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Summary

This dissertation is the result of a collaboration with LINKS Foundation that aims
to optimise the delivery service of a set of small food shops in a specific area of
Torino. Each one of these businesses is currently managing a number of low volume
deliveries on its own. I started my research by understanding the issues that these
shops face everyday with the current system of delivery: owning a vehicle dedicated
to deliveries results in costs that are too high, given the low quantity of orders for
each store. As many micro and small enterprises in the food sector are facing the
competition of bigger companies in terms of infrastructure costs, the reorganisation
of the goods’ distribution chain in a collaborative way (shared vehicles, spaces,
human resources, processes, data and information) can lead to an improvement of
the current situation.

After having understood the needs of these businesses, I developed an algorithm
with Python, able to calculate the routes of vehicles starting from a shared depot,
merging the routes of different shops in order to allow a more efficient delivery
service. I simulated 1350 scenarios with different properties which allowed me to
gain insights about the advantages of a shared system of delivery services, such as
the reduction of transportation costs and lower number of vehicles used, helping
small businesses with an alternative proposition to the current situation. The
advantages of such a system also apply to the final customers, that would benefit
from a more efficient infrastructure, lower delivery costs, the possibility to access a
digital ordering platform.

Finally, I noticed how this kind of organisation would result in a much lower
number of vehicles on the streets, contributing to a decreased level of pollution for
the city of Torino.
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Chapter 1

Operations Research

1.1 Introduction

Operations Research has been defined by INFORMS (institute for Operations
Research and the management science): Operations research aims to provide
rational bases for decision making by attempting to understand and structure
complex situations and to use this understanding to predict the behaviour of
systems and improve their performance. Much of this work uses analytical and
numerical techniques to develop and manipulate mathematical. and computer
models for organisational systems composed of people, machines and procedures[1].

Among other branches of science, operations research plays a key role in economic
problems. Its first applications date back to the late 18th century with G. Monge,
who made studies of a transportation problem, and then also with F. Taylor, who
made a study of production methods almost a hundred years later. However, the
term Operations Research was coined in the military context in the United Kingdom
in the late 1930s just before the Second World War. In particular it started with the
study concerning the efficient use of a military instrument for detecting the position
of objects such as aircraft and ships: the radar. It was precisely in 1937 that
the British Royal Air Force began experiments for an air defence control system,
based on the use of a radar station located on the east coast, at Bawdsey Research
Station. From the moment they realised the enormous difficulty in efficiently
managing the information received from the radar, the supervisor of the Bawdsey
Research Station decided to propose the development of a research program for the
operational aspects of the system and not just the technical aspects, which were
already satisfactory, therefore a group of expert scientists from various disciplines
was created, called the ”OR Team”, hence the term ”Operational Research”[2].
With time and the spread of the personal computer, there was an increasing
spread of operational research in various industrial fields. Some examples where
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Operational Research techniques are used are:

• Finance:
In this field to determine the amount to be invested or the way in which an
investment is to be made, e.g. using mathematical models to select investments
and the amount of each (portfolio) or to determine the price of certain financial
derivatives;

• Warehouse stock management:
Finding production and stock levels for efficient product management, identify-
ing when and how many products should be ordered to reorder the warehouse
in order to minimise resource management costs;

• Determination of personnel shifts:
Problem aimed at minimising personnel costs and respecting constraints. It
arises for example in the management of personnel in a hospital, a company
or a train;

• Minimum vehicle path:
Identifying the minimum path of a vehicle according to the demands to be
met, this in particular will be the main macro topic of the thesis, in which I
will study a specific case.

It is distinguished by a strong interdisciplinary, mainly mathematics, computer
science, engineering, economics and finance. It can be divided into 3 groups[3]:

1. Optimisation:
(what-is-best approach) it formalises the problem in a mathematical model
and identifies an optimal or sub-optimal solution for it;

2. Simulation:
(what-if approach) it Formalises the problem in a mathematical model and
determines "good" parameters using statistical or game theory methods;

3. Stochastic process:
It creates probabilistic models in order to determine the behaviour of systems;
it is the basis of financial engineering.

1.2 Modeling approach
Operations Research is therefore a methodology that cuts across many disciplines,
applicable in many contexts where analytical methods are needed to improve the
effectiveness of solutions. One of the branches is the modeling approach.
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The term model is usually used to refer to an artificial construction made to
highlight specific properties of real objects. The models are abstract, namely
mathematical models that use the symbolism of algebra to highlight the main
relations of the object to be modelled. The models and are made up of a set of
relations that describe in a simplified but rigorous way one or more phenomena of
the real world. The notion of a mathematical model to represent the real world is
not new: This time was older, already in the 4th century B.C. Pythagoras tried to
build a mathematical model of the Universe.[2]

The interest for mathematical modelling has grown considerably and nowadays
it is considered that through mathematical models it is possible to represent many
aspects of the real world and to analyse its properties. This has led, as previously
explained, to a huge development of the applications of mathematical modelling
also outside the traditional applications to the mathematical-physical sciences, in
fields like, for example, social and environmental sciences. As well as concrete
examples, think of studies on the spread of epidemics as we are seeing with the
current situation of Covid-19, or on environmental recovery, another highly studied
topic. It is clear that in many cases the situations that we want to represent with a
model are very complex and sometimes influenced by phenomena. For this reason,
several classes of mathematical models have been defined:

• Stochastic models:
They consider quantities that can be influenced by random phenomena, hence
in a situation where uncertainty is present. «The word stochastic comes from
the Greek word stokhazesthai meaning to aim or guess. In the real word,
uncertainty is a part of everyday life, so a stochastic model could literally
represent anything»[4].
The stochastic models have a chance to give different outcomes every time
the model is run in order to find a solution.

• Deterministic models:
They consider exact quantities, hence when the prediction has 100% of accuracy,
opposed to the randomness of the stochastic models.
Deterministic models always have a set of equations that describe the system
behaviour and always have exact outputs.

Furthermore, depending on whether the interactions between the quantities are
immediate or distributed in time, we speak of static models and dynamic models.
The modelling approach to solve a decision problem or, more generally, the use of
mathematical methods for the solution of application problems, is usually carried
out through various phases, as a resolution step, which are:

1. Analysis of the problem:
It is necessary to determine the objectives to be achieved and the constraints
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that the problem under consideration has. This initial phase is fundamental to
the study and collection of the data in order to identify the logical-functional
connections;

2. Construction of the model:
Once the data have been classified, it is necessary to create the mathematical
model, i.e. the representation of the real situation expressed through the
use of mathematical expressions. There will always be an objective function
to maximise (e.g. revenues or profits) or minimise (e.g. costs or staff); this
function will depend on one or more variables to determine their respective
values (e.g. sales quantity or number of staff to be employed). All this will
be constrained in the model by equations and inequalities representing the
properties of the problem;

3. Model analysis:
In this case the intent is to deduct by analytical way, with reference to certain
classes of problems, some important properties. The main ones are:

• Existence of the optimal solution;

• Conditions of optimality, that is an analytical characterisation of the
optimal solution;

• Stability of the solutions when the data or any parameters are changed.

4. Finding a solution:
Once the mathematical model has been formulated, the possible optimal
solution is sought, usually using using appropriate calculation algorithms.
Since a model is never a perfect representation of the real problem, the
solution may not be the best solution to the problem;

5. Checking the model and the solution:
Once the optimal solution has been found in the model, it must be compared
with reality and evaluated. The validation of the model can be done through
experimental verification or simulation methods. Then it can be iterated all
the process in order to refine and improve the solution[2].
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Figure 1.1: Modeling approach

1.3 Optimization models
«Many important and practical problems can be expressed as optimization problems.
Such problems involve finding the best of an exponentially large set of solutions.
It can be like finding a needle in a haystack. The obvious algorithm, considering
each of the solutions, takes too much time because there are so many solutions.
Some of these problems can be solved in polynomial time using network flow, linear
programming, greedy algorithms, or dynamic programming. When not, recursive
backtracking can sometimes find an optimal solution for some instances in some
practical applications. Approximately optimal solutions can sometimes be found
more easily. Random algorithms, which flip coins, sometimes have better luck.
However, for the most optimization problems, the best known algorithm require
2O(n) time on the worst case input instances. The commonly held belief is that
there are no polynomial-time algorithms for them (though we may be wrong).
NP-completeness helps to justify this belief by showing that some of these problems
are universally hard amongst this class of problems. I now formally define this
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class of problems.[5]»
Optimization modeling is a branch of mathematics which has the goal to

determine the optimal maximum or minimum value of a set of complex equations.
A key factor is that constraints such as time limitations (maximum of 8 hours per
day), which are used to find a realistic solution, must be respected. Mathematical
optimization makes use of techniques to evaluate complex models that most of
the time are related to real-life business problems, such as scheduling, portfolio
management, routing problems, and more.

In general terms, given a set X ⊆ Rn and a function f : X → R and n is the
number of real variables, an Optimisation problem can be formulated in the form:minf(x)

x ∈ X
(1.1)

Conventionally it is defined the minimum but it is completely indifferent in fact:maxf(x)
x ∈ X

(1.2)

Which is the same as: min− f(x)
x ∈ X

(1.3)

Therefore we can say that an Optimization problem consists in determining
a minimum point of the function f(x) among the points of the set X, if there
exists at least one solution. Optimisation problems are often called, with equivalent
terminology, Mathematical Programming problems. The admissible set X is
the set of the possible solutions of the problem, which is a subset of Rn, hence
x = (x1, x2, ..., xn)T is an n-dimensional vector variable. A point x ∈ X is called
a feasible solution. The function f called objective function is composed of n real
variables f(x1, x2, . . . , xn). The optimization problem has different types of
solutions[2]:

1. Feasible:
The optimization problem is feasible if X /= 0 therefore there is at least one
admissible solution x inside the set X;

2. Unfeasible:
The optimization problem is unfeasible if X = 0 therefore there are no possible
solutions x inside the set X;
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3. Unbounded:
The optimization problem is unbounded above or below respectively for
maximum and minimum problems if for any value A > 0 there exists a point
x ∈ X such that f(x) > A or f(x) < −A. In other words when the solution
tends to plus or minus ∞ and so it means that there is no bound for the set
of feasible solutionsXand thus the optimal solution → ±∞.
An example for both the cases is f(x) = x3 in the first case we have X = {x :
x ≥ 3} and we want to find the maximum, but we can see that forXtends to
∞ the function f(x) tends to ∞, so it is unbounded above.
In the case of min f(x) = x3 and X = {x : x ≤ 3} we have the same x tends
to +∞ and the function f(x) tends to -∞, so it is unbounded below;

4. Optimal:
the optimization problem (minf(x)) has an optimal value f(x∗) if there exists
an x∗ ∈ X such that f(x∗) ≤ f(x) ∀x ∈ X. The point x∗ is called optimal
solution or global minimum and the corresponding value f(x∗), as said before,
is called optimal value. In case we have Maxf(x) if for a point x∗ f(x∗) ≥ f(x)
∀x ∈ X.
One example for min : f(x) = 2× x and optimal solution (x∗) = 0.
One example for max : (x) = −2× x2 and optimal solution (x∗) = 0.

To conclude "Solving" an optimization problem therefore means, in practice:

• Determine if the feasible set is non-empty, or to deduce that there are no
feasible solutions;

• Establish if there are optimal solutions, or to show that the problem does not
have optimal solutions;

• Determine an optimal solution.

Types of problems

1. Continuous:
In continuous optimization problems the variables used can assume all the
real values x ⊆ Rn. Furthermore we have 2 types of continuous optimisation
problems:

• Constrained: when we have X ⊆ Rn.
• Unconstrained: when we have X = Rn.

2. Discrete:
Discrete Optimization problems consist in a set of problems with variables
that can assume only values on a finite set. Also here we can divide this class
in 2 other categories:
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• Integer programming: when the variables of set X can take only integer
values so X ⊆ Zn.

• Combinatorial programming: when the variables can take boolean values
so X ⊆ {0,1}n.

3. Mixed:
Mixed problems have some continuous variables and some of them can be
integer or boolean.

Creating the model of the optimization problem is a step really important to
understand all the characteristics of the problem we want to solve. There is the
feasible set X, which is described by a finite number of inequalities of the type
h(x) ≤ 0, where h is a function defined on Rn with real values ai ∈ R. Formally,
given m functions hi : Rn → R, i = 1, ..., m we express X in the form:

X = {x ∈ Rn | h1(x) ≤ a1, ... , hm(x) ≤ am} (1.4)
Every inequality gi(x) ≤ 0 is called constraint and the admissible set is then

formed by all those points x ∈ Rn that are solutions of the system of inequalities.:
h1(x) ≤ a1

h2(x) ≤ a2

...

hm(x) ≤ am

(1.5)

In this formulation of the set X the constraints are in the form of less than
or equal, but it is possible to have different cases in which the constraints are
expressed with inequality constraints in the form of greater than or equal and
equality constraints. For instance a greater than or equal constraint of the type
h(x) ≥ 0 can always be transformed into a less than or equal constraint by changing
the form into −h(x) ≤ 0.

Another example is an equality constraint h(x) = 0 which can be rewritten in
the equivalent form of the two inequalities h(x) ≤ 0 and −h(x) ≤ 0.

In conclusion the optimization problem can be formulated in the Mathematical
Programming form: minf(x)

hi(x) ≤ 0 i = 1, ..., m
(1.6)

The problems of Mathematical Programming can be classified according to the
properties of the objective function and of the constraints taking into consideration,
among the most significant, linearity and convexity. A first distinction is the
one that refers to the hypothesis of linearity. From this point of view, we can
distinguish[2]:
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• Problems of Linear Programming (LP): In this case the objective is a linear
function of the type: c1x1 + c2x2 + ... + cnxn.
The constraints are expressed by a system of linear inequalities in the form:
ai1x1 + ai2x2 + ... + ainxn ≥ bi;

• Non-linear programming (NLP) problems:
In this case the objective or some of the constraints are not linear, for example:
xi × yj.

The model is constructed by an objective function and the constraints with the
appropriate variables:
• Objective function:

It is used to measure a particular aspect of a system with the intent to minimize
or maximize it, finding the optimal values of the variables;

• Variables:
They represent the components of the system, which are used to determine
the objective function and the constraints;

• Constraints:
They are used to limit the values of the objective function corresponding to
some characteristics as for example, working at least 8 hours per day, where
the hours is a variable of the system.

Now I will show some examples of linear and non-linear programming:
1. Linear programming: 

min x1 + 3x2

x1 + 2× x2 ≥ 10
x1 ≥ 0
x2 ≥ 0

(1.7)

It is linear since all the functions in the objective function or in the constraints
are linear;

2. Non-linear programming:
min x1 + 3x2 + x1 × x2

x1 + 2x2 ≥ 10
x1 ≥ 0
x2 ≥ 0

(1.8)

In this case it is non-linear programming because in the objective function x1
and x2 are multiplied between them.
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A simple example of a construction Linear Programming Problem is: A company
S processes oil into aviation fuel and heating oil. It costs 40 to purchase each
1,000 barrels of oil, which is then distilled and yields 500 barrels of aviation fuel
and 500 barrels of heating oil. Output from the distillation may be sold directly
or processed in the catalytic cracker. If sold after distillation without further
processing, aviation fuel sells for 60 per 1,000 barrels, and heating oil sells for 40
per 1,000 barrels. It takes 1 hour to process 1,000 barrels of aviation fuel in the
catalytic cracker, and these 1,000 barrels can be sold for 130. It takes 45 minutes
to process 1,000 barrels of heating oil in the cracker, and these 1,000 barrels can
be sold for 90. Each day, at most 20,000 barrels of oil can be purchased, and 8
hours of cracker time are available. If we want to find the optimal daily profit for
company S we can write the mathematical model to find the solution.

Variables:

• x1 is the number of 1000 barrels of oil bought;

• x2 is the number of barrels of aviation fuel processed in the cracker;

• x3 is the number of barrels of heating oil processed.

Constraints:

• 8 hours of cracker time are available: x2 + 0.75x3 ≤ 8;

• At most 20,000 barrels of oil can be purchased: x1 ≤ 20;

• Distilled and yields 500 barrels of aviation fuel: 0.5x1 − x2 ≥ 0;

• Distilled and yields 500 barrels of heating oil: 0.5x1 − x3 ≥ 0;

• All the barrel units are positive: x1 ≥ 0, x2 ≥ 0 , and x3 ≥ 0.

So the final formulation is:

max 60(0.5x1 − x2) + 130x2 + 40(0.5x1 − x3) + 90x3 − 40x1 ≤ 20
x2 + 0.75x3 ≤ 8
0.5x1 − x2 ≥ 0
0.5x1 − x3 ≥ 0
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

(1.9)

The optimal solution to this problem is:

• x1 = 20
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• x2 = 8

• x3 = 0
The corresponding total profit is: 760.

1.4 Linear Programming
«The maximum flow and minimum cut problems are examples of a general class
of problems called linear programming PL. Many other optimization problems
fall into this class, including minimum spanning trees and shortest paths, as
well as several common problems in scheduling, logistics, and economics. Linear
programming was used implicitly by Fourier and Jacobi in the early 1800s, but it
was first formalized and applied to problems in economics in the 1930s by Leonid
Kantorovich. Kantorivich’s work was hidden behind the Iron Curtain (where it
was largely ignored) and therefore unknown in the West. Linear programming
was rediscovered and applied to shipping problems in the late 1930s by Tjalling
Koopmans. The first complete algorithm to solve linear programming problems,
called the simplex method, was published by George Dantzig in 1947. Koopmans
first proposed the name “linear programming” in a discussion with Dantzig in 1948.
Kantorovich and Koopmans shared the 1975 Nobel Prize in Economics ’for their
contributions to the theory of optimum allocation of resources’. Dantzig did not;
his work was apparently too pure. Koopmans wrote to Kantorovich suggesting
that they refuse the prize in protest of Dantzig’s exclusion, but Kantorovich saw
the prize as a vindication of his use of mathematics in economics, which his Soviet
colleagues had written off as “a means for apologists of capitalism”»[6].

A linear program is composed by:
• A single linear objective function to minimize or maximize:

f(x1, ..., xm) = c1x1 + ... + cmxm =
mØ

j=1
cjxj (1.10)

• A set of linear inequalities:
a11x1 + ... + a1mxm ≤ b1

... + ... + ... ≤ ...

a(n−1)1x1 + ... + a(n−1)mxm ≤ bn−1

an1x1 + ... + anmxm ≤ bn

(1.11)

Which is equivalent to:
mØ

j=1
aijxj ≤ bi ∀i = 1...n (1.12)
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In linear algebra it is possible to use a different notation:min cT x

Ax ≤ b
(1.13)

In this case we have the m-vector c = (c1, ..., cm)T , the m-vector of variables
x = (x1, ..., xm)T then A = (aij) is a matrix (nxm) and the vector b = (b1, ..., bn)T .
A linear programming problem to be in canonical or standard form it has to be in
one of the following forms[7]:

• Standard form: 
max cT x

Ax = b

x ≥ 0
(1.14)

• Canonical form: 
max cT x

Ax ≤ b

x ≥ 0
(1.15)

Any linear program can be converted into standard or canonical form, depending
to what form to use. I will explain the cases to standard form, which is similar to
conversion into canonical form:

• If it is minf(x) replace it with Max− f(x)

• In the case there is a free variable xi which can be negative (profit/loss). it is
possible to change the variable with the substitution method:
xi = x+

i − x−
i

x+
i ≥ 0

x−
i ≥ 0

• For inequality constraints, for example with x1 + x3 ≤ 10 we can add one
non-negative variable z ≥ 0 and the inequality becomes x1 + x3 + z = 10

1.5 Integer Linear Programming
The problems of Integer Linear Programming (PLI) differ from those of PL only for
the fact that the variables can take only integer values. This integrity constraint
has, however, an enormous impact. Integer variables can be used to model logical
conditions and situations in which decisions are made among a finite number of
possible alternatives. It can be said that the vast majority of models used in
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practice are PLI, since in most real-world applications logical conditions exist and
discrete choices must be made. Many combinatorial optimization problems CO,
which we will explain later, can be formulated as PLI problems. In fact, in practice
we tend to consider substantially coincident the two classes of problems[7]. This is
due to two concomitant reasons:

• CO problems are normally formulated as PLI problems, and much of the
solution approaches for CO problems are based on such formulations;

• almost all efficient techniques for solving PLI problems are based on the
identification and exploitation of specific combinatorial structures in the PLI
model, i.e., on the identification of sub CO problems corresponding to the PLI
model or parts thereof.

There is therefore a strong connection between the problems of CO and those of
PLI. The two classes are not however completely coincident. On the one hand, PLI
provides a powerful language to formulate in a uniform way both CO problems
defined on very different structures, but also problems that can be very difficult
to relate to CO problems: PLI is in some sense "more expressive" than CO. On
the other hand, there may exist many different PLI formulations of the same CO
problem, and the formulation as a CO problem is often "more informative" than
the PLI formulations, in the sense that it may be easier to derive useful properties
for the solution of the problem by working directly on its combinatorial structure
rather than on its formulations in terms of PLI.

Since we can apply to PLI problems the same transformations we saw in before
for PL problems, we can assume that PLI problems are expressible in standard
forms analogous to those already introduced, for example:

(PLI) max{cx : Ax ≤ b, x ∈ Zn} (1.16)

We also speak of Mixed Linear Programming (PLM ) problems when only some
of the variables are bound to be integer, such problems then have the form:

(PLM) max{cÍxÍ + cÍxÍÍ : AÍxÍ + AÍÍxÍ ≤ b, xÍ ∈ Zn} (1.17)

Almost all of the approaches for PLI that we will describe can be generalized to
PLM, often only at the cost of complications in description.
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Chapter 2

Combinatorial optimization

2.1 Algorithm complexity

Once a problem P has been formulated, it must be solved; therefore, people are
interested in the development of computational tools, i.e., algorithms, that given
any instance p of the problem are able to provide a solution in a finite time. An
algorithm that solves P can be defined as a finite sequence of instructions that,
applied to any instance p of P , will stop after a limited number of steps ( i. e.,
elementary computations), providing a solution of p or indicating that p has no
feasible solution.

Generally one is interested in finding the most efficient algorithm for a given
problem. In order to study algorithms from the point of view of their efficiency,
or computational complexity, it is necessary to define a computational model;
some examples of computational models are the Turing Machine and the Register
Machine (RM).

Given a problem P , an instance p, and an algorithm A that solves P , we denote
by cost (or complexity ) ofAapplied to p a measure of the resources used by the
computations that A performs on a machine M to determine the solution of p.
Resources, in principle, are of two types: occupied memory and computation time.
Very often the most critical resource is the computation time (time of execution of
the algorithm) and therefore it is used primarily as a measure of the complexity of
the algorithms. Assuming that all elementary operations have the same duration,
the computation time can be expressed as the number of elementary operations
performed by the algorithm. Given an algorithm, It is desirable to have a measure of
complexity that allows an evaluation of its effectiveness and possibly a comparison
with alternative algorithms. Knowing the complexity of A for each of the instances
of problem P is not possible (the set of instances of a problem is normally infinite),
nor would it be of practical use.
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So we try to express the complexity as a function g(n) of the dimension n of
the instance to which the algorithm is applied, defined as a measure of the number
of bits needed to represent, with a reasonably compact encoding, the data defining
the instance, i.e. a measure of the length of its input. Since for each dimension
there are in general many instances of that dimension, we choose g(n) as the cost
required to solve the worst case among the instances of dimension n. At this point
the function g(n) turns out to be sufficiently rigorously defined, but it continues
to be difficult to use as a measure of complexity, if not practically impossible, to
evaluate g(n) for any given value of n. This problem is solved by replacing the
function g(n) with its order of magnitude; we then speak of asymptotic complexity.
Given two functions f(x) and g(x), we will say that:

1. g(x) is O(f(x)) if there exist two constants c1 and c2 for which g(x) ≤
c1f(x) + c2 ∀x;

2. g(x) is Ω(f(x)) if f(x) is O(g(x));

3. g(x) is Θ(f(x)) if g(x) is both O(f(x)) and Ω(f(x)).

Let g(x) be the number of elementary operations that are performed by the
algorithm A applied to the most difficult instance, among all those having input
length x, of a given problem P . We will then say that the complexity of A is an
O(f(x)) if g(x) is an O(f(x)), is an Ω(f(x)) if g(x) is an Ω(g(x)) and a Θ(f(x))
if g(x) is a Θ(f(x)). An algorithm is said to have polynomial complexity if the
execution time is of order O(xk), where k is a constant independent of the input
length x. If the time complexity function cannot be bounded by a polynomial,
the algorithm is said to have exponential complexes. If the expression bl, where
l is a constant and b is the largest input value, is part of the limiting function,
i.e. if the running time is of order O(xkbl), then the algorithm is said to have
pseudo-polynomial complexity[8].

2.1.1 Classes P and NP

To make a more rigorous classification of the different problems, it is convenient to
refer to problems in decision form. A first important class of problems is the class
NP , consisting of all decision problems whose problem can be solved in polynomial
time. In other words, the problems in NP are those for which it is possible to
verify efficiently an answer yes, because it is possible to decide in polynomial time
if a solution x is feasible for the problem. In other words, problems in NP are
those for which there exists a polynomial-length computation that can lead to
constructing a feasible solution, if one exists, but this computation may be hidden
within an exponential set of similar computations among which one does not know
how to discriminate.
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A subset of the class NP is the class P , consisting of all problems solvable in
polynomial time, i.e. containing all those decision problems for which there are
algorithms of polynomial complexity that solve them. For this reason, problems in
P are also called polynomial-time problems. Clearly P ⊆ NP , but a particularly
important question is whether there are problems in NP that do not also belong
to P , that is, whether P /= NP . This question cannot be answered, although it is
highly probable that the answer is positive, i.e. that it is indeed P /= NP [9].

2.1.2 NP-Complete and NP -Hard Problems

Given two decision problems P and Q, and assuming the existence of an algorithm
AQ that solves Q in constant time, we will say that P reduces in polynomial time to
Q, and write P ∝ Q, if there exists an algorithm that solves P in polynomial time
using AQ as a subprogram. In such a case we speak of polynomial time reduction
of P to Q.

The relation ∝ has the following properties :

1. It is reflexive: A ∝ A;

2. It is transitive: A ∝ B and B ∝ C → A ∝ C;

3. A ∝ B and A /∈ P → B /∈ P ;

4. A ∝ B and B ∈ P → A ∈ P .

We can now define the class of NP -complete problems: a problem A is called
NP -complete if A ∈ NP and if for every B ∈ NP we have that B ∝ A. The
class of NP -complete problems constitutes a subset of the NP -class of particular
importance. NP -complete problems have the important property that if there
exists for one of them a polynomial algorithm, then necessarily all problems in NP
are solvable in polynomial time, and hence P = NP . In a sense, such problems
are the hardest of the problems in NP . A problem is said to be NP -complete in a
strong sense if no pseudo-polynomial algorithm exists for it unless P = NP .

A problem that has an NP -complete problem as its special case is called an NP -
hard problem and has the property of being at least as difficult as NP -complete
problems (unless there is a polynomial multiplicative function). Note that an
NP -Hard problem may also not belong to the NP -class. As defined for NP -
complete problems, similarly a problem is said to be NP -hard in a strong sense if
no pseudo-polynomial algorithm exists for it unless P = NP .
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2.2 Introduction to Combinatorial optimization
Combinatorial optimization deals with discrete type objects such as graphs or
sets and it studies problems that consist in arranging, grouping, ordering these
objects in an optimal way. Therefore such problems always have a finite number
of solutions, which would imply a certain ease in finding the optimal solution (at
least by comparing the solutions one by one) but this is by no means true: in most
cases the number of solutions is, in fact, very high and therefore the need arises to
design algorithms suitable for the various types of problems, then evaluating their
efficiency [7].

In the case in which an optimization problem is characterized by the fact that
in each instance the realizable region F contains a finite number of points (and
therefore the optimal solution can be found by comparing a finite number of
solutions), we speak of Combinatorial Optimization (or Discrete Optimization)
problem; as we said before we speak instead of Continuous Optimization problem
if the realizable region can contain an uncountable infinity of points. While in the
Combinatorial Optimization models the variables are constrained to be integers,
in the Continuous Optimization models the variables can assume all real values.
There are two types of solution methods for Combinatorial optimisation problems
(COP):

• Exact methods;

• Heuristic methods.

2.2.1 Exact methods
Exact methods can determine an optimal solution: a feasible solution that optimises
(minimises or maximises) the objective function. The heuristic methods provide a
feasible solution that is not certain to be optimal, in fact it is difficult to find the
optimum with this type of method, but a good approximation can be achieved [10].

In some cases, it is possible to find "efficient" exact algorithms to solve this kind
of problems: for example, the problem of finding the shortest paths on a graph,
under some reasonable assumptions often encountered in practice, can be solved
by Dijkstra or Bellman-Ford algorithms, which are able to find optimal solutions
in reasonable time.

Some examples of exact methods will be presented in the following:

• The branch-and-bound method;

• The cutting plane algorithms;

• The dynamic programming methods.
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Branch-and-bound

The branch-and-bound method is the most commonly implemented method in
commercial software for PLI and is based on the idea of an implicit enumeration of
feasible solutions to a problem. This method consists of an algorithm that, starting
from the linear relaxation of an integer linear program, comes to find an integer
optimal solution of the original problem by splitting it into several distinct sub
problems, that is, by splitting into several subsets the set of all feasible solutions for
the problem, by means of the choice of the values of one of the decision variables.
Given a PLI problem, which we assume to be minimization and in standard form,
min{cT x : Ax = b, x ≥ 0, x ∈ Z} and the polyhedron associated with its linear
relaxation P = x : Ax = b, x ≥ 0.

The scheme on which branch-and-bound methods are based is as follows:

1. The linear relaxation of the original problem is solved by determining x∗ ∈
argmin{cT x : x ∈ P};

2. If x∗ is integer, then it is also the optimal solution of the problem;

3. Otherwise, let xj
∗ be a non integer component of x∗. The original problem is

equivalent to the following problem:

min{cT x : x ∈ P ∩ Z ∩ ({x : xj ≤ åxj
∗æ} ∪ {x : xj ≥ çxj

∗è})};

4. Two sub problems are originated from the original problem:

• min{cT x : x ∈ P, x ≤ åxj
∗æ, x ∈ Z};

• min{cT x : x ∈ P, x ≥ çxj
∗è, x ∈ Z}.

To them it comes applied, In recursive way, the same algorithm of the two
possible found optimal solutions, that one of inferior value it is the optimal
solution of the problem.

The execution of the method follows the path of a tree in which the nodes
represent the variable and the branches correspond to the assignments of everyone
of the possible values to the variable. Once found in the exploration of a zone
of the tree of search a realizable solution for the problem, to verify if it is an
optimal solution it is necessary to visit the remaining part of the space of search
and to verify that better solutions do not exist, that is assignments of values to
the variables that improve the value of the objective function regarding that of the
found solution[8].
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Cutting planes

Given a PLI problem, one method of obtaining its linear relaxation as close as
possible to the ideal formulation of the problem is to add inequalities, called
Cutting planes, to the set of constraints of the relaxation. According to this
method, inequalities are added to the set of constraints of a linear relaxation that
has a fractional optimal solution that hold on one hand the integer solutions of the
problem and simultaneously are not satisfied by the fractional optimal solution of
the current relaxation. It is then to add to the pre-existing system of constraints
additional constraints that cut out the fractional solution (thus eliminating the
part of the feasible region containing this solution) which as such can certainly
not be an optimal solution of the original problem. This procedure, that is the
addition of cutting planes to the relaxation of the original problem, iterates until
an integer solution is reached, which will be the optimal solution of the problem.

Methods of this type were the first ones used for solving PLI problems, and are
still the most important ones along with enumerating methods, such as the branch-
and-bound method. Thus, the generation of cutting planes determines the insertion
in the system of constraints of the relaxed problem of some linear inequalities that
gradually remove the fractional solutions, unfeasible for the original PLI problem,
without eliminating any integer solution[8].

Dynamic programming

Dynamic Programming (DP) is a mathematical technique that is often useful for
making interrelated decisions and that allows one to tackle seemingly intractable
problems, i.e., those with an apparent exponential complexity. It was originally
introduced by Bellman in 1957 to solve some multi-stage decision problems and
optimal control problems. Originally, DP was created for problems where a decision
must be made for each instant of time, providing a systematic procedure for
determining the combination of decisions that maximizes total efficiency.

DP solves computational problems by putting together the solutions of a number
of sub problems, relying on the principle of optimality, according to which in some
cases a properly decomposed problem can be solved to the optimum through the
optimal solution of each sub problem. In this context the term programming does
not mean a program written in some programming language, but a tabular solution
method.

In general, DP is adopted to solve optimization problems but, unlike PL, there
is no standard mathematical formulation of the DP problem; rather, it IS a general
technique for solving certain problems, and the particular equations used must
be developed and adapted in each individual situation. Algorithms based on
DP divides the problem to be solved into a number of sub problems, even if not
necessarily independent, and recursively solve these sub problems. In the case
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of non-independent sub problems, the resolution requires solving common sub
problems. In this case, the DP solves a problem only once and stores the solution
in a table for use whenever the same problem occurs again[8].

2.2.2 Heuristic methods
For more complex problems, where "efficient" algorithms are not available, a possible
approach may be to formulate the problem as a Mixed integer Linear Programming
model and solve it with a MILP solver (Cplex, Gurobi, AMPL etc.), which makes
use of general purpose exact algorithms that guarantee to find the optimal solution.
It is not always possible to apply exact solution methods, due basically to two
issues: complexity, and the time available to find the solution, which can be limited.

This is why the use of a heuristic method instead of an exact one is important: the
complexity of a problem does not justify the use of heuristics, as the literature can
provide valid exact algorithms. The use of heuristics is therefore motivated by the
complexity together with the consideration of the appropriateness of implementing
exact methods, the computational time available, the size of the instances to be
solved etc. For example, it is always advisable to make an attempt to formulate
the mathematical model: this effort is useful in the analysis phase of the problem,
but also as an operational tool, since the increasing efficiency of solvers may make
model implementation a viable approach to obtain an exact solution in reasonable
run times.

The properties of the problem and/or the context of the solution may lead to
the inappropriate application of exact methods , while it is necessary to provide
"good" solutions that are feasible in "reasonable" time. There are some cases where
a proved optimal solution is required, while in many other cases, including perhaps
most real-world cases, a good approximate solution is sufficient, particularly for
large instances of a problem. For example:

• For many parameters (data) that determine a Combinatorial optimisation
problem, collected from a real application, only estimates are available, which
may also be error-prone, and it may not be worth waiting long for a solution
whose value (or even feasibility) cannot be guaranteed;

• It can be solved to provide a possible solution to a real problem, towards
a rapid scenario evaluation (e.g. operational contexts, use of optimisation
algorithms for support to business decisions);

• It can be declared in a real-time system, so that a "good" feasible solution is
required to be provided within a limited time.

These examples attest to the extensive use of methods that provide good
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enough solutions and guarantee acceptable computation times, even if they cannot
guarantee optimality: they are called heuristic methods[10].

The main types of heuristics methods are:

• Constructive heuristics: are applicable if the solution can be obtained as a
subset of some elements. In this case we start from an empty set and iteratively
add one element at a time. For example, if the element is chosen on the basis
of local optimality criteria, the so-called heuristics are realized greedy. An
essential feature is the progressiveness in the construction of the solution;

• Metaheuristic methods: these are general methodologies, algorithmic schemes
designed independently of the specific problem. These methods define com-
ponents and their interactions in order to achieve a good solution. The
components must be specialized for individual problems. Among the best
known and most established metaheuristics are Local Search, Simulated An-
nealing, Tabu Search, Variable Neighborhood Search, Greedy Randomized
Adaptive Search Techniques, Genetic Algorithms, Scatter Search, Ant Colony
Optmization, Swarm Optmization, Neural Networks, etc.

• Approximate algorithms: these are heuristic methods with guaranteed per-
formance it is possible to demonstrate formally that, for each instance of the
problem, the solution obtained will not be worse than the optimum (possibly
unknown) beyond a certain percentage;

• Hyper-heuristics: these are topics at the border with artificial intelligence and
machine learning, in which the research is in a pioneering phase. In this case,
the aim is to define algorithms that are able to discover optimization methods
and adapt them automatically to different problems.
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Chapter 3

Graphs

3.1 Introduction

Graphs are discrete mathematical structures used both for mathematics and for
a wide range of application fields related to many real-world problems such as
transport (GPS), computer science (computer networks, site maps) and even
business organisation. In fact, they lend themselves to representing problems that
could be apparently very different from each other in a simple and unified language.
This serves to explain their importance in applied mathematics and, in particular,
in Operations Research.

Figure 3.1: Generic graph
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A graph, G=(V,A) is a pair of sets:

• V is a finite, discrete, non-empty set of elements.

• A is a finite set of pairs of discrete elements of V.

V is called a set of nodes, and is denoted by V = {v1, v2, ..., vn}. The set A,
called the set of edges, is in general indicated with A = {a1, a2, ..., am} and is a
subset of the Cartesian product V × V , that is a set of vertex pairs of the graph
G = (V, A). Conventionally, the letters n and m indicate the cardinality of V and
A respectively, in other words, the number of vertices and number of edges of the
graph G = (V, A) : n = |V | and m = |A|. An edge will be indifferently denoted
either by a name that identifies it, for example ak, or by a pair of nodes (vi, vj).
Given the edge ak = (vi, vj) the nodes vi and vj are defined as extremes of ak, and
the side ak, identified with the pair formed by its extremes (vi, vj), is said to be
‘incident’ upon vi and vj . A graph can be weighted when there is a number (weight)
assigned to its edges, it is used to define distances, time travel, capacities, etc[11].

Graphs, in general, can be divided into two groups:

• Undirected graphs;

• Oriented graphs.

3.2 Undirected graphs

An undirected graph G = (V, A) is defined by a finite set V (G) = {v1, v2, ..., vn} of
elements called vertices and by a set A(G) = {a1, a2, ..., am} of unordered pairs of
nodes called edges[12]. Given any edge ak = {vi, vj}, the connection between the
two extremes is univocal, which means, it has the same value as the connection
between vi and vj (ak = {vi, vj} = {vi, vj}) and in this case we indicate the edges
with the notation {vi, vj} to highlight the fact that the two extreme nodes of the
side are defined as an unordered pair[2].

Two vertices vi, vj are said to be adjacent if the side {vi, vj} belongs to A and
therefore connects them, while two edges are said to be adjacent if they have a
vertex in common. The neighbourhood of a node vi in G, denoted by N(vi), is the
set of nodes adjacent to vi.

In the case where N(vi) = 0 vi is said to be isolated. We define the star of vi in
G, indicated with δ(vi), as the set of arcs ‘incident’ on vi.
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Figure 3.2: Undirected graph

Example of the graph G = (V, E) represented in Figure 3.2, which is composed
by the common 2 sets of elements:

• V = {v1, v2, ..., v6};

• E = {e1, e2, ..., e6} or E = {(v1, v2), (v2, v3), (v1, v5), (v3, v5), (v3, v4), (v4, v5)}.

Some examples[13] of the definitions written above related to Figure 3.2:

• e3 = (v1, v5),v1 and v5 are the extremes of e3;

• v3 and v2 are two nodes adjacent having e2 as arch in common;

• e3 and e1 are two arcs adjacent having v1 as node in common;

• N(v5) = {v1, v3, v4} is the neighbourhood of the node v5, all the nodes adjacent
to v5;

• v6 is an isolated node;

• δ(v5) = {e3, e4, e6} is a star of v5 composed by the set of arcs ‘incident’ on v5.

A subgraph of G = (V, A) is defined as a graph H = (W, E) such that W ⊆ V
and E ⊆ A. We call a subgraph induced by W ⊆ V in G = (V, A), the graph
H = (W, E), where the set of arcs E is such that the arc (vi, vj) belongs to E if
and only if:

1. vi and vj belong to W;

2. {vi, vj} ∈ A.

24



Graphs

We can say that the subgraph H inherits all the arcs of G whose extremities are
both contained in the subset W.

Figure 3.3: Subgraphs

Example in Figure 3.3 two subgraphs of the graph in Figure 3.2 are shown.
There are two types of subgraph:

• The first one is not an induced subgraph ("missing" the arc e4);

• The second one is induced in G by the set of nodes {v2, v3, v4, v5}.

The degree of vertex vi, usually denoted by dg(vi), is given by the number of sides
‘incident’ on vertex vi itself. In the case where dg(vi) = 0 we find that vi is an
isolated node (see node v6 in Figure 3.2) while in the case of dg(vi) = 1 we can
define vi as a hanging vertex (see node v5 in Figure 3.2).

For each graph G = (V, A) we can define a path, a sequence of distinct vertices
v0, v1, ..., vn together with a sequence of sides connecting them {v0, v1}, {v1, v2}, ...,
{vn−1, vn}. The vertices v0 and vn are called ends of the path. A walk is a path
when it is allowed to use repetitions of nodes and/or edges. If the walk is closed
it means its end and start coincide, and it is called a cycle or circuit. A graph
is connected if and only if there is a path between any two random nodes of the
graph.

"A tree is a graph that has no cycle and is connected. We define R = (V Í, AÍ)
a spanning tree of a graph G = (V, A) if V Í = V , AÍ ⊆ A, and R is a tree. The
Minimum spanning tree problem aims at finding a spanning tree of minimum
weight. Given a graph G = (V, A), a tour of G is a cycle passing through each
vertex of the graph. A graph is Eulerian if it is connected and each node has even
degree. An Eulerian tour of G is, for the edges, the equivalent of what a tour of G
is for nodes: we pass through any edge exactly once"[14].
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Figure 3.4: Path, tour, Eulerian tour

Other examples of new concepts introduced above linked to Figure 3.4:

• On the left there is a connected but not a tree due to the cycles, one of them
is:(v3, v6, v5, v7);

• Always on the left an example of path between v2 and v7 is: (v2, v3, v7);

• In the middle there is an example of a tree because there are not cycles in the
graph;

• In the last one (right) there is an example of Eulerian graph since it is connected
and the degree of each node is even;

• Another important concept, in the graph on the right, is a tour: (v1, v2, v3, v4);

• Finally always on the right an Eulerian tour of it is: (v1, v2, v1, v3, v2, v3, v4).

3.3 Oriented graphs
An oriented graph G = (V, E) is composed by:

• A finite set V (G) = {v1, v2, ..., vn} of elements called vertices;

• A set E(G) = {e1, e2, ..., em} of ordered pairs of nodes called directed arcs or
arrows.

Given the directed arc ek = (vi, vj), the connection that exists between the node
vi and the node vj does not have the same value as the connection that exists
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between vi and vj; we have therefore that, unlike the non-oriented case, the arc
ek = (vi, vj) is distinct from the arc eh = (vj, vi) [11].

The arc ek = (vi, vj) of an oriented graph is characterized by the direction,
graphically represented by an arrow exiting from the first node of the pair (vi)
called tail, it is also said that the arc ek is exiting from vi, and by an arrow entering
in the second node of the pair (vj) called head. The two nodes vi and vj are said
to be extremes of the arc ek, and the arc ek is ‘incident’ upon vi and vj. Similarly
to the non-oriented case, we define the star of vi in G, denoted by ω(vi), as the set
of arcs ‘incident’ upon vi.

The star ω(v) can be partitioned into an incoming star ω−(v), the set of arcs
entering v, and an outgoing star ω+(v), the set of arcs leaving v. Induced subgraphs
and subgraphs are defined as for the undirected case. The vertex degree vi, usually
denoted by dg(vi), is given by the incoming degree (number of arcs ω−(v)) added to
the outgoing degree (number of arcs ω+(v)). The concepts of isolated and hanging
nodes as expressed in the previous paragraph remain unchanged.

Figure 3.5: Example of directed graph

As before there are some examples of the concepts introduced above in Figure 3.5:

• Arch e1 and e2 are distinct.

• e1 has v1 as tail and v2 as head;

• ω(v1) is the star of v1 and it is composed by:{e1, e2, e3};

• Incoming star: ω−(v1) = {e2, e3};

• Outgoing star: ω+(v1) = {e1};
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• v3 has degree equal to 3, given by the outgoing degree (1) and the incoming
degree (2);

• v6 is an isolated node.

In the case of an oriented graph we speak instead of oriented path, given
by the sequence of consecutive arcs of the type e1 = (v1, v2), e2 = (v2, v3), ...,
ek = (vk, vk+1) with departure from vertex v1 and arrival in vertex vk+1 passing
through the intermediate vertices v2, v3, ..., vk. The node preceding the arc in the
path must be its tail, while the node following the arc must be its head. The
presence of such a path makes vk+1 reachable from v1 and introduces the concept of
reachability. This aspect is not symmetrical, but represents the oriented extension
of the concept of connection seen above.

3.4 Graph representation
In graph theory, it is possible to represent a graph G = (V, A) in various ways,
such as the graphical representation with circles for the nodes and lines joining
the circles for the arcs, or also the extensive one when listing the vertices and the
arcs. The graphical representation can be very immediate and intuitive, but when
there are many arcs and nodes, the graphical representation is no longer feasible.
For this reason new ways of representing graphs have been adopted, which can be
chosen according to the problem to be solved, the size of the graph, etc. There are
three possible representations[15]:

1. Adjacency matrix;

2. Incidence matrix;

3. Adjacency list.

The first case is more used in graph problems with a much higher number of
arcs than the number of nodes because the representation with the matrix serves
to have a more immediate and intuitive understanding.

The second is less efficient from a computational point of view than the others,
but is still preferable in some specific cases such as when we have an oriented graph
and we only need information about the direction of the arcs.

Finally the third, the adjacency list is preferred when the graph under con-
sideration is sparse, i.e. with |E| (number of arcs) similar to |V| (number of
vertices).
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3.4.1 Adjacency matrix
For the representation with adjacency matrices it is assumed that the vertices are
numbered sequentially from 1 to |V|. We represent a graph G = (V, E) with a
binary square matrix Q = (qij) of size |V | × |V | such that[16] [13]: do the staple
with the two values for qij: qij = 1 if (i, j) ∈ E

qij = 0 otherwise
(3.1)

The adjacency matrix of an undirected graph is symmetric, i.e. the value qij

is equal to qji; in this case it is possible to simplify the matrix and consider only
the data above the diagonal (including the diagonal), reducing the space needed to
store the matrix by half ( Figure 3.6).

Figure 3.6: Adjacency matrix undirected graph

In Figure 3.6 there is a visualization of an undirected graph with the adjacency
matrix having only half of the values, while in Figure 3.7, the representation of an
oriented graph is shown; in this case the matrix is not symmetrical and clearly all
the elements inside it must be memorized in order to solve the problem. In the case
where the graph is weighted, the values of the weights qij are defined in this way:

w(i, j) = 0 if i=j
w(i, j) = w(i, j) if i /= j and (i,j) belongs to E
w(i, j) =∞ if i /= j different and does not belong to a

(3.2)

The weighted graph is used in problems where, for example, it is necessary to
pay attention to the distance or time of the arcs.

29



Graphs

Figure 3.7: Adjacency matrix directed graph

In Figure 3.7 there is an example of a visualization of an oriented graph using
an adjacency matrix.

3.4.2 Incidence matrix

For the representation with incidence matrices, the vertices are assumed to be
numbered in an arbitrary sequence from 1 to |V|. An undirected graph G = (V, E)
is represented by a matrix Q = (qij) of size |V | × |E| such that:

qij = +1 if ej is incident on vi

qij = 0 if ej is not incident on vi

(3.3)

In the case of an oriented graph, the generic element qij of the incidence matrix
must take into account the direction of the arc under examination. An oriented
graph G = (V, E) is represented by a matrix Q = (qij) of dimensions |V | × |E|
such that 

qij = +1 if ej is an arc entering vi

qij = −1 if ej is an outgoing arc from vi

qij = 0 otherwise
(3.4)
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Figure 3.8: Incidence matrix

This mode of representation, shown in Figure 3.8, is based on an n x m matrix in
which each row corresponds to a vertex (node) and each column is associated with
an edge (arc). In the incidence matrix, therefore, each column has two elements
different from zero, in correspondence to the matrix rows relative to the two extreme
nodes of the arc, except when an arc has only one node (loop) as its extremes.

3.4.3 Adjacency list

The adjacency list allows efficient storage of graphs, G = (V, E), and is represented
by a vector Adj of lists, one list for each vertex of the graph. For each vertex vi,
Adj[vi] contains all the vertices vj adjacent to vi, i.e., all those vertices vj such
that there exists an arc (vi, vj) ∈ E, in particular, this set of vertices, according to
arbitrary order, is stored as a list.

Figure 3.9: Adjacency list undirected graph
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Figure 3.9 shows the use of adjacency lists to visualize an undirected graph.
Here it is possible to observe the fact that for every node there is a list of nodes
adjacent to itself, so for example v1 has v2, v3, v4 as adjacent nodes.

Figure 3.10: Adjacency list directed graph

Instead Figure 3.10 shows the use of adjacency lists of a weighted directed graph.
Here it is possible to observe the list of nodes adjacent to itself, and the weights
associated to each arc.
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Chapter 4

Vehicle routing problems

4.1 VRP definition
Vehicle routing problems are at the centre of distribution management. They have
been the subject of intense research for more than 50 years, because of their huge
scientific interest for two main reasons:

• Challenging combinatorial optimisation problems;

• Relevance in many practical situations, such as transport, logistics, communi-
cations, and so on.

Some of the real cases are the pick-up and haul of municipal waste to regulated
landfills, the design of routes for electric vehicles with stops at charging stations,
the transportation of people with limited mobility.

The large number of studies and publications shows that the scientific community
has made a great effort for more than 50 years in trying to solve these problems.
since each case studied may present distinct characteristics from what has already
been discussed previously in the literature, there are always new variants of the
general problem that continue to appear and require new differentiated studies [].

Many progresses have been made since the first publication of the paper on
the truck dispatching problem by Dantzig and Ramser (1959). Strong formulation
models have been proposed and numerous heuristics have been developed for this
class of problems.

In the case of a heterogeneous fleet of vehicles, which have to provide a service
of collection and delivery of products to a known set of customers with respective
demands, it is necessary to find and identify short routes that respect all the
characteristics of the problem, in an economically efficient way, in order to represent
a key force and role in transport logistics. In this sector there is a class of logistics
problems known as the Vehicle Routing Problems, commonly abbreviated as VRPs,
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whose solutions aim to minimise the total distances travelled by vehicles during
the collection and delivery of products to customers[13].

The Vehicle Routing Problems are a set of problems whose objective is to design
minimum permissible routes for a fleet of vehicles to serve a certain number of
customers under certain constraints, which vary depending on the case examined.

Typically, the problem involves each customer being served and all of them
being assigned to vehicles in such a way that the maximum capacity of the vehicle
is not exceeded during the journey. The main aspects to be optimised are either:

• The reduction to a minimum number of vehicles used;

• The reduction of the distance travelled consisting of the customer’s depot and
any other collection points.

Then planning the routes on which customers are to be reached and served
with the aim of minimising vehicle use and transport costs. The logistics problem
taken into consideration can be described and explained by defining in detail all
the characteristics of the problem, which constitute fundamental elements for the
resolution of the VRP itself.

The main properties common to this type of problem are warehouses, vehicles,
road network and customers, which can be represented graphically through the
use of graphs, with the arcs representing the road network and each arc being
associated with a weight corresponding to the distance or travel time of the relative
arc. Customers and depots are represented by vertices, which are the ends of the
arcs in the graph, so we will have two vertices or nodes for each arc.
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Figure 4.1: VRP example
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4.1.1 Depots
The starting point for the study of the problem is the depot which has common or
different characteristics depending on the hypotheses considered[13]:

• They are always represented graphically as vertices of the graph and are the
starting points for all vehicles;

• They can be multiple or the depot can be unique, sometimes the problem can
also be subdivided for each depot;

• Each depot is associated with a certain number and type of vehicles and can
be linked to a working time within which the vehicles must leave and return
to the assigned depot;

• They are also the point of arrival, as the vehicles must return to their depot
for reassignment at the end of their journey.

4.1.2 Vehicles
Each depot is associated with a certain number of vehicles with characteristics
determining the classification of VRP problems:

• The fleet of vehicles associated with a depot can be homogeneous or heteroge-
neous both in terms of size and capacity;

• The maximum vehicle capacity depends on the type of vehicle and the type
of saturation considered (this may be by weight, volume or number of pieces
transported);

• Each vehicle is associated with a driver for whom the cost of the work performed
is calculated (loading/unloading cost, hourly cost, ...);

• Other costs associated with the vehicle are linked to the length of the route
assigned in terms of both space and time;

• Each vehicle is assigned a route (the set of routes is a subset of the road
network that corresponds to the set comprising all the arcs of the graph).

4.1.3 Customers
The VRP study is structured around the needs of the parties who are to receive
the service, i.e. the customers:

• They are represented by the vertices of the graph;
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• Each of them is associated with a certain demand which is made explicit as
the quantity of goods to be loaded and/or unloaded, which the vehicles (and
therefore the drivers) are to be loaded and/or unloaded, which the vehicles
(and therefore the drivers) are committed to carry correctly and efficiently to
their destination;

• The service must be provided during certain periods of time linked to the
opening and closing times of each customer;

• They have different delivery/collection needs depending on the goods handled
by each of them (e.g. if it is perishable or not or if it needs to be transported
and undergo further need to be transported and further processed by other
parties);

• Each customer may be served by a single vehicle which carries out the entire
request or the service may be carried out by several vehicles (split deliveries),
always depending on the assumptions made;

4.1.4 Properties of the VRPs
Therefore the VRPs implie a service which one or more customers require to be
satisfied, according to specific requirements, by vehicles which are located in one
or more depots and make their journeys through the "available" road network and
according to the specifications of the individual route assigned to them.

The VRPs make it possible to determine a set of trips so as to serve all customers
in accordance with the operational constraints considered with a view to minimising
the cost function. The main objectives, some of which are conflicting, of VRPs
problems are:

• To minimise the number of vehicles used to serve all customers;

• To minimise the total distance travelled by the fleet;

• To minimise the total cost of transport which depends on the total distance
travelled, the total time spent and the total cost of transport;

• To minimise the penalties associated with the service being completed to only
a part of the customers;

• To balance routes with regard to travel time and/or vehicle load;

• To minimise an objective function that corresponds to a combination of the
above objectives.
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All parts involved must be subject to some constraints, without which a correct
analysis would be impossible. Some of these constraints are common to the different
types of VRPs, while others are specific to each type of problem or are the starting
point of the study from which it cannot be separated. Some typical constraints are:

• The total demand of customers placed along the route cannot exceed the
capacity of the vehicle assigned to it;

• The customers served can only request delivery of goods, only collection or
both;

• The customers may only be served in their specific time windows and during
the drivers’ working periods;

• Any priority constraints defined between customers must be respected. For
example, if some of the goods to be delivered to a customer have to be
picked up by others first (pickup and delivery problem), or if entire groups
of customers have to be served by the same vehicle. Another situation is the
so-called VRPs with Backhauls, in which vehicles can pick up and deliver,
provided that the latter activity takes place first.

Before moving on to the description of the different variants of a VRPs problem,
it should be noted that this type of problem having the execution time through
algorithms that search for the exact solution increases exponentially with the size
of the problem itself.

4.2 VRPs classification
The extremely broad range of actual applications where routing issues are found
leads to the definition of many VRPs variants with additional characteristics and
constraints, called attributes, aiming to capture a higher level of system detail or
decision choices, including but not limited to richer system structures (e.g., several
depots, vehicle fleets, and commodities), customer requirements (e.g., multi-period
visits and within-period time windows), vehicle operation rules (e.g., load placement,
route restrictions on total distance or time, and driver work rules), and decision
context(e.g., traffic congestion and planning over extended time horizons).

These attributes lead to a variety of Multi-Attribute Vehicle Routing Problems
(MAVRPs), making up a vast research, development, and literature domain. The
dimensions of most problem instances of interest hinders the applicability of exact
methods, while the few software systems presented as general heuristic solvers
are increasingly challenged by the growing variety of attributes. Finally, some
MAVRPs combining multiple attributes together, the so-called rich VRPs, may
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be especially difficult to solve because of the compound, and possibly antagonist,
decisions they involve. The vehicle routing domain, vast and difficult to classify,
has been historically articulated around several streams of research dedicated to a
number of major attributes. Such diverse research lines would be justified if the
nature of the various problem settings would call for radically different solution
approaches. Yet, MAVRPs naturally share many common features, and most
heuristic strategies developed for specific problems can be applied to a broader
range of VRPs variants. We identify, and classify, 14 notable MAVRPs, which have
been the object of a consistent body of well-acknowledged research resulting in a
considerable number of heuristic methods and a number of common benchmark
sets of test instances [17].

4.2.1 Capacitated (CVRP)
The simplest VRPs are the Capacitated Vehicle Routing Problem (CVRP), which
assumes an identical fleet of vehicles, with uniform finite capacity, located in one
central depot in order to service a set of customers with related demands. The
objective is to determine a set of vehicle trips with minimum total distance/time
cost, having as condition that each vehicle starts and ends at the depot, each client
is visited exactly once, and the total demand of the route cannot exceed the total
capacity.

4.2.2 Multiple depots (MDVRP)
The multi-depot VRPs consist in a number of depots greater than 1, with the
property that each vehicle is assigned to one depot. As in the other cases the depot
is both the origin and the destination of the vehicle’s route.

4.2.3 Backhauls (VRPB)
The vehicle routing problems with backhauls has two types of customers: linehaul
customers (deliveries), and backhaul customers (pick-ups). In any route there is
a mix of both groups, and the linehaul customers must precede all the backhaul
customers. For this reason, routes consisting of backhaul customers only are not
admitted.

4.2.4 Time Windows (VRPTW)
The Vehicle Routing Problems with Time Windows are a vehicle routing problem
in which a fleet of identical vehicles of finite capacity and located at a central depot
must service a set of customers with known demands and specific time window.
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The time window associated with customer i is denoted by (ei, li); the service of
each customer must necessarily start at a time ti contained within the time window.
In the case of early arrival at customer i, the vehicle must wait for the earliest time
(ei) before being able to carry out the service, generating a waiting cost; in the
opposite case, if the vehicle arrives after the latest time (li), the solution is not
feasible. Hence it is allowed to wait for an early arrival to a customer but a late
arrival is not allowed.

A service time is associated with each customer, indicating the time interval
during which the vehicle carrying out the service remains at the customer’s premises.
The objective is to find a set of vehicle routes having minimum total cost (distance
or time), with each vehicle starting and ending at the depot, each client visiting
exactly once and within his/her time window, and the total demand handled by
any vehicle does not exceed its capacity.

4.2.5 Distance-Constrainted (DVRP)
The Distance-Constrainted Vehicle Routing Problem has a constraint on the
maximum distance length, or maximum time, of the route to be covered. In
particular, each arc is associated with a non-negative length, and the total length,
given by the sum of the arcs considered, cannot exceed the maximum length imposed
as a constraint. If the vehicles are different from each other, then the maximum
values considered are different for each of them. If the parameter associated to the
arc represents the travel time, each node i has assigned a service time si which
represents the time needed for the vehicle to perform its service at the customer;
Hence the time at every node i will increase of travelling time of arc xji with tji +si.

4.2.6 Profits (VRPP)
A maximization problem of the total profit with the possibility to not visit all
nodes. The goal is to visit the nodes which maximize the sum of collected profits
while respecting a vehicle time limit. Vehicles, as always, are required to start and
end at the depot.

4.2.7 Pickup and Delivery (VRPPD)
The pick-up and delivery problem is a problem with the aim of finding a set of
optimal routes with minimum distance, for a fleet of vehicles, that serve a certain set
of demands. all vehicles have a given capacity, a start position and a final position.
the transport demands are characterised by a load that needs to be transported,
an origin and a destination. In conclusion, the pick-up and delivery problem is
about constructing optimal routes to visit all pick-up and delivery locations and
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satisfying precedence and coupling constraints. Precedence constraints concern
the limitation in which each pick-up location must be visited before visiting the
respective delivery location. Pairing constraints limit the set of acceptable routes in
order that a vehicle has to do both pick-up and delivery of the load of a request[18].

4.2.8 LIFO
«Similar to the VRPPD, but in this case another restriction is placed on the loading
of the vehicles: at any delivery location, the item being delivered must be the item
most recently picked up. This scheme reduces the loading and unloading times at
delivery locations because there is no need to temporarily unload items other than
the ones that should be dropped off.»[19]

4.2.9 FIFO
«The FIFO VRP model requires that if a vehicle leaves customer i to go to customer
j at any time t, any identical vehicle with the same destination leaving customer
i at a time t + ε, where ε > 0, will always arrive later. This is an intuitive and
desirable property though it is not present in all models.»[18]

4.2.10 Time-Dependent (TDVRP)
An interesting common extension of the Time Windows and FIFO VRP in urban
environments is the Time-Dependent, where the arc costs on the graph depend on
the departure date. This situation is an actual example of most cities since the
time taken to travel from a location to another one depends in most of the cases
on the traffic load, which varies during the day [20].

4.2.11 Dynamic (DVRP)
Another extension to standard VRP is called the Dynamic Vehicle Routing Problem,
and his main characteristics of this type of problem are the uncertainty in the data
and it can be due to different sources, and it can have different natures. It is when
the service requests are not completely known before the start of service, but they
arrive during the distribution process. Since new orders arrive dynamically, the
routes have to be replanned at run time in order to include them.

4.2.12 Period (PVRP)
«The period vehicle routing problem is a variation of the classic vehicle routing
problem in which one has to assign deliveries (or pickups) to customer locations
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in a manner that each location is visited at the required frequency during the
planning horizon (usually one week), and the cost of the delivery (or pickup) routes
is minimized. All deliveries (or pickups) are from a single depot.»[18]

4.2.13 Open (OVRP)
«Distribution network design is a crucial problem that companies care about much
more than the past. Open VRP is a variant of VRP in which each route is a
sequence of customers with a deterministic demand and predefined geographical
location, that starts at depot and ends at one of the customers (in contrast to
classical VRP where it returns to the depot after servicing period). Practically,
OVRP is applied when suppliers does not have a vehicle fleet and prefer outsource
their transportation and distribution affairs. One should be noted that it is much
more economical for suppliers to outsource the distribution of the goods or materials.
In the OVRP, it is supposed that each customer is visited once by a single vehicle
and the total demand of all customers allocated to a vehicle (route) does not exceed
the vehicle capacity and the objective function is usually minimizing the overall
traveling cost.»[21]

4.2.14 Stochastic (SVRP)
Customer demand in many cases is known before the routes need to be planned
because orders have been received at the central depot. However, in some situations,
the size of the demand from a customer may be unknown until the vehicle arrives
at the customer’s place. This is an example of a stochastic vehicle routing problem
where routes must be planned based on the probability distribution of the demand
at any customer. In such problems, a strategy needs to be defined that explains
what happens when a vehicle runs out of the commodity it is carrying before it
has completed all its deliveries, for example, returning to the depot by the shortest
route in order to reload[18].
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Heuristic techniques for
solving a VRP

5.1 Introduction
The term Heuristics indicates an algorithmic method for finding admissible (not
necessarily optimal) solutions of an optimisation problem. For this class of problems,
the development of heuristic techniques with the aim of finding a good admissible
solution, close to the optimum and obtained in short processing times, is of
fundamental importance.

5.2 Classification of heuristic techniques
The construction of effective heuristic algorithms requires a careful analysis of the
problem to be solved in order to identify the "structure", i.e. the specific useful
characteristics, and a good knowledge of the main algorithmic techniques available.
In fact, even though each problem has its own specific characteristics, there are
general techniques that can be applied, in different ways, to many problems,
producing well-defined classes of optimisation algorithms, as set out below.

5.2.1 Constructive heuristics

Constructive heuristic algorithms are oriented towards the identification (construc-
tion) of an admissible solution, found by implementing one path at a time through a
series of steps and containing the cost during the process. They can be schematised
into the following three steps[13]:
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1. Initialisation: first of all the path is started by looking for a starting element
for the construction of the partial solution S;

2. Selection of a new element to be added to the partial solution: the selection
criterion for a new element to be added to the partial solution S is identified;

3. Stopping criterion: if S is complete, and therefore admissible, the procedure is
stopped, otherwise we return to the previous step.

Then, constructive heuristic algorithms can be divided into two categories:

• Sequential: they construct one route at a time until all vertices are exhausted;
one cannot choose between several routes in which to insert a vertex;

• Parallel: they construct several routes at once. The number of routes can be
fixed at the beginning or derive from the progressive merging of smaller routes
already computed. proposed routes are optimised through the exchange of
vertices between adjacent clusters.

Savings Heuristics

This is probably the best known heuristic algorithm proposed for VRP, and it
applies naturally to problems for which the number of vehicles is not predefined.
This procedure, proposed for the first time by Clarke and Wright (1964), starts
with n distinct routes in each of which the customer is served by a dedicated vehicle;
at each iteration the objective is to aggregate two or more nodes together, but also
two or more routes with more than one customer, and calculate the saving resulting
from these operations. Given two customers, each served by a dedicated vehicle
with a distinct route, the application of saving highlights the potential savings that
can be achieved by using a single vehicle to visit first one customer and then the
next, travelling a single route. it can be performed in two versions: parallel and
sequential.

• Common operations:
For i, j = 1, ..., n, i /=j are calculated saving sij = ci0 + c0j − cij . n routes of
the type (0, i, 0) are created for i = 1, ..., n, and the savings are sorted in
descending order;

• Sequential version:
Each generic route (0, i, . . . , j, 0) is considered in rotation, and the first
saving ski or sjl is determined that allows it to be merged with another route
containing the arc (k, 0) or the arc (0, l) to give rise to a new admissible route.
If this step is successful the new route is created with the merge, otherwise
this step is always applied to the next route. The algorithm stops when no
more merging is possible;
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• Parallel version:
It is considered the ordered savings and proceed by determining whether it is
possible to merge together two existing routes containing the arc (0, j) and the
arc (i, 0) respectively, given the save sij, resulting in a new admissible route.

Tested on some known instances of the problem, this algorithm offers in its
parallel version the best performance, although the results remain far from the
known optimal solutions. Both versions also produce good routes initially but
then tend to lose interest, sometimes becoming too geographically extensive. To
overcome this defect it has been proposed to use a route shape parameter, λ, that
modifies the saving according to the formula: sij = ci0 + c0j − λcij. In this way
more emphasis is given to the distance of the vertices to be connected, for values
λ ≥ 1.

Insertion Heuristics

The insertion algorithms are considered as constructive-sequential algorithms, the
initialisation phase, the choice of the customer to be inserted in the route as the
first node, is carried out following one of the three following criteria [13]:

1. Customer with the greatest distance from the depot;

2. Customer with a shorter closing time (of its own time window);

3. Customer with the lowest cost in terms of time and distance. from the depot.

After initialising a new route, two criteria, c1(i, u, j) and c2(i, u, j), are used to
insert at each iteration a customer u within the current route between two adjacent
nodes i and j. Let (i0, i1, i2, ..., im) be the route being considered, with i0 = im = 0.
For each client u that is not yet assigned, and therefore out of the route, the best fit
to the route under consideration is calculated: c1(i(u), u, j(u)) = min c1(ip−1, u, ip)
with p = 1, ..., m By inserting client u between ip−1 and ip, all service start times
for nodes in the route (i0, i1, i2, ..., im) can be altered. The next client to be inserted
will be the one for which the following relation applies: (c2(i(u), u, j(u)) = optimum
(c2(i(u), u, j(u))) where u is without route and feasible. Client u∗ is then inserted
into the route between i(u∗) and j(u∗). This iteration continues until it is no
longer possible to find customers that respect the constraints and therefore the
considered route ends; if not all customers have been satisfied yet, a new route is
initialised. Three different specific approaches are now considered, based on the
general criterion just presented[13].

• Insertion Heuristic I1:
The first criterion seeks to maximise the benefit of serving a customer present
in the partial route being constructed rather than having to serve the customer
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with a direct route.
c11(i, u, j) = diu + duj − µdij with µ ≥ 0
c12(i, u, j) = eju − ej

The variable eju indicates the new instant at which the service at customer j
can begin since node u has been added to the route. c1(i, u, j) = α1c11(i, u, j)+
α2c12(i, u, j)
with α1 + α2 = 1 and with α1, α2 ≥ 0
c2(i, u, j) = λd0u − c1(i, u, j) with λ ≥ 0
This type of method maximises the benefit of inserting the customer within
the partial route, rather than served by direct routing. The best insertion
is the one that minimises a weighted combination of distance and time, i.e.
minimises a measure of extra distance and extra time required to visit a
customer. Clearly different values of µ and λ lead to different criteria for
selecting the insertion of a node in the route;

• Insertion Heuristic I2:
The second type of criterion selects the customers to be inserted in the route
with the objective of minimising costs both in terms of time and total distance.
c1(i, u, j) = α1c11(i, u, j) + α2c12(i, u, j)
with α1 + α2 = 1 and with α1, α2 ≥ 0
c2(i, u, j) = β1Rd(u)− β2Rt(u)
with β1 + β2 = 1 and with β1, β2 ≥ 0
Rd(u) and Rt(u) denote the total distance and total time of the partial trip
that are generated with customer u inserted, respectively;

• Insertion Heuristic I3:
In the third approach the urgency of serving a customer is also taken into
account within the time aspect.
c11(i, u, j) = diu + duj − µdij with µ ≥ 0
c12(i, u, j) = eju − ej

c13(i, u, j) = lu − eu

c1(i, u, j) = α1c11(i, u, j) + α2c12(i, u, j) + α3c13(i, u, j) with α1 + α2 + α3 = 1
c2(i, u, j) = c1(i, u, j)
with α1, α2, α3 ≥ 0.

In all the approaches presented the insertion of a customer in a route is guided and
conditioned by both geographical and temporal criteria. It is therefore expected
that the waiting time in the solutions proposed by this heuristic algorithm will be
significantly lower than that proposed by the distance-only criteria.
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5.2.2 Two-stage heuristics
Two-stage methods decompose the problem into the operations of subdividing
vertices into groups (clusters) and constructing admissible routes. In turn, two-
stage algorithms can be divided into two classes[22]:

• Cluster first - Route second:
The vertices are initially grouped into clusters and a route is then constructed
for each cluster;

• Route first - Cluster second:
A route is constructed on all vertices and then subdivided.

Cluster-First, Route-Second: Sweep Algorithm

In this section a will explain an example of Cluster-First, Route-Second. The
diffusion of this algorithm is attributed to Gillett and Miller for solving planar
VRP instances. The idea is to group the vertices in sets, clusters, according to their
angular position with respect to the repository, and then solve a TSP instance for
each cluster. Some implementations foresee that at the end of the procedure the
proposed routes are optimised by exchanging vertices between adjacent clusters.
We assume that each vertex i is represented, with respect to the repository, with
its polar coordinates (θi, ρi), where θi represents the angle and ρi the distance from
the repository. The angle θi is calculated with respect to the value of reference θ∗

i

relative to an arbitrary vertex i∗ . The steps of the algorithm are as follows:

1. The vertices are numbered according to increasing values of θi;

2. A free vehicle k is selected;

3. Starting from the free vertex with the minimum value of θi, we assign vertices
progressively to vehicle k until the capacity constraint of the same is not
violated. Eventually, at each insertion it is possible to optimise with local
search procedure. If at the end of this step there are still free vertices, the
execution is resumed from point 2;

4. For each cluster defined in this way, a TSP instance is resolved, in an exact or
approximate way.

Route-First, Cluster-Second: Cluster-Second

These algorithms foresee the preliminary construction of a tour as a solution of
a TSP instance on all the vertices of the graph under consideration, ignoring any
constraints of the VRP, such as, for example, the capacity of the single vehicle.
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In a second moment the tour is decomposed into more routes considering the
constraints of the problem: these routes represent the final solution to the VRP
instance.

It has been shown that the second step of route partitioning is equivalent to
solving a minimum path instance on an acyclic graph, and therefore can very well be
done using, for example, Dijkstra’s algorithm in O(n2) time. Although theoretically
very simple as methods, in practice no relevant results of these algorithms are
recorded on VRP benchmarks.

5.2.3 Improved heuristics
Improvement heuristics are applied to a pre-existing solution (in some cases even
ineligible) with the intention of improving it and typically operate by swapping
arcs or vertices between different routes.

Ejection chain

The ejection chain method was devised by Glover, and is a widely used heuristic
algorithm for improving solutions to routing problems. This method bases its
operation on a series of "state changes" of the elements that make up the solution
of the problem. The changes cause these elements to undergo an ejection from
their current state to a new state to be determined. An ejection chain is initiated
by selecting a set of elements from the current problem solution; these elements are
modified in such a way that a change of state can be performed, taking them from
their current configuration to a new configuration. The result of the state change
performed on these elements leads to the eventual identification of other groups of
elements on which to apply the same state changes performed previously. Thus,
when an ejection chain is initiated, the elements of a solution undergo state changes
and ejections from their current state in an alternating way, often triggering a
domino effect. The ejection chain may or may not end. In the first case, the chain
ends when, after changing the configuration of some elements of the solution, it is
no longer necessary to eject other elements from their current state. If applied to
the vertices of a single path, the ejection chain method can be useful to decrease
the number of vehicles used in a given solution of a routing problem: in fact, if the
ejection chains are initialized with the vertices of a given path and if these chains
all have a termination, the path will eventually be empty and can, therefore, be
eliminated from the solution of the problem[23].

2-opt

2-opt is one of the best known and most widely used local search algorithms for
routing problems. The proximity set defined by the operator involves examining all
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the solutions that can be obtained, starting from the initial one, with an exchange
between any pair of non-adjacent arcs within a given path. Swapping a pair of
arcs within a freight delivery trip means identifying and removing this pair, thus
breaking the route into two distinct paths; subsequently, it is necessary to reconnect
these paths by creating two new arcs and reversing the order in which customers
visit between the exchanged arcs. The purpose of the 2-opt operator is to decrease
the total distance covered by the route on which it is applied, thus reducing the
value of the total global distance of the solution[23].

Relocate 1-0

The relocate 1-0 transfers a single vertex from one path to another by inserting it
between two consecutive vertices; the purpose of applying this method is to decrease
the total distance travelled. It is possible to have other variants as Relocate 1-1,
Relocate 2-1, and so on. In the case of 1-1 the exchange is of a couple of vertices
in two different paths, with always the goal to minimize total distance or time.
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Chapter 6

Vehicle Routing Problem of
a set of small food shops in
a local area of Torino

6.1 LINKS Foundation

"The LINKS Foundation – Leading Innovation & Knowledge for Society (LINKS) is a
non-profit private Foundation founded in 2016 with the aim to boost the interaction
between research and the business world towards the internationalization of the local
socio-economic system. LINKS promotes, conducts, and strengthens innovation
and research projects processes, improving products implementation as well as the
study of new approaches and models. LINKS is the result of the merger of two
distinguished research and innovation institutions: ISMB (Istituto superiore Mario
Boella) founded in 2000, focusing on ICT, and SiTI (Istituto Superiore sui Sistemi
Territoriali per l’Innovazione) founded in 2002, focusing on Territorial Systems and
Smart Cities. Similarly to ISMB and SITI, this Foundation has been founded by
Compagnia di San Paolo and Politecnico di Torino.

LINKS relies on technological and process competences of around 160 researchers
working in close cooperation with companies, academia and Public Authorities.
The Foundation is involved in several European, national and regional funded
projects, participates in international Bodies and maintains an open dialogue with
the local, national and international business entrepreneurship, in order to share
and enhance knowledge, experience and innovation. LINKS is involved in several
industrial cooperation activities with both large enterprises and SMEs, as well as
in various higher-education initiatives in partnership with academic institutions.

LINKS extends its activities to facilitate innovation, employing its technical
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excellences and results, into domains that are interdisciplinary and aligned with
the priority themes of the European agenda, such as Energy, Mobility, Industry
and Circular Economy.

The “Urban Mobility & Logistic Systems” (UML) research area supports private
enterprises and Public Authorities to bring innovation and sustainability in the
fields of people mobility, freight transport and logistics, through a multidisciplinary
approach. LINKS-UML research is focused on:

• Transport planning (Regional Transportation Plans, Urban Plans for Sustain-
able Mobility, Public Transport Plans);

• Transport and logistics modelling and optimization (predictive models for
mobility, traffic models, optimization of logistic systems);

• User’s behaviour, users’ engagement and innovation acceptance/adoption;

• Estimation of transport impacts.

LINKS-UML is composed of transport and environmental engineers, mathe-
maticians, and spatial planners and its main research projects are related to the
domains of Mobility (public transport & MaaS, shared mobility, cycling and walk-
ing, electric mobility, connected & autonomous mobility, urban air mobility) and
Logistics (multimodal freight transport, last-mile & city logistics, data exchange
processes)."[24]

6.1.1 Urban Mobility & Logistic Systems
The Urban Mobility & Logistic Systems area supports companies and public
administration in bringing innovation and sustainability to the areas of personal
mobility and merchandise transport through a multidisciplinary approach.

Composed of transport and environmental engineers, mathematicians and terri-
torial planners, the team is able to follow the entire process of applying innovation
to transport: from analyses and specialised studies, to support for the definition
of interventions and policies in a participatory manner, to the modelling and
simulation of scenarios, through to support for the experimentation of innovative
practices and technologies and the assessment of impacts.

At international level, the area is present in the Advisory Board of the EGTC
Interregional Alliance for the Rhine-Alpine Corridor, in ERTICO (network of ITS
actors) and in EIP-SCC (Marketplace of the European Innovation Partnership on
Smart Cities and Communities).

The area collaborates with the Polytechnic of Torino within ICELab (Laboratory
of ICT technologies for the integrated and intelligent management of logistics and
business in urban areas), with the City of Torino within the Torino City Lab

50



Vehicle Routing Problem of a set of small food shops in a local area of Torino

ecosystem (aimed at supporting the experimentation of innovative practices and
technologies in the city) and supports the planning activities of the Transport
Department of the Piedmont Region, in the framework of the Memorandum of
Understanding signed between the Region, Confindustria Piemonte, Politecnico di
Torino and Compagnia di San Paolo. The main scientific areas covered:

• Transport planning (e.g. Regional Transport Plans, Sustainable Urban Mobil-
ity Plans);

• Public transport, multimodality and MaaS;

• Predictive mobility and traffic models;

• Optimisation of logistics systems;

• ITS (Intelligent Transport Systems);

• Sustainable, electric, shared and autonomous mobility;

• Mobility behaviour, equity and accessibility;

• Estimation of transport impacts.

In the logistics sector, as an example, UML has collaborated with the Piemonte
Region for the preparation of technical contributions for the development of freight
transport and regional logistics, useful for the preparation of the future Regional
Logistics Plan, collaborates with Confesercenti on the BORGO SAN PAOLO
+SMART study, in which is included the activity of defining the functional and
technological requirements of a last mile logistics management model in a sustainable
way, and is involved in the Interreg ITA-CH Typicalp project, aimed at increasing
competitiveness and sustainability of small and medium enterprises in the dairy
supply chain in the mountain areas of Valle d’Aosta (IT) and Vallese (CH) through
collaborative logistics and supply chain monitoring using blockchain.

6.1.2 Collaboration LINKS - Confesercenti of Torino and
Province, Borgo San Paolo + Smart project

The world of commerce is undergoing rapid change, and has seen and is still
experiencing radical changes in terms of both supply (from the expanding role
of large-scale distribution, to the expansion of franchising and the e-commerce
and marketplace "revolution") and demand (changes in priorities and consumption
patterns, the shift from purchasing to other forms of availability of goods, as
recognised by the so-called sharing economy).

Proximity trade is penalised in competition with other forms of trade because
of the small size of enterprises, which makes it difficult to sustain investments in
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infrastructure, new technologies and digital skills. Micro and small enterprises in
the sector therefore struggle to seize the opportunities that the digital economy
could offer them.

The project that is the subject of this offer, "Borgo San Paolo + Smart", will
represent the start of a process that will see a sample of micro and small enterprises
in the trade, services and tourism sectors at the centre of a series of initiatives for
technology transfer, innovation and digital skills enhancement, given that this type
of enterprise is normally on the margins of these processes. The service offered has
a twofold purpose:

• Firstly, it aims to identify and test technological solutions that can be used
by the sample of selected enterprises in order to improve their activities in the
area;

• Secondly, it intends to propose possible physical transformations of some
points of the district under study and to identify places that can host new
shared functions to support local commerce, thus elaborating specific proposals
for the requalification and improvement of the urban context to be submitted
to the public decision-maker.

The project that is the subject of this offer therefore aims to support, in various
ways, neighbourhood commerce enterprises in order to:

1. Use new technologies to achieve greater competitiveness in the management of
specific aspects of their business (logistics, home deliveries, order management,
communication and marketing, promotion, opening hours, etc.);

2. Rethink some public spaces, making them more attractive and usable by
citizens living in and visiting the area, using innovative technological tools
and possibly experimenting with new types of business;

3. Plan new ways of using the empty spaces on the street level, sharing possible
proposals to be presented to the competent Administrations.

6.2 Formulation of the problem
The project that is the subject of this thesis aims to support, in various ways,
collaborative commerce enterprises through the use of optimization technologies to
achieve greater competitiveness in the management of specific aspects of business
such as logistics, home deliveries, orders management etc.

The problem is defined on a graph G = (V, A), in which the set of vertices
V = P∪D∪{0}. P = {1, ..., p} is the set of pick up nodes, and D = {p+1, ..., p+n}
is the set of delivery nodes where |D| = n and p ≤ n . The starting and ending
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depot is defined by the node 0 in G. Let R = {r1, ..., rm} be the set of requests
to be routed where |R| = m and m ≥ n, every customer can make an order to
one or multiple stores, thus each customer can make multiple requests and each
shop is assigned to multiple requests from multiple customers. Each request r ∈ R
is represented by one pick up node pr ∈ P and one delivery node dr ∈D with a
volume quantity qr. All the pick up nodes must be visited before the delivery
nodes for each request r ∈ R. K is the set of identical capacitated vehicles that
can be used |K| = p located at the depot 0. The set of arcs is A = V × V , each
arc (i, j) ∈ A has an associated travel time tij ≥ 0. It is assumed that the travel
times satisfy the triangular inequality: tij ≤ til + tlj ∀i, j, l ∈ V . Each node ni ∈ N
has a service time si for loading or unloading at that node ni. Each node pi ∈ P
has a quantity of requests to load onto the vehicle Qi ≥ 0, which is the sum of
quantities of all the requests having node i as the pick up node. The sum of the
volumes loaded on the vehicle is constrained by the capacity of the vehicle Ck. All
the orders loaded on the vehicles must be delivered in the Tk hours slot time, so
every vehicle k ∈ K can do a tour of at most Tk. The objective is to minimise the
total distance travelled by the vans and also to minimise the number of vans used.

The actual situation, given that no coordination is made, is that every retailer
carries out the deliveries for their customers with a distinct (privately owned)
vehicle. This problem belongs to the broader class of Pickup&Delivery problems
(PDP) [25]. The focus here is on a variant that allows for multiple visits to locations.
Specifically, the routing problem can have multiple location visits as resulting from
divisible pickups and deliveries. Other variants of the classic problem may include
single commodity problems with split loads, that is, everything that is to be picked
up from (delivered to) a location has the same destination (origin) (e.g. [26]). For
divisible pickups and deliveries, each location can serve as a pickup and/or delivery
point for multiple commodities (e.g. [27]). That is, every location may require
transportation of loads to and/or from multiple other locations. Our problem
classifies as a problem with divisible pickups and deliveries. Moreover the problem
is restricted to a maximum length for each route as a result of a working shift for
drivers and capacitated vehicles. Very recent papers on similar variants with single
and multiple vehicles of PDP are [28], [29] and [30].

6.3 Mathematical model
In this section I propose the mathematical model formulated with the following
variables:

• Xijk equals to 1 if arc (i, j) is traversed by vehicle k, 0 otherwise;

• Yk equals to 1 if vehicle k is activated, 0 otherwise;
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• Tik indicating the time of vehicle route at node i with vehicle k;

• Lik indicating the load volume of the vehicle at node i with vehicle k.

This problem can be formulated as follows:

Obj. Function

Min
Ø
i∈V

Ø
j∈V,i /=j

Ø
k∈K

(Xijk(tij + s)) + (Cauto − s)
Ø
k∈K

Yk (6.1)

Constraints Ø
j∈(V −0)

X0jk ≤ Yk ∀k ∈ K (6.2)

Ø
i∈V −j

Ø
k∈K

Xijk = 1 ∀j ∈ P (6.3)

Ø
i∈V −j

Xijk =
Ø

l∈V −j

Xjlk ∀k ∈ K ∀j ∈ V (6.4)

Tik + tij + si − Tjk ≤M(1−Xijk) ∀i ∈ V ∀j ∈ V − i ∀k ∈ K (6.5)

(−s) +
Ø
i∈V

Ø
j∈V −i

Xijk(tij + s) ≤ TMax−route ∀k ∈ K (6.6)

Lik − Ljk −
Ø
b∈P

Ø
a∈V −b

(Xabkqbj) ≤M(1−Xijk) ∀j ∈ D ∀i ∈ V ∀k ∈ K (6.7)

Lik + Quantj − Ljk ≤M(1−Xijk) ∀i ∈ V ∀j ∈ P ∀k ∈ K (6.8)

Lik ≤ Ck ∀k ∈ K ∀i ∈ V (6.9)

Tik ≤ Tjk ∀(i, j) ∈ R ∀k ∈ K (6.10)

Ø
a∈V −j

Xajk ≥
Ø

l∈V −i

Xlik ∀(i, j) ∈ R ∀k ∈ K (6.11)

T0k = 0 ∀k ∈ K (6.12)
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L0k = 0 ∀k ∈ K (6.13)

Xijk ∈ {0,1} ∀i ∈ V ∀j ∈ V ∀k ∈ K (6.14)

Xk ∈ {0,1} ∀k ∈ K (6.15)

Lik ≥ 0 ∀i ∈ V ∀k ∈ K (6.16)

Tik ≥ 0 ∀i ∈ V ∀k ∈ K (6.17)

• Equation 6.1 is the objective function which minimize the route time and the
number of vehicle used. s is the service time at each delivery pick up node, so
at each route the service time is counted as the number of arcs minus 1 (so if
the vehicle is used or not);

• Equation 6.2 is the constraint to activate the vehicle k if it departs from
depot;

• Equation 6.3 is the constraint in order to visit once each pick up node;

• Equation 6.4 is used to respect the flow entering in a node equals to the flow
exiting from the same node;

• Equation 6.5 It is needed to update route time at each node during the path
in each route, and also it eliminates sub tours;

• Equation 6.6 is the constraint to respect the maximum route time;

• Equation 6.7 It is needed to update load volume on the vehicle at each delivery
node during the path in each route;

• Equation 6.8 It is needed to update load volume on the vehicle at each pick
up node during the path in each route;

• Equation 6.9 is the constraint to respect the maximum load capacity of the
vehicle;

• Equation 6.10 is the constraint to ensure that for each request the vehicle
passes from the pick up node before to passing from the delivery node;

• Equation 6.11 is the constraint it to ensure that if the vehicle passes from
one pick up node it has to passes from all the delivery nodes which have a
request starting from that pick up node;
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• Equation 6.12 is set the initial value of route time at 0;

• Equation 6.13 is set the initial value of volume capacity at 0.

6.4 Initial heuristic
In this section there is the explanation of the first heuristic version used to solve
the problem. Now there is a high level description of the algorithm and then more
detailed one.

Algorithm 1 Heuristic Algorithm
1: procedure Creation routes
2: for each shop do
3: TSP(Input:Nodes,Output:Path)
4: Add Path in Best
5: Add Path in Bench
6: Calculate Centroids(Input: Nodes; Output: Distance Matrix Centroids)
7: for c in C do
8: Merge Relaxed Routes(Input: Bench, c, Distance Matrix Centroids;

Output: Elite Routes)
9: for each route in Elite Routes do

10: Reconstruct Route(Input: route; Output: Route)
11: Improved Route(Input: Route; Output: Improved Route)
12: Add Improved Route in Sol
13: if All Improved Route are feasible AND Objective value ≤ Best then
14: Best = Sol
15: Sol = 0
16: Return Best

6.4.1 TSP, N routes for N shops
Having N shops, I solve the tsp mathematical model for each one finding the
minimum route starting from the shop and finally returning to the shop. It starts
by creating as many routes as there are shops, i.e. the case where each one only
delivers to its own customers. In order to find the route for each shop I make the
TSP which allows me to find the minimum route starting from the shop, delivering
all the products and returning to the same shop at the end of the route. In this
case I use these results as benchmark for the algorithm’s solution. Then I will unify
the routes in sets in order to minimize total route and number of vehicles used,
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having one node more as the common depot where all vehicles start and end their
routes.

6.4.2 Centroid for each route
Considering that each shop can have different area of their customers I wanted to
implement the fact to consider the centroid of each initial route in this way:

Algorithm 2 Calculate the centroid coordinates for each route and the distance
matrix

procedure Centroid
2: Input 1: A: set of N sets of vertices for each routes

Output: DistanceMatrix: distance matrix for all the nodes
4: B is an empty set

while A not empty do
6: ó Extract all vertices of one set in A and calculate two coordinates

xj = (qn
i=0 xi)/(n + 1)

8: yj = (qn
i=0 yi)/(n + 1)

Insert (xj, yj) in B ó it is related to the j route
10: for k in B do

for l in B do
12: dist(k, l) = ((xk − xl)2 + (yk − yl)2)0.5

Add dist(k, l) in DistanceMatrix

14: Return DistanceMatrix

6.4.3 Merge Relaxed Routes
In this section a will explain how I decided to merge the routes in few groups. At
the beginning I decided to find more solutions and then pick the best one among
the feasible solutions through the relaxation of the constraints using factors C
from 1 to 2, which multiply the capacity and time constraints. The factors can
be changed, increasing or decreasing the number of factors for each sets according
to the user. For the resolution of the 1350 instances I decided to pick only these
values for the two sets in order to have fast execution time:

• Capacity factors=[2,1.5,1.2,1.1,1];

• Times factors=[2,1.5,1.25,1.11,1]

With these two sets I used all the combinations of pairs of values from them,
obtaining 25 initial states:
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• (2,2);

• (2,1.5);

• (2,1.25);

• (2,1.11);

• (2,1);

• (1.5,2);

• (1.5,1.5);

• (1.5,1.25);

• (1.5,1.11);

• (1.5,1);

• (1.2,2);

• (1.2,1.5);

• (1.2,1.25);

• (1.2,1.11);

• (1.2,1);

• (1.1,2);

• (1.1,1.5);

• (1.1,1.25);

• (1.1,1.11);

• (1.1,1);

• (1,2);

• (1,1.5);

• (1,1.25);

• (1,1.11);

• (1,1);
These are all the starting states used for the merge algorithm, it is necessary to
include the pair (1,1) because in case every shop route has almost used the capacity
and time constraints the solution of this merge probably will be the same as the
initial solution. This is a limit case that can occur.
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Merge knapsack1

The Merge knapsack1 is used to simply minimize the number of vehicles used
with the constraints of capacity and time of the pair explained above. It finds the
minimum number of vehicles to use and cluster them in groups.

Formulation of the problem:
In this problem there are N = {1, ..., n} shops and at most M = {1, ..., m} vehicles
with M=N. Each shop is related to his route hence it has a capacity qi which is
the total load amount at the beginning of the route. Each shop has also a time
constant related to the time for his single route ti. Every shop has to be assigned to
1 vehicle. Every vehicle can have at most sn shops with 1 ≤ sn ≤ n which satisfy
the constraints of time, at most T hours (T is defined in the previous paragraph
and it has values T ≥ 360 ) as the sum of each route assigned to the vehicle. Then
also it has to respect the capacity constraint, at most C dm3 (C is defined in the
same way as T C ≥ 1)as the sum of each route assigned to the vehicle.
Mathematical model of Knapsack1:

Obj. Function

Min
mØ

j=1
Yj (6.18)

Constraints
mØ

j=1
Xij = 1 ∀i ∈ N (6.19)

nØ
i=1

Xijqi ≤ C × Yj ∀j ∈M (6.20)

nØ
i=1

Xijti ≤ T × Yj ∀j ∈M (6.21)

Yj−1 ≥ Yj ∀j ∈ N − 1 (6.22)

Yj ∈ Z+ ∀j ∈ N (6.23)

Xij ∈ {0,1} ∀j ∈ N ∀i ∈M (6.24)

• Equation 6.18 is the objective function needed to have the minimum number
of vehicles;
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• Equation 6.19 is the constraint in order to have all shops assigned to one
vehicle;

• Equation 6.20 is the constraint in order to respect capacity constraint, hence
the sum of the capacity of all the shops assigned to one vehicle must be lower
or equal to C (max capacity) if the vehicle is used;

• Equation 6.21 is used to respect time constraint, hence the sum of the time of
all the shops assigned to one vehicle must be lower or equal to T (max time)
if the vehicle is used;

• Equation 6.22 is a constraint to reduce symmetry, which allowed to use the
variables Yj in order so firstly Y1 is activated then Y2 and so on.

I run this model with a maximum time of 10 seconds to find the solution, always
to have a solution with low execution time. As result I will have the minimum
number of vehicles used, and this number is used for the Merge knapsack2.

Merge knapsack2

The Merge knapsack2 is used to have the shops with centroid coordinates nearest
to the shops contained in each vehicles with a the number of vehicles found with
Merge knapsack1. In this way it is easier and faster to find the minimum number
of vehicles to use and cluster them in sets.

Formulation of the problem:
In this problem there are N={1,...,n} shops and at most M={1,...,m} vehicles
with m ≤ n, the m number is found with Merge knapsack1. Each shop is always
related to his route hence it has a capacity qi which is the total load amount at
the beginning of the route. Each shop has also a time constant related to the time
for his single route ti. Every shop has to be assigned to 1 vehicle. Every vehicle
can have at most sn shops with 1 ≤ sn ≤ n which satisfy the constraints of time,
at most T hours (T is defined in the previous paragraph and it has values T ≥ 360
) as the sum of each route assigned to the vehicle. Then also it has to respect the
capacity constraint, at most C dm3 (C is defined in the same way as T C ≥ 1)as
the sum of each route assigned to the vehicle. Furthermore, in this model I added
the distances between the centroids Dij.

Mathematical model of Knapsack2:

Obj. Function

Min M +
mØ

i=1

mØ
j=1

ZijDij (6.25)
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Constraints
mØ

j=1
Xij = 1 ∀i ∈ N (6.26)

nØ
i=1

Xijqi ≤ C × Yj ∀j ∈M (6.27)

nØ
i=1

Xijti ≤ T × Yj ∀j ∈M (6.28)

Yj−1 ≥ Yj ∀j ∈ N − 1 (6.29)

Xij + Xi2j ≤ Zii2 + 1 ∀j ∈ N ∀i ∈M ∀i2 ∈M − i (6.30)

Yj ∈ Z+ ∀j ∈ N (6.31)

Xij ∈ {0,1} ∀j ∈ N ∀i ∈M (6.32)

Zii2 ∈ {0,1} ∀i2 ∈M ∀i ∈M (6.33)

• Equation 6.25 is the objective function needed to have the minimum number
of vehicles;

• Equation 6.26 is the constraint in order to have all shops assigned to one
vehicle;

• Equation 6.27 is the constraint in order to respect capacity constraint, hence
the sum of the capacity of all the shops assigned to one vehicle must be lower
or equal to C (max capacity) if the vehicle is used;

• Equation 6.28 is used to respect time constraint, hence the sum of the time of
all the shops assigned to one vehicle must be lower or equal to T (max time)
if the vehicle is used;

• Equation 6.29 is a constraint to reduce symmetry, which allowed to use the
variables Yj in order so firstly Y1 is activated then Y2 and so on;

• Equation 6.30 is a constraint to activate Zii2 variable if i and i2 are in the
same vehicle.

This time, I run this model with a maximum time of 2 seconds to find the
solution, always to have a solution in a small amount of time. As result I will have
the shops assigned to each vehicle with the minimum distance between the shops
of each vehicle. The final results of this section are the eliteroutes.
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6.4.4 Reconstruct Route
After having assigned the shops with their relative customers to the vehicles, I
start creating the route for each eliteroutes. In this procedure I wanted to create
different solutions and picking the best 15 results to optimize them with another
Relocate 1-0 Constraints.

Nearest Neighbour

Nearest Neighbour is used to create the initial routes.

Algorithm 3 Nearest Neighbour
procedure Create route with nearest neighbour method

Input 1: P : set of nodes
3: Input 2: Constraints: set of fixed nodes of the final route

Input 3: DistMatrix: distance matrix for all the nodes
Output: Sol: route’s duration and route

6: Sol ← Constraints
for each node in 1,..,|P − Constraints| do

From last node in Sol find the shortest edge between all nodes in P−Sol
9: Insert the node in Sol

Return Sol
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Improved Route

Improved Route through the Relocate 1-0 Constraints improves the first 15 routes
of each vehicle.

Algorithm 4 Improved Route
procedure Optimise the path of a vehicle

Input 1: Route: path to optimize of one vehicle
Input 2: DistMatrix: distance matrix for all the nodes

4: Input 3: Shops
Output: ImprovedRoute: best route
while Route is improved or number of improvements < 300 do

for each node i in 1,...|Route| do
8: if i is a shop then:

for each node j in i,...|Route| do
if j is not a shop then

break
12: else

Place i after j
if the route is improved then

Save Route and break
16: else

Replace i to the original position
else

for each node j in i,...|Route| do
20: Place i after j

if the route is improved then
Save Route and break

else
24: Replace i to the original position

ImprovedRoute← Route
Return ImprovedRoute

Reconstruct Route

In Reconstruct Route there is the procedure to create the routes for each combina-
tion of the initial states.
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Algorithm 5 Reconstruct Route
procedure Routes creation

Input 1: V eic: shops assigned to vehicles
Input 2: Cust: customers for each shop
Input 3: DistMatrix: distance matrix for all the nodes

5: Input 4: Shops
Output: Routes: all routes for each vehicle
Ba is an empty list ó routes’ combinations
P is an empty list ó route’s nodes
V eicRoutes is an empty list ó routes’ nodes for each vehicle

10: for each set of stores in V eic do
if number of permutation of set of stores > 500 then

Insert a list of 500 random combinations of the stores in Ba
else

Insert a list of all permutation of the stores in Ba
15: for each set of stores in V eic do:

for each combination in Ba do
Constraints ← (depot, firststore)
for each shop in |combination| do

if shop is the first one then
20: Insert shop’s unique customers in P

Insert the depot and the next shop in P
Sol ← NearestNeighbour(P, Constraints, DistMatrix) ó

Sol is the solution of Nearest Neighbour, (time, route)
Add to Constraints all the nodes until the next shop in Sol

else if shop is not the last one then
25: Insert shop’s unique customers in P

Insert the next shop in P
Sol ← NearestNeighbour(P, Constraints, DistMatrix)
Add to Constraints all the nodes until the next shop in Sol

else
30: Insert the remaining customers in P

Sol ← NearestNeighbour(P, Constraints, DistMatrix)
Insert Sol in V eicRoutes

for each V eic do
for Best 15 routes in V eicRoutes do

35: Do ImprovedRoute(Route, DistMatrix, Shops)
Insert the best Route among the results in Routes

Return Routes
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6.4.5 Selection of the best routes
For all the initial states we create the routes and at the end we select the routes
with minimum number of vehicle and minimum travel time in this way:

Algorithm 6 Select the best routes
procedure Select the best routes

Input 1: Route: path to optimize of one vehicle
Input 2: DistMatrix: distance matrix for all the nodes
Input 3: Shops
Output: BestRoutes: best routes

6: for each combination of T, C do
Feasible← True
V eicP ←Mergeknapsack1(DistMatrix, Route)
V eic←Mergeknapsack2(Route, DistMatrix, |V eicP |)
if V eic is 0 then V eic← V eicP
Sol← ReconstructRoute(V eic, Cust, DistMatrix, Shops)

12: for each vehicle in Sol do
if Route time> 360 then

Feasible← False
break

if Feasible = True then
for each vehicle in Sol do

18: if Capacity of any nodes is not respected then
Feasible← False
break

if Feasible = True then
Insert Sol in BestRoutes

Keep in BestRoutes all the routes with minimum number of vehicles
24: Keep in BestRoutes the routes with minimum total route time

Return BestRoutes

6.5 Final Heuristic
The final algorithm is really similar to the first one, it changes from Creation routes:
I pick the best 8 results and other 10 between the 9th and the last one, because
if I pick only the first results I have routes that are already optimized and from
the depot the vehicle passes by a lot of stores without passing by customers and it
could not respect the capacity constraint. Moreover I changed also the Relocate
1-0 Constraints in order to check the capacity constraint for each improvement.
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Final Improved Route

Algorithm 7 Final Improved Route
procedure Optimise the path of a vehicle

Input 1: Route: path to optimize of one vehicle
Input 2: DistMatrix: distance matrix for all the nodes
Input 3: Shops
Input 4: Orders capacities associated to each order
Input 5: Capacity: vehicle capacity

7: Output: BestRoute: best route
for each node in Route do

Calculate vehicle capacity at the node.
if at any node the vehicle capacity > Capacity then

Return 0
while Route is improved or number of improvements < 300 do

for each node i in 1,...|Route| do
14: if i is a shop then:

for each node j in i,...|Route| do
if j is not a shop then

break
else

Place i after j
if (the route is improved) and (vehicle capacity at any

node ≤ Capacity) then
21: Save Route and break

else
Replace i to the original position

else
for each node j in i,...|Route| do

Place i after j
if (the route is improved) and (vehicle capacity at any node

≤ Capacity) then
28: Save Route and break

else
Replace i to the original position

BestRoute← Route
Return BestRoute
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Final Reconstruct Route

Algorithm 8 Final Reconstruct Route
1: procedure Final Reconstruct Route
2: Input 1: V eic: shops assigned to vehicles
3: Input 2: Cust: customers for each shop
4: Input 3: DistMatrix: distance matrix for all the nodes
5: Input 4: Shops
6: Input 5: Capacity: vehicle capacity
7: Input 6: Orders: capacities associated to each order
8: Output: Routes: all routes for each vehicle
9: Ba is an empty list ó routes’ combinations

10: P is an empty list ó route’s nodes
11: V eicRoutes is an empty list ó routes’ nodes for each vehicle
12: for each set of stores in V eic do
13: if number of permutation of set of stores > 500 then
14: Insert a list of 500 random combinations of the stores in Ba
15: else
16: Insert a list of all permutation of the stores in Ba
17: for each set of stores in V eic do:
18: for each combination in Ba do
19: Constraints← (depot, firststore)
20: for each shop in |combination| do
21: if shop is the first one then
22: Insert shop’s unique customers in P
23: Insert the depot and the next shop in P
24: Sol ← NearestNeighbour(P, Constraints, DistMatrix) ó

Sol is the solution of Nearest Neighbour, (time, route)
25: Add to Constraints all the nodes until the next shop in Sol
26: else if shop is not the last one then
27: Insert shop’s unique customers in P
28: Insert the next shop in P
29: Sol ← NearestNeighbour(P, Constraints, DistMatrix)
30: Add to Constraints all the nodes until the next shop in Sol
31: else
32: Insert the remaining customers in P
33: Sol ← NearestNeighbour(P, Constraints, DistMatrix)
34: Insert Sol in V eicRoutes
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35: if |V eicRoutes| ≤ 18 then
36: for each route in V eicRoutes do
37: FinalImprovedRoute(Route, DistMatrix, Shops, Orders,

Capacity)
38: Insert the best Route among the results in Routes
39: if Route time of best route > 360 then
40: Routes← 0
41: Return 0
42: else
43: for Best 8 routes in V eicRoutes do
44: FinalImprovedRoute(Route, DistMatrix, Shops, Orders,

Capacity)
45: Step← (|V eicRoutes|−9)

10
46: for routes with step do
47: FinalImprovedRoute(Route, DistMatrix, Shops, Orders,

Capacity)
48: Insert the best Route among the results in Routes
49: if Route time of best route > 360 then
50: Routes← 0
51: Return 0
52: Return Routes
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6.5.1 Selection of the best routes

Algorithm 9 Final Selection of the best routes
procedure Final Selection of the best routes

Input 1: Route: path to optimize of one vehicle
Input 2: DistMatrix: distance matrix for all the nodes
Input 3: Shops
Output: BestRoutes: best routes
for each combination of T, C do

Feasible← True
V eicP ←Mergeknapsack1(DistMatrix, Route)

9: V eic←Mergeknapsack2(Route, DistMatrix, |V eicP |)
if V eic is 0 then V eic← V eicP
Sol← FinalReconstructRoute(V eic, Cust, DistMatrix, Shops)
if Sol = 0 then

Feasible← False
else

Insert Sol in BestRoutes
Keep in BestRoutes all the routes with minimum number of vehicles
Keep in BestRoutes the routes with minimum total route time

18: Return BestRoutes
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Chapter 7

Data analysis

7.1 Instances
The instances used to test the algorithm have a maximum route time of 6 hours per
vehicle. The service time is 3 minutes for pick up or delivery service at each node
and each request order has a volume between 27 dm3 and 33 dm3. After having
developed the algorithm I created 1350 different instances in order to test efficiency
and analyze the results. Obviously I tried to simulate some possible scenarios
related to the Links problem. Therefore, I considered an area comparable to that
of a neighbourhood in Turin, but also I tried increasing the area and analysed how
it varied.

I classified the instances with these properties:

• Number of nodes in the map: I chose 5 different quantities of nodes corre-
sponding to the shops and the customers and 1 depot:

– 25 nodes, and 1 depot;
– 50 nodes, and 1 depot;
– 100 nodes, and 1 depot;
– 150 nodes, and 1 depot;
– 200 nodes, and 1 depot.

• Map size: I used 3 square maps of dimension l x l measured in min2 as I
considered time rather than distance:

– 15 x 15 min2;
– 30 x 30 min2;
– 45 x 45 min2.
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• Percentage of shops on the total number of nodes: I analysed 2 different
scenarios:

– 10 percent of the total nodes are shops;

– 20 percent of the total nodes are shops.

• Repetition of orders: there are 3 cases where the customers can have more
than one order to different shops:

– 0%, in this case every customer has only one order;

– 15%, in this case there is a 15 percent increase in orders compared to the
0% scenario;

– 30%, in this case there is a 30 percent increase in orders compared to the
0% scenario.

• Vehicle capacity: I used 3 types of vehicles:

– 625 dm3 city car;

– 1250 dm3 Fiorino;

– 2500 dm3 Doblo.

I combined all these properties and for each I conducted 5 different simulations,
amounting to 1350 instances. When creating instances, I simulated randomly the
position of nodes, the assigned orders and the quantity per order with relative
constraints:

• For the position of the nodes I assumed that the depot can have (x,y) coordi-
nates between 0.3 and 0.7 times the map size, in order to be near the center
of the area. On the other hand the location of customers and shops in the
map are completely random;

• After having all the coordinates I assigned random the customers to their
respective shops;

• The quantity per order is between 27 dm3 and 33 dm3 which is a considerable
amount of items.
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Figure 7.1: Instance example

in Figure 7.1 there is an example of the data for each instance:

• Coordinates of each node;

• Identification of which nodes are shops, customers, and depot;

• Quantity and customer-shop pairings for each order;

• Vehicle capacity.
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Example maps

Here are 3 examples of the algorithm’s results in comparison with the initial
solutions, cases with 25 nodes and 50 nodes.

(a) Route for each store: 209 Min, 5 Vehicles

(b) Merged routes: 149 Min, 1 Vehicle

Figure 7.2: 25 nodes, 15 min2, 5 shops, 1250 dm3 cap, 0 rep
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In Figure 7.2 there is an example of a map, with 20 customers, 5 stores, and
1 depot. The first map shows the initial state while the second one displays the
problem solution after the use of the algorithm, going from 5 vehicles to 1 vehicle
and from a total time of 209 minutes to 149 minutes.

(a) Route for each store: 359 Min, 5 Vehicles

(b) Merged routes: 259 Min, 1 Vehicle

Figure 7.3: 50 nodes, 15 min2, 5 shops, 2500 dm3 cap, 0 rep
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In Figure 7.3 there is an example of a map, with 50 nodes and 5 shops. As
before, the first map shows the initial state while the second one displays the
problem solution, going from 5 vehicles to 1 vehicle and from a total time of 359
minutes to 259 minutes.

(a) Route for each store: 403 Min, 10 Vehicles

(b) Merged routes: 254 Min, 1 Vehicle

Figure 7.4: 50 nodes, 15 min2, 10 shops, 1250 dm3 cap, 0 rep
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In Figure 7.4 there is another example of a map, with 50 nodes and 10 shops.
The first map shows the initial state while the second one displays the problem
solution after the use of the algorithm, going from 10 vehicles to 1 vehicle and from
a total time of 403 minutes to 254 minutes.

7.2 Initial Version vs Final Version
I compared the 2 versions in order to analyse some relevant categories shown on
Figure 7.5. The final version improved the results in all the KPI for each category,
moreover the execution time was also reduced.

In conclusion there is an improvement of the results and also of the execution
time. We could also add other values of capacity and time constraints, further
improving the results and having more comparable execution time.

Figure 7.5: Initial Algorithm versus Final Algorithm

7.3 Analysis
The main features that I wanted to examine in more detail are the following extreme
values for each instance category:

• Percentage of stores compared to all nodes: 10 or 20 percent;

• Percentage of repeated orders: 0 or 30 percent. Therefore the case in which
every customer has only one order and the case in which there is a greater
number of repeated orders;

• Type of vehicle used: small (625 dm3) or big (2500 dm3).

I used these classifications in order to take into account the extreme cases of
all instances and look at relevant variations. Moreover, I wanted to analyze and
compare these features in two macro categories:
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• The first one classifying the sets according to the number of nodes in the
map and considering the cases with 50, 100, 150, 200 nodes. This choice is
due to proportionality while still having a relevant number of nodes, with the
aim of analyzing the solutions as the nodes increase in order to validate the
scalability of the algorithm;

• The second classification was made by map size for 15, 30 and 45 min2 in
order to consider how much the map size affects the algorithm used.

In the first category for each number of nodes there are as many results as the
combinations of the features listed above:

1. (10, 0, 625, 15);

2. (10, 0, 625, 30);

3. (10, 0, 625, 45);

4. (10, 0, 2500, 15);

5. (10, 0, 2500, 30);

6. (10, 0, 2500, 45);

7. (10, 30, 625, 15);

8. (10, 30, 625, 30);

9. (10, 30, 625, 45);

10. (10, 30, 2500, 15);

11. (10, 30, 2500, 30);

12. (10, 30, 2500, 45);

13. (20, 0, 625, 15);

14. (20, 0, 625, 30);

15. (20, 0, 625, 45);

16. (20, 0, 2500, 15);

17. (20, 0, 2500, 30);

18. (20, 0, 2500, 45);

19. (20, 30, 625, 15);
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20. (20, 30, 625, 30);

21. (20, 30, 625, 45);

22. (20, 30, 2500, 15);

23. (20, 30, 2500, 30);

24. (20, 30, 2500, 45).

For the second category, these are the combinations for each map size:

1. (10, 0, 625, 50);

2. (10, 0, 625, 100);

3. (10, 0, 625, 150);

4. (10, 0, 625, 200);

5. (10, 0, 2500, 50);

6. (10, 0, 2500, 100);

7. (10, 0, 2500, 150);

8. (10, 0, 2500, 200);

9. (10, 30, 625, 50);

10. (10, 30, 625, 100);

11. (10, 30, 625, 150);

12. (10, 30, 625, 200);

13. (10, 30, 2500, 50);

14. (10, 30, 2500, 10);

15. (10, 30, 2500, 15);

16. (10, 30, 2500, 20);

17. (20, 0, 625, 50);

18. (20, 0, 625, 100);

19. (20, 0, 625, 150);
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20. (20, 0, 625, 200);

21. (20, 0, 2500, 50);

22. (20, 0, 2500, 100);

23. (20, 0, 2500, 150);

24. (20, 0, 2500, 200);

25. (20, 30, 625, 50);

26. (20, 30, 625, 100);

27. (20, 30, 625, 150);

28. (20, 30, 625, 200);

29. (20, 30, 2500, 50);

30. (20, 30, 2500, 100);

31. (20, 30, 2500, 150);

32. (20, 30, 2500, 200).

7.3.1 Categories: 50-100-150-200
Category: 50

All the following tables will have average values for each instance since there were 5
simulations for each one of them. In the case of 50 nodes with 10 percent of stores
it is possible to observe from Figure 7.6 that the lowest values of number of stores
per vehicle are corresponding to map size 45 min2 and 30 percent repeated orders
(9,12). This is because in very large maps the distances are very high and since
the customers are random points in the map and not located close to each other,
6 hours of time are not enough to satisfy the customers of many stores. Instead
in the case of 15 min2 map size with lower distances it is possible to merge more
stores with one vehicle.

In addition, with 30 percent of repeated orders it is obvious that this ratio
(shops per vehicle) is less because there are more orders to be met. Also with 45
min2 map size it can not join many stores with a vehicle in common. For this
reason it will not take advantage of the fact of making a single delivery for two or
more orders (one customer can have more than one orders with 30 % of repeated
orders). This ratio is closely correlated with the percentage of the decrease of the
route time compared to the initial solution. This is due to joining fewer vehicles
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together with low decrease in the total time, in fact both for vehicle capacity 625
dm3 and 2500 dm3 the result is no relevant.

Figure 7.6: Results of 50 nodes

The highest values, 5 stores per vehicle, are in correspondence of 15 min2 map
size and capacity 625 dm3 or 2500 dm3 (1,4), 30 min2 map size and capacity 2500
dm3 without repeated orders (5) or 15 min2 map size and capacity 2500 dm3 with
30 percent of repeated orders (10). In the first cases where there are both 625 dm3

and 2500 dm3 there are optimal results due to the fact that not having repeated
orders it does not violate the capacity constraint. Therefore there is no need to
have a larger vehicle and that with a 15 min min2 map there is no violation of
the time constraint being a more limited area. In the case with 2500 dm3 capacity
and 30 min2 without repeated orders it is optimal because the time constraint is
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respected thanks to the fact that it can load everything from the beginning without
considering the capacity constraint since there is a very large vehicle capacity.
Finally, in the last case, we can see that, again due to the fact that the second
case has a large vehicle capacity (2500 dm3), only one vehicle can be used for 5
stores. In this case we can see that we have the biggest improvement from the
initial solution, since customers with more than one order will be served only once,
thus reducing the total time.

With the 20 percent of stores we can see that the previous trend is very similar,
that is, in the same properties we have the best and worst results. There is in
general an improvement of all the previous cases (10 % of stores) with a ratio of
almost 2:1 due to the fact that having more stores there are fewer daily orders per
shops. Another aspect is that there is a higher average improvement compared to
the situation with 10 percent of shops.

Category: 100

In the case of 100 nodes with 10 percent of stores it is possible to observe from
Figure 7.7 one difference with 50 nodes for highest values: the case 0 repeated
orders, 2500 dm3 capacity, and 30 min2 map size (5) has not 1 vehicle per 5 shops
as with 50 nodes but 1 per 3.33 stores. This signifies that 30 min2 map size depends
on the location of customers and shops and in the previous case with 50 nodes
probably it was a case, in other words with these properties the ratio is between
3.33 and 5. Instead for the lowest values it is the same as before.

With 20 percent of stores there is one significant difference, the 30 min2 map
size has always 6.67 as ratio of shops per vehicle and 5 or less for 45 min2. Instead
previously there was not a big difference between 30 and 45 min2, with in most of
the cases 5 as ratio of shops per vehicle. This could be possibly explained by the
fact that having more shops it is easier to split the stores with the vehicles.
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Figure 7.7: Results of 100 nodes

Category: 150

With 150 nodes we can see from the Figure 7.8 that 100 and 150 nodes have really
similar results, which continue to support the scalability of the algorithm. There
are always the best cases with lower maps size 20 percent of stores. The only thing
to change is the execution time which the increase from 100 to 150 nodes.
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Figure 7.8: Results of 150 nodes

Category: 200

In this final category with 200 nodes there is again a similarity with the previous
blocks, with some small differences: there is the case with 10 percent of stores, 0
repeated orders, 2500 dm3 vehicle capacity and 15 min2 map size (4) where the
KPI shops per vehicle is greater than 5 (usual value), 6.25, which shows that it
works also with more nodes, 200. The other aspect is that the lowest values with 10
percent of shops have a lower percentage decrease in time travel, this can be to the
fact that increasing the number of nodes it should increase also the combinations
of time and capacity constraint in order to find a better result.
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Figure 7.9: Results of 200 nodes

Comparison: 50-100-150-200

In this sections there are the values analyzed previously visualized on graphs.
There are 3 types of graph: Percentage decrease of total time, shops per vehicle
and execution time. From the first graph in Figure 7.10, where there are all the
combinations for each category with the percentage decrease, we can see that 50,
100, 150 and 200 nodes have a similar trend. Obviously it is not the same for each
category but they have comparable results. It is also evident that with 10 percent
of shops the results change a lot depending to the properties of each instance. On
the other hand with 20 percent of shops the trend is more linear and each change of
property does not affect a lot the percentage decrease of the route time. 20 percent
of shops cases have also higher results compared to 10 percent of shops.
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Figure 7.10: Percentage decrease: 50-100-150-200

In the graph in Figure 7.11 there are all the combinations for each category with
the KPI shops per vehicle. Here the results of 50, 100, 150 and 200 nodes have a
similar trend as for the percentage decrease. They have comparable results and
also we can see that 200 nodes in some combinations have higher number of shops
per vehicle, hence the algorithm works well also with high number of nodes with
a reasonable amount of time. As before with 20 percent of shops the results are
better than 10 percent of shops, but in this case with high variation also with 20
percent of shops. This is because the map size is a big constraint for the problem.
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Figure 7.11: Shops per vehicle: 50-100-150-200

Finally, In Figure 7.12 it is possible to notice that increasing the number of
nodes the execution time increase as well, and also that it increases when passing
from 10 to 20 percent of stores for all the categories apart from 50 nodes which is
constantly low. The execution times are always in the range of 120 seconds, which
is one of the goals I was able to accomplish.
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Figure 7.12: Execution time: 50-100-150-200

To sum up in Figure 7.13 there are the means of all the combination for 50,
100, 150 and 200 nodes. We can see that the results of the means are comparable
between them with the only increase of the execution time related to the increased
number of nodes. Also there is a new KPI, percentage decrease of travel time which
does not keep in count of pick up and delivery time. It allows to show an higher
improvement in the travel time which is the objective to minimize according to
the number of vehicles. Since the algorithm works for all the nodes with a similar
trend, probably it can be used also for a larger amount of nodes.
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Figure 7.13: Mean values: 50-100-150-200

7.3.2 Categories: 15-30-45

Categories: 15

In these sections there is the second classification considering more the map size
instead of the number of nodes as before. I start with the map size of 15 min2,
which is the size closer to the problem of Links Foundation, since it should work
for quarters of Turin. In this class there are the best results since many times it
occurs that with the 10 percent of shops there are 5 shops per vehicle and 10 shops
per vehicle with 20 percent of shops. In Figure 7.14 the lowest results are with 625
dm3 vehicle capacity and 30 percent of repeated orders, hence the vehicle capacity
becomes important when the customers have more orders from different stores and
when the stores are the 10 percent of the total nodes.
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Figure 7.14: Results of 15 min2 map size

Category: 30

Increasing the map size, the KPI obviously decrease because the customers are
spread in a wider map. The lowest results in Figure 7.15 are always with 625 dm3
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vehicle capacity and 30 percent of repeated orders, because the routes have a big
restriction on the capacity. With the 20 percent of shops, sometimes it occurs
that with lower capacity and the same other features there are better results. The
reason why is that when many shops are assigned to one vehicle the algorithm can
use only some combinations for the routes’ order. For example if there are 8 stores
assigned to one vehicle the permutations are 40320 and I take only 500 of them in
order to have a solution with a reasonable execution time. With 15 min2 map size
it is different since there are many possible routes with 10 shops per vehicle that
satisfy the constraints.
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Figure 7.15: Results of 30 min2 map size

Category: 45

In the category of 45 min2 there are the worst results since the map size is the
largest. The best and worst results are always with the same features. In Figure 7.16
with the 20 percent of shops it occurs more often that the vehicle capacity is not
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a significant constraint, because with map size of 45 min2 the time constraint is
more affecting than capacity constraint.

Figure 7.16: Results of 45 min2 map size
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Comparison: 15-30-45

Here there is the comparison of the maps size, presented on graphs as in the
previous section. In the percentage decrease of route time, in Figure 7.17 it is clear
that with 10 percent of shops the map size of 45 min2 is significant lower than the
other two maps, however with 20 percent of shops the KPI is really close to all the
maps.

Figure 7.17: Percentage decrease: 15-30-45

In the shops per vehicle in Figure 7.18 it is more linear, for both 10 and 20
percent of shops there is a marked difference between the sizes of the maps. With
20 percent of shops the difference is more marked, since with 15 min2 map size it is
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always 10 shops per vehicle then from 5 to 7.5 shops per vehicle with 30 min2 and
finally from 3.85 to 5 shops per vehicle with 45 min2. This is an important aspect
which marks the result of 15 min2 compared to the others in particular when the
daily orders per shop are low (5).

Figure 7.18: Shops per vehicle: 15-30-45

In Figure 7.19 it is shown the Execution time of the algorithm and there are the
peaks with highest amount of nodes and with 15 min2 because the algorithm takes
more time when many stores are assigned to one vehicle. This is because with more
shops per vehicle there are more permutations of the sequence of shops to pass by.
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Figure 7.19: Execution time: 15-30-45

To conclude the comparison of 15 min2, 30 min2 and 45 min2 in Figure 7.20 is
is clear the negative trend between map size and shops per vehicle. Furthermore,
the mean of the percentage decrease in total time is similar for 15 min2 and 30
min2, instead it is lower for 45 min2 map size.
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Figure 7.20: Mean values: 15-30-45

7.3.3 Comparison with higher execution time
I ran the algorithm for 16 instances with 200 nodes using more combinations of
time and capacity constraint. I created for each vehicle more routes and also I
did the Improved route for more solutions. It was to see the improvements of the
results in comparison with the increase of execution time. In Figure 7.21 few times
the vehicles used decreased, in particular with the feature 625 dm3 vehicle capacity.
The execution time increased a lot from 3 to 4 times the original value. Hence in
these examples there is not an improvement in each instance, but with with some
of them the improvement is relevant, considering that the execution time is still
low.

Figure 7.21: Increased combinations with 200 nodes
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Chapter 8

Conclusions

The experiments reported have been performed on a 1,4 GHz Quad-Core Intel
Core i5 CPU with RAM 8 GB. The algorithm is coded in Python 3.8 and the
mathematical model of the algorithm is solved by GUROBI solver. The maximum
execution time for all the tests is in the worst case around 125 seconds.

In this chapter I analyze all the instances differently from the previous chapter
where they were analyzed only the extreme cases of the instances. In Table 8.1 all
instances classes used to test the algorithm for each node size (50, 100, 150, 200
nodes) are presented. The first two columns represent the label of each instance
analyzed, in the first one all instances having 10% of shops and the second one with
20% of shops. These labels, i.e. instance’s names, help to read the next graphs:
label 1 is the instance with 10% of shops, 15 min2 map size, 0% of repeated orders
and vehicle capacity 625 dm3. For each instance there are 5 random simulations in
order to get the average values of the algorithm’s results.

In this section there is a new KPI: the percentage decrease of vehicles used.
This substitutes the KPI, number of shops per vehicle, in order to have results
more comparable with the KPI, the percentage decrease of route time. Starting
from Figure 8.1 where it is shown a graph of the new KPI, the average percentage
decrease of vehicles used for all instances described in Table 8.1. There are 4 distinct
lines for 50, 100, 150 and 200 nodes, as in Chapter 7 with the classification according
to the number of nodes. The x axis represents the Instances from 1 to 54 and y
axis represents the percentage decrease of vehicles used. The percentage decrease
of used vehicles has a similar trend for all the 4 lines, proving that the algorithm
gives an output beyond the number of nodes. In this way this new deployment
strategy can be used in cases with higher number of stores and customers, hence
an area with higher population density, as a quarter of Manhattan.

In the left part of the plot there are the instances with 10% of shops, here results
show that there is a much larger gap between the minimum and maximum decrease
of used vehicles compared to the second half of the graph (20%). This shows that
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10 % shops 20 % shops Map size % order repetition Capacity
1 28 15 0 625
2 29 15 0 1250
3 30 15 0 2500
4 31 15 15 625
5 32 15 15 1250
6 33 15 15 2500
7 34 15 30 625
8 35 15 30 1250
9 36 15 30 2500
10 37 30 0 625
11 38 30 0 1250
12 39 30 0 2500
13 40 30 15 625
14 41 30 15 1250
15 42 30 15 2500
16 43 30 30 625
17 44 30 30 1250
18 45 30 30 2500
19 46 45 0 625
20 47 45 0 1250
21 48 45 0 2500
22 49 45 15 625
23 50 45 15 1250
24 51 45 15 2500
25 52 45 30 625
26 53 45 30 1250
27 54 45 30 2500

Table 8.1: Instances

with lower number of daily orders per shop there is lower variation in the percentage
decrease of vehicles used. Another important element in the first half of the graph,
is that increasing the map size, from 15 to 45 min2, the decrease percentage drops,
which is also present in the second half with a lower gradient. This relationship is
important to understand that this problem is strictly affected by the dimension
of the map in case the shops and customers are randomly distributed in the map
when the ratio between customers and shops is about 10%. Again, in the left half
of the graph it is possible to observe that the line with 50 nodes has some lower
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Figure 8.1: Percentage decrease of vehicles used

values with respect to the other lines for small vehicle instances (7,10,13,16), this
is because with more shops it is not straightforward to have vehicles saved. In the
second part of the graph instead there is no evidence that vehicles capacity strongly
affects results since there are less customers assigned to a shop thus having more
chance to decrease the load of the vehicle during the route passing to the customers.
This last analysis is really important for the businesses because in certain scenarios
having low vehicles capacity allows to save fixed costs for the vehicles and to have
lower emissions.

In Figure 8.2 it is shown a graph of the average percentage decrease of route
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Figure 8.2: Percentage decrease of route time

time represented in the same way as the Figure 8.1. As in the previous graph it is
notable the fact that in the first part of the graph (10 %) the percentage decrease
of the global routes time has an higher interval of oscillation with respect to the
right part (20 %). It continues to show that this solution has better results with
low daily orders per shop. Apparently there is also the same trend with the maps
size and the percentage decrease of the routes time, in particular with 45 min2

map size the results are not clearly improving the initial solution. Instead, on the
second part of the graph there is an higher linearity for all the instances which
imply again that for instances with low daily orders per shop the algorithm finds a
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considerable improved solution.
To sum up, instances with 20 % of shops (roughly 5 daily orders per shop

without repeated orders) have the best improvements when the shared delivery
service can be implemented in all map sizes. Instead when there are roughly 9 daily
orders per shops (10 % of shops) it is preferable to have 15 min2 map size or at
most 30 min2 map size in order to achieve relevant improvements for the businesses.
Another relevant aspect is that the small vehicles have comparable results with the
other vehicle sizes in 80% of the cases, except for 4 instances with 10 % of shop out
of 18 instances (54 divided by the number of vehicle sizes). This somehow confirms
that a local collaborative delivery service can be set up also with small vehicles.

In conclusion I have analysed a new variant of the VRP for Pickup&Delivery
class related to the deployment of collaborative logistics models for local delivery
service. After having developed the mathematical model, I designed and imple-
mented an Heuristic Algorithm testing it on a large instances set. The results
proved that for a local delivery service there is a relevant decrease in vehicles used
and in routes time execution under specific conditions. This may be a great benefit
for local shops allowing them to reduce logistics costs but also to serve customers
that may not reach other-way. Moreover it is possible to reduce the traffic pollution
and improve the environmental quality, contributing to the sustainability of the
city.
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