
POLITECNICO DI TORINO

Department of Mechanical and Aerospace Engineering

Master of Science in Automotive Engineering

Path planning for an autonomous racecar

with Rapidly-exploring Random Tree

Supervisor: Prof. Nicola AMATI

Co-supervisor: Prof. Andrea TONOLI

Prof. Angelo BONFITTO

Eng. Stefano FERACO

Eng. Sara LUCIANI

Candidate:

EUGENIO TRAMACERE

257055

Academic Year 2020 - 2021

Abstract

Among the considerable technical problems that self-driving vehicles have to face, there

is the path planning, that is a function for autonomous vehicles. Path planning is

defined as the problem of finding a continuous collision free path from an initial con-

figuration to a predetermined goal. In this context, the present thesis work focuses

on the design and implementation of a real-time local trajectory planning method us-

ing Rapidly-Exploring Random Tree Algorithm based on Dubins curves for an AWD

electric racing vehicle in different scenarios, straight, left and right bends. The key

contribution of this work is to present a framework able to generate a feasible free

collision path considering differential constraints for non-holonomic car-like robot and

its real-time computation ability in solving the dynamic motion planning problem.

As a first step, a preliminary research on motion planning techniques is carried out.

Subsequently, the problem is stated, analysing the structured environment in which

the race car has freedom of action. Afterwards, the methodology is defined and the

final configuration, i.e. the goal, is extrapolated from the local map coming from the

perception pipeline, exploiting the functionality of a LiDAR sensor mounted onto the

front wing of the racing vehicle. The vehicle is considered as a three Degree-of-Freedom

bicycle dynamic model and a Stanley Controller is implemented to control the lateral

and longitudinal vehicle dynamics. The feasibility of the planned trajectory is also

evaluated with respect to command signals for the steering and acceleration actuators

featured by the retained racing vehicle. Conclusions with critical comments about the

obtained results and the possible future works perspectives complete the present thesis

work.

iv

Contents

Abstract iii

1 Introduction 1

1.1 Background . 1

1.2 SAE Driving Automation Levels . 3

1.3 AVs Benefits and Disadvantages . 6

1.4 Thesis Motivation . 8

1.5 Thesis Outline . 8

2 Formula Student Driverless Competition 9

2.1 Problem Statement . 11

2.2 Hardware Concept - SC19 . 12

3 Path Planning 21

3.1 State of Art . 22

3.1.1 Roadmap techniques . 22

3.1.2 Cell decomposition methods . 24

3.1.3 Artifical potential methods . 26

3.1.4 Alternative approaches to path planning 27

3.2 Methodology . 28

3.2.1 Automatic generation of the goal 31

3.2.2 Generation of the modified RRT algorithm with Dubins curves . 44

3.2.3 Motion Planning model . 62

4 Results and Discussion 75

4.1 Data Collection . 75

4.2 Scenario 1 - Acquisition Sept2020 . 76

4.3 Scenario 2 - Acquisition Dec2020 . 80

5 Conclusions and Future Works 85

List of Figures 88

v

List of Tables 91

Bibliography 93

vi

Chapter 1

Introduction

In recent years the concept of autonomous driving has become a recurring debate. Self-

driving vehicles are now being talked about on a daily basis. Academic and industrial

environments are in turmoil and numerous research activities are taking place during

these times.

This work, carried out in the LIM laboratory inside the Polytechnic of Turin, is part

of the project to convert the SC19 prototype of the SquadraCorse Polito student team

into an autonomous vehicle in accordance with the Formula Student regulations, ca-

pable of competing in the Driverless category.

1.1 Background

Every year a considerable number of people are involved in a road accident, sometimes

in a serious way, others unfortunately facing death. The number of people killed in

road crashes around the world continues to be high, even if objectively modern vehicles

are safer than those produced in the past decades both for people inside the vehicle

and for external road users such as pedestrians or cyclists.

According to the World Health Organisation’s “Global Status Report on Road Safety”

[36], every year 1.2 million died in road accidents and between 20 and 50 million suffer

non-fatal injuries. Over 90% of the world’s fatalities on the roads occur in low-income

1

Chapter 1: Introduction

and middle-income countries, which have only 48% of the world’s registered vehicles.

On the other hand, the death rates due to road accidents have decreased in the last

4-5 decades in high-income countries even if road traffic injuries remain an important

cause of death, injury or disability.

Compared to the global trend, in Europe , as can be seen from Figure 1.1, the number

of deaths due to road accidents fell by 43% in the period from 2001 to 2010 and by

another 21% in the period from 2010 to 2018 [21]. However, in 2018 alone, 25,100

Figure 1.1: Europe accidents trend in the last decades.

people lost their lives on EU roads and 135,000 were severely injured. All this has

an unacceptable social impact to pay for mobility. In merely economic terms for the

European society, 280 billion has been estimated as annual cost due to road accidents,

equivalent to about 2 % of the EU GDP (Gross Domestic Product) [9].

In 2019, 172,183 road accidents occurred in Italy resulting in death or injury, slightly

down comparing with 2018 (-0.2%), with 3,173 deaths and 241,384 injured (-0.6%).

Among the victims, the number of cyclists (253;+15.5%) and motorcyclists (698;+1.6%)

increased, while pedestrians (534;-12.7%), moped users (88;-18.5%), trucks occupants

(137,-27.5%) and passenger cars users (1,411;-0.8%) showed a decrease. The increase

of victims among cyclists, mainly on primary roads, in builtup and outside urban area,

is also associated to a growth in road accidents involving bicycles (+ 3.3%), to the

spread of the two-wheels vehicles use for daily journeys, equal to 25% in 2019 and to

the increase in bicycles sales in 2019, 7% more than in 2018. The social cost of road

2 Eugenio Tramacere

Chapter 1: Introduction

accidents in 2019, calculated on the basis of parameters indicated by the Ministry of

Infrastructure and Transport is equal to 16.9 billion euros, 1% of the national GDP

[20].

Figure 1.2: Road accidents in Italy resulting in death or injury, killed and injured from 2001 to 2019.

In most cases, these accidents are due to driver’s fault, therefore s/he could be theoret-

ically replaceable by self-propelled cars. Research experiments on autonomous vehicles

became highly progressive through the continuous effort of department engineers and

graduates working for various competitions and company projects.

1.2 SAE Driving Automation Levels

The SAE Recommended Practice (J3016 201806) describes motor vehicle driving au-

tomation systems that perform part or all the dynamic driving task (DDT) on a sus-

tained basis [19]. The Society of Automotive Engineers provides a taxonomy with

detailed definitions of six levels of driving automation, ranging from no driving au-

tomation (level 0) to full driving automation (level 5).

As reported in Figure 1.3, the level of automation is defined by reference to the specific

role played by each of the three primary actors in performance of the DDT and/or

DDT fallback. The three primary actors in driving are the (human) user, the driving

automation system, and other vehicle systems and components.

The term role in the Recommended Practice [19], refers to the expected role of a given

primary actor, based solely on the design of the driving automation system. For exam-

ple, a driver who fails to monitor the roadway during engagement of a level 1 adaptive

cruise control (ACC) system still has the role of driver, even while s/he is neglecting

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 3

Chapter 1: Introduction

Figure 1.3: Levels of Driving Automation according to SAE J3016 201806.

it. The Dynamic Driving Task (DDT) is referred to all the real-time operational and

tactical functions required to operate a vehicle in on-road traffic such as:

1. Lateral vehicle motion control via steering;

2. Longitudinal vehicle motion control via acceleration and deceleration;

3. Monitoring the driving environment via object and event detection, recognition,

classification and response preparation;

4. Object and event response execution;

5. Maneuver planning;

6. Enhancing conspicuity via lighting, signaling and gesturing, etc.

Subtasks (3) and (4) are referred to collectively as object and event detection ad re-

sponse (OEDR) while the DDT Fallback represents the response by the user to ei-

ther perfom the DDT or achieve a minimal risk condition after occurence of a DDT

4 Eugenio Tramacere

Chapter 1: Introduction

performance-relevant system failure or upon operational design domain (ODD) exit.

The Operational Design Domain (ODD) are the operating conditions under which a

given driving automation system or feature thereof is specifically designed to function

[19]. Therefore the various levels of driving automation are:

1. Level 0: No driving automation. Both longitudinal and lateral maneuvers are

completely performed by driver even though the vehicle is equipped with active

safety systems, such as ABS or ESP;

2. Level 1: Driver assistance. The vehicle’s System is capable enough to perform

either one of the maneuvers (lateral or longitudinal), but not both simultaneously.

The driver will have manual monitoring control during the system action and

perform other tasks (eg. ACC);

3. Level 2: Partial Driving Automation. The vehicle’s Autonomous Driving (AD)

system is capable enough to perform both lateral and longitudinal maneuvers

under the complete supervision of the driver. The driver takes action in cases of

any vulnerability of the AD system in doing the driving tasks;

4. Level 3: Conditional Automation. The vehicle’s AD system is capable enough to

take full control over certain scenarios and in case of any malfunction fall back

option warns the driver to take full control manually. The driver’s full attention

is required during the action;

5. Level 4: High Driving Automation. The vehicle’s AD system is capable enough

to perform the full driving task over limited scenarios and it is capable enough

to handle high constraints and there won’t be any need in driver’s intervention;

6. Level 5: Full Driving Automation. The vehicle’s AD system will have capabilities

to function in all scenarios and there won’t be any contingency safety system

needed in case of critical situations.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 5

Chapter 1: Introduction

1.3 AVs Benefits and Disadvantages

In this context of greater awareness of the social impact that road accidents have every

year, autonomous driving techonologies seem to be the best solution together with the

modernization of the road infrastructures. Technologies for self-driving vehicles have

received considerable interest in the academic, industrial and military domains espe-

cially in the last 20 years, as an example the DARPA Grand Challenge [5] and the

Urban Challenge [6] that pushed the robotics community to build autonomous cars for

unstructured or urban scenarios.

Car manufacturers have also followed this trend, mainly driven by the possibility of

increasing their revenues as AVs open new horizons in the world road mobility. They

started and are still investing on the development and implementation of Advanced

Driver Assistance System (ADAS) and the development of technologies suitable for

autonomous driving vehicles (AV).

Many decision-makers and practitioners wonder how self-driving vehicles (AVs) will

affect future travel, and therefore the need for roads, parking facilities and public tran-

sit services. Optimists predict that by 2030, autonomous vehicles will be sufficiently

reliable, affordable and common to displace most human driving, providing huge sav-

ings and benefits. There is considerable uncertainty concerning autonomous vehicle

development, benefits and costs, travel impacts, and consumer demand. Considerable

progress is needed before autonomous vehicles can operate reliably in mixed urban

traffic, heavy rain and snow, unpaved and unmapped roads, and where wireless access

is unreliable [31]. Years of testing and regulatory approval will be required before they

are commercially available in most jurisdictions. The first commercially available au-

tonomous vehicles are likely to be expensive and limited in performance. They will

introduce new costs and risks and these constraints will limit sales. Many motorists

will be reluctant to pay thousands of extra euros for vehicles that will sometimes be

unable to reach a destination due to inclement weather or unmapped roads.

Figure 1.4 illustrates autonomous vehicle user costs comparing Human Driven and

Autonomous vehicles. They are likely to cost more than human-driven private vehi-

cles and public transit, but less than human-driven taxis and ridehailing services.This

6 Eugenio Tramacere

Chapter 1: Introduction

is probably one of the reasons that prompted Google to develope and test a fleet of

cars since 2009 with Google Self-Driving Car project and create the Waymo society,

specialized on AV technologies [31]. Shared autonomous vehicles will be cheaper but

less convenient and comfortable than private AVs, so many households, particularly in

suburban and rural areas, will own their own.

From User impacts point of view, AVs potential benefits could be the reduction of

Figure 1.4: Costs per Mile for Autonomous and Human Driven vehicle.

driver’s stress and the increase of productivity (play and work while travelling) or the

reduction of paid driver cost (cost decrement for taxis services and commercial trans-

port drivers). On the contrary the AVs require additional equipment, services and fees

and therefore they cost more than HD vehicles. Users might be also exposed to addi-

tional crashes caused by system failure, platooning, higher traffic speeds or experience

reduced security and privacy; AVs may be vulnerable to information abuse (hacking),

and features such as location tracking and data sharing may reduce privacy.

Seeing the Impacts on others, AVs may reduce crash risks and insurance costs. Furthe-

more self-driving vehicles may increase the road capacity and cost savings since more

efficient vehicle traffic may reduce congestion and roadway costs. Moreover, energy

consumption and pollution are positively affected with a consequent increase of fuel

efficiency and reduction of emissions.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 7

Chapter 1: Introduction

1.4 Thesis Motivation

The motivation of this project is to convert an AWD single-seater racecar into a self-

driving vehicle competing in the world’s largest racing competition, Formula SAE,

Driverless category. The starting point is the SC19 protype, winner of the 2019

Formula ATA in class 1E, reserved for electric cars. In the process of building an

autonomous system, there are three major division and they are Perception, Motion

Estimation and Mapping, and Control. This thesis mainly focuses on the second and

third part. The objective of the analysis is to design an effective Local Path Planner

able to guide the vehicle in each Mission it has to perform during the competition.

1.5 Thesis Outline

The Thesis is organized as follows:

1. Chapter 2 : It presents the Formula Student Driverless Competition and then the

Thesis Problem Statement, the Acceleration Mission. Secondly, the Hardware

concept of the SC19 racecar is discussed.

2. Chapter 3 : Firstly the method by which the frames coming from the Lidar sensor

can be used to automatically define the goal is explained. The methodology

that leads to the construction of the Dubins curve-based RRT algorithm and

the extrapolation of the best trajectory for each frame are defined. Then it is

presented the Simulink� model and a detailed description of the controller and

vehicle model used for the Problem Statement.

3. Chapter 4 : It presents the results coming from the simulation of the Simulink�

model. A detailed analysis of them is also present.

4. Conclusions : It presents the conclusions and future works of this project.

8 Eugenio Tramacere

Chapter 2

Formula Student Driverless

Competition

Formula SAE is an international university engineering design competition initially

proposed by the Society of Automotive Engineers (SAE) which involves the design and

production of a racing car, evaluated during a series of tests based on its design qualities

and engineering efficiency. Until 2016, the categories of each competition were 2: Class

1C (combustion engine vehicles), Class 1E (for electric vehicles). One year later, For-

mula student Germany has added a third category, Class 1D, for self-driving vehicles.

In fact, recognizing the interest in autonomous driving and the associated technological

challenges, Formula Student Germany (FSG) organized the first driverless competition,

followed by other countries in 2018 (Italy, UK and Hungary). The new, future-oriented

competition fronts students with a completely new challenge. They are to develop a

race car that can run without a driver in Autonomous mode, or with a driver in a

Manual mode [14]. The vehicles so must meet the technical requirements of the Class

to which the type of vehicle tractive system refers and at the same time the technical

requirements of the self-driving vehicles Class.

Which driverless car will win the FSD competition will not only be decided on basis

of pure autonomy and correlated performance. As in the existing competition classes,

the combines static and dynamic events are what counts for the victory. To minimise

any risks, the autonomous race cars compete in a secured, person-free test area. The

9

Chapter 2: Formula Student Driverless Competition

Figure 2.1: Formula Student Driverless (FSD) competition class.

most challenging part is that the layout of the racetrack is not known a priori [23]. In

fact, in the the first lap, the vehicle has to be able to move within the boundary of the

track thanks to the informations that come from the stereo-camera and the LiDAR.

On the base of these data, the trajectory planning strategy is to calculate the path

the vehicle has to follow, of course complying with its dynamic behavior in order to

avoid vehicle dynamic instability or failure of the system. After the vehicle arrives at

the finish line by covering the first lap, or in other words, it passes over a point it had

previously travelled, the circuit map is saved in the AV system memory. In fact, in the

laps following the first one, the vehicle already knowing the track and the trajectory to

follow, adopts an aggressive driving strategy aimed at minimizing lap time. The one

proposed above is the main race, Trackdrive. It consists of completing ten laps, as fast

as possible, around an unknown track defined by small 228 Ö 335 mm cones. Blue and

yellow cones are used to distinguish the left and the right boundary respectively. In

the following chapters the various Missions to which the vehicle is subjected will be

treated individually.

10 Eugenio Tramacere

Chapter 2: Formula Student Driverless Competition

Table 2.1: FSD Acceleration Event podium in FSG 2019 competition.

FSD19 Scoring Results Acceleration
Car City / University BestTime [s] Scores (max 75) Placing
433 Zürich ETH 3,597 75 1
466 Augsburg UAS 4,056 58,82 2
519 Roma U Sapienza 5,224 30,46 3

2.1 Problem Statement

The Trackdrive mission was defined in the previous paragraph, at page 10. The thesis

work, instead, was focused initially on the Acceleration mission. According to the

”Formula Student Rulebook 2020” [39], the D 5.3 prescribes the Acceleration Procedure

for Driverless Vehicles. It is composed of three phases:

1. Staging : The foremost part of the vehicle is staged at 0.30 m behind the starting

line. Vehicles will accelerate from a standing start.

2. Starting: A go-signal from RES is used to indicate the approval to begin, timing

starts only after the vehicle crosses the starting line and stops after it crosses the

finish line.

3. Stopping : After the finish line, the vehicle must come to a full stop within 100

m inside the marked exit lane and enter the finish-state.

The acceleration track, according to the D5.1 in ”Formula Student RuleBook 2020”

[39], is a straight line with a lenght of 75 m from starting line to finish line. The track

is at least 5 m wide. Cones are placed along the track at intervals of about 5 m. Cone

locations are not marked on the pavement. The minimum track width is 3 m, only for

Driverless Vehicle Acceleration Event. In Figure 2.2 it is reported the layout track for

the Acceleration Procedure.

Looking at the results of the Acceleration Event for the Formula Student Driverless

category (FSG competition) of 2019, in order to aim for victory, the SC19 racecar has

to reach an average speed during this event of at least 20 ms-1, Table 2.1.

Regarding the scores, according to the D5.4 contained in FS Rulebook [39], 3.5 points

are given to each team that finishes at least one run without a DNF or a disqualification

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 11

Chapter 2: Formula Student Driverless Competition

Figure 2.2: Acceleration Procedure Track layout.

(DQ). For Driverless Vehicles only, if the time set, including penalties, such as knocking

over the cones or the entire base of the cone is pushed outside the box marked around

it, DDO, Down or Out condition, 2 s for the acceleration event, D9.1.3 [39]) is less

than Tmax, additional points based on the following formula are given:

ACCELERATION SCORE = 71.5

(
Tmax

T team

− 1

)
(2.1)

Tteam is team’s best time including penalties;

Tmax is 2 times the time of the fastest vehicle including penalties.

2.2 Hardware Concept - SC19

The SquadraCorse Polito driverless racecar SC19 Lucia is an electric AWD racecar

with a full aerodynamic package, lightweight design and high drivetrain efficiency, see

Figure 2.3. In Table 2.2 are reported the main specifications of the SC19 racecar.

The vehicle Hardware Architecture can be divided into three main categories:

1. Perception: 3D LiDAR sensor(Velodyne VLP-16�) and a stereo camera sensor

(ZED�) in order to sense the environment;

2. Steering Actuator : To autonomously follow the trajectory calculated on board

by the AV system, the vehicle is equipped with a steering actuator, capable of

12 Eugenio Tramacere

Chapter 2: Formula Student Driverless Competition

moving the steering rack with a brushless electric motor;

3. Emergency Brake Sytem: In case the AV system fails or vehicle dynamic insta-

bility occurs when race car is running, it may be necessary for safety reasons to

use an emergency system that is activated autonomously or by pressing a remote

button (RES) that generates pressure in the braking system lines of the car and

therefore stop it in the conditions described above.

Figure 2.3: CAD model of SC19 Lucia.

Perception

In order to make the vehicle race fully autonomously, sensors allowing for environment

perception need to be added. As all the perception algorithms, decision making and

control will have to be executed on board, also additional computational units have

to be added. Trivially for security reasons, the Perception system is required to be

robust and reliable, which calls for redundancy in the Perception pipeline. Therefore,

two independent perception pipelines working in parallel were considered, in order to

have a robust system perception architecture.

The first way to perceive the surrounding environment is the 3D LiDAR sensor placed

in the middle of the front wing. LiDAR is categorized as an active remote sensing

technology because it actively transmits an electromagnetic pulse of energy (in the

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 13

Chapter 2: Formula Student Driverless Competition

Table 2.2: Technical specifications of SC 19 race car. *It has been considered the driver’s weight.

SC19 Technical Specifications
Parameter Value

Mass* 253 kg
Moment of Inertia about z-axis* 95.81 kgm2

Vehicle wheelbase 1,525 m
Overall length 2,873 m
Front axle distance to CG 0.839 m
Rear axle distance to CG 0.686 m
Vehicle track width 1.4 m
Overall width 1.38 m
Height of CG* 0.242 m
Wheel radius 0.241 m
Maximum power (total vehicle) 80 kW
Motors peak torque (total vehicle) 84 Nm
Transmission ratio 14.82
Maximum energy stored (battery pack) 6.29 kWh
Battery pack voltage 558 V

optical range) used to measure distance (Velodyne� Lidar sensor). The choice of

the LiDAR sensor over radars is based on its physical parameters like the horizontal

and vertical resolution and fields-of-view (FoV). The vertical resolution appears to

be the most important parameter since it limits the number of returns per cone and

therefore the distance at which the cones can be perceived. In Table 2.3 are reported

the specifications of Velodyne� LiDAR sensor (Puck�) mounted on the SC19 race car

[26].

The second way to perceive the surrounding environment is image-based. The stereo

camera in question (ZED� from STEREOLABS�) is passive. This reproduces the

way human vision works. Using its two ”eyes”, the ZED� creates a three-dimensional

map of the scene by comparing the displacement of pixels between the left and right

images. The ZED� captures two synchronized left and right videos of a scene and

outputs a full resolution side-by-side color video on USB 3.0. This color video is used

by the ZED software on the host machine to create a depth map of the scene, track the

camera position and build a 3D map of the area. The stereo camera is placed on the

main roll hoop, above the driver’s seat in the car; this offers the advantage that the

occlusion among cones is reduced to a minimum and even the cones placed one behind

14 Eugenio Tramacere

Chapter 2: Formula Student Driverless Competition

the other (in line of sight) can be perceived sufficiently well. In Table 2.4 are reported

the specifications of STEREOLABS� stereo camera sensor (ZED�) [38].

Steering Actuator

The steering actuator is an electromechanical linear actuator with a brushless DC motor

(Maxon� motor EC 60 flat Φ 60 mm) whose rotor shaft is coupled with a screw shaft.

A nut is engaged with the screw shaft and when the motor rotates, it drives the nut

linearly according to the screw mechanism thus converting rotary motion into linear

motion. As can be seen in Figure 2.4, the nut is fixed and rotating it using a belt drive

it gets the linear actuation through screw. The movement is then transferred to an

actuator link (yellow component in Figure 2.4); this is mounted under the steering rack

supported by the same rack mountings and connected to the clevis joints on both sides

(orange components in Figure 2.4). This actuator link slides through a low friction

plain bearing in the rack mounting while translating in the Y axis. In Table 2.5 are

reported the specifications of the Steering Actuator mounted on SC 19 prototype.

Figure 2.4: CAD of the Steering Actuator assembly.

Emergency Brake System

The used autonomous racecar is capable of braking by recuperation through the motors.

This generates a sufficient deceleration in order to race without a driver while not using

the mechanical brakes actively. An Emergency Braking System (EBS) was installed

behind the pedals as shown in Figure 2.5b. The EBS is a passive pneumohydraulic

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 15

Chapter 2: Formula Student Driverless Competition

Table 2.3: Technical specifications of Velodyne� VLP-16 installed on the SC 19 protype.

Velodyne� VLP-16 Technical Specifications

Sensor:

Time of flight distance measurement with calibrated reflectivity
16 channels
Measurement range 1 to 100 m
Accuracy +/- 3 cm (typical)
Duel Returns (strongest and last)
Field of view (vertical): 30 ° (+15 ° to -15 °)
Angular resolution (vertical): 2 °
Field of view (horizontal/azimuth): 360 °
Angular resolution (horizontal/azimuth): 0.1 °-0.4 °
Rotation rates: 5-20 Hz

Laser:

Class 1 – eye safe
903 nm wavelength (min/max is 896/910 nm)
Firing sequence repetition rate: 55.296 µs/18.2 kHz
Pulse duration: 6 ns
Maximum output energy: 31 Watts (0.19 mJ)

Mechanical/
Electrical/

Operational:

Power consumption: 8 W (typical)
Operating voltage: 9-32 VDC (with interface box and

regulated power supply)
Weight: 830 g (without cabling)
Dimensions: 103 mm diameter x 72 mm height

Shock: 500m/s2̂ amplitude, 11 ms duration
Vibration: 5 Hz to 2000 Hz, 3G rms
Environmental protection: IP67
Operating temperature -10 °C to +60 °C
Storage temperature -40 °C to +105 °C

Output:

Data output: ∼ 0.3 million points/s
100 Mbps Ethernet Connection
UDP packets containing:

Distances
Calibrated reflectivity
Rotation angles

Synchronized time stamps (µs resolution)
$GPRMC NMEA sentence from FPS receiver

16 Eugenio Tramacere

Chapter 2: Formula Student Driverless Competition

Table 2.4: Technical specifications of ZED� stereo camera sensor installed on the SC 19 protype.

STEREOLABS� ZED� stereo camera Technical Specifications

Video Output:

Video Mode Frames per second Output Resolution (SxS)
2.2 K 15 4416x1242
1080p 30 3840x1080
720p 60 2560x720

WVGA 100 1344x376
Video Recording: Native resolution video encoding

in H.264, H.265, Lossless formats (on host)
Video Streaming: Stream anywhere over IP

Deph:

Depth Resolution: Native video resolution (in Ultra mode)
Depth FPS: Up to 100Hz
Depth Range: 0.3 - 25 m (0.98 to 82 ft)
Depth FoV: 90° (H) x 60° (V) x 100° (D) max.
Technology: Stereo Depth Sensing

Motion:
Lens Type: 6-elements all-glass dual lens
Aperture: �/2.0
Field of View: 90° (H) x 60° (V) x 100° (D) max.

Image Sensors:

Sensor Resolution: Dual 4M pixels sensors with
large 2-micron pixels

Sensor Size: 1/3” backside illumination sensors
with high low-light sensitivity

Camera Controls: Adjust Resolution, Frame rate, Brightness,
Contrast, Saturation, Gamma, Sharpness,
Exposure and White Balance

Sensor Format: Native 16:9 format for a greater horizontal
field of view

Shutter Sync: Electronic Synchronized Rolling Shutter

Connectivity:

Connector: USB 3.0 port with 1.5 m integrated cable
Power: Power via USB 5 V / 380 mA
Mounting Options: 1/4”-20 UNC thread mount
Operating Temperature: 0 °C to +45 °C

Size and Weight:
Dimensions: 175 x 30 x 33 mm
Weight: 135 g

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 17

Chapter 2: Formula Student Driverless Competition

Table 2.5: Technical specifications of the Steering Actuator system.

Steering Actuator Technical Specifications
Rack lenght: 263 mm
Actuation required lenght: 45 mm
Actuation required speed from full left to full right: 45 mm/s
Reversibility: mandatory for regulations;

both human and electrically driven
Supply voltage: 12 V
Weight: 1.2 kg
Torque required at ball screw: 397 mNm
Gear Ratio (Pulley): 2
Selected Motor torque at 12 V: 261 mNm

Table 2.6: Technical specifications of the EBS.

EBS Technical Specifications
Required pressure Brake lines pressure: 40 bar
Required pressure for compressed air: 10 bar
Actuation time: 130 ms
Weight: 2.3 kg
Pressure Loss at each actuation: ∼ 2 bar

system that converts the air pressure contained in high pressure tanks (HPA) into

braking torque for the vehicle’s brake lines, thanks to pressure boosters, Figure 2.5a.

Electrical powerloss at EBS must lead to a direct emergency brake maneuver. (DV

3.1.3) This system is only able to either fully brake or release the mechanical brakes and

is used only in case of emergency. It can be triggered from either a Remote Emergency

System (RES) or from an on-board computer. The system reaction time (the time

between entering the triggered state and the start of the deceleration) must not exceed

200 ms.(DV 3.3.1) In Table 2.6 are reported the specifications of the Steering Actuator

mounted on SC 19 prototype.

In Figure 2.6, the position of the various components monted on the SC19 race car is

shown.

18 Eugenio Tramacere

Chapter 2: Formula Student Driverless Competition

(a) Details of EBS: Intensifiers and OR valves. (b) EBS behind the brake pedal of SC19 race car.

Figure 2.5: Emergency Brake system (EBS).

Figure 2.6: Hardware components position on SC 19 race car.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 19

Chapter 2: Formula Student Driverless Competition

20 Eugenio Tramacere

Chapter 3

Path Planning

Path planning is a merely geometric matter, because it is defined as the generation of

a geometric path, with no mention of any specified time law [16]. The definition of the

path planning problem is very straightforward: “find a collision-free motion between

an initial (Start) and a final configuration (Goal) within a specified environment”. The

simplest situation is when the path is to be planned in a static and known environment;

however, more generally, the path planning problem can be formulated for any robotic

system subject to kinematic constraints, in a dynamic and unknown environment.

Much work can be found in robotic literature, dealing with path planning. The first

definitions and algorithms date back to the 1970’s. Jean-Cloude Latombe published a

complete overview of the path planning techniques [28] in 1991. Then others overview

of many path planning techniques can be found in the classic book ”Principles of robot

motion: theory, algorithms, and implementation” [8] or in more recent book ”Motion

Planning” [22].

Some basic definitions are needed to introduce the path planning problem, namely:

1. The configuration space (C-space);

2. The space of free configurations (C-free);

3. the obstacles’ representation in the C-space (C-obs).

The configuration space is the space of all possible robot configurations, where a con-

figuration q is the specification of position and orientation of the robot A with respect

21

Chapter 3: Path Planning

to a fixed reference frame FW. Referring to Figure 3.1, the C-space of the robot A is

R3, since the configuration of A is specified by the origin of FA with respect to FW,

and by its orientation. The C-obs is given by the image of the obstacles in the C-space,

and the C-free is defined as (C-space - C-obs).

Figure 3.1: Mobile robot in a 2-dimensional space with obstacles.

3.1 State of Art

Path planning algorithms are usually divided in three categories, according to the

methodologies used to generate the geometric path, namely:

1. Roadmap techniques;

2. Cell decomposition algorithms;

3. Artificial potential methods;

4. Alternative approaches to path planning.

3.1.1 Roadmap techniques

The roadmap techniques are based upon the reduction of the N-dimensional configu-

ration space to a set of one-dimensional paths to search, possibly on a graph. In other

words, this approach maps the free space connectivity into a system of one-dimensional

22 Eugenio Tramacere

Chapter 3: Path Planning

curves (the roadmap) in the C-free space or in its closure [16]. The roadmap RM thus, is

a union of curves such that for all start and goal points in C-free that can be connected

by a path:

1. Accessibility : There is a path from qstart ∈ C-free to some q’ ∈ RM;

2. Departability : There is a path from some q” ∈ RM to qgoal ∈ C-free;

3. Connectivity : There exists a path in RM between q’ and q”;

4. One dimensional.

One Method related to this technique is the Visibility Graph. It is defined for polyg-

onal obstacles and every node correspond to the vertices of the obstacles. Nodes are

connected if they are already connected by an edge on an obstacle or the line seg-

ment joining them is in C-free space. This method guarantees always a path inside

the roadmap and above all this path is the shortest. The concept of visibility graph,

which represents a milestone in the literature related to path planning, was introduced

by Lozano-Pérez in 1979 [32]. In Figure 3.2, it is reported an example of the Visibility

Graph method. Another kind of roadmap algorithms are those based on Voronoi di-

Figure 3.2: Path planning using Visibility Graph method.

agrams. These are defined as a way of partitioning a plane with \ points into convex

polygon such that each polygon contains exactly one generating point and every point

in a given polygon is closer to its generating point than to any other.

This approach is dual to that based on the Visibility Graph method, because the

Voronoi diagrams enable to obtain a path lying at the maximum distance from the

obstacles, whereas the Visibility Graph, as can be seen in Figure 3.2, generates a path

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 23

Chapter 3: Path Planning

Figure 3.3: Path planning using Voronoi diagrams.

that passes as close as possible to the obstacle vertices. In Figure 3.3, some path gen-

erated by Voronoi diagrams are reported. The squares represent the obstacles while

the blue lines are the set of points equidistant from at least two obstacles. Examples

of path planning algorithms may be found in 1988 by Canny & Donald [7], in 1989 by

Takahashi & Schilling [40] and in 2011 by Garrido et. al. [15].

3.1.2 Cell decomposition methods

The idea of these methods is to find obstacles-free regions, and build a graph of adja-

cency for them. In general two categories of cell decomposition algorithms are existed;

1. The exact cell decomposition methods;

2. The approximation methods.

Exact cell decomposition

The trapezoidal decomposition method or vertical cell decomposition decomposes the

free space into trapezoidal and triangular cells. It draws parallel segments from each

polygon’s vertex in the workspace to the exterior boundary. The generated cells form

the nodes of the so-called connectivity graph. The adjacent nodes in the workspace

are linked to form the edges in the connectivity graph [1], [2]. The path in this graph

24 Eugenio Tramacere

Chapter 3: Path Planning

corresponds to sequence of striped free cells. When planning query is establish, the

(a) Trapezoidal cell decomposition with
vertical free cells graph.

(b) Graph of adjacency which correspoinding to path
between cells.

Figure 3.4: Trapezoidal cell decomposition method.

planner finds the start and goal cells, then it searches for a path between these two cells,

if a path is found the planner connect the start and goal locations through the free cells

on that path [3]. Again, the path planning problem is turned into a graph searching

problem, anc can therefore be solved using graph-searching techniques. Figure 3.4

illustrates the procedure described above, named Exact cell decomposition technique,

because the union of the cell represents exactly the free space [16].

Cell decomposition approximation

In some cases, an exact computation of the free-space is not possible or convenient.

The approximation methods infact were proposed due to high computation and geo-

metric calculation which are required by exact cell decomposition. The most forward

approximate cell decomposition method is voxel grid. It uses regular voxel grid or

pixel grid, as been reported in Figure 3.5a. It excludes the cells on bostacle areas and

builds a graph of adjacency for cells on free area. This method is efficient for low

dimensions space. However, it generates large number of cells. Another improvement

for approximate cell decomposition was by using quad-tree decomposition, Figure 3.5b.

This approach uses a recursive method. It recursively subdivides the cells until one of

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 25

Chapter 3: Path Planning

the following scenarios occurs:

1. Each cell lies completely either in a C-free space or in the C-obs region;

2. an arbitrary limit resolution is reached.

Once a cell fulfils one of these criteria, it stops decomposing. After decomposition

steps, the free path is found by following the adjacent free cells.

(a) Voxel approximation method. (b) Quad-tree approximation method.

Figure 3.5: Cell decomposition approximation method.

3.1.3 Artifical potential methods

These methods use artificial potential fields applied to the obstacles and goal positions

and use the resulting field to influence the path of the robot which is subject to this

potential [41]. Although not as thorough as the graph searching techniques, the speed

of the algorithms and the easy extension to higher dimensions make them an excellent

alternative to the graph searching techniques. The basic idea is to consider the robot

in the configuration space as a moving point subject to a potential field generated by

the goal configuration and the obstacles in the C-space. The target configuration (goal)

produces an attractive potential, while the obstacles generate a repulsive potential. The

sum of these two contributions is the total potential, which can be seen as an artificial

force applied to the robot, aimed at approaching the goal and avoiding the obstacles.

Thus, given any configuration during the robot motion, the next configuration can

26 Eugenio Tramacere

Chapter 3: Path Planning

be determined by the direction of the artificial force to which the robot is subjected.

The artificial potential method was originally conceived by Khatib in 1986 [24] and

further developed by Volpe in 1988 [25]. However, the major problem with these

potential field methods is that they are subject to local minima. Since the planner

tends toward lower potential areas, it can reach a state of equilibrium, or a potential

basin, and becomes trapped. Koditschek [27] presents a rigorous description of the

topological considerations of the potential fields, introducing potential functions, also

called navigation function, that have only one global minimum and no local minima.

Another approach to solve the path planning problem is found in 1991 by Barraquand

& Latombe [4], where a special kind of planners, named RPP (Random Path Planners),

is proposed: local minima are avoided by combining the concepts of artificial potential

field with random search techniques.

Figure 3.6: Path planning using Artifical potential method.

3.1.4 Alternative approaches to path planning

A possible alternative approach is given by the Probabilistic RoadMap Planners (PRM).

It is a technique which employs probabilistic algorithms, such as random sampling, to

build the roadmap. The basic idea is to consider a graph where the nodes are given by

a set of random configurations in the C-free. A local planner can then try to connect

these configurations by means of a path: if a path is found, a new node is added to the

graph. In this way the graph reflects the connectivity of the C-free. In order to find a

path between two configurations, these configurations are added to the graph, then a

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 27

Chapter 3: Path Planning

graph search is performed in order to find a feasible path.

There are some examples of path planners that take into account kinematic and dy-

namic constraints of the robot, in addition to the pure geometric problem of obstacle

avoidance [11], [13]. Kinodynamic and nonholonomic motion planning can be handled

by the Rapidly-exploring Random Tree (RRT) method [29]. This method allows to

search non-convex high-dimensional spaces by randomly building a space-filling tree.

3.2 Methodology

The method used in this project thesis is an on-line approach based on a modified RRT

algorithm for a non-holonomic car-like mobile robot. The RRT algorithm is based on

incremental construction of search tree that attempts to rapidly and uniformly explore

obstacle-free segment in configuration space. After search tree is successfully created,

a simple search among the branches of the tree can result in collision-free path between

any two points in robot’s environment. Due to differential constraints of non-holonomic

car-like mobile robot, the set of potential configurations that robot can reach from cer-

tain state is reduced. For that reason basic form of RRT algorithm is unusable for

path planning in case of non-holonomic robot and it needs to be modified. For this

reason, Dubins curves are selected for representative model of our car-like robot with

differential constraints. Difference between basic and modified RRT algorithm based

on Dubins curves is in the way how branches in search tree are formed. In basic RRT,

branches are made of straight lines, while modified algorithm uses Dubins curves to

satisfy differential constraints.

Hardware layout used for experimental tests

The Local path planner must work using the data generated by the LiDAR and Stereo

camera sensor as input. To do this, the hardware diagram shown in Figure 3.7 was cre-

ated and mounted in the car. A lithium-ion battery powers an NVIDIA� Jetson AGX

Xavier at which the perception sensors (LiDAR and Stereo camera) are connected.

The NVIDIA OS is the Ubuntu 18.4 and the ROS packages installed. ROS is the

28 Eugenio Tramacere

Chapter 3: Path Planning

1. LV battery
2. Fuse Box

2.a. DCDC
12 -19 V

6. NVIDIA
CPU + GPU

3. DCDC
Converter

4. Ethernet Switch

5. Lidar

7. ZED Camera

10. dSpace MicroAutobox

8. USB hub

9. HDD 2TB

Figure 3.7: Hardware setup onboard the racecar for data acquisition during experimental tests.

only software platform able to manage the signals in real time coming from different

sensors, emulate the robot (i.e our racecar), route TCP / IP connections, manage IP

networks, implement AI-based algorithms and create SLAM (Simulataneous Localiza-

tion and Mapping) for autonomous driving.

The dSpace� MicroAutobox will then be able to manage the data processed by

the NVIDIA� micro CPU and give them as input to the Path planning model built

on Simulink�. In the early phase of definition and construction of the Path planning

model, since the integration with the dSpace� Microautobox was not carried out and

since the steering actuator and the EBS Emergency Braking System had not yet been

installed in the racecar, it was decided to acquire the data generated by the LiDAR

and the Stereo camera sensor by driving the racecar in manual mode around different

scenarios that recreate the Acceleration and Trackdrive mission. In this way, through

the hardware setup shown in Figure 3.7, it is possible to save the data generated by

the perception sensors in an external Hard Disk (component 9 in Figure 3.7). In this

way, the effectiveness, efficiency, robustness and working conditions of the model are

tested considering data congruent with the future mission the racecar has to accom-

plish. The data thus generated by the LiDAR and stereocamera sensor were saved in

an external Hard Disk (HD) for the entire duration of the acquisition. These data,

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 29

Chapter 3: Path Planning

(a) View of the front of the racecar with some
components in sight.

(b) View of the rear of the racecar with some compo-
nents in sight.

Figure 3.8: Positioning in the racecar of some components of the Hardware setup shown in Figure
3.7.

extracted from the HD, are then post processed by simulating the real racecar working

condition in which, for example, the data coming from the LiDAR sensor are processed

by the Local path planner in the Path planning model thus generating the trajectory

the vehicle must follow for the Acceleration mission.

Figure 3.7 shows the Hardware Layout that allows to save the data from the LiDAR

and Stereo camera sensor to an external hard disk (HHD 2TB component 9). Figure

3.8a and Figure 3.8b show the installation and positioning of the components in the

racecar.

Methodology Framework

The next sections will be divided into two parts in order to better understand the

methodology that led to the definition of the Local Path planner. The two parts also

follow chronologically the steps that have been taken to achieve the thesis project

objectives. These steps are:

1. Automatic goal generation for each frame;

2. Generation of the modified RRT algorithm with Dubins curves.

Secondly it is explained the structure of the SIMULINK� model and a detailed de-

scription of the controller and vehicle model coupled with the Local Path planner.

30 Eugenio Tramacere

Chapter 3: Path Planning

3.2.1 Automatic generation of the goal

In order to obtain a feasible trajectory between initial and final configuration for non-

holonomic car-robot using modified RRT algorithm, it needs to define the goal or the

final configuration so as to be able to generate the Dubins curves.

As already mentioned in Paragraph 2.1, it has been considered the Acceleration mission

as Problem Statement. During the mission, the vehicle has to go straight for 75 m as

fast as possible, Figure 2.2. Therefore there is no need to use the ZED� stereo camera

sensor to define the colors of the cones since those on the left side of the track will

always have blue color as well as the yellow ones will always be on the right side. For

this reason, it was decided to use only the data coming from the Velodyne� VLP-16

LiDAR sensor with a frequency of acquisition of 10 Hz in order to define the boundary

of the Acceleration mission track layout.

Thus, every 0.1 s the Path Planner receives the cartesian coordinates of the cones on

a 2-D map referenced with respect to the position of the car. To eliminate the noise

coming from the LiDAR sensor, a filtering action is carried out before these data enter

as input in the Path Planner block. The filtering action is composed by three condition:

1. Take only points that have positive abscissa;

2. Take points that have maximum distance with respect to the vehicle position

within 20 m along the x axis;

3. Take points that have maximum distance with respect to the vehicle position

within the interval of -5 m and 5 m along the y axis.

In Figure 3.9 it is reported the points sensed by the LiDAR sensor on a 2-D map for

one single frame. Red points represent the filtering process, in other words, the points

that satisfy the three conditions written above. After the extrapolation step above,

four dummy points are added. These points are:

1. Two points on the side of the vehicle with cartesian coordinates

S (0,1.51), (0.1,-1.51);

2. Two points on the side of the vehicle but positioned in front of it with cartesian

coordinates S (2,2.1), S (2.05, -2).

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 31

Chapter 3: Path Planning

Figure 3.9: Filtering phase of the relevant points.

In Figure 3.10 the addition of the four points defined above is reported. Extrapolating

Figure 3.10: Addition of fictitious points to the frame.

points of about 2000 frames in various track layout such as straight segments, left or

right curves, it was found necessary to add further fictitious points since the number of

points extrapolated according to the above criteria are in 50% of cases insufficient to

characterize the layout of the track and build the Delaunay Triangulation, which will

be the next step for the automatic generation of the goal.

32 Eugenio Tramacere

Chapter 3: Path Planning

Delaunay Triangulation

Since the vehicle drives between the cones, these can be used to discretize the space

within which the car moves. Thus, the X-Y space is discretized by performing a

Delaunay Triangulation [10].

In computational geometry, a Delaunay Triangulation for a given set P of discrete

points in a plane is a triangulation DT(P) such that no points in P is inside the

circumcircle of any triangle in DT(P). In this way, the vertices of the triangulation

are the cone observations and the triangles are chosen such that the minimum internal

angle of each triangle is maximized. For four or more points on the same circle (e.g.,

the vertices of a rectangle) the Delaunay triangulation is not unique: each of the

two possible triangulations that split the quadrangle into two triangles satisfies the

”Delaunay condition”, i.e., the requirement that the circumcircles of all triangles have

empty interiors. This is the reason why the cartesian coordinates of the fictitious points

defined in Paragraph 3.2.1 are asymmetrical respect to the x axis so as to obtain a

unique Delaunay Triangulation.

Basically for the generation of the Delaunay Triangulation is used aniterative search

technique. Since one and only one circumference passes through three non-aligned

points, for each random triplet of points taken from the array of points that make up

the frame, formed by the filtered points coming from the LiDAR sensor and by the

four fictitious points added previously, it is calculated the circumference passing by

these three points. if the created circle does not circumscribe any point belonging to

the frame, then the triplet of points is saved. This triplet of points in fact defines the

vertices of the triangle that will make up the Delaunay Triangulation. The iterative

process is repeated until all possible combinations of points are investigated.

The Procedure of the Delaunay Triangulation algorithm (1) is presented below; to do

so, it has been used the MATLAB� software. The output obtained from this algorithm

is the so called Connectivity List matrix. It is a matrix of size mtri -by-nv, where mtri is

the number of triangles and nv is the number of vertices. Each row specifies a triangle

defined by vertex IDs - the row numbers of the Points matrix, size p-by-2, where p is

the number of points in a frame and 2 represents the x y cartesian coordinates.

In Figure 3.11 it is represented the Delaunay Triangulation construction and the vertex

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 33

Chapter 3: Path Planning

Algorithm 1 Delaunay Triangulation algorithm

1: procedure DT construction(xcoord, ycoord)
2: for i← 1, size(xcoord) do
3: for j ← 1, size(xcoord) do
4: for k ← 1, size(xcoord) do
5: if (i 6= j)AND (i 6= k)AND (j 6= k) then
6: points = [ycoord(i), xcoord(i); ycoord(j), xcoord(j); ycoord(k), xcoord(k)];
7: [R, xcyc] = circumference(points);
8: xcheck[i, j, k] = [];
9: ycheck[i, j, k] = [];

10: xp = xcyc(1) +R ∗ sin(t);
11: xp = xcyc(2) +R ∗ cos(t);
12: in = inpolygon(ycheck, xcheck, xp, yp);
13: if (sum(in) == 0) then
14: CList = [i, j, k];
15: end if
16: end if
17: end for
18: end for
19: end for
20: end procedure

IDs. Table 3.1 represesents the above written Connecitivity List matrix, where rows

represents the number of triangles while columns correspond to the vertecies of the

triangles. The generation of the Delaunay Triangulation aims to discretize the X-

Y space and find the midpoints between the cones in order to generate a trajectory

that has as initial configuration the point where the racecar is located and as final

configuration the Goal.

After having generated the Delaunay triangulation, the automatic generation of the

Goal for each frame takes place in 3 steps:

1. PotPoints : Definition of potential points;

2. PotGoals : Definition of potenital goals;

3. finalGoal : Definition of the final Goal;

Potential Points - PotPoints

Every 0.1 s the path planner will receive, as input from the Lidar sensor, the data

containing the Cartesian coordinates of the perceived cones. Therefore, every 0.1 s the

34 Eugenio Tramacere

Chapter 3: Path Planning

Table 3.1: Connecitivity List matrix of the Delaunay Triangulation shown in Figure 3.11.

Connectivity List Matrix

1 3 4
1 3 8
1 6 8
2 3 4
2 3 7
2 5 7
3 7 8
5 6 7
6 7 8

2

4

3

1

7

8

5

6

Triangle 1

Triangle 2
Triangle 3

Triangle 4Triangle 5
Triangle 6

Triangle 7

Triangle 8
Triangle 9

Figure 3.11: Delaunay Triangulation construction. Vertex IDs and triangles are reported.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 35

Chapter 3: Path Planning

trajectory planning algorithm must be able to automatically calculate the goal in order

to define a trajectory for each frame. To do so, the first step is to calculate the mid-

points of the edges of the triangles after the Delaunay triangulation (DT) construction

is performed.

Looking at the triangles generated after the DT, see Figure 3.11, it is clear that it is

not necessary to calculate the midpoints of all the edges of the triangles but rather

to concentrate the attention on the edges that can potentially be found between the

carriageway defined by the cones, so as to calculate the midpoints of our interest. With

reference to the Table 3.1, two equal values (vertex IDs) belonging to different rows

(Triangles) of the Connectivity List matrix means two triangles are adjacent and so

they share the same edge. Our aim is to generate a trajectory in the middle of the

carriageway defined by the cones and so the probability of calculating midpoints of

edges adjacent to two triangles with blue and yellow cones as extremes is very high.

For this reason, in this phase each row of the Connectivity List matrix is analyzed in

order to extrapolate which elements are common to each row by comparing them. The

common elements are thus saved in a matrix A which will have as rows the number of

edges of two adjacent triangles and as columns the vertex IDs that define the extremes

of these edges. Referring to the Figure 3.1, the matrix A reported in Table 3.2 is

found. A second filtering operation is performed on this matrix in order to eliminate

the rows that have two equal elements, meaning only one vertex is in common between

two triangles. Then the vertex IDs coming from the reworked A matrix, are used to

extrapolate, from the frame, the segments from which we want to calculate the mid-

points. These are then collected in the so called PotPoints array. Below it is reported

the procedure to genenerate this array, Algorithm 2 and in Figure 3.12, the PotPoints

are graphically reported.

36 Eugenio Tramacere

Chapter 3: Path Planning

Table 3.2: A matrix from potential points Procedure.

A matrix

1 3
1 1
3 4
3 3
1 8
3 3
3 8
8 8
.. ..

Algorithm 2 Potential Points calculation

1: procedure potpoints(CList, obs)
2: dim = size(CList, 1);
3: for i← 1, (dim− 1) do
4: for j ← 1, (dim− 1) do
5: if isempty(intersect(CList(i, :), CList(j + 1, :))) == 1 then
6: A = zeros(1, 2);
7: else
8: if size((intersect(CList(i, :), CList(j + 1, :))), 2) == 1 then
9: A = [(intersect(CList(i, :), CList(j+ 1, :))), (intersect(CList(i, :

), CList(j + 1, :)))];
10: elseA = intersect(CList(i, :), CList(j + 1, :));
11: end if
12: end if
13: end for
14: PotPoints = [(obs(A(i, 1), 1) + obs(A(i, 2), 1))/2, (obs(A(i, 1), 2) +

obs(A(i, 2), 2))/2];
15: end for
16: end procedure

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 37

Chapter 3: Path Planning

PotPoints

Figure 3.12: Calculation of Potential Points (PotPoints).

Potential Goals - PotGoals

In this second step, from the array that composes the PotPoints, those midpoints that

lie in the middle of the carriageway, located between a yellow and a blue cone are ex-

trapolated. Considering that the data coming from the LiDAR sensor provide only the

position of the cones with Cartesian coordinates with respect to the relative position of

the vehicle, and not the information related to the color of the cones, it is necessary to

find an alternative method to select the midpoints useful for the definition of the goal

and eliminate those that are on the side of the carriageway and therefore not useful for

our purpose.

To extrapolate the midpoints in the middle of the carriageway, the distance along the

y-axis between the initial configuration of the vehicle, which for each frame corresponds

to the origin = [x, y] = [0, 0], and all the midpoints found before is calculated. Then

this distance along the y-axis is set lower than a determined value, called rd v potGoal

in order to select the midpoints in the middle of the carriageway defined by the cones

and discharge those on the side of track.

Comparing numerous frames, it was noted that the rd v potGoal value must vary ac-

cording to the structure of the frame, therefore depending on whether the LiDAR

sensor senses a straight or a curve. This is done in order to minimize the error of

38 Eugenio Tramacere

Chapter 3: Path Planning

selecting midpoints which are on the side of the circuit. Therefore a code has been

implemented that allows to calculate the area of a rectangle that has as height the

maximum and minimum of the ordinate of the point comparing all the obstacles be-

longing to the specific frame and lenght equal to 1 m. In order to set the proper value

for the rd v potGoal variable, it has calculated the rectangular area for each frame and

on the base of the average value of the rectagular area over about 2300 frames, it has

choosen the proper value for rd v potGoal, Figure 3.13.

With reference to the average rectangular area value found before and to the rules

Figure 3.13: Rectangular area value for about 2300 frame. Average rectangular area value about
4.6 m2.

concerning the Acceleration mission track layout in Paragraph 2.1, it has set the If

cycle considering a reference rect area value of 4.6 m2. Analyzing each frame at a

time, if the calculated rectangular area resulting from it, is less than 4.6 m2, the frame

perceived by the Lidar sensor is a straight and therefore the rd v potGoal value is set

to 1.2 m, otherwise if the area is greater than 4.6 m2, the frame defines a probable

curve and therefore this distance rd v potGoal is set at 1.4 m. PotPoints that have a

distance along the y-axis from the vehicle position (origin = [0, 0]) that is less than

the rd v potGoal value defined with the method above are collected in an array called

PotGoals.

In some rare cases, it may happen that the PotGoals array is empty. This happens

because each potential point has a relative distance in the y direction from the racecar

position greater than the limit defined by rd v potGoal value. In this case the strategy

implemented is different. Firstly it is calculated the maximum and minimum abscissa

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 39

Chapter 3: Path Planning

from the Cartesian coordinates of the obstacles that define the specific frame. Subse-

quently, the average abscissa is calculated starting from the two previously calculated

values and on the basis of this midpoint (h Dx), the PotPoints which have their ab-

scissa far from h Dx within 1 m are searched. Thus, at least one potential goal is

defined without the algorithm going into error. The Figure 3.14 shows the particular

case in question. In Figure 3.15 are represented the potential goals calculated with

Figure 3.14: Particular condition (Frame n° 509) in which PotPoints have a relative distance in y
direction respect to the vehicle position higher than the rd v potGoal value.

the method explained above. Algorithm 3 depicts the PotGoals procedure.

40 Eugenio Tramacere

Chapter 3: Path Planning

PotPoints

PotGoals

Figure 3.15: Calculation of Potential Goals (PotGoals).

Algorithm 3 Potential Goals calculation

1: procedure potgoals(CList, PotPoints, origin, rD v potGoal, obs)
2: for i← 1, size(PotPoints, 1) do
3: if abs(origin(2)− PotPoints(i, 2)) < rD v potGoal then
4: PotGoals = PotPoints(i, :);
5: end if
6: end for
7: if size(PotGoals) == 0 then
8: xmax = max(obs(:, 1));
9: xmin = min(obs(:, 1));

10: h Dx = (xmax − xmin)/2;
11: for i← 1, size(PotPoints, 1) do
12: if abs(h Dx− PotPoints(i, 1)) < 1 then
13: PotGoals = PotPoints(i, :);
14: end if
15: end for
16: end if
17: end procedure

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 41

Chapter 3: Path Planning

Final Goal - finalGoal

After calculating the Potgoals array, we are able to extrapolate from these what will

define the final configuration for the calculation of the trajectory for the specific frame.

Since the mission in question is the Acceleration one, it is necessary to define a goal

that is at a distance ahead of the vehicle such that the updated position of the vehicle

never exceeds that one of the goal. The Path Planner block updates the goal with a

frequency of 10 Hz, the frequency with which the LiDAR sensor sends the Cartesian

coordinates of the perceived obstacles to the block. For example, reaching a target

speed of 70 km/h in this mission, means the vehicle, every 0.1 s, will travel about 2 m.

To be conservative and to avoid the condition in which the goal calculated is already

overtaken by the racecar, a code that allows to define a goal always 20 m forward of

the vehicle position has been implemented.

As first step, from the PotGoals array it is extrapolated the potential goal at further

euclidean distance from the position of the racecar, which for each frame corresponds

to the origin = [0, 0]. Then the finalGoal will be this potential goal setting the abscissa

coordinate at 20 m ahaead respect to the x-position of the racecar. The Algorithm 4

represents the procedure for calculating the final vehicle configuration for each frame.

In Figure 3.16 the last step for the automatic goal generation is shown.

Algorithm 4 Final Goal calculation

1: procedure finalgoal(PotGoals, origin)
2: for i← 1, size(PotGoals, 1) do
3: d origin potgoals = ((origin(1, 1) − PotGoals(i, 1))2 + (origin(1, 2) −
PotGoals(i, 2))2);

4: end for
5: [maxdistance, IDPotGoal] = max(d origin potgoals)
6: Goal = PotGoals(IDpotGoal, :);
7: finalGoal = [(Goal(:, 1) + (20−Goal(:, 1))), Goal(:, 2)]
8: end procedure

Whenever the circuit layout perceived by the LiDAR sensor is a straight path, the

Algorithm defined as written above generates always a finalGoal in the middle of the

track width, 20 m far in front of the vehicle position. Analying more than 3000 frames,

it can be said that the finalgoal is never positioned on the side of the circuit and is

always consistent with the future generation of the trajectory the vehicle will follow.

42 Eugenio Tramacere

Chapter 3: Path Planning

PotPoints

PotGoals

finalGoal

Figure 3.16: Calculation of the final configuration for racecar path computation (finalGoal).

Below it is reported a summary diagram of the procedure for the automatic goal gen-

eration.

Take one frame (obstacle array.Frame{k,1})

Addition of two points(*) sideways the vehicle (0,1.5) & (0,-1.5)

and two points (**) in front of the vehicle (2,1.5) & (2,-1.5)

(obstacle array.Frame2{k,1})

Construction of Delaunay Triangulation

Find adjacent edges between two triangles

Calculate midpoints of selected edges (PotPoints)

Selection of potential points (PotGoals)

Extrapolation of final goal (finalGoal)

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 43

Chapter 3: Path Planning

3.2.2 Generation of the modified RRT algorithm with Dubins

curves

Most of the wheeled mobile robots don’t have differential drive system, which means

they can’t rotate in one place. Car-like robots have wheels that are required to roll in

the direction they are pointing, and they are not designed to slide sideways. Therefore,

this implies velocity constraints on rolling vehicles, called differential constraints, and

those mobile robots usually have less action variables then degrees of freedom. This

kind of robots is called non-holonomic, or underactuated. The model of a Simple car

is one of the examples of non-holonomic mobile robot with differential constraints

[30], Figure 3.17. The car can be imagined as a rigid body that moves in the plane.

Figure 3.17: Simple car model.

Therefore, its C-space is C = C2 × S1. A configuration is denoted by q = (x, y, θ).

The body frame of the car places the origin at the center of rear axle, and the x-axis

points along the main axis of the car. Let s denote the speed of the car and φ the

steering angle. The distance between the front and rear axles is represented as L. If

the steering angle is fixed at φ, the car travels in a circular motion, in which the radius

of the circle is ρ.

44 Eugenio Tramacere

Chapter 3: Path Planning

Dubins Car

If the speed of the Simple car model is restricted to have only positive values, which

means that the robot can move only forward, the model of Dubins car is obtained

[42]. Using the notation in Figure 3.17, the vehicle motion can be described using time

derivative of configuration vector q as a set of equations in the following form [30]:

ẋ = f1 (x, y, θ, s, φ)

ẏ = f2 (x, y, θ, s, φ)

θ̇ = f2 (x, y, θ, s, φ)

(3.1)

Exploiting the speed of the car s and geometry from Figure 3.17, equations for x and

y are obtaind as ẋ = s cos θ and ẏ = s sin θ. Using the steering angle φ, speed of the

vehicle s and distance between front and rear axles L, equation for angular velocity of

the θ is produced as θ̇ = s
L

tanφ.

Since the speed s and the steering angle φ are only two variables that can be controlled,

the control variables are defined using two dimensional vector as follows:

u = (us, uφ) (3.2)

Using notation given in (3.2), the equation of the robot motion in configuration space

is obtained as follows:

ẋ = us cos θ

ẏ = us sin θ

θ̇ =
us
L

tanuφ

(3.3)

where (3.3) describes a mathematical model of the Simple car ’s motion. In order

to complete this model it is needed to specify allowed ranges for control variables.

Considering steering angle φ, under assumption that the vehicle can’t rotate in one

place, it is obvious that maximum steering angle should satisfy the following constraint:

φmax <
π

2
(3.4)

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 45

Chapter 3: Path Planning

Therefore it is required that the steering angle takes value according to:

|φ| ≤ φmax (3.5)

Further, as already said, there is the assumption that the vehicle can move only forward,

which is constraint made by Dubins car model. Therefore, the speed should take any

positive value, us ∈ R. To simplify this case for the purpose of the algorithm, velocity

will be considered as constant with possible values as following:

us ∈ {0, 1} (3.6)

when us has zero value, it means the car is not moving, while value one denotes moving

forward with a constant speed. The equation given in (3.3) along with constraints in

(3.4), (3.5) and (3.6) represents the mathematical model of Dubins car. Whole proce-

dure obtaining this model is given in [30].

Dubins curves

Due to differential constraints presented before, the basic form of RRT algorithm for

path planning is unusable. The main reason is because Dubins car is unable to rotate

in one place, so it’s not possible to reach all configurations from specific state. One

of the solutions to modify algorithm to meet those constraints is using Dubins curve

when building search tree. It means that every branch in this case represents Dubins

curve instead of straight line. Considering the model of Dubins car, the vehicle moves

with a constant forward speed, us = 1, and has maximum steering angle φmax, which

results in a minimum turning radius ρmin. As the car travels, the path descibed by

the vehicle is considered tracking a reference point located on the center of the rear

axle. Assuming that the car travels from initial qI to final point qF , the main task is

to minimize the length of the curve between those two points. In order to have circular

trajectory, considering that the ρmin < 0, the following cost function is exploited:

L (q̃, ũ) =

∫ tF

0

√
ẋ (t)2 + ẏ (t)2 dt (3.7)

46 Eugenio Tramacere

Chapter 3: Path Planning

Table 3.3: The three motion primitives from which all optimal curves for the Dubins car can be
constructed.

Symbol Steering: u
S 0
L 1
R -1

in which tF is the time in which qG is reached. If qG is not reached, then it is assumed

that L (q̃, ũ) =∞. Since the speed is constant the system can be semplified to

ẋ = cos θ

ẏ = sin θ

θ̇ = u

(3.8)

in which u is chosen from the interval U = [− tanφmax, tanφmax]. This implies that

(3.7) reduces to optimizing the time tF to reach qG because the integrand reduces to

1. For simplicity, assume that tanφ = 1.

It was shown in [12] that between any two configurations, the shortest path for the

Dubins Car can always be expressed as a combination of no more than three primitives.

Each motion primitive applies a constant action over an interval of time. Furthermore,

the only actions that are needed to traverse the shortest paths are u ∈ {−1, 0, 1}. The

primitives and their associated symbols are shown in Table 3.3. The S primitive drives

the car straight ahead (straight line of motion S). The L and R primitives turn as

sharply as possible to the left and right, respectively (both along a circle C of radius

ρmin). Using these symbols, each possible kind of shortest path can be designated

as a sequence of three symbols that corresponds to the order in which the primitives

are applied. Let such a sequence be called a word [30].There is no need to have two

consecutive primitives of the same kind because they can be merged into one. Under

this observation, ten possible words of length three are possible. Dubins showed that

only these six words are possibly optimal:

{LRL,RLR,LSL,LSR,RSL,RSR} (3.9)

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 47

Chapter 3: Path Planning

The shortest path between any two configurations can always be characterized by one

of these words. These are called the Dubins curves, Figure 3.18. Furthermore, Dubins’

Figure 3.18: The trajectories for two words are shown in W = R2.

theorem states that in order to be a candidate for the optimal path, each arc must be

of the minimal allowed radius ρ.

To use Dubins’s result for the shortest path calculation, one would need to explicitly

calculate the lengths of all arcs and straight line segments in the Dubins set, and then

choose the shortest of the computed paths. The time necessary for this calculation

may become a bottleneck in time-constrained applications, as e.g. in real-time robot

motion planning, but fortunately it is not an issue for our application.

So, the three corresponding operators Lυ (for left turn), Rυ (for right turn), Sυ (for

straight), transform an arbirary point (x, y, φ) ∈ R3 into its corresponding image point

in R3,

Lυ (x, y, φ) = (x+ sin (φ+ υ)− sinφ, y − cos(φ+ υ) + cosφ, φ+ υ)

Rυ (x, y, φ) = (x− sin (φ− υ) + sinφ, y + cos(φ− υ)− cosφ, φ− υ)

Sυ (x, y, φ) = (x+ υ cosφ, y + υ sinφ, φ)

(3.10)

where index υ indicates that the motion has been along the (C or S) segment of

lenght υ. With these elementary transformations, any path in in the Dubins set D =

{LRL,RLR,LSL,LSR,RSL,RSR} can be expressed in terms of the corresponding

equations. In the coordinate system chosen, the initial configuration of each path is at

(0, 0, α) and the final configuration at (d, 0, β), as reported in Figure 3.19. For example,

a path made of segments L, R and L, of the lenghts t, p, q, respectively, which starts at

48 Eugenio Tramacere

Chapter 3: Path Planning

Figure 3.19: The coordinate system, the initial configuration (Pi, α) and the final configuration
(Pf , β). Possible orientation angles are divided into four quadrants.

point (0, 0, α), must end at Lq (Rp (Lt (0, 0, α))) = (d, 0, β). The lenght L of the path

can be defined as the sum of lenght t, p and q of its constituent segments,

L = t + p + q (3.11)

An explicit computation of all candidates for the shortest path will follow below. To

this end, elements of D will be considered one-by-one and the operator equations for

the lenghts of each path derived.

1. Lq (Sp (Lt (0, 0, α))) = (d, 0, β). By appling the corresponding operators (3.10),

this first path in D can be represented by a system of three scalar equations:

p cos(α + t)− sinα + sin β = d

p sin(α + t) + cosα− cos β = 0

α + t + q = β {mod2π}

(3.12)

The solution of this system with respect to the segments t, p and q is found as

tlsl = −α + arctan
cos β − cosα

d + sinα− sin β
{mod2π}

plsl =
√

2 + d2 − 2 cos(α− β) + 2d(sinα− sin β)

qlsl = β − arctan
cos β − cosα

d + sinα− sin β
{mod2π}

(3.13)

Using definition (3.11), the lenght of the path LSL as a function of the boundary

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 49

Chapter 3: Path Planning

conditions can be now written as

Llsl = tlsl + plsl + qlsl = −α + β + plsl (3.14)

2. Rq (Sp (Rt (0, 0, α))) = (d, 0, β). Using 3.10, we obtain the corresponding scalar

equations:

p cos(α− t) + sinα− sin β = d

p sin(α− t)− cosα + cos β = 0

α− t− q = β {mod2π}

(3.15)

The solution of this system, i.e. the lenghts of the corresponding segments, is

trsr = α− arctan
cosα− cos β

d− sinα + sin β
{mod2π}

prsr =
√

2 + d2 − 2 cos(α− β) + 2d(sin β − sinα)

qrsr = −β(mod2π) + arctan
cosα− cos β

d− sinα + sin β
{mod2π}

(3.16)

and the path lenght is given by

Lrsr = trsr + prsr + qrsr = α− β + prsr (3.17)

3. Rq (Sp (Lt (0, 0, α))) = (d, 0, β). Using (3.10), we obtain the corresponding scalar

equations:

p cos(α + t) + 2 sin(α + t)− sinα− sin β = d

p sin(α + t)− 2 cos(α + t) + cosα + cos β = 0

α + t− q = β {mod2π}

(3.18)

The solution of this system is

tlsr =

(
−α + arctan

(
− cosα− cos β

d + sinα + sin β

)
− arctan

(
−2

plsr

))
{mod2π}

plsr =
√
−2 + d2 + 2 cos(α− β) + 2d(sinα + sin β)

qlsr = −β(mod2π) + arctan

(
− cosα− cos β

d + sinα + sin β

)
− arctan

(
−2

plsr

)
{mod2π}

(3.19)

50 Eugenio Tramacere

Chapter 3: Path Planning

and the path lenght is given by

Llsr = tlsr + plsr + qlsr = α− β + 2tlsr + plsr (3.20)

4. Lq (Sp (Rt (0, 0, α))) = (d, 0, β). Using (3.10) we obtain the corresponding scalar

equations:

p cos(α− t)− 2 sin(α− t) + sinα + sin β = d

p sin(α− t) + 2 cos(α− t)− cosα− cos β = 0

α− t + q = β {mod2π}

(3.21)

The corresponding solution is

trsl = α− arctan

(
cosα + cos β

d− sinα− sin β

)
+ arctan

(
2

prsl

)
{mod2π}

prsl =
√

d2 − 2 + 2 cos(α− β)− 2d(sinα + sin β)

qrsl = β(mod2π)− arctan

(
cosα + cos β

d− sinα− sin β

)
− arctan

(
2

prsl

)
{mod2π}

(3.22)

and the path lenght is given by

Lrsl = trsl + prsl + qrsl = −α + β + 2trsl + prsl (3.23)

5. Rq (Lp (Rt (0, 0, α))) = (d, 0, β). Using (3.10) we obtain the corresponding scalar

equations:

2 sin (α− t + p)− 2 sin (α− t) = d− sinα + sin β

−2 cos (α− t + p) + 2 cos (α− t) = cosα− cos β

α− t + p− q = β {mod2π}

(3.24)

The corresponding solution is

trlr = α− arctan

(
cosα− cos β

d− sinα + sin β

)
+

prlr
2
{mod2π}

prlr = arccos
1

8

(
6− d2 + 2 cos (α− β) + 2d (sinα− sin β)

)
qrlr = α− β − trlr + prlr {mod2π}

(3.25)

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 51

Chapter 3: Path Planning

and the path lenght is obtained by substituting (3.25) into (3.11)

Lrlr = trlr + prlr + qrlr = α− β + 2prlr (3.26)

6. Lq (Rp (Lt (0, 0, α))) = (d, 0, β). Using (3.10) we obtain the corresponding scalar

equations:

−2 sin (α + t− p) + 2 sin (α + t) = d + sinα− sin β

2 cos (α + t− p)− 2 cos (α + t) = − cosα + cos β

α + t− p + q = β {mod2π}

(3.27)

The corresponding solution is

tlrl =

(
−α + arctan

(
− cosα + cosα

d + sinα− sin β

)
+

plrl
2

)
{mod2π}

plrl = arccos
1

8

(
6− d2 + 2 cos (α− β) + 2d (sinα− sin β)

)
{mod2π}

qlrl = β (mod2π)− α + 2plrl {mod2π}

(3.28)

and the path lenght is given by

Llrl = tlrl + plrl + qlrl = −α + β + 2plrl (3.29)

Dubins curves generation Procedure

Before starting with the description of the various steps that lead to the creation of

the Dubins curves, the parameters suitable for the initialization of the algorithm are

defined. Every 0.1 s, the Local Path planner calculates the Dubins curves with initial

configuration qI the origin = (0, 0, 0) and final configuration qG, the finalGoal defined

in 3.2.1. Considering the layout of the Acceleration mission in question, the Map

within which the random points are calculated has the following values, Table 3.4: A

map with a width of 6 m and a length of 25 m was chosen in order to obtain paths

that have lengths of at least 25 m with minimal oscillations along the y direction,

since theoretically the vehicle has to cover only a straight in the shortest possible

52 Eugenio Tramacere

Chapter 3: Path Planning

Table 3.4: Map sizes paramenters in order to define the space within which the random vertices of
the Dubins curves are calculated.

Map Size Value
map.height 6
map.width 25
map.center [map.width/2,0]
map.offset [0,-3]

Table 3.5: Dubins curves parameters for paths genertion.

Dubins parameters Value
iteration 200
th range 10*pi/180
th center 0
th offset -5*pi/180

turning rad pi
expansion 0

time. Moreover, the length of the future paths created in the x direction helps to

avoid entering the error condition in which the vehicle has already passed the finalGoal

position.

Given the speeds involved, a number of iterations has been defined for the calculation

of the random vertices of the Dubins curves as a trade-off between the computation

speed of the path in a very short period of time (0.1 s) and the effectiveness with

which we generate a path consistent with the layout of the specific mission. Other

parameters, Table 3.5, in order to generate the Dubins curves, were decided on the

basis of the vehicle’s steering specifications such as the minimum turning radius. First

of all, the random points lying inside the map are calculated, whose parameters have

been defined in the Table 3.4. Subsequently, it is verified that these points are located

at a distance with respect to the Cartesian coordinates of the obstacles perceived by the

LiDAR sensor greater than a safety value, called in this case inflation rad, Algorithm

5. This will allow to obtain paths that will have vertexes that certainly do not collide

with obstacles. After verifying that the Cartesian coordinates of the random point do

not collide with the obstacles, the calculation of the Dubins curve begins, Algorithm

6. The curve has as extremes the origin = [0, 0, 0] and the random point calculated

above and radius of curvature for the circle paths ρ equal to the turning rad value

defined in the Table 3.5. In Algorithm 6, the parameters t, p and q for each curve

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 53

Chapter 3: Path Planning

Algorithm 5 Check available x y random point

1: procedure check available xy(pointrand, origin, obs, inflation rad)
2: for i← 1, size(obs, 1) do
3: for j ← 1, size(pointrand, 1) do
4: if (sqrt(((pointrand(j, 1) − obs(i, 1))2) + ((pointrand(j, 2) −
obs(i, 2))2))) <= inflation rad then

5: check available xy = 0;
6: return
7: end if
8: end for
9: end for

10: check available xy = 1;
11: end procedure

belonging to the Dubins set D are calculated according to the formulation previously

defined in Paragraph 3.2.2. The sum of these three parameters for each of the 6 words

is calculated. The word with the lowest sum of the three parameters is chosen as the

best curve and therefore the resulting parameters saved. The length of the curve is

then subsequently calculated, Algorithm 7. Remember that param is a structure with

5 fields:

1. p init : initial 3D pose, starting from point origin = [0, 0, 0];

2. seg param: t, p and q paramenters of the Dubins curve that has the best cost

between the 6 words and extremes the origin and the nth random point;

3. r : radius ρ of the circle section of the word that composed the Dubins curve;

4. type: six types of curves, LSL = 1, LSR = 2, RSL = 3 RSR = 4, RLR =

5, LRL = 6;

5. flag : flag = 0 means to continue the calculations, flag = 1 means to stop.

Once the Dubins curve has been calculated, it must be checked that it does not col-

lide with the obstacles sensed by the Lidar Sensor, Algorithm 8. An array called

ind nearest tree is created in which the newly generated point is appended; it will con-

tains the nth nearest vertex respect to the (n+1)th one. Then it is also created an array

called edges.param p-by-8 where the columns define:

54 Eugenio Tramacere

Chapter 3: Path Planning

Algorithm 6 Dubins curve calculation

1: procedure param(vertecies(1, :), rand, rad)
2: param.p init = p1;
3: param.segparam = [0, 0, 0];
4: param.r = r;
5: param.type = −1;
6: param.flag = 0;
7: dx = p2(1)− p1(1);
8: dy = p2(2)− p1(2);
9: D = sqrt(dx2 + dy2);

10: d = D/r;
11: theta = mod(atan2(dy, dx), 2 ∗ π);
12: alpha = mod((p1(3)− theta), 2 ∗ π);
13: beta = mod((p2(3)− theta), 2 ∗ π);
14: test param(1, :) = dubins LSL(alpha, beta, d);
15: test param(2, :) = dubins LSR(alpha, beta, d);
16: test param(3, :) = dubins RSL(alpha, beta, d);
17: test param(4, :) = dubins RSR(alpha, beta, d);
18: test param(5, :) = dubins RLR(alpha, beta, d);
19: test param(6, :) = dubins LRL(alpha, beta, d);
20: for i← 1, 6 do
21: if (test param(i, 1)) ∼= −1 then
22: cost = sum(test param(i, :));
23: if then(cost < best cost)||(best cost == −1)
24: best word = i;
25: best cost = cost;
26: param.seg param = test param(i, :);
27: param.type = i
28: end if
29: end if
30: end for
31: if thenbest word == −1
32: param.flag = −2 %NO PATH
33: return ;
34: else
35: end if
36: end procedure

Algorithm 7 Dubins curve lenght calculation

1: procedure lenght(param)
2: length = param.seg param(1) + param.seg param(2) + param.seg param(3);
3: length = lenght ∗ param.r;
4: end procedure

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 55

Chapter 3: Path Planning

Algorithm 8 Check collision between Dubins curve and obstacles

1: procedure collide(param,map, obs, exp, inflation rad)
2: for seg i← 1, 3 do
3: seg type = DIRDATA(param.type, seg i);
4: this end = dubins get xyt(param.seg param(seg i), last end, seg type, param.r);
5: if (chk map range(this end, map, exp) == 0) then
6: collide = 1;
7: return
8: end if
9: if (seg type == L SEG) then

10: arc.x = last end(1)− param.r ∗ sin(last end(3));
11: arc.y = last end(2) + param.r ∗ cos(last end(3));
12: arc.ang init = last end(3)− pi/2;
13: arc.ang end = last end(3) + param.seg param(seg i)− pi/2;
14: collide = chk arc poly collision(arc, obs, exp, inflation rad);
15: else if seg type == R SEG then
16: same procedure for seg type == L SEG
17: else if seg type == S SEG then
18: collide = chk line exp collision([last end(1 : 2); this end(1 :

2)], obs, exp, inflation rad);
19: else
20: error(”error segment type”);
21: return
22: end if
23: if (collide) then
24: return
25: end if
26: last end = this end;
27: end for
28: collide = 0;
29: return
30: end procedure

56 Eugenio Tramacere

Chapter 3: Path Planning

Table 3.6: Table representing the Dubins paramenters after 200 iterations. The Dubins curve tree
expands starting from the origin, initial configuration qI . The few vertices found are due to a

relatively small map.

param
x y theta t p q rho type flag

0 0 6.27 0.087 1.362 0.059 3.141 2 0
4.730 0.334 0.015 0.066 3.732 0.072 3.141 3 0
16.877 -0.277 0.020 0.263 0.673 0.170 3.141 3 0
16.877 -0.277 0.020 0.060 2.203 0.128 3.141 2 0
4.730 0.334 0.015 0.242 1.313 0.187 3.141 3 0
0 0 6.27 0.039 2.007 0.008 3.141 4 0
4.730 0.334 0.015 0.464 0.346 0.516 3.141 3 0
0 0 6.27 0.213 0.442 6.015 3.141 4 0
16.877 -0.277 0.020 0.113 0.743 0.102 3.141 2 0
20.278 -0.961 -0.072 0.124 0.446 0.086 3.141 2 0

1. p init : x, y, θ of the random point which has passed all the checks described

above;

2. seg param temp: t, p and q parameters of the Dubins curve;

3. r temp: ρ parameter of Dubins curve;

4. type temp: type of word in Dubins set D;

5. flag temp: it ca have value equal to 0 or 1.

The edges.param array is reported as an example in Table 3.6. As can be seen, the

array starts from the origin = [0, 0, 6.27] and for each new random point that respects

the conditions defined above, we calculate the Dubins curve that has as extremes the

(ith − 1) vertex (or random point) saved in the previous iteration and the ith random

point of the ith iteration. For each word that forms the Dubins curve, the length of

the curve is then calculated by summing the three parameters and then the one with

the lowest sum is chosen. On the basis of this ”cost”, the Dubins parameters are

gradually saved, starting from the closest vertex up to the first considered, the origin.

In Figure 3.20 it is represented the Dubins search tree. As can be seen, for random

points generated near the position of the origin, the path is not coherent with the

track layout defined by the cones. In fact, the trajectory, instead of growing along the

x direction, circumscribes the first obstacles seen from Lidar sensor. Since the next

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 57

Chapter 3: Path Planning

Figure 3.20: Dubins curves search tree.

step will be the search for the shortest trajectory, it may happen that a section of this

trajectory is formed by a curve that circumscribes the cones instead of passing through

them, therefore this is a wrong trajectory for our purposes. To avoid a path that has a

circular section at the beginning, a further condition has been added for the generation

of the random points, namely that each random point created must have a distance of at

least 1 m from any other previously generated randomic point, Algorithm 9. In Figure

Algorithm 9 Check minimum distances between generated randomic points

1: procedure check minimum distrand(xchk, ychk, i)
2: count = i;
3: if (sqrt(((xchk(count, 1)− 0)2) + ((ychk(count, 1)− 0)2))) <= 1 then
4: result1=0;
5: return
6: end if
7: for e← 1, (count− 1) do
8: for m← (e+ 1), count do
9: if (sqrt(((xchk(e, 1) − xchk(m, 1))2) + ((ychk(e, 1) − ychk(m, 1))2))) <= 1

then
10: result1 = 0;
11: end if
12: end for
13: end for
14: result1 = 1;
15: end procedure

58 Eugenio Tramacere

Chapter 3: Path Planning

Figure 3.21: Dubins curves search tree using Procedure descibed in Algorithm 9.

3.21, the creation of the new Dubins search tree applying Algorithm 9 is described.

The vertices that make up the tree are significantly lower respect to Figure 3.20, with

the same number of iterations. The main positive aspect is that the probability of

obtaining a path that forms a circle near the origin is significantly reduced. Secondly

the path oscillations along the y direction are drastically attenuated. After the entire

Dubins search tree is defined, it is possible to select the trajectory obviously choosing

the one that has the shortest length. To select the best trajectory, this step is done

backwards. First, the distance of each vertex of the tree with respect to the finalGoal

of the specific frame is calculated. Given the list of all distances from the finalGoal

to the respective node, the node with the shortest distance is chosen and that node is

assigned as the final node. Gradually you look for the previous vertex connected to the

next node by going backwards along the branch of the Dubins tree until the ”stem”

of the tree is reached, the origin. In Algorithm 10 is defined the procedure described

above. In Figure 3.22a, the shortest path is shown with appreciable oscillations along

the y direction. Applying the Procedure described with the Algorithm 9, the resulting

shortest path, Figure 3.22b has a much more regular and fluid trend.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 59

Chapter 3: Path Planning

Algorithm 10 Shortest path selection

1: procedure pathselection(vertecies, q goal, ind nearest tree)
2: for j ← 1, size(vertecies, 1) do
3: tmpdist = sqrt((vertecies(j, 1)−q goal(1))2+(vertecies(j, 2)−q goal(2))2);
4: D = [D tmpdist];
5: end for
6: [val, idx] = min(D);
7: q final = vertecies(idx, :);
8: q end = q final;
9: while FLAG Traj == 0 do

10: vertex traj = [vertex traj; vertecies(ind nearest tree(idx− 1), :)];
11: traj.param = edges.param((idx− 1), :);
12: if vertex traj == origin then
13: FLAG Traj = 1;
14: end if
15: end while
16: len vertex = size(vertex traj, 1);
17: traj.vertex(1 : len vertex, :) = vertex traj;
18: for i← 1, (size(traj.vertex, 1)− 1) do
19: start param = traj.param(i, :)
20: stepsize = 0.1;
21: path1 = dubins path sample many(start param, stepsize);
22: [path; flip(path1)];
23: end for
24: direction = ones(lenght(path), 1);
25: end procedure

60 Eugenio Tramacere

Chapter 3: Path Planning

(a) Shortest path evaluation. (b) Shortest path evaluation using Algorithm 9.

Figure 3.22: Dubins shortest path.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 61

Chapter 3: Path Planning

3.2.3 Motion Planning model

After describing the operations of the Local Path planner, it can start the description

of the Motion Planning model, that is the combination of the Local Path planner

block, the Controller and the Vehicle model blocks. The Simulink� model, shown in

Figure 3.23, generates the steering, acceleration and deceleration commands that must

be provided to the vehicle to complete the given mission. As explained in Paragraph

3.2, the acquisitions coming from the LiDAR pipeline, saved in an external HD, are

supplied to the Local Path planner with a frequency of 10 Hz. Every 0.1 s the Local

Path planner generates 2 outputs:

1. path: Poses of the path calculated by the Local Path planner (< x, y, θ >),

dimension [1000 x 3];

2. direction: Direction of motion of the vehicle; vehicle forward motion (< 1 >),

dimension [1000 x 1].

Figure 3.23: Motion Planning model.

Curvature calculation

Since the vehicle controller needs to receive as input the curvature of the trajectory to

perform the control action on the steering angle, it needs to calculate from the path

poses coming from the Local Path planner block the curvature values of the estimated

trajectory. Therefore, given the series of points that make up the specific trajectory,

the coefficients of a second degree polynomial that approximate the trend of this series

of points are found. The fitPolynomialRANSAC MATLAB� function is used for this

62 Eugenio Tramacere

Chapter 3: Path Planning

purpose; it exploits the M-estimator sample consensus (MSAC) algorithm, a variation

of the random sample consensus (RANSAC) algorithm to fit the data [33]. The returned

array, that includes the three coefficients [a, b, c] of a second degree polynomial equation

ax2 + bx + c, with the additional information coming from the vehicle’s current pose

and velocity, are then used to compute the curvature with the following formula:

κ =
|ẋÿ − ẍẏ|

[(ẋ2 + ẏ2)]
3
2

(3.30)

Vehicle Controller

The control strategy for trajectory tracking is responsible of providing three input com-

mands (acceleration, deceleration and steering command) to perform all the maneuvers

autonomously in a safety manner. For the purpose of analysis it is deployed a decou-

pled control strategy to handle separately motions related to lateral and longitudinal

dynamic. It was decided to use the geometric controller implemented in ”Stanley”, the

Stanford Racing Team’s car that won the DARPA Grand Challenge 2005 [18].

The vehicle model used for controller design is the dynamic model. Unlike the kine-

Figure 3.24: Kinematic model for controller design.

matic model which assumes the vehicle has negligible inertia, and therefore valid for

low speed driving conditions, the dynamic model instead includes inertial effects such

as tire slip and steering servo actuation. This more complicated, but more accurate,

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 63

Chapter 3: Path Planning

scheme permits simulation for tuning and augmenting the controller to handle realistic

dynamics [18]. The kinematic motion of a vehicle, with speed v(t), can be described

with the crosstrack error, e(t), of the guiding wheels, and the angle of those wheels with

respect to the nearest segment of trajectory to be tracked (ψ(t) − δ(t)), as in Figure

3.24. The ψ(t) is the yaw angle (heading) of the vehicle with respect to the closest

trajectory segment, and δ(t) is the angle of the front wheels with respect to the vehicle.

For forward driving, the guiding wheels are the front wheels, and the derivative of the

crosstrack error is:

ė (t) = ν (t) sin (ψ (t)− δ (t)) (3.31)

where the steering is mechanically limited to |δ (t)| < δmax. The derivative of the yaw

angle, the yaw rate, is:

ψ̇ (t) = r (t) = −ν (t) sin (δ (t))

a+ b
(3.32)

where a and b are the distance from the center of gravity (CoG) to the front and rear

wheels, respectively.

In order to model the nonlinear dynamic motion of the vehicle, the effect of tire slip and

of the steering servo motor are considered. The front and rear tire are modeled such

that each provide a force Fyf (t) and Fyr (t), perpendicular to the rolling direction of the

tire, and proportional to the side slip angle α (t). Reporting the High-Speed cornering

vehicle model with the assumption of negligible vehicle track and considering only the

contributions coming from the tires, it is obtained the Monotrack model [17],

Fyf (t) ≈ −Cyαf (t)

Fyr (t) ≈ −Cyαr (t)
(3.33)

where Cy refers to the Lateral stiffness of the tire, and

αf (t) = arctan

(
Uy (t) + r (t) a

Ux (t)

)
+ δ (t)

αr (t) = arctan

(
Uy (t)− r (t) b

Ux (t)

) (3.34)

with body fixed longitudinal and lateral velocities, Ux (t) and Uy (t). The differential

equations of motion associated to the dynamic model with the assumptions reported

64 Eugenio Tramacere

Chapter 3: Path Planning

before, Figure 3.25, are

m
(
U̇x (t)− r (t)Uy (t)

)
= Fxr + Fxf cos δ (t)− Fyf sin δ (t)

m
(
U̇y (t) + r (t)Ux (t)

)
= Fyr + Fxf sin δ (t) + Fyf cos δ (t)

Iz ṙ (t) = aFxf (t) sin δ (t) + aFyf (t) cos δ (t)− bFyr (t)

(3.35)

where Fxf (t) and Fxr (t) are the components of the force provided by the front and

Figure 3.25: Dynamic model.

rear tires in their direction of rolling, while Fyf (t) and Fyr (t) the components of the

force provided by the front and rear tires in lateral direction. The value of Cy for the

SC 19 with race track tires was found to be 44 kN
rad

.

Tracking control laws - Lateral Control

This sections details the lateral control law. The controller takes the vehicle state and

the commanded trajectory, and output commands at fixed rate, 10 Hz. The inputs

used are:

1. RefPose: Reference location and orientation of the calculated trajectory;

2. Curvature: Curvature value extrapolation from the estimated path;

3. Velocity : Speed of the segment of trajectory closest to the front tires.

The controller is selected such that the resulting differential equation has a globally

asymptotically stable equilibrium at zero crosstrack error. For the kinematic equations

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 65

Chapter 3: Path Planning

of motion, given by Equation (3.31) and (3.32), the steering control law

δ (t) =


ψ (t) + arctan ke(t)

ν(t)
if

∣∣∣ψ (t) + arctan ke(t)
ν(t)

< δmax

∣∣∣
δmax if ψ (t) + arctan ke(t)

ν(t)
≥ δmax

−δmax if ψ (t) + arctan ke(t)
ν(t)
≤ δmax

(3.36)

results in a closed loop system with a globally asymptotically stable equilibrium at

e = 0 for ν (t) > 0 and 0 < δmax <
π
2
. Using the controller in Equation (3.36), the

location of the front wheels is actively controlled, but the yaw is not [18]. The tire

acting as dampers, provide reactions forces to sideways velocities. As speed increases,

the damping effect diminishes, creating a need for active damping. This is done provid-

ing a negative feedback on yaw rate, without impacting tracking performance. Thus,

kd,yaw (rtraj (t)− rmeas (t))is added to the steering command, where kd,yaw is a tuned

gain, rtraj is the yaw rate for the trajectory, and rmeans is measured yaw rate.

In order to prevent overshoot that can cause instability in the servo steering meccha-

nism is added kd,steer = (δmeas (i)− δmeas (i+ 1)) to the steering command, where δmeas

is the discrete time measurement of the steering angle, and i is the index of the mea-

surement one control period earlier.

Subsequently, it is found the steady state yaw, ψss, relative to a constant curve path,

ψss =
mν (t) rtraj (t)

Cy
(
1 + b

a

) = kagν (t) rtraj (t) (3.37)

where kag = m

Cy+(1+ b
a)

. Due to this non-zero yaw angle setpoint, the controller correctly

turns the vehicle, achieving null crosstrack error. One final modification is done adding

a tuned gain ksoft, so permitting soft control at low speeds. The complete steering law,

compensating for dynamics, is

δ (t) = (ψ (t)− ψss (t)) + arctan
ke (t)

ksoft + ν (t)
+ kd,yaw (rtraj − rmeas) +

+ kd,steer (δ (i)− δ (i+ 1))

(3.38)

with saturation at ±δmax. Table 3.7 shows the lateral controller variables values, tuned

66 Eugenio Tramacere

Chapter 3: Path Planning

Table 3.7: Lateral controller Stanley SIMULINK�block settings.

Lateral Controller Stanley
Controller variable Value

Position gain of forward motion 10ˆ-5
Yaw rate feedback gain (kd,yaw) 10ˆ-20
Steering angle feedback gain (kd,steer) 10ˆ-20
Vehicle mass (m) ≈ 190 kg
Distance from CoG to front axle (a) 0.839 m
Distance from CoG to rear axle (b) 0.686 m
Front tire corner stiffness (Cy) 44e3 N

rad

Maximum steering angle (δmax) 25 °

for the Acceleration mission.

Tracking control laws - Longitudinal Control

The longitudinal controller is responsible for the acceleration and deceleration com-

mand and uses as inputs:

1. RefVelocity : Reference velocity of the vehicle calculated on the basis of the cur-

vature value extrapolated from the path of the Local Path planner ;

2. CurrVelocity: Current Velocity of the vehicle;

3. Direction: Direction of motion of the vehicle.

The controller implemented for the longitudinal dynamic treats the brake cylinder

pressure and the throttle level as two opposing, single-acting actuators that exert a

longitudinal force on the car [18]. In our case the deceleration is directly done acting

on the in-wheel electric motors that generate the torque to move the vehicle. The

controller computes a single proportional integral (PI) error metric, at discrete control

iteration i+ 1,

eν (i+ 1) = kp,ν (ν (i+ 1)− νc (i+ 1) + ki,νeint (i+ 1)) (3.39)

where the integral term is given by

eint (i+ 1) = eint (i) + (ν (i+ 1)− νc (i+ 1)) (3.40)

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 67

Chapter 3: Path Planning

Table 3.8: Longitudinal controller Stanley SIMULINK�block settings.

Longitudinal Controller Stanley
Controller variable Value

Proportional gain (Kp) 5
Integral gain (Ki) 1.5
Sample time 0.1 s

and νc is the commanded speed. The values of kp,ν and ki,ν determine the trade-off

between disturbance rejection and overshoot.

In particular, the Longitudinal Controller Stanley SIMULINK� block implements a

discrete proportional-integral (PI) controller, using the equation [35]:

u (k) =

(
Kp +Ki

Tsz

z − 1

)
e (k) (3.41)

where

1. u (k) is the control signal at the kth time step, the acceleration command AccCmd

and deceleration DecCmd command;

2. Kp is the proportional gain;

3. Ki is the integral gain;

4. Ts is the sample time of the block;

5. e (k) is the velocity error at the kth time step. For each k, this error is equal to

the difference between the current velocity and reference velocity inputs.

The block saturates the acceleration and deceleration commands setting appropriate

Maximum longitudinal acceleration (m
s2

) and Maximum longitudinal deceleration value

(m
s2

). The values, in this specific application are set ± 20 m
s2

. Table 3.8 shows the

longitudinal controller variables values, tuned for the Acceleration mission.

Vehicle Model - 3 DOF Single Track Model

The output commands, exiting from the vehicle controller, enter the vehicle model so

the longitudinal, lateral and yaw motion is calculated. It is taken as reference the

68 Eugenio Tramacere

Chapter 3: Path Planning

Vehicle Body 3DOF SIMULINK� block which implements a rigid two-axle vehicle

model. For our purposes it is used the simplified bicycle model, where forces act

along the center line at the front and rear axles and lateral load transfer is no taken

into acocunt. Considering the External longitudinal velocity option in the Axle Forces

setting, the block assumes that the external longitudinal velocity is in quasi-steady

state, so the longitudinal acceleration is approximately zero. Since the motion is quasi-

steady, the block calculates lateral forces using the tire slip angles and linear cornering

stiffness. This setting option is choosen since, at this stage, driveline and nonlinear

tire responses are non considered for the description of the vehicle motion.

The block uses the equations reported in [34], following the reference system shown in

Figure 3.26,

Figure 3.26: 3 DOF Single Track Model.

ẍ = ẏr +
Fxf + Fxr + Fx,ext

m

ÿ = −ẋr +
Fyf + Fyr + Fy,ext

m

ṙ =
aFyf − bFyr +Mz,ext

Izz

r = ψ̇

(3.42)

where r is the yaw rate, being ψ the yaw angle. As external forces, both drag and

external force inputs can be calculated, the latter considering they act on the CoG of

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 69

Chapter 3: Path Planning

the model.

Fxyz,ext = Fd,xyz + Finput,xyz

Mxyz,ext = Md,xyz +Minput,xyz

(3.43)

Longitudinal and lateral tire force applied to front an rear wheels respectively follow

the equations:

Fxft = Fxfinput

Fyft = −Cyfαfµf
Fzf
Fz,nom

Fxrt = 0

Fyrt = −Cyrαrµr
Fzr
Fz,nom

(3.44)

where Fxfinput is the input force applied to the vehicle CoG, along the x-axis, Cyf and

Cyr are the front and rear tire cornering stiffness, αf and αr are the front and rear

wheel side slip angles, µf and µr are front and rear wheel friction coefficient, Fzf and

Fzr are the normal force applied to front and rear wheels, along the vehicle-fixed z-axis

and Fz,nom is the nominal normal force applied to axles, along the vehicle-fixed z-axis.

To calculate the normal forces applied to front and rear tires, Fzf and Fzr, it is used

the pitch and roll equilibrium:

Fzf =
bmg − (ẍ− ẏr)mh+ hFx,ext + bFz,ext −My,ext

a+ b

Fzr =
amg + (ẍ− ẏr)mh+ hFx,ext + aFz,ext −My,ext

a+ b

(3.45)

where a, b and h are geometric values of the model, representing the distances from

front and real wheels to the vehicle CoG, and the height of the vehicle CoG from ground

respectively. Fx,ext, Fz,ext and My,ext are the exteral forces and moments applied to the

vehicle CoG along the vehicle-fixed x-, z- and y- axis.

70 Eugenio Tramacere

Chapter 3: Path Planning

To determine the front and rear tire slip angles, similarly to Equations 3.34,

αf = arctan

(
ẏ + ar

ẋ

)
− δf

αr = arctan

(
ẏ + br

ẋ

)
− δr

(3.46)

Once determined the front and rear side slip angles value, the tire forces are calculated:

Fxf = Fxft cos (δf)− Fyft sin (δf)

Fyf = −Fxft sin (δf) + Fyft cos (δf)

Fxr = Fxrt cos (δr)− Fyrt sin (δr)

Fyr = Fxrt sin (δr) + Fyrt cos (δr)

(3.47)

For what concern the aerodynamic drag, firstly the block transforms the wind speeds

from the inertial frame to the vehicle-fixed frame:

wx = Wx cos (ψ) +Wy (ψ)

wy = Wy cos (ψ)−Wx (ψ)

wz = Wz

(3.48)

Then it is determined the relative airspeed, subtracting the wind speed from the CoG

vehicle velocity:

w̄ =

√
(ẋb − wx)2 + (ẋy − wx)2 + w2

z
(3.49)

Using the airspeed, the block determines the drag forces:

Fdx = − 1

2TR
CdAfPabs

(
w̄2
)

Fdy = − 1

2TR
CsAfPabs

(
w̄2
)

Fdz = − 1

2TR
ClAfPabs

(
w̄2
) (3.50)

where Cd, Cs andCl are the air drag coefficients acting along vehicle fixed x- y- and z-

axis. T is the environmental air temperature, R is the atmospheric specific gas constant

Pabs is the environmental absolute pressure and Af represents the vehicle frontal area.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 71

Chapter 3: Path Planning

Table 3.9: Vehicle body 3 DOF SIMULINK�block settings.

Vehicle body 3 DOF
Vehicle parameters Value

Vehicle mass (m) ≈ 190 kg
Longitudinal distance from CoG to front axle (a) 0.839 m
Longitudinal distance from CoG to rear axle (b) 0.686 m
Vertical distance from CoG to axle plane (h) 0,242 m
Initial inertial frame longitudinal position (Xo) 0 m
Initial longitudinal velocity (xo) 0 m

s

Front\Rear tire stiffness (CyfCyr) 44e3 N
rad

Yaw polar inertia (Izz) 318.48 kgm2

Longitudinal drag area (Af) 2 m2

Longitudinal drag coefficient (Cd) 0.3
Longitudinal lift coefficient (Cl) 0.1
Longitudinal drag pitch moment (Cpm) 0.1
Relative wind angle vector (βw) [0:0.01:0.3] rad
Side force coefficient vector (Cs) [0:0.03:0.9]
Yaw moment coefficient vector (Cym) [0:0.01:0.3]
Absolute pressure (Pabs) 101325 Pa
Air Temperature (T) 273 K
Nominal normal force (Fz,nom) 5000 N

Subsequently, it follows the calculation of the drag moments:

Mdr = − 1

2TR
CrmAfPabs

(
w̄2
)

(a+ b)

Mdp = − 1

2TR
CpmAfPabs

(
w̄2
)

(a+ b)

Mdy = − 1

2TR
CymAfPabs

(
w̄2
)

(a+ b)

(3.51)

where Crm is the air drag roll moment acting about the vehicle fixed x-axis, Cpm is the

air drag pitch moment acting about the vehicle fixed y-axis and Cym represents the air

drag yaw moment acting about the vehicle fixed z-axis. Table 3.9 shows the vehicle

model parameters entered in the Vehicle body 3 DOF SIMULINK� block.

72 Eugenio Tramacere

Chapter 3: Path Planning

Reference velocity generator

In order to determine the reference speed profile, it is calculated the maximum speed

using the curvature of the road, given by:

νmax =

√
gµ

κ
(3.52)

where µ is the tire friction coefficient and κ is the curvature value extrapolated from the

”Curvature Calculation” block, Figure 3.23. The reference speed profile is constructed

following a trapezoidal trend. Based on the position traveled by the vehicle, the speed

increases following the Equation (3.52). After reaching about 80 m, the speed profile

begins to decrease until it reaches zero. In this case, at the target speed of 33.3 ms−1,

which corresponds to the maximum vehicle speed setting an output power of 70 kW,

the reference speed is obtained subtracting the target speed from the reference speed

value obtained from Equation (3.52). In this way the vehicle is able to carry out the

acceleration test in 75 m and to stop in the remaining 100 m in total safety, eliminating

the task of perceiving the orange cones from the Stereo camera sensor and start the

deceleration phase once the camera detects the orange color on an ongoing basis; thus

knowing only the space traveled by the vehicle is a safer and more reliable approach.

5 m of tolerance have been taken as it is preferable to cut the finish line at maximum

speed and because from simulations, considering low conditions of grip, it is possible

to brake the vehicle in about 20 m, much smaller stopping distance respect to the limit

imposed in the FSG Rulebook [39]. It is relevant to remember that by Regulations, it

is not possible to stop the vehicle by activating the RES and therefore operating the

EBS but rather generating the brake torque through the Service Brake System, which

in our case is done by the regenerative braking implemented directly by the in-wheel

electric motors. In fact, once reached a speed value equal to zero, the vehicle must

enter in the AS Finished state and not the AS Emergency state, as prescribed in rule

D.5.3.4 in [39].

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 73

Chapter 3: Path Planning

74 Eugenio Tramacere

Chapter 4

Results and Discussion

In this Chapter, the simulation results of the Acceleration mission are presented. A

detailed discussion about the output commands and other key paramaters in the de-

scription of the selected mission is also reported.

4.1 Data Collection

The simulation environment is built using MATLAB� and SIMULINK� software. The

entire system composed by Path Planning and Control blocks receives inputs from the

LiDAR sensor pipeline acquisitions, Figure 3.23. In the following sections two Scenarios

representing the Acceleration mission are reported. The first one is a data collection

done in September 2020 with a track layout that recreates the Trackdrive mission.

Overall, the cones layout replicate an entire circuit, but it is sufficient to post process

the initial 150 frames representing the straight section of the circuit, useful to recreate

the Acceleration mission.

The second Scenario is an acquisitions done in December 2020. In this case it was

chosen to build a race environment in which the track width is sligthly lower respect

to the previous Scenario and the cones on the same side of the track boundaries are

positioned closer to each other. This changes in the track layout has done in order to

increase the number of cones per frame perceived by the LiDAR sensor.

75

Chapter 4: Results and Discussion

(a) Data collection in Cerrina racetrack (Sept.,
2020).

(b) Data collection in Aeroclub Torino (Dec., 2020).

Figure 4.1: LiDAR sensor data acquisitions for the Acceleration mission.

4.2 Scenario 1 - Acquisition Sept2020

The simulation results of the acquisition done at the Cerrina racetrack in September

2020 is presented in this section. As can be seen in Figure 4.1a, the first section of the

circuit defined by the cones is the zone taken in account so as to recreate the simulation

environment. In fact, the initial straight part is used to recreate the Acceleration mis-

sion. In this Scenario, it is tested the critical condition in which the track width defined

by the cones is very wide, about 6 m. It must be remembered that by Regulations

[39], the minimum track width is 3 m and from the experience acquired by the Squadra

Corse FS team in FS competitions, the racing fields never have a track width recreated

in this Scenario. However, even in the critical conditions in which the LiDAR sensor

perceives from 1 to 3 obstacles per frame, the SIMULINK� model responds correctly.

The perception critical issues from the LiDAR sensor are overcome adding the array of

four points on the sides of the racecar per each frame, as fully explained in Paragraph

3.2.1. In fact, in this way it is possible to discretize the surrounding space with good

reliability, and ultimately to calculate the path the vehicle has to follow.

Firstly the three commands that come out from the Vehicle Controller are reported,

namely the acceleration, deceleration and steering command. The Acc/Dec command

is expressed in m
s2

while the Steer command is indicated in °. For what concern the

76 Eugenio Tramacere

Chapter 4: Results and Discussion

g-force during the Acceleration mission, the vehicle achieves a maximum longitudinal

acceleration of about 2.04 g.

For what concerns the steering command, the controller requires small variation of

steering angle (tenths of degree) in accordance to the specific mission. The steering

command varies between +0.4 ° and −0.8 °, values consistent with the correct func-

tioning of the steering actuator.

Acc/Dec cmd

Figure 4.2: Acceleration/Deceleration command.

Steer cmd

Vehicle Controller / SteerCmd
Vehicle Model / CurrSteer

°

Figure 4.3: Vehicle motion during the acceleration mission.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 77

Chapter 4: Results and Discussion

Regarding the speed profile, the trapezoidal profile is reported in Figure 4.4. The

reference speed is calculated using the Equation (3.52) and following the procedure

described in Paragraph 3.2.3. As can be seen the reference speed reaches the target

speed of 33,3 m
s

that is the maximum vehicle speed achievable by the racecar. With

proper setting of proportional and integral gain (Kp and Ki) of the Longitudinal Stanley

Controller block, the input and subsequent current velocity values follow the reference

speed trend.

In Figure 4.5, the vehicle space covered during the Acceleration mission is reported.

Speed Profile

Refvelocities
Currvelocity
Inputvelocity

Figure 4.4: Trapezoidal speed profile. Reference, input and current velocities are represented.

The vehicle is able to finish the mission in 3.573 s. The vehicle is also capable of stop-

ping in less than 125 m, remembering that by Regulations, the total distance that the

vehicle can travel, considering from when the vehicle starts until it stops, is 175 m [39].

The vehicle yaw rate is reported in Figure 4.12. As can be seen, the variation of

the yaw angle is appreciable when the control generates a variation on the steering

command represented in Figure 4.9.

As can be seen from the curvature values in Figure 4.7, the paths generated by the

Local Path planner with a frequency rate of 10 Hz are quite straight. In the initial

phase, a series of oscillations can be noticed, which therefore determine the variation of

tenths of a degree on the steering angle command by the vehicle controller. Differently

from the Scenario 2, the curvature here has slightly greater values. This is mainly due

to the fact that the track width, in this Scenario, is wider than in the next one and

78 Eugenio Tramacere

Chapter 4: Results and Discussion

Space covered

75 [m]

3.573 [s]

124.7 [m]

Figure 4.5: Vehicle motion along the x-axis during the Acceleration mission.

Yawrate

Figure 4.6: Yaw rate trend during the Acceleration mission.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 79

Chapter 4: Results and Discussion

above all the number of perceived obstacles per frame are lower, thus determining a

less binding Search Tree expansion in the RRT Algorithm and therefore a path more

subjected to possible oscillations.

Curvature

Figure 4.7: Curvature extrapolation value for each frame.

4.3 Scenario 2 - Acquisition Dec2020

The simulation results of the acquisition done at the Aeroclub Torino landing strip in

December 2020 is presented in this section. In contrast to what already seen in the

previous Scenario, the LiDAR sensor is able to determine a greater number of obstacles

per frame. This is essentially due to the fact that the cones on the same side of the

carriageway are positioned at shorter distance than in the previous Scenario but always

within the limit imposed by the Regulations [39], that is 5 m. In addition, the oppos-

ing cones that define the borders of the track environment are placed so that the track

width is smaller respect to the previous Scenario. The greater number of perceived

obstacles helps the construction of the Delaunay Triangulation, since by increasing the

number of vertices (perceived obstacles), the space is better discretized and the Local

Path planner algorithm generate a more reliable and coeherent goal with the racetrack

environment, as already explained in Paragraph 3.2.1.

Firstly the three commands that come out from the Vehicle Controller are reported,

namely the acceleration, deceleration and steering command. The Acc/Dec command

80 Eugenio Tramacere

Chapter 4: Results and Discussion

is expressed in m
s2

while the Steer command is indicated in °. For what concern the

g-force during the Acceleration mission, the vehicle achieves a maximum longitudinal

acceleration of about 2.04 g. In racing conditions, with not too hot tarmac tempera-

ture, by setting the vehicle output power at maximum (about 70 kW) as prescribed

by [39], a new tire set is able to withstand that longitudinal acceleration, avoiding

skidding when the vehicle starts from standstill, thus decreasing the time to travel 75

m during the Acceleration mission.

For what concerns the steering command, the controller requires small variation of

steering angle (tenths of degree) in accordance to the specific mission. The Steer cmd

saturation is set at 25° with δmax, Table 3.7.

Acc/Dec cmd

Figure 4.8: Acceleration/Deceleration command.

Regarding the speed profile, the trapezoidal profile is reported in Figure 4.10. The

reference speed is calculated using the Equation (3.52) and following the procedure

described in Paragraph 3.2.3. As can be seen the reference speed reaches the target

speed of 33,3 m
s

that is the maximum vehicle speed achievable by the racecar. With

proper setting of proportional and integral gain (Kp and Ki) of the Longitudinal Stanley

Controller block, the input and subsequent current velocity values follow the reference

speed trend.

In Figure 4.11, the vehicle space covered during the Acceleration mission is reported.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 81

Chapter 4: Results and Discussion

Steer cmd

Vehicle Controller / SteerCmd
Vehicle Model / CurrSteer

°

Figure 4.9: Vehicle motion during the acceleration mission.

Speed Profile

Refvelocities
Currvelocity
Inputvelocity

Figure 4.10: Trapezoidal speed profile. Reference, input and current velocities are represented.

82 Eugenio Tramacere

Chapter 4: Results and Discussion

The vehicle is able to finish the mission in 3.566 s, potentially finishing in first position,

with a gap of 30 ms from the ETH Driverless Team, winners of the Acceleration mission

in 2019 during the FSG competition, Table 2.1. The vehicle is also capable of stopping

in 124 m, remembering that by Regulations, the total distance that the vehicle can

travel, considering from when the vehicle starts until it stops, is 175 m [39].

The vehicle yaw rate is reported in Figure 4.12. As can be seen, the variation of

Space covered

75 [m]

3.566 [s]

124.4 [m]

Figure 4.11: Vehicle motion along the x-axis during the Acceleration mission.

the yaw angle is appreciable when the control generates a variation on the steering

command represented in Figure 4.9.

Finally, as can be seen from the curvature values in Figure 4.13, the paths generated

by the Local Path planner with a frequency rate of 10 Hz are quite straight. In the

initial phase a series of oscillations can be noticed, which therefore determine the vari-

ation of tenths of a degree on the steering angle command by the vehicle controller.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 83

Chapter 4: Results and Discussion

Yaw rate

Figure 4.12: Yaw rate trend during the Acceleration mission.

Curvature

Figure 4.13: Curvature extrapolation value for each frame.

84 Eugenio Tramacere

Chapter 5

Conclusions and Future Works

In this experimental work, the Motion Planning problem for an autonomous racecar has

been extensively analyzed. The Local Path planner was designed using of the Dubins

curves applied to an RRT algorithm. First of all, it has been described the logical

process that leads to the automatic definition of the goal per each frame. Subsequently,

the controller and the vehicle model were specified in order to be able to consistently

define the three output commands that manage the motion of the vehicle.

For what concern the Acceleration mission, to validate the model implemented on

SIMULINK� software, it was necessary to acquire the data coming from both the

LiDAR and the Stereo camera sensor. For the specific mission, it is trivial to post-

process the data coming from the Stereo camera sensor since the vehicle has to go only

in straight direction for 75 m. Therefore, it was decided to collect only the data coming

from the LiDAR sensor pipeline, as reported in Figure 3.7. As can be seen from the

graphs shown in Paragraph 4, the Model, even if subjected to competition environments

that could differ from each other, as regarded in the two Scenarios for what concerns

the track width or the distance between two cones belonging to the same track side,

behaves almost the same. For this mission, the track layouts geometric differences do

not affect the behavior of the vehicle and above all the time to cover 75 m. In fact,

even if the curvature, yaw rate and steering command values differ slightly between

each Scenario and simulation due to the randomic Search Tree expansion, the speed

profile and the distance traveled have a trend that is always similar to the previous

85

Chapter 5: Conclusions and Future Works

simulation, traveling 75 m in a time that would position the SC 19 certainly on the

podium.

In the future evolution of this project, it will be necessary to integrate the Local Path

planner and the Vehicle Controller on the dSpace� MicroAutobox, a real-time system

for performing fast function prototyping, in other words the ECU of the SC19 racecar.

In addition, it will also be necessary to mount the steering actuator and the emergency

braking system (EBS) onboard the racecar, as well as implement the state machine

with different states depending on the mission the vehicle has to carry out.

For what concerns the Trackdrive mission, the Local Path planner currently uses only

the data coming from the LiDAR sensor. In the condition in which the LiDAR sensor

perceives a left or a right curve, in about 23 % of the total frames analyzed (about

4000), the Local Path planner defines a goal that is on the side of the track and therefore

the generated path is not coherent with the real layout of the track, moving the vehicle

in a misleading direction. This is not a big deal considering the fact that every 0.1 s,

the trajectory is updated by the Local Path planner but nevertheless this issue leads

to dynamic oscillations and vehicle instabilities that it is preferible to avoid. For this

reason, the intention is to combine the map generated by the LiDAR sensor with the

information on the color of the cones coming from the Stereo camera sensor pipeline.

In this case, the error in the automatic goal generation could be considerably reduced,

by inserting as a validity condition for the extrapolation of potential goals (PotGoal,

Paragraph 3.2.1, only those points that are located on segments that have as extremes

cones with different colors, thus minimizing the possibility of identifiyng points on the

side of the track.

After the vehicle has covered a whole lap of the track, returning to a position already

traveled previously, the Motion Planning controller must be changed, using a Model

predictive control, since the track will be known after the first lap and the aim at that

point will be to have an aggressive drive, trying to improve the lap time at every loop.

Therefore, it will be necessary to integrate the Local Path planner with the MPC for

the laps following the first one. In fact, at the beginning, the racecar will investigate

the surrounding environment at very low speed, using for this purpose, the Stanley

controller presented in [18]. Once the racecar has managed autonomously to cut again

86 Eugenio Tramacere

Chapter 5: Conclusions and Future Works

the finish line, throught the information from the GPS sensor, the state machine will

have to select the Motion Planning model with the Model Predictive Controller.

Path planning for an autonomous racecar with Rapidly-exploring Random Tree 87

88

List of Figures

1.1 Europe accidents trend in the last decades. 2
1.2 Road accidents in Italy resulting in death or injury, killed and injured from 2001 to 2019. 3
1.3 Levels of Driving Automation according to SAE J3016 201806. 4
1.4 Costs per Mile for Autonomous and Human Driven vehicle. 7

2.1 Formula Student Driverless (FSD) competition class. 10
2.2 Acceleration Procedure Track layout. 12
2.3 CAD model of SC19 Lucia. 13
2.4 CAD of the Steering Actuator assembly. 15
2.5 Emergency Brake system (EBS). 19
2.6 Hardware components position on SC 19 race car. 19

3.1 Mobile robot in a 2-dimensional space with obstacles. 22
3.2 Path planning using Visibility Graph method. 23
3.3 Path planning using Voronoi diagrams. 24
3.4 Trapezoidal cell decomposition method. 25
3.5 Cell decomposition approximation method. 26
3.6 Path planning using Artifical potential method. 27
3.7 Hardware setup onboard the racecar for data acquisition during experimental tests. . . 29
3.8 Positioning in the racecar of some components of the Hardware setup shown in Figure

3.7. 30
3.9 Filtering phase of the relevant points. 32
3.10 Addition of fictitious points to the frame. 32
3.11 Delaunay Triangulation construction. Vertex IDs and triangles are reported. 35
3.12 Calculation of Potential Points (PotPoints). 38
3.13 Rectangular area value for about 2300 frame. Average rectangular area value about 4.6

m2. 39
3.14 Particular condition (Frame n° 509) in which PotPoints have a relative distance in y

direction respect to the vehicle position higher than the rd v potGoal value. 40
3.15 Calculation of Potential Goals (PotGoals). 41
3.16 Calculation of the final configuration for racecar path computation (finalGoal). 43
3.17 Simple car model. 44
3.18 The trajectories for two words are shown in W = R2. 48
3.19 The coordinate system, the initial configuration (Pi, α) and the final configuration

(Pf , β). Possible orientation angles are divided into four quadrants. 49
3.20 Dubins curves search tree. 58
3.21 Dubins curves search tree using Procedure descibed in Algorithm 9. 59
3.22 Dubins shortest path. 61
3.23 Motion Planning model. 62

89

3.24 Kinematic model for controller design. 63
3.25 Dynamic model. 65
3.26 3 DOF Single Track Model. 69

4.1 LiDAR sensor data acquisitions for the Acceleration mission. 76
4.2 Acceleration/Deceleration command. 77
4.3 Vehicle motion during the acceleration mission. 77
4.4 Trapezoidal speed profile. Reference, input and current velocities are represented. . . . 78
4.5 Vehicle motion along the x-axis during the Acceleration mission. 79
4.6 Yaw rate trend during the Acceleration mission. 79
4.7 Curvature extrapolation value for each frame. 80
4.8 Acceleration/Deceleration command. 81
4.9 Vehicle motion during the acceleration mission. 82
4.10 Trapezoidal speed profile. Reference, input and current velocities are represented. . . . 82
4.11 Vehicle motion along the x-axis during the Acceleration mission. 83
4.12 Yaw rate trend during the Acceleration mission. 84
4.13 Curvature extrapolation value for each frame. 84

90

List of Tables

2.1 FSD Acceleration Event podium in FSG 2019 competition. 11
2.2 Technical specifications of SC 19 race car. *It has been considered the driver’s weight. 14
2.3 Technical specifications of Velodyne� VLP-16 installed on the SC 19 protype. 16
2.4 Technical specifications of ZED� stereo camera sensor installed on the SC 19 protype. 17
2.5 Technical specifications of the Steering Actuator system. 18
2.6 Technical specifications of the EBS. 18

3.1 Connecitivity List matrix of the Delaunay Triangulation shown in Figure 3.11. 35
3.2 A matrix from potential points Procedure. 37
3.3 The three motion primitives from which all optimal curves for the Dubins car can be

constructed. 47
3.4 Map sizes paramenters in order to define the space within which the random vertices

of the Dubins curves are calculated. 53
3.5 Dubins curves parameters for paths genertion. 53
3.6 Table representing the Dubins paramenters after 200 iterations. The Dubins curve tree

expands starting from the origin, initial configuration qI . The few vertices found are
due to a relatively small map. 57

3.7 Lateral controller Stanley SIMULINK�block settings. 67
3.8 Longitudinal controller Stanley SIMULINK�block settings. 68
3.9 Vehicle body 3 DOF SIMULINK�block settings. 72

91

92

Bibliography

[1] Ahmad Abbadi and Radomil Matousek. Path planning implementation using matlab.

Technical Computing Bratislava, pages 1–5, 2014.

[2] Ahmad Abbadi, Radomil Matousek, Pavel Osmera, and Lukas Knispel. Spatial guidance

to rrt planner using cell-decomposition algorithm. In 20th international conference on

soft computing, MENDEL, volume 2014, 2014.

[3] Ahmad Abbadi and Václav Přenosil. Safe path planning using cell decomposition ap-

proximation. Distance Learning, Simulation and Communication, 8:2–3, 2015.

[4] Jérôme Barraquand and J-C Latombe. A monte-carlo algorithm for path planning with

many degrees of freedom. In Proceedings., IEEE International Conference on Robotics

and Automation, pages 1712–1717. IEEE, 1990.

[5] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The 2005 DARPA grand challenge:

the great robot race, volume 36. Springer, 2007.

[6] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA urban challenge: au-

tonomous vehicles in city traffic, volume 56. springer, 2009.

[7] John Canny, Bruce Randall Donald, John Reif, and Patrick G Xavier. On the complexity

of kinodynamic planning. Technical report, Cornell University, 1988.

[8] Howie M Choset, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram Burgard,

Lydia E Kavraki, Sebastian Thrun, and Ronald C Arkin. Principles of robot motion:

theory, algorithms, and implementation. MIT press, 2005.

93

[9] European Commission. Communication from the commission to the european parlia-

ment, the council, the european economic and social committee and the committee of

the regions youth opportunities initiative. 2011.

[10] Boris Delaunay et al. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematich-

eskii i Estestvennyka Nauk, 7(793-800):1–2, 1934.

[11] Bruce R Donald and Patrick G Xavier. Provably good approximation algorithms for

optimal kinodynamic planning for cartesian robots and open chain manipulators. In

Proceedings of the sixth annual symposium on Computational geometry, pages 290–300,

1990.

[12] Lester E Dubins. On curves of minimal length with a constraint on average curvature,

and with prescribed initial and terminal positions and tangents. American Journal of

mathematics, 79(3):497–516, 1957.

[13] Thierry Fraichard and Christian Laugier. Path-velocity decomposition revisited and

applied to dynamic trajectory planning. In [1993] Proceedings IEEE International Con-

ference on Robotics and Automation, pages 40–45. IEEE, 1993.

[14] FSG. Fsg once again leads the world of formula student with a new competition class,

formula student driverless (fsd). https://www.formulastudent.de/pr/news/details/

article/autonomous-driving-at-formula-student-germany-2017/, 2016.

[15] Santiago Garrido, Luis Moreno, and Pedro U Lima. Robot formation motion planning

using fast marching. Robotics and Autonomous Systems, 59(9):675–683, 2011.

[16] Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti, and Renato Vidoni. Path

planning and trajectory planning algorithms: A general overview. In Motion and oper-

ation planning of robotic systems, pages 3–27. Springer, 2015.

[17] G. Genta. Motor Vehicle Dynamics: Modeling and Simulation. Advances in Fuzzy

Systems. World Scientific, 1997.

[18] Gabriel M Hoffmann, Claire J Tomlin, Michael Montemerlo, and Sebastian Thrun. Au-

tonomous automobile trajectory tracking for off-road driving: Controller design, exper-

imental validation and racing. In 2007 American Control Conference, pages 2296–2301.

IEEE, 2007.

94

[19] SAE international. Taxonomy and definitions for terms related to driving automation

systems for on-road motor vehicles. SAE International,(J3016), 2016.

[20] Istituto Nazionale di Statistica Istat. Road accidents, year 2019. pages 1–3, 2020.

[21] Kazimierz Jamroz, Marcin Budzyński, Aleksandra Romanowska, Joanna Żukowska,

Jacek Oskarbski, and Wojciech Kustra. Experiences and challenges in fatality reduc-

tion on polish roads. Sustainability, 11(4):959, 2019.

[22] Xj Jing. Motion Planning. BoD–Books on Demand, 2008.

[23] Juraj Kabzan, Miguel I Valls, Victor JF Reijgwart, Hubertus FC Hendrikx, Claas

Ehmke, Manish Prajapat, Andreas Bühler, Nikhil Gosala, Mehak Gupta, Ramya Sivane-

san, et al. Amz driverless: The full autonomous racing system. Journal of Field Robotics,

37(7):1267–1294, 2020.

[24] Oussama Khatib. The potential field approach and operational space formulation in

robot control. In Adaptive and Learning Systems, pages 367–377. Springer, 1986.

[25] Pradeep Khosla and Richard Volpe. Superquadric artificial potentials for obstacle avoid-

ance and approach. In Proceedings. 1988 IEEE International Conference on Robotics

and Automation, pages 1778–1784. IEEE, 1988.

[26] John Ryan Kidd. Performance evaluation of the velodyne vlp-16 system for surface

feature surveying. 2017.

[27] Daniel Koditschek. Exact robot navigation by means of potential functions: Some topo-

logical considerations. In Proceedings. 1987 IEEE International Conference on Robotics

and Automation, volume 4, pages 1–6. IEEE, 1987.

[28] Jean-Claude Latombe. Motion planning: An overview. Course notes, 28:319, 1991.

[29] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998.

[30] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[31] Todd Litman. Autonomous vehicle implementation predictions: Implications for trans-

port planning. 2020.

[32] Tomás Lozano-Pérez and Michael A Wesley. An algorithm for planning collision-free

paths among polyhedral obstacles. Communications of the ACM, 22(10):560–570, 1979.

95

[33] MATLAB�. fitpolynomialransac. fit polynomial to points using ransac. https://www.

mathworks.com/help/vision/ref/fitpolynomialransac.html, 2016.

[34] MATLAB�. Vehicle body 3dof. 3dof rigid vehicle body to calculate longitudi-

nal, lateral, and yaw motion. https://www.mathworks.com/help/vdynblks/ref/

vehiclebody3dof.html, 2017.

[35] MATLAB�. Longitudinal controller stanley. control longitudinal velocity of ve-

hicle by using stanley method. https://www.mathworks.com/help/driving/ref/

longitudinalcontrollerstanley.html, 2018.

[36] World Health Organization. Global status report on road safety 2015. World Health

Organization, 2015.

[37] Hans Sagan. Hilbert’s space-filling curve. In Space-filling curves, pages 9–30. Springer,

1994.

[38] STEREOLABS. Zed stereo camera. https://www.stereolabs.com/zed/, 2020.

[39] FSG Formula Student. Official formula student rulebook, 2020.

[40] Osamu Takahashi and Robert J Schilling. Motion planning in a plane using generalized

voronoi diagrams. IEEE Transactions on robotics and automation, 5(2):143–150, 1989.

[41] Charles W Warren. Global path planning using artificial potential fields. In 1989 IEEE

International Conference on Robotics and Automation, pages 316–317. IEEE Computer

Society, 1989.

[42] Dino Živojević and Jasmin Velagić. Path planning for mobile robot using dubins-curve

based rrt algorithm with differential constraints. In 2019 International Symposium EL-

MAR, pages 139–142. IEEE, 2019.

96

