the last two equations, coefficient c needs to be 

obtained first by assessing the final value of the polar thickness 𝑠𝑚𝑖𝑛 , which can be observed 

after the specimen is freed from the dies (60).  

The thickness can be observed using a measuring device attached to the upper and lower 

surfaces of the specimen. Considering ℎ𝑚𝑎𝑥  and 𝛼𝑚𝑎𝑥  as the polar height and the angle 

spanned by the dome surface, respectively, corresponding to the final stage of the process, 

thickness s can be formulated as follows (60), 

𝑠𝑚𝑖𝑛 = 𝑠0  (
𝛼𝑚𝑎𝑥

𝑠𝑖𝑛𝛼𝑚𝑎𝑥
 )
−(1+𝑐𝛼𝑚𝑎𝑥)

  , 

So that, 

𝛼𝑚𝑎𝑥 = 𝑎𝑟𝑐𝑠𝑖𝑛

(

 

𝑑
2 + 𝑅

1
2ℎ𝑚𝑎𝑥

(
𝑑
2 + 𝑅)

2

+
ℎ𝑚𝑎𝑥
2 )

   , 

Coefficient c can be derived from the thickness at apex at the final stage of the bulging 

process (60), 

𝑐 =

𝑙𝑛√
𝑠0
𝑠𝑚𝑖𝑛

− 𝑙𝑛
𝛼𝑚𝑎𝑥

𝑠𝑖𝑛𝛼𝑚𝑎𝑥

𝛼𝑚𝑎𝑥 𝑙𝑛
𝛼𝑚𝑎𝑥
𝑠𝑖𝑛𝛼𝑚𝑎𝑥

  . 

All in all, the two approaches to evaluate biaxial stress and biaxial strain analytically are 

briefly highlighted here (according to the method used to calculate the polar thickness, there 

would be a number of approaches, however, it is shown in the literature that Kruglov’s 

approach is more reliable than the rest), 
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KRUGLOV’S APPROACH 

Distribution of median strain is assumed to be UNIFORM along the dome  

a. Import test-related constants: (d), (R) and (s0), 

b. Monitor pressure (p) and dome height (h) continuously, 

c. Evaluate dome radius (𝜌) from Panknin’s equation continuously, 

𝜌 =
1

2ℎ
(
𝑑

2
+ 𝑅)

2

+
ℎ

2
− 𝑅   

d. Evaluate (𝛼) derived from test geometric constants and dome height 

continuously, 

𝛼 = 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑑
2
+ 𝑅

1
2ℎ
(
𝑑
2
+ 𝑅)

2

+
ℎ
2

) 

e. Evaluate constantly the polar thickness (s) using Kruglov’s formula  

𝒔 =  𝒔𝟎  (
𝜶

𝒔𝒊𝒏𝜶
 )
−𝟐

 

f. Biaxial strain and stress can be assessed continuously using the following 

equations, 

𝜀𝑏 = 2𝑙𝑛
𝛼

𝑠𝑖𝑛𝛼
                        𝜎𝑏 =

𝑝𝜌

2𝑠
 

MODIFIED KRUGLOV’S APPROACH 

Distribution of median strain is not UNIFORM practically 

𝜀𝑚 = (1 + 𝑐𝛼)𝑙𝑛
𝛼

𝑠𝑖𝑛𝛼
 , 𝜀𝑏 = 2 𝜀𝑚 

e. Evaluate constantly the polar thickness (s) using Modified Kruglov’s formula, 

𝒔 = 𝒔𝟎  (
𝜶

𝒔𝒊𝒏𝜶
 )
−𝟐(𝟏+𝒄𝜶)

 

f. Coefficient (c) will be defined at the pole, and at the final stage of the test, where, 

𝑠 = 𝑠𝑚𝑖𝑛, ℎ = ℎ𝑚𝑎𝑥 and 𝛼 = 𝛼𝑚𝑎𝑥. 

𝑐 =

𝑙𝑛√
𝑠0
𝑠𝑚𝑖𝑛

− 𝑙𝑛
𝛼𝑚𝑎𝑥
𝑠𝑖𝑛𝛼𝑚𝑎𝑥

𝛼𝑚𝑎𝑥 𝑙𝑛
𝛼𝑚𝑎𝑥
𝑠𝑖𝑛𝛼𝑚𝑎𝑥

  , 𝛼𝑚𝑎𝑥 = 𝑎𝑟𝑐𝑠𝑖𝑛

(

 

𝑑
2 + 𝑅

1
2ℎ𝑚𝑎𝑥

(
𝑑
2 + 𝑅)

2

+
ℎ𝑚𝑎𝑥
2 )

  

Coefficient (c) can be easily established if the final value of the polar thickness 𝑠𝑚𝑖𝑛 

is measured after removing the specimen from the hydraulic bulging device.  
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An overview of the methodology for the determination of bulge test stress-strain curve is 

described by the flow chart shown in figure below, 

 
Figure 84 methodology for the determination of bulge test stress-strain curve 

4.4.2 Direct methods  

Breakthroughs in the field of sheet metal testing are still possible by the development of 

the computers and data acquisition systems. Direct methods benefit from continuous data 

acquisition of bulge geometry to evaluate curvature and thickness (57). 

Two groups may be seen with regard to direct methods:  

(a) Mechanical measurements 

Mechanical measuring systems entail spherometer and extensometer that employs 

physical tactile devices, to evaluate curvature and thickness, respectively. This approach 

provides a possibility for both the applicability and exchangeability of bulge test results (52). 

(b) Optical measurements 

In the field of the hydraulic bulging, recent development has been mainly in the area of 

optical strain measuring systems. Such systems consist of CCD cameras whose functions 

are monitored by a videogrammetric software. Besides, 3D optical measurement system can 

be used for the continuous observing of the polar height, curvature radius and polar thickness 

of the specimens (72). 

The potentiometer is a very sensitive device and cannot tolerate the impact loading during 

bursting of the specimen. Therefore, tests used to be done at two steps: (1) all the way up to 

burst point without the potentiometer to get the burst pressure (Pburst) and (2) after installing 
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the potentiometer, testing up to ~90-95% Pburst. However, with the new laser sensor, it is 

possible to determine the data up to Pburst (73). 

4.4.2.1 Mechanical measurements 

Strain rate sensitivity is the dependence of the stress-strain curve on the rate at which the 

test specimen is deformed. This behaviour can be taken into account by a feed-back control 

on the hydraulic bulging system. The data processing system transforms test signals 

(transducer signals for the three variables, pressure (p), spherometer height (h) and 

extension) into data output. The signals are converted into digital form and then stored in a 

minicomputer. After the test, these are computed to obtain stress-strain data pairs, and the 

information is transferred to a central computer for subsequent analysis or plotting (52). 

The specimen is a circular blank as shown in figure below. in order to facilitate the strain 

measurements at the end of the test for validation, gridded blanks are normally employed 

(52). 

 
Figure 85 Sheet specimens before and after bulge testing (52) 

Different diameters used for determination of curvature and strain have a strong influence 

on obtained flow curve, especially for strains higher than 0.3 of the evaluated curve (57). 

In order to become familiar with mechanical measurements, the test procedure is 

described here. Firstly, the test specimen is placed in the die, as shown in the next figure, 
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Internal pressure (p) 

• measured continuously using a 

pressure sensor, 

• located on one end of the rod 

holding the hydraulic cylinder. 

Bulge height of the sheet (h) 

• measured continuously by a Linear 

Potentiometer Transducer, 

• fixed on the upper die (58).  

Figure 86 Cross-section of the bulge die (52) 

The die ring is inserted and locked, and the test-piece is clamped. The extensometer and 

spherometer mut be carefully calibrated while sitting on a ground surface plate, as the stress-

strain data are highly sensitive to errors in curvature measurement. The unit is then placed 

on the specimen, and the control console is set to initiate a test in a similar fashion to any 

normal servo-controlled system. The thickness and the reading rate of the data sets are 

entered by the operator.  

The test is run and goes on until the rupture, when the control system senses an abrupt 

fall in pressure level and deactivates the hydraulic system. The, the specimen can be 

removed and the data is transmitted to the central computer for further processing as 

discussed before (52).  

In conclusion, the main procedure of bulge test can be divided into the following steps 

(58), 

1. Expand the metallic sheet by hydraulic pressure while the edge of the specimen is held 

firmly to avoid axial movement, 

2. Meanwhile, the internal pressure (internal pressure is recorded 30 times per second to 

measure the pressure precisely, which is used in the analytical equations) and bulge height 

are measured continually during expansion, 

3. The measured parameters are then converted into true stress-strain data using analytical 

equations (in case of indirect method), 

4. Exploiting the least-squares method, stress-plastic strain data can be fitted into a strain 

hardening law to obtain a flow stress curve. 
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4.4.2.2 Optical measurements 

In comparison with classical mechanical measuring systems, optical measuring systems 

provide in-depth information about the deformation of the specimen during the test; for 

example, due to the practical shortcomings of mechanical measuring, the shape of the bulged 

sheet is approximated by a sphere. Furthermore, the additional information coming from 

optical measuring devices provide not only detailed assessments on the bulged surface, but 

also more accurate determination of the stress and strain state at the pole (70). Mulder and 

his colleagues showed that if the surface coordinates are fitted into an ellipsoid shape 

function, more accurate results can be obtained. In the next step, the accurate flow curve can 

be retrieved both from the fit and the local strain data to estimate the curvature of the 

midplane (70). 

 ISO 16808 RECOMMENDED PROCEDURE FOR HYDRAULIC 

BULGE TEST 

The following section highlights the main features of ISO 16808 standard on the 

determination of biaxial stress-strain curve by means of bulge test with optical measuring 

systems (50).  

Generally, the proposed approach exploiting optical measuring systems is an evolution 

of the method using a spherometer and an extensometer. A configuration for optical 

measuring system for bulge test is shown below, 

 

1 lamp 

2 cameras 

3 glass plates 

4 test piece 

5 fluid 

Figure 87 Example for possible positions of oil shielding plates and lamps (50) 
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4.5.1 Determination of the curvature and strains at the pole 

A spherically shaped surface near the pole (best-fit sphere) is assumed for the following 

calculation of the curvature and strains. The area of the dome with the highest deformation 

is selected in the last image before bursting takes place and defined as the location in which 

the true stress and the true thickness strain (ε3) should be assessed. The best fit sphere can 

be evaluated based on a selected area of points in order to obtain a stable radius of curvature 

of the dome (50). 

Herein, points inside the radius (r1) around the pole in the last image (time step) before 

failure are chosen in a best sphere fit to obtain the radius of curvature, rather than employing 

a spherometer. The same selection of points are used for all forming stages. The 

disadvantage of this method is that depending on the deformation in the final stage more or 

less points are included. The consistency is improved by applying it to all points within an 

initial radius or within a current radius (r1) (50). 

Similarly, instead of using an extensometer the thickness strain of points within a radius 

(r2) is averaged. The points within that radius are also selected in the last image before 

bursting and that selection applies again to all forming stages (50). 

As it is illustrated in the next figure, a radius (r1) is defined around the apex of the dome 

in the last image before bursting and the fit is performed for all forming stages with the same 

selection of points. A certain number of the first forming stages (images) are rejected, since 

the specimen is still too flat for a reliable determination of the best-fit sphere, since the 

bending radius is very large and the fit is not stable. For robust values of the true strain and 

thinning in the apex, the average value of a number of selected points is taken. Therefore, a 

second area is defined by a radius r2 in a similar manner (50). 

Based on this procedure, after measuring the radius of curvature and the average 

thickness strains for every forming stage (image), the corresponding thickness and stress 

values at the dome apex are then calculated accordingly. This evaluation can be carried out 

for different (r1) and (r2) values. However, for a good convergence and robust values, the 

recommended range of (r1) and (r2) is defined as in the following figure, 
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𝑟1 = (0.125 ± 0.025) × 𝑑𝑑𝑖𝑒 
𝑟2 = (0.05 ± 0.01) × 𝑑𝑑𝑖𝑒 

 

Figure 88 Choice of r1 and r2 for calculation of true stress and true strain for each forming stage (50) 

4.5.2 Calculation of biaxial stress-strain curves 

For the derivation of the biaxial stress-strain curve, both radius of curvature and thickness 

strain at dome are already known through optical measurements; thus, in the next step to 

achieve this goal, a simple membrane stress state of a thin-walled spherical pressure vessel 

is considered at the centre of the blank (50). This leads to the following simplifications: 

(a) As before, an equibiaxial stress state is assumed, 

𝜎𝑥 = 𝜎𝑦 = 𝜎𝑏 

(b) Defining the curvature by the mean curvature radius (𝜌𝑎) at the pole. 

Then the biaxial true stress can be evaluated using the following equation, 

𝜎𝑏 =
𝑝 𝜌𝑎
2𝑡

  , 

Where the radius of curvature is the average radius of curvature using equation (𝜌𝑎), 

established on the outer surface, and (p) is the measured fluid pressure. 

According to the definition of the thickness strain (𝜀3), actual thickness will be, 

𝑡 = 𝑡0 exp(𝜀3)  . 

Assuming plastic incompressible deformation of the material and neglecting elastic 

strains, the total thickness strain for the calculation of the actual thickness can be estimated 

by the total major and minor true strain on the outer surface, 

𝜀3 ≈ −𝜀1 − 𝜀2  . 
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Employing the plastic work principle, the biaxial stress-strain curve is a function of the 

plastic strain in thickness direction: 𝜎𝑏(𝜀3
𝑝𝑙). Provide that the material has an isotropic linear 

elastic behaviour and taking into account the volume consistency (plastic incompressibility 

rule), the plastic thickness strain can be obtained by, 

𝜀3
𝑝𝑙 = −𝜀1 − 𝜀2 + 2

1 − 𝜈

𝐸
𝜎𝑏   . 

It is important to note that the die diameter to thickness ratio should be large enough to 

ensure a near membrane stress state in the specimen, and an inconsiderable effect of 

bending (50). Therefore, there is no prescription for bending correction, except for die 

diameter to thickness ratios lower than 100, where it is recommended to observe if the 

bending strains are comparatively small with respect to the actual thickness strain result 

(𝜀3) using the following estimate for the bending strains (50), 

𝜀𝑏𝑒𝑛𝑑𝑖𝑛𝑔 ≈ −𝑙𝑛 (1 −
𝑡0
2𝜌
exp(𝜀3))  . 

 FROM YIELD POINT TO FRACTURE BY COMBINING TENSILE 

TEST DATA WITH BULGE TEST DATA  

4.6.1 Introduction 

Since neither the tests are able to describe accurately the whole material’s plastic 

behaviour, a complete description can be achieved merely through combining the data 

coming from the two tests; so that, the deformation around the yield point is evaluated from 

tensile test, while the rest of the flow curve is derived from bulge test results. 

It is observed that the flow curve obtained from the bulge test is normally placed higher 

compared to tensile test for the same level of strain, however there are exceptions like 

DP600, and an aluminium alloy studied here (54). 

Furthermore, the anisotropy values resulted from bulge test are smaller in comparison 

with that of the tensile test. This may come from the fact that in the bulge test the anisotropy 

values are obtained for strain range of 0.05 to 0.4, while in tensile test it is measured at strain 

of ~0.2 (54). 
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4.6.2 Tensile test data extrapolation using scaled bulge test data 

Briefly, the aim of this section is to extrapolate tensile test data beyond UTS, by 

exploiting bulge test results. The following procedure is prescribed by ISO 16808-2014. 

Herein, the approach is introduced first and then will be implemented in some materials 

tested in CRF’s labs. 

Usually, the true stress-strain curve, determined from uniaxial tensile test data in rolling 

direction, is employed as a reference for hardening evaluation and the calculation of the 

stress points of the yield locus. On the other hand, bulge test provides equibiaxial stress-

strain curves, where the average of the major and minor stress from the bulge tests can be 

drawn against the absolute value of the plastic true thickness strain (50).  

The approach used for the evaluations of the equibiaxial stress ratio and scaling bulge 

test results to extend the uniaxial stress-strain curve beyond uniform deformation is 

described in the following according to ISO 16808-2014 prescription. By comparing the 

curves of the ‘stress-strain data of the equibiaxial stress state’ with the ‘uniaxial reference 

curve’, the equibiaxial stress point can be derived and the equibiaxial stress-plastic strain 

curve can be converted to an equivalent stress-plastic strain curve presenting work 

hardening data at strains higher than the uniform elongation (50). 

The method described in this section is merely one of the approaches for studying the 

stress-strain data from a bulge test. However, it is mentioned in the standard that: “it is the 

responsibility of the operator to observe whether the underlying assumptions are fulfilled 

adequately in a way that it is in line with the actual material behaviour” (50). The following 

assumptions are made based on ISO 16808: 

• isotropic hardening, 

• the yield locus shape does not change with the strain, 

• the work hardening is independent from the strain path (loading path), 

• the loading path and strain path of the test are constant, 

• the strain rate and temperature of the bulge test are close to the strain rate and 

temperature of the tensile test.  

In order to enable extrapolation in the post-uniform strain range of the tensile test, as a 

reference value for the equivalent strain ( 𝜀𝐸−𝑟𝑒𝑓 ), the true plastic strain at Uniform 

Elongation of the tensile tests (𝜀1−𝑈𝐸) in the rolling direction is chosen, 
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𝜀1−𝑈𝐸 = 𝜀𝐸−𝑟𝑒𝑓   . 

It is the last valid point of the true stress true strain curve of the tensile test, from which 

the hardening curve will be extrapolated using bulge test data.  

As far as a reference value for stress is concerned, the stress at the uniform strain of the 

tensile tests is used as the reference flow stress (𝜎𝑓−𝑟𝑒𝑓) i.e. the ultimate tensile strength 

transformed to a true stress.  

The corresponding reference stress value of the bulge test (𝜎𝐵−𝑟𝑒𝑓) are looked up by 

comparing the two sides of the following equation, 

𝜎𝐵−𝑟𝑒𝑓 . |𝜀3−𝑟𝑒𝑓| = 𝜎𝑓−𝑟𝑒𝑓 . 𝜀𝐸−𝑟𝑒𝑓  . 

𝜀3−𝑟𝑒𝑓 is defined as the corresponding reference thickness strain for the bulge test.  

Since the bulge test curve consists of discrete values, there might not be a pair which 

completely satisfies the condition shown in the above formula. Therefore, the point (m) in 

the bulge test data matches the following condition, 

{

𝜎𝐵,𝑚 . |𝜀3,𝑚| ≤ 𝜎𝑓−𝑟𝑒𝑓  . 𝜀𝐸−𝑟𝑒𝑓
𝑎𝑛𝑑

𝜎𝐵,𝑚+1 . |𝜀3,𝑚+1| ≥ 𝜎𝑓−𝑟𝑒𝑓 . 𝜀𝐸−𝑟𝑒𝑓

  . 

The requested reference stress of the bulge test can now be computed by simple linear 

interpolation, 

𝜎𝐵−𝑟𝑒𝑓 = 𝜎𝐵,𝑚 +
𝜎𝐵,𝑚+1 − 𝜎𝐵,𝑚

𝜎𝐵,𝑚+1 . |𝜀3,𝑚+1| −  𝜎𝐵,𝑚 . |𝜀3,𝑚|
 . (𝜎𝑓−𝑟𝑒𝑓 . 𝜀𝐸−𝑟𝑒𝑓 − 𝜎𝐵,𝑚 . |𝜀3,𝑚|) . 

The value of the biaxial stress ratio (𝑓𝑏𝑖) is obtained by, 

𝑓𝑏𝑖 =
𝜎𝐵−𝑟𝑒𝑓

𝜎𝑓−𝑟𝑒𝑓
  . 

With the biaxial stress factor (𝑓𝑏𝑖 ), the bulge test curve can be transformed into an 

equivalent strain-stress curve, 

{
  𝜎𝑓𝑘 =

𝜎𝐵𝑘
𝑓𝑏𝑖

𝜀𝐸𝑘 = |𝜀3𝑘|𝑓𝑏𝑖  
. 

In combination with uniaxial stress-strain curves from tensile tests, this transformed 

curve can be used to generate a hardening curve with data extrapolated beyond strain at 

uniform elongation. 
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The method is shown graphically in the following figure, 

 
Figure 89 ISO 16808 approach for extrapolating tensile test data with bulge test (50) 

4.6.3 Plotting flow curve using anisotropy of the material 

In a study at CPF15, researchers have proposed a new method by considering anisotropy 

of the material in order to achieve a more accurate determination of the flow stress data from 

the actual yield point up to the largest strain values obtained from the bulge test. As it was 

highlighted before, combining the tests can provide more accurate flow stress curve ranging 

from yield point to the strain at failure in the biaxial stress condition (55). 

Benefiting from the following formula, the result of the tensile test (engineering stress-

strain data), can be converted into true strain-stress values, that is essential before combining 

them with the bulge test results. 

{
𝜀𝑡𝑟𝑢𝑒 = ln (1 + 𝜀𝑒𝑛𝑔)

𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑒𝑛𝑔(1 + 𝜀𝑒𝑛𝑔)
   . 

Since the tensile test provides the uniaxial yield stress, this value is converted to the 

biaxial stress using the following equation, 

 
15 Center for Precision Forming, The Ohio State University 
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𝜎𝑏𝑖𝑎𝑥𝑖𝑎𝑙 = 𝜎𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙√
(1 + 𝑟0)𝑟90
𝑟0 + 𝑟90

   . 

Where 𝑟0 and 𝑟90 are the Lankford coefficients defining the anisotropy of the material in 

rolling and transverse directions, respectively. The biaxial yield stress (derived from the 

above relation) would become as the first point of the flow stress curve. This point is 

included in the data point obtained from the bulge test, and the curve is fitted into these data 

points (55). 

 
Figure 90 converting uniaxial test result to biaxial considering anisotropy (55) 

With this method, the flow stress curve entails both the large strain levels from the bulge 

test and the accurate yield point obtained from the tensile test. This method was exploited 

extensively at CPF to determine the flow stress of a variety of advanced, high-strength 

materials, including CP800, DP590, DP980, TRIP1180, TWIP900, and TWIP980 (55). 
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 POST-NECKING IDENTIFICATION USING ISO 16808 

PROCEDURE 

In this section the proposed approach in ISO 16808 is employed to identify the flow stress 

curves of Aluminium 6000 and DP600 steel. 

4.7.1 Aluminium 6000 Novelis 

The specimen’s geometrical and mechanical characteristics, derived from uniaxial tensile 

test, are given in the table below, 

Rm (N/mm²) 273.84 Tensile strength  
Stress corresponding to the maximum force (Fm) 

Rp0.2 (N/mm²) 146.81 
Proof strength, non-proportional extension, 

Stress at which a non-proportional extension is equal 
to a specified percentage of the extensometer gauge 

length (Le), normally 0.2% . 

A (%) 24.47 

Percentage of elongation after fracture, 
permanent elongation of the gauge length after fracture 

(Lu – Lo), where: 
final gauge length (Lu): gauge length after rupture of 

the test piece, 
original gauge length (Lo): gauge length before 

application of force. 

Agt (%) 22.87 Percentage of total elongation at maximum force (Fm) 

E (N/mm²) 58610.80  
r @8.00-12.00% 0.55  

r  @10.00% 0.57  
n  @4.00-6.00% (%) 0.28  

n  @10.00-20.00% (%) 0.26  
Thickness (a)  (mm) 2.10  

Width (b)  (mm) 20.13  

Parallel length 110.00 Parallel portion of the reduced section of the test piece 
(Lc) 

Original length 80.00 Gage length before application of force (Lo) 

Original extensometer 
length 80.00 Original extensometer gage length 

Engineering stress – strain curve as well as flow stress curve obtained from tensile test 

are shown below, where the last valid data coming from tensile test (regarding to the end of 

uniform elongation) is also highlighted, 
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Figure 91 Engineering stress – strain curve aluminium 6000 Novelis 

 
Figure 92 True stress – strain curve aluminium 6000 Novelis 

The following figure, shows the flow curves derived from both tensile and bulge test for 

this material, 



137 
 

 
Figure 93 true stress – strain curves for tensile and bulge tests aluminium 6000 Novelis 

Up to the end of the uniform elongation, significant fluctuations in bulge test results is 

evident; besides, tensile test gives larger flow stress values than bulge test in this range. 

Thus, as discussed before, for smaller value of plastic strain around uniform elongation, 

tensile test data seems to be more reliable, while for large strains we can extrapolate tensile 

test based on bulge test results. 

4.7.1.1 Tensile test extrapolation in the post-uniform strain range  

First step: evaluation of the true plastic strain at uniform elongation (𝜀1−𝑈𝐸) in the rolling 

direction is chosen as a reference value for the equivalent strain (𝜀𝐸−𝑟𝑒𝑓), 

𝜀1−𝑈𝐸 = 𝜀𝐸−𝑟𝑒𝑓   . 

According to the data provided by the supplier, 

𝜀1−𝑈𝐸 = ln [1 + (
𝐴𝑔𝑡

100
⁄ −

𝑅𝑚
𝐸⁄ )] = 0.2021 =  𝜺𝑬−𝒓𝒆𝒇  . 

Second step: the stress at the uniform strain of the tensile tests is used as the reference 

flow stress (𝜎𝑓−𝑟𝑒𝑓) i.e. the ultimate tensile strength transformed to a true stress. However, 

since the exact data point corresponding with the uniform elongation (i.e. Agt, Rm pair) does 

not exist in the data set, the stress value related to the uniform elongation will be read and 

used instead of given Rm,    
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𝝈𝒇−𝒓𝒆𝒇 = 331.92𝑀𝑃𝑎  . 

Third step: finding the point (m) in the bulge test data satisfying the following condition, 

{

𝜎𝐵,𝑚 . |𝜀3,𝑚| ≤ 𝜎𝑓−𝑟𝑒𝑓  . 𝜀𝐸−𝑟𝑒𝑓
𝑎𝑛𝑑

𝜎𝐵,𝑚+1 . |𝜀3,𝑚+1| ≥ 𝜎𝑓−𝑟𝑒𝑓 . 𝜀𝐸−𝑟𝑒𝑓

  . 

Where, is derived as, 𝜎𝑓−𝑟𝑒𝑓 . 𝜀𝐸−𝑟𝑒𝑓 = 67.089𝑀𝑃𝑎 . Now, having this in mind, we 

should go through the bulge test data and look for the biaxial stress-thickness strain pair 

giving the same value. So that, the requested reference stress of the bulge test can now be 

computed by simple linear interpolation, 

𝝈𝑩−𝒓𝒆𝒇 = 𝜎𝐵,𝑚 +
𝜎𝐵,𝑚+1 − 𝜎𝐵,𝑚

𝜎𝐵,𝑚+1 . |𝜀3,𝑚+1| −  𝜎𝐵,𝑚 . |𝜀3,𝑚|
 . (𝜎𝑓−𝑟𝑒𝑓 . 𝜀𝐸−𝑟𝑒𝑓 − 𝜎𝐵,𝑚 . |𝜀3,𝑚|) . 

Here, according to the bulge test data, 𝜎𝐵−𝑟𝑒𝑓 = 322.77 𝑀𝑃𝑎. 

Fourth step: biaxial stress ratio (𝑓𝑏𝑖) calculation, obtained by, 

𝑓𝑏𝑖 =
𝜎𝐵−𝑟𝑒𝑓

𝜎𝑓−𝑟𝑒𝑓
=
322.77

331.92
= 0.972 

As described before, extrapolation is done by adding the bulge tests data at equivalent 

strains larger than the uniform strain of the tensile test to the uniaxial stress strain curve. 

According to the above-mentioned procedure, the following result for tensile test 

extrapolation is obtained, 
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Figure 94 flow stress curve from tensile test data extrapolation with bulge test-aluminium 6000 Novelis 

• Swift/Hockett-Sherby hardening law 

In this section, Swift/Hockett-Sherby hardening law is applied to tensile test results, 

where also the result will be compared with the extrapolation using bulge test.  

Firstly, we consider the extrapolation of tensile test data only through applying SHS 

hardening law, where merely the error coming from the strain range below uniform 

elongation is considered. The observed RMSE of fitting SHS 0.75 is calculated to be 0.73. 

 
Figure 95 tensile test extrapolation using SHS hardening law-aluminium 6000 
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With regard to the tensile test data extrapolation using bulge test data, as the number of 

data points resulted from tensile test is much larger than that of bulge test, in order to reduce 

the error and have a better hardening law fitting, we need to have a uniform distribution of 

data points along the strain range. To see the effect of data refinement, a comparison is 

made to show the quality of curve fitting in figures below, 

So without data refinement, 

 
Figure 96 tensile test data extrapolation using bulge test data fitted by SHS hardening law-without data 

refinement 

With data refinement, 

 
Figure 97 tensile test data extrapolation using bulge test data fitted by SHS hardening law-with data 

refinement 
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It can be concluded from the above figures that, data refinement will lead to better fitting 

for strains larger than uniform elongation, while it leads to negligible error for small strains.  

In case we need to import the result into AutoForm software, we need 50 data points 

coming from SHS 0.75 hardening law curve fitting as shown in the next figure, 

 
Figure 98 50 data points required to import into FEA SW-aluminium 6000 

Furthermore, we can also observe the effect of tensile test data extrapolating with bulge 

test data, by comparing it with the case in which solely SHS 0.75 hardening law curve is 

fitted to the tensile test data before yielding, 

 
Figure 99 tensile test extrapolations comparison using bulge test data and SHS hardening law-

aluminium 6000 
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• k-exponent function 

The capability of 𝜅 -exponent function as a fitting function for aluminium 6000 is 

observed here and a comparison is also made with HS hardening law. 

 

Figure 100 Al6000 flow stress curve fitting, k-exponent function and HS hardening law using ISO16808 

𝜅-exponent function resulted in the lowest RMSE value among other hardening laws, 

with a very good behaviour in low values of strain. 
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4.7.2 DP600 1.2mm Arcelor 

The specimen’s geometrical and mechanical characteristics derived from uniaxial tensile 

test are given in the table below, 

Rm (N/mm²) 583.51 Tensile strength  
Stress corresponding to the maximum force (Fm) 

Rp0.2 (N/mm²) 350.31 
Proof strength, non-proportional extension, 

Stress at which a non-proportional extension is equal to 
a specified percentage of the extensometer gauge length 

(Le), normally 0.2% . 

A (%) 26.29 

Percentage of elongation after fracture, 
permanent elongation of the gauge length after fracture 

(Lu – Lo), where: 
final gauge length (Lu): gauge length after rupture of 

the test piece, 
original gauge length (Lo): gauge length before 

application of force. 

Agt (%) 19.88 Percentage of total elongation at maximum force (Fm) 

E (N/mm²) 79298.27  
rm @ 4%-16.00% 0.90  

n  @4.00-6.00% (%) 0.25  
n  @10.00-20.00% (%) 0.21  
Thickness (a)  (mm) 1.21  

Width (b)  (mm) 19.69  

Parallel length 110.00 Parallel portion of the reduced section of the test piece 
(Lc) 

Original length 80.00 Gage length before application of force (Lo) 

Original extensometer 
length 80.00 Original extensometer gage length 

4.7.2.1 Tensile test extrapolation in the post-uniform strain range  

Working on the data sheet given by the supplier, the corresponding flow curves for tensile 

and bulge tests can be shown as below, 
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Figure 101 True stress – strain curve DP600 

To extrapolate tensile test data beyond uniform elongation, again we follow the following 

steps, 

First step: the reference value for the equivalent strain (𝜀𝐸−𝑟𝑒𝑓) is considered to be the 

true plastic strain at uniform elongation (𝜀1−𝑈𝐸), 

𝜀1−𝑈𝐸 = 𝜀𝐸−𝑟𝑒𝑓   . 

According to the data given by the supplier, (N.B. since the given ultimate tensile strength 

data point, corresponding to the uniform elongation, cannot be found exactly in the data 

sheet, the stress value at uniform elongation will be used instead of Rm in the next relations).   

𝜀1−𝑈𝐸 = ln [1 + (
𝐴𝑔𝑡

100
⁄ −

𝑅𝑚
𝐸⁄ )] = 0.1752 =  𝜺𝑬−𝒓𝒆𝒇  . 

Second step: the stress at the uniform strain of the tensile tests is used as the reference 

flow stress (𝜎𝑓−𝑟𝑒𝑓) i.e. the ultimate tensile strength transformed to a true stress. However, 

as discussed before, this value will be substituted by the stress value given in the data sheet 

in front of the uniform elongation,  

𝝈𝒇−𝒓𝒆𝒇 = 700.37 𝑀𝑃𝑎  . 

Third step: The reference stress in the bulge test should be through this simple linear 

interpolation, 
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𝝈𝑩−𝒓𝒆𝒇 = 𝜎𝐵,𝑚 +
𝜎𝐵,𝑚+1 − 𝜎𝐵,𝑚

𝜎𝐵,𝑚+1 . |𝜀3,𝑚+1| −  𝜎𝐵,𝑚 . |𝜀3,𝑚|
 . (𝜎𝑓−𝑟𝑒𝑓 . 𝜀𝐸−𝑟𝑒𝑓 − 𝜎𝐵,𝑚 . |𝜀3,𝑚|) . 

While 𝜎𝑓−𝑟𝑒𝑓 . 𝜀𝐸−𝑟𝑒𝑓 = 122.67𝑀𝑃𝑎. 

Here, according to the bulge test data sheet, 𝜎𝐵−𝑟𝑒𝑓 = 743.66 𝑀𝑃𝑎. 

Fourth step: biaxial stress ratio (𝑓𝑏𝑖) calculation, obtained by, 

𝑓𝑏𝑖 =
𝜎𝐵−𝑟𝑒𝑓

𝜎𝑓−𝑟𝑒𝑓
=
743.66

700.37
= 1.054  . 

The following figure shows the result of the above procedure in order to extrapolate 

tensile test beyond uniform elongation. As discussed before, bulge test cannot present 

properly the behaviour of the material for strains below the uniform elongation, while on the 

other hand, data derived from tensile test above uniform elongation is not valid. Hence, to 

have a good observation, both tests are required to be conducted. 

 
Figure 102 flow stress curve from tensile test data extrapolation with bulge test-DP600 

• Swift/Hockett-Sherby hardening law 

We can also apply Swift/Hockett-Sherby hardening law and observe the fitting error. 

Moreover, the result will be compared with the extrapolation using bulge test.  
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Firstly, we consider the extrapolation of tensile test data only through applying SHS 

hardening law, where merely the error coming from the strain range below uniform 

elongation is considered.  

 
Figure 103 tensile test extrapolation using SHS hardening law-DP600 

Data refinement to obtain quality hardening law fitting is also applied here. A comparison 

is made to show the quality of curve fitting in figures below, 

Without data refinement, 

 
Figure 104 tensile test data extrapolation using bulge test data fitted by SHS hardening law-without data 

refinement 
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With data refinement, 

 
Figure 105 tensile test data extrapolation using bulge test data fitted by SHS hardening law-with data 

refinement 

By employing SHS 0.75 the lowest RMSE of 11.33 is attainable. 

To make data usable as an input for AutoForm, the 50 data point are reported in the 

following figure, 

 
Figure 106 50 data points required to import into FEA SW-DP600 
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In order to see the effect of using bulge test data in extrapolating tensile test, we can 

compare the above result with a case in which the extrapolation is done only by minimising 

the sum of the residuals up to yield point, 

 
Figure 107 tensile test extrapolations comparison using bulge test data and SHS hardening law-DP600 

• k-exponent function 

𝜅-exponent function is employed in order to compare its fitting ability with that of 

Hockett-Sherby hardening law. 

 

Figure 108 comparison between the flow stress curve fitting of DP600 using ISO 16808 
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As it can be seen from the above figure, 𝜅-exponent provides a very good fit for small 

values of strain than HS; however, HS performs better in large deformation. It can be 

concluded that a linear combination of 𝜅-exponent function and a non-saturated hardening 

law can attain a very acceptable outcome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



150 
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 INTRODUCTION 

t is well known that in tensile testing, the uniform extension will be limited when the 

tensile load reaches a maximum value of the material. At this point the test sample 

starts to neck; so that, the state of stress changes progressively from the simple uniaxial 

tension to a complicated condition of triaxial stress in case of a round bar or to a biaxial 

stress state for a thin strip. Because the onset of necking hinders the assumption of uniaxial 

state of stress, it is impossible to determine a uniaxial true stress-strain relation by the 

standard tensile test once necking starts to progress. Thus, for applications in which strain 

exceeds its value at the onset of necking, merely the standard tensile test cannot provide 

adequate information for material modelling. It will considerably limit the use of FEM for 

large deformation applications, such as contact forming. Hence, some methods have to be 

found to identify the post-necking behaviour (74). 

It is already demonstrated in chapter two that the hardening behaviour beyond necking 

can be estimated by extrapolation of the hardening behaviour before the point of maximum 

uniform elongation. Unfortunately, EM may yield to different results, depending on the 

hardening law which is fitted to the available experimental data. 

 BRIDGMAN METHOD: YES, BUT NOT FOR A FLAT SPECIMEN 

Bridgman method (75) has already been 

discussed in chapter three. Herein, based on 

a number of assumptions, it will be seen why 

this method cannot be used in the case of flat 

samples! 

He had three main assumptions, in 

developing a method aimed at finding the 

true stress-strain relation beyond necking for 

a round bar (74), 
 

(A) The strain distribution in the minimum section is uniform, 

𝜀𝑟 = 𝜀𝑡 = −
𝜀𝑎
2

 
𝜀𝑟 radial strain 
𝜀𝑟 hoop strain 
𝜀𝑎  axial strain 

I 
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Aronofsky (76) has shown that they can be assumed uniform across the minimum section. 

Therefore assumption (A) can be considered reliable (74). 

(B) A longitudinal grid line is deformed into a curve at the neck so that its curvature 
𝟏
𝝆⁄  is, 

1

𝜌
=

𝑟

𝑎𝑅
 

𝜌 radius of curvature of the grid line 
𝑟 radius of actual cross section 
𝑎 radius of the smallest cross section 
𝑅 radius of curvature of the neck 

This hypothesis (B) was verified experimentally by Davidenkov and Spiridonova (77). 

(C) the ratios of the principal stresses remain constant during loading. 

Assumption (C) is not fully verified although it can be assumed as a first approximation 

(76). Besides, FEA (78) has demonstrated that the stress distribution at the minimum cross 

section can be approximately defined by Bridgman’s equations (74).  

Consequently, it is acceptable that if (a) and (R) are precisely observed, Bridgman’s 

correction method can calculate the true stress-strain relation beyond necking as a first 

approximation in a rod (74).  

However, Bridgman’s correction method is not a handy method in practice; a set of 

experiments with various loading conditions is needed to determine the radius of curvature 

R and the minimum radius a, which are quite problematic (74). Bridgman also extended his 

correction method to flat bars; however, it is proved that necking for flat samples is far more 

complicated compared with rods with their circular cross section (74).  

Generally, for thin strips two types of instability (flow instability) can be considered;  

• Diffuse Necking (longitudinal necking) 

Its span is much larger than the sample thickness, and is similar to necking in rods. It may 

end in fracture but is normally followed by another instability process, called localised 

necking. 

• Localised Necking of thin strips 

Here the neck is a narrow band inclined at an angle to the specimen axis (oblique line), 

as shown in figure below (74).  
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The difference between localized 
and diffused neck during necking 
of a thin strip is clear in the figure. 

 
Figure 109 the difference between localized and diffused neck during necking of a thin strip (74) 

As soon as localized necking takes place, the width of the sample contracts, but the 

thickness along the necking band shrinks more, and fracture can happen after a while. 

Bridgman’s correction method for flat samples does not take into account localized necking, 

and so based on the studies of Ling (74), it cannot be applied successfully to flat specimens 

as all three assumptions were found not to be applicable for flat strips case, 

• As it is shown in the following sections, the strain distribution at the minimum cross-

section becomes considerably non-uniform when localized necking begins. 

Furthermore, the average axial strain is evaluated significantly smaller than the 

maximum axial strain at the minimum cross section (76). Hence, even though the 

instantaneous dimension of the minimum section is already obtained (to compute 

average axial strain), the equivalent strain is still required to be obtained. As it is 

implemented here, more complicated techniques such as DIC technique have to be 

employed to assess strain fields across the minimum cross section (74). 

• To obtain the equivalent uniaxial stress, the stress distributions (𝜎𝑥 and 𝜎𝑦) in the 

minimum section must be obtained, where based on Bridgman’s method, it requires 

to calculate the curvatures of the longitudinal grid lines during necking. However, 

in order to measure the curvature, the outer profile and many other longitudinal grid 

lines across the minimum section should be observed; based on this, Aronofsky’s 

experimental work suggested that, Bridgman’s curvature assumption cannot be 

applied to flat samples, as this procedure would make the testing difficult and time 

consuming (74). 

• stress ratios do not remain constant during loading, where the incremental theory of 

plasticity should be implemented; this adds more complexity to the analytical 

solution for the stress distribution at the minimum section (74). This fact not only 

can be seen in the stress distribution pattern (from uniaxial to biaxial) in the necked 

zone of the specimen, but as it is discussed later, it also provides us with a better 

prediction of plastic instability.  
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 BEHIND THE SCENE: THEORY  

In order to describe the plastic behaviour of a material in a general stress state, three 

elements are required to be employed (48), 

• a Yield Criterion: a relationship between the stress components at the moment 

when plastic ‘yielding’ occurs,  

• an Associated Flow Rule: a relationship between the components of the plastic 

strain rate and stress,  

• a Hardening Rule: the evolution of the initial yield stress during the forming 

process. 

Yield function is a relationship among the principal stresses specifying the conditions 

under which plastic flow occurs (48), and normally is defined in the form of an implicit 

function, like, 

𝑓(𝜎1, 𝜎2, 𝜎3, 𝑌) = 0     . 

Where 𝜎1, 𝜎2, 𝜎3 are the principal stresses and Y is the yield stress obtained from a simple 

test (tension, compression or shearing). 

Within the range of elastic deformation, the strains are defined by Hooke’s law. Likewise, 

for plastic deformation, the relation is called the flow rules (2). In the most general form the 

flow rule can be written, 

𝑑𝜀𝑖𝑗 = 𝑑𝜆 (
𝜕𝑓

𝜕𝜎𝑖𝑗
)  . 

Regarding to the flow rule, one can 

interpret it as the vector sum of the plastic 

strains which is normal to the yield 

surface, this is also called Normality 

Principle (2). In two-dimensions, it can be 

illustrated as in the figure. So that, if a 

material is loaded uniaxially beyond its 

yielding point, the resulting plastic strain 

is represented by a vector, 𝑑𝜀𝑣 normal to 

the yield surface, which is the vector sum 

of 𝑑𝜀1, 𝑑𝜀2. 
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5.3.1 Hill’s 1948 Yield Criterion: A short review 

Theoretical background is described here in considerable details. One can implement 

even more suitable models to define instability in sheet metal forming. However, obviously, 

employing more advanced methods needs more parameters to be considered and defined. 

This fact emphasizes the compelling urge to exploit numerical simulation and mathematical 

relations in parallel with benefiting from 2D/3D DIC technique. 

In 1948, R. Hill proposed an anisotropic yield criterion as a generalization of the Huber-

Mises-Hencky criterion (79). The material is supposed to have an anisotropy with three 

orthogonal symmetry planes, and the corresponding yield criterion is defined by a quadratic 

yield function as the following, 

2𝑓(𝜎𝑖𝑗) ≡ 𝐹(𝜎22 − 𝜎33)
2 + 𝐺(𝜎33 − 𝜎11)

2 +𝐻(𝜎11 − 𝜎22)
2 + 2𝐿𝜎23

2 + 2𝑀𝜎31
2 + 2𝑁𝜎12

2 = 1 

Here f is the yield function; F, G, H, L, M and N are constants specific to the anisotropy 

state of the material, and x, y, z are the principal anisotropic axes. In the case of sheet metals, 

axis 1 is normally parallel to the rolling direction, axis 2 is in the transverse direction and 

3 is collinear with the normal direction; so that, the yield criterion may be interpreted as a 

surface in a six-dimensional space of the stress components. The points located inside the 

surface represent the elastic states of material deformation, while points on the surface 

correspond to the plastic state (48). 

For the case of plane stress (𝜎33 = 𝜎31 = 𝜎23 = 0; 𝜎11 ≠ 0; 𝜎22 ≠ 0; 𝜎12 ≠ 0), the 

yield criterion becomes, 

2𝑓(𝜎𝑖𝑗) ≡ (𝐺 + 𝐻)𝜎11
2 − 2𝐻𝜎11𝜎22 + (𝐻 + 𝐹)𝜎22

2 + 2𝑁𝜎12
2 = 1 

In case the principal directions of the stress tensor are coincident with the anisotropic 

axes, (i.e. 𝜎11 = 𝜎1, 𝜎22 = 𝜎2, 𝜎12 = 0), and simplifying constants, F, G, H and N in terms 

of anisotropy coefficients 𝑟0 and 𝑟90, the following equation can be obtained, 

𝜎1
2 −

2𝑟0
1 + 𝑟0

𝜎1𝜎2 +
𝑟0(1 + 𝑟90)

𝑟90(1 + 𝑟0)
𝜎2
2 =

𝑟0(1 + 𝑟90)

𝑟90(1 + 𝑟0)
𝜎90
2  

This follows that in order to define the yield under plane stress condition, three 

mechanical parameters, namely the coefficients r0 and r90 and one of the uniaxial yield 

stresses 𝜎0 (or 𝜎90) are needed. 
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Assuming a material exhibiting only 

normal anisotropy (𝑟0 = 𝑟90 = 𝑟) and 𝜎0 =

𝜎90 , so that the previous equation can take the 

following form, 

𝜎1
2 −

2𝑟

1 + 𝑟
𝜎1𝜎2 + 𝜎2

2 = 𝜎𝑢
2 

Where 𝜎𝑢  is the initial uniaxial yield 

stress. With regard to isotropic hardening, if 

the uniaxial yield stress increases (i.e. 

loading the material beyond initial yield 

stress), the yield surface expands uniformly 

(48). 
 

In this special case of Hill’s general anisotropic yield criterion, the equivalent stress (𝜎𝑒𝑞) 

is a function of the principal stresses (𝜎1 and 𝜎2) and the normal anisotropy coefficient (r). 

In case x and y directions are aligned with principal directions, the Hill’s 48 yield criterion 

can be rewritten as (48) (80), 

𝜎𝑥
2 −

2𝑟

1 + 𝑟
𝜎𝑥𝜎𝑦 + 𝜎𝑦

2 = 𝜎𝑒𝑞
2  

Herein, in order to correct the local stress and strain states at the neck and to obtain a 

relation between the stress and corresponding plastic strain during deformation process, 

Hill’s normal anisotropic yield criterion and strain fields (measured by DIC technique) must 

be employed in parallel. 

By defining stress ratio 𝜶, as the ratio of minor stress and major stress, the yield criterion 

can be rewritten as,  

𝛼 =
𝜎𝑦

𝜎𝑥
 𝜎𝑒𝑞

2 = 𝜎𝑥
2 (1 −

2𝑟

1 + 𝑟
𝛼 + 𝛼2)

Similar to the idea of Bridgman’s correction factor (the ratio of equivalent stress (𝜎𝑒𝑞) 

and axial or major stress, 𝜎𝑥), this approach provides an instantaneous true stress correction 

factor for the ‘stress evaluated at necked zone’ (80). True local average stress along loading 

direction at the necked region (major stress, 𝜎𝑥) can be determined from, 

𝜎𝑥 = 𝜎𝑒𝑛𝑔,𝑥 𝑒
𝜀𝑥  . 
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Since the equivalent stress and strain will be determined by introducing correction of 

local stress and strain state at the necked region, using DIC technique, local average strain 

at neck must be inserted in the above formula for 𝜀𝑥. 

The normal anisotropy coefficient (r) is defined as the ratio of width strain increment 

(𝑑𝜀𝑥) and thickness strain increment (𝑑𝜀𝑦), 

𝑟 =
𝑑𝜀𝑦

𝑑𝜀𝑧
  . 

𝑑𝜀𝑦 and 𝑑𝜀𝑧 can be easily measured directly from 3D DIC experiment. However, since 

2D DIC technique is used in the lab, 𝑑𝜀𝑧  can be calculated from volume consistency 

condition. Considering volume remains constant during the plastic deformation, one can 

obtain, 

𝑑𝜀𝑧 = −(𝑑𝜀𝑥 + 𝑑𝜀𝑦) . 

Where 𝑑𝜀𝑦, 𝑑𝜀𝑥 and 𝑑𝜀𝑧 are the increment in true strain in the width, axial and thickness 

directions, respectively. In this way, normal anisotropy can be rewritten as, 

𝑟 =
𝑑𝜀𝑦

−(𝑑𝜀𝑥 + 𝑑𝜀𝑦)
  . 

Introducing strain rate ratio (𝜷), as the ratio of minor strain rate and major strain rate, 

one can take the advantage of ‘critical (limit) strains’, by taking into account a proper 

hardening law (the same procedure to obtain critical strains is also described for MMFC 

method). Herein, Ramberg-Osgood strain-hardening law is implemented in Hill’s 48 yield 

criterion, where swift’s model is considered for the domain of unstable plastic straining. 

As it is discussed in chapter two, the beginning of necking corresponds to the maximum 

of the traction force (Considère criterion). From the mathematical point of view, this 

condition can be written as, 𝑑𝐹 = 0. Following simple mathematical manipulations, the 

condition of plastic instability is obtained, 

𝑑𝜎

𝑑𝜀
= 𝜎  . 

Assuming RO strain-hardening law, 

𝜎 = 𝑘 𝜀𝑝
𝑛  . 

Then, the condition of plastic instability becomes, 
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𝜀𝑝 = 𝑛  . 

In other words, according to Considère criterion, a material obeying the RO hardening 

law starts to neck when the plastic strain is equal to the hardening coefficient.  

Swift (42) used the Considère criterion in order to 
determine the limit strains in biaxial tension. He 
analysed a sheet element loaded along two 
perpendicular directions and applied the Considère 
criterion for each direction. Assuming RO strain 
hardening law, he obtained the following expressions 
for the limit strains (48). 

 f is the yield function. 𝜎1 = 𝑓(𝛼)�̅� , considering 

the simplified equation for Hill’s 48. 

𝜀1
∗ =

𝜎1(
𝜕𝑓
𝜕𝜎1

)2 + 𝜎2(
𝜕𝑓
𝜕𝜎2

)(
𝜕𝑓
𝜕𝜎1

)

𝜎1(
𝜕𝑓
𝜕𝜎1

)2 + 𝜎2(
𝜕𝑓
𝜕𝜎2

)2
  𝑛 

𝜀2
∗ =

𝜎2(
𝜕𝑓
𝜕𝜎1

)2 + 𝜎1(
𝜕𝑓
𝜕𝜎1

)(
𝜕𝑓
𝜕𝜎2

)

𝜎1(
𝜕𝑓
𝜕𝜎1

)2 + 𝜎2(
𝜕𝑓
𝜕𝜎2

)2
  𝑛 

Thus, the limit strains are derived as functions of the loading ratio α and the mathematical 

parameters of the material (hardening coefficient n, anisotropy coefficient r, strain-rate 

sensitivity m, etc), as long as a certain yield function is available. 

In the present work, by employing Hill’s 48 yield criterion, the limit strains are obtained 

as, 

𝜀1
∗ =

[1 + 𝑟(1 − 𝛼)] (1 −
2𝑟
1 + 𝑟

𝛼 + 𝛼2)

(1 + 𝑟)(1 + 𝛼) (1 −
1 + 4𝑟 + 2𝑟2

(1 + 𝑟)2
𝛼 + 𝛼2)

  𝑛 𝜀2
∗ =

[(1 + 𝑟)𝛼 − 𝑟] (1 −
2𝑟
1 + 𝑟

𝛼 + 𝛼2)

(1 + 𝑟)(1 + 𝛼) (1 −
1 + 4𝑟 + 2𝑟2

(1 + 𝑟)2
𝛼 + 𝛼2)

  𝑛 

Going back to the strain rate ratio, now one can obtain the ratio in terms of r and 𝛼 using 

the above relations, 

𝛽 =
(1 + 𝑟) 𝛼 − 𝑟

1 + 𝑟 − 𝑟𝛼
  . 

However, since finding strain rate ratio and normal anisotropy are not a difficult task 

through image processing, the inverse relation is much more beneficial here, 

𝛼 =
𝜎𝑦

𝜎𝑥
=
(1 + 𝑟) 𝛽 + 𝑟

1 + 𝑟 + 𝑟𝛽
  . 

Employing incremental work per volume definition ( 𝑑𝑤 = 𝜎1𝑑𝜀1 + 𝜎2𝑑𝜀2 + 𝜎3𝑑𝜀3 =

 𝜎𝑒𝑞𝑑𝜀𝑒𝑞) and considering biaxial state of stress (𝜎3 = 0), ‘equivalent plastic strain’ can be 

found by, 

𝜎𝑒𝑞𝑑𝜀𝑒𝑞 = 𝜎1𝑑𝜀1 + 𝜎2𝑑𝜀2 = 𝜎1𝑑𝜀1(1 + 𝛼𝛽)  𝑑𝜀𝑒𝑞 =  𝑑𝜀1
𝜎1
𝜎𝑒𝑞

(1 +  𝛼𝛽) 
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From the flow rules, strain increment ratio was written previously in terms of normal 

anisotropy and stress ratio. Thus, now, equivalent strain increment can be deduced in terms 

of strain increment ratio and normal anisotropy, 

𝑑𝜀𝑒𝑞 =  𝑑𝜀1
𝜎1
𝜎𝑒𝑞

(1 +
(1 + 𝑟) 𝛽 + 𝑟

1 + 𝑟 + 𝑟𝛽
 𝛽) . 

Rewriting 𝜎1 𝜎𝑒𝑞⁄  in terms of r and 𝛽 , the final relation for equivalent plastic strain 

increment can be found as follows, 

𝑑𝜀𝑒𝑞 = 𝑑𝜀1
1 + 𝑟

√1 + 2𝑟
√1 + 𝛽2 +

2𝑟

1 + 𝑟
𝛽 

All in all, this method is aimed at evaluating equivalent stress and equivalent plastic 

strain by taking into account a specific strain hardening law, a yield criterion and DIC 

technique results. The resulted equivalent stresses and strains can be interpreted as the 

corrected true stresses and strains at necked region during deformation, respectively. 
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Figure 110 equivalent stress and equivalent plastic strain flowchart 
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 NECKING: CRITERIA AND MECHANISM 

Generally, two types of behaviour can be seen in metallic materials subjected to plastic 

deformations:  

• Hardening, caused by the accumulation of plastic deformation, 

• Softening, caused by the section reduction and the imperfections as well due to 

the deformations inside the material.  

As long as the hardening effect is the dominant one, the localized necking can be ceased; 

looking more closely, the adjacent material will deform further if the localized deformation 

produces larger force than the force induced by the adjacent material. Localized necking will 

take place when the material’s maximum force is reached, and the deformation cannot be 

passed to the adjacent material (81). 

5.4.1 Criteria and prediction 

In contrast with the Considère criterion, in which only the strain hardening effect was 

included, there are some other factors affecting the hardening behaviour, and so must be 

considered in the study of necking; the strain state by necking plays an important role, beside 

the strain rate and the temperature (81). 

During the localized necking, the material deforms under plane strain condition. Within 

the uniform deformation period of a simple tensile test, the stress component in width 

direction (σ2) is zero, but its value starts to increase during the diffuse necking. 

Consequently, the increment in the tensile stress (σ1) comes from two factors; firstly because 

of the hardening effect, and secondly due to the change of the stress state. The material 

remains quasi-stable without the risk of rupture before the occurrence of plane strain 

condition. However, gradually the material loses its capability to carry more force, and 

eventually fails where further deformation will be localized, leading to rupture in the sheet 

material (81). 

As we will see in the following, the engineering strain-stress diagram obtained from 

tensile test reveals that as the deformation continues, material failure does not take place 

immediately when force reaches its peak value; interestingly though, the reaction force 

inside the specimen remains almost constant until the onset of localized necking. While the 

reduction in the loading force shows the imminence of rupture in the specimen (81).  
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Hence, the maximum force criterion cannot be a comprehensive approach to precisely 

anticipate the fracture. Based on the point of view, the Modified Maximum Force Criterion 

(MMFC) was proposed (81). 

Herein, the introduction of the MMFC model is merely aimed at presenting a more recent 

(which is still extending) and at the same time a more exact method to predict necking rather 

than the Considère criterion. The study of this model is presented at Appendix B, and can 

be considered in future observations. 

 TENSILE TEST RESULTS OF CP 1400HD SUBSIZE SPECIMEN 

USING DIC TECHNIQUE AND GOM CORRELATE SW 

For detailed analysis on necking and obtaining average values of local strain components 

(εx and εy) at various overall tensile strain levels, a transversal section, at the necked region 

is chosen as shown in the figure,  

 

Figure 111 the position of the transversal section at neck-GOM SW 

In this section, a transition from uniform strain distribution to a non-uniform one can be 

anticipated when the strain level inside the specimen rises. Up to the point of maximum load 

(diffuse necking), the deformation is almost uniform along the specimen GL. From diffuse 

necking until the formation of localised bands, where the deformation is no longer uniform 

and uniaxial, the evaluation of the equivalent stress and equivalent plastic strain in the 

necked region is the main goal of the following discussion.  

Localised necking is always accompanied with void formation; since the volume 

constancy law is only valid up to the small amount of void formation in the necked section, 

this method can be safely used up to the deformation localisation in the specimen (82) (80). 
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5.5.1 Position of the neck 

The uniform elongation of material ends gradually with the concentration of deformation 

at a local region, where the location must be known in order to study the local strain 

distribution which in turn is crucial here to obtain the equivalent stress and strain values 

during the test. 

In this section, firstly, benefiting from the three longitudinal sections constructed along 

the GL in GOM, the position of the neck will be evaluated. Then, transversal section at 

necked region is also built to monitor the strain distributions both parallel ( 𝜀𝑥 ) and 

perpendicular (𝜀𝑦) to the tensile direction. 

Although the local strain distribution along the GL will be observed in more detail in the 

next section, the distribution for larger values of overall strain is presented here in order to 

evaluate the position of the neck. Below, local distribution of 𝜀𝑥𝑥 is shown up to 8.31% 

engineering strain level, 

 

 
Figure 112 local long. strain distribution along the GL at 7.23% engineering strain level 
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Figure 113 local long. strain distribution along the GL at 7.73% engineering strain level 

By comparing the trends of longitudinal strains in three sections (top, middle and bottom), 

it can be concluded that prior to localised necking longitudinal local strain in all the sections 

along the GL have the same variations. However, as deformation goes on, different trends 

can be seen in the three sections. As an example, at 8.31% overall specimen engineering 

strain, we can see peaks form at different locations along the GL, in figure below, 
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Figure 114 local long. strain distribution along the GL at 8.31% engineering strain level 

As discussed before, deformation localisation starts somewhere between 7.47% and 

7.92% of total engineering strain. Thus, by observing the corresponding longitudinal local 

strain variation in the middle section, we can find the range in which the highest amount of 

deformation takes place, before entering the localised necking.  

The variation of local strain parallel to the loading direction (𝜀𝑥), along the GL for 

gradual increase of total engineering strain in the middle section is shown in the next figure.  

 

Figure 115 local long. strain distribution along the GL at various engineering strain level-CP 1400HD 

It can also be seen that the distribution of the longitudinal local strain is almost uniform 

along the GL up to 7.73% of overall specimen strain. 
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Perpendicular to the loading direction (𝜀𝑦), local strain values along the middle section 

have negative sign as small facets along the section are contracting. However, the value is 

almost half of the corresponding value for local strain in parallel direction to loading (𝜀𝑥). 

Here also the occurrence of localised necking is evident although localised necking leads to 

a more severe contraction in thickness direction than in width direction. 

 

Figure 116 local width strain distribution along the GL at various engineering strain level-CP 1400HD 

Strain in thickness direction can be evaluated using GOM, by inspecting ‘thickness 

reduction’ menu, where it assumes the volume constancy16 and finds the thickness reduction 

regarding this law17, 

𝑑𝜀𝑧𝑧 = −(𝑑𝜀𝑥𝑥 + 𝑑𝜀𝑦𝑦) 

However, more precise results can be attained using 3D DIC technique. It is clear to 

observe the uniform thickness reduction up to 6.20% engineering strain level in specimen, 

 
16 Volume constancy law is only applicable till localised necking, due to significant void formation in many 

materials. 
17 Although the volume change associated with plastic deformation is zero, as long as the void percolation 

is negligible, the elastic deformation associated with uniaxial tension leads to a non-zero volume change, 
which needs to be considered in the calculation of the true stress. Therefore, the more accurate theoretical 
equation of the true stress in uniaxial tension, when the void formation is negligible, should be obtained (98). 



167 
 

 
Figure 117 local thickness strain distribution along the GL at various engineering strain level-CP 

1400HD 

5.5.2 Equivalent stress and equivalent plastic strain evaluation 

The procedure to obtain the equivalent stress and corresponding equivalent strain starts 

with the average values of 𝜀𝑥 and 𝜀𝑦 in the necked section which are collected through DIC 

technique. Then, benefiting from GOM18 SW strain field can be observed and analysed.  

The true stress-strain curve coming from tensile test is only valid up to necking. Within 

this stage (𝝏𝜎1
𝝏𝜀1

> 𝜎1), the deformation is uniform along the GL, stress is in uniaxial state 

where the other stress components are zero, and so the equivalent stress is equal to the stress 

in loading direction. Thus, one can conclude that, in this range the equivalent stress-strain 

curve lies on top of the true stress-true plastic strain curve resulted from test machine. 

Quite close to the end of uniform deformation, strain field is not uniform and the stress 

state is no longer uniaxial along the GL; values of strain in width and thickness directions 

become considerable, and as a result stress state shifts from uniaxial state towards biaxial 

one. Thus, equivalent strain and equivalent stress are no longer equal to true strain and true 

stress values, respectively, and so true strain and true stress values must be corrected to take 

 
18 Gesellschaft fur optische Messtechnik mbH 
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into account the real behaviour of material. That is why the tensile test data beyond uniform 

deformation is neglected, as the trend is not representing the real scenario.  

As soon as the stress falls behind the hardening rate, strain increment ratio starts to fight 

against this reduction and tries to keep the equilibrium state stable.  

True stress-strain curve is derived from tensile test with the assumption of uniform strain 

and stress along the gage length in all the sections perpendicular to loading direction. 

Starting from Force-Elongation diagram of the test machine, the engineering strain is 

obtained simply by dividing the elongation over initial GL, assuming that all the material 

along the GL is deforming uniformly (which is only true up to necking, as from necking on, 

deformation will be concentrated gradually in the middle part of the specimen). On the other 

hand, engineering stress is attained from force over initial section area, so that it describes a 

uniform stress distribution in all the sections along the GL (and since no consideration is 

taken into account for the variation of section area, also this relation is valid withing uniform 

deformation). 

This is all to say that data points coming from tensile test beyond necking must be 

corrected, while this correction must take into account both the effects of hardening and 

strain ratio, as discussed before (81). 

Engineering stress values are evaluated by reading the force and knowing the original 

cross section area of the specimen, while engineering strain is measured through DIC 

technique, by implementing a virtual extensometer in GOM software, along the GL of the 

specimen, as shown in figure below, 

 
Figure 118 virtual extensometer in GOM software along the GL 

The choice of the extensometer gauge length is based on ISO 6892-1:2019 standard; Le 

should span as much of the parallel length of the test piece as possible. Ideally, as a 

minimum, Le should be greater than 0.50Lo (Lo, original gauge length) but less than 

approximately 0.9Lc. 
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Standard geometrical specification of the subsize specimen, which is introduced in 

ASTM E8/E8M, is shown in the following figure, although the specimen used in this study 

has slightly different dimensions, 

 
Gauge length (G) 25.0 ± 0.1 mm 

Width (W) 6.0 ± 0.1 mm 
Thickness maximum (T) 6 mm 
Radius of fillet, min (R) 6 mm 
Overall length, min (L) 100 mm 

Length of reduced parallel section, min (A) 32 mm 
Length of grip section, min (B) 30 mm 

Width of grip section, approximate (C) 10 mm 
Figure 119 Standard geometrical specification of the subsize specimen ASTM E8/E8M 

5.5.2.1 Tensile test results of CP 1400HD subsize specimen 

Resulting from tensile test machine’s force-elongation diagram, engineering stress-strain 

curve of CP 1400HD subsize specimen and the corresponding diffuse necking point are 

illustrated in the figure, 

 

Figure 120 engineering stress-strain curve of CP 1400HD subsize specimen and the corresponding 
diffuse necking point 
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Necking occurs in metals under uniaxial tension when the rate of work hardening 

becomes lower than the flow stress. This corresponds to the Considère criterion, in which 

diffuse necking initiates at the point of highest load in the load-displacement curve, well 

before any cracks and failure have appeared in the material19. Herein, necking is found to be 

seen at engineering strain value of 5.85%. However, as it is mentioned previously, this 

criterion only considers work hardening of material, without taking into account the effect 

of stress state transformation.  

The longitudinal local strain field via DIC technique can also be worth looking. The 

longitudinal local strain distribution along the GL in three longitudinal sections (at the top, 

at the middle and at the bottom of the specimen width) can be used to see how the strain 

field is changing along the GL, and from which value of the global strain, local strain 

distribution starts to concentrate in the middle area of the GL.  

 

Contours of local strain component, parallel to the loading direction (εx) at various overall 

engineering strain levels during tensile test are also shown below, 

 
19 Both the strain hardening of the material and the reduction in cross-sectional area of the specimen 

control the shape of the force-elongation curve. Eventually at a certain point, rate of reduction of load-carrying 
capacity caused by reduction of area equals the rate of strain hardening. Up to this point the deformation 
along the gauge section is uniform. However, the deformation will localize after the load reaches its peak 
value and a neck will form finally. Gradually, almost all the deformation will be concentrated in the necked 
region (2). 
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Figure 121 Contours of local strain component (εx) at various overall engineering strain levels along GL 
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As can be observed, for engineering strain of 6.20%, the distribution of local strain field 

is still uniform along a wide range of GL, showing that necking started not exactly at 

maximum load. Evolution of local strain components (εx and εy) at necked zone in various 

overall strain levels in width direction are shown in the following figures. 

 

Figure 122 Evolution of local strain component (εx) at neck in various overall strain levels in width 
direction 

 
Figure 123 Evolution of local strain component (εy) at neck in various overall strain levels in width 

direction 
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The above distributions can be assumed to be uniform along the section up to 8.03% of 

engineering strain level in the specimen. Thus, in the proceeding discussion, we can consider 

an average value for the local strain components (εx and εy) at necked zone for engineering 

strain levels below 8.03%. 

In order to analyse the evolution of the local average strain components, in the following 

figure the increments 𝑑𝜀𝑥, 𝑑𝜀𝑦 and 𝑑𝜀𝑧 was evaluated and compared with each other in the 

necked zone for various overall engineering strain levels; besides, this observation was 

limited by the fact that the volume consistency law is not applicable in localised necking 

range. 

 
Figure 124 evolution of the local average strain components for various overall engineering strain levels 

It is vividly demonstrated that the thinning rate was larger than width reduction rate; in 

other words, specimen thickness tends to contract more than its width in every engineering 

strain level of specimen. Moreover, both the tendency to thinning and tendency to width 

reduction increase as the strain level in specimen gets larger. It is also worth mentioning that 

either thickness strain or width strain is almost half of the longitudinal strain, while thinning 

is more dominant. 
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Furthermore, since thinning is more evident than width reduction, the specimen can 

tolerate only small magnitude of longitudinal deformation after necking before fracture 

happens. 

5.5.2.2 Normal anisotropy coefficient and strain rate ratio 

After computing the averages of local strain components at neck for each frame, (r) and 

strain rate ratio (𝛽) can be calculated. Then, having stress ratio (𝛼), which was already 

written in terms of r and 𝛽, equivalent stress can be attained. 

There are some considerations regarding normal anisotropy coefficient; firstly, r is 

normally considered to be constant, although it is not always a valid assumption without 

observing it closely. Secondly, r is normally computed as the total strain ratio, although 

plastic strain ratio should be used. Furthermore, r value is very sensitive to the accuracy of 

the measurements; so that, even negligible errors in the measured strains leads to a 

considerable error in the calculated r value (83).  

With regard to the above considerations, strain decomposition must be applied to the 

strains field coming from GOM SW, as it was needed to implement plastic parts of the strain 

in the following discussion, ranging from normal anisotropy to yield criterion, so that in the 

end we can obtain equivalent strain-equivalent plastic train curve. 

{
 
 

 
 𝜺𝒂𝒗𝒈, 𝒙

𝒑𝒍
= 𝜀𝑎𝑣𝑔, 𝑥

𝑡𝑜𝑡 − 𝜀𝑎𝑣𝑔, 𝑥
𝑒𝑙 = 𝜀𝑎𝑣𝑔, 𝑥

𝑡𝑜𝑡 −
𝜎𝑡𝑟𝑢𝑒,𝑥
𝐸

 

𝜺𝒂𝒗𝒈, 𝒚
𝒑𝒍

= 𝜀𝑎𝑣𝑔, 𝑦
𝑡𝑜𝑡 − 𝜀𝑎𝑣𝑔, 𝑦

𝑒𝑙 = 𝜀𝑎𝑣𝑔, 𝑦
𝑡𝑜𝑡 −

𝜈 𝜎𝑡𝑟𝑢𝑒,𝑥
𝐸

 

As it was mentioned before, stress ratio can be determined by, 

𝛼 =
(1 + 𝑟) 𝛽 + 𝑟

1 + 𝑟 + 𝑟𝛽
  . 

Considering the above points, one can obtain the variations of r and 𝛽 like the following 

figures, 
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Figure 125 variation of normal anisotropy-CP 1400HD 

 

Figure 126 variation of strain rate ratio-CP 1400HD 

Finally, equivalent stress and the corresponding equivalent plastic strain can be obtained 

by following relations, 

𝜎𝑒𝑞
2 = 𝜎𝑥

2 (1 −
2𝑟

1 + 𝑟
𝛼 + 𝛼2) 𝑑𝜀𝑒𝑞 = 𝑑𝜀1

1 + 𝑟

√1 + 2𝑟
√1 + 𝛽2 +

2𝑟

1 + 𝑟
𝛽 

Comparing the previously obtained flow stress curve from tensile test (which was only 

valid up to necking) with the equivalent stress-equivalent plastic strain, it is clearly observed 

that the method proposed here can represent the behaviour of the material during plastic 

deformation up to 10.67% of plastic strain; almost two times of the plastic strain 

corresponding to the uniform elongation. 
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Figure 127 equivalent stress-equivalent plastic strain for CP 1400HD including post-necking behaviour 

5.5.3 Necking mechanism in CP 1400HD subsize specimen using DIC 

technique 

For this thin rectangular specimen, at a high local strain level, inclined bands of localized 

deformation (intense shear deformations (84)) start to appear inside the neck (85). However, 

inside the diffuse necking zone, there is a gradual evolution in the strain state condition: 

from 3-axis to 2-axis strain state (86). According to the studies of Hill (87) and Lian and 

Zhou (88), severe local section thinning can be identified before fracture by solely 

longitudinal and thickness strains, where width strain is almost zero. 

ocalized necking is based on zero strain along the necking band, so that the onset of 
localized necking corresponds to a plane strain deformation mode (86) (88). 

If we continue to observe the distribution of longitudinal local strain field along the GL, 

it is possible to find the position of the localisation bands which progressively take place in 

the last steps of the test prior to failure (89) (86). 

L 



178 
 

Despite the fact that fringe analysis20 is not conducted in this thesis work, the local strain 

distribution along the gage length can demonstrate the main four stages of strain field 

evolution (90). These stages can be symbolised by the following pattern shape,  

• Parallel shape ‘|||’  

• Hourglass shape ‘)(’  

• X shape ‘X’  

• Slash shape ‘/’ 

Genuinely, the plastic deformations come from the movements of the dislocations inside 

the metal materials. Therefore, the deformations can be named uniform only in macroscopic 

scale. Constant and homogenous strain field appears in the first stage is evident (parallel 

shape). In other words, in the elastic and homogenous plastic deformation stages, no 

variation in the local strain distribution appearance can be observed (90).  

Gradually the plastic deformation within the gage length becomes inhomogeneous; strain 

field starts to concentrate in the centre of the specimen with a shape mostly like an hourglass 

‘)(’. The shape can be assumed as two crossing localisation bands (90), as it is shown in 

figure below,  

 
Figure 128 two crossing localisation bands immediately after the onset of inhomogeneous deformation 

As plastic deformation goes on, this hourglass shape narrows progressively and take a 

shape like letter ‘X’, in such a way that the local strain intensity is higher in the middle of 

the specimen in comparison with the two edges of the specimen (90). As shown in figure 

below, in the areas next to the ‘X’, where the strain level is considerably lower, the 

deformation is no longer plastic and the material undergoes elastic unloading when the force 

decreases.  

 
20 Electronic speckle pattern interferometry (ESPI) is a technique in which laser light together with image 

processing of a surface are employed in order to demonstrate static/dynamic displacements. The visualisation 
is in the form of fringes on the images. 
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Figure 129 ‘X’ shape bands during plastic deformation 

At the onset of the localisation, the hourglass has almost a symmetric shape; however, 

when the shape turns into ‘X’, the symmetry is no longer seen. Then the deformation starts 

to concentrate in one of the bands (or one of the branches of ‘X’) called the dominant band. 

The other band fades gradually, so that a slash shape ‘/’ will appear in the neck. In the end, 

the specimen breaks along the dominant band (90).  

A closer look at the strain field along the GL during the tensile test of CP 1400HD subsize 

specimen (figure below) reveals that, shortly after the start of diffuse necking (at strain value 

around 7.73%), two asymmetric crossing localization bands (X-shape) start to form with an 

angle with respect to the tensile direction. The two bands, then, continue to evolve but at 

different rates, and finally, one of the bands stabilizes, so that its inclination leading to 

fracture remains quite stable (slash-shape) and the other band fades away. However, the 

width of the remaining band falls rapidly before fracture occurs (90). 
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Figure 130 evolution of the strain field during post-necking deformation 

The delay beyond the load maximum before the onset of localized necking is mainly 

proportion with the length to width ratio of the specimen (for the same material); the smaller 

the ratio, the more imminent will be the localized oblique neck. On the other hand, the 

material softening caused by the nucleation and growth of voids, makes the localization 

more impending (91). 

In this study, the transition from the symmetric hourglass to the asymmetric ‘X’ is 

interpreted as a criterion for the onset of localised necking21 (90). The localised necking 

stage can be assumed to have two sub-stages; as can be seen in the following figure, one in 

which the disappearing band is present (around 7.92% engineering strain), and second stage 

in which it almost fades (around 8.03% engineering strain). 

Thus, observing the strain field from GOM, localised necking can be assumed to form 

somewhere between 7.47% and 7.92% of engineering strain. 

 
21 Another possible solution is also offered by the ISO 12004-2-2009 standard, which is called ‘time-

independent’ evaluation. However, there are ‘time-dependent’ solutions as well (86), for example Hora et al 
(96) and Merklein et al (97). In time-dependent methods strain distributions as the function of time are used 
for evaluation, where time derivatives of longitudinal or thickness strains are exploited to identify the onset of 
local necking. 
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Figure 131 transition between the symmetric hourglass and asymmetric ‘X’ CP1400HD 
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 TENSILE TEST RESULTS OF QP 1180-SUBSIZE SPECIMEN 

USING DIC TECHNIQUE AND GOM CORRELATE SW 

Engineering stress-strain curve for QP 1180-subsize specimen is illustrated here, where 

the diffuse necking is obtain based on the Considère criterion, 

 

Figure 132 Engineering stress-strain curve for QP 1180-subsize specimen 

And the corresponding true stress-true strain diagram would be, 

 
Figure 133 true stress-strain curve for QP 1180-subsize specimen 
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To continue with the proposed method, the strain level from which the localised necking 

starts is needed to be identified first. This can be obtained by observing the local strain 

distribution along the GL of the specimen. At the same time, the location of localization can 

be observed through the DIC technique results. 

Figure below shows the distribution of local longitudinal strain (𝜀𝑥) in various overall 

engineering strain levels in specimen. As it has mentioned before, according to Considère 

criterion, necking formed around 10.75% engineering strain. In other words, the flow stress 

curve derived from tensile test is only valid up to maximum load. 

 

Figure 134 distribution of local longitudinal strain (εx) in various overall engineering strain levels-QP 
1180 subsize specimen 

As deformation continues to grow, the longitudinal local strain starts to concentrate 

gradually on the right half of the specimen,  
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Figure 135 longitudinal local strain distribution in QP 1180 subsize specimen 

Now taking into account the necked section, in order to assess the equivalent stress-

equivalent plastic strain, the average values of strain, both in x and y directions, should be 

obtained. 
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Figure 136 longitudinal local strain (𝜀𝑥) distribution along the width at neck-QP 1180 

 

Figure 137 transversal local strain (𝜀𝑦) distribution along the width at neck-QP 1180 

From the figures above, it can be clearly observed that strains at necked section can be 

assumed to be uniform till 12.99% of engineering strain level in specimen. Thus, the 

following computation regarding equivalent plastic strain and equivalent stress are bounded 

to this amount of overall strain. It can be said that this method is capable of determining the 

equivalent stress and equivalent plastic strain in a range starting from diffuse necking until 

the formation of localised necking. 
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Normal anisotropy coefficient and strain rate ratio are derived from plastic terms of 

average strains at the necked section. From the figures in the following, these values can be 

obtained. 

 

Figure 138 variation of normal anisotropy-QP 1180 

 
Figure 139 variation of strain ratio-QP 1180 

Taking into account the previously-mentioned relations for equivalent stress and 

equivalent plastic strain, the next diagram illustrates the post-necking behaviour of QP 1180, 

in which the equivalent curve is also able to represent the pre-necking behaviour. 
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Figure 140 equivalent stress-equivalent plastic strain for QP 1180 including post-necking behaviour 

Although a point on the flow stress curve was named as ‘diffuse necking’ point, this 

phenomenon does not take place at a certain point and time during deformation. Instead, as 

it is demonstrated in the following figure, deformation is no longer homogenous in GL, even 

for lower levels of deformation than 10.75%. Theoretically, as it was discussed before, the 

Considère criterion illustrates the onset of necking as the position of maximum load in force 

elongation diagram. However, a closer look at the strain field along the GL would promote 

the idea that, necking starts before the point of maximum load, and so the assumption of 

uniform elongation was discarded way before diffuse necking point shown on engineering 

curve. This condition will make a difference in the evaluation of the strain; while a uniform 

deformation assumption must be taken into account for evaluating the flow stress curve, as 

soon as the strain field starts to concentrate inside a range in the GL, the flow stress curve 

obtained directly from tensile test result is not reliable anymore.  
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Figure 141 evolution of the longitudinal strain distribution along the GL of a QP 1180 subsize specimen 

 



189 
 

 A REVIEW ON THE PROPOSED METHOD 

The method proposed in this chapter was used to study the post-necking behaviour of CP 

1400HD and CP 1180 steels. In this method, the only available data comes from a tensile 

test machine equipped with a camera to capture the spackled surface of the specimen during 

the test. Besides, benefiting from Hill’s 48 yield criterion and choosing RO strain hardening 

law, equivalent stress-equivalent plastic strain curve of the material under uniaxial tension 

test can be obtained for strain levels between the uniform elongation and localized necking. 

The method still needs further investigation both from numerical simulation and 

reliability points of view. Hence, it is a good practice to compare the result with post-necking 

behaviour of the material obtained through biaxial test.  

Some important factors should be studied deeper, such as the effect of voids formation 

on the onset of localized necking; where it was a limiting factor to this method that constrains 

the volume constancy assumption. On the other hand, according to the strain distribution at 

the necked region, the normal anisotropy and strain rate ratio are considered constant during 

deformation, although their variation must be taken into account, as the state of stress and 

strain are changing during the deformation. 
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CHAPTER SIX: VALIDATION OF THE EQUIVALENT 

FLOW STRESS CURVE USING FEA 
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 INTRODUCTION 

n order to verify the reliability of the equivalent stress-equivalent plastic strain curve, 

obtained through the combination of DIC technique and Hill’s 48 yield criterion, the 

curve is implemented in the numerical simulation of the same experimental test. Both the 

validity and the effectiveness of the previously-obtained flow stress curve can be evaluated 

via two observations, 

• The same experimental applied force-displacement curve, and 

• The same experimental strain gradient (DIC results), 

should be obtained in our FEA of the same specimen. 

Furthermore, employing Hill’s 48 yield criterion in this FEA, strain field in width and 

thickness direction at necked region were compared in the two models. 

Since the equivalent flow curve has merely exploited tensile test data up to diffuse 

necking, the present validation can only be done in this range. However, the writer believes 

that the equivalent curve should work in other sheet forming processes with the same 

material up to larger values of strain, but its effectiveness and precision depends on the 

quality of the yield criterion. 

The tensile test was simulated numerically using an isotropic hardening elastic–plastic 

FE model, and developed in the nonlinear code ABAQUS standard, student edition 2020. 

 FINITE ELEMENT MODELLING AND ANALYSIS 

6.2.1 Pre-processing  

At the beginning, the same geometry of the subsize test specimen used in tensile test was 

modelled via Part Module of the SW. The dimensions (according to ASTM E8/E8M) are 

shown here again, where a large radius (e.g. 6.35 mm for CP 1400 test specimen) is built 

into the sides to avoid stress concentration, 

I 
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Gauge length (G) 25.0 ± 0.1 mm 

Width (W) 6.0 ± 0.1 mm 
Thickness maximum (T) 6 mm 
Radius of fillet, min (R) 6 mm 
Overall length, min (L) 100 mm 

Length of reduced parallel section, min (A) 32 mm 
Length of grip section, min (B) 30 mm 

Width of grip section, approximate (C) 10 mm 

Table 31 geometrical specifications of subsize specimen ASTM E8/E8M 

The specimen used in this study had slightly different dimensions; for CP 1400HD 

specimen, 6.39 mm width and 1.2 mm thickness were selected, while for QP, a width of 6.52 

mm and a thickness of 2.1 mm were tested.  

Due to the symmetry of the problem about the mid-span, mid-width and mid-thickness, 

it was possible to model only 1/4 (or even 1/8) of the specimen, and apply boundary 

conditions accordingly. However, although there was a limitation for the maximum number 

of nodes in student version of ABAQUS, a model with original dimensions was built within 

the part module for a better understanding of the general problem. 

On the other hand, node number limitation also leaded to apply an adjustment in the 

length of the sample head; thus, its interaction with the boundary conditions was closely 

observed through trial and error, and eventually its length was reduced to half of the original 

one (17 mm instead of 34 mm). 

A three dimensional solid element with 8-node (linear brick element), combined with 

reduced integration and hourglass control (C3D8R) was used for the model discretisation. 

Each of the nodes had three degrees of freedom in translation, so that even large strains and 

visco-plasticity could be studied properly.  

With regard to the material properties, the elastic deformation region could be defined by 

Young’s modulus of the material and Poisson’s ratio. On the other hand, concerning plastic 

deformation, the equivalent stress-plastic strain curve was implemented, while, as it was 

mentioned previously, the chosen plasticity model was isotropic hardening with Hill’s 48 

anisotropic quadratic yield criterion. 
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ABAQUS introduces an anisotropic yield and creep model for materials that demonstrate 

different yield or creep behaviour in different directions (92). Anisotropic yield behaviour 

was modelled by employing yield stress ratios 𝑅𝑖𝑗 , that were applied in Hill's potential 

function. In the case of anisotropic yield, the yield stress ratios are defined with regard to a 

reference yield stress 𝜎0,  (given for the metal plasticity definition); in a way that if 𝜎𝑖𝑗 is 

applied as the only nonzero stress, the corresponding yield stress is 𝑅𝑖𝑗𝜎0. Hence, a local 

orientation must also be defined in ABAQUS to introduce the direction of anisotropy (92). 

Herein, as normal anisotropy coefficient (r-value) (rather than yield stress ratio) was 

evaluated through DIC technique, a very brief review of Hill’s anisotropic yield function is 

presented here in order to define the relationship between yield stress ratios 𝑅𝑖𝑗 and strain 

ratios (Lankford's r-values) 𝑟𝑖𝑗 . The following theoretical method was extracted from 

Abaqus Documentation, 2020. 

Hill's potential function is a simple extension of the von Mises function, which can be 

expressed in terms of rectangular Cartesian stress components as, 

𝑓(𝜎) = √𝐹(𝜎22 − 𝜎33)2 + 𝐺(𝜎33 − 𝜎11)2 + 𝐻(𝜎11 − 𝜎22)2 + 2𝐿𝜎23
2 + 2𝑀𝜎31

2 + 2𝑁𝜎12
2  

where  F, G, H, L, M and N are constants obtained by tests of the material in different 

orientations, and they are defined as, 
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�̅�𝒊𝒋 is the measured yield stress value when 

𝝈𝒊𝒋  is applied as the only nonzero stress 

component. 

𝝈𝟎 is the user-defined reference yield stress 

specified for the metal plasticity definition. 

𝑹𝒊𝒋 are anisotropic yield stress ratios,  

𝑅11 =
�̅�11
𝜎0

 𝑅12 =
�̅�12
𝜏0

 

𝑅22 =
�̅�22
𝜎0

 𝑅13 =
�̅�13
𝜏0

 

𝑅33 =
�̅�33
𝜎0

 𝑅23 =
�̅�23
𝜏0

 

Because of the form of the yield function, all 

of these ratios must be positive. 

𝜏0 = 𝜎0 √3⁄  

Since the anisotropic material data are already obtained in terms of ratios of width strain 

to thickness strain, mathematical relationships are then necessary to convert the strain ratios 

to stress ratios that can be input into ABAQUS (92). 

As far as sheet metal forming applications are concerned, plane stress condition can be 

quite a reliable assumption; x, y as the “rolling” and “cross” directions in the plane of the 

sheet, and z in the thickness direction. From a design viewpoint, ‘desired anisotropy’ is 

normally considered as the type in which the sheet is isotropic in the plane and has an 

increased strength in the thickness direction, which is normally referred to as transverse 

anisotropy. Planar anisotropy, on the other hand, is a type of anisotropy, characterized by 

different strengths in different directions in the plane of the sheet (92). 

Considering a transversely anisotropic material (𝑟𝑥 = 𝑟𝑦) for tensile test simulation (as it 

is assumed for evaluation of equivalent stress and strain), and defining 𝜎0  in the metal 

plasticity model to be equal to 𝜎11, one can derive 𝑅𝑖𝑗 using flow rule, as 

𝑅11 = 𝑅11 = 1 
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𝑅33 = √
𝑟𝑥 + 1

2
 

Here, 𝑟𝑥 was previously obtained from experimental tensile test; 0.8748 and 0.9005 for 

CP 1400HD and QP 1180, respectively. 𝑅11, 𝑅22 and 𝑅33 now can be used in FEA SW in 

order to define the corresponding Hill’48 yield criterion parameters, in combination with 

initial yield strength (𝜎0 or 𝜎90). 

Concerning the meshing of the model, a couple of simulations with different numbers of 

element (with focus on the middle region) are done to observe the numerical convergence 

of the problem. Eventually, it is found that above 564 linear hexahedral elements of type 

C3D8R, the resulted load-elongation curves are almost identical. Thus, the following mesh 

configuration with 564 elements is selected. 

 
Figure 142 subsize specimen meshing in Abaqus 

According to Choung and Cho’s work (93), there would be merely a marginal difference 

between the results of full integration element22 (C3D8) and reduced integration element 

(C3D8R) in simulating a tensile test. Moreover, eight-node-plane-stress element with 

 
22  For complicated finite element problems, using high order elements, it becomes necessary to use 

numerical integration to calculate the stiffness matrix, which then leads to evaluate displacement matrix. 
Reduced integration uses a lesser number of Gaussian co-ordinates when solving the integral. Clearly, the 
more Gaussian co-ordinates you have for each element, the more accurate your answer will be, but this has 
to be compared with the cost of computation time. Displacement-based FE formulations always over-estimate 
the stiffness matrix and the use of fewer integration points should produce a less stiff element. Hence, especially 
in non-linear problems, it is advisable to use reduced integration instead of full integration. The slight loss of 
accuracy is counteracted by a better approximation to real problem (ref. www.researchgate.com, available 
2021). 

http://www.researchgate.com/
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reduced integration (74) (CPS8R) is shown to provide acceptable results, as far as tensile 

test simulation is concerned. 

To trigger diffuse necking, it is only needed to apply a finer mesh around the centre of 

the specimen (where large strain gradient can take place), without imposing any geometric 

imperfections in the width of the model (93). Furthermore, by observing the stress 

distribution in the necked zone, no sign of large stress concentration was seen in the high-

density mesh region. 

For each step in the analysis, using Step Manager, one can decide whether Abaqus 

accounts for nonlinear effects from large displacements and deformations; such that, if the 

displacements in a model due to loading are relatively small during a step, the effects may 

be small enough to be ignored. However, in situations where the loads on a model result in 

large displacements, imposing nonlinear geometric effects can become crucial. The 

‘Nlgeom’ setting for a step determines whether ABAQUS will account for geometric 

nonlinearity in that step. Herein, since the focus was on the deformation up to diffuse 

necking, no significant changes in evaluated deformation were observed in this range, even 

when Nlgeom option was turned off. However, in larger values of strain, this option showed 

a considerable outcome on the strain field. 

Based on the Dirichlet type BCs (imposed displacements), the nodes on the upper and 

lower surfaces of one of the specimen’s head are fixed, while on the other side, based on the 

provided tensile tests’ data sheet, a total displacement of 5.97 mm along the tensile axis is 

applied by 0.008 mm step for CP1400HD, for instance. 

6.2.2 Post-processing: analysis of the numerical results 

6.2.2.1 Load-displacement curves comparison 

Based on the previously obtained results from image processing, equivalent stress-

equivalent plastic strain curve was achieved in chapter five, for both CP1400HD and 

QP1100. As an important result, the material plastic behaviour for far larger strain levels 

than what can be attained through common uniaxial tensile test is already available. The 

above-mentioned curves then can be extended benefiting from a proper strain hardening law 

(here, Ramberg-Osgood law is used). The results are shown in the following figures, 
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Figure 143 equivalent flow stress curve for CP 1400HD 

 
Figure 144 equivalent flow stress curve for QP 1180 

As it was stated, by extrapolating the equivalent curve using RO hardening law, the 

following results were obtained, which then can be implemented in FEA as material model 

inputs, 
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Figure 145 fitting and extrapolation of the equivalent flow curve with RO hardening law-CP 1400HD 

 
Figure 146 fitting and extrapolation of the equivalent flow curve with RO hardening law-QP 1180 

The resulted flow stress curve is then imported into the material module of the FE SW, 

so as to define the plastic response of the material during forming operation. Finally, by 

comparing the force-elongation diagrams as well as the strain fields of FEA with that of 



199 
 

experiment, (while keeping all the other conditions the same as in the experimental tensile 

test of the material) the reliability of the flow stress curve can be assessed. 

Experimental load-displacement curve can be obtained through tensile test machine 

output. A comparison was made between the ‘load vs elongation’ curve of the tensile test 

and that of the numerical simulation, in which the same two points of extensometer were 

also chosen on the FE model in order to evaluate the elongation during deformation.  

The reaction force in FEA was obtained at the centre of the specimen, as shown in the 

following figure, 

 
Figure 147 reaction force in FEA obtained at the centre of the model 

On the other hand, the relative displacement between two sections (corresponding to the 

zone actually measured with the extensometer in tensile test) leads to obtain the elongation 

in FEA, 
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Figure 148 relative displacement between two sections to obtain the elongation in FEA 

Figures below compare the ‘force-elongation’ results coming from FEA and experiment, 

for both CP 1400HD and QP 1180, 

 

Figure 149 load vs elongation curve of the tensile test and that of the numerical simulation-CP 1400HD 
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Figure 150 load vs elongation curve of the tensile test and that of the numerical simulation-QP 1180 

This comparison shows that the numerically-simulated tensile test is able to reproduce 

the experimental test until the onset of longitudinal necking; while above this point, the two 

curves do not lie on top of each other due to different flow stress curves. The small difference 

between the results in QP 1180, on the one hand, may come from the fact that not enough 

data points were available from the tensile test machine in that range; on the other hand, the 

initial yield point in equivalent flow stress curve still needed to be adjusted based on the 

missing information. 

Moreover, theoretically, the necking appears when the slope of the force-elongation curve 

reaches zero value, as according to Considère criterion, 𝑑𝜎
𝑑𝜀
= 𝜎. As soon as longitudinal 

necking takes place, mechanical extensometer measurements are erroneous due to the 

presence of strain heterogeneity. This phenomenon also occurs in the finite element 

simulation. 

6.2.2.2 Strain fields comparison 

Strain fields corresponding to both FEA and tensile experiment (DIC technique) are 

compared in this section.  

At the same elongation (6%, which is almost equal to the elongation at diffuse necking 

for CP 1400HD), the longitudinal strain distribution along the gage length was obtained for 

the elements shown in the figure below, 
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Figure 151 elements used to obtain the longitudinal strain distribution along the gage length  

The longitudinal strain ( 𝜀𝑥𝑥 ) distribution along the gage length is reported in the 

following figure, showing an average between 6% and 7%, as it was expected in the uniform 

elongation, 

 
Figure 152 longitudinal strain (𝜀𝑥𝑥) distribution along the gage length from FEA-CP 1400HD 

On the other hand, from DIC results, the longitudinal strain along the specimen gage 

length was already obtained and illustrated in the following figure, 
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Figure 153 longitudinal strain (𝜀𝑥𝑥) distribution along the gage length from tensile test-CP 1400HD 

Looking at the above figures, one can observe only a marginal difference between the 

longitudinal strain gradients obtained from DIC and FEA; an average value of 6.29% was 

obtained for longitudinal strain in FE simulation, while slightly lower value of average 

longitudinal strain along GL, around 5.87%, was observed in image processing method.  

The writer believes that, regardless of the effect of the element size and convergence of 

strain values, firstly, it should be noted that in real tensile test of CP 1400HD, larger strains 

can be seen on the right end of the specimen in comparison with its left end (as can be seen 

in the last figure), showing that the neck is going to start not in the centre, but closer to the 

right side of the specimen (as opposed to what occurred in FEA). Perhaps, by applying a 

geometrical imperfection (e.g. a slight width reduction) in the centre of the specimen, the 

two results could be even more similar to each other. Secondly, as the plastic behaviour 

imported in FEA includes also post-necking behaviour of the material, necking occurs in 

considerably larger values of strain in comparison with the tensile test itself. This may lead 

to larger capacity of the material to accumulate strain before entering necking, leading to 

larger value of longitudinal strain. 

Furthermore, significantly lower values of strain on both ends are resulted from the grips 

effect, where the stress magnitude is lower.  

A comparison was also made between the numerical simulation result and the image 

processing of test specimen for QP 1180 at specimen total strain value of 10% (at diffuse 
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necking point). The total longitudinal strain along the specimen GL obtained from FEA is 

shown in the following figure, 

 
Figure 154 longitudinal strain (𝜀𝑥𝑥) distribution along the gage length from FEA-QP 1180 

On the other hand, DIC technique resulted in the following longitudinal strain distribution 

along the specimen gage, 

 

Figure 155 longitudinal strain (𝜀𝑥𝑥) distribution along the gage length from tensile test-QP 1180 
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Even from the QP 1180 results, it is clear to observe the effect of ‘off-centre necking’ on 

the distribution of longitudinal strain along the GL. 

Thus, from the load-displacement curve and strain field comparison, it can be deduced 

that the equivalent stress-equivalent plastic strain relationship is correctly determined up to 

the specimen’s total strain value of 6% for CP 1400HD and 10% for QP 1180. 

6.2.3 Further investigation on FE results 

Strain fields in longitudinal, width and thickness directions at necked region were also 

investigated. From DIC technique longitudinal and width strain at neck were directly 

obtained through 2D image processing SW, GOM, while thickness strain was derived from 

volume consistency principle. Concerning FEA, these values at specimen total strain value 

of 6% for CP 1400HD and 10% for QP 1180 (corresponding with diffuse necking) are 

presented in this section and compared with the strain field at neck in real tensile test. 

 
Figure 156 Strain field in longitudinal, width and thickness directions 

6.2.3.1 Strain in longitudinal direction (𝜺𝒙𝒙) at neck: CP 1400HD and QP 1180 

Looking at the distribution of the longitudinal strain (𝜀𝑥𝑥) at neck resulting from FEA of 

CP 1400HD, the average value is found to be around 6.25%, with a maximum taking place 

at the centre of the section, 
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Figure 157 Strain in longitudinal direction (εxx) at neck from FEA-CP 1400HD 

On the other hand, longitudinal strain at necked section obtained from DIC technique 

shows both the same trend and values as can be seen in the following figure, 

 
Figure 158 Strain in longitudinal direction (εxx) at neck from tensile test-CP 1400HD 

For QP 1180, the longitudinal strain distribution at neck results in the following diagram, 

where the variation is in a range between 11.6% and 12%, 
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Figure 159 Strain in longitudinal direction (εxx) at neck from FEA-QP 1180 

Similarly, DIC technique yields to a longitudinal strain (𝜀xx) distribution over the neck 

with a variation between 11% and 11.3%, as it is shown in the following figure, 

 
Figure 160 Strain in longitudinal direction (εxx) at neck from tensile test-QP 1180 

6.2.3.2 Strain in width direction (𝜺𝒚𝒚) at neck: CP 1400HD and QP 1180 

Strain distribution in the width direction (𝜀𝑦𝑦) of the section can also be assessed through 

the post-processing of the conducted FEA. Figure below shows the variation of the width 

strain at neck, 
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Figure 161 Strain in longitudinal direction (εyy) at neck from FEA-CP 1400HD 

For the sake of a comparison with image processing results, one can observe that in both 

cases, the width strain have a negligible variation over the section, and the values are varying 

almost in the same range. From GOM SW, the following result is obtained for width strain 

(𝜀𝑦𝑦) along the neck, 

 

Figure 162 Strain in longitudinal direction (εyy) at neck from tensile test-CP 1400HD 

Same analysis is also done for QP 1180; as shown in the following figure obtained from 

FEA, the variation is more evident along the width, while along thickness only small change 

in width strain can be observed, 
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Figure 163 Strain in longitudinal direction (εyy) at neck from FEA-QP 1180 

The range of width strain variation is observed to be between -5.44% and -5.54%, with a 

maximum in the centre of the specimen’s width. On the other hand, image analysis of QP 

1180 tensile test leaded to the following variation of width strain at neck section, 

 
Figure 164 Strain in longitudinal direction (εyy) at neck from tensile test-QP 1180 
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The scatter of the data is in a range between -4.85% and -5.30%, with a maximum in the 

centre of the specimen width, which is very close to the FEA results. 

6.2.3.3 Strain in thickness direction (𝜺𝒛𝒛) at neck: CP 1400HD and QP 1180 

With regard to the thickness strain (𝜀𝑧𝑧), FEA gives the distribution as it is shown in the 

following figure, 

 
Figure 165 Strain in longitudinal direction (εzz) at neck from FEA-CP 1400HD 

While using 2D image processing, the strain in thickness direction can be found via 

volume consistency equation. As it can be observed, the maximum happens at the centre of 

the section (3.8%), but the value is not exactly the same as it is obtained from FEA (3.13%). 
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Figure 166 Strain in longitudinal direction (εzz) at neck from tensile test-CP 1400HD 

Looking at the strain in thickness direction at neck, numerical simulation and image 

processing lead to the following observations, 

 

Figure 167 Strain in longitudinal direction (εzz) at neck from FEA-QP 1180 



212 
 

 
Figure 168 Strain in longitudinal direction (εzz) at neck from tensile test-QP 1180 

Where both the findings show the thickness strain at neck to be somewhere between -

5.85% and -6.30%. 
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 A REVIEW ON THE FEA OF THE TENSILE TEST  

The previously-obtained equivalent stress–equivalent plastic strain curve was introduced 

into a finite element code to simulate numerically the same tensile test. On the one hand, the 

good reproduction of the load–displacement curve with the finite element code validates the 

quality of the stress–strain curve. While on the other hand, this numerical simulation 

validates the image analysis measurements since the strain levels simulated are almost 

identical to the experimental ones, both within the gage length and in necked zone, until the 

onset of transversal necking. From this study, determining a precise flow stress curve was 

shown to have a role of paramount importance when a deep drawing simulation is to be 

conducted. 
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eneral approaches corresponding to the post-necking behaviour identification 

of metallic materials were discussed in this thesis work by exploiting a number of 

uniaxial and biaxial tests in combination with DIC technique. It was also highlighted that a 

material model is a crucial input of any forming simulation which needs a certain yield 

criterion, an associated flow rule as well as a hardening rule to define its plastic deformation. 

While with regard to its failure, forming limit curves are necessary to be observed. Although 

extrapolation method gives only an overlook of the behaviour beyond diffuse necking, both 

experiment and simulation must be employed in our approach preferably inside an 

optimization process so as to reach a good approximation of the post-necking material 

behaviour. 

𝜅-exponent function was employed for the first time in order to find a fitting function by 

means of a nonlinear regression analysis of pre-necking data points. The results 

demonstrated that 𝜅-exponent provided a very good fit for small values of strain than HS; 

however, HS performs better in large deformation. Thus, a linear combination of 𝜅-exponent 

function and a non-saturated hardening law can lead to a very good fit to extrapolated flow 

stress data points.  

With a tensile test machine equipped with a camera to capture the spackled surface of the 

specimen, Hill’s 48 yield criterion, accompanied with a proper strain hardening law, was 

used to draw the equivalent stress-equivalent plastic strain curve to strain levels beyond the 

uniform elongation. Although this method still needs further investigation both from 

numerical simulation and reliability points of view, it seems a good practice to compare the 

result with post-necking behaviour of the material obtained through biaxial test. On the other 

hand, some important factors can be studied deeper in future observations; the effect of voids 

formation on the onset of localised necking, for instance, where they are both inevitable and 

considerable for most materials entering necking. As the present work was influenced by 

the lack of micromechanical knowledge on void formations, this phenomenon constrained 

the volume constancy assumption. Hence, it would be quite noteworthy to conduct an 

observation in microscopic scale to assess the significance of void formation in large 

deformation, and the amount of error may arise in the forming simulation if this simplifying 

assumption is taken into consideration. On the other hand, although based on the strain 

distribution at the necked region, the normal anisotropy and strain rate ratio were considered 

constant during deformation, their variation must be taken into account, as the state of stress 

and strain are changing during the deformation. 

G 
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As far as necking is concerned, Considère criterion was employed in chapter five to 

approximate the engineering strain level in which diffuse necking starts to form during 

tensile test. However, image processing demonstrated that longitudinal necking takes place 

in lower levels of strain than the point of maximum force. The results provokes the idea of 

implementing a more precise criterion for diffuse necking approximation. While, concerning  

localized necking, time-dependent and time-independent approaches are available in 

literatures as an alternative to DIC technique direct observations. 

The good reproduction of the load–displacement curve in FEA proved the quality of the 

stress–strain curve. Moreover, this numerical simulation was able to validate the image 

analysis measurement, as the strain levels obtained from FEA were comparable to the 

experimental ones, until the onset of longitudinal necking. However, the position of the neck 

and the inclination of shear bands in a specimen under uniaxial tensile test is totally different  

from the result of FEA, meticulous care should go into modifying the geometries of both the 

specimen and the corresponding FE model. This adjustment seems to be a must when one is 

dealing with a FE-based inverse method in order to optimise the parameters of the material 

model. 

With regard to the validation of the equivalent stress-strain curve, it would also be 

interesting to observe the application of the equivalent flow stress curve in the numerical 

simulation of the biaxial test and to compare the stress and strain distribution at the apex 

with the real test of the same material. 

Further and even more importantly though, the equivalent stress-strain curve, obtained in 

chapter five, was principally derived from average value of strain field in each level of total 

strain within gage length. This fact implies that, as the strain field starts to localise, finding 

the average value of strains (in longitudinal and transverse directions) is no longer 

meaningful and acceptable, which in turn, significantly restricted this method. 

Unfortunately, the writer could not find a way to overcome this limitation; however, an 

efficient alternative might be to study principal effective strains, as it was described in 5.4.2, 

(FLC evaluation using MMFC). 

Regardless of the method chosen for post-necking behaviour identification, future 

assessments should be initiated with a detailed study on the determination of the most 

suitable yield criterion/surface for the material under investigation, which is only achievable 

by doing a series of uniaxial and biaxial tests, and then observing which criterion is able to 
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fit these experimental data effectively, as well as what are the resulted yield criterion’s 

parameters. In the next step, the selected general approach plays its role mostly by 

minimising a cost function, wherein, benefiting from DIC technique, the strain field within 

the gage length should be observed a priori. It has already found that, although ‘complete 

solutions’ to identify the strain hardening behaviour beyond longitudinal necking seems to 

be suitable and effective, solutions solely based on FE-based inverse approach are not only 

time consuming, but also the coupling between the experimentally investigated quantities, 

such as strain fields, and the numerically evaluated quantities can be a stumbling block 

within the procedure. While, according to the literatures, complete solutions like, VFM 

(discussed in chapter two) showed a very good agreement with experiments and is deserved 

to be studied in a whole new work. Other test methods, such as ‘multiaxial stress test using 

tubular specimen’ and ‘shear test’, rather than ‘uniaxial tensile test’ can also be taken into 

account in order to obtain large deformation without plastic instability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



218 
 

BIBLIOGRAPHY 
1. Material Characterisation for Metal Forming Simulation. NAFEMS. [Online] 

https://www.nafems.org/downloads. 

2. Hosford, W. F. and Caddell, R. M. Metal Forming: Mechanics and Metallurgy. 4th 

edition. s.l. : Cambridge University Press, 2011. 

3. Kessler, Lutz , et al. Challenges in material model selection for industrial forming 

simulation. s.l. : ThyssenKrupp Steel Europe, 2012. 

4. Dutton, T. Why do Manufacturing Simulation. NAFEMS. [Online] 2017.  

5. Material characterization for numerical simulation of manufacturing of automotive 

part made of magnesium alloy. Pietrzyk, Maciej , et al. 6, 2020, Archives of Civil and 

Mechanical Engineering, Vol. 20. 

6. Visrolia, A. Material Testing for Manufacturing Process Simulation. nafems. 

[Online] www.nafems.org. 

7. Donald R. Askeland, Wendelin J. Wright. The Science and engineering of materials. 

s.l. : Global Engineering, 2014. 

8. the aluminium effect. European Aluminium. [Online] https://european-

aluminium.eu/about-aluminium/the-aluminium-effect/. 

9. Djukanovic, G. Aluminium Alloys in the Automotive Industry: a Handy Guide. 

Aluminium insider. [Online] 2019. https://aluminiuminsider.com/aluminium-alloys-

automotive-industry-handy-guide/. 

10. 5000 series aluminum sheet. aluminum suppiler. [Online] 

https://www.aluminumsuppiler.com/5000-series-aluminum-sheet/. 

11. 6000 series aluminum sheet. aluminum suppiler. [Online] 

https://www.aluminumsuppiler.com/6000-series-aluminum-sheet/. 

12. Complex Phase (CP) Steels. world auto steel. [Online] 

https://www.worldautosteel.org/steel-basics/steel-types/complex-phase-cp-steels/. 

13. Data sheet Complex-phase steels. voestalpine. [Online] 

https://www.voestalpine.com/ultralights/content/download/4522/file/Complex-phase-

Steels-voestalpine-EN-12062019.pdf?inLanguage=eng-GB. 



219 
 

14. Advanced High-Strength Steel (AHSS) Definitions. world auto steel. [Online] 

https://www.worldautosteel.org/steel-basics/automotive-advanced-high-strength-steel-

ahss-definitions/. 

15. Raabe, h. Dierk. Quench and partitioning (Q&P) steels. [Online] http://www.dierk-

raabe.com/martensite-alloys-and-transformations/quench-partitioning-steels/. 

16. Evolutionary strategies for identification and validation of material model 

parameters for forming simulations. Bäck, T, Heinle, I and Kessler, L. Dublin : Proc. 

Genetic and Evolutionary Computation Conference, 2011. 

17. Identification and validation of yield locus parameters with respect to industrial 

forming simulation needs. Beier, T, et al. Aachen : in Proceedings of ICTP , 2011. 

18. Advances in Post-necking Flow Curve Identification of Sheet Metal through 

Standard Tensile Testing. Coppieters, S, et al. s.l. : AIP Conference Proceedings, 2013. 

Vol. 1567, p. 632. 

19. Bridgman, P.W. Studies in Large Plastic Flow and Fracture. NY : McGraw-Hill, 

1952. 

20. Siebel, E and Schwaigerer, S. Archiv für das Eisenhüttenwesen. 1948, Vol. 19. 

21. Ghosh, A.K. . s.l. : Metallurgical transactions A, 1977, Vol. 8A , pp. 1221-1232. 

22. Ayres, R.A. . s.l. : Metallurgical transactions A, 1983, Vol. 14A, pp. 2269-2275. 

23. Determining material true stress–strain curve from tensile specimens with 

rectangular cross-section. Zhang, Z.L., et al. 36, s.l. : Int. J. Solids Struct., 1999, pp. 3497-

3516. 

24. A study on determining true stress–strain curve for anisotropic materials with 

rectangular tensile bars. Zhang, Z.L., et al. s.l. : Int. J. Solids Struct., 2001, Vol. 38, pp. 

4489-4505. 

25. Tarantola, A. Inverse Problem Theory, Methods for Data Fitting and Model 

Parameter Estimation. New York, USA : Elsevier Publisher B.V., 1987. 

26. Koc, P. and Štok, B. s.l. : Computational Materials Science, 2004, Vol. 31, pp. 155-

168. 

27. Kajberg, J. and Lindkvist, G. s.l. : International Journal of Solids and Structures, 

2004, Vol. 41, pp. 3439-3459. 



220 
 

28. Identification of material parameters directly from metal forming processes. 

Ghouati, O. and Gelin, J. s.l. : J. Mater. Process. Technol., 1998, pp. 560-564. , Gelin, J.-

C., 1998. .. 

29. A finite element-based identification method for complex metallic material 

behaviors. Ghouati, O. and Gelin, J. s.l. : Comput. Mater. Sci., 2001, Vol. 21, pp. 57-68. 

30. Pierron, F. and Grédiac, M. . The Virtual Fields Method. Extracting Constitutive 

behaviour from full-field deformation measurements. London : Springer, 2012. 

31. Identification of the post-necking hardening behaviour of sheet metal by 

comparison of the internal and external work in the necking zone. Coppieters, S, et al. 3, 

s.l. : Journal of Materials Processing Technology, 2011, Vol. 211, pp. 545-552. 

32. Identification of Elasto-Plastic Constitutive Parameters from Statically 

Undetermined Tests Using the Virtual Fields Method. Pannier, Y, et al. 46, s.l. : 

Experimental Mechanics, 2006, pp. 735-755. 

33. Identification of plastic constitutive parameters at large deformations from three 

dimensional displacement fields. Rossi, M. and Pierron, F. 59, s.l. : Computational 

Mechanics, 2012, pp. 53-71. 

34. Coppieters, S., et al. 211, s.l. : Journal of Materials Processing Technology, 2011, 

pp. 545-552. 

35. Determination of True Stress-Strain-Curves and Normal Anisotropy in Tensile Tests 

with Optical Strain Measurement. H. Hoffmann, C. Vogl. 1, s.l. : CIRP Annals, 2003, 

CIRP Annals, Vol. 52, pp. 217-220. 

36. Variation of Normal Anisotropy Ratio "r" during Plastic Forming. Aleksandrovic, 

S., et al. 6, s.l. : Journal of Mechanical Engineering, 2009, Vol. 55, pp. 392-399. 

37. Banabic, D., et al. Formability of Metallic Materials: Plastic Anisotropy, 

Formability Testing, Forming Limits, Engineering Materials. s.l. : Springer-Verlag Berlin 

Heidelberg, 2000. 

38. Identification of Post-Necking Hardening Phenomena in Ductile Sheet Metal. S. 

Coppieters, T. Kuwabara. 54, s.l. : Experimental Mechanics, 2014. 

39. The relationship between stress and strain for homogeneous deformation. Voce, E. 

s.l. : Int Inst Met , 1948. 



221 
 

40. Large strain deformation of polycrystalline metals at low homologous temperatures. 

J. E. Hockett, O. D. Sherby. 23, s.l. : J Mech Phys Solids , 1975, Vol. 2. 

41. The influence of strain hardening and strain-rate sensitivity on sheet metal forming. 

K., Ghosh A. 99, s.l. : J Eng Mat Tech, 1977, Vol. 3. 

42. Plastic instability under plane stress. H.W., Swift. 1952 : Journal of the Mechanics 

and Physics of Solids, 1:1–18. 

43. Evaluating the flow stress of aerospace alloys for tube hydroforming process by free 

expansion testing. M. Saboori, et al. s.l. : Int. J. Adv. Manuf. Technol., 2013. 

44. Wierzbicki, Tomasz. Structural Mechanics. [Online] 2013. 

https://ocw.mit.edu/courses/mechanical-engineering/2-080j-structural-mechanics-fall-

2013/index.htm. 

45. Physics and phenomenology of strain hardening: the FCC case. UF. Kocks, H. 

Mecking. s.l. : Prog Mater Sci, 2003, Vol. 48. 

46. Determination of strain hardening parameters of tailor hardened boron steel up to 

high strains using inverse FEM optimization and strain field matching. Ellera, T.K. et al.,. 

s.l. : Journal of Materials Processing Technology, 2016. . 

47. The κ-statistics approach to epidemiology. Kaniadakis G, Baldi MM, Deisboeck TS, 

Grisolia G, Hristopulos DT, Scarfone AM, Sparavigna A, Wada T, Lucia U. 1, s.l. : Sci 

Rep, 2020, Vol. 10. 

48. Banabic, Dorel. Sheet Metal Forming, Constitutive Modelling and Numerical. s.l. : 

Springer, 2010. 

49. Altan, Taylan and Tekkaya, Erman. Sheet metal forming fundamental. s.l. : ASM 

International, 2012. 

50. Metallic materials — Sheet and strip — Determination of biaxial stress-strain curve 

by means of bulge test with optical measuring systems. ISO Standards. [Online] 2014. ISO 

16808:2014. 

51. Altan, Taylan. the fabricator. [Online] November 2007. 

https://www.thefabricator.com/stampingjournal/article/bending/dissecting-defects---part-

ii. 



222 
 

52. An automated hydraulic bulge tester. Young, R.F., Bird, J.E. and Duncan, J.L. s.l. : 

J. Applied Metalworking, 1981, Vol. 2. 

53. On the Determination of Flow Stress Using Bulge Test and Mechanical 

Measurement. Abel D. Santos, Pedro Teixeira, A. Barata da Rocha, and F. Barlat. s.l. : 

AIP Conference Proceedings, 2010. 

54. Determination of sheet material properties using biaxial bulge tests. Taylan Altan, 

et al. Chemnitz, Germany : Proceedings of the 2nd Int. Conference on Accuracy in 

Forming Technology, Nov. 13-15, 2006, . 

55. Fallahiarezoodar, Ali and Altan, Taylan. Determining flow stress data by 

combining uniaxial tensile and biaxial bulge tests. Centre for precision forming, The Ohio 

State University. [Online] October 2015. 

https://ercnsm.osu.edu/sites/ercnsm.osu.edu/files/uploads/676-5_0.pdf. 

56. Factors affecting the accuracy of flow stress determined by the bulge test. Billur, E., 

Demiralp, Y., Groseclose, A. R., Wadman, B., & Altari, T. s.l. : 10th International 

Conference on Technology of Plasticity, ICTP 2011, 2011. 

57. Hydraulic bulge test for stress-strain curve determination and damage calibration 

for Ito-Goya model. Campos, Hugo, et al. s.l. : 6th European Conference on 

Computational Fluid Dynamics (ECFD VI), 2014. 

58. Determination of Flow Stress by the Hydraulic Bulge Test. J. Slota, E. Spišák. 47, 

(2008), 13-17. : Metalurgua , 2008, Vol. 47. 

59. Biaxial stress-strain relationship of sheet metal from hydraulic bulging test. 

Stachowicz, F. Vancouver B.C., Canada : 5th International multidisciplinary conference, 

2003. 

60. Analytical and Experimental Evaluation of the Stress-Strain Curves of Sheet Metals 

by Hydraulic Bulge Tests. L. Lazarescu, D.S. Comsa, D. Banabic. 473, s.l. : Key 

Engineering Materials, 2011. 

61. Plastic deformation of a circular diaphragm under pressure. Gleyzal, A. 70, s.l. : 

appl. Mech., Trans. Am. SOC. mech. Engrs, 1948, Vol. 3. 

62. A theory of the plastic bulging of a metal diaphragm by lateral pressure. Hill, R. 

s.l. : Phil. Mag, 1950, Vol. 7. 



223 
 

63. Der hydraulische Tiefungsversuch und die Ermittlung von Fließkurven (The 

hydraulic bulge test and the determination of the flow stress curves). Panknin, W. 

Germany : Institute for Metal Forming Technology, University of Stuttgart, 1959. 

64. Hydrostatic bulging of circular diaphragms. Chakrabarty, J., & Alexander, J. M. 3, 

s.l. : Journal of Strain Analysis, 1970, Vol. 5. 

65. Analytical methodology for the determination of the flow curves of aluminum and 

steel alloys using the hydraulic bulge tests. H. Alharthi, S. Hazra, D. Banabic, R. 

Dashwood. s.l. : AIP Conference Proceedings, 2016. 

66. Accurate characterization of biaxial stress-strain response of sheet metal from 

bulge testing. J. Min, T. B. Stoughton, J. E. Carsley, B. E. Carlson, J. Lin, X. Gao. s.l. : 

International Journal of Plasticity, 2017, Vol. 94. 

67. A model study of the effect of the size of the die shoulder in hydroforming. H.M. 

Shang, V.P.W. Shim. s.l. : J. Mech. Work. Technol., 1984, Vol. 10. 

68. Accurate determination of biaxial stress-strains relationships from hydraulic 

bulging tests of sheet metals. Atkinson, M. s.l. : Int. J. Mech. Sci., 1997, Vol. 39. 

69. Superplastic forming of a spherical shell out a welded envelope. A.A. Kruglov, F.U. 

Enikeev, R.Ya. Lutfullin. A323, s.l. : Materials Science and Engineering , 2002. 

70. Accurate determination of flow curves using the bulge test with optical measuring 

systems. Mulder, J., Vegter, H., Aretz, H., Keller, S., van den Boogaard, A.H. s.l. : Journal 

of Materials Processing Technology, 2015. 

71. An experimental study on the comparative assessment of hydraulic bulge test 

analysis methods. M. Koç, E. Billur and Ö.N. Cora. s.l. : Mat. Design, 2011, Vol. 32. 

72. Yield curve determination using the bulge test combined with optical measurement. 

Keller S., Hotz W., Friebe H. s.l. : IDDRG 2009 congress, 2009. 

73. Determination of the flow stress of five AHSS sheet materials (DP 600, DP 780, DP 

780-CR, DP 780-HY and TRIP 780) using the uniaxial tensile and the biaxial Viscous 

Pressure Bulge (VPB) tests. A. Nasser, A. Yadav, P. Pathak, T. Altan,. s.l. : Journal of 

Materials, 2010. 

74. Uniaxial True Stress-Strain after Necking. Ling, Y. s.l. : AMP Journal of 

Technology, June, 1996, Vol. 5. 



224 
 

75. Bridgman, P.W. Studies in Large Plastic Flow and Fracture. New York : McGraw-

Hill, 1952. 

76. Evaluation of Stress Distribution in the Symmetrical Neck of Flat Tensile Bars. 

Aronofsky, J. s.l. : J. App. Mech., March 1951. 

77. Analysis of the State of Stress in the Neck of a Tensile Test Specimen. Spiridonova, 

N.N. Davidenkov and N.I. s.l. : Proc. ASTM, 46, 1147-1158, 1946. 

78. Numerical Analysis of the Stress-Strain Curve and Fracture Initiation for Ductile 

Material. Li, K.S. Zhang and Z.H. s.l. : Engrng. Fracture Mech., 1994, Vol. 49. 

79. A theory of the yielding and plastic flow of anisotropic metals. R., Hill. London  : 

Proceedings of the Royal Society London A, 193:281–297, 1948. 

80. Identification of Post-necking tensile stress–strain behavior of steel sheet: an 

experimental investigation using digital image correlation technique. Surajit Kumar Paul, 

Satish Roy, S. Sivaprasad, H.N. Bar, and S. Tarafder. s.l. : JMEPEG, 27:5736–5743, 

(2018). 

81. Modified maximum force criterion, a model for the theoretical prediction of forming 

limit curves. P. Hora, L. Tong and B. Berisha. s.l. : Int J Mater Form 6:267–279, 2013. 

82. Identification of the Continuum Damage Parameter: An Experimental Challenge in 

Modeling Damage Evolution. C.C. Tasan, J.P.M. Hoefnagels, and M.G.D. Geers. s.l. : 

Acta Mater., 2012, Vol. 60. 

83. Variation of Normal Anisotropy Ratio "r" during Plastic Forming. S. Aleksandrovi, 

M. Stefanovi, D. Adamovi, V. Lazi. 6, s.l. : Journal of Mechanical Engineering , 2009, Vol. 

55. 

84. Flow localization in the plane strain tensile test. V. Tvergaard, A. Needleman and 

K. K. Lo. 2, s.l. : J. Mech. Phys. Solids, 1981, Vol. 29. 

85. Determination of anisotropy and material hardening for aluminum sheet metal. N. 

Tardif, S. Kyriakides. s.l. : International Journal of Solids and Structures, 2012, Vol. 49. 

86. Characterisation of Diffuse and Local Necking of Aluminium Alloy Sheets Using 

DIC Technique. Sz. Szalai, D. Harangozó, I. Czinege. 3, 2019, Vol. 12. 

87. On discontinuous plastic states, with special reference to localized necking in thin 

sheets. Hill, R. s.l. : Jou nal of the Mechanics and Physics of Solids, 1952, Vol. 1. 



225 
 

88. Diffuse necking and localized necking under plane stress. Lian, J., Zhou, D. s.l. : 

Materials Science and Engineering A, 1989. 

89. Mechanical Properties Identification of Sheet Metals by 2D-Digital Image 

Correlation Method. V. Nguyen, S. Kwon, O. Kwon and Y. Kim. s.l. : Advances in Material 

& Processing Technologies Conference, 2017. 

90. A Closer Look at the Diffuse and Localised Necking of A Metallic Thin Sheet: 

Evolution of the Two Bands Pattern. Bao, C., Francois, M., and Le Joncour, L. s.l. : 

Strain, 2016, Vol. 52. 

91. Necking in tensile bars with rectangular cross-section. Tvergaard, V. s.l. : 

Computer Methods in Applied Mechanics and Engineering, 1993, Vol. 103. 

92. Abaqus Documentation, student edition 2020. [Online]  

93. Study on true stress correction from tensile tests. Choung, J.M., Cho, S.R. s.l. : J 

Mech Sci Technol, 2008, Vols. 22, 1039-1051. 

94. Coruk, E and Karadogan, C. Steel Research International, Special Edition. 2011. 

95. A criterion for local necking. Ramaekers, J.A.H. 1, s.l. : Journal of Materials 

Processing Technology, 2000, Vol. 103 . 

96. A generalized approach for the prediction of necking and rupture phenomena in the 

sheet metal forming. P. Hora, B. Berisha, M. Gorji, N. Manopulo. Mumbai, India. : 

IDDRG Conference, 2012. 

97. Time dependent determination of forming limit diagrams. M. Merklein, A. Kuppert, 

M. Geiger. 1, s.l. : CIRP Annals - Manufacturing Technology, 2010, Vol. 59 . 

98. A method of the direct measurement of the true stress–strain curve over a large 

strain range using multi-camera digital image correlation. J. Li, G. Yang, T. Siebert, M.F. 

Shi, L. Yang. s.l. : Optics and Lasers in Engineering, 2018, Vol. 107. 

 

 

 

 

 



226 
 

 

 

 

 

 

 

 

APPENDIX A 
VFM application in metal plasticity 

Pannier and his co-workers23 published the first application of virtual field method in 

metal plasticity, where actual experimental data was used for this study. The goal of this 

observation was to obtain the material constants of Voce hardening law with the VFM. The 

research was intended to experimentally validate the application of the virtual fields method 

in order to identify the elastoplastic behaviour from full-field optical measurements method.  

Taking into account Voce’s nonlinear hardening model, the six parameters will be 

identified: Young’s modulus E, Poisson’s ratio ν, and the plastic parameters 𝜎0, R0, Rinf and 

b, where the use of an inverse procedure is therefore necessary to identify the constitutive 

parameters, 

𝜎𝑣𝑜𝑐𝑒 = 𝜎𝟎 + 𝑅𝟎𝜀𝑝 + 𝑅𝑖𝑛𝑓 (1 − exp (−𝑏𝜀𝑝)) 

𝜎𝟎 : the initial yield stress,  

𝑅𝟎 : linear asymptotic hardening modulus,  

𝑅𝑖𝑛𝑓 and b the parameters that describe the 

non-linear part of the response in the initial 

yielding zone. 

 

 

 
23 Y. Pannier, S. Avril, R. Rotinat, F. Pierron, Identification of Elasto-Plastic Constitutive Parameters from 

Statically Undetermined Tests Using the Virtual Fields Method, Experimental Mechanics, 46 735-755 (2006). 
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In this first attempt of using VFM, a uniaxial stress configuration was considered, where 

a flat dogbone specimen has been chosen so that the longitudinal stress only varies in 

longitudinal direction, while the other stress components remain comparatively small. 

Displacement fields have been evaluated through the image processing at each load step 

on each side of the specimen. The calculation of the partial derivatives of the displacement 

field to obtain the strain field should be done with high accuracy as this process can amplify 

the effect of noise and so filtering seems to be quite important. 

After obtaining the actual displacement and strain fields, the procedure to identify the 

elasto-plastic model can be initiated. Having in mind the basic equation for quasi-static non-

linear VFM, the constitutive equations with the general form of 𝜎 = 𝑔(𝜀)̿ (where g is a 

given function of the actual strain components but also of the constitutive parameters) can 

be applied, 

−∫ 𝑔(𝜀)̿ ∶ 𝜀 ∗̿𝑑𝑉 + ∫�̅�. 𝑢∗̅̅ ̅ 𝑑𝑆 = 0
 

𝑆

 

𝑉

 (a) 

If the actual strain field is heterogeneous, for any new virtual field implemented in 

equation (a), a new relation involving the constitutive parameters will be derived, which is 

the main property of the VFM. With a given set of virtual fields, equation (a) is used to 

collect the unknown constitutive parameters. The key factor in VFM is the choice of the 

virtual fields. The number and the type of the virtual fields depend on the nature of function 

𝑔(𝜀)̿.  

Two different cases are encountered, 

• Identification of the Elastic Parameters 
In this step, a linear dependency exists between the constitutive equations and the 

constitutive parameters (as in linear elasticity). In this case, writing equation (a) with as 

many virtual fields as unknowns results in a linear system of equations by which the 

parameters can be obtained directly after inversion, provided that the actual strain field is 

heterogeneous and the virtual fields are independent.  

• Identification of Plastic Parameters 
In this step, there is no linear dependency between the constitutive equations and the 

constitutive parameters (as in Elasto-plasticity). The identification strategy is on the basis of 

the minimization of a residual with regard to equation (a). 

Herein, the procedure to obtain elastic parameters is demonstrated as an example. 
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Identification of the Elastic Parameters 

Before the onset of plastic deformation, the response of the specimen is linear elastic. 

Assuming a plane stress state in the specimen, for an isotropic material the following well-

known hook’s law can be written, 

(

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

) =

[
 
 
 
 
 

𝐸

1 − 𝜐2
𝜐𝐸

1 − 𝜐2
0

𝜐𝐸

1 − 𝜐2
𝐸

1 − 𝜐2
0

0 0
𝐸

1 + 𝜐]
 
 
 
 
 

(

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

) (b) 
E: Young’s modulus 
𝜐 : Poisson’s ratio. 

Inserting equation (b) into equation (a), 

𝐸

1 − 𝜐2
∫(𝜀𝑦𝑦𝜀𝑦𝑦

∗ + 𝜀𝑥𝑥𝜀𝑥𝑥
∗)𝑑𝑆

 

𝑆

+
𝜐𝐸

1 − 𝜐2
∫(𝜀𝑥𝑥𝜀𝑦𝑦

∗ + 𝜀𝑦𝑦𝜀𝑥𝑥
∗)𝑑𝑆

 

𝑆

+
𝐸

1 + 𝜐
∫ 𝜀𝑥𝑦𝜀𝑥𝑦

∗ 𝑑𝑆 =
1

𝑡
∫ �̅�. 𝑢∗̅̅ ̅ 𝑑𝑆
 

𝑆𝑓

 

𝑆

 

(c) 

t : the thickness of the specimen  

S : the area of the zone of interest, (the black-coloured area)  
Two virtual displacement fields as �̅�∗1 and �̅�∗2 have been defined, in order to find the 

two material constants for the elastic part,  

�̅�∗1 

{
 
 

 
 
𝑣𝑥
∗1(𝑥, 𝑦) = 𝑣𝑦

∗1(𝑥, 𝑦) = 0     𝑓𝑜𝑟 𝑦 < 0

{
𝑣𝑥
∗1(𝑥, 𝑦) = 0

𝑣𝑦
∗1(𝑥, 𝑦) = −𝑦

              𝑓𝑜𝑟 0 < 𝑦 < 𝐿

{
𝑣𝑥
∗1(𝑥, 𝑦) = 0

𝑣𝑦
∗1(𝑥, 𝑦) = −𝐿

                      𝑓𝑜𝑟 𝑦 > 𝐿

 

�̅�∗2 

{
 
 

 
 
𝑣𝑥
∗2(𝑥, 𝑦) = 𝑣𝑦

∗2(𝑥, 𝑦) = 0                  𝑓𝑜𝑟 𝑦 < 0

{
𝑣𝑥
∗2(𝑥, 𝑦) = 𝑥𝑦(𝑦 − 𝐿)

𝑣𝑦
∗2(𝑥, 𝑦) = 0

              𝑓𝑜𝑟 0 < 𝑦 < 𝐿

{
𝑣𝑥
∗2(𝑥, 𝑦) = 0

𝑣𝑦
∗2(𝑥, 𝑦) = 0

                                       𝑓𝑜𝑟 𝑦 > 𝐿

 

Where L is the length of the area of interest. 
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Feeding the above virtual displacement fields into equation (c), and solving for Young’s 

modulus E, Poisson’s ratio ν, one will obtain, 

{
 
 

 
 𝜈 = −

∫ 𝑦(𝑦 − 𝐿) 𝜀𝑥𝑥 𝑑𝑆 +
 

𝑆
∫ 𝑥(2𝑦 − 𝐿) 𝜀𝑥𝑦 𝑑𝑆
 

𝑆

∫ 𝑦(𝑦 − 𝐿) 𝜀𝑦𝑦 𝑑𝑆
 

𝑆
− ∫ 𝑥(2𝑦 − 𝐿) 𝜀𝑥𝑦 𝑑𝑆

 

𝑆

𝐸 =
(1 − 𝜐2)𝑃𝐿

𝑡(∫  𝜀𝑦𝑦 𝑑𝑆 + 𝜐
 

𝑆
∫  𝜀𝑥𝑥 𝑑𝑆)
 

𝑆

 (d) 

In the next step, the strain fields measured for all the load steps were inserted into 

equation (d). However, among all the load steps a certain first few numbers of them will 

result in acceptable values of E and ν. 
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APPENDIX B 
MMFC: an introduction 

Unlike Some kinds of failures such as wrinkling and spring back that can be obtained 

directly, the study of rupture needs a great endeavour as the localized necking is 

concentrated in a very narrow band. From the numerical simulation point of view, as the 

position of rupture is not easily predicted, in order to model the necking or very high 

deformation gradient, a vast number of fine elements must be employed for assessing the 

rupture. An alternative method is to conduct the study by benefiting from some failure 

prediction models. The concept of Forming Limit Curves (FLC) is currently the most 

acceptable approach for necking prediction in the numerical simulation of sheet forming 

processes (81). 

Based on the MMFC model, additional tensile stress is induced as diffuse necking 

happens, postponing the occurrence of localized necking. MMFC model takes into account 

more factors to define the material behaviour in this range, and so far better approximation 

can be attained. The classic criterion of maximum force solely considers the influence of 

hardening behaviours, while the effect of yield loci is totally neglected. In fact, the yield 

loci, either isotropic or anisotropic, play a very important role in the failure process, so that, 

without considering the effect of yield loci, the resulted FLC would not be able to 

demonstrate the real material behaviour (81). 
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Following the original maximum force criterion, (here, P is used as force symbol, to avoid 

confusion with yield criterion symbol, F) 

𝒅𝑷 = 𝑑(𝜎1𝐴) = 𝑑𝜎1 𝐴 + 𝜎1 𝑑𝐴 > 𝟎 (a) 

➢ Provided that only strain hardening effect is taken into account, it can defined as, 

𝑑𝜎1 =
𝑑𝜎1
𝑑𝜀1

𝑑𝜀1  . 

As metallic materials normally follow volume consistency law during plastic forming, 

𝑑𝐴

𝐴
= −𝑑𝜀1 . 

Inserting the last two relations into equation (a), and considering the fact that in tensile 

test, 𝜎1 = 𝜎 and 𝜀1 = 𝜀,̅ we reach the Swift formulation (81), 

𝑑𝜎

𝑑𝜀̅
> 𝜎 . 

➢ However, as it was mentioned before, the stress 𝜎1 is not only a function of strain 

hardening but also the strain ratio 𝛽 = 𝑑𝜀2 𝑑𝜀1⁄ . Thus, the stress increment 𝑑𝜎1 

can be modified as, 

𝑑𝜎1 =
𝝏𝜎1
𝝏𝜀1

𝑑𝜀1 +
𝝏𝜎1
𝝏𝛽

𝑑𝛽      (b) 

 ∆𝝈𝟏∗ :
𝝏𝝈𝟏

𝝏𝜺𝟏
𝒅𝜺𝟏 : describes the strain hardening effect, 

∆𝝈𝟏
∗∗:

𝝏𝝈𝟏

𝝏𝜷
𝒅𝜷 : describes additional hardening caused by 

the transformation of stress states. 

Thus, two types of hardening during 

diffuse necking can be seen in the figure 

(81). 

 
By substituting relation (b) into the original form (a), the modified maximum force 

criterion can be formulated as, 

𝝏𝜎1
𝝏𝜀1

𝑑𝜀1 +
𝝏𝜎1
𝝏𝛽

𝑑𝛽 > 𝜎1𝑑𝜀1 (c) 
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As long as 𝝏𝜎1
𝝏𝜀1

> 𝜎1 , 𝑑𝛽  is zero and 𝛽  keeps constant: uniform deformation state. 

Gradually, the stress increases due to the work hardening influence, however the hardening 

rate 𝝏𝜎1
𝝏𝜀1

 starts to decrease for most of the metallic materials; so that, as soon as the condition 

𝝏𝜎1

𝝏𝜀1
> 𝜎1 is violated, β (strain increment ratio: ∆𝜀2 ∆𝜀1⁄ ) will alter correspondently to keep 

the equilibrium state stable. The variation of the strain increment ratio affects the stress state, 

and can be demonstrated by the yield locus applicable to the material (81). These effects are 

looked in more details here. 

Having 𝛽 (the strain increment ratio) and 𝛼 = 𝜎2
𝜎1⁄  (the stress ratio) in mind, generally 

the relations 𝜎1 = 𝑓(𝛼)�̅�  and ∆𝜀̅ = 𝑔(𝛽)∆𝜀1  can be discussed provided that the yield 

function 𝐹(𝜎1, 𝜎2) = 0 is known.  

The terms 𝜕𝜎1 𝜕𝜀1⁄  and 𝜕𝜎1 𝜕𝛽⁄  can be obtained as (81), 

{
 
 

 
 

𝝏𝜎1
𝝏𝜀1

=
𝝏𝜎1
𝝏𝜎

𝝏𝜎

𝝏𝜀̅

𝝏𝜀̅

𝝏𝜀1
= 𝑓(𝛼) 𝑔(𝛽)𝐻′

 
𝝏𝜎1
𝝏𝛽

=
𝝏𝜎1
𝝏𝛼

𝝏𝛼

𝝏𝛽
= 𝑓′(𝛼) �̅�

𝝏𝛼

𝝏𝛽
= 𝑓′(𝛼) 𝐻

(
𝜕𝛽
𝜕𝛼
)

⁄

 

𝐻 = 𝐻(𝜀)̅ : hardening function 

𝐻′ : slope of the hardening curve 

From the definition of β, it is clear that 𝛽 = 𝜕𝐹

𝜕𝜎22

𝜕𝐹

𝜕𝜎11
⁄  can be evaluated through 

employing a proper yield locus, so that one can readily derive the derivation 𝜕𝛽
𝜕𝛼

. 

Rewriting (c) as below, the modified formulation of maximum force criterion is achieved 

as, 

𝝏𝜎1
𝝏𝜀1

+
𝝏𝜎1
𝝏𝛽

𝜕𝛽

𝜕𝜀1
> 𝜎1 

Application of MMFC in FLC evaluation 

In order to conduct a theoretical study on the evaluation of FLC, one can follow the 

above procedure; diffuse necking, however, is a nonlinear process in which significant 

variations can be observed in all auxiliary functions as well as the stress and strain ratios, 

𝜶 and 𝜷. Thus, it is advisable to do the calculation numerically using the following 

flowchart, 
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Figure 169 flowchart for the iterative procedure of FLC evaluation using MMFC 

Having critical strains in hand, it is possible to obtain the equivalent strain, which is then 

can be used to evaluate equivalent stress-equivalent strain curve, as discussed in section 6.3. 
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