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Abstract

Continuous advances in simulation systems for analysing metal forming processes are
expanding the capabilities available for the modelling of materials. There is a wide variety of
attempts to attain a method that is not only reliable, but can also be used for a vast range of
materials and forming conditions. Post-necking identification of a material subjected to
uniaxial loading has been both the subject of debate and a serious challenge for manufactures
dealing with sheet metal forming processes, especially in automotive industries whenever a
new material is intended to be used. Up to now, depending on the fidelity level of the simulation
model in the developing process of a component, the identification can be conducted through
four main classes of methods. Recent methods are more complicated both to be studied and
implemented, wherein even complex, non-standardized test methods and experiments are
needed to be designed so as to derive the necessary parameters of the material model. However,
even after evaluating the model parameters, a whole new challenge may arise: reliable
implementation of these parameters for various forming conditions. In this research, the focus
will be on the post-necking behaviour of 5xxx and 6xxx series of aluminium, as well as AHSSs,
wherein a first approximation of flow stress curve at large values of strain beyond diffuse

necking will be studied first and then validated in FEA.

Keywords: sheet metal forming simulation, material characterization, post-necking
identification, tensile test, hydraulic bulge test, digital image correlation technique, FFEA,
aluminium, AHSS
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CHAPTER ONE: MATERIAL MATTERS
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Before embarking upon discussions on ‘goals’ and ‘methodology’ the two important parts
of this thesis work, ‘material characterization’ and ‘metal forming simulation’ will be looked

closely first.

1.1 MACROMECHANICAL MATERIAL CHARACTERIZATION FOR

STAMPING SIMULATION

The main purpose of conducting the stamping simulation is to anticipate the level of strain,
thinning (regarding a forming limit curve), wrinkling and springback during the forming
process of a metallic sheet. Generally, the material properties of sheet metals alter with respect
to its rolling direction (anisotropic behaviour), and cold forming is done at room temperature
with quasi-static strain rates. Hence, yield models and flow curves are employed in order to

model Deformation, failure is studied by observing material’s forming limit curves, while

elastic modulus is enough to investigate the springback behaviour (1).

1.1.1 Yield criteria

Anisotropic yield models divide into two main categories: quadratic and non-quadratic (2).
It is generally considered that although defining quadratic models needs fewer number of
parameters, they are not accurate enough, especially when it comes to lightweight materials,
like aluminium. On the other hand, Barlat 2000 or Banabic 2005 are the more complex yield
models; having more parameters, they provide far more accurate matching with experimental

data, and thus lead to better predictions in forming simulation (3).

In the following table, the necessary test data required for a selection/calibration of yield

models are presented,

Model Type Oyo Oy45 Oygg Oyp To Ty45 Tog T
von Mises Quadratic X
Hill 48 Quadratic X X X X
Barlat 89 Non-quadratic X X X X X X
Barlat 2000 Non-quadratic X X X X X X X X
Banabic 2005 Non-quadratic X X X X X X X X

Table 1 parameters required for a selection of common yield models
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Where,

® Oyg, Oyss, Oyys - yield stresses in the 0°, 45° and 90° to the grain direction’,
® 1y, I'ys, I'gg : anisotropic parameters in the 0°, 45° and 90° to the grain direction,

® Oy, I - biaxial yield stress and biaxial anisotropic parameter respectively.

Standard sheet tensile tests must be conducted to acquire yield stresses, anisotropic
parameters and work-hardening indices (n-values), where the required approaches are

introduced in the following standards,

e Yield stresses: ISO 6892-1:2019 (tensile testing of metallic materials and defining the
mechanical properties, both at room temperature and elevated temperature),

e Anisotropic r-values: ISO 10113:2020 (plastic strain ratio of flat products (sheet and
strip) made of metallic materials),

e Work-hardening index, n-values: ISO 10275:2007, (tensile strain hardening exponent
n of flat products (sheet and strip) made of metallic materials),

e Biaxial yield and anisotropic parameters are evaluated through bulge tests while the
measurement process is standardized by ISO 16808:2014, (biaxial true stress-true strain
curve of metallic sheets having a thickness below 3 mm in pure stretch forming without

significant friction influence).
The specimen must be cut at different angles to the rolling direction of the received sheet in

order to determine yield and anisotropic parameters in different directions.

1.1.2 Flow stress curve and strain hardening laws

As it will be observed in chapter two, flow stress curves are drawn by fitting the post-yield
tensile test data using hardening laws, such as the Swift equation for steels and the Voce

phenomenological hardening law for aluminium alloys and few grades of high strength steels
(1 @)

Oswift = C(go + gp)n

Opoce = Ko+ Q (1 —exp (_ﬁgp))

! Grain direction is a term used to describe the rolling direction of metal after being manufactured into sheet,
plate or coil.
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Flow curves are normally considered as isotropic; thus, the n-value evaluated in the rolling

direction is employed to demonstrate the plastic behaviour in all directions (4).

1.1.3 Forming limits

In contrast with the flow stress curve, forming limits are treated as anisotropic and

standardised tests (ISO 12004 2:2008) are needed to be conducted to evaluate them.

In the test, specimens of different geometries are bulged using a punch, where considerable
amount of attention must be paid to the lubrication of the surfaces between the sample and the
dome-shaped punch in order to minimise the effect of friction. Furthermore, significant amount
of post-processing work is required before obtaining forming limits (1). Generally, by
increasing the sheet thickness, forming limits also increases, implying the fact that, for each
available thickness, the bulge test must be repeated as well (1). The below forming limit curve

of an aluminium alloy is derived from Nakazima test,

0.35 ~
0.3 - B
® I
Q@zs < &
\\& ——/@,_
02 o .g ¥
E 0.15 A
£
5 0.1 ~
= 0  Measured
> ocos+4  mmmmee Interpolated
r 0 T T T 1
-0.1 0 0.1 0.2 0.3 0.4

Minor strain [-]

Figure 1 Example of a forming limit curve for an aluminium alloy-CRF data

1.2 HOW TO CHARACTERIZE MATERIALS

Generally, to characterize a constitutive material model, two factors are required to be
known (1),

e amodel that describes a certain behaviour of the material, and

o the actual data to find the model’s unknown parameters.
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For instance, in order to describe yielding behaviour of a material, one can implement the
von Mises yield criterion (as a Model), yet the size of the yield ellipse can be fully determined

by conducting the uniaxial tensile test (finding the yield stress of the material) (Actual Data).

Multiple models are normally employed to introduce different aspects of material
deformation during a forming process; models to describe elasticity, yielding, hardening,
failure, deformation at different and/or elevated temperatures, variable strain rates, more

complex models for certain material behaviours such as solidification (casting) (1).

The fidelity level of the simulation model and the required work to collect the data for
obtaining model’s parameters will influence the choice of the desired material model.

Consequently, the required tests to be done will depend on the chosen model (1).

Automotive manufacturers collect test data from various resources,

L. range from free online databases to data published in literature
Open Repositories . )
{ ) and journals’ articles.

provide only basic material properties that can solely be
h Material Suppliers employed in the ‘standard’ material models, such as von Mises
yield function for modelling the yielding.

In order to exploit an advanced material model or to validate
predictions, bespoke tests (tailored and specially-made tests)

may be requested by the analyst to be conducted. Then, the

Ne
fio

Commissioning Tests _ )
company may enquire another department/firm to retrieve a

specific test’s results. It is also advisable that, these tests should

be conducted according to the standards (1).

However, the analyst is responsible to do ‘due diligence’ on the final data and to ensure that
the data is permissible to be used in the simulation model (1). This process is done in this study
in the final chapter, whereby the theoretical post-necking result is used in a FEA to ensure the
validity of the model. Bespoke tests can be conducted at test houses or universities with
appropriate equipment. Even standardized tests may include specific details that need to be

considered a priori (1).
An analyst should pay a considerable amount of attention to the following points,
e the requirements of the chosen material model,

o the capabilities of test facilities,
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e the chosen test method,
e the chosen method for data collection during the test,

e data post-processing procedure.

Further and even more importantly though, significant amount of time and attention should
be allocated to convert the format of the test data to the format which is executable in the

simulation model (a solver-readable format) (1).

1.3 METAL FORMING SIMULATION

Continious development in the field of metal forming processes simulation has
significantly affected the available capabilities for material modelling (1). Many
elements must be taken into account in the material characterization for stamping process,
among which, stamping simulation mainly depends on anisotropic material data for cold
stamping. The numerical simulation of metal forming processes have been progressively
employed by automotive industries not only to improve the quality and performance of
products and processes, but also to reduce the length of product development; as a result, these
products can be introduced to market in a shorter time span (4). Consequently, ‘how the

manufacturing process is modelled’ strongly depends on the quality of the input data.

In order to define a simulation model for a metal forming process, a number of inputs should

be considered (1),

e Material deformation and failure descriptions (material model),

e The geometry of the workpiece (CAD model),

e The boundary conditions of the model,

e The adequate number of elements used to describe the geometry of the tooling and the
component to be manufactured,

e The simulation time-step, used to define how often the results are needed to be stored

in the output for post-processing analysis,

The reliability and accuracy of numerical simulations are significantly affected by the
validity of the implemented material model (5). It should also be underlined that, material
models need a lot of hard work to be defined, as they require data collected through physical
tests (1).
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1.3.1 The Fidelity of a Simulation Model

The assessment of ‘How much the simulation model is representative of the actual
manufacturing process’ is described by the fidelity of a simulation model; the amount of detail
included in a material model, and the purpose of the simulation itself will influence the fidelity

of the simulation model (4).

The acquired knowledge about the forming process, material and tooling extend gradually
during a product development program. This ‘improved knowledge’ should be exploited by
analysts to empower the quality of material model and simulation, in order to heighten the

fidelity of the simulation model (1).

f\ ’\ Low fidelity simulation models

They are used to,

e estimate deformation modes and the financial feasibility of the process within the initial
steps of development,
e demonstrate the overall performance of the process,

e demonstrate the process sensitivity to BCs and material properties,

f ‘\ Medium fidelity simulation models

They include accurately defined material models to obtain more precise results. Medium
fidelity models are employed to foster the process performance, where the predictions can then

be regarded as the basis for tooling geometries.

(‘ / A High fidelity simulation models

They normally contain information about the variations in BCs and material parameters so

as to define a ‘process window’.
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Q Higher fidelity simulation models

They are employed as a ‘digital twin’ of the real process.

Using information from general datasheets are not acceptable in high fidelity modelling, while

feeding low fidelity modelling with detailed characterization data seems to be unnecessary (4).

1.4 MATERIAL MATTERS

As it is already mentioned, material testing is an important element in providing inputs for
the simulation of a forming process. Obtaining an accurate material properties from tests leads
to generating a reliable material model which in turns establishes a link between the material’s

microstructure and the observed macroscopic behaviour (6).
However, due to the following factors this approach may not be implemented readily (6),

e For a certain applications, the relation between the microscale and macroscopic
behaviour is often physically unknown,

e Material model may perform well only for a certain nominal state, while it cannot work
efficiently in many other conditions or larger scales,

e The complexity of the material, structure and process makes it quite difficult to consider

all the parameters included.

In order to overcome the above challenges, tests, either standardized or bespoke, should be
carried out to generate the required input data. Although conducting tests has always been with
its own predicaments, such top-down approaches are very helpful to tackle the problems within

the microscale modelling (6).

1.4.1 Materials

Although the micromechanical behaviour of materials does not lie within the scope of the
present thesis work, a short study on their general properties, development trends, as well as

applications is almost essential.

1.4.1.1 Aluminium: Almost infinite

Aluminium is the third most plentiful element on earth (next to oxygen and silicon) but its

production cost was quite high until the late 1800s (7).
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While its lightweighting properties seems to be the main reason for its popularity,
automotive industries are also fond of aluminium’s good durability, high corrosion resistance,

and improved maintenance as well (8).
Lightweight

Lighter vehicles, lower energy consumption and reduced emissions by possessing
solely 1/3 of the density of steel. Besides, although it has lower tensile strength than

steel, its specific strengths (i.e. strength-to-weight ratios) is quite satisfying (7).
Recyclability

It is nontoxic and can be recycled with around 5% of the required energy to produce
it from alumina. Besides, 75% of all aluminium produced is still in use. From the total
aluminium produced in 2016, about 25% was entered the transportation industry, another
25% was used in the packaging (like, aluminium cans), about 15% in construction and

15% in electrical applications (7).
~()  Formability

Makes it possible to integrate different technologies into one solution, e.g. in

buildings.
Corrosion resistance

Natural oxide layer preserve the metal underneath against corrosion and makes it

nearly maintenance free (7).

ﬂ’g Alloying technology

Depending on the its application, tailor-made alloys can be developed. For instance,
benefiting from strengthening mechanisms, aluminium alloys can be made 30 times

stronger than pure aluminium (7).
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Impermeability

It is a perfect barrier against light, odour and contamination.

Iy &
[ 4 ; J Conductivity
I/

An excellent conductor for heat and electricity (twice as good as copper) (8).

Depending on their chemical composition and properties, automotive aluminium alloys are

designated by series; aluminium sheet of 2xxx series, Sxxx series, 6xxx series, and 7xxx series

are often used in automotive body components, where except for 5000 series aluminium alloy,

the other three series are heat-treated and their strength can be improved by coating and baking

).
45
‘Standard Today | High Strength | Ultra High Strength
a5 JFomoa 0Ll
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£ B i strong 03 g 6000-series | 7000-series T
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< 20 S ORI strnngﬂd_ ey s ﬁ_‘_-‘.l__u.:._ o
Strong 05
5 = R S S B SR, Eaa
u :; i " 1 1 1
0 100 200 300 400 500 600 700
Steel equivalent | T T ! I T 1 T | I (%
by density ratio g 200 400 800 800 1000 1200 1400 1600 1800 2000

Figure 2 aluminium alloys generally employed for body structures (9)
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Since OEMs demand higher strengths, the supply balance is more towards AA6xxx than
AA5xxx, according to Innoval Technology’, where it constitutes at least 80% of the supplied

aluminium to carmakers (9).

5000 series aluminium is an aluminium-magnesium alloy, in which the magnesium content
is between 3% and 6%. With regard to the desired application, changing magnesium content

results in different alloy grade of 5xxx series (10).

Amongst the advantages of the 5000 series aluminium sheet, the following features stand

out (10),

e [t is the most resistant to acid and alkali corrosion amongst different series,

e Its high plasticity and good processing performance makes it suitable for a wide range
of forming processes,

e Excellent strength-to-weight ratio,

e Full recycling compatibility,

e It has excellent thermal conductivity,

e Its hardness is the highest amongst different series of aluminium.

6000 series aluminium is a high quality aluminium-magnesium-silicon alloy product. Its
manufacturing cost is slightly higher than other series of aluminium sheets because generally
more advanced equipment and complex production processes are required. 6000 aluminium
sheet is a heat-treated aluminium forged product, making it a good choice for applications
requiring high corrosion resistance and oxidation (11). In addition, it has the following

advantages (11):

e Strong corrosion resistance, as it contains magnesium and silicon,

e High toughness,

e Dense structure and few defects, due to the characteristics of the main alloying
elements, 6000 series aluminium has a very compact structure, so that during
forming no defects appear.

¢ Good welding performance,

e Quite suitable for surface treatment,

2 Innoval Technology was formed in 2003, in Oxfordshire, UK, by people from Alcan’s Banbury Technical
Centre. For seven decades ‘Banbury Laboratories’, as it was known, was responsible for some of the most
significant technological developments in aluminium, including the leading automotive sheet technology used by
today’s car manufacturers.
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e Good performance in the oxidation processing.

Some examples of common aluminium alloys in automotive industry are as follows (8),

- with excess silicon content originally launched by Alusuisse®

AA6016A - mainly used in Europe for external panels in vehicles.

- produced by most of the major aluminium sheet suppliers such as Novelis*,
Aleris®, Constellium®, Hydro’

- used in aluminium intensive models developed by Jaguar and Land Rover
- with copper as an alloying metal (0.5-0.9 wt%)

AA61T1 - stronger than AA6016A,

- less corrosion resistant than AA6016A

- more common in USA

Comparison between AA6016A and AA6111

- AAG6016A is less stronger but more formable alloy than AA6111

- AAG6016A has a lower bake hardening response than AA6111

- to obtain the same level of dent resistance, OEMs use AA6016A at rather thicker gauges
than AA6111

- AAG6111 enabled Jaguar (Jaguar Land Rover) to employ thinner closure panels than most
German OEMs

- possesses the features of both AA6111 and AA6016A

- Novelis introduces it for external panels as Advanz €600

- Novelis can produce it readily from recycled scrap

AA6451 - Advanz e600 is a heat treatable alloy

- Is designed and optimized for high-strength requirements, both for
bodywork and structural applications

- By achieving strengths of around 350 MPa, it is ideal for structural
applications in chassis and cross member components

- Was produced more recently due to recycling features

AAGISIA - Mostly employed for outer panels in gauges of 0.9-1.0 mm for parts that
require high strength with good formability
- Was Alcoa’s choice for outer panels
AA6022 - Asitis alow copper and iron alloy, it is difficult to produce it from recycled

stock

3 Alusuisse was a Swiss industrial group founded as Aluminium Industrie Aktien in 1898 in Zurich,
Switzerland.

4 Novelis is a subsidiary of Hindalco Industries Limited, an industry leader in aluminium, copper and metals.

3 Novelis has acquired Aleris, extending its position as the leading producer of flat-rolled aluminium products
and the world’s largest recycler of aluminium.

¢ Constellium is a global leader in the development and manufacturing of high value-added aluminium
products and solutions.

7 Hydro is in a broad range of market segments for aluminium, energy, metal recycling, renewables and
batteries.
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AA6061 - Used in car steering knuckles
- was optimised by adding small quantities of zirconium, zinc and copper.

AlMg5Mn (AAS182)
AAS182 - has high magnesium content
- used for high strength and complex stampings
AA5754 - good corrosion resistance and high formability
AAS5754

- offers very good surface quality
- used in structural sheet applications

- Novelis has supplied Jaguar Land Rover with RC5754
RC5754 - Novelis produces it from 50% production scrap
- Is mostly used in truck trailer sheet

Newly-developed alloys

- Created by FCA and the Oak Ridge National Laboratory

- is resistant at significantly higher temperatures compared to existing

ACMZ materials (up to 300°C) making it suitable for some engine components

- enabling the production of smaller engines with the same power, so lower
fuel consumption

- Made by Arconic’s Enduralum

AA6056 - With tensile strength of up to 460 MPa
- Is alightweight alloy
C6A1 - Made by Arconic® and used by FCA

- Enables automakers to build highly deformable and lightweight components

Table 2 information about common aluminium alloys in automotive industry (9)
Regardless of their natural chemical properties, final alloys can obtain more desirable
properties like higher strength, formability or hemming quality through various techniques,

such as bake hardening, work and precipitation hardening, heating and annealing (9).

8 a market leader industry in providing aluminium sheet to the North American automotive market.
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1.4.1.2 DP600 Arcelor

Arcelor has reported the specifications and applications of its Dual Phase steels in 2020.

The following paragraphs are extracted from the company’s reports’.
Characteristics of dual phase steel

Developed particularly for automotive industries, dual phase steels are one of the advanced
high strength steels (AHSS). Their microstructure typically consists of a soft ferrite phase with
dispersed islands of martensite, where the martensite phase is considerably stronger than the
ferrite phase. Almost using any kind of welding processes, DP steels can be welded; processes
such as, resistance spot welding, resistance seam welding, arc and laser welding. According to
the recommendation of Arcelor on DP steels, the specific work hardening and bake hardening

characteristics of DP steels are required to be carefully employed in FEA of crash models.
Applications of dual phase steel

Dual phase steels permits designers to exploit high yield strength steels for automotive
safety cage; components that are too complex to be produced by higher strength steels. Two of

the low to intermediate grades of Dual phase steels are introduced in the following,

- 500 MPa tensile strength

- Designed for exposed body panels: hood, doors and fender.

- Its excellent formability, high work hardening and bake hardening

DP500 behaviours lead to reduce outer panel gauge and weight, while
maintaining/improving dent resistance

- Substantial reduction of closure weight, instead of using more costly and
lower density materials

- Used in components requiring high energy absorption: the crumple zones,
DP 600 front and rear longitudinal rails and supporting structure

Arcelor - Its low yield strength keeps the initial deceleration pulse low

- Its high work hardening rate and excellent ductility absorb larger

used in deformation energy than conventional steels
- Its good formability allows forming complicated shapes
chapter four - Its good weldability allows using in tailored blank and hydroformed tube

applications

Components such as, rockers, pillars, pillar reinforcements, roof rails and cross members
require high yield strength to avoid any intrusion into the passenger safety compartment during
a collision; the intermediate to highest strength grades of dual phase steels are typically

exploited in such components in which both extremely high yield strength and adequate

? This report can be found in the following link, https://usa.arcelormittal.com/~/media/Files/A/Arcelormittal-
USA-V2/what-we-do/markets/automotive/2020-02-DataSheet-DualPhase-v3.pdf
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formability are a must. Chemical compositions of a number of low to intermediate DP steels

are presented in table below,

| C | Mn | Si | Other
Hot roll
DP590/600 | 0.05 | 1.2 | 0.6 | Cr
Cold roll
DP590/600 0.10 1.0 0.3
DP690 0.15 1.4 0.3
Galvanize
DP590/600 0.09 1.6-1.9 0.2-0.3 Cr, Mo
DP780 0.09 2.1 0.3 Cr, Mo, Nb

Table 3 chemical composition of DP600 used in the present work

1.4.1.3 Complex phase steels

Similar to DP steel family, Complex Phase (CP) steels are also considered as the transition

to steel with very high ultimate tensile strengths (12), and were specially developed for roll-

profiling, bending and edging processes (13).
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Figure 3 Steel Strength Ductility Diagram for Today’s AHSS Grades (includes a comparison of traditional

low-strength and high-strength steels) (14)
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Small amounts of martensite, retained austenite and pearlite within the ferrite/bainite matrix
typically constitutes the microstructure of CP steels. Retarded recrystallization or precipitation

of microalloying elements like Ti or Nb result in an extreme grain refinement (12).

Due to its balanced property profile, complex-phase steels are excellent choices for crash
components when light-weight design also is needed to be considered; high energy absorption,
high residual deformation capacity, good hole expansion and high resistance to edge cracking
while maintaining excellent bending properties are among the prominent characteristics of CP
steel (12). Furthermore, they are also considered in innovative light-weight automotive
applications such as stiffeners, sills, door impact bars, seat mounting rails and auto chassis

components (13).

Some examples of current applications of CP steels can be highlighted based on the

published documents on CP steels,

Grade Application
CP 680/780 Frame rails, chassis components, transverse beams
CP 750/900 B-pillar reinforcements, tunnel stiffener
CP 800/1000 Rear suspension brackets, fender beam
CP1000/1200 Rear frame rail reinforcements, rocker outer
CP1050/1470 Rocker panels, bumper beams

Table 4 Current production grades of CP steels and example automotive applications (12)

1.4.1.4 QP 1180

Although conventional low-carbon TRIP (transformation-induced plasticity) steels with
microstructures containing ferrite, carbide-free bainite, retained austenite and small amounts
of martensite present excellent ductility, they hardly achieve tensile strengths abovel100 MPa.
In order to overcome this shortcoming, while maintaining high ductility, several novel steels
have been developed recently, such as nanocrystalline bainitic steel (or super bainite),

maraging-TRIP steel and quenching and partitioning (Q&P) steel (15).

Quench & Partitioning (QP) steels are characterized by an excellent balance of high tensile
strength and acceptable elongation, and produced in a quenching and a partitioning step. The
resultant microstructure mainly entails tempered martensite and retained austenite, so that a

higher strength can be achieved in comparison with conventional TRIP steels (15).

1.4.2 Material testing and challenges

Testing of material makes it possible to capture all the relevant effects around the test. Thus,

the results are both more comprehensive and more reliable than that of a completely analytical
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approach. While the numerical or multi-scale procedure for collecting material data leaves us
with a decision on which effects to include, provided that it is possible to model. Furthermore,
the analyses of defects and anomalies can be conducted during an experiment. Hence, a more
reliable material model can be constructed. Exploiting an extended test program, the process
window (variability of a certain parameter) can be fully studied, especially when a parameter’s

extreme values should be known to obtain a safety critical behaviour (6).

A challenge that comes with material testing is that a vast number of experiments are
required to be done in order to attain a full material response surface regarding all the

independent variables (6).

As another predicament, standardization of a test method must be considered when data
from a variety of test programs are required to be utilized. Standardization can guarantee that
the same approaches are employed in different test laboratories across the world, and so the
test results can be aggregated, for example, into a specific material response model. However,
a key obstacle in this context needed to be dealt with is that there are still some advanced

material properties used in forming process simulations that are not yet standardised (6).

Other challenges of testing are the amount of required data and the possibility to reuse data
across different projects. This field of work is still developing where publishing standards for
testing and introducing methods to share data will improve the availability of forming process

simulation (6).

All in all, undoubtedly, testing materials is the most important means to achieve material
data needed to simulate forming processes. It is also considered as a complementary approach
to construct the data from basic physics models, like in multi-scale simulation. The most
comprehensive approach to obtain material data can be outlined by a combination made of:
acquiring knowledge regarding the physics of the problem, and data derived from material

testing so as to find the unknown variables and effects within the process (6).

1.5 CHALLENGES IN MATERIAL MODEL SELECTION FOR FORMING

SIMULATION

The basic approximation to calibrate material parameters in order to implement in forming
simulation might be to choose a constant yield curve extrapolation method (e.g. Swift) in
combination with a yield locus that can be obtained particularly through uniaxial tensile testing

in parallel, diagonal and transverse to the rolling direction (e.g. Hill "48). The advantages
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attained via this approach will be multifold if it is able to describe the material behaviour

sufficiently well (3) (16),

e The procedure can be readily applied to new materials with few data,

e Simple variation of parameters in the assessment of process robustness is allowed
by clear correlations of yield locus shape or hardening,

e Only a couple of special tests are required in order to obtain certain modelling

outlines for material groups.

However, supplementary experiments must be conducted in case the material require
specific extrapolation methods or yield models (3). Even by executing biaxial bulge test, it is
still quite problematic to obtain the specific shape of the whole yield locus by running further
experiments. Test results have demonstrated that, not only the orientation of the additional
experiment to the rolling direction, but also the number of additional experiments can affect
the identification of the yield locus. However, with regard to this experimental approach, it
should be observed that if it is possible to find optimally the yield model parameters for all the
possible practical forming conditions (3). The studies have shown that, since standard
experiments are not capable of optimally calibrating complex yield loci, an complementary
process, such as, optimization approach seems to be quite essential, which also brings the

possibility of limiting the number of additional experiments (3) (17) (16).

1.6 GOALS AND APPROACHES

1.6.1 Scopes

Having the big picture of ‘the importance of material characterization’ in mind, some
aspects of this subject will be introduced and dealt with accordingly in this thesis work.
Focusing on the plastic part of deformation, post-necking behaviour identification is one of the
most important problems that costs automotive part manufacturers a considerable amount of
time and money. Although there are some classes of methods to obtain the material’s
deformation behaviour in a macroscopic scale and in large values of strain, up to now no one
can safely say that a certain method is the most suitable approach to achieve this goal for any
kind of forming process simulation. Generally, this is the point where a single method and
merely a forward approach are not able to produce a remedy for this complicated condition. In

the other words, for high fidelity simulation models, the material model parameters should
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come out of a ‘cycle of continuous validation and adjustment’ using both experimental tests

and FEA until the difference between the last obtained results reaches a negligible amount.

1.6.2 Methodology

In order to attain the goals that are primarily set for this thesis work, a preliminary study on
the post-necking behaviour prediction of some aluminium alloys and AHSSs will be done in
the following chapters. The optimum identification of the behaviour, even for a certain material
requires a considerable endeavour, the present work, nevertheless, can be regarded as a brief
but still fundamental approach before going into the details of the problem; which is not only
necessary for the sake of the comparison, but it also helps to acquire a general understanding
of the nature of the subject. Different classes of identification are discussed in the beginning of
chapter two, providing an outline of the main approaches to tackle this problem. This chapter
is then followed by an example of the second class of approximation, namely Siebel and
Schwaigerer’s Model. Chapter three looks at the first class of post-necking identification,
extrapolation method (EM). On the basis of this method, several hardening laws are firstly
introduced and then applied to real test data of three aluminium alloys. It will be shown in
chapter four that with the aid of biaxial test results of one aluminium alloy and a dual phase
steel, the corresponding uniaxial tests can be extended beyond their limits; wherein, hydraulic
bulge test is introduced in detail, and different methods are introduced as well to both collect
and analyse the data. Going through chapter five, Digital Image Correlation technique is used
to observe the strain field on the surface of two types of AHSS’s test specimen. Although the
basics of DIC technique does not lie in the outline of this work, a rather deep study will be
conducted on the results of image processing. As it was discussed, FEA can be exploited both
to calibrate the material model parameters and validate the outcome of the post-necking

identification prior to its implementation in the next metal forming simulation.
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CHAPTER TWO: POST-NECKING FLOW CURVE

IDENTIFICATION THROUGH TENSILE TESTING
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2.1 INTRODUCTION: FOUR CLASSES OF METHODS TO IDENTIFY

POST-NECKING HARDENING BEHAVIOUR

ﬁ s long as standard equipment and common analytical formulas are employed to evaluate

load-elongation data, the hardening behaviour can only be identified up to the point of

maximum uniform elongation (i.e. the point of diffuse necking).

With regard to the problem of extended flow curve identification of sheet metal through a

tensile test numerous approaches have been proposed in the past. However, with the advent of

Digital Image Correlation (DIC) the strain field inside the diffuse neck can be assessed in a

considerable detail. Furthermore, the material behaviour hidden in the post-necking regime of

a tensile specimen can be identified by means of the previously obtained strain fields. Based

on this, four classes of methods to identify post-necking hardening behaviour of sheet metal

through tensile testing can be considered (18); the methods are based on,

e Average values across the neck,

e Bridgeman correction and modified Siebel/Schwaigerer correction,

e Complete solution of the general problem,

e Special case of the Virtual Fields Method (VFM).

Percy Williams Bridgman
(1882-1961)

Received the 1946 Nobel Prize
in Physics for his work on the
physics of high pressures

Based on the pioneering work of Bridgman (19) three levels
of approximation with respect to the problem of diffuse

necking in a tensile specimen can be highlighted.

The first class of methods takes necking into account by
using average values across the diffuse neck and assuming a

uniaxial stress state.

The second and more sophisticated class of methods,

concerned with the distribution of stress and strain across the

diffuse neck.

The third class of methods employs the complete solution
of the general problem and considers the material state and

the shape of the whole tensile specimen during diffuse necking

(18).
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An overview of these methods and a classification with regard to their level of
approximation are presented in the following.

2.2 FIRST LEVEL OF APPROXIMATION

With respect to the problem of diffuse necking, the first level of approximation takes diffuse
necking into account by averaging strain and stress over the minimum cross section. This
means that the stress state is assumed to remain uniaxial in the post-necking regime. Moreover,
the true stress is usually approximated by dividing the total tensile load on the specimen by the
current minimum cross section. The true strain corresponding with a certain true stress level is

estimated by,

Amin minimum cross section

Amin)

Etrue = In A,

Ay initial cross section

Another common method in this class is to extrapolate the pre-necking hardening behaviour
to high plastic strains using a phenomenological hardening law. The extrapolation method
(EM) is considered here as a first approximation which may or may not be valid depending on
the a priori chosen hardening law. This method will be applied to tensile test data in the next

chapter and discussed extensively (18).

2.3 SECOND LEVEL OF APPROXIMATION WITH RESPECT TO THE

PROBLEM OF DIFFUSE NECKING

The second level of approximation tries to take the stress and strain distribution across the
diffuse neck into account. The mathematical analysis is based on describing equilibrium state
across the diffuse neck and provides a correction to the average stress 0,4, in order to deal
with the introduction of transverse stresses (19). Bridgman derived an analytical solution for

flat specimen as follows,
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Oavg

1+ 312 log [1 LA ((%) 1+ %))1/2] —1

Ocq =

Geometrical parameters in the diffuse neck (w and R) can be obtained by pausing the
experiment or by measuring these parameters continuously during the test. Similar to

Bridgman, Siebel and Schwaigerer also proposed a correction factor for flat specimen (20),

ks =0 i
T 4R+ w

The disadvantage of the second class, however, is that solely the conditions at the cross
section of the diffuse neck would be observed; while the shape of the neck and the conditions
in the remaining plastically deforming areas are ignored. Therefore, in order to take the strain
heterogeneity into account, a more detailed numerical analysis was performed by Ghosh (21)
and Ayres et al. (22). Later on, numerical simulations to provide an analytical calculation of
the true cross section of a flat specimen was also introduced by Zhang et al. (23) (24). Siebel

and Schwaigerer approach on the extending tensile test data will be discussed in detail in

section 2.6.

2.4 THIRD LEVEL OF APPROXIMATION WITH RESPECT TO THE

PROBLEM OF DIFFUSE NECKING

The complete solution of the general problem constitutes the third class of methods in which
both the material state and the shape of the whole tensile specimen during diffuse necking are
considered (18). Researchers have found that, in order to study the post-necking hardening

behaviour, a Finite Element-based (FE-based) inverse strategy (25) can also be employed.

Koc et al. (26) suggested a FE-based inverse procedure based on the measured tensile forces
during the experiment, so that, a special combined experimental/numerical technique has been

developed. The technique relied on a comparison between the real material response, and the
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response obtained from a numerical simulation of the same test. By the proper tuning of
material constants within the material strain hardening law, the numerical response can be
drawn close to the measured one. For this purpose a special numerical approach, based on

mathematical optimization methods was employed.

Kajberg and his co-workers (27) exploited experimental full-field data to feed the inverse
procedure. Due to the use of full-field data analysis which also assessed the necking shape, the

identified behaviour was expected to be more accurate.

Another possibility to extend the range of application for a material model was proposed by
Ghouati and Gelin (28) (29), where the FEM was accompanied by an optimisation algorithm.
The general idea in the papers was to use the forming operation of the material to the parameter
estimation process. In order to match (using the least-square method) the evaluated response
from the FEA to the measured response from the forming process, the adjustments of the
material parameters in the simulation were then made. However, this approach is not practical

when no physical large-scale or production forming process present for drawing a comparison

(18).
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2.5 VIRTUAL FIELDS METHOD

Another complete solution for identifying constitutive behaviour of materials is the Virtual
Fields Method (VFM) (30). VFM has also been aimed at avoiding the shortcomings of the FE-
based inverse method; for instance, from a practical point of view, the coupling between the
experimentally measured quantities and the numerically computed response can be a
significant challenge. Moreover, the iterative FE simulations to predict the plastic instability
are always a very time-consuming task (31). VFM is based on the principle of virtual work
which is written in terms of a number of particular virtual fields. The basic equation for quasi-

static non-linear VFM can be written as (18),

0 : actual stress tensor

_ f 5 e dV + f T 75 dS =0 T_ ac'tual trc?ction vector ;
v B u*: virtual displacement field
€* : virtual strain field, derived from u*

Further and even more importantly though, & and &* are not linked via constitutive
equations. The virtual displacement field, however, can be any function but a kinematically
admissible one (KA)'!; hence, based on the main rules of the VFM, it is permissible to exploit

the actual displacement fields in the previous equation as they are defined as KA.

Based on the principle of virtual work, the work performed by the external forces equals the

internal work, the following equation holds (18)

ctual stress tensor

Wine = 5:8=dV=f'I_".ﬁdS=W
it .’;, s ext ctual displacement field

oa

T actual traction vector
Ua

H

actual strain field

Choosing this particular virtual field (the actual field) results in obtaining an energy balance
between internal and external work like the above equation. Furthermore, in this particular case

o and € are associated by the constitutive material behaviour (18). Thus, through the

10 A virtual displacement field is defined as the difference between two neighbouring kinematically admissible
displacement fields. In other words, it is a vector field u which is such that, if u is a kinematically admissible
displacement field, then so is u + du. It is furthermore assumed that the virtual displacement field is infinitesimal,

that is, |6ui,j| & 1. Corresponding to a virtual displacement field Su we may define the virtual strain field ¢ by

1
6€ij = E((Su]"i + 8ui,j).

' A displacement field is called kinematically admissible if it is mathematically well-behaved (for example,
continuous and piecewise continuously differentiable) and obeys the external and internal constraints, if any.
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constitutive equations we can write the stress field in terms of the strain field € as, 6 = f (£€,q).
The finite set of unknown parameters q (elasto-plastic material constants) can then be identified

by the minimization of a cost function as follows,
l 2 l
= - — 2
c@ =Y |- [ 1Ea:gar+ [T as| =) -y + Wer)]

=1t v S j=1

In which, € is the actual deformation field, f(€, q) is the stress associated through the yield

surface of the material and / is the number of trials.

Pannier and his co-workers introduced the first application of VFM in metal plasticity by
employing actual experimental data (32), in order to find the reference parameters of a Voce

law. This discussion is introduced in Appendix A of this thesis work.

Exploiting 3D displacement fields, Rossi et al extracted the constitutive parameters of a
plasticity model at large plastic strains by VFM-based procedure (33). Coppieters and his
colleagues investigated the possibility of employing actual fields instead of virtual fields to

study the post-necking hardening behaviour of metallic sheets (34).

2.6 EXTENDING TENSILE TEST DATA USING SIEBEL AND

SCHWAIGERER’S MODEL

Employing Siebel and Schwaigerer’s model, a method to evaluate the strain in the necking
zone of a tensile specimen was proposed by Hoffmann and Vogl (35), in which benefiting

from optical systems the possibility to extend the flow stress beyond necking can be facilitated.

2.6.1 Methodology

As it will be seen in chapter six, a median stress-strain curve plus anisotropy values of three
rolling directions (0°, 45°, and 90° obtained by tensile tests) are normally implemented in the
numerical simulations. However, the amount of information that one can collect from a uniaxial

tensile test through measurement systems is always of paramount importance.

Owing to the necking of the specimen, at the conventional tensile test, only the data up to a
small amount of equivalent strain can be obtained from the conventional measurement
equipment. In this way, as it was mentioned, numerical extrapolation based on pre-necking
data points always comes with inevitably erroneous results in the computer simulation of the

forming process (35). Likewise, as far as normal anisotropy is concerned, the evaluation must
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be stopped at the onset of diffuse necking (when the stress reaches the material’s UTS). Despite
the fact that, normal anisotropy is dependent on the strain level (36), an average value is often
used to define the anisotropy of material. Therefore, the material properties commonly
employed in the FEA of forming processes are not accurate enough, especially during large

deformations.

Hoffmann and Vogl (35) then verified their results by conducting the stretch forming
process experiment (Nakazima test) both experimentally and numerically. The simulation
using improved material properties not only showed a better strain distribution than the results
using conventional material properties in high strain areas, but also had a good agreement with
experimental results. Furthermore, forming simulation could be extended, particularly up to
the large values of strain before failure. It is worth noting that, the implementation of variable
anisotropy in numerical simulation tools can improve the accuracy of the material failure

prediction in the forming process (35).
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Figure 4 Normal anisotropy variation during deformation, 0° to RD, cold-rolled DC04 steel (35)
Although in the past the measurement of anisotropy for large values of strain was a
problematic task (and that is why the normal anisotropy has always been considered as a
constant), with the advent of optical measurement systems the anisotropy variations with

current strain level can be captured with less difficulties.

2.6.2 Measurement setup

An optical system, entailing two CCD cameras, take pictures of the tensile specimen
simultaneously in each time interval that previously introduced to the system. Benefiting from

two back-to-back cameras has demonstrated to be quite important in order to eliminate out-of-
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plane effects (32). The tensile specimen is randomly gridded by a colour spray, so that the
shape and the position of the spackles can be readily recognized by the computer. Each picture
is then divided into many small facets'?, so that the local strain tensor of each facet can be
evaluated by the system with a very high accuracy. Employing the volume constancy criterion
for plastic deformation, the component of strain in the thickness direction can be calculated in
the next phase. In the meantime, the optical measurement system, then, compares the pictures
of the two cameras in each corresponding time. Besides, in order to have synchronous data
collection, the force signal of the tensile test machine is provided to the optical measurement

system (35).

2.6.3 Stress-strain curve evaluation

The longitudinal stress g; of each facet is calculated by the following equation, where the
axial force is read from the tensile test equipment and the local strain is derived from image
processing software,

F: tensile force

F F F A: area of the specimen cross section
o = 1 = w, Wy : current/initial width of the specimen

WS Woetw spets s, So . current/initial thickness of the specimen
Ew, Es: transvers/thickness strain of a facet
Considering the fact that the facets located in the necked zone always possesses maximum
strain in each time step, in order to reduce the computation time, only the central part of the
test specimen (where necking occurs later on) can be considered in drawing the stress-strain-
curve (35). The stress value derived from the last equation can be considered as the flow stress
only before the onset of necking; when necking takes place in the specimen, however, the
deformation is no longer uniform along the gage length and the state of stress does not remain

uniaxial.

The study of the true stress of a ‘constricted cylindrical specimen’ was conducted by Siebel
and Schwaigerer in 1948, where they closely observed the geometry of the necking area (20).
It was shown in the work of Banabic and his colleagues that for a flat specimen the flow stress

can then be modified like the following equation (37).

12 Very small surface marked by the coloured spray
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B 4R
4R+ w
k¢ : modified flow stress

kg

0y longitudinal stress
R: radius of necking

w: smallest width in the area of necking

The flow stress for materials with significant neck (such as, cold-rolled steel) can be
calculated via this relation during the necking of the tensile specimen by monitoring the radius
and the width of the specimen at neck for each image at given time. However, as it will be
shown in chapter five, this method is not applicable to a wide range of materials, especially
those in which necking geometry variation is not quite significant and symmetric during the
deformation, so that the measurement of the radius of curvature at neck is neither practical nor

acceptable.
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2.7 OPTIMIZATION ALGORITHMS FOR MATERIAL MODELLING

The process of material modelling has evolved gradually; step by step more parameters have

entered the modelling, and hence the complexity has increased at the same rate.
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Figure 5 material modelling process evolution

‘New Approach’ in material calibration is mostly concerned with the fact that the
descriptions of strain hardening and yield criterion are completely interrelated, although they
were often investigated separately in the past. In order to obtain the material model parameters
of more complex yield criteria, researchers admit that non-standardized test methods are
necessary to be set. Thus, after conducting the classic tensile test and hydraulic bulge test, final
identification of yield locus shape and parameters would be attained by specially designed
validation experiments (inhomogeneous field problems) which are then simulated by FEM (3).
The process principle entails both experiment and simulation, making it possible to assess
models relatively quickly and effectively with regard to modelling real material behaviour

under forming conditions (3).

In the new approach, an inverse method in combination with the consideration of strain rate
sensitivity is exploited to obtain the yield locus in an optimization process. Considering the
available resources in the lab, the amount of additional experiments can be reduced

significantly by using this optimization approach.
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CHAPTER THREE: HARDENING LAWS
INVESTIGATION ON NOVELIS AA5000, CONSTELIUM
AAS5000 AND CONSTELIUM AA6000
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3.1 INTRODUCTION

r I Yhe tensile test data of three aluminium alloys produced by two different manufacturers
are investigated in this chapter, so as to study the post-necking material behaviour
using various strain hardening laws. As a first level of approximation, the following procedures

is normally adopted to find the material constants in different hardening laws,

According to the adopted hardening law and theoretical constraints, a number of theoretical
relations among different material constants can be derived. Moreover, using the least squares
method, a hardening law will be fitted to pre-necking tensile test data points, by minimising

the sum of squares of the residuals at every single points.
Two constraints are considered,

e First condition, Considere criterion: is one simple mathematical definition for

diffuse necking point, in which, the first derivative of stress by strain equals to the
value of stress at that point: d0'1/ =o0
p . d£1 1-

e Second condition, is obtained from the yield point information, where the plastic

strain is zero.

For a certain hardening law, upper and lower bounds are imposed to each material constant
in order to reduce the number of attempts during regression analysis. Then, by minimising the
sum of squares of the errors, it is possible to find the value of each material constant with which

the amount of error (RMSE) is the lowest with respect to the pre-necking experimental data.

In order to obtain flow stress curve out of the raw tensile test data, the following steps should

be taken,

1. Raw data from tensile test: “Elongation [%]” and “Engineering Stress [MPa]”, where

Elongation is defined as, e = Al/ I, ™ 100.

2. Calculating true strain (€ %) from elongation (e %), ¢ = Ln(1 + ﬁ) x 100.

3. True stress derivation, Oiyye = Opng(1+ ﬁ). Furthermore, the values above the

maximum stress (the onset of necking) will be ignored, due to non-uniform distribution

of strain along the gage length.
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4. Flow curve, after obtaining engineering plastic strain by subtracting elastic part of the
strain from the total strain value, the first point of the flow curve will be chosen by 0.2%

plastic strain offset method; corresponding to engineering plastic strain of 0.002.

In this way, true stress vs true plastic strain curve, i.e. the plastic behaviour of the material

along a certain roll angle in tensile test, will be drawn.

3.2 ANINTRODUCTION INTO COMMON STRAIN HARDENING LAWS

As the plastic deformation develops in the material, the initial yield surface evolves and can
be described by a certain hardening law. So that, by parametrizing the material’s post-necking
hardening behaviour, the next step will then be to optimize a finite set of unknown parameters
using pre-necking available data points (31). In other words, introducing strain hardening laws
is aimed at mathematically presenting the true stress-true plastic strain relationship for a certain
material. Furthermore, the resulted equation can then be exploited to draw the post-necking
behaviour where no information from tensile test is available. A strain hardening law is
sometimes a phenomenological law whose parameters possess no physical meaning, and
clearly there is no guarantee that the extrapolation will be valid beyond the point of uniform

elongation (38).

A hardening law, comes in the following general form,

p is a finite set of unknown hardening parameters,

— pl
G
€eq 1s the plastic equivalent strain.

The function f can be either phenomenological (i.e. its parameters have nothing to do with
the micromechanical aspects of the material itself) or can be described by a physics-based
model tightly connected to micromechanical behaviour of the material (dislocation interaction

processes which leads to strain hardening in metallic materials) (38).
Strain hardening representations are often can be grouped as follows,
e Saturated Law

The description of the flow curves of FCC metals, such as aluminium and copper, can be
improved by imposing saturated stress at large strain values through saturated laws such

as, Voce (39) and Hockett and Sherby (40).

e Power Law
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An unbounded stress at high strain levels is produced by this law; in this group, hardening
laws such as, Ghosh (41) and Swift (42) normally lead to acceptable results for the BCC

structure.

Generally, within the large values of strain, the saturated law underestimates the flow stress,
while the power law may overestimate the flow stress. A number of alternative approaches

have been suggested, which entails the use of a linear or nonlinear combination of both laws.

The rest of this chapter is dedicated to conduct the nonlinear regression analysis by
employing either Excel solver or different algorithms in MATLAB (e.g. Isqnonlin, nlinfit). The
goodness of the fits will then be compared via RMSE calculation for a number of commonly-

used strain hardening laws.
3.2.1 Hollomon hardening law
Shedding light on Hollomon’s hardening law constants,

Ohollomon — K(gp)m

An acceptable fitting will be derived only by applying one constraint to the solver as there
are only two material constants for this hardening law. This constraint results from the

Consideére criterion (diffuse necking), so that

m = &p dif fuse-
Thus, only one material constant (K) should be solved to obtain the least amount of error.

The following diagram shows that Hollomon’s hardening law comes with a very good fitting

when we are working on aluminium, which agrees with the literature mentioned before (43).
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Figure 6 Hollomon hardening law fitting to an aluminium alloy and the position of corresponding diffuse necking
3.2.2 Swift hardening law

The phenomenological Swift power law can describe a monotonic increasing strain

hardening behaviour, in which there are three material constants,
Oswift = C(g0 + &))"

Where, C is the stress amplitude, » is the hardening exponent and ¢ is the strain shift
parameter. In many practical problems the magnitude of plastic strain is much larger than the
parameter &y, leading to a simpler power hardening law (44). Again, as these parameters have
no physical basis, there is no guarantee that the extrapolation is valid for strain values larger

than maximum uniform strain.

_. test result

swift equation

Splastic

Figure 7 The experimentally measured stress-strain curve and the fit by swift law (44)
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For a wide range of metals the exponent » has the range of n = 0.1 — 0.3, while the amplitude

can vary a lot, regarding the grade of steel, for instance (44).

First condition, diffuse necking (Considére criterion),

d
O-l/dgl = 0y.

After applying this criterion to our test data points, we are able to find the true plastic strain

value in which diffuse necking is going to start, named &, 4; fyse-

Applying the Considére criterion to swift law, one can obtain the following relationship

between two of the unknown material constants, n and &,

n = & + Epdiffuse

Second condition, yielding, £, = 0 and 0 = 0,,; at plastic strain equal to zero (&, = 0),

stress is equal to yield stress gy,; thus, we will have,

While 7 is already obtained by the first condition, another material constants, C will be

derived as,

C = Iy

- & (e0+&p,dif fuse)

This constraint is quite important as it affects the behaviour of the material at the boundary
point between elastic and plastic region. In the other words, if this is not considered in our
study, the last data point of elastic region will not coincide on the first data point of plastic

region, leading to an unacceptable result in FEA.

With regard to the Excel solver parameters, two constraints are affecting the solver. The
first one is related to the material constant, C, evaluated at yield point; while, the second
constraint is describing the hardening exponent, n, benefiting from Considere criterion. Then,

using least square method, the solver is able to find the proper value for pre-strain &,.

As an example, applying Swift hardening law to one of the alloys, the following result is

obtained,
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Figure 8 Swift hardening law fitting to a flow curve and the position of diffuse necking

As can be seen from the above diagram, for this type of material behaviour, due to pre-strain
term, swift hardening law does not show a good fitting to the experimental data for small

strains.

By studying the behaviour of various hardening laws, studies have found that the Swift
hardening law can be fitted best to the experimental data for austenitic stainless steels for IN
718 and for SS 304, while for aluminium alloys, the Hollomon hardening law (040110mon =

K(&,)™) was demonstrated to result in the best fit (43).

3.2.3 Voce hardening law (classical Voce saturation law)

Unlike Swift’s hardening law, Voce’s hardening law was derived from micro-mechanical
considerations. Voce’s law allows to describe strain hardening saturation behaviour which is

naturally present in some material structures (45).
The law is defined by the following equation, with three material constants,

Oyoce = Ko +Q (1 — exp (_ﬁep))

First condition, diffuse necking (Considére criterion),

doy _
/dgl = 01.
Where, this condition leads to obtain a relation between Q and f at diffuse necking strain,

Oy

B (,8 + 1) exp(_ﬁgp,diffuse) -1

Q
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Second condition, yielding, £, = 0 and 0 = gy,

Considering the solver parameters adopted for Voce material constants, the objective of the
solver is set to minimise the sum of square of errors up to diffuse necking point on the Voce
hardening law. However, as it can be seen from the next diagram, since diffuse necking
occurred beyond the available experimental data point, it was not possible to calculate the sum
up to diffuse necking as no experimental data was available for the respective Voce fitting
curve. Thus, it can be said that Voce hardening law will not result in a good approximation of
diffuse necking for this type of material. In order to find the correct location of diffuse necking
on the fitted curve, it is vitally important to extrapolate the curve with the same strain increment

as before, otherwise a wrong evaluation of diffuse necking may result.

As far as material constants are concerned, K|, is set to be equal to yield stress, while as it
was mentioned, Considére criterion will provide us a relation between Q and . The least

amount of error was evaluated by changing the values of Q and .

Voce comes with a good approximation of the diffuse necking point, quite close to the

experimental diffuse necking.
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Figure 9 Voce hardening law fitting to a flow curve and the position of diffuse necking

It can be seen that both Voce and Swift law provide acceptable fits for small strains, but
behave quite differently in the extrapolated area. Assuming that the true strain hardening curve

lies somewhere in between these lower (Voce) and upper (Swift) bounds, a hardening model
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can be introduced so that it is able to capture both extreme cases as well as intermediate

behaviour of strain hardening (46).

3.2.4 Swift-Voce hardening law

With the assumption that the real post-hardening behaviour is somewhere between saturated
Voce and Swift hardening law, the linear combination of them can be employed with a proper
coefficient to describe the behaviour of material beyond diffuse necking using following

equation,

Oswift—voce = (1 = Q) Oypce + A Ogife
The method followed by the manufacturing team was to work on material constants of Swift
and Voce laws separately and use the above relation to superimpose the influence of each
hardening law. Moreover, the number of data points is prescribed to reduce to 50 so as to import

the flow curve into the FE software.

For small values of strain, below diffuse necking, different values of a will affect the flow
curve only slightly (figure 7). While for larger strains, with a=0, swift-Voce hardening law
shows a saturation stress as Voce plays a dominant role; increasing the weight, hardening will

be more evident and varies quite differently (figure 8).
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Figure 10 Swift-Voce hardening law for small values of strain
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Figure 11 Swift-Voce hardening law for large values of strain
In order to decide about the proper value of a for Swift-Voce hardening law, we need more
investigation and evidence, such as complementary bulge test result; herein, based on the

previous test results, o« = 0.7 is prescribed by the research group for aluminium.

3.2.5 Hollomon-Voce hardening law

With the assumption that the real post-hardening behaviour is somewhere between saturated
Voce and Hollomon hardening law, the combination of their effects can be used with a proper
coefficient to describe the behaviour of material beyond diffuse necking by the following

equation,

Ohollomon—Voce — X Ofoliomon + (1 - O() Oyoce

Considering small values of strain (smaller than diffuse necking), only small deviations are
observed when adjusting the value of a, and a good fitting is resulted. Figures below illustrate

the fitting for both small and large value of strain,
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Figure 12 Hollomon-Voce hardening law for small values of strain
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Figure 13 Hollomon-Voce hardening law for large values of strain

In order to study the goodness of fits, a comparison between Hollomon-Voce and Swift-

Voce hardening laws are made in the following.

For small strains, and a = 0.75,
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Figure 14 Hollomon-Voce hardening vs Swift-Voce hardening law for small strains

For large strains, and a = 0.75,
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Figure 15 Hollomon-Voce hardening vs Swift-Voce hardening law for large strains
The goodness of fits can be studied by comparing the Root Mean Square Error of Hollomon-
Voce law with that of Swift-Voce for « = 0.75. Looking at the results reported in the following

table, Hollomon-Voce hardening law shows a much better performance,

Swift-Voce Hollomon-Voce
RMSE 4.993 0.242
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Table 5 goodness of fits: Swift-Voce and Hollomon-Voce laws

3.2.6 Hockett-Sherby hardening law

This law, defined by the following equation, normally leads to a good fit for aluminium

alloys flow curve,
Kf((P) = Osat — (Osat — O-O.Z)e_m(pc
Where it can also be written like the following relation,
Kr(p) = A—Be ™",

There are four material-related constants; oy, is the saturation stress, gy , is the initial yield

stress, m 1s the hardening coefficient and c is the material’s hardening exponent.

First condition, diffuse necking (Considere criterion),

dK
f _
/d(p_Kf'

Where, this condition leads to obtain a relation among the material constants at diffuse

necking strain,

A=B exp(_m(,péiffuse) [1 + mC(pfli_f]que]

Having this equation, rather than four constants, the solver only needs to work on three
constants to find the least amount of error. However, firstly, plastic strain at diffuse necking
must be found through initial settings of constants. Although reducing the number of constants
normally leads to hindering the fitting problem, first and second condition must be applied to

obtain a realistic fit.

Since the stress-strain curves of some aluminium alloys seem to approach an asymptote

indicating a saturation of strain hardening, Hockett-Sherby is able to track this behaviour

benefiting from the e ~™%* term in its definition.

Second condition, condition at yield point, does not lead to an acceptable relation for the

Hockett-Sherby law.

In conclusion, for small strains the following result is obtained for an aluminium alloy,
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Figure 16 Hockett-Sherby hardening law for small strains

And for large values of strain,
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Figure 17 Hockett-Sherby hardening law for large strains

Moreover, it is clear that Hockett-Sherby gives a very good approximation of diffuse

necking initiation for aluminium.
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3.2.7 Swift/Hockett-Sherby hardening law

Imposing Swift hardening law to Hockett-Sherby will result in a reduction in Hockett-
Sherby’s stress saturation with large values of strain. The law is defined as the following
equation,

Oswift/Hockett—Sherby — 1-a Oswift T Q Ogockett—Sherby

The following diagram shows the behaviour of this law with respect to different weights (@)

for Swift and Hockett-Sherby terms.

It can be seen for small plastic strains, (between 2% and 22%, i.e. in the range of valid
experimental data below diffuse necking), increasing the share of Hockett-Sherby will result
in a better fitting to the experimental data. This is another evidence that swift law cannot be a

reliable choice for aluminium alloys.
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Figure 18 Swifi/Hockett-Sherby hardening law for small strains
Looking at large values of strain in (figure 16), changing the weight will affect the fitting
considerably. Thus, the decision about the best value for weight («), that satisfies both small

and large values of strain, depends on complementary tests such as bulge test which provides

us with data for larger values of strain.
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Figure 19 Swift/Hockett-Sherby hardening law for large strains

However, considering Swift/Hockett-Sherby law, the observation of the research group advises
to factor in o = 0.75 for aluminium and o = 0.25 for steel. Applying this instruction, the
Swift/Hockett-Sherby flow curve will be derived as the following figure,
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Figure 20 Swift/Hockett-Sherby hardening law, a = 0.75 for aluminium
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3.2.8 k-exponent function

The new exponential function (47) can be considered in this study as a phenomenological
strain hardening law, in order to find a fitting function by means of a nonlinear regression
analysis of pre-necking data points according to the following relation; where at low ¢ or when
the deformation parameter k approaches the value zero the new exponential function behaves

like the ordinary exponential function holding (47),

exp,(t) = exp(t) ,t > 0

exp,(t) = (V1 + k2t2 + kt)V/*

exp,(t) = exp(t) ,k = 0

By inserting the expression of the new exponential function defined in the above equation

into Voce’s hardening law, it obtains the following explicit formula defining the new model

(47),

y=ko+Q [1 - (w/l + K?2B%x? — K[)’x)%l

This formula depends on four fitting parameters (kq, Q, 5, k). Due to its four parameters
which makes the process of finding them quite difficult, the applicability of this function as a
strain hardening law in combination with a yield criterion is still unknown to the writer.
However, its ability as a fitting function to the pre-necking data will be carefully examined in

the following section.

3.3 HARDENING LAWS INVESTIGATION ON NOVELIS AND

CONSTELIUM DATA SHEETS

3.3.1 Novelis AAS000 tensile test results

Looking at Novelis AA5000 data sheet, firstly, Hockett-Sherby hardening law is used to
construct the flow curve up to 100% plastic strain, then a comparison will be made considering
Swift-Voce hardening law. Furthermore, in order to import the results into the AutoForm
software, 50 data points will be extracted from Swift/Hockett-Sherby approximated flow curve

only for zero degree roll angle.
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Material Novelis AA5000

E
[MPa] 69573
Average Thickness 0895
[mm]
True Rupture Stress = Ag Aso n-Krupkowski T -average Yield stress Ry
[MPa] [%]  [%] P (4%-Ag) [MPa] [MPa]
0° 346.2 2226 2273 0.34025 0.743 146.8 291.9
45° 349.8 25.96  29.51 0.33884 0.925 143.6 282.1
90° 344.2 24.05 25091 0.34091 0.811 147.5 283.1

Table 6 mechanical properties of Novelis AA5000

In the first column of the table, true rupture stress is given, above which not real test data is
available (i.e. it is the last data point in the given data set provided by the supplier).
Furthermore, true rupture stress is reported at Ag where it can be said that necking will start
above this point. A, is the percentage of total uniform elongation at rupture; together with true
rupture stress the stress-strain values at necking are determined. Above this value of elongation,
necking will take place, where strain distribution is no longer uniform along the gage length.
Ago 1s the fotal engineering elongation at fracture. The following flow curves are obtained,

based on the 0.2% offset method (i.e. 0.2% engineering plastic strain criterion).

Due to their crystallographic structure and the characteristics of the rolling process, sheet
metals generally exhibit a significant anisotropy of mechanical properties. In fact, the rolling
process induces a particular anisotropy characterized by the symmetry of the mechanical
properties with respect to three orthogonal planes. Such a mechanical behaviour is called
orthotropy (48). With respect to the rolling direction, three specimens are normally cut from

the sheet in order to conduct the tests; zero degree direction, 45° direction, 90° direction.
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Figure 21 Tensile specimen cut at the angle 6 (measured from the rolling direction) (48)
3.3.1.1 Zero degree roll angle
At zero degree angle with respect to rolling direction of the sheet, three hardening laws are

observed in the following paragraphs; Hockett-Sherby, Swift/Hockett-Sherby and Swift-Voce

laws. Besides, a comparison is made in the end to study the goodness of the fits.
o Hockett-Sherby hardening law

Considering the theoretical constraints method described in section 4.1, and by applying the
first condition, diffuse necking (Considere criterion), it is just needed to solve the problem with

respect to three material constants, out of total four constants present in the law.
Ki(p) = A—Be™™?

Within the range of small of strains, a good approximation of plastic strain at diffuse necking
(20.298%) is observed, which is quite close to the true plastic uniform (mentioned in data sheet,
19.604%). Furthermore, Hockett-Sherby RMSE within the range of experimental data is
approximated to be, 2.627.
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Figure 22 Hockett-Sherby hardening law, Novelis AA5000, zero degree roll angle, small strains

And for larger values of strain, Hockett-Sherby hardening law results in the following

diagram,
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Figure 23 Hockett-Sherby hardening law applied to Novelis AA5000 for large strains

As no more than 50 data points must be imported into FEA software, based on the derived

material constants, we redraw the flow curve, this time with 50 data points,
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Figure 24 50 data points imported into FEA from Hockett-Sherby law for Novelis AA5000

No. s Pl.astlc HS stress No. e Pl.astlc HS stress
Strain Strain
1 0.000 120.3219 26 0.510 394.0887
2 0.020 183.8139 27 0.531 394.8627
3 0.041 223.2251 28 0.551 395.5421
4 0.061 253.0036 29 0.571 396.139
5 0.082 276.5299 30 0.592 396.6639
6 0.102 295.5558 31 0.612 397.1261
7 0.122 311.1746 32 0.633 397.5332
8 0.143 324.1339 33 0.653 397.8923
9 0.163 334.9742 34 0.673 398.2091
10 0.184 344.1009 35 0.694 398.489
11 0.204 351.8257 36 0.714 398.7364
12 0.224 358.3933 37 0.735 398.9551
13 0.245 363.9985 38 0.755 399.1488
14 0.265 368.7984 39 0.776 399.3203
15 0.286 372.9209 40 0.796 399.4723
16 0.306 376.4709 41 0.816 399.6071
17 0.327 379.5353 42 0.837 399.7267
18 0.347 382.1862 43 0.857 399.8329
19 0.367 384.4839 44 0.878 399.9272
20 0.388 386.4792 45 0.898 400.011
21 0.408 388.2146 46 0.918 400.0856
22 0.429 389.7265 47 0.939 400.152
23 0.449 391.0456 48 0.959 400.211
24 0.469 392.1979 49 0.980 400.2636
25 0.490 393.2059 50 1.000 400.3105

Table 7 50 data points imported into FEA from Hockett-Sherby law for Novelis AA5000

o Swift/Hockett-Sherby hardening law

The combined SHS hardening law is evaluated in this section, where a will be considered

as the weight factor of Hockett-Sherby.

Oswift/Hockett—Sherby — 1-a Oswift T O Ogockett—Sherby
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Figures below show the influence of a on the behaviour of the SHS fitting upon

experimental data, both for small and large strains respectively,
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Figure 25 Swift/Hockett-Sherby hardening law applied to Novelis AA5000 for small strains
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Figure 26 Swifi/Hockett-Sherby hardening law applied to Novelis AA5000 for large strains
Following table reports RMSE for different values of o, where for a = 0.75 the best fitting

to the experimental flow curve in the range of small strains can be obtained,

SHS 0.25 SHS 0.5 SHS 0.75
RMSE 4.882 3.800 2.965

Table 8 goodness of fits: Swift/Hockett-Sherby law for Novelis AA5000
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Moreover, as can be observed in the following figure, for a = 0.75, diffuse necking point
(at true plastic strain of 21.59%) approximated by SHS is beyond the experimental uniform

elongation point (at true plastic strain of 19.60%),
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Figure 27 diffuse necking point for Swift/Hockett-Sherby hardening law

50 data points exported to AutoForm software are also shown in the figure below, where the

points are presented in the next table,
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Figure 28 50 data points imported into FEA from Swift/Hockett-Sherby law for Novelis AA5000

No. True Pl.astic SHS 0.75 No. True Pl.astic SHS 0.75 stress
Strain stress Strain
1 0.000 126.96 26 0.510 411.0828
2 0.020 187.8157 27 0.531 412.9993
3 0.041 225.3773 28 0.551 414.8101
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4 0.061 253.7353 29 0.571 416.5264
5 0.082 276.3095 30 0.592 418.158
6 0.102 294.799 31 0.612 419.7134
7 0.122 310.2299 32 0.633 421.2003
8 0.143 323.2878 33 0.653 422.6251
9 0.163 334.4599 34 0.673 423.9936
10 0.184 344.107 35 0.694 4253111
11 0.204 352.5042 36 0.714 426.5819
12 0.224 359.8661 37 0.735 427.8102
13 0.245 366.3626 38 0.755 428.9994
14 0.265 372.1307 39 0.776 430.1527
15 0.286 377.2814 40 0.796 431.2729
16 0.306 381.906 41 0.816 432.3625
17 0.327 386.0798 42 0.837 433.4239
18 0.347 389.8658 43 0.857 434.4589
19 0.367 393.3166 44 0.878 435.4695
20 0.388 396.4765 45 0.898 436.4572
21 0.408 399.383 46 0.918 437.4235
22 0.429 402.068 47 0.939 438.3697
23 0.449 404.5588 48 0.959 439.2971
24 0.469 406.8786 49 0.980 440.2067
25 0.490 409.0475 50 1.000 441.0996

Table 9 50 data points imported into FEA from Swift/Hockett-Sherby law for Novelis AA5000

e Swift-Voce hardening law
A linear relationship with a = 0.25 is considered in this hardening law, as it is advised for
aluminium alloy,
Oswift—voce = X Ospire T (1 — @) Oyoce
Evaluated error using the Root mean square approach shows a value of 3.678, for a = 0.25,

SV 0.25 SV 0.5 SV 0.75
RMSE 4.265 4.993

Table 10 goodness of fits: Swift-Voce law for Novelis AA5000

The following figures show the Swift-Voce approximated flow curves for small and large

values of strain, respectively,
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Figure 29 Swift-Voce hardening law applied to Novelis AA5000 for small strains
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Figure 30 Swift-Voce hardening law applied to Novelis AA5000 for large strains

o Comparing Swift/Hockett-Sherby with Swift-Voce hardening laws for Novelis
AA5000 zero degree roll angle
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Figure 31 Swift-Voce vs Swift/Hockett-Sherby for large strains-Novelis AA5000

For small values of strain, both Swift/Hockett-Sherby and Swift-Voce show almost the same
trend, although SHS fits better to experimental data according to the RMSE values reported in
the following table,
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Figure 32 Swift-Voce vs Swift/Hockett-Sherby for small strains-Novelis AA45000

SV o0.25 SHS 0.75
RMSE 3.597 2.965

Table 11 goodness of fits: Swift-Voce vs SHS-Novelis AA5000, zero degree roll angle
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e k-exponent function

As it is described before, k-exponent function is used to fit a function into the pre-necking
data points. The nonlinear regression command of MATLAB (Isqnonlin) is used, where the
results are compared with Hockett-Sherby. It is clear from the figure that both provide a very
good fitting to the experimental data points.
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=® = x k-exponent
—- HS

N

o

e
T

Stress [MPa]
N
3
T

240 -

RMSE (k-exponent)=2.6422

200 RMSE (HS)=2.6271 b

L L
0 0.02 0.04 0.06 0.08 01 0.12 0.14 0.16 0.18 0.2
Plastic strain []

180

3.3.1.2 45°roll angle
o Swift/Hockett-Sherby (a=0.75)

Figure below illustrates the approximated flow stress curve for experimental data of a

specimen cut in 45 degree direction with respect to rolling direction,
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Figure 33 Swift/Hockett-Sherby hardening law, Novelis AA5000, 45 degree roll angle

o  Swift-Voce (a=0.25)

After evaluating Swift/Voce (0= 0.25) hardening law’s flow curve for the given tensile test

data, we can also see a comparison between Swift/Hockett-Sherby (a= 0.75) and Swift-Voce

(0= 0.25) in the figure below,
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Figure 34 Swift-Voce (0.25) hardening law, Novelis AA5000, 45 degree roll angle

o  Comparing Swift/Hockett-Sherby (a= 0.75) with Swift-Voce (a= 0.25)
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Figure 35 SV (0.25) vs SHS (0.75) hardening law, Novelis AA5000, 45 degree roll angle
As it can be observed from the figure, SHS hardening law with (a= 0.75) yields a better fitting

in comparison with SV (o= 0.25) hardening law.

SV o.25 SHS 0.75
RMSE 3.804

Table 12 goodness of fit: SV (0.25) vs SHS (0.75) hardening law, Novelis AA5000, 45 degree roll angle

3.3.1.3 90° roll angle

o Swift/Hockett-Sherby
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Figure 36 Swifi/Hockett-Sherby hardening law, Novelis AA5000, 90 degree roll angle
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o Swift-Voce (a=0.25)
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Figure 37 Swift-Voce (0.25) hardening law, Novelis AA5000, 90 degree roll angle
°

Comparing Swift/Hockett-Sherby (a= 0.75) with Swift-Voce (a= 0.25)

Making a comparison between Swift-Voce and Swift/Hockett-Sherby can help us to observe

the trends of approximated flow curves, where the former has a higher tendency to reach a

saturated stress at larger strains,
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0.212239591,
341.5247199

350

348.0222943

Stress [MPa)

300

250

200

150

0.1 0.2 03

0.226735961,

0.4

exp

SHS 0.75

SV0.25
A Diffuse necking SHS 0.75
O Diffuse necking SV 0.25

0.5

Plastic strain [-]

0.6 07 0.8 08

Figure 38 SV (0.25) vs SHS (0.75) hardening law, Novelis AA5000, 90 degree roll angle
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3.3.1.4 Summary table of Novelis AA5000

Material constants and RMS errors of Novelis AA5000 are reported in the next table,

Law A B m c C & n Ko 0 B RMSE

HS 400.707 | 280.385 | 6.561 | 0.833 - - - - - - 2.627

0° SHS 561.562 | 0.011 | 0.300 - - - 2.965
N2 146.874 | 232.412 | 10.036 | 3.597

HS 400.059 | 282.679 | 5.636 | 0.819 - - - - - - 2.872

45° SHS 537.123 | 0.0129 | 0.302 - - - 3.186
SV - 144.269 | 233.112 | 8.727 3.804

HS 406.332 | 294.171 | 5.027 | 0.767 - - - - - - 2.697

90° SHS 533.052 | 0.0128 | 0.295 - - - 3.008
N4 = = = = 147.180 | 227.823 | 8.960 3.636

Table 13 summary: material constants and RMS errors of Novelis AA5000

3.3.2 Constelium AAS000 tensile test results

Looking at the data provided by Constelium, firstly we throw light on the flow curve up to

100% of plastic strain using Hockett-Sherby approach, then a comparison will be made with

Swift-Voce hardening law.

Material
E
[MPa]
Average Thickness
[mm]
True Rupture Stress Ag
[MPa] (%]

0° 354.2 25.32
45° 333.2 23.58
90° 338.1 25.07

Aso
[%]
26.63

26.82

27.46

n-Krupkowski

0.32799

0.34237

0.33393

Constelium AA5000
68087

0.902

r -average Yield stress
(4%-Ag) [MPa]
0.685 131.2
0.754 127.7
0.559 128.8

Table 14 mechanical properties of Constelium AA5000

Run
[MPa]

283.9

277.4

277.8
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3.3.2.1 Zero degree roll angle
e Hockett-Sherby hardening law

Also here benefiting from diffuse necking criterion, and applying the following result to the

solver,

A=B eXp(_m(ptciiffuse) [1+ mC(ptcii_flfuse]

Approximated RMS error is lower here (2.384) in comparison with that of Novelis AA5000
(2.627); moreover, diffuse necking point is estimated quite close to the uniform elongation
point reported in the data sheet. In more details, diffuse necking is evaluated to be at 22.32%
of true plastic strain, where based on Constelium data sheet, it yields to be at 22.08% of true

plastic strain.

Within the range of small of strains, the following figure shows the HS fitting for
Constelium AAS5000 test results,
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349.5847747

exp
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Figure 39 Hockett-Sherby hardening law, Constelium AA5000, zero degree roll angle, small strains
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While for larger values of strain,
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Figure 40 Hockett-Sherby hardening law, Constelium AA5000, zero degree roll angle, large strains

Within the experimental range, Hockett-Sherby estimates the material behaviour quite good,
although complementary tests are needed to see its efficiency for larger values of plastic strain

(above 20%).
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o Swift/Hockett-Sherby hardening law
With regard to the Swift/Hockett-Sherby hardening law,
Oswift/Hockett—Sherby — 1-a Oswift T Q Ogockett—Sherby

Figure below shows the influence of @ on the behaviour of the SHS fitting upon

experimental data, both for small and large strains respectively,
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Figure 41 Swift/Hockett-Sherby hardening law, Constelium AA5000, zero degree roll angle, small strains
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Figure 42 Swifit/Hockett-Sherby hardening law, Constelium AA5000, zero degree roll angle, small strains
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Following table reports RMSE for different values of o, where for a = 0.75 the best fitting

to the experimental flow curve in the range of small strains can be obtained,

SHS 0.25 SHS 0.5 SHS 0.75
RMSE 3.685 2.987 2.478

Figure 43 goodness of fits: Swift/Hockett-Sherby law for Constelium AA5000
Reducing the number of data points is also applied here; in this way, one can import the

data into AutoForm software for further FEA of a body part made of Constelium AAS5000,
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Figure 4450 data points imported into FEA from Swift/Hockett-Sherby law for Constelium AA5000

No. ISR SIS 0.75 stress. | No. [IRRESSRESUEN S11S 0,75 stress
Strain Strain
1 0.000 125.1458 26 0510 410.0292
2 0.020 180.6641 27 0.531 4122929
3 0.041 215.4578 28 0.551 414.4248
4 0.061 2423047 29 0.571 416.4379
5 0.082 264.1593 30 0.592 4183435
6 0.102 282.4521 31 0.612 420.1516
7 0.122 298.038 32 0.633 421.8714
8 0.143 311.4875 33 0.653 4235106
9 0.163 3232078 34 0.673 425.0764
10 0.184 333.5032 35 0.694 426.5753
11 0.204 342.608 36 0.714 428.0128
12 0.224 350.7076 37 0.735 429.3942
13 0.245 357.9509 38 0.755 430.7239
14 0.265 364.4596 39 0.776 432.006
15 0.286 370.334 40 0.796 4332444
16 0.306 375.6581 41 0.816 434.4424
17 0.327 380.5022 2 0.837 435.6029
18 0.347 384.926 43 0.857 436.7287
19 0.367 388.9806 44 0.878 437.8222
20 0.388 392.7094 45 0.898 438.8859
21 0.408 396.15 46 0.918 439.9216
22 0.429 399.3349 47 0.939 440.9312
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23 0.449 402.2922 48 0.959 441.9164
24 0.469 405.0465 49 0.980 442.8788
25 0.490 407.6192 50 1.000 443.8198

Table 15 50 data points imported into FEA from Swift/Hockett-Sherby law for Constelium AA5000

o  Swift-Voce hardening law

A linear relationship with factor a is considered in this hardening law. Although it is advised

to use a = 0.25 for aluminium alloys, RMSE values for different values of a (o =0.25, 0.5 and

0.75) are compared to observe whether the prescribed value of a is valid here or not.

Oswift—voce = O Osyift + 1-a Ovoce

The following figures show the flow curves for small and large values of strain, respectively,
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Figure 45 Swift-Voce hardening law, Constelium AA5000, zero degree roll angle, small strains
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Figure 46 Swift-Voce hardening law, Constelium AA5000, zero degree roll angle, large strains

The goodness of the fit is reported in the following table with respect to the corresponding

RMSEs,

SV 0.25 SV 0.5 SV o0.75
RMSE 2.542 2.492 3.201

Table 16 goodness of fits: Swift-Voce law for Constelium AA5000, zero degree roll angle

As it can be found from the table, within the experimental range, lowest RMSE belongs to
a = 0.5. In the following sections, both a = 0.25 and a = 0.5 will be considered for Swift-

Voce hardening law.

o Comparing Swift/Hockett-Sherby and Swift-Voce hardening laws for Constelium
AA5000, zero degree roll angle

The following figures demonstrate the behaviour of SHS and SV hardening laws when they
are applied to Constelium AAS5000. Within the range of small strains,
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Figure 47 Swift-Voce vs Swifi/Hockett-Sherby for small strains-Constelium AA5000, zero degree roll angle

And for the larger values of plastic strain,
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Figure 48 Swift-Voce vs Swift/Hockett-Sherby for large strains-Constelium AA5000

SV 0.25 SV o.5 SHS 0.75
RMSE 2.542 2.492 2.478

Table 17 goodness of fits: Swift-Voce vs SHS-Constelium AA5000, zero degree roll angle
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3.3.2.2 45°roll angle
o Swift/Hockett-Sherby hardening law

Applying combined Swift/Hockett-Sherby hardening law, the following flow curve will be
approximated for the given test data of Constelium AAS5000 at 45° roll angle,
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Figure 49 Swift/Hockett-Sherby hardening law, Constelium AA5000, 45° roll angle

o  Swift-Voce hardening law

Considering Swift-Voce hardening law, increasing a will reduce the tendency towards the
stress saturation, while it deteriorates diffuse necking approximation, which could be
anticipated a priori. Looking at the following table, RMSE is evaluated to be at its minimum
when a is equal to 0.5; meaning that with this value of a, Swift-Voce is a better option for small

values of strain, i.e. in the range of tensile test data.
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Figure 50 Swift-Voce hardening law, Constelium AA5000, 45° roll angle

SV 0.25 SVo.5 SV o.75
RMSE 2,431 3.209

Table 18 goodness of fits: Swift-Voce law for Constelium AA5000, 45 degree roll angle

o Comparing Swift/Hockett-Sherby and Swift-Voce hardening laws for Constelium
AA5000, 45 degree roll angle

The following figures illustrate the behaviour of SHS and SV hardening laws when they are
applied to a Constelium AAS5000 specimen cut at 45 degree roll angle,
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Figure 51 Swift-Voce vs Swift/Hockett-Sherby-Constelium AA5000, 45 degree roll angle

SHS 0.75 SV o.25 SV 0.5
RMSE 2.445 2.431

Table 19 goodness of fits: Swift-Voce vs SHS-Constelium AA5000, 45 degree roll angle

In order to find a hardening law that suits the most, it is needed to rely on complementary

tests such as Bulge test, as it provides us with test data in a wider range of strain in comparison

with tensile test.

3.3.2.3 90° roll angle

o Swift/Hockett-Sherby hardening law
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Figure 52 Swifi/Hockett-Sherby hardening law, Constelium AA5000, 90° roll angle
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o  Swift-Voce hardening law

Throwing light on the Swift-Voce flow curve shows that for a = 0.25, RMSE value is the
lowest, coming with better approximation for diffuse necking,
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Figure 53 Swift-Voce hardening law, Constelium AA5000, 90° roll angle

SV 0.25 SV 0.5 SV 0.75
RMSE 2.428 2.448 3.303

Table 20 goodness of fits: Swift-Voce law for Constelium AA5000, 90° roll angle

o Comparing Swift/Hockett-Sherby with Swift-Voce for Constelium AA5000, 90° roll
angle

The following figure illustrates the behaviour of SHS and SV hardening laws when they are
applied to a Constelium AA5000 specimen cut at 90 degree roll angle,
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Figure 54 Swift-Voce vs Swift/Hockett-Sherby-Constelium AA5000, 90° roll angle

SHS 0.75 SV 0.25 SV 0.5
RMS 2.482 2.428 2.448

Table 21 goodness of fits: Swift-Voce vs SHS-Constelium AA5000, 90° roll angle

3.3.2.4 Summary table of Constelium AA5000

Material constants and RMSE values for Constelium AAS5000 are reported in the next table,

Law A B m @ C & n Ko 0 B | RMSE

HS 409.695 | 286.473 | 5.443 | 0.832 - - - - - - 2.627

0° SHS 548.427 | 0.009 | 0.304 - - - 4.309
SV 130.919 | 249.987 | 9.207 | 2.492%*

HS 411.937 | 293.377 | 4.879 | 0.814 - - - - - - 2.248

45° SHS 537.435 | 0.009 | 0.307 - - - 2.445
SV - - - - 127.945 | 249.499 | 8.713 | 2.376*

HS 405.488 | 285.007 | 5.209 | 0.829 - - - - - - 2.279

90° SHS 534.066 | 0.009 | 0.303 - - - 2.482
SV o = = = 129.07 | 248.216 | 8.728 | 2.428*

*lowest is written amongst different values of .
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3.3.3 Constelium AA6000 tensile test results

Considering the data sheet provided by the Constelium on AA6000, flow curve from Hockett-
Sherby hardening law will be evaluated. Then, Swift-Voce law will be presented to make a
comparison with the curve of Hocket-Sherby.

Material Constelium AA6000
E
[MPa] 66554
Average
Thickness[mm] 0.916
True Rupture Stress A, Aso n-Krupkowski T -average Yield stress R,
[MPa] [%] @ [%] P (4%-Ay) [MPa] [MPa]
0° 293.9 21.52  26.07 0.27122 0.723 126.6 242.1
45° 288.2 22.67  28.52 0.27124 0.61 122.5 235.1
90° 288.3 22.40 28.53 0.27365 0.665 122.6 235.7

Table 22 mechanical properties of Constelium AA6000

3.3.3.1 Zero degree roll angle
o Hockett-Sherby hardening law

Having in mind the diffuse necking criterion, the following relation describes material

constant A as a function of the other constants in Hockett-Sherby hardening law,

A=B exp(—mgofﬁffuse) [1+ mC(Ptczi_flfuse]

This data set (Constelium AA6000) has a much smoother behaviour than the previous ones;
as a result, the Hockett-Sherby approximation shows a very low amount of RMSE of 0.16826,

which means the fitting is quite close to the experimental values in the range of given data.

Figure below shows the result in the range of small values of strain,
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Figure 55 Hockett-Sherby hardening law, Constelium AA6000, zero degree roll angle, small strains

Diffuse necking is anticipated at 18.74% of true plastic strain, while according to the data

sheet, it is predicted to take place at 19.03% true plastic strain.
For larger values of strain,
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Figure 56 Hockett-Sherby hardening law, Constelium AA6000, zero degree roll angle, large strains

o Swift/Hockett-Sherby hardening law

Remembering SHS hardening law relation,

Oswift/Hockett—Sherby — 1-a Oswift T O Ogockett—Sherby
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The influence of « on the behaviour of the SHS flow curve fitting is shown in the following

figure, both for small and large strains respectively,
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Figure 57 Swift/Hockett-Sherby hardening law, Constelium AA6000, zero degree roll angle, small strains
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Figure 58 Swift/Hockett-Sherby hardening law, Constelium AA6000, zero degree roll angle, large strains

SHS 0.25 SHS 0.5 SHS 0.75
RMSE 2.152 1.446

Table 23 goodness of fits: Swift/Hockett-Sherby law for Constelium AA6000, zero degree roll angle
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As it is obvious, SHS 0.75 shows the best fit withing tensile test data range, so by extracting
50 data points to be used in FEA SW,
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Figure 59 50 data points imported into FEA from Swift/Hockett-Sherby law for Constelium AA6000

No. 1T Ploastlc HS stress No. e Pl.astlc HS stress
Strain Strain
1 0.000 115.9808 26 0.510 342.4465
2 0.020 173.6113 27 0.531 343.9209
3 0.041 203.7836 28 0.551 3453117
4 0.061 225.5108 29 0.571 346.6272
5 0.082 242.3893 30 0.592 347.8745
6 0.102 256.0289 31 0.612 349.0602
7 0.122 267.3326 32 0.633 350.1897
8 0.143 276.8709 33 0.653 351.2682
9 0.163 285.0317 34 0.673 352.3
10 0.184 292.0926 35 0.694 353.2891
11 0.204 298.2592 36 0.714 354.2391
12 0.224 303.6884 37 0.735 355.1532
13 0.245 308.5027 38 0.755 356.0341
14 0.265 312.7988 39 0.776 356.8845
15 0.286 316.6548 40 0.796 357.7066
16 0.306 320.1344 4] 0.816 358.5026
17 0.327 323.2899 42 0.837 359.2742
18 0.347 326.1646 43 0.857 360.0232
19 0.367 328.795 44 0.878 360.7512
20 0.388 331.2117 45 0.898 361.4594
21 0.408 333.4407 46 0.918 362.1493
22 0.429 335.5042 47 0.939 362.8219
23 0.449 337.4212 48 0.959 363.4783
24 0.469 339.2082 49 0.980 364.1196
25 0.490 340.8791 50 1.000 364.7465

Table 24 50 data points imported into FEA from Swift/Hockett-Sherby law for Constelium AA6000
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o Swift-Voce hardening law

Swift-Voce hardening law defining by the following relation, with a = 0.75, will be applied
to Constelium AA6000 data set,

Oswift—-voce = O Osyift + (1 = a) Gypce

The following figures show the flow curves for small and large values of strain, respectively.

Focusing on the true plastic strain range below 27%,
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150
0.02 0.07 0.12 0.17 0.22 027

Plastic Strain [-]

Figure 60 Swift-Voce hardening law, Constelium AA6000, zero degree roll angle, small strains

SV 0.25 SVo.5 SV o0.75
RMSE 3.508 2.022

Table 25 goodness of fits: Swift-Voce law for Constelium AA6000, zero degree roll angle

SV 0.75 shows the lowest error within tensile test data; in this section we also consider SV

0.25 to see the comparison between Swift/Hockett-Sherby,
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Extending the strain range till 100% plastic strain,
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Figure 61 Swift-Voce hardening law, Constelium AA6000, zero degree roll angle, large strains

o  Comparing Swift/Hockett-Sherby with Swift-Voce hardening laws for Constelium
AA6000 zero degree roll angle

Comparing the two hardening laws, it is quite obvious that Swift/Hockett-Sherby is
following the experimental flow curve of Constelium AA6000 with a very low amount of

RMSE, while Swift-Voce has some deviations with respect to the experimental data,
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Figure 62 Swift-Voce vs Swift/Hockett-Sherby for small strains-Constelium AA6000, zero degree roll angle
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SV 0.25 SVo.75 SHS 0.75
RMSE 3.508 1.646 0.747

Table 26 Swift-Voce vs SHS-Constelium AA6000, zero degree roll angle

e k-exponent function

K-exponent fuction (which is employed as a phenomenological hardening law) is employed
here in order to fit to the pre-necking data points. Here the nonlinear regression command of
MATLAB (Isqnonlin) is used to have more control on the fitting parameters of this function.
Then, the result will be compared with Hockett-Sherby law (as it will be seen that it has the
lowest RMSE value of all).

AAG000
300 T T T T T
280 - b
®  experiment
== %8 k-exponent
260 - m— . 1
@ 240 - i
o
=
1)
0
2
B 220 b
200 b
RMSE (k-exponent)=0.0774
180 &
RMSE (HS)=0.1559
160 | | | | | | | | |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

plastic strain []

Figure 63 comparison between k-exponent function and HS hardening law for pre-necking flow stress curve
fitting of AA6000, zero degree roll angle
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3.3.3.2 45°roll angle

o Swift/Hockett-Sherby hardening law
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=
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— SH50.75
200 B Diffuse necking SHS 0.75
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Figure 64 Swift/Hockett-Sherby hardening law, Constelium AA6000, 45° roll angle

o Swift-Voce hardening law
Within the range of small strain,
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Figure 65 Swift-Voce hardening law, Constelium AA6000, 45° roll angle, small strain
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Having a

Figure 66 Swift-Voce hardening law, Constelium AA6000, 45° roll angle, large strain

wider vision for the Swift-Voce law up to 100% plastic strain,
450
400
350
T 0.200427304,
= 288.6799427
= 300
8 D’A 0.217868167,
= 4 294.2266872
/ ——5V0.25
- 0.188601099, Vo
285.2705842
SV0.75
O Diffuse necking SV 0.25
< Diffuse necking SV 0.5
200 A Diffuse necking SV 0.75
exp
/
150
0 0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9

Plastic strain [-]

SV 0.25 SVo.5 SV O0.75
RMS 1.638 1.253

Table 27 goodness of fits: Swift-Voce law for Constelium AA6000, 45° roll angle

o  Comparing Swift/Hockett-Sherby with Swift-Voce hardening laws for Constelium
AA6000 45° roll angle

Stress [MPa]

Figure 67 Swift-Voce vs Swift/Hockett-Sherby for small strains-Constelium AA6000, 45° roll angle
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Figure 68 Swift-Voce vs Swift/Hockett-Sherby for large strains-Constelium AA6000, 45° roll angle

SHS 0.75 SV 0.25 SV o.5 SV 0.5
RMSE 0.689 1.638 0.561 1.253

Table 28 Swift-Voce vs SHS-Constelium A46000, 45° roll angle
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3.3.3.3 90° roll angle

o Swift/Hockett-Sherby hardening law
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Figure 69 Swift/Hockett-Sherby hardening law, Constelium AA6000, 90° roll angle, small strains
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Figure 70 Swift/Hockett-Sherby hardening law, Constelium AA6000, 90° roll angle, large strains
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o  Swift-Voce hardening law
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Figure 71 Swift-Voce hardening law, Constelium AA6000, 90° roll angle, small strains
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Figure 72 Swift-Voce hardening law, Constelium AA6000, 90° roll angle, large strains

SV 0.25 SV o.5 SV o.75
RMSE 2.301 2.367 2.702

Table 29 goodness of fits: Swift-Voce law for Constelium AA6000, 90° roll angle
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Stress [MPa]

o  Comparing Swift/Hockett-Sherby with Swift-Voce hardening laws for Constelium

AA6000 90° roll angle
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Figure 73 Swift-Voce vs Swift/Hockett-Sherby for small strains-Constelium AA6000, 90° roll angle
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Figure 74 Swift-Voce vs Swift/Hockett-Sherby for large strains-Constelium AA6000, 90° roll angle
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SHS 0.75 SV o.25 SV 0.5 SVo.5
RMSE 2.301 2.367 2.702

Table 30 Swift-Voce vs SHS-Constelium AA6000, 90° roll angle

3.3.3.4 Summary table of Constelium AA6000

Material constants and RMS errors of Constelium AA6000 are reported in the next table,

Law A B m c C & n Ky (0] B RMSE

HS 338.953 226.881 5.586 | 0.748 - - - - - - 0.168

0° | SHS 443.904 | 0.007 | 0.251 . - - 0.747
SV 127.708 | 204.768 9.609 1.646*

HS 349.630 | 245.521 4.156 | 0.682 - - - - - - 0.205

45° | SHS 429.266 | 0.0070 | 0.251 - - - 0.689
SV = = = = 123.602 185.476 10.916 0.561%*

HS 331.170 | 217.980 | 5.673 | 0.774 - - - - - - 0.154

90° | SHS 477.302 0.012 0.306 - - - 0.817
SV = = = = 123.669 185.036 11.123 2.301*

Considering the above results it can be inferred that, extrapolation of the pre-necking data
deep into the diffuse necking regime depends strongly on the phenomenological hardening law,
while the material behaviour above diffuse necking is completely ignored. Thus, relying solely
on the EM at large plastic strains cannot be a reliable approach in post-necking flow curve

1dentification studies.
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CHAPTER FOUR: HYDRAULIC BULGE TEST
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4.1 INTRODUCTION

The successful implementation of the finite element simulation in the design phase
of sheet metal forming process depends on the accuracy of the employed material
characteristics. Among various different material properties that can affect the simulation
results, flow stress curve (true stress/true plastic strain curve) of the material has a great
importance. As it was observed in previous chapter, the hardening law defining the
relationship between the flow stress and the plastic strain has a significant effect on the
quality of the numerical results. In order to estimate the flow stress curve of a metal sheet at
room temperature, tensile and hydraulic bulge tests are the most commonly used
experiments; however, plane strain compression, shear test, and in-plane compression test

are also exploited to achieve this purpose (49).

Bulge test is a destructive test method conducted to obtain the material properties of a
sheet metal. Due to the state of stress, significantly higher (more than double) maximum
effective strain can be attained in comparison with the tensile test without any evidence of

localized necking.

Hydraulic bulge test'?

is employed in the evaluation of the strain hardening properties of
sheet materials under biaxial tension. During the test, the specimen is fixed at its edges as
shown in the following figure, and is stretched biaxially and equally against circular die
when oil/viscous fluid is used as a pressurizing medium. The sheet metal bulges into a

hemispherical dome until it bursts (49).

Drawing depth/height
(outer surface)

p  Liquid pressure

Degree of forming in the

& direction of thickness
(at the dome pole)

Figure 75 a scheme of hydraulic bulge test (50)

3 also known as the viscous pressure bulge test
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The maximum height of the dome at burst can be used as an index of the Stretchability'*
of the material; the higher the value of dome height prior to burst, the better will be the
stretchability. In contrast with Nakazima test, there is no effect of friction on the deformation
of the sheet material in the hydraulic bulge test, leading to an accurate evaluation of the
stretchability of the material. The stress and strain values in hydraulic bulge test are
calculated through the measurements of pressure, the curvature and surface extension in the

center of the disc (49).

The writer started to study the bulge test with an aim to compare the two main approaches
for the evaluation of the bulge test flow stress curve: ISO 16808 procedure and Modified
Kruglov’s method. However, based on the initial goals of this thesis work, post-necking
behaviour identification through ISO 16808 prescribed method was seemed to be more

related to this discussion.

4.2 HYDRAULIC BULGE TEST AND TENSILE TEST

Uniaxial tensile test can be employed to determine material properties such as flow stress
data, Young’s modulus, yield stress, ultimate tensile stress, uniform elongation, total
elongation, and Lankford coefficients (r-value) (51). Tensile test is simple and inexpensive
to conduct, but, in comparison with hydraulic bulge test, there are some considerations
which are needed to be taken into account,

1. Flow stress over very large plastic strain can be studied through hydraulic bulge

test,
A major advantage of the bulge test over the uniaxial tensile test is that the stress-strain

curve can be extended to a wider range of effective strain (more than double) which is
normally found in forming processes (52). Equibiaxial bulging is a very useful method for

obtaining the strain hardening behaviour of the material beyond diffuse necking.

In the hydraulic bulge test (HBT), stress and strain can be obtained up to failure of the
specimen, while in the conventional uniaxial test, only the uniform strain range can be
utilized. Since the strains in stamping are normally larger than the uniform strain, the bulge

test would be a better choice to describe the plastic properties of sheet metal at large strains.

14 Stretchability is the ability of the material to be stretched biaxially without failure. The Erichsen cup
test, limiting dome height (LDH) test, and hydraulic bulge test are commonly used tests to assess the
stretchability (49).
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True strain calculation is only valid when the deformation is uniform along the gage length.
Uniform elongation has a limited span, and presents between the initial yield point and the
start of diffuse necking. On the contrary, due to the nature of the deformation process in
HBT, not only Ludering is less evident, but also in case of having diffuse necking, it does
not result in non-uniform deformation within the gage zone. Therefore, true stress-strain can
also be evaluated beyond diffuse necking, up to the advent of localized necking or fracture

(52).
2. Extrapolation of test data comes with error,

Since the range of strain obtained from tensile test is limited, extrapolation of tensile data
would be quite necessary to conduct if one needs further information on material behaviour,
causing noticeable errors in the forming simulation using FEM. Bulge test is an alternative
to obtain a range of deformation wider than tensile test without an urge to use extrapolation
techniques to achieve material behaviour. As a result, the material data obtained from the
bulge test is more accurate than the conventional uniaxial tensile test data. Consequently,
the simulation of the process would be more accurate when flow stress data from the bulge

test is exploited (53).

3. Tensile test only provides the stress—strain behaviour of the sheet material under
uniaxial deformation conditions, so it provides the material behaviour in uniaxial

strain path.

In contrast though, in many forming processes such as stamping operation, the material
deforms under biaxial condition of deformation. Likewise, in other sheet metal forming
processes such as bending and deep drawing, materials deform in a wide variety of different

strain paths, ranging from pure shear to biaxial tension.

4. Improving the material anisotropy measurements, based on a comparison of tensile

and bulge test stress-strain curves.

Tensile tests of a metallic sheet show anisotropy in different directions in the plane of the
sheet. Normal Anisotropy is an important parameter in forming operations. In general, a
higher through thickness strength is beneficial as the material shows resistance to thinning
during deformation. However, in order to avoid anomalies, an improved measure can be
employed on the basis of a comparison between tensile and bulge test stress-strain curves

(54).
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5. The bulge test cannot provide flow stress data for low strain values close to the

yield point.

Following the importing of data from bulge test assessment into forming simulation, the
yield point of the material cannot be defined accurately. This can particularly affect the
elastic behaviour of the material in the simulation and yields inaccurate simulation results,

especially when springback must be predicted (55).
6. Combining tests for greater accuracy.

Despite the fact that HBT is commonly employed to assess the material characteristics of
metallic sheets, plastic flow curves under bulge test and uniaxial tensile test are different;
hence, both of these two tests should be performed, not only to obtain material parameters
needed for satisfactory modelling of forming processes, but also, for determining more
accurately the flow stress data from the initial yield point up to the largest strain values
which is achievable by the bulge test, through combining the results from the bulge and

tensile tests.

Comparatively more accurate flow stress data at high strain values can be obtained from
bulge test, while tensile test is only able to provide material properties up to the yield point.
This fact leads to a useful conclusion that by combining the two tests’ results one can access
to a better approximation of the flow stress data from yield to the strain at fracture in the

biaxial stress condition (55).

Section 4.5 is dedicated to ISO 16808 method and how to combine the results of the two

tests.

4.3 BULGE TEST EQUIPMENT

The bulge test equipment mainly consists of,

e hydraulic die,

e test stand,

e hydraulic power supply,

e electronic console,

e measuring unit and data acquisition equipment interfaced to a remotely located

minicomputer.
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Figure 76 hydraulic bulge test equipment (50)

The dies assembly is designed in such a way that it is able to clamp the specimen for test,
and facilitate bulging the specimen with hydraulic fluid and unclamping the specimen after
the test. Servovalve provides the flow of oil coming from the hydraulic power supply to the

die. The flow itself is controlled by the electronic console (52).

4.4 DATA COLLECTION AND ANALYSIS OF HYDRAULIC BULGE

TEST

Automated data acquisition systems were not available in the first bulge test setups.
Therefore, tests must have been conducted through an incremental method, so that, the
deformation had to be stopped every time for collection of required data, such as, pressure,
dome height, bulge radius. Incremental data acquisition method came with the risk of creep
unless the pressure was dropped to almost 90% before taking the measurements. Automated
bulge test equipped with sensors and data acquisition systems was designed in the 1970’s
(56). Continuous measurements (whether optical or mechanical) of bulge pressure,
curvature of bulge specimen, its thickness at the pole in parallel with the application of
membrane theory are used to evaluate the flow stress curve of the material under the test

(53).

Among bulge parameters, bulge pressure is normally obtained directly from bulge

machine itself, while curvature and thickness data may obtain through different approaches.
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Two procedures are common as far as data collection from bulge test is concerned; indirect

method and direct method (57).

4.4.1 Indirect method

In this section biaxial stress-strain curves by hydraulic bulging tests with circular die will
be determined indirectly, through the estimation of curvature and/or thickness based on
analytical equations, while the pressure, polar height and curvature radius are measured
either in different stages of the deformation process or continuously during the test. Almost
all of the methodologies in this group are based on analytical formulas describing the polar
thickness and the curvature radius of the specimen in relation with one or more process

parameters (58) (59) (60).

The problem of the hydrostatic bulging of circular diaphragms was first studied in 1948
by Gleyzal on the basis of the total-strain theory of plasticity (61).

Two years later, R. Hill developed an analytical
model of the hydraulic bulging process based on the
Mises theory (62). The shape of the dome was
considered to be spherical and he neglected the effect of

the fillet radius on the geometry of the specimen,
8 v P RODNEY HILL

Fig. 1. (1921-2011)

From a simple kinematical assumption regarding the

evolution of the specimen surface, Hill also obtained a

relation for the evaluation of the radius of the curvature

and polar thickness (62),

_a2+h2 B 1
P=—2n b7

In 1959, Panknin performed experimental studies on the hydraulic bulging in his PhD
thesis at the university of Stuttgart. The accurate determination of the process parameters

was his main goal. He suggested a formula for the calculation of the curvature radius, while
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taking into account the effect of the fillet radius (R) on the dimensional characteristics of
the dome (63),

SN LS

P=2n\2 2

He found that for large polar heights, a deviation around 10% may be seen in the

analytical results with respect to experimental data.

In 1970, by considering the hardening effect, Chakrabarty and Alexander improved the
accuracy of the formulas previously proposed by Hill. In their paper, the plastic bulging of
circular diaphragms by lateral fluid pressure was developed by assuming the bulge to be
spherical and employing Tresca’s yield criterion and the associated flow rule. They
introduced an unknown parameter (4) into Hill’s formula, which was a function of the strain

hardening exponent of the material (64),
A=1-n
For all real cases, (1) must be between 0 and 1 to ensure that the rate of plastic work is

positive. Furthermore, they proposed that the polar (compressive) thickness strain rate can

be evaluated via (64),

dh a?+h?’

This equation was integrated to attain the polar thickness strain g, as,

hZ
g, = (2—n)ln<1+;>.

Since €, = —e3, then the thickness at the dome apex was derived as,

Figure 77 thickness variation at the dome apex proposed by Chakrabarty and Alexander (64)
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While Hill's theory was already in line with experimental results of sufficiently work-
hardened materials, Chakrabarty compared his theory with experiments for soft materials

(64).

Alharthi and his colleagues improved the accuracy of the Chakrabarty and Alexander
idea, by considering the effect of the plastic strain ratios instead of the hardening effect.
Having the constant volume assumption in mind, the principal strains generated during a
biaxial test can be related to compressive thickness strain. They also found that the biaxial
strain deformation is sensitive to the plastic anisotropy; thus, instead of the strain hardening

exponent of the material, they defined A as a function of the normal plastic anisotropy (65).

Min and his co-workers developed a new method to accurately calculate stresses and
strains for both isotropic and orthotropic sheet materials in circular bulge testing with the
application of DIC. The method was based on a more accurate calculation of the local
thickness, by taking into account the spherical or ellipsoidal shape of the metal, and the
elastic volume change. Although they observed that the stress condition in the bulge test is

extremely close to balanced biaxial stress, this may not be the case for all anisotropic metals

(66).

Shang developed Hill’s analytical model in order to take into account the fillet radius of
the die insert (67). Thus, the adjusted radius of curvature (p) with respect to Hill’s special
solution (sharp-edged die) for the profile between the pole and point X (blank-die interface)

can be achieved from the geometry of the model as follows,

L-axis

| _H2+R2

r-axis

P e

0 R

i.__

Figure 78 Shang’s adjusted radius of curvature for analytical model of hydraulic bulging (67)

He also found that the local shell thickness is influenced by the size of the die shoulder

only at locations farther from the pole; consequently, the pressure-growth curve will not be
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affected by the die shoulder radius. Besides, based on his experimental observations, the

value of the fillet radius has a small influence on the polar strains (67).

Atkinson also tried to improve the accuracy of the analytical predictions with regard to

the polar thickness and dome radius (68).

C length of measured chord,

perpendicular to bulge axis

Co original length of measured chord

D diameter of die aperture
H height of bulge
h height of segment defined by

measured chord

mean radius of bulge profile
within measured chord

R

Figure 79 Atkinson’s analytical model for hydraulic bulge test (68)

According to Atkinson’s assessment, mean thickness of the polar cap defined by the gage

length (C), highlighted by red, can be described as,

R — /RZ _tOCg/Zh

2
to : original sheet thickness

T~

Geometry of polar cap

Figure 80 Atkinson’s analytical model for hydraulic bulge test-mean thickness of the polar cap (68)
Kruglov developed a simple formula for the calculation of the polar strains. This formula

was based on the assumption that the meridian strain is uniformly distributed on the dome

surface (69); moreover, there were other hypothesis in his work (69),

(a) The sheet material is isotropic and incompressible,
(b) Forming process is isothermal,

(c) The initial sheet thickness, so, is considered to be small compared with the envelope’s

radius Ro (SO/R0 &« 0).
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In this case, the sheet metal under bulge test can be treated as a membrane and so one can
employ the principal equations of the thin shell theory (membrane theory) in order to analyse

the superplastic free forming.

(d) The flow stress is a single-valued function of the strain rate,

(e) The shape of the deforming shell is considered as a part of a sphere with the radius
of curvature denoted as p,

(f) Since the envelope is made of two sheets by welding, the thickness of the shell in the
vicinity of the weld is assumed to be constant in its value during the whole process
of forming (in other words, it is assumed that the weld does not influence the sheet

deformation).

Thickness at the pole

a
S=50(, )
Sina

Figure 81 Kruglov’s approach for analytical study of the bulging test (69)

4.4.1.1 Kiruglov’s approach: Stress and strain evaluation in hydraulic bulge test

Both Kruglov and Modified Kruglov approaches are described in the following
paragraphs in order to derive biaxial stress and strain through hydraulic bulge test. The
modification takes into account the non-uniform distribution of the strains on the specimen
surface by means of a correction factor. An improved accuracy was observed from the
Modified Kruglov’s formula by comparing the results with experiments equipped with

optical measurement systems (60).

Table below shows the principle of the Kruglov’s approach for the hydraulic bulging test

with the following specifications,

117



O, current centre and pole of the dome surface
P (approximated by a spherical cap)

3’ centre and ends of the fillet joining the orifice
H’ and the bottom surface of the bulging die

point where the free profile of the specimen
T  becomes tangent to the fillet arc of the bulging

N d die
V', projections of the points V (Q) and H,

H’'  respectively, on the vertical axis OP

d  diameter of the bulging orifice

R fillet radius of the bulging orifice

Tangen so initial (nominal) thickness of the specimen
line
0 current thickness of the specimen in the polar

VZZZZZ Deformed specimen [Ei58d Flat specimen S . .
region (point P)

p  current radius of the dome surface

height defining the current position of the pole
P

angle spanned by the arc TP or TH (a is
expressed in radians)

Figure 82 Schematic representation of the specimen subjected to hydraulic bulging-Kruglov’s approach

(60)
Both the diameter (d) and the fillet radius (R) are constants, describing dimensional
characteristics of the experimental device. In a certain experiment, the initial thickness of
the specimen (so) is also constant. All the other quantities mentioned above (s, p, h, and o)

are variables depending on the current level of the pressure (p) acting on the bottom surface

of the sheet metal (60).

Stress state

In order to determine the biaxial flow curves, membrane theory is commonly exploited.
As it was demonstrated in the previous figure, when the sheet is clamped between the die
and blank holder, the flow curves can be evaluated based on the analysis of measurable
variables from bulge test; however, membrane theory is only valid when the ratio of the
sheet thickness to the bulge diameter is small. It assumes that the through thickness stress is

zero and a relationship can be established using Laplace’s formula (70),
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o Oy _ D
Px Py S
(s) is the sheet thickness at the

dome apex

Figure 83 Stresses on double curved element in cross section at the pole (70)

Based on the membrane theory, the stress state is characterized by two stresses on the
material surface: meridian stress and tangential stress, where it is assumed that these stresses

are uniformly distributed along the shell thickness (70).

It is also important to note that for a bulge test evaluation method with high accuracy the
influence of bending stresses and through thickness stress at the pole on the force
equilibrium must be known. Furthermore, although the assumption of an equibiaxial stress
state will also lead to deviations in accuracy, normally (and also here in this section) the
bulge test is considered as axisymmetric case for the region quite close to the pole; hence,
the principle stress can be considered equivalent and equal the membrane stress, i.e. (g7 =

05 = 0p). The same holds for the curvature radii, i.e. p; = p, = p (70).
Under these simplifications the current biaxial stress or membrane stress oy, 1s defined as
(70),

pp
% 28

Strain state

For strain calculation, the volume consistency assumption is employed, which is based

on the fact that the plastic deformation in metals and alloys takes place without any

significant change in volume (60),
&1 + &y = —&3

Therefore, the corresponding thickness (radial) strain (the so-called biaxial strain &;) can

be evaluated using the relationship,
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n>2
&p =—& =In—
b 3 S
Analytical expressions for biaxial stress and biaxial strain can be exploited to find a
biaxial stress-strain diagram only if the quantities p, p and s are either measured or derived

from other experimental data (60).

The current level of the pressure (p) can be readily measured via a sensor connected to
the hydraulic chamber; on the contrary, the curvature radius p and the polar thickness s
cannot be obtained directly. Thus, they would be available indirectly by employing
approximate formulas consisting of the current value of the polar height h. This parameter
can be monitored continuously either through a displacement sensor (e.g. linear voltage

displacement transducer (LVDT)) or by digital image correlation (DIC) system (60).

Experimental results show that areas close to the centre of the bulge has nearly a spherical
shape, and the area expands as the bulge height increases. Considering the fact that
membrane solution cannot be accurate enough near the clamped edge, it is reasonable

estimation that the bulge is quite spherical for large values of strain (64).

The curvature radius p can be evaluated with Panknin’s formula (60) (63),
1 (d > h
p=an(3+H) +3-R.

The experimental studies performed by other researchers (71) proved that amongst the
numerous relationships that can be employed to assess the current value of the polar
thickness (s), Kruglov’s formula (69) leads to the best results. At the level of the polar region,
volume consistency assumption can be written as follows, where ¢&,, is the meridian
(circumferential) strain (60),

&p = 2&, .

According to Kruglov’s approach, one assumes that &, can be calculated using the
approximation (according to figure 78) (60),

TP +TH
Em =1In T

Provided that the meridian strain were uniformly distributed on the dome surface.
However, this relation is not valid thoroughly, based on the fact that the local thickness of
the specimen gradually decreases from the clamping region towards the pole (60). Hence,

adjustments to this approach was introduced by ‘modified version of Kruglov’s formula’, by
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taking into account the variation of the thickness. In order to improve its accuracy, the

modification will be applied by defining the meridian strain as a function of a (60).

The following relations can be written based on the last equation and the previous figure

(60):

~ ~ d
TP=pa,TH=Ra,HH’=E+R ,

Where according to Panknin’s (p) definition,

V'Q %+R %+R
sina = = = > )
0Q p+R L(Q+R) +ﬁ
2h \2 2

i.e.
7+R
a = arcsin T d I
m(Z+R) +3

Thus, meridian strain can be rewritten as,

l a

Em = In——.

m sina

By replacing &, into biaxial strain relation, one obtains the following expression for the

polar biaxial strain,

a
&y = 2ln——
sina

Which is the formula introduce by Kruglov. In combination with the definition of biaxial
strain, this relation leads to the evaluation of the current polar thickness (60),
a 2
s =sgexp(—e&p) = so |—— .
0 exp(—&p) 0 (sina )

Interestingly, the last two equations only require the measurement of the dome height 4,
as a i1s only a function of dome height. As mentioned previously, although Kruglov’s
approach leaded to acceptable results in comparison with the experiments, its accuracy can
be improved further by the modification of the geometrical definition of median strain,
TP+TH

en =1+ ca)ln T
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After updating the definition of median strain into biaxial strain definition, the polar
biaxial strain can be derived as (60),
~ ~
TP+TH
g =200+ ca)an .
The presence of a correction factor containing the constant parameter ¢ makes this

formula more attractive with respect to the original Kruglov’s formula. This relation allows

the evaluation of the updated current polar thickness (60),

—2(1+ca)

s = 5o exp(—¢&p) = S (sifla)

It is obvious that in order to implement the last two equations, coefficient ¢ needs to be
obtained first by assessing the final value of the polar thickness s,,;, , which can be observed

after the specimen is freed from the dies (60).

The thickness can be observed using a measuring device attached to the upper and lower
surfaces of the specimen. Considering hy,q, and a,,4, as the polar height and the angle
spanned by the dome surface, respectively, corresponding to the final stage of the process,
thickness s can be formulated as follows (60),

( Umax >_(1+Camax)
0

Smin = ,
i SINA gy

)

So that,
| <1
a = arcsin ,
" L (g + R)Z + M
2R \2 2

Coefficient ¢ can be derived from the thickness at apex at the final stage of the bulging

S a
ln o _ ln —~max
Smin SINAmax

amax
SINAmax

process (60),

CcC =

Amax N

All 1n all, the two approaches to evaluate biaxial stress and biaxial strain analytically are
briefly highlighted here (according to the method used to calculate the polar thickness, there
would be a number of approaches, however, it is shown in the literature that Kruglov’s

approach is more reliable than the rest),
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KRUGLOV'S APPROACH

Distribution of median strain is assumed to be UNIFORM along the dome

Import testrelated constants: (d), (R} and (so),
Monitor pressure (p) and dome height (h) continuously,
C. Evaluate dome radius (p) from Panknin’s equation continuously,

— e (Gar) 4o
P=omn\2 2

oY

d. Evaluate (a) derived from test geometric constants and dome height
continuously,

d
7+R

Z(@ Ry +2

e. Evaluate constantly the polar thickness (s) using Kruglov's formula

a = arcsin

-2

a
§= 5 =
sina

f.  Biaxial strain and stress can be assessed continuously using the following
equations,

£ =2lnL 0 =@
b sina b~ 2s

MODIFIED KRUGLOV'S APPROACH
Distribution of median strain is not UNIFORM practically

a
emn =1+ ca)ln—, &, =2¢€y,
sina

€. Evaluate constantly the polar thickness (s) using Modified Kruglov's formula,

a
S$=95 m
sina

f. Coefficient (c) will be defined at the pole, and at the final stage of the test, where,
S = Spmin, b = hypgyx ANAd @ = Ay

S a
In ‘0 — [n——=max Q+R
Smin SNy gx . 2
y Umay = ArCsin \ >

i () +1)

Coefficient (c) can be easily established if the final value of the polar thickness s,,i,

-2(1+ca)

Cc =
amax

a In—
MAx =" SINA 1 qx

Is measured after removing the specimen from the hydraulic bulging device.
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An overview of the methodology for the determination of bulge test stress-strain curve is

described by the flow chart shown in figure below,

A J

Biaxial stress

1
H i
1 ]
1 ]
1 ]
1 ]
| i
: > Polar radius (p) 1 > o = rp
: : b= s
1 1
1 1 i
Polar height (h) e 1 :
H i
1 ]
e —————— : I »  Biaxial stress-strain curve
1 Polar thickness (s) : *
] i
ooTTTTTTTEs e H 1 x H
| Data measured at the end of the test | 1 1
1 H 1 ; v
I 1 1 1
I H 1 1
I . . 1 1 1 Biaxial strain
1 Maximum polar height (hy,,,) 1 1 H So
: H : i g =In—
| : 1 ! s
: 1 ® : » Parameter (c) :
i H 1 !
1 L . i 1 H
I | Minimum polar thickness (s,,) | 1 H
: 1 : Analytical model 1
1 H 1 H
e —— S ————_

Figure 84 methodology for the determination of bulge test stress-strain curve

4.4.2 Direct methods

Breakthroughs in the field of sheet metal testing are still possible by the development of
the computers and data acquisition systems. Direct methods benefit from continuous data

acquisition of bulge geometry to evaluate curvature and thickness (57).
Two groups may be seen with regard to direct methods:
(a) Mechanical measurements

Mechanical measuring systems entail spherometer and extensometer that employs
physical tactile devices, to evaluate curvature and thickness, respectively. This approach

provides a possibility for both the applicability and exchangeability of bulge test results (52).
(b) Optical measurements

In the field of the hydraulic bulging, recent development has been mainly in the area of
optical strain measuring systems. Such systems consist of CCD cameras whose functions
are monitored by a videogrammetric software. Besides, 3D optical measurement system can
be used for the continuous observing of the polar height, curvature radius and polar thickness

of the specimens (72).

The potentiometer is a very sensitive device and cannot tolerate the impact loading during
bursting of the specimen. Therefore, tests used to be done at two steps: (1) all the way up to

burst point without the potentiometer to get the burst pressure (Pvurst) and (2) after installing
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the potentiometer, testing up to ~90-95% Puurst. However, with the new laser sensor, it is

possible to determine the data up to Pourst (73).

4.4.2.1 Mechanical measurements

Strain rate sensitivity is the dependence of the stress-strain curve on the rate at which the
test specimen is deformed. This behaviour can be taken into account by a feed-back control
on the hydraulic bulging system. The data processing system transforms test signals
(transducer signals for the three variables, pressure (p), spherometer height (h) and
extension) into data output. The signals are converted into digital form and then stored in a
minicomputer. After the test, these are computed to obtain stress-strain data pairs, and the

information is transferred to a central computer for subsequent analysis or plotting (52).

The specimen is a circular blank as shown in figure below. in order to facilitate the strain
measurements at the end of the test for validation, gridded blanks are normally employed

(52).

Figure 85 Sheet specimens before and after bulge testing (52)

Different diameters used for determination of curvature and strain have a strong influence

on obtained flow curve, especially for strains higher than 0.3 of the evaluated curve (57).

In order to become familiar with mechanical measurements, the test procedure is

described here. Firstly, the test specimen is placed in the die, as shown in the next figure,
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Internal pressure (p)

locking ring test specimen die ring

e measured continuously using a

/
-

pressure sensor,
% p— e Jocated on one end of the rod
7 T:_g}_—:_T:_—:_:—, A, holding the hydraulic cylinder.
11t P, 1
i E I"‘J\ body | Bulge height of the sheet (h)
L

e measured continuously by a Linear
| pressure transducer
unclamping 1] ge pressure

pressure Potentiometer Transducer,

e fixed on the upper die (58).

Figure 86 Cross-section of the bulge die (52)

The die ring is inserted and locked, and the test-piece is clamped. The extensometer and
spherometer mut be carefully calibrated while sitting on a ground surface plate, as the stress-
strain data are highly sensitive to errors in curvature measurement. The unit is then placed
on the specimen, and the control console is set to initiate a test in a similar fashion to any
normal servo-controlled system. The thickness and the reading rate of the data sets are

entered by the operator.

The test is run and goes on until the rupture, when the control system senses an abrupt
fall in pressure level and deactivates the hydraulic system. The, the specimen can be
removed and the data is transmitted to the central computer for further processing as

discussed before (52).

In conclusion, the main procedure of bulge test can be divided into the following steps
(58),

1. Expand the metallic sheet by hydraulic pressure while the edge of the specimen is held

firmly to avoid axial movement,

2. Meanwhile, the internal pressure (internal pressure is recorded 30 times per second to
measure the pressure precisely, which is used in the analytical equations) and bulge height

are measured continually during expansion,

3. The measured parameters are then converted into true stress-strain data using analytical

equations (in case of indirect method),

4. Exploiting the least-squares method, stress-plastic strain data can be fitted into a strain

hardening law to obtain a flow stress curve.
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4.4.2.2 Optical measurements

In comparison with classical mechanical measuring systems, optical measuring systems
provide in-depth information about the deformation of the specimen during the test; for
example, due to the practical shortcomings of mechanical measuring, the shape of the bulged
sheet is approximated by a sphere. Furthermore, the additional information coming from
optical measuring devices provide not only detailed assessments on the bulged surface, but
also more accurate determination of the stress and strain state at the pole (70). Mulder and
his colleagues showed that if the surface coordinates are fitted into an ellipsoid shape
function, more accurate results can be obtained. In the next step, the accurate flow curve can
be retrieved both from the fit and the local strain data to estimate the curvature of the

midplane (70).

4.5 ISO 16808 RECOMMENDED PROCEDURE FOR HYDRAULIC

BULGE TEST

The following section highlights the main features of ISO 16808 standard on the
determination of biaxial stress-strain curve by means of bulge test with optical measuring

systems (50).

Generally, the proposed approach exploiting optical measuring systems is an evolution
of the method using a spherometer and an extensometer. A configuration for optical

measuring system for bulge test is shown below,

1 lamp

2 cameras
3 glass plates
4 test piece
5 Sfluid

Figure 87 Example for possible positions of oil shielding plates and lamps (50)
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4.5.1 Determination of the curvature and strains at the pole

A spherically shaped surface near the pole (best-fit sphere) is assumed for the following
calculation of the curvature and strains. The area of the dome with the highest deformation
is selected in the last image before bursting takes place and defined as the location in which
the true stress and the true thickness strain (&3) should be assessed. The best fit sphere can
be evaluated based on a selected area of points in order to obtain a stable radius of curvature

of the dome (50).

Herein, points inside the radius (r1) around the pole in the last image (time step) before
failure are chosen in a best sphere fit to obtain the radius of curvature, rather than employing
a spherometer. The same selection of points are used for all forming stages. The
disadvantage of this method is that depending on the deformation in the final stage more or
less points are included. The consistency is improved by applying it to all points within an

initial radius or within a current radius (r1) (50).

Similarly, instead of using an extensometer the thickness strain of points within a radius
(r2) is averaged. The points within that radius are also selected in the last image before

bursting and that selection applies again to all forming stages (50).

As it is illustrated in the next figure, a radius (r1) is defined around the apex of the dome
in the last image before bursting and the fit is performed for all forming stages with the same
selection of points. A certain number of the first forming stages (images) are rejected, since
the specimen is still too flat for a reliable determination of the best-fit sphere, since the
bending radius is very large and the fit is not stable. For robust values of the true strain and
thinning in the apex, the average value of a number of selected points is taken. Therefore, a

second area is defined by a radius 2 in a similar manner (50).

Based on this procedure, after measuring the radius of curvature and the average
thickness strains for every forming stage (image), the corresponding thickness and stress
values at the dome apex are then calculated accordingly. This evaluation can be carried out
for different (r1) and (r2) values. However, for a good convergence and robust values, the

recommended range of (r1) and (r2) is defined as in the following figure,
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Figure 88 Choice of r; and r; for calculation of true stress and true strain for each forming stage (50)

4.5.2 Calculation of biaxial stress-strain curves

For the derivation of the biaxial stress-strain curve, both radius of curvature and thickness
strain at dome are already known through optical measurements; thus, in the next step to
achieve this goal, a simple membrane stress state of a thin-walled spherical pressure vessel

is considered at the centre of the blank (50). This leads to the following simplifications:
(a) As before, an equibiaxial stress state is assumed,
Ox =0y, =0p
(b) Defining the curvature by the mean curvature radius (p,) at the pole.

Then the biaxial true stress can be evaluated using the following equation,

_ DPa
%=

Where the radius of curvature is the average radius of curvature using equation (p,),

established on the outer surface, and (p) is the measured fluid pressure.
According to the definition of the thickness strain (&3), actual thickness will be,
t =tyexp(es) .

Assuming plastic incompressible deformation of the material and neglecting elastic
strains, the total thickness strain for the calculation of the actual thickness can be estimated

by the total major and minor true strain on the outer surface,

€3z_€1_€2 .
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Employing the plastic work principle, the biaxial stress-strain curve is a function of the
plastic strain in thickness direction: oy, (sg l). Provide that the material has an isotropic linear
elastic behaviour and taking into account the volume consistency (plastic incompressibility
rule), the plastic thickness strain can be obtained by,

1—v
E

!
e =—e—e,4+2

Op .

It is important to note that the die diameter to thickness ratio should be large enough to
ensure a near membrane stress state in the specimen, and an inconsiderable effect of
bending (50). Therefore, there is no prescription for bending correction, except for die
diameter to thickness ratios lower than 100, where it is recommended to observe if the
bending strains are comparatively small with respect to the actual thickness strain result

(€3) using the following estimate for the bending strains (50),
Lo
Epending ~ —ln (1 - Zexp(%)) .

4.6 FROM YIELD POINT TO FRACTURE BY COMBINING TENSILE

TEST DATA WITH BULGE TEST DATA

4.6.1 Introduction

Since neither the tests are able to describe accurately the whole material’s plastic
behaviour, a complete description can be achieved merely through combining the data
coming from the two tests; so that, the deformation around the yield point is evaluated from

tensile test, while the rest of the flow curve is derived from bulge test results.

It 1s observed that the flow curve obtained from the bulge test is normally placed higher
compared to tensile test for the same level of strain, however there are exceptions like

DP600, and an aluminium alloy studied here (54).

Furthermore, the anisotropy values resulted from bulge test are smaller in comparison
with that of the tensile test. This may come from the fact that in the bulge test the anisotropy
values are obtained for strain range of 0.05 to 0.4, while in tensile test it is measured at strain

of ~0.2 (54).
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4.6.2 Tensile test data extrapolation using scaled bulge test data

Briefly, the aim of this section is to extrapolate tensile test data beyond UTS, by
exploiting bulge test results. The following procedure is prescribed by ISO 16808-2014.
Herein, the approach is introduced first and then will be implemented in some materials

tested in CRF’s labs.

Usually, the true stress-strain curve, determined from uniaxial tensile test data in rolling
direction, is employed as a reference for hardening evaluation and the calculation of the
stress points of the yield locus. On the other hand, bulge test provides equibiaxial stress-
strain curves, where the average of the major and minor stress from the bulge tests can be

drawn against the absolute value of the plastic true thickness strain (50).

The approach used for the evaluations of the equibiaxial stress ratio and scaling bulge
test results to extend the unmiaxial stress-strain curve beyond uniform deformation is
described in the following according to ISO 16808-2014 prescription. By comparing the
curves of the ‘stress-strain data of the equibiaxial stress state’ with the ‘uniaxial reference
curve’, the equibiaxial stress point can be derived and the equibiaxial stress-plastic strain
curve can be converted to an equivalent stress-plastic strain curve presenting work

hardening data at strains higher than the uniform elongation (50).

The method described in this section is merely one of the approaches for studying the
stress-strain data from a bulge test. However, it is mentioned in the standard that: “it is the
responsibility of the operator to observe whether the underlying assumptions are fulfilled
adequately in a way that it is in line with the actual material behaviour” (50). The following

assumptions are made based on ISO 16808:

e isotropic hardening,

e the yield locus shape does not change with the strain,

e the work hardening is independent from the strain path (loading path),

e the loading path and strain path of the test are constant,

e the strain rate and temperature of the bulge test are close to the strain rate and

temperature of the tensile test.

In order to enable extrapolation in the post-uniform strain range of the tensile test, as a

reference value for the equivalent strain (&g_,ef), the true plastic strain at Uniform

Elongation of the tensile tests (g;_yg) in the rolling direction is chosen,
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€1-UE = €E-ref
It is the last valid point of the true stress true strain curve of the tensile test, from which
the hardening curve will be extrapolated using bulge test data.
As far as a reference value for stress is concerned, the stress at the uniform strain of the
tensile tests is used as the reference flow stress (0y_rer) 1.€. the ultimate tensile strength

transformed to a true stress.

The corresponding reference stress value of the bulge test (05_,.r) are looked up by

comparing the two sides of the following equation,

Op—ref - |53—ref| = Of_ref - EE—ref -

€5_rey 1s defined as the corresponding reference thickness strain for the bulge test.

Since the bulge test curve consists of discrete values, there might not be a pair which

completely satisfies the condition shown in the above formula. Therefore, the point (m) in
the bulge test data matches the following condition,
Op,m - |€3,m| < Gf—ref -EE—ref

and
0B,m+1 - |€3,m+1| = Gf—ref -EE—ref

The requested reference stress of the bulge test can now be computed by simple linear

interpolation,

OB m+1 — OBm

—-r - A . — . — - , . A .
Op ef O-Bm+ (Gf ref €E ref Opm |53m|)

OB m+1 - |g3,m+1| — Opm - |€3,m|
The value of the hiaxial stress ratio (fy;) is obtained by,

UB—ref
foi = L.
Of—ref
With the biaxial stress factor (fp;), the bulge test curve can be transformed into an

equivalent strain-stress curve,

O =
T o
epk = | &3kl foi
In combination with uniaxial stress-strain curves from tensile tests, this transformed
curve can be used to generate a hardening curve with data extrapolated beyond strain at

uniform elongation.
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The method is shown graphically in the following figure,
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Figure 89 ISO 16808 approach for extrapolating tensile test data with bulge test (50)

4.6.3 Plotting flow curve using anisotropy of the material

In a study at CPF'’, researchers have proposed a new method by considering anisotropy
of the material in order to achieve a more accurate determination of the flow stress data from
the actual yield point up to the largest strain values obtained from the bulge test. As it was
highlighted before, combining the tests can provide more accurate flow stress curve ranging

from yield point to the strain at failure in the biaxial stress condition (55).

Benefiting from the following formula, the result of the tensile test (engineering stress-
strain data), can be converted into true strain-stress values, that is essential before combining
them with the bulge test results.

Etrue = IN (1 + eng)
{Gtrue = Oeng(1 + €eng)
Since the tensile test provides the uniaxial yield stress, this value is converted to the

biaxial stress using the following equation,

3 Center for Precision Forming, The Ohio State University
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- s (1 +1y)r90
biaxial = Ouniaxial |~ [ .. -
axia uniaxia ro + _r90

Where 1, and 19, are the Lankford coefficients defining the anisotropy of the material in

rolling and transverse directions, respectively. The biaxial yield stress (derived from the

above relation) would become as the first point of the flow stress curve. This point is

included in the data point obtained from the bulge test, and the curve is fitted into these data

points (55).
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Figure 90 converting uniaxial test result to biaxial considering anisotropy (55)

0.4

With this method, the flow stress curve entails both the large strain levels from the bulge

test and the accurate yield point obtained from the tensile test. This method was exploited

extensively at CPF to determine the flow stress of a variety of advanced, high-strength

materials, including CP800, DP590, DP980, TRIP1180, TWIP900, and TWIP980 (55).
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4.7 POST-NECKING IDENTIFICATION USING ISO 16808

PROCEDURE

In this section the proposed approach in ISO 16808 is employed to identify the flow stress
curves of Aluminium 6000 and DP600 steel.

4.7.1 Aluminium 6000 Novelis

The specimen’s geometrical and mechanical characteristics, derived from uniaxial tensile

test, are given in the table below,

R, (N/mm?) 273.84 Tensile strength

Stress corresponding to the maximum force (Fm)

Proof strength, non-proportional extension,
Stress at which a non-proportional extension is equal
2
Rpoz (N/mmt’) 146.81 to a specified percentage of the extensometer gauge
length (L.), normally 0.2% .

Percentage of elongation after fracture,
permanent elongation of the gauge length after fracture
(Ly— Lo), where:
A (%) 24.47 final gauge length (L.): gauge length after rupture of
the test piece,
original gauge length (L.): gauge length before

application of force.
Ag (%) 22.87 Percentage of total elongation at maximum force (Fu)
E (N/mm?) 58610.80
r@8.00-12.00% 0.55
r @10.00% 0.57
n @4.00-6.00% (%) 0.28
n @10.00-20.00% (%) 0.26
Thickness (a) (mm) 2.10
Width (b) (mm) 20.13
Parallel length 110.00 Parallel portion of the rec?ltlc)ed section of the test piece
Original length 80.00 Gage length before application of force (L)
Original extensometer .
length 80.00 Original extensometer gage length

Engineering stress — strain curve as well as flow stress curve obtained from tensile test
are shown below, where the last valid data coming from tensile test (regarding to the end of

uniform elongation) is also highlighted,
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Figure 91 Engineering stress — strain curve aluminium 6000 Novelis
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Figure 92 True stress — strain curve aluminium 6000 Novelis

The following figure, shows the flow curves derived from both tensile and bulge test for

this material,
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Figure 93 true stress — strain curves for tensile and bulge tests aluminium 6000 Novelis

Up to the end of the uniform elongation, significant fluctuations in bulge test results is
evident; besides, tensile test gives larger flow stress values than bulge test in this range.
Thus, as discussed before, for smaller value of plastic strain around uniform elongation,

tensile test data seems to be more reliable, while for large strains we can extrapolate tensile

test based on bulge test results.

4.7.1.1 Tensile test extrapolation in the post-uniform strain range

First step: evaluation of the true plastic strain at uniform elongation (&;_yg) in the rolling

direction is chosen as a reference value for the equivalent strain (€g_yref),

€1-UE = €E—ref

According to the data provided by the supplier,

A
E1-Uyg = In [1 + ( gt/].OO - Rm/E>] = 0.2021 = £E—ref '

Second step: the stress at the uniform strain of the tensile tests is used as the reference
flow stress (05 _rer) 1.€. the ultimate tensile strength transformed to a true stress. However,
since the exact data point corresponding with the uniform elongation (i.e. Agt, Rm pair) does

not exist in the data set, the stress value related to the uniform elongation will be read and

used instead of given R,
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O ey = 331.92MPa .

Third step: finding the point (m) in the bulge test data satisfying the following condition,

OB,m - |€3,m| < Uf—ref -EE—ref
and

0B m+1 - |53,m+1| 2 Of _ref - EE—ref
Where, is derived as, 0f_ef . €g_rer = 67.089MPa. Now, having this in mind, we

should go through the bulge test data and look for the biaxial stress-thickness strain pair
giving the same value. So that, the requested reference stress of the bulge test can now be

computed by simple linear interpolation,

O0pm+1 — 0Bm

OB—ref = Opm + -(af—ref -€E—ref — OBm - |g3,m|) .

OB m+1 - |53,m+1| — Ogm - |53,m|

Here, according to the bulge test data, og_,of = 322.77 MPa.

Fourth step: biaxial stress ratio (fj;) calculation, obtained by,

_ Op_rer 32277

= = = 0.972
O-f—ref 331.92

fbi

As described before, extrapolation is done by adding the bulge tests data at equivalent

strains larger than the uniform strain of the tensile test to the uniaxial stress strain curve.

According to the above-mentioned procedure, the following result for tensile test

extrapolation is obtained,
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Figure 94 flow stress curve from tensile test data extrapolation with bulge test-aluminium 6000 Novelis

o Swift/Hockett-Sherby hardening law

In this section, Swift/Hockett-Sherby hardening law is applied to tensile test results,

where also the result will be compared with the extrapolation using bulge test.

Firstly, we consider the extrapolation of tensile test data only through applying SHS
hardening law, where merely the error coming from the strain range below uniform

elongation is considered. The observed RMSE of fitting SHS 0.75 is calculated to be 0.73.
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Figure 95 tensile test extrapolation using SHS hardening law-aluminium 6000
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With regard to the tensile test data extrapolation using bulge test data, as the number of
data points resulted from tensile test is much larger than that of bulge test, in order to reduce
the error and have a better hardening law fitting, we need to have a uniform distribution of
data points along the strain range. To see the effect of data refinement, a comparison is

made to show the quality of curve fitting in figures below,

So without data refinement,
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Figure 96 tensile test data extrapolation using bulge test data fitted by SHS hardening law-without data
refinement

With data refinement,
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Figure 97 tensile test data extrapolation using bulge test data fitted by SHS hardening law-with data
refinement
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It can be concluded from the above figures that, data refinement will lead to better fitting

for strains larger than uniform elongation, while it leads to negligible error for small strains.

In case we need to import the result into AutoForm software, we need 50 data points

coming from SHS 0.75 hardening law curve fitting as shown in the next figure,
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Figure 98 50 data points required to import into FEA SW-aluminium 6000

Furthermore, we can also observe the effect of tensile test data extrapolating with bulge
test data, by comparing it with the case in which solely SHS 0.75 hardening law curve is

fitted to the tensile test data before yielding,
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Figure 99 tensile test extrapolations comparison using bulge test data and SHS hardening law-
aluminium 6000

141



e k-exponent function

The capability of k-exponent function as a fitting function for aluminium 6000 is

observed here and a comparison is also made with HS hardening law.
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Figure 100 A16000 flow stress curve fitting, k-exponent function and HS hardening law using ISO16808

k-exponent function resulted in the lowest RMSE value among other hardening laws,

with a very good behaviour in low values of strain.
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4.7.2 DP600 1.2mm Arcelor

The specimen’s geometrical and mechanical characteristics derived from uniaxial tensile

test are given in the table below,

Tensile strength

2
R (N/mm’) 583.51 Stress corresponding to the maximum force (Fm)
Proof strength, non-proportional extension,
Ryo.2 (N/mm?) 35031 Stress at which a non-proportional extension is equal to

a specified percentage of the extensometer gauge length
(Le), normally 0.2% .

Percentage of elongation after fracture,
permanent elongation of the gauge length after fracture
(Ly — Lo), where:
A (%) 26.29 final gauge length (L.): gauge length after rupture of
the test piece,
original gauge length (L,): gauge length before
application of force.

Agt (%) 19.88 Percentage of total elongation at maximum force (Fu)
E (N/mm?) 79298.27
rm @ 4%-16.00% 0.90

n @4.00-6.00% (%) 0.25
n @10.00-20.00% (%)  0.21

Thickness (a) (mm) 1.21
Width (b) (mm) 19.69
Parallel length 110.00 Parallel portion of the rea;LLtf)ed section of the test piece
Original length 80.00 Gage length before application of force (L)
Original extensometer 80.00 Original extensometer gage length

length

4.7.2.1 Tensile test extrapolation in the post-uniform strain range

Working on the data sheet given by the supplier, the corresponding flow curves for tensile

and bulge tests can be shown as below,
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Figure 101 True stress — strain curve DP600
To extrapolate tensile test data beyond uniform elongation, again we follow the following
steps,
First step: the reference value for the equivalent strain (€g_r.r) is considered to be the

true plastic strain at uniform elongation (&;_yg),
€1-UE = EE—ref

According to the data given by the supplier, (N.B. since the given ultimate tensile strength
data point, corresponding to the uniform elongation, cannot be found exactly in the data

sheet, the stress value at uniform elongation will be used instead of Ry, in the next relations).

A
€1-vE = In [1 + ( gt/lOO - Rm/E)] =0.1752 = SE—ref .

Second step: the stress at the uniform strain of the tensile tests is used as the reference

Slow stress (05 _rer) i.€. the ultimate tensile strength transformed to a true stress. However,
as discussed before, this value will be substituted by the stress value given in the data sheet

in front of the uniform elongation,

O/ ey = 700.37 MPa .

Third step: The reference stress in the bulge test should be through this simple linear

interpolation,
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OB m+1 — OBm

O-B_ref - O—Blm i O-B,m+1 ' |€3,m+1| - UB,m . |€3,m| . (O-f_ref IEE_Tef - O-va . |€3'm|) .

While 05 _yef . €p_rer = 122.67MPa.
Here, according to the bulge test data sheet, op_rof = 743.66 MPa.

Fourth step: biaxial stress ratio (fp;) calculation, obtained by,

 Op_rer  743.66

fbi B Of—ref B 700.37

= 1.054 .

The following figure shows the result of the above procedure in order to extrapolate
tensile test beyond uniform elongation. As discussed before, bulge test cannot present
properly the behaviour of the material for strains below the uniform elongation, while on the
other hand, data derived from tensile test above uniform elongation is not valid. Hence, to
have a good observation, both tests are required to be conducted.
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Figure 102 flow stress curve from tensile test data extrapolation with bulge test-DP600

o  Swift/Hockett-Sherby hardening law

We can also apply Swift/Hockett-Sherby hardening law and observe the fitting error.

Moreover, the result will be compared with the extrapolation using bulge test.
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Firstly, we consider the extrapolation of tensile test data only through applying SHS

hardening law, where merely the error coming from the strain range below uniform

elongation is considered.
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Figure 103 tensile test extrapolation using SHS hardening law-DP600

Data refinement to obtain quality hardening law fitting is also applied here. A comparison

is made to show the quality of curve fitting in figures below,

Without data refinement,
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Figure 104 tensile test data extrapolation using bulge test data fitted by SHS hardening law-without data

refinement
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With data refinement,
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Figure 105 tensile test data extrapolation using bulge test data fitted by SHS hardening law-with data
refinement

By employing SHS 0.75 the lowest RMSE of 11.33 is attainable.

To make data usable as an input for AutoForm, the 50 data point are reported in the

following figure,
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Figure 106 50 data points required to import into FEA SW-DP600
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In order to see the effect of using bulge test data in extrapolating tensile test, we can
compare the above result with a case in which the extrapolation is done only by minimising
the sum of the residuals up to yield point,
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Figure 107 tensile test extrapolations comparison using bulge test data and SHS hardening law-DP600
e k-exponent function
K-exponent function is employed in order to compare its fitting ability with that of
Hockett-Sherby hardening law.
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Figure 108 comparison between the flow stress curve fitting of DP600 using ISO 16808
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As it can be seen from the above figure, k-exponent provides a very good fit for small
values of strain than HS; however, HS performs better in large deformation. It can be
concluded that a linear combination of k-exponent function and a non-saturated hardening

law can attain a very acceptable outcome.

149



CHAPTER FIVE: POST-NECKING TENSILE STRESS—
STRAIN BEHAVIOUR IDENTIFICATION OF AHSSS

USING DIGITAL IMAGE CORRELATION TECHNIQUE
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5.1 INTRODUCTION

t is well known that in tensile testing, the uniform extension will be limited when the
Itensile load reaches a maximum value of the material. At this point the test sample
starts to neck; so that, the state of stress changes progressively from the simple uniaxial
tension to a complicated condition of triaxial stress in case of a round bar or to a biaxial
stress state for a thin strip. Because the onset of necking hinders the assumption of uniaxial
state of stress, it is impossible to determine a uniaxial true stress-strain relation by the
standard tensile test once necking starts to progress. Thus, for applications in which strain
exceeds its value at the onset of necking, merely the standard tensile test cannot provide
adequate information for material modelling. It will considerably limit the use of FEM for
large deformation applications, such as contact forming. Hence, some methods have to be

found to identify the post-necking behaviour (74).

It is already demonstrated in chapter two that the hardening behaviour beyond necking
can be estimated by extrapolation of the hardening behaviour before the point of maximum
uniform elongation. Unfortunately, EM may yield to different results, depending on the

hardening law which is fitted to the available experimental data.

5.2 BRIDGMAN METHOD: YES, BUT NOT FOR A FLAT SPECIMEN

Bridgman method (75) has already been

discussed in chapter three. Herein, based on
a number of assumptions, it will be seen why Fiber

this method cannot be used in the case of flat

samples!

¥

€

Radlal Axis, r

He had three main assumptions, in

S S ———

developing a method aimed at finding the

true stress-strain relation beyond necking for

a round bar (74),

(A) The strain distribution in the minimum section is uniform,

&, radial strain
£ =& = —— & hoop strain
&, axial strain
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Aronofsky (76) has shown that they can be assumed uniform across the minimum section.

Therefore assumption (A) can be considered reliable (74).

(B) A longitudinal grid line is deformed into a curve at the neck so that its curvature

1/p iS,
p radius of curvature of the grid line
1 r T radius of actual cross section
’[_) = aR a radius of the smallest cross section

R radius of curvature of the neck

This hypothesis (B) was verified experimentally by Davidenkov and Spiridonova (77).
(C) the ratios of the principal stresses remain constant during loading.

Assumption (C) is not fully verified although it can be assumed as a first approximation
(76). Besides, FEA (78) has demonstrated that the stress distribution at the minimum cross

section can be approximately defined by Bridgman’s equations (74).

Consequently, it is acceptable that if (a) and (R) are precisely observed, Bridgman’s
correction method can calculate the true stress-strain relation beyond necking as a first

approximation in a rod (74).

However, Bridgman’s correction method is not a handy method in practice; a set of
experiments with various loading conditions is needed to determine the radius of curvature
R and the minimum radius a, which are quite problematic (74). Bridgman also extended his

correction method to flat bars; however, it is proved that necking for flat samples is far more

complicated compared with rods with their circular cross section (74).

Generally, for thin strips two types of instability (flow instability) can be considered;
o Diffuse Necking (longitudinal necking)

Its span is much larger than the sample thickness, and is similar to necking in rods. It may
end in fracture but is normally followed by another instability process, called localised

necking.
o Localised Necking of thin strips

Here the neck is a narrow band inclined at an angle to the specimen axis (oblique line),

as shown in figure below (74).
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The difference between localized \ )

and diffused neck during necking
of a thin strip is clear in the figure. ( A\
R

Localised neck

Diffused neck

Figure 109 the difference between localized and diffused neck during necking of a thin strip (74)

As soon as localized necking takes place, the width of the sample contracts, but the

thickness along the necking band shrinks more, and fracture can happen after a while.

Bridgman’s correction method for flat samples does not take into account localized necking,

and so based on the studies of Ling (74), it cannot be applied successfully to flat specimens

as all three assumptions were found not to be applicable for flat strips case,

As it is shown in the following sections, the strain distribution at the minimum cross-
section becomes considerably non-uniform when localized necking begins.
Furthermore, the average axial strain is evaluated significantly smaller than the
maximum axial strain at the minimum cross section (76). Hence, even though the
instantaneous dimension of the minimum section is already obtained (to compute
average axial strain), the equivalent strain is still required to be obtained. As it is
implemented here, more complicated techniques such as DIC technique have to be
employed to assess strain fields across the minimum cross section (74).

To obtain the equivalent uniaxial stress, the stress distributions (g, and g,,) in the
minimum section must be obtained, where based on Bridgman’s method, it requires
to calculate the curvatures of the longitudinal grid lines during necking. However,
in order to measure the curvature, the outer profile and many other longitudinal grid
lines across the minimum section should be observed; based on this, Aronofsky’s
experimental work suggested that, Bridgman’s curvature assumption cannot be
applied to flat samples, as this procedure would make the testing difficult and time
consuming (74).

stress ratios do not remain constant during loading, where the incremental theory of
plasticity should be implemented; this adds more complexity to the analytical
solution for the stress distribution at the minimum section (74). This fact not only
can be seen in the stress distribution pattern (from uniaxial to biaxial) in the necked
zone of the specimen, but as it is discussed later, it also provides us with a better

prediction of plastic instability.
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5.3 BEHIND THE SCENE: THEORY

In order to describe the plastic behaviour of a material in a general stress state, three

elements are required to be employed (48),

e a Yield Criterion: a relationship between the stress components at the moment

when plastic ‘yielding’ occurs,

e an Associated Flow Rule: a relationship between the components of the plastic

strain rate and stress,

e a Hardening Rule: the evolution of the initial yield stress during the forming

process.

Yield function is a relationship among the principal stresses specifying the conditions
under which plastic flow occurs (48), and normally is defined in the form of an implicit

function, like,

f(ali 03,03, Y) =0
Where g, 0, 03 are the principal stresses and Y is the yield stress obtained from a simple

test (tension, compression or shearing).

Within the range of elastic deformation, the strains are defined by Hooke’s law. Likewise,

for plastic deformation, the relation is called the flow rules (2). In the most general form the

aO'ij

flow rule can be written,

Regarding to the flow rule, one can
interpret it as the vector sum of the plastic ”

strains which is normal to the yield

(biaxial tension)

surface, this is also called Normality oy

Principle (2). In two-dimensions, it can be "

illustrated as in the figure. So that, if a i i

material is loaded uniaxially beyond its

(uniaxial tension)

yielding point, the resulting plastic strain

is represented by a vector, de, normal to

the yield surface, which is the vector sum

of degq, de,.
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5.3.1 Hill’s 1948 Yield Criterion: A short review

Theoretical background is described here in considerable details. One can implement
even more suitable models to define instability in sheet metal forming. However, obviously,
employing more advanced methods needs more parameters to be considered and defined.
This fact emphasizes the compelling urge to exploit numerical simulation and mathematical

relations in parallel with benefiting from 2D/3D DIC technique.

In 1948, R. Hill proposed an anisotropic yield criterion as a generalization of the Huber-
Mises-Hencky criterion (79). The material is supposed to have an anisotropy with three
orthogonal symmetry planes, and the corresponding yield criterion is defined by a quadratic

yield function as the following,

2f(0i;) = F(022 — 033)% + G(033 — 011) + H(011 — 02,)* + 2Loks + 2Mo} + 2Nog, = 1
Here f'is the yield function; F, G, H, L, M and N are constants specific to the anisotropy
state of the material, and x, y, z are the principal anisotropic axes. In the case of sheet metals,
axis / is normally parallel to the rolling direction, axis 2 is in the transverse direction and
3 is collinear with the normal direction; so that, the yield criterion may be interpreted as a
surface in a six-dimensional space of the stress components. The points located inside the
surface represent the elastic states of material deformation, while points on the surface

correspond to the plastic state (48).

For the case of plane stress (033 = 031 = 0,3 = 0; 041 # 0; 0,5, # 0; gy, # 0), the

yield criterion becomes,
2f(0ij) = (G + H)oX, — 2Hoy,04; + (H + F)o, + 2Nof, = 1
In case the principal directions of the stress tensor are coincident with the anisotropic
axes, (i.e. 01 = 0y, 033 = 0,,071, = 0), and simplifying constants, F, G, H and N in terms
of anisotropy coefficients r, and 19y, the following equation can be obtained,

2179 ro(L+719) , 1o(1+7190) ,

2
——040 oy = o
1+ 172 T90(1 + 1p) 2 T90(1 + 1p) 920

01

This follows that in order fo define the yield under plane stress condition, three
mechanical parameters, namely the coefficients 7y and r9p and one of the uniaxial yield

stresses gy (or ggq) are needed.
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Assuming a material exhibiting only

normal anisotropy (ro =199 =71) and gy =

1.5

Oy » SO that the previous equation can take the
1.0 4

following form,

2r 0.5
012—1 0,0, + 07 = o
+r % 0.0
Where o, is the initial uniaxial yield
. . . . . _0.5
stress. With regard to isotropic hardening, if
the wuniaxial yield stress increases (i.e. -1.01

loading the material beyond initial yield 15
stress), the yield surface expands uniformly oY

(48).

In this special case of Hill’s general anisotropic yield criterion, the equivalent stress (0,4)
is a function of the principal stresses (o; and o0, ) and the normal anisotropy coefficient (r).
In case x and y directions are aligned with principal directions, the Hill’s 48 yield criterion

can be rewritten as (48) (80),

2r
2 2 2
oy ———0,0, +05 =0
o144 XYY T

Herein, in order to correct the local stress and strain states at the neck and to obtain a

relation between the stress and corresponding plastic strain during deformation process,

Hill’s normal anisotropic yield criterion and strain fields (measured by DIC technique) must

be employed in parallel.

By defining stress ratio a, as the ratio of minor stress and major stress, the yield criterion

can be rewritten as,

Iy 2 2
a =— = —
oy Ogq = Ox (1

a+a2>
1+r

Similar to the idea of Bridgman’s correction factor (the ratio of equivalent stress (gq)

and axial or major stress, 0, ), this approach provides an instantaneous true stress correction
factor for the ‘stress evaluated at necked zone’ (80). True local average stress along loading

direction at the necked region (major stress, g,) can be determined from,

Ox = Ogngx €% .
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Since the equivalent stress and strain will be determined by introducing correction of
local stress and strain state at the necked region, using DIC technique, local average strain

at neck must be inserted in the above formula for &,..

The normal anisotropy coefficient (r) is defined as the ratio of width strain increment
(dey) and thickness strain increment (de,,),

dey

r= :
de,

de,, and de, can be easily measured directly from 3D DIC experiment. However, since
2D DIC technique is used in the lab, de, can be calculated from volume consistency

condition. Considering volume remains constant during the plastic deformation, one can

obtain,
de, = —(de, + dey) .

Where de,, de, and de, are the increment in true strain in the width, axial and thickness

directions, respectively. In this way, normal anisotropy can be rewritten as,
. de,
—(dey +dsy)

Introducing strain rate ratio (), as the ratio of minor strain rate and major strain rate,
one can take the advantage of ‘critical (limit) strains’, by taking into account a proper
hardening law (the same procedure to obtain critical strains is also described for MMFC
method). Herein, Ramberg-Osgood strain-hardening law is implemented in Hill’s 48 yield

criterion, where swift’s model is considered for the domain of unstable plastic straining.

As it is discussed in chapter two, the beginning of necking corresponds to the maximum
of the traction force (Considere criterion). From the mathematical point of view, this
condition can be written as, dF = 0. Following simple mathematical manipulations, the

condition of plastic instability is obtained,

do

de ¢
Assuming RO strain-hardening law,

o=kegy .

Then, the condition of plastic instability becomes,
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g =n.
In other words, according to Considere criterion, a material obeying the RO hardening

law starts to neck when the plastic strain is equal to the hardening coefficient.

Swift (42) used the Considére criterion in order to

determine the limit strains in biaxial tension. He af 2 af ., of

‘71( ) 2( )(60
analysed a sheet element loaded along two g = : 1
perpendicular directions and applied the Considere 01 (557 5 )2 + 2(—f 2

criterion for each direction. Assuming RO strain
hardening law, he obtained the following expressions
for the limit strains (48).

0f vo o o (9L 9f

. . . — cq 02( ) 1( )(00

fis the yield function. o, = f(a)&, considering & = o7 57 2
the simplified equation for Hill’s 48. 01(gg)" + 02(55)*

Thus, the limit strains are derived as functions of the loading ratio o and the mathematical
parameters of the material (hardening coefficient n, anisotropy coefficient r, strain-rate

sensitivity m, etc), as long as a certain yield function is available.

In the present work, by employing Hill’s 48 yield criterion, the limit strains are obtained

as,
. [1+r(1—a)]( 12+ra+a) . [(1+r)a—r](1 12+ra+a)
f1= 1+4r+2r AN f2 = 1+44r+2r AN
(1+T)(1+(Z) (1—W +(X) (1+T’)(1+(X) (1—W +(Z>

Going back to the strain rate ratio, now one can obtain the ratio in terms of 7 and «a using

the above relations,

A+r)a-—r
l1+r—ra

ﬁ =
However, since finding strain rate ratio and normal anisotropy are not a difficult task

through image processing, the inverse relation is much more beneficial here,

_&_(1+r)ﬁ+r

o, 1+r+71p

Employing incremental work per volume definition ( dw = o;de; + 0,de; + 03de; =
Ocqd€.q) and considering biaxial state of stress (o3 = 0), ‘equivalent plastic strain’ can be

found by,

o
OpqdEeq = 01de; + 0yde; = o1de; (1 + af) —  d&g = d€10—1(1 + ap)
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From the flow rules, strain increment ratio was written previously in terms of normal
anisotropy and stress ratio. Thus, now, equivalent strain increment can be deduced in terms
of strain increment ratio and normal anisotropy,

o A+r)B+r
deog = dey (14 SEDEXT g)
Oeq 1+r+r1p

Rewriting 01 /0,4 in terms of » and /3, the final relation for equivalent plastic strain

increment can be found as follows,

1+r 5 2r
s TN R

All in all, this method is aimed at evaluating equivalent stress and equivalent plastic
strain by taking into account a specific strain hardening law, a yield criterion and DIC
technique results. The resulted equivalent stresses and strains can be interpreted as the

corrected true stresses and strains at necked region during deformation, respectively.
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Figure 110 equivalent stress and equivalent plastic strain flowchart

160



5.4 NECKING: CRITERIA AND MECHANISM

Generally, two types of behaviour can be seen in metallic materials subjected to plastic

deformations:

e Hardening, caused by the accumulation of plastic deformation,
e Softening, caused by the section reduction and the imperfections as well due to

the deformations inside the material.

As long as the hardening effect is the dominant one, the localized necking can be ceased;
looking more closely, the adjacent material will deform further if the localized deformation
produces larger force than the force induced by the adjacent material. Localized necking will
take place when the material’s maximum force is reached, and the deformation cannot be

passed to the adjacent material (81).

5.4.1 Criteria and prediction

In contrast with the Considere criterion, in which only the strain hardening effect was
included, there are some other factors affecting the hardening behaviour, and so must be

considered in the study of necking; the strain state by necking plays an important role, beside

the strain rate and the temperature (81).

During the localized necking, the material deforms under plane strain condition. Within
the uniform deformation period of a simple tensile test, the stress component in width
direction (c2) is zero, but its value starts to increase during the diffuse necking.

Consequently, the increment in the tensile stress (o;) comes from two factors; firstly because

of the hardening effect, and secondly due to the change of the stress state. The material

remains quasi-stable without the risk of rupture before the occurrence of plane strain
condition. However, gradually the material loses its capability to carry more force, and
eventually fails where further deformation will be localized, leading to rupture in the sheet

material (81).

As we will see in the following, the engineering strain-stress diagram obtained from
tensile test reveals that as the deformation continues, material failure does not take place
immediately when force reaches its peak value; interestingly though, the reaction force
inside the specimen remains almost constant until the onset of localized necking. While the

reduction in the loading force shows the imminence of rupture in the specimen (81).
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Hence, the maximum force criterion cannot be a comprehensive approach to precisely
anticipate the fracture. Based on the point of view, the Modified Maximum Force Criterion

(MMFC) was proposed (81).

Herein, the introduction of the MMFC model is merely aimed at presenting a more recent
(which is still extending) and at the same time a more exact method to predict necking rather
than the Considere criterion. The study of this model is presented at Appendix B, and can

be considered in future observations.

5.5 TENSILE TEST RESULTS OF CP 1400HD SUBSIZE SPECIMEN

USING DIC TECHNIQUE AND GOM CORRELATE SW

For detailed analysis on necking and obtaining average values of local strain components
(ex and &y) at various overall tensile strain levels, a transversal section, at the necked region

is chosen as shown in the figure,

transversal section at neck

Figure 111 the position of the transversal section at neck-GOM SW

In this section, a transition from uniform strain distribution to a non-uniform one can be
anticipated when the strain level inside the specimen rises. Up to the point of maximum load
(diffuse necking), the deformation is almost uniform along the specimen GL. From diffuse
necking until the formation of localised bands, where the deformation is no longer uniform
and uniaxial, the evaluation of the equivalent stress and equivalent plastic strain in the

necked region is the main goal of the following discussion.

Localised necking is always accompanied with void formation; since the volume
constancy law is only valid up to the small amount of void formation in the necked section,

this method can be safely used up to the deformation localisation in the specimen (82) (80).
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5.5.1 Position of the neck

The uniform elongation of material ends gradually with the concentration of deformation
at a local region, where the location must be known in order to study the local strain
distribution which in turn is crucial here to obtain the equivalent stress and strain values

during the test.

In this section, firstly, benefiting from the three longitudinal sections constructed along
the GL in GOM, the position of the neck will be evaluated. Then, transversal section at
necked region is also built to monitor the strain distributions both parallel (&, ) and

perpendicular (g, to the tensile direction.

Although the local strain distribution along the GL will be observed in more detail in the
next section, the distribution for larger values of overall strain is presented here in order to
evaluate the position of the neck. Below, local distribution of &,,, is shown up to 8.31%

engineering strain level,

7.23% engineering strain

0.1
0.09 _
top section
0.08 W _ _
/%f’ ——— middle section
0.07 .
E:J\ s \/ bottom section
5 oo0s
8
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~ 003
0.02
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0
0 5 10 15 20 25 30 35
distance along the specimen length [mm]
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X
[
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Figure 112 local long. strain distribution along the GL at 7.23% engineering strain level
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7.73% engineering strain
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Figure 113 local long. strain distribution along the GL at 7.73% engineering strain level
By comparing the trends of longitudinal strains in three sections (top, middle and bottom),
it can be concluded that prior to localised necking longitudinal local strain in all the sections
along the GL have the same variations. However, as deformation goes on, different trends
can be seen in the three sections. As an example, at 8.31% overall specimen engineering

strain, we can see peaks form at different locations along the GL, in figure below,
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Figure 114 local long. strain distribution along the GL at 8.31% engineering strain level

As discussed before, deformation localisation starts somewhere between 7.47% and
7.92% of total engineering strain. Thus, by observing the corresponding longitudinal local
strain variation in the middle section, we can find the range in which the highest amount of

deformation takes place, before entering the localised necking.

The variation of local strain parallel to the loading direction (€,), along the GL for

gradual increase of total engineering strain in the middle section is shown in the next figure.

0.7 specimen engineering strain
—4.27%
0.6 6.20%
5 —7.23%
= 0 7.73%
« 04 8.56%
= —9.19%
=
& — 0
3 0.3 9.63%
S ——9.93%
=2 02 / —10.38%
10.71%
0.1 _/ :

=

0 5 10 15 20 25 30 35
distance along the GL [mm]

Figure 115 local long. strain distribution along the GL at various engineering strain level-CP 1400HD

It can also be seen that the distribution of the longitudinal local strain is almost uniform

along the GL up to 7.73% of overall specimen strain.
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Perpendicular to the loading direction (&,,), local strain values along the middle section
have negative sign as small facets along the section are contracting. However, the value is
almost half of the corresponding value for local strain in parallel direction to loading (&,).
Here also the occurrence of localised necking is evident although localised necking leads to

a more severe contraction in thickness direction than in width direction.

0 5 10 15 20 25 30 35
0
4.27%
-0.05
6.20%
=~ 773
=2 73
iy -0.1
- 8.56%
g-015 0.10%
5
s 0.63%
S -0.2
~ 0.03%
-0.25 —10.38%
—10.71%
-0.3 specimen engineering strain

Distance along the gage length [imm]

Figure 116 local width strain distribution along the GL at various engineering strain level-CP 1400HD
Strain in thickness direction can be evaluated using GOM, by inspecting ‘thickness
reduction’ menu, where it assumes the volume constancy'® and finds the thickness reduction
regarding this law!’,
de,, = —(deyy + dey,)

However, more precise results can be attained using 3D DIC technique. It is clear to

observe the uniform thickness reduction up to 6.20% engineering strain level in specimen,

16 Volume constancy law is only applicable till localised necking, due to significant void formation in many
materials.

7 Although the volume change associated with plastic deformation is zero, as long as the void percolation
is negligible, the elastic deformation associated with uniaxial tension leads to a non-zero volume change,
which needs to be considered in the calculation of the true stress. Therefore, the more accurate theoretical
equation of the true stress in uniaxial tension, when the void formation is negligible, should be obtained (98).
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Figure 117 local thickness strain distribution along the GL at various engineering strain level-CP
1400HD

5.5.2 Equivalent stress and equivalent plastic strain evaluation

The procedure to obtain the equivalent stress and corresponding equivalent strain starts

with the average values of ¢, and ¢€,, in the necked section which are collected through DIC

technique. Then, benefiting from GOM'® SW strain field can be observed and analysed.

The true stress-strain curve coming from tensile test is only valid up to necking. Within

. ] L. . L .
this stage (6;:1 > 01), the deformation is uniform along the GL, stress is in uniaxial state
1

where the other stress components are zero, and so the equivalent stress is equal to the stress
in loading direction. Thus, one can conclude that, in this range the equivalent stress-strain

curve lies on top of the true stress-true plastic strain curve resulted from test machine.

Quite close to the end of uniform deformation, strain field is not uniform and the stress
state is no longer uniaxial along the GL; values of strain in width and thickness directions
become considerable, and as a result stress state shifts from uniaxial state towards biaxial
one. Thus, equivalent strain and equivalent stress are no longer equal to true strain and true

stress values, respectively, and so true strain and true stress values must be corrected to take

'8 Gesellschaft fur optische Messtechnik mbH
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into account the real behaviour of material. That is why the tensile test data beyond uniform

deformation is neglected, as the trend is not representing the real scenario.

As soon as the stress falls behind the hardening rate, strain increment ratio starts to fight

against this reduction and tries to keep the equilibrium state stable.

True stress-strain curve is derived from tensile test with the assumption of uniform strain
and stress along the gage length in all the sections perpendicular to loading direction.
Starting from Force-Elongation diagram of the test machine, the engineering strain is
obtained simply by dividing the elongation over initial GL, assuming that all the material
along the GL is deforming uniformly (which is only true up to necking, as from necking on,
deformation will be concentrated gradually in the middle part of the specimen). On the other
hand, engineering stress is attained from force over initial section area, so that it describes a
uniform stress distribution in all the sections along the GL (and since no consideration is
taken into account for the variation of section area, also this relation is valid withing uniform

deformation).

This is all to say that data points coming from tensile test beyond necking must be
corrected, while this correction must take into account both the effects of hardening and

strain ratio, as discussed before (81).

Engineering stress values are evaluated by reading the force and knowing the original
cross section area of the specimen, while engineering strain is measured through DIC
technique, by implementing a virtual extensometer in GOM software, along the GL of the

specimen, as shown in figure below,

Figure 118 virtual extensometer in GOM software along the GL
The choice of the extensometer gauge length is based on ISO 6892-1:2019 standard; L.
should span as much of the parallel length of the test piece as possible. Ideally, as a
minimum, L. should be greater than 0.50L, (L., original gauge length) but less than
approximately 0.9L..
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Standard geometrical specification of the subsize specimen, which is introduced in
ASTM E8/E8M, is shown in the following figure, although the specimen used in this study

has slightly different dimensions,

L
- B——I i A i |4— B —
_ R W _ _J¥ [
L J_ LJ
i ~{The
G
Gauge length (G) 25.0£0.1 mm
Width (W) 6.0+ 0.1 mm
Thickness maximum (T) 6 mm
Radius of fillet, min (R) 6 mm
Overall length, min (L) 100 mm
Length of reduced parallel section, min (A) 32 mm
Length of grip section, min (B) 30 mm
Width of grip section, approximate (C) 10 mm

Figure 119 Standard geometrical specification of the subsize specimen ASTM ES8/ESM

5.5.2.1 Tensile test results of CP 1400HD subsize specimen

Resulting from tensile test machine’s force-elongation diagram, engineering stress-strain
curve of CP 1400HD subsize specimen and the corresponding diffuse necking point are

illustrated in the figure,
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Figure 120 engineering stress-strain curve of CP 1400HD subsize specimen and the corresponding
diffuse necking point
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Necking occurs in metals under uniaxial tension when the rate of work hardening
becomes lower than the flow stress. This corresponds to the Considere criterion, in which
diffuse necking initiates at the point of highest load in the load-displacement curve, well
before any cracks and failure have appeared in the material'®. Herein, necking is found to be
seen at engineering strain value of 5.85%. However, as it is mentioned previously, this
criterion only considers work hardening of material, without taking into account the effect

of stress state transformation.

The longitudinal local strain field via DIC technique can also be worth looking. The
longitudinal local strain distribution along the GL in three longitudinal sections (at the top,
at the middle and at the bottom of the specimen width) can be used to see how the strain
field is changing along the GL, and from which value of the global strain, local strain

distribution starts to concentrate in the middle area of the GL.

op section

iy - n
- gbottom section

Contours of local strain component, parallel to the loading direction (&) at various overall

engineering strain levels during tensile test are also shown below,

!9 Both the strain hardening of the material and the reduction in cross-sectional area of the specimen
control the shape of the force-elongation curve. Eventually at a certain point, rate of reduction of load-carrying
capacity caused by reduction of area equals the rate of strain hardening. Up to this point the deformation
along the gauge section is uniform. However, the deformation will localize after the load reaches its peak
value and a neck will form finally. Gradually, almost all the deformation will be concentrated in the necked
region (2).
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Figure 121 Contours of local strain component (ex) at various overall engineering strain levels along GL

172



As can be observed, for engineering strain of 6.20%, the distribution of local strain field
is still uniform along a wide range of GL, showing that necking started not exactly at

maximum load. Evolution of local strain components (&x and &) at necked zone in various

overall strain levels in width direction are shown in the following figures.
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specimen strain level 1019%
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distance along the width [mm]
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Figure 122 Evolution of local strain component (€) at neck in various overall strain levels in width
direction
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Figure 123 Evolution of local strain component (g,) at neck in various overall strain levels in width
direction
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The above distributions can be assumed to be uniform along the section up to 8.03% of
engineering strain level in the specimen. Thus, in the proceeding discussion, we can consider

an average value for the local strain components (¢ and &,) at necked zone for engineering

strain levels below 8.03%.

In order to analyse the evolution of the local average strain components, in the following
figure the increments de,, de,, and de, was evaluated and compared with each other in the
necked zone for various overall engineering strain levels; besides, this observation was

limited by the fact that the volume consistency law is not applicable in localised necking
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Figure 124 evolution of the local average strain components for various overall engineering strain levels

It is vividly demonstrated that the thinning rate was larger than width reduction rate; in
other words, specimen thickness tends to contract more than its width in every engineering
strain level of specimen. Moreover, both the tendency to thinning and tendency to width
reduction increase as the strain level in specimen gets larger. It is also worth mentioning that
either thickness strain or width strain is almost half of the longitudinal strain, while thinning

1s more dominant.
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Furthermore, since thinning is more evident than width reduction, the specimen can
tolerate only small magnitude of longitudinal deformation after necking before fracture

happens.

5.5.2.2 Normal anisotropy coefficient and strain rate ratio

After computing the averages of local strain components at neck for each frame, (r) and
strain rate ratio (f) can be calculated. Then, having stress ratio («), which was already

written in terms of r and 3, equivalent stress can be attained.

There are some considerations regarding normal anisotropy coefficient; firstly, r is
normally considered to be constant, although it is not always a valid assumption without
observing it closely. Secondly, » is normally computed as the total strain ratio, although
plastic strain ratio should be used. Furthermore, » value is very sensitive to the accuracy of
the measurements; so that, even negligible errors in the measured strains leads to a

considerable error in the calculated » value (83).

With regard to the above considerations, strain decomposition must be applied to the
strains field coming from GOM SW, as it was needed to implement plastic parts of the strain
in the following discussion, ranging from normal anisotropy to yield criterion, so that in the

end we can obtain equivalent strain-equivalent plastic train curve.

Spl _ gtot _ Sel _Stot _ Otruex
avg,x ~ “avg,x avg,x— “avg,x E
Pl —gtot el _ tot V Otrue,x

avg,y avg,y avg,y avg,y E

As it was mentioned before, stress ratio can be determined by,

_A+r)p+r
1+ r+1p

Considering the above points, one can obtain the variations of r and £ like the following

figures,
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Figure 126 variation of strain rate ratio-CP 1400HD

Finally, equivalent stress and the corresponding equivalent plastic strain can be obtained

by following relations,

2r
1+r

1+'32+i

a+ a2> deog = de; o

2 2 1+7r
Ooqg = 0x |1 — —_—
Vv1+2r

Comparing the previously obtained flow stress curve from tensile test (which was only

valid up to necking) with the equivalent stress-equivalent plastic strain, it is clearly observed
that the method proposed here can represent the behaviour of the material during plastic
deformation up to 10.67% of plastic strain; almost two times of the plastic strain

corresponding to the uniform elongation.
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Figure 127 equivalent stress-equivalent plastic strain for CP 1400HD including post-necking behaviour
5.5.3 Necking mechanism in CP 1400HD subsize specimen using DIC

technique

For this thin rectangular specimen, at a high local strain level, inclined bands of localized
deformation (intense shear deformations (84)) start to appear inside the neck (85). However,
inside the diffuse necking zone, there is a gradual evolution in the strain state condition:
from 3-axis to 2-axis strain state (86). According to the studies of Hill (87) and Lian and
Zhou (88), severe local section thinning can be identified before fracture by solely
longitudinal and thickness strains, where width strain is almost zero.

L ocalized necking is based on zero strain along the necking band, so that the onset of
localized necking corresponds to a plane strain deformation mode (86) (88).

If we continue to observe the distribution of longitudinal local strain field along the GL,

it is possible to find the position of the localisation bands which progressively take place in

the last steps of the test prior to failure (89) (86).
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Despite the fact that fringe analysis?® is not conducted in this thesis work, the local strain
distribution along the gage length can demonstrate the main four stages of strain field

evolution (90). These stages can be symbolised by the following pattern shape,

e Parallel shape ‘|||’

e Hourglass shape )(’
e Xshape ‘X

e Slash shape ‘/’

Genuinely, the plastic deformations come from the movements of the dislocations inside
the metal materials. Therefore, the deformations can be named uniform only in macroscopic
scale. Constant and homogenous strain field appears in the first stage is evident (parallel
shape). In other words, in the elastic and homogenous plastic deformation stages, no

variation in the local strain distribution appearance can be observed (90).

Gradually the plastic deformation within the gage length becomes inhomogeneous; strain
field starts to concentrate in the centre of the specimen with a shape mostly like an hourglass
)C. The shape can be assumed as two crossing localisation bands (90), as it is shown in

figure below,

L= e

7.22% overall engineering strain

Figure 128 two crossing localisation bands immediately after the onset of inhomogeneous deformation

As plastic deformation goes on, this hourglass shape narrows progressively and take a
shape like letter ‘X’, in such a way that the local strain intensity is higher in the middle of
the specimen in comparison with the two edges of the specimen (90). As shown in figure

3 b

below, in the areas next to the ‘X’, where the strain level is considerably lower, the
deformation is no longer plastic and the material undergoes elastic unloading when the force

decreases.

20 Electronic speckle pattern interferometry (ESPI) is a technique in which laser light together with image
processing of a surface are employed in order to demonstrate static/dynamic displacements. The visualisation
is in the form of fringes on the images.
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7.84% overall engineering strain

Figure 129 ‘X’ shape bands during plastic deformation

At the onset of the localisation, the hourglass has almost a symmetric shape; however,
when the shape turns into ‘X’, the symmetry is no longer seen. Then the deformation starts
to concentrate in one of the bands (or one of the branches of ‘X”) called the dominant band.
The other band fades gradually, so that a slash shape /> will appear in the neck. In the end,

the specimen breaks along the dominant band (90).

A closer look at the strain field along the GL during the tensile test of CP 1400HD subsize
specimen (figure below) reveals that, shortly after the start of diffuse necking (at strain value
around 7.73%), two asymmetric crossing localization bands (X-shape) start to form with an
angle with respect to the tensile direction. The two bands, then, continue to evolve but at
different rates, and finally, one of the bands stabilizes, so that its inclination leading to
fracture remains quite stable (slash-shape) and the other band fades away. However, the

width of the remaining band falls rapidly before fracture occurs (90).
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Figure 130 evolution of the strain field during post-necking deformation

The delay beyond the load maximum before the onset of localized necking is mainly

proportion with the length to width ratio of the specimen (for the same material); the smaller

the ratio, the more imminent will be the localized oblique neck. On the other hand, the
material softening caused by the nucleation and growth of voids, makes the localization

more impending (91).
In this study, the tramsition from the symmetric hourglass to the asymmetric ‘X’ is

interpreted as a criterion for the onset of localised necking® (90). The localised necking

stage can be assumed to have two sub-stages; as can be seen in the following figure, one in

which the disappearing band is present (around 7.92% engineering strain), and second stage

in which it almost fades (around 8.03% engineering strain).

Thus, observing the strain field from GOM, localised necking can be assumed to form

somewhere between 7.47% and 7.92% of engineering strain.

2l Another possible solution is also offered by the ISO 12004-2-2009 standard, which is called ‘time-
independent’ evaluation. However, there are ‘time-dependent’ solutions as well (86), for example Hora et al
(96) and Merklein et al (97). In time-dependent methods strain distributions as the function of time are used
for evaluation, where time derivatives of longitudinal or thickness strains are exploited to identify the onset of

local necking.
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Figure 131 transition between the symmetric hourglass and asymmetric ‘X’ CP1400HD
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5.6 TENSILE TEST RESULTS OF QP 1180-SUBSIZE SPECIMEN

USING DIC TECHNIQUE AND GOM CORRELATE SW

Engineering stress-strain curve for QP 1180-subsize specimen is illustrated here, where

the diffuse necking is obtain based on the Considére criterion,
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Figure 132 Engineering stress-strain curve for QP 1180-subsize specimen

And the corresponding frue stress-true strain diagram would be,
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Figure 133 true stress-strain curve for QP 1180-subsize specimen
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To continue with the proposed method, the strain level from which the localised necking
starts is needed to be identified first. This can be obtained by observing the local strain
distribution along the GL of the specimen. At the same time, the location of localization can

be observed through the DIC technique results.

Figure below shows the distribution of local longitudinal strain (&, ) in various overall
engineering strain levels in specimen. As it has mentioned before, according to Considere
criterion, necking formed around 10.75% engineering strain. In other words, the flow stress

curve derived from tensile test is only valid up to maximum load.
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Figure 134 distribution of local longitudinal strain (ey) in various overall engineering strain levels-QP
1180 subsize specimen

As deformation continues to grow, the longitudinal local strain starts to concentrate

gradually on the right half of the specimen,
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Figure 135 longitudinal local strain distribution in QP 1180 subsize specimen

Now taking into account the necked section, in order to assess the equivalent stress-
equivalent plastic strain, the average values of strain, both in x and y directions, should be

obtained.
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Figure 136 longitudinal local strain (¢,) distribution along the width at neck-QP 1180
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Figure 137 transversal local strain (g,) distribution along the width at neck-QP 1180

From the figures above, it can be clearly observed that strains at necked section can be
assumed to be uniform till 12.99% of engineering strain level in specimen. Thus, the
following computation regarding equivalent plastic strain and equivalent stress are bounded
to this amount of overall strain. It can be said that this method is capable of determining the
equivalent stress and equivalent plastic strain in a range starting from diffuse necking until

the formation of localised necking.
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Normal anisotropy coefficient and strain rate ratio are derived from plastic terms of
average strains at the necked section. From the figures in the following, these values can be

obtained.
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Figure 138 variation of normal anisotropy-QP 1180
0
U \ 0.04 0.08 012 0.16 0.2
= e
< ~
= ~
= -~
= s
~ ~a
= -0.04 \\\
3 v =-0.47395+ 0. 00\23\\--...
] -0.08
%
=
-0.12

Average Plastic strain in axial []

Figure 139 variation of strain ratio-QP 1180

Taking into account the previously-mentioned relations for equivalent stress and
equivalent plastic strain, the next diagram illustrates the post-necking behaviour of QP 1180,

in which the equivalent curve is also able to represent the pre-necking behaviour.
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Figure 140 equivalent stress-equivalent plastic strain for QP 1180 including post-necking behaviour

Although a point on the flow stress curve was named as ‘diffuse necking’ point, this
phenomenon does not take place at a certain point and time during deformation. Instead, as
it is demonstrated in the following figure, deformation is no longer homogenous in GL, even
for lower levels of deformation than 10.75%. Theoretically, as it was discussed before, the
Considere criterion illustrates the onset of necking as the position of maximum load in force
elongation diagram. However, a closer look at the strain field along the GL would promote
the idea that, necking starts before the point of maximum load, and so the assumption of
uniform elongation was discarded way before diffuse necking point shown on engineering
curve. This condition will make a difference in the evaluation of the strain; while a uniform
deformation assumption must be taken into account for evaluating the flow stress curve, as
soon as the strain field starts to concentrate inside a range in the GL, the flow stress curve

obtained directly from tensile test result is not reliable anymore.
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5.7 A REVIEW ON THE PROPOSED METHOD

The method proposed in this chapter was used to study the post-necking behaviour of CP
1400HD and CP 1180 steels. In this method, the only available data comes from a tensile
test machine equipped with a camera to capture the spackled surface of the specimen during
the test. Besides, benefiting from Hill’s 48 yield criterion and choosing RO strain hardening
law, equivalent stress-equivalent plastic strain curve of the material under uniaxial tension

test can be obtained for strain levels between the uniform elongation and localized necking.

The method still needs further investigation both from numerical simulation and
reliability points of view. Hence, it is a good practice to compare the result with post-necking

behaviour of the material obtained through biaxial test.

Some important factors should be studied deeper, such as the effect of voids formation
on the onset of localized necking; where it was a limiting factor to this method that constrains
the volume constancy assumption. On the other hand, according to the strain distribution at
the necked region, the normal anisotropy and strain rate ratio are considered constant during
deformation, although their variation must be taken into account, as the state of stress and

strain are changing during the deformation.
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CHAPTER SIX: VALIDATION OF THE EQUIVALENT

FLOW STRESS CURVE USING FEA
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6.1 INTRODUCTION

n order to verify the reliability of the equivalent stress-equivalent plastic strain curve,
Iobtained through the combination of DIC technique and Hill’s 48 yield criterion, the
curve is implemented in the numerical simulation of the same experimental test. Both the
validity and the effectiveness of the previously-obtained flow stress curve can be evaluated

via two observations,

e The same experimental applied force-displacement curve, and

e The same experimental strain gradient (DIC results),
should be obtained in our FEA of the same specimen.

Furthermore, employing Hill’s 48 yield criterion in this FEA, strain field in width and

thickness direction at necked region were compared in the two models.

Since the equivalent flow curve has merely exploited tensile test data up to diffuse
necking, the present validation can only be done in this range. However, the writer believes
that the equivalent curve should work in other sheet forming processes with the same
material up to larger values of strain, but its effectiveness and precision depends on the

quality of the yield criterion.

The tensile test was simulated numerically using an isotropic hardening elastic—plastic

FE model, and developed in the nonlinear code ABAQUS standard, student edition 2020.

6.2 FINITE ELEMENT MODELLING AND ANALYSIS

6.2.1 Pre-processing

At the beginning, the same geometry of the subsize test specimen used in tensile test was
modelled via Part Module of the SW. The dimensions (according to ASTM E8/E8M) are
shown here again, where a large radius (e.g. 6.35 mm for CP 1400 test specimen) is built

into the sides to avoid stress concentration,
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Gauge length (G) 25.0+ 0.1 mm
Width (W) 6.0+ 0.1 mm
Thickness maximum (T) 6 mm
Radius of fillet, min (R) 6 mm
Overall length, min (L) 100 mm
Length of reduced parallel section, min (4) 32 mm
Length of grip section, min (B) 30 mm
Width of grip section, approximate (C) 10 mm

Table 31 geometrical specifications of subsize specimen ASTM ES8/ES8M

The specimen used in this study had slightly different dimensions; for CP 1400HD
specimen, 6.39 mm width and 1.2 mm thickness were selected, while for QP, a width of 6.52

mm and a thickness of 2.1 mm were tested.

Due to the symmetry of the problem about the mid-span, mid-width and mid-thickness,
it was possible to model only 1/4 (or even 1/8) of the specimen, and apply boundary
conditions accordingly. However, although there was a limitation for the maximum number
of nodes in student version of ABAQUS, a model with original dimensions was built within

the part module for a better understanding of the general problem.

On the other hand, node number limitation also leaded to apply an adjustment in the
length of the sample head; thus, its interaction with the boundary conditions was closely
observed through trial and error, and eventually its length was reduced to half of the original

one (17 mm instead of 34 mm).

A three dimensional solid element with 8-node (linear brick element), combined with
reduced integration and hourglass control (C3D8R) was used for the model discretisation.
Each of the nodes had three degrees of freedom in translation, so that even large strains and

visco-plasticity could be studied properly.

With regard to the material properties, the elastic deformation region could be defined by
Young’s modulus of the material and Poisson’s ratio. On the other hand, concerning plastic
deformation, the equivalent stress-plastic strain curve was implemented, while, as it was
mentioned previously, the chosen plasticity model was isotropic hardening with Hill’s 48

anisotropic quadratic yield criterion.
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ABAQUS introduces an anisotropic yield and creep model for materials that demonstrate
different yield or creep behaviour in different directions (92). Anisotropic yield behaviour
was modelled by employing yield stress ratios R;j, that were applied in Hill's potential
function. In the case of anisotropic yield, the yield stress ratios are defined with regard to a
reference yield stress a°, (given for the metal plasticity definition); in a way that if g; j1s
applied as the only nonzero stress, the corresponding yield stress is R; jao. Hence, a local

orientation must also be defined in ABAQUS to introduce the direction of anisotropy (92).

Herein, as normal anisotropy coefficient (r-value) (rather than yield stress ratio) was
evaluated through DIC technique, a very brief review of Hill’s anisotropic yield function is
presented here in order to define the relationship between yield stress ratios R;; and strain
ratios (Lankford's r-values) r;j. The following theoretical method was extracted from

Abaqus Documentation, 2020.

Hill's potential function is a simple extension of the von Mises function, which can be

expressed in terms of rectangular Cartesian stress components as,

f(o) = \/F(Uzz — 033)% + G(033 — 011)% + H(011 — 022)% + 2Loj; + 2Mo3, + 2Nof,

where F, G, H, L, M and N are constants obtained by tests of the material in different

orientations, and they are defined as,
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Since the anisotropic material data are already obtained in terms of ratios of width strain

to thickness strain, mathematical relationships are then necessary to convert the strain ratios

to stress ratios that can be input into ABAQUS (92).

As far as sheet metal forming applications are concerned, plane stress condition can be
quite a reliable assumption; X, y as the “rolling” and “cross” directions in the plane of the
sheet, and z in the thickness direction. From a design viewpoint, ‘desired anisotropy’ is
normally considered as the type in which the sheet is isotropic in the plane and has an
increased strength in the thickness direction, which 1s normally referred to as transverse
anisotropy. Planar anisotropy, on the other hand, is a type of anisotropy, characterized by

different strengths in different directions in the plane of the sheet (92).

Considering a transversely anisotropic material (1, = 13,) for tensile test simulation (as it
is assumed for evaluation of equivalent stress and strain), and defining 6° in the metal

plasticity model to be equal to d,,, one can derive R;; using flow rule, as

Ri1 =Ry =1
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r,+1
R33 = xz

Here, r,, was previously obtained from experimental tensile test; 0.8748 and 0.9005 for
CP 1400HD and QP 1180, respectively. Ry1, Ry, and R33 now can be used in FEA SW in
order to define the corresponding Hill’48 yield criterion parameters, in combination with

initial yield strength (¢® or °?).

Concerning the meshing of the model, a couple of simulations with different numbers of
element (with focus on the middle region) are done to observe the numerical convergence
of the problem. Eventually, it is found that above 564 linear hexahedral elements of type
C3D8R, the resulted load-elongation curves are almost identical. Thus, the following mesh

configuration with 564 elements is selected.

Y

L 1

z X

Figure 142 subsize specimen meshing in Abaqus
According to Choung and Cho’s work (93), there would be merely a marginal difference
between the results of full integration element*? (C3D8) and reduced integration element

(C3D8R) in simulating a tensile test. Moreover, eight-node-plane-stress element with

22 For complicated finite element problems, using high order elements, it becomes necessary to use
numerical integration to calculate the stiffness matrix, which then leads to evaluate displacement matrix.
Reduced integration uses a lesser number of Gaussian co-ordinates when solving the integral. Clearly, the
more Gaussian co-ordinates you have for each element, the more accurate your answer will be, but this has
to be compared with the cost of computation time. Displacement-based FE formulations always over-estimate
the stiffness matrix and the use of fewer integration points should produce a less stiff element. Hence, especially
in non-linear problems, it is advisable to use reduced integration instead of full integration. The slight loss of
accuracy is counteracted by a better approximation to real problem (ref. www.researchgate.com, available
2021).
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reduced integration (74) (CPS8R) is shown to provide acceptable results, as far as tensile

test simulation is concerned.

To trigger diffuse necking, it is only needed to apply a finer mesh around the centre of
the specimen (where large strain gradient can take place), without imposing any geometric
imperfections in the width of the model (93). Furthermore, by observing the stress
distribution in the necked zone, no sign of large stress concentration was seen in the high-

density mesh region.

For each step in the analysis, using Step Manager, one can decide whether Abaqus
accounts for nonlinear effects from large displacements and deformations; such that, if the
displacements in a model due to loading are relatively small during a step, the effects may
be small enough to be ignored. However, in situations where the loads on a model result in
large displacements, imposing nonlinear geometric effects can become crucial. The
‘Nlgeom’ setting for a step determines whether ABAQUS will account for geometric
nonlinearity in that step. Herein, since the focus was on the deformation up to diffuse
necking, no significant changes in evaluated deformation were observed in this range, even
when Nlgeom option was turned off. However, in larger values of strain, this option showed

a considerable outcome on the strain field.

Based on the Dirichlet type BCs (imposed displacements), the nodes on the upper and
lower surfaces of one of the specimen’s head are fixed, while on the other side, based on the
provided tensile tests’ data sheet, a total displacement of 5.97 mm along the tensile axis is

applied by 0.008 mm step for CP1400HD, for instance.
6.2.2 Post-processing: analysis of the numerical results

6.2.2.1 Load-displacement curves comparison

Based on the previously obtained results from image processing, equivalent stress-
equivalent plastic strain curve was achieved in chapter five, for both CP1400HD and
QP1100. As an important result, the material plastic behaviour for far larger strain levels
than what can be attained through common uniaxial tensile test is already available. The
above-mentioned curves then can be extended benefiting from a proper strain hardening law

(here, Ramberg-Osgood law is used). The results are shown in the following figures,
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Figure 143 equivalent flow stress curve for CP 1400HD
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Figure 144 equivalent flow stress curve for QP 1180

As it was stated, by extrapolating the equivalent curve using RO hardening law, the
following results were obtained, which then can be implemented in FEA as material model

inputs,
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Figure 145 fitting and extrapolation of the equivalent flow curve with RO hardening law-CP 1400HD
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Figure 146 fitting and extrapolation of the equivalent flow curve with RO hardening law-QP 1180

The resulted flow stress curve is then imported into the material module of the FE SW,
so as to define the plastic response of the material during forming operation. Finally, by

comparing the force-elongation diagrams as well as the strain fields of FEA with that of
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experiment, (while keeping all the other conditions the same as in the experimental tensile

test of the material) the reliability of the flow stress curve can be assessed.

Experimental load-displacement curve can be obtained through tensile test machine
output. A comparison was made between the ‘load vs elongation’ curve of the tensile test
and that of the numerical simulation, in which the same two points of extensometer were

also chosen on the FE model in order to evaluate the elongation during deformation.

The reaction force in FEA was obtained at the centre of the specimen, as shown in the

following figure,
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Figure 147 reaction force in FEA obtained at the centre of the model

On the other hand, the relative displacement between two sections (corresponding to the

zone actually measured with the extensometer in tensile test) leads to obtain the elongation

in FEA,
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Figure 148 relative displacement between two sections to obtain the elongation in FEA

Figures below compare the ‘force-elongation’ results coming from FEA and experiment,

for both CP 1400HD and QP 1180,

12000 CP 1400HD
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Figure 149 load vs elongation curve of the tensile test and that of the numerical simulation-CP 1400HD
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Figure 150 load vs elongation curve of the tensile test and that of the numerical simulation-QP 1180

This comparison shows that the numerically-simulated tensile test is able to reproduce
the experimental test until the onset of longitudinal necking; while above this point, the two
curves do not lie on top of each other due to different flow stress curves. The small difference
between the results in QP 1180, on the one hand, may come from the fact that not enough
data points were available from the tensile test machine in that range; on the other hand, the
initial yield point in equivalent flow stress curve still needed to be adjusted based on the

missing information.
Moreover, theoretically, the necking appears when the slope of the force-elongation curve
. < 1x .. do . .
reaches zero value, as according to Considére criterion, - =0 As soon as longitudinal

necking takes place, mechanical extensometer measurements are erroneous due to the
presence of strain heterogeneity. This phenomenon also occurs in the finite element

simulation.

6.2.2.2 Strain fields comparison

Strain fields corresponding to both FEA and tensile experiment (DIC technique) are

compared in this section.

At the same elongation (6%, which is almost equal to the elongation at diffuse necking
for CP 1400HD), the longitudinal strain distribution along the gage length was obtained for

the elements shown in the figure below,
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Figure 151 elements used to obtain the longitudinal strain distribution along the gage length

The longitudinal strain (&, ) distribution along the gage length is reported in the
following figure, showing an average between 6% and 7%, as it was expected in the uniform

elongation,

CP 1400HD
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distance along gage length [mm]

Figure 152 longitudinal strain (&,,) distribution along the gage length from FEA-CP 1400HD

On the other hand, from DIC results, the longitudinal strain along the specimen gage

length was already obtained and illustrated in the following figure,
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Figure 153 longitudinal strain (&,,) distribution along the gage length from tensile test-CP 1400HD

Looking at the above figures, one can observe only a marginal difference between the
longitudinal strain gradients obtained from DIC and FEA; an average value of 6.29% was
obtained for longitudinal strain in FE simulation, while slightly lower value of average

longitudinal strain along GL, around 5.87%, was observed in image processing method.

The writer believes that, regardless of the effect of the element size and convergence of
strain values, firstly, it should be noted that in real tensile test of CP 1400HD, larger strains
can be seen on the right end of the specimen in comparison with its left end (as can be seen
in the last figure), showing that the neck is going to start not in the centre, but closer to the
right side of the specimen (as opposed to what occurred in FEA). Perhaps, by applying a
geometrical imperfection (e.g. a slight width reduction) in the centre of the specimen, the
two results could be even more similar to each other. Secondly, as the plastic behaviour
imported in FEA includes also post-necking behaviour of the material, necking occurs in
considerably larger values of strain in comparison with the tensile test itself. This may lead
to larger capacity of the material to accumulate strain before entering necking, leading to

larger value of longitudinal strain.

Furthermore, significantly lower values of strain on both ends are resulted from the grips

effect, where the stress magnitude is lower.

A comparison was also made between the numerical simulation result and the image

processing of test specimen for QP 1180 at specimen total strain value of 10% (at diffuse
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necking point). The total longitudinal strain along the specimen GL obtained from FEA is

shown in the following figure,

OP 1180
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<

longitudinal strain []
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Figure 154 longitudinal strain (&) distribution along the gage length from FEA-QP 1180

On the other hand, DIC technique resulted in the following longitudinal strain distribution

along the specimen gage,
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Figure 155 longitudinal strain (€,,) distribution along the gage length from tensile test-QP 1180
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Even from the QP 1180 results, it is clear to observe the effect of ‘off-centre necking’ on

the distribution of longitudinal strain along the GL.

Thus, from the load-displacement curve and strain field comparison, it can be deduced
that the equivalent stress-equivalent plastic strain relationship is correctly determined up to

the specimen’s total strain value of 6% for CP 1400HD and 10% for QP 1180.

6.2.3 Further investigation on FE results

Strain fields in longitudinal, width and thickness directions at necked region were also
investigated. From DIC technique longitudinal and width strain at neck were directly
obtained through 2D image processing SW, GOM, while thickness strain was derived from
volume consistency principle. Concerning FEA, these values at specimen total strain value
of 6% for CP 1400HD and 10% for QP 1180 (corresponding with diffuse necking) are

presented in this section and compared with the strain field at neck in real tensile test.
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Figure 156 Strain field in longitudinal, width and thickness directions

6.2.3.1 Strain in longitudinal direction (&,,) at neck: CP 1400HD and QP 1180

Looking at the distribution of the longitudinal strain (&, ) at neck resulting from FEA of
CP 1400HD, the average value is found to be around 6.25%, with a maximum taking place

at the centre of the section,
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Figure 157 Strain in longitudinal direction (e.) at neck from FEA-CP 1400HD

the other hand, longitudinal strain at necked section obtained from DIC technique

both the same trend and values as can be seen in the following figure,

0.0635

0.063

0.0625

0.062

0.0615

0.061

0.0605

0.06

0.0595

2 4
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Figure 158 Strain in longitudinal direction (exy) at neck from tensile test-CP 1400HD

For QP 1180, the longitudinal strain distribution at neck results in the following diagram,

where the variation is in a range between 11.6% and 12%,
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Figure 159 Strain in longitudinal direction (ex) at neck from FEA-QP 1180

Similarly, DIC technique yields to a longitudinal strain (&xx) distribution over the neck

with a variation between 11% and 11.3%, as it is shown in the following figure,
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distance along section width [mm]

Figure 160 Strain in longitudinal direction (exy) at neck from tensile test-QP 1180

6.2.3.2 Strain in width direction (g,,) at neck: CP 1400HD and QP 1180

Strain distribution in the width direction (&,,,) of the section can also be assessed through

the post-processing of the conducted FEA. Figure below shows the variation of the width

strain at neck,
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Figure 161 Strain in longitudinal direction (g,,) at neck from FEA-CP 1400HD

For the sake of a comparison with image processing results, one can observe that in both

cases, the width strain have a negligible variation over the section, and the values are varying

almost in the same range. From GOM SW, the following result is obtained for width strain

&£,.) along the neck,
(€yy) along
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-0.031
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Figure 162 Strain in longitudinal direction (t,,) at neck from tensile test-CP 1400HD

Same analysis is also done for QP 1180; as shown in the following figure obtained from

FEA, the variation is more evident along the width, while along thickness only small change

in width strain can be observed,
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Figure 163 Strain in longitudinal direction (¢,,) at neck from FEA-QP 1180

The range of width strain variation is observed to be between -5.44% and -5.54%, with a

maximum in the centre of the specimen’s width. On the other hand, image analysis of QP

1180 tensile test leaded to the following variation of width strain at neck section,
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Figure 164 Strain in longitudinal direction (g,,) at neck from tensile test-QP 1180
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The scatter of the data is in a range between -4.85% and -5.30%, with a maximum in the

centre of the specimen width, which is very close to the FEA results.

6.2.3.3 Strain in thickness direction (&,,) at neck: CP 1400HD and QP 1180

With regard to the thickness strain (¢,,), FEA gives the distribution as it is shown in the

following figure,
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Figure 165 Strain in longitudinal direction (e-;) at neck from FEA-CP 1400HD

While using 2D image processing, the strain in thickness direction can be found via
volume consistency equation. As it can be observed, the maximum happens at the centre of

the section (3.8%), but the value is not exactly the same as it is obtained from FEA (3.13%)).
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Figure 166 Strain in longitudinal direction () at neck from tensile test-CP 1400HD

Looking at the strain in thickness direction at neck, numerical simulation and image

processing lead to the following observations,
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Figure 167 Strain in longitudinal direction (¢.;) at neck from FEA-QP 1180
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Figure 168 Strain in longitudinal direction (e.;) at neck from tensile test-OP 1180

Where both the findings show the thickness strain at neck to be somewhere between -

5.85% and -6.30%.
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6.3 A REVIEW ON THE FEA OF THE TENSILE TEST

The previously-obtained equivalent stress—equivalent plastic strain curve was introduced
into a finite element code to simulate numerically the same tensile test. On the one hand, the
good reproduction of the load—displacement curve with the finite element code validates the
quality of the stress—strain curve. While on the other hand, this numerical simulation
validates the image analysis measurements since the strain levels simulated are almost
identical to the experimental ones, both within the gage length and in necked zone, until the
onset of transversal necking. From this study, determining a precise flow stress curve was
shown to have a role of paramount importance when a deep drawing simulation is to be

conducted.
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CHAPTER SEVEN: CONCLUSION AND POSSIBLE

FUTURE WORKS
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G eneral approaches corresponding to the post-necking behaviour identification
of metallic materials were discussed in this thesis work by exploiting a number of
uniaxial and biaxial tests in combination with DIC technique. It was also highlighted that a
material model is a crucial input of any forming simulation which needs a certain yield
criterion, an associated flow rule as well as a hardening rule to define its plastic deformation.
While with regard to its failure, forming limit curves are necessary to be observed. Although
extrapolation method gives only an overlook of the behaviour beyond diffuse necking, both
experiment and simulation must be employed in our approach preferably inside an
optimization process so as to reach a good approximation of the post-necking material

behaviour.

k-exponent function was employed for the first time in order to find a fitting function by
means of a nonlinear regression analysis of pre-necking data points. The results
demonstrated that k-exponent provided a very good fit for small values of strain than HS;
however, HS performs better in large deformation. Thus, a linear combination of k-exponent
function and a non-saturated hardening law can lead to a very good fit to extrapolated flow

stress data points.

With a tensile test machine equipped with a camera to capture the spackled surface of the
specimen, Hill’s 48 yield criterion, accompanied with a proper strain hardening law, was
used to draw the equivalent stress-equivalent plastic strain curve to strain levels beyond the
uniform elongation. Although this method still needs further investigation both from
numerical simulation and reliability points of view, it seems a good practice to compare the
result with post-necking behaviour of the material obtained through biaxial test. On the other
hand, some important factors can be studied deeper in future observations; the effect of voids
formation on the onset of localised necking, for instance, where they are both inevitable and
considerable for most materials entering necking. As the present work was influenced by
the lack of micromechanical knowledge on void formations, this phenomenon constrained
the volume constancy assumption. Hence, it would be quite noteworthy to conduct an
observation in microscopic scale to assess the significance of void formation in large
deformation, and the amount of error may arise in the forming simulation if this simplifying
assumption is taken into consideration. On the other hand, although based on the strain
distribution at the necked region, the normal anisotropy and strain rate ratio were considered
constant during deformation, their variation must be taken into account, as the state of stress

and strain are changing during the deformation.
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As far as necking is concerned, Considére criterion was employed in chapter five to
approximate the engineering strain level in which diffuse necking starts to form during
tensile test. However, image processing demonstrated that longitudinal necking takes place
in lower levels of strain than the point of maximum force. The results provokes the idea of
implementing a more precise criterion for diffuse necking approximation. While, concerning
localized necking, time-dependent and time-independent approaches are available in

literatures as an alternative to DIC technique direct observations.

The good reproduction of the load—displacement curve in FEA proved the quality of the
stress—strain curve. Moreover, this numerical simulation was able to validate the image
analysis measurement, as the strain levels obtained from FEA were comparable to the
experimental ones, until the onset of longitudinal necking. However, the position of the neck
and the inclination of shear bands in a specimen under uniaxial tensile test is totally different
from the result of FEA, meticulous care should go into modifying the geometries of both the
specimen and the corresponding FE model. This adjustment seems to be a must when one is
dealing with a FE-based inverse method in order to optimise the parameters of the material

model.

With regard to the validation of the equivalent stress-strain curve, it would also be
interesting to observe the application of the equivalent flow stress curve in the numerical
simulation of the biaxial test and to compare the stress and strain distribution at the apex

with the real test of the same material.

Further and even more importantly though, the equivalent stress-strain curve, obtained in
chapter five, was principally derived from average value of strain field in each level of total
strain within gage length. This fact implies that, as the strain field starts to localise, finding
the average value of strains (in longitudinal and transverse directions) is no longer
meaningful and acceptable, which in turn, significantly restricted this method.
Unfortunately, the writer could not find a way to overcome this limitation; however, an
efficient alternative might be to study principal effective strains, as it was described in 5.4.2,

(FLC evaluation using MMFC).

Regardless of the method chosen for post-necking behaviour identification, future
assessments should be initiated with a detailed study on the determination of the most
suitable yield criterion/surface for the material under investigation, which is only achievable

by doing a series of uniaxial and biaxial tests, and then observing which criterion is able to
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fit these experimental data effectively, as well as what are the resulted yield criterion’s
parameters. In the next step, the selected general approach plays its role mostly by
minimising a cost function, wherein, benefiting from DIC technique, the strain field within
the gage length should be observed a priori. It has already found that, although ‘complete
solutions’ to identify the strain hardening behaviour beyond longitudinal necking seems to
be suitable and effective, solutions solely based on FE-based inverse approach are not only
time consuming, but also the coupling between the experimentally investigated quantities,
such as strain fields, and the numerically evaluated quantities can be a stumbling block
within the procedure. While, according to the literatures, complete solutions like, VFM
(discussed in chapter two) showed a very good agreement with experiments and is deserved
to be studied in a whole new work. Other test methods, such as ‘multiaxial stress test using
tubular specimen’ and ‘shear test’, rather than “uniaxial tensile test’ can also be taken into

account in order to obtain large deformation without plastic instability.
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APPENDIX A

VFM application in metal plasticity

Pannier and his co-workers®® published the first application of virtual field method in
metal plasticity, where actual experimental data was used for this study. The goal of this
observation was to obtain the material constants of Voce hardening law with the VFM. The
research was intended to experimentally validate the application of the virtual fields method

in order to identify the elastoplastic behaviour from full-field optical measurements method.

Taking into account Voce’s nonlinear hardening model, the six parameters will be
identified: Young’s modulus E, Poisson’s ratio v, and the plastic parameters o, Ro, Riny and
b, where the use of an inverse procedure is therefore necessary to identify the constitutive

parameters,

0y : the initial yield stress,
Ry : linear asymptotic hardening modulus,

Oyoce = Oo + Ro&y + Riny (1 — exp (—be,)) Rinf and b the parameters that describe the
non-linear part of the response in the initial

yielding zone.

23 Y. Pannier, S. Avril, R. Rotinat, F. Pierron, Identification of Elasto-Plastic Constitutive Parameters from
Statically Undetermined Tests Using the Virtual Fields Method, Experimental Mechanics, 46 735-755 (2006).
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In this first attempt of using VFM, a uniaxial stress configuration was considered, where
a flat dogbone specimen has been chosen so that the longitudinal stress only varies in

longitudinal direction, while the other stress components remain comparatively small.

Displacement fields have been evaluated through the image processing at each load step
on each side of the specimen. The calculation of the partial derivatives of the displacement
field to obtain the strain field should be done with high accuracy as this process can amplify

the effect of noise and so filtering seems to be quite important.

After obtaining the actual displacement and strain fields, the procedure to identify the
elasto-plastic model can be initiated. Having in mind the basic equation for quasi-static non-
linear VFM, the constitutive equations with the general form of ¢ = g(&) (where g is a
given function of the actual strain components but also of the constitutive parameters) can
be applied,

—fg(5)=?dv+jT.st=o (a)
14

s

If the actual strain field is heterogeneous, for any new virtual field implemented in
equation (a), a new relation involving the constitutive parameters will be derived, which is
the main property of the VFM. With a given set of virtual fields, equation (a) is used to
collect the unknown constitutive parameters. The key factor in VFM is the choice of the

virtual fields. The number and the type of the virtual fields depend on the nature of function
g(8).

Two different cases are encountered,

e Identification of the Elastic Parameters
In this step, a linear dependency exists between the constitutive equations and the

constitutive parameters (as in linear elasticity). In this case, writing equation (a) with as
many virtual fields as unknowns results in a linear system of equations by which the
parameters can be obtained directly after inversion, provided that the actual strain field is

heterogeneous and the virtual fields are independent.

o Identification of Plastic Parameters
In this step, there is no linear dependency between the constitutive equations and the

constitutive parameters (as in Elasto-plasticity). The identification strategy is on the basis of

the minimization of a residual with regard to equation (a).

Herein, the procedure to obtain elastic parameters is demonstrated as an example.
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Identification of the Elastic Parameters

Before the onset of plastic deformation, the response of the specimen is linear elastic.
Assuming a plane stress state in the specimen, for an isotropic material the following well-

known hook’s law can be written,

E vE 0 1
O-xx 1 - Uz 1 - UZ gxx
vE E E: Young’s modulus
Oyy | = > > 0 Eyy (b) i , ;
o 1-vs 1-v € v : Poisson’s ratio.
xy E Xy
0 0
1+ v

Inserting equation (b) into equation (a),

E * *
12 f (eyysyy + ExxExx )dS
S
vE i i
+ 1= L(sxxsyy + €yyExx )dS
E i 11 _ —
+ngxygxy dS=?L T.u*dS

f
(©)
t : the thickness of the specimen

S : the area of the zone of interest, (the black-coloured area)

Two virtual displacement fields as 7*! and 7*2 have been defined, in order to find the

two material constants for the elastic part,

(vt (x,y) = vt (x,y) =0 fory <0
vt (x,y) =0
1 < {vy*)i(x,y) — for0<y<L
*1
v (x,y) =0
k{vy*l(x,y) =-L fory>L
(V2 (x,y) = vy (x,y) = 0 fory <0
v?(x,y) = xy(y — L)
*2 <{ x 0202, y) = 0 for0<y<L
*2
v (x,y) =0
k{v;z(x, =0 fory>1L

Where L is the length of the area of interest.
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Feeding the above virtual displacement fields into equation (c), and solving for Young’s

modulus E, Poisson’s ratio v, one will obtain,

_ Joyy — L) g dS + [ x(2y — L) &y, dS
Joyy—L) ey, dS— [ x(2y — L) &y dS
(1 —v?)PL
E =
t(Jg yy dS +v [, £y dS)

Vv =

(d)

In the next step, the strain fields measured for all the load steps were inserted into
equation (d). However, among all the load steps a certain first few numbers of them will

result in acceptable values of E and v.
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APPENDIX B

MMEFC: an introduction

Unlike Some kinds of failures such as wrinkling and spring back that can be obtained
directly, the study of rupture needs a great endeavour as the localized necking is
concentrated in a very narrow band. From the numerical simulation point of view, as the
position of rupture is not easily predicted, in order to model the necking or very high
deformation gradient, a vast number of fine elements must be employed for assessing the
rupture. An alternative method is to conduct the study by benefiting from some failure
prediction models. The concept of Forming Limit Curves (FLC) is currently the most
acceptable approach for necking prediction in the numerical simulation of sheet forming

processes (81).

Based on the MMFC model, additional tensile stress is induced as diffuse necking
happens, postponing the occurrence of localized necking. MMFC model takes into account
more factors to define the material behaviour in this range, and so far better approximation
can be attained. The classic criterion of maximum force solely considers the influence of
hardening behaviours, while the effect of yield loci is totally neglected. In fact, the yield
loci, either isotropic or anisotropic, play a very important role in the failure process, so that,
without considering the effect of yield loci, the resulted FLC would not be able to

demonstrate the real material behaviour (81).
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Following the original maximum force criterion, (here, P is used as force symbol, to avoid

confusion with yield criterion symbol, F)

dP = d(c,A) =do, A+ 0, dA >0 (a)

» Provided that only strain hardening effect is taken into account, it can defined as,

As metallic materials normally follow volume consistency law during plastic forming,

— = —dg; .
Inserting the last two relations into equation (a), and considering the fact that in tensile
test, 0, = ¢ and &; = &, we reach the Swift formulation (81),

ds _
ac~ 7

» However, as it was mentioned before, the stress o is not only a function of strain

hardening but also the strain ratio f = de; / de,’ Thus, the stress increment do;

can be modified as,

., 0 . . .
Ao7: a%l de4 : describes the strain hardening effect,
1

do, do, o
——deg+——df (b) Acy:=2dp : describes additional hardening caused by
dgq aps ap

dO‘1 =

the transformation of stress states.

Thus, two types of hardening during

diffuse necking can be seen in the figure
(81).

Diffuse Necking
01

"
Aoy

By substituting relation (b) into the original form (a), the modified maximum force

criterion can be formulated as,

99 1e 2% g s 4
e, & a8 p > o1de; (©)
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d . : .
As long as a;:l >0y, df is zero and f keeps constant: uniform deformation state.
1

Gradually, the stress increases due to the work hardening influence, however the hardening

rate P L starts to decrease for most of the metallic materials; so that, as soon as the condition
1

do . . ) .
6—1 > gy is violated, f (strain increment ratio: A‘82/ A 81) will alter correspondently to keep
€1

the equilibrium state stable. The variation of the strain increment ratio affects the stress state,
and can be demonstrated by the yield locus applicable to the material (81). These effects are

looked in more details here.

Having £ (the strain increment ratio) and a = 92 /01 (the stress ratio) in mind, generally

the relations g, = f(a)d and Aé = g(f)Ae; can be discussed provided that the yield

function F (g4, 0,) = 0 is known.

The terms 971 / de, and 60‘1/ ap can be obtained as (81),

do, 00,00 0¢ , ‘ ‘
3_81 = %%a_gl = f(a) g()H H = H(€) : hardening function
do, 601 da
3  odaodp =f@agz=rf@" ( > H' : slope of the hardening curve

... .. 5} a
From the definition of g, it is clear that f = aUF / aUF can be evaluated through
22 11

employing a proper yield locus, so that one can readily derive the derivation %.

Rewriting (c) as below, the modified formulation of maximum force criterion is achieved
as,

do, 0o, 0P

a—gl+ﬁa—gl>0'1

Application of MMFC in FLC evaluation

In order to conduct a theoretical study on the evaluation of FLC, one can follow the
above procedure; diffuse necking, however, is a nonlinear process in which significant
variations can be observed in all auxiliary functions as well as the stress and strain ratios,
a and B. Thus, it is advisable to do the calculation numerically using the following

flowchart,
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Evaluation

Bk = Bi = [Bmin: AB: Bnax]

Inputs .
i g = [&): Agy: £ Output
(1) Ae= pide,
H=H(&)
AZ = g(Ag, Asy)
H' = H'(&) 1 = ZAE | | ‘ Efrlt’sgnt ‘
& =H(®)
a= F(Gl,ﬂ'z} H"(é)
é N

Hardening curve & Yield locus Agy

—X go to (1) with §; = fi
Agy

else iteration for B**" so that

ifa, <

90,

5 gy = o 22)

go to (1) with gl** until g/ = 0

| A\ ]
L& o

Figure 169 flowchart for the iterative procedure of FLC evaluation using MMFC

Having critical strains in hand, it is possible to obtain the equivalent strain, which is then

can be used to evaluate equivalent stress-equivalent strain curve, as discussed in section 6.3.
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