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1. ABSTRACT  

Overweight people commonly conduct a sedentary lifestyle because of difficulties in walking. 

To quantitatively monitor their gait and reduce soft tissue artefacts, optoelectronic systems are usually 

adopted, but also inertial measurement units (IMUs) have shown promising results. Considering 

overweight children, the long preparation time of optoelectronic systems could be a disadvantage. On 

the contrary, IMUs could simplify the walking acquisition protocol.  

In light of these considerations, a pilot study was conducted exploring the use of IMUs during 

the flex-extension of a polycentric knee model in presence and absence of simulate soft tissue. In detail, 

the aims of the work were: (i) to evaluate the filtering effect on knee flex-extension movements 

calculated using IMUs, and (ii) to calculate knee flex-extension movements from linear acceleration and 

angular velocity of lower limb segments.  

Two silicone implants were obtained using silicone ECOFLEX 0030, which mimics soft tissue 

properties. The two implants had different size to fit the thigh (diameter 9.5-10.5 cm, thickness 3.5 cm) 

and the shank (diameter 9 cm, thickness 2.5 cm) segments, respectively. The implants were fixed on the 

lateral part of the thigh and the frontal part of the shank of the polycentric knee model. Three knee flex-

extension trials were performed: (1) thigh segment kept steady in horizontal direction and shank 

segment moving, (2) thigh segment kept steady in vertical direction and shank segment moving, (3) 

shank segment kept steady in vertical position and thigh segment moving. For each trial, two Xsens 

IMUs were fixed on the thigh and two on the shank: (i) one on the rigid segment and (ii) one on the 

implant. In addition, one Xsens sensor was fixed on the ground as reference.  

For comparing knee flex-extension movements in presence and absence of soft tissue, Xsens 

orientation data calibrated with an internal Kalman filter were used. Rotation matrices of each IMU 

sensor were first referred to a static position. Then, knee flex-extension angle was calculated from the 

relative orientation between IMUs on the shank and on the thigh. This procedure was repeated for the 

sensors on the rigid segments and on the implant. Results showed very similar trends in presence and 

absence of soft tissue. 

To calculate knee flex-extension movements from linear acceleration and angular velocity of 

lower limb segments, the raw data collected with Xsens were used. A procedure consisting of sensor 

fusion and a Kalman filter was implemented both for IMUs on the rigid segments and on the implant. 

This post-processing allowed comparing results obtained from raw data to those obtained from Xsens 

showing an overall agreement and even an improvement in some condition, particularly for angle 

estimated from sensors on the implants. It should be noted that filter implemented for fusion sensor’s 
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data depend deeply to the initial properties set. In addition, it is possible to observe that performance 

of filter could vary significantly with the type of movement considered.  

In conclusion, this pilot study showed promising results; however, further investigations on 

overweight children should be conducted to confirm the suitability of IMUs to assess knee flex-extension 

angle. Furthermore, future studies could investigate the optimization of imufilter parameters suitable 

for walk trial analysis.
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2. INTRODUCTION TO GAIT ANALYSIS 

Gait Analysis is the systematic study of human locomotion, through the use of instrumentation 

to measure body movements and mechanics as well as muscle activity. Daily activities like moving, 

walking, jumping, running, getting up and sitting are determined by nervous system that controls 

skeletal-muscular system, letting possible such movements. Gait analysis allows to characterize in an 

objective and quantitative way human movement, detecting relation between the motion control 

system and the path dynamics. 

Gait analysis is nowadays utilized in different field, mainly divided into two categories: clinical 

gate assessment and gait research. Clinical applications directly allow to detect pathological behaviour, 

while gait research aims to improve our understanding of gait in order to improve medical diagnosis or 

treatment in the future. Gait analysis is also used in the improvement of sports performance and 

reduction of the number and severity of injuries.   [1] 

The study of human deambulation starts from identifying a “gait cycle” that represent the time 

interval between two successive occurrences of one of the repetitive events of locomotion (heel 

contact, figure 1). The human gait cycle is split in two principal phases: the stance phase, when the foot 

is in contact with the ground, and the swing phase, during which the limb is crossing the counter-lateral 

limb. These two phases are partially offset between the two legs, determining single-limb support and 

double-limb-support periods. Others sub-phases are then identified based on foot support.  

Figure 1 Gait cycle  [1] 
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Spatiotemporal parameters can be considered to describe the gait cycle and to identify standard 

human walking characteristics. Each of these descriptors can and should be very similar for both limbs 

in physiological gait. Common parameters generally discussed are:  

 Stride time: time for a full gait cycle. Time between successive heel strikes of the same foot 

 Step time: time for completion of heel strike of right foot to heel strike of left foot 

  Stride length: the distance between two successive heel strikes of the same foot 

 Step length: the distance between two successive heel strikes of two different feet 

 Step/Base width: the lateral distance between the heel centres of two consecutive foot contacts 

 Cadence: number of steps per minute 

 Walking/gait speed: distance covered in a given amount of time. 

Also, angular parameters are often studied to assess joint movements. Concerning angular 

parameters, angular displacement, angular velocity, and angular acceleration are considered. The 

evaluation of this parameters allows to describe human joint movement through kinematic and dynamic 

analysis. Indeed, by determining angular parameter, study of intra and inter-segment forces of 

articulation can be conducted.  

To evaluate angular parameters, electrogoniometers are usually utilized to measure angle 

between two segments and then derive angular velocity and acceleration. Electrogoniometers allow 

kinematic assessment, directly measuring the angle between two segments. Electrogoniometers consist 

in transducers that transform angular displacement in a measurable signal. Positioning sensors on 

lateral side of the segments of the joint, the measurement of the angles in sagittal plane are allowed. 

Electrogoniometers represent a technology easy to use, that do not obstruct natural movements. 

Nevertheless, their accuracy is limited, and soft tissue artifact can affect measurement.  

Since the 1960s gait analysis systems based on optoelectronic techniques has been developed 

and they are still widely used. These kinematics systems are used in gait analysis to record position and 

orientation of body segments. Through the identification of spatial position of significant points, during 

the time, the movement of body segments is reconstructed. 

 These kinematics systems are used in gait analysis to record the position and orientation of the 

body segments, the angles of the joints and the corresponding linear and angular velocities and 

accelerations, through the identification of the spatial position of significant points, called “landmarks”. 

Reflecting markers are utilized to track the position of anatomical points with stereophotogrammetry. 

The spatial position of the markers is defined from multiple 2D images using the principle of 

stereoscopic vision on which optical human system is based. At least two images from two video 



7 
 

cameras in different positions, are needed to define coordinates of the markers (figure 2). The recording 

and the elaboration of the positions allow to also obtain the velocities and the accelerations of the 

points along the trajectory.  

This technique nowadays is considered as the gold standard because of its great reliability and 

accuracy. All data obtained can be referred to an absolute reference system (laboratory reference 

system) and markers on the body do not cause any obstacles to the movement. Nevertheless, an 

optoelectronic system presents some important disadvantages, such as it is bound to be used within a 

laboratory with the appropriate instrumentation, which results to be expensive. An accurate calibration 

process is also crucial to obtain good results. In addition, it is affected by different types of errors, such 

as instrumental ones, errors due to determination of landmarks and soft tissue artifacts. 

In addition to optical capture systems, there are also non-optical capture systems, not based on 

the use of cameras, but on other types of sensors. They mainly consist of electromagnetic systems, 

electromechanics systems and inertial systems. In recent years inertial sensor are increasingly being 

used for human gait analysis because of their characteristics are much improved as they are widely used 

in other fields.  

Inertial Measurement Unit (IMU) is a device that measures angular velocity and orientation of the 

body on which it is placed, using the combination of triaxial accelerometer, gyroscope and sometimes 

magnetometer data. IMUs performance in terms of reliability and accuracy are improving as well as 

their dimension decreasing, allowing the system to be wearable. The development of inertial technology 

for the electronic marketplace, let these sensors to be less expensive from an economic and battery 

consumption point of view. Inertial sensors have the significant advantage of being able to be used 

outside a laboratory. Measurements in a free environment result more truthful because subjects are 

less influenced during trials and to be able to carry out tests in any space, has allowed development of 

movement analysis also in the sport field. 

Figure 2 Stereophotogrammetry 
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Gait analysis, besides body segments spatial position, considers other measurements to better 

describe human movements. Therefore, in gait analysis laboratories there are often dynamometric 

platforms that measure 3D ground reaction force. The “butterfly diagram” of this reaction force during 

the gait cycle, can be obtained and evaluated. Also resulting moment can be calculated in 3D 

components. During walking muscular forces and dynamic forces, determined by segments movement, 

are get involved and so measuring them it is possible to assess gait characteristics. 

Evaluation of gait dynamic also utilizes the electromyography technique that measure muscle 

activity as electrical signals from appropriate electrodes, those could be placed on the skin (surface 

electrodes) or directly inserted into the muscle (needle electrodes). The activity of different muscles is 

assessed during deambulation and for each gait phase active and passive muscles can be determined. 

Evaluate muscular activity can be useful to detect pathologies or injurious gait strategics not observables 

with spatiotemporal parameters. 
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2.1 GAIT ANALYSIS WITH INERTIAL SENSORS 

Most of the studies on movement analysis carried out so far utilize optoelectronic systems, but 

in recent years inertial sensing technology is expanding its potential in human movement analysis. One 

of principal advantage over optoelectronic system are that IMUs are independent of the specific 

environment. In fact, they allow data recording outside a laboratory, without the use of specific cameras 

positioned inside. Because inertial sensors are used in the consumer electronics market products their 

price and their power consumption keep dropping while miniaturization enhances, and their 

performance improves increasing reliability and accuracy.  

Inertial sensor unit generally includes a triaxial accelerometer, gyroscope, and magnetometer 

whose complementary information is utilized to estimate the orientation of the sensor coordinate 

system (SCS) with respect to a global coordinate system (GCS). GCS refers to Earth fixed reference 

system that depend on the direction of gravity and Magnetic Nord. When sensor is attached to an object 

in motion, to measure its orientation over time, an alignment procedure need to be implemented to 

describe the relative orientation between the object coordinate system and the SCS. Regarding human 

limb motion analysis, SCS need to be referred to body segment coordinate system (BSC) on which IMU 

is fixed. Most simple procedure is a manually alignment of the case sensor with the longitudinal body 

segment sensor  [2], but studies have been carried out to define this relative position more accurately. 

One of major challenge using IMU technology is to implement an effective anatomical 

calibration procedure to refer information to BSC. A possible approach is to use the direction of gravity 

during known calibration postures (e.g., upright standing posture) to initialize the joint kinematics. Then, 

other studies include functional methods, the imposition of a joint constraints and the direct 

identification of anatomical landmark. 

One of the main causes of error in inertial sensor measurement is due to soft tissue, that 

involves the presence of a relative motion between the sensor case and the bony segment below. So, 

soft tissue artifact (STA) describes error in measurement due to the relative motion between the sensor 

case and the bony segment. This unintended movement is because the sensor moves on the skin and 

because of the presence of the soft tissues. Sensors need to be firmly attached to the body segments 

during movement, to reduce as possible the translation on the skin surface. On the other hand, IMUs 

attachment should result comfortable so that subjects can act naturally movements. 

The influence of STA in the joints kinematic analysis is greater in obese subjects due to the greater 

thickness of the layer between the sensor and the bone, that means a grater relative motion. 



10 
 

While there are a lot of studies about the procedure to treat STA using optical stereophotogrammetry 

systems, there are still many outstanding issues in using inertial systems. To reduce this type of error, we need 

to accurately estimate the position of joint center of rotation and inertial sensor orientation. To bring 

this purpose it is important both to develop algorithm and software that allow to compute accurate 

estimation and utilize reliable instrumentation and appropriate protocols for measurements. In the next 

paragraphs these aspects have been deepened in order to understand which could be a future research 

direction. All the studies proposed below related to the STA issue and presenting possible solution with 

regard to different prospects. 

  

2.1.1. INERTIAL SENSORS ORIENTATION  

While calculating IMU orientation, a downside is the accelerometer and gyroscope noise and the 

ferromagnetic disturbance that could undermine the estimation of sensor orientation. This error could be 

minimized by determining biomechanical constrains. Caruso et al.  [3] propose a method to estimate the knee 

flexion-extension (FE) angle with the aim of minimizing the ferromagnetic disturbance that can cause 

discrepancies in the measurement of the orientation of the sensors on the shank and on the thigh to the GCS. 

IMUs have been mounted on the tibial plateau and on the lateral side of the thigh (figure 3). Considering the knee 

joint a pure hinge joint, allows to describe its kinematics as a rotation around the FE axes. The direction of this 

axes is assumed to be coincident with the one of the mean relative angular velocity vector. Exploiting the 

constraints that the FE axis must have the same orientation in the two GCSs, at each time step the two references 

system are realigned.  

 

Figure 3 FE axis assumed to be coincident with the mean 

relative angular velocity vector  [3] 
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One of the existing issues for inertial sensors to capture human motion is that they can only 

register orientation of the body segment, instead of spatial position. For this reason, often body skeleton 

dimension needs to be determined using other external measurement devices. A most adopted 

approach to measure limbs dimension is to consider a mathematical relationship between the body 

segment length and the stature, and to compute the relevant ratios. However, this manner results 

inaccurate because the physiological and pathological anthropometric variability. Despite for upper 

limbs, Crabolu et al. [4] proposed a method to in vivo estimation of a body segment length that defined 

the humerus length as the distance between the elbow and the shoulder FE axis. In the study one IMU 

was fixed on the wrist (figure 4). The study exploits the null acceleration point algorithm to estimate the 

shoulder center of rotation during shoulder sagittal elevation. One vector (vector 𝑟𝑠, figure 4) expresses 

the relative position between the shoulder center of rotation and the origin of the sensor coordinate 

system. In the same manner, a second vector (vector 𝑟𝑒, figure 4), obtained during elbow flexion-

extension movement, represents the distance between elbow center of rotation and SCS origin. 

Humerus length is calculate as the modulus of the difference between the two vectors 𝑟𝑠 and 𝑟𝑒. 

Validation of the method was conducted using measure computed from magnetic resonance imaging 

as the gold standard. 

 

Figure 4 𝑟𝑠 and 𝑟𝑒 with respect to the SCS during shoulder elevation in the 
sagittal plane and an elbow flexion–extension, and resulting humerus  [4] 
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This thesis has been focused on the estimation of the knee angle and so the interest would be 

more on lower limb length estimation. The last proposed method lends itself to be used for thigh or 

shank length in vivo measurement. Nevertheless, it worth to mention a correlate study carried out by 

Yuan et al. [5] describing a skeleton calibration template-based method during which the lower limb 

dimension be estimated. It is a quick, free from asymmetric problem and self-contained calibration 

procedure that utilizes a template of foot positions, like which represented in figure 5. A set of posture 

of the person are measured with known relative position of feet on the template as that during 

measuring, when the subject matches the feet on the pre-designed footprints, relative positions are 

defined. Subsequently, with the measured orientation of limbs and the known end-effector postures, 

the skeleton dimension can be calibrated. To demonstrate the methods, in this study five IMU sensors 

were attached to the subject: one sensor was positioned central on the lower part of the back and for 

each leg one sensor was placed on the thigh and one on the shank, both on frontal side, to analyze 

lower limbs movement, and a footprint template was used to define the dimension of the thigh and the 

shank and the distance between the two hips. 

 

The last aspect related to IMU orientation is that IMUs do not directly measure position and 

orientation, but just acceleration or angular velocity data of body segments they are attached to. Then, 

an important challenge is to translate these data into a meaningful three-dimensional positional data, 

as the joint angles of the lower limbs during gait. Potentially inertial sensor position could be obtained 

integrating angular velocity data or double integrating acceleration data, but it resulted an inaccurate 

Figure 5 footprint template  [5] 
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measurement due to drift. Tadano et al. [6] proposed a method for three-dimensional gait analysis using 

wearable sensors. The method describes the gait posture as the product of initial posture and the 

subsequent angular displacement. As in most studies in the literature, the three coordinate systems 

(SCS, GCS, BCS) were defined and therefore a calibration procedure was proposed for establish the 

relation between SCS and GCS and between GCS and BCS. First, a static calibration was performed of 

standing upright and sitting with outstretched legs, to align sensors unit to the sagittal plane and 

minimize attachment errors due to misalignment of coordinate system (figure 6). From the two 

calibration postures gravity is measured (𝑔𝑠𝑡𝑎𝑛𝑑 and 𝑔𝑠𝑖𝑡).  From their directions, axes for GCS are 

defined as Z axes being opposite direction of 𝑔𝑠𝑡𝑎𝑛𝑑, Y axes the cross-product of 𝑔𝑠𝑡𝑎𝑛𝑑 and 𝑔𝑠𝑖𝑡, and X 

axes the cross- product of Z and Y. In this way a rotation matrix 𝑅𝑆𝐺 that converts the three orthogonal 

axis of the SCS to the GCS was define.  

Therefore, 18 reflective markers were attached to anatomical characteristics positions of the 

lower limbs, digital images were taken from the front and the side of the subject and from them another 

rotation matrix 𝑅𝐺𝐵 converting GCS to the BCS, was defined. Combining the two rotations, the rotation 

matrix to convert SCS to BCS was derived: 𝑅𝑆𝐵 = 𝑅𝑆𝐺 ∙ 𝑅𝐺𝐵. 

 

2.1.2. CENTRE OF ROTATION ESTIMATION 

 The localization of the joint centres is fundamental to define anatomical frames of bony 

segments used to human movement analysis. Determination of joint center position can be obtained 

via predictive method (e.g., Harrington Equations) or using marker-based functional methods 

(categorized as sphere-fitting or transformation approaches). [1] In the recent years methods to trace 

Figure 6 calibration positions [6] 
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the joint centres using inertial sensor have been developed, thanks to the increasing use of these for 

human movement measurement.  

Crabolu et colleagues  [7] investigate the influence of some parameters that could affect the 

accuracy of a functional method exploited to determine the center of rotation position. They made trials 

on a mechanical device that simulated a human spherical joint and the following experimental factors 

were assessed: (a) joint angular velocity, (b) type of joint motion, (c) amplitude of the angular range of 

motion (ROM), (d) distance between the IMU and the center of rotation, (e) model of the IMU. The 

evaluation, articulated on three levels, derived an analytical model of the error to facilitate the 

interpretation of the result. To reduce gyroscope bias, the value obtaining by averaging the first 4s of 

the static phase, was subtracted from each IMU records. Angular velocity rather was filtered before 

differentiation, using decimate wavelet denoising approach. The major considerations about center of 

rotation estimation, arose from Crabolu et al. work was that: joint angular velocity has a great impact 

on center of rotation calculation and specifically that slow joint movement produce more errors in 

measurements. Another significant result was relative to sensor position on the segment since it should 

be better attached close to the center of rotation. On the opposite, type of joint motion and angular 

ROM seem do not influence the CoR identification. 

Limitations highlighted more currently in literature are the non-stationarity of the joint center 

and the presence of soft tissue artifact, that decrease the accuracy of the measurement in trials on 

human subject. by E. Frick and S. Rahmatalla developed a method to estimate joint center  [8]. They 

assumed the STA as the combination of four transformation: translation, rotation, scaling, and 

shearing. Since the first two are considered the main determinants of kinematic accuracy and together 

constitute the rigid component of STA-induced motion, they proposed a model to represent STA by 

these two components. This model considers the STA rigid component by attaching a virtual sensor to 

the pendulum through a spring (simulate translation) and by applying a series of rotation matrix to 

data (simulate rotation). A scheme of the setup is shown in figure 7. 
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The methods to estimate the centre of rotation position, proposed in Frick and Rahmatalla study 

is based on the hypothesis that due to the impact of STA, the centre of rotation varies relative position 

in the articulation, at each frame of time. So, a joint centre vector has been defined as the time series 

of rigid-body realization calculated from Single Frame Optimization algorithm for each individual frame 

of data. The SFO algorithm aim is to quantify and mitigate STA error by improving calculation of joint 

kinematics. This approach allows to achieve a time-varying solution, highly correlated with the real 

condition. The simulation result indicates that rotation component impact more negatively the SFO 

accuracy. 

The second part of Frick and Rahmatalla study [9] validated SFO physically recreating the 

simulation. A pendulum device (1 DoF) was employed to mimic human joint motion, while effects of 

STA were simulated by affixing the inertial sensor to the pendulum indirectly through a vacuum-sealed 

meet. A second sensor attached directly to the pendulum was also used for the experimental tests. The 

relative translation due to STA was then calculated by subtracting the location of the rigidly mounted 

IMU from that of the meat-mounted IMU. The rotation of the meat-mounted sensor relative to the 

rigidly mounted sensor was obtained by projecting the rotation matrix defying the orientation of the 

meat-mounted IMU to the GCS, into the coordinate system of the rigidly mounted IMU. The orientation 

of the rigidly mounted IMU’s coordinate system was defined by the pendulum’s orientation, meaning 

that any rotation still present after the projection was a result of the meat-mounted IMU moving relative 

to the pendulum. 

 

 

Figure 7 simulated pendulum simulate STA [8] 
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2.1.3. SENSORS PLACEMENT 

Finally, an important aspect to consider, to reduce STA effects, is the better placement for IMU 

on body segments. A. Forner-Cordero  [10] et al. proposed a method for the validation of the attachment 

of skin-mounted sensors in presence of STA to characterize the frequency behaviour of the soft tissue 

between a bone and a skin-mounted sensor (figure 8). Behaviour of STA was characterized as a second 

order model representing the attachment on the skin and consisting of a spring of stiffness K, a dashpot 

with damping C and a mass M. These parameters are related to the physical properties of the 

attachment: the mass of the holder-accelerometer arrangement, while K and C are related to the 

mechanism properties of the skin and underlying soft tissue. 

Three experimental steps were carried out. In the first one, different stimuli to excite the 

attachment were evaluated: manual displacement of the sensor, heel-drop (heels impact after free fall 

from standing on tiptoes) and gait. The heel drop was chosen for subsequent experiment because its 

lower variability. Then, in the second step heel-drop stimulus was applied under different attachment 

conditions: “unloaded” (sensor placed on the skin without adhesive tape or strapping bandage), 

“loaded” (elastic bandage firmly straps the sensor to the leg, compressing the skin without discomfort 

for the subject), or “load + mass” (bandage mass increased). The third part compared results against 

the model of the system sensor-skin.  

The experiment revealed that the damped and natural frequencies with the soft strapping were 

smaller than those with the hard one. Also arise a trend to increase the natural frequency of the system 

if the mass of the sensor was smaller. It is important that the natural frequency of the system be really 

distant from the frequency band of interest: frequency content of normal gait is considered to lie within 

a band between 4 and 6 Hz. 

Figure 8 Schematic of the accelerometer attachment on the skin [10] 
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Another important aspect that deserves to be assessed is the optimal mounting position of 

inertial sensors to reduce STA. Y. Shimada work [11] focused on this aspect comparing knee angle data 

obtained from sensors mounted in different positions. IMUs were attached to the thigh and shank with 

elastic bands in three different patterns, described in table 1 and represented in figure 9. 

Table 1 IMUs attachment patterns [11] 

Attached Position Thigh Shank 

LATERAL 1 4 

ANTERIOR 2 5 

LATERAL AND ANTERIOR 3 6 

 Participants were instructed to do knee FE and knee flexion/valgus/external rotation. Lateral 

position results preferable than other two for motion measurement of the lower extremities. From the 

outcomes obtained it can also be derived that the significant error factor that affect angle estimation, 

is the mounting position and not the mounting direction. 

Furthermore, also one of results obtained from F. Öhberg et al.  [12] worth to be mentioned 

because they evaluated the precision and accuracy of adaptative filter used for studying different lower 

human body segments. Accuracy and precision for angular measurements of the shank were in general 

slightly worse than for pelvis and thigh. This could be since shank moves more than other segments 

during tests performed in that study. This observation could be taken into account when the positioning 

of the sensors is defined and could be used as an indication to understand what may be the major 

sources of error. 

Figure 9 Schematic view of sensor positions [11] 
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2.2. KALMAN FILTER AND POSSIBLE ALTERNATIVE METHODS 

 Wearable motion sensors are increasingly used for clinical applications in human motion 

analysis, but they present important limitation due to electromagnetic noise disturbances and 

oscillations those affect estimation of orientation and position. The accumulative integration errors, 

those arise from bias drift, can be handled with different adaptative filtering techniques. The most 

commonly used technique in recent years is Kalman Filter (KF) but there are many variations 

implemented from this or other solutions, also considered. 

KALMAN FILTER 

The Kalman filter was firstly published by Rudolf Kalman in 1960 and it is a technique for solving the 

linear quadratic Gaussian problem, estimating the instantaneous state of a system from its output, using 

linear transition function. It is an optimal estimator with respect to any quadratic function that estimates 

the error. Since it is optimal, it has remained relatively unchanged since it was first introduced but has 

received many extensions to apply it to more than just linear Gaussian systems. In fact, as descripted by 

Montella literature review [13], KF comes with some assumptions: (1) the state transition is linear, (2) 

the measurement is linear, and (3) the system is continuous. 

The algorithm is structured in a predictor-corrector form: using the measurement of the system’s 

observable quantities, the prediction of the state forward is corrected at each step. The error of the 

estimation is used to correct the state estimation. The gain K allows to weigh the error and to bring it 

inside of the model in order to correct the estimation of the state (figure 10). As outlined in the C. 

Montella study [13] the algorithm can be divided into two distinct phases: 

Figure 10 General scheme of Kalman algorithm functioning 
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I. TIME UPDATE PHASE: the state, that is a Gaussian distribution, and his respective covariance 

are projected forward, in order to be updated: 

II. MEASUREMENT UPDATE PHASE: dependent variable (the observable one) is measured and 

fused with the prior distribution to estimate the posterior. Then the Kalman Gain is calculated 

based on covariance and Gaussian noise. The difference between the expected observation and 

the actual observation is known as innovation. The posterior distribution is then calculated from 

the combination of precedent equations that allows to correct the mean and covariance. These 

outputs are used as inputs to subsequent observation. 

EXTENDED KALMAN FILTER 

C. Montella in his literature review [13]  compared Kalman filter with another version of the same filter, 

named Extended Kalman filter (EKF). It has been developed to extend the field of application of based 

Kalman algorithm and allow to widen the set of problem to which solve optimally. In fact, the KF can be 

used only with problems with linear measurement with added Gaussian noise.  

EKF works through a process of linearization, where the nonlinear transition and observation 

functions are approximated by Taylor series expansion. The process update and the observation model 

are characterized by two potentially nonlinear functions: 

Functions are approximated as a line tangent to the actual function at the mean value: the line is the 

first order approximation of the Taylor Series around the mean in which the nonlinear function is 

expanded. Equations of st and 𝑧̂t are linearized taking the gradient of each with respect to the state st, 

allowing therefore a predictor-correction form as original KF, with two phases: 

I. TIME UPDATE PHASE that propagates covariance forward as in KF but with a different relation 

II. MEASUREMENT UPDATE PHASE: mostly the same as in the original KF, EKF presents two crucial 

differences. First, the Gain is calculated using a Jacobian, making it that this can no longer be 

considered optimal. Second, the innovation is calculated differently since the observation 

model can be nonlinear.  

How far from optimal the Gain will result depend on two aspect. The accuracy of the filter is 

influenced from how linear the transition and observation models are around the mean. Also, the 

modality of these two models is significative because if functions are multimodal, the filter can diverge. 

 

 

 st = g(st−1, ut) (5) 

 ẑt = h(st−1) (6) 
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Other than the FL and the EKF, several adaptative filters are proposed to advance the measurement 

techniques in human motion capture. For example, F. Öhberg et al. [12] in their study compared 

different filtering techniques used for sensor fusion of data from inertial sensors. Further, they 

evaluated how the precision and accuracy of adaptative filter could vary with different body segment 

of the lower limb: right and left thigh, right and left shank and pelvis were considered. Raw data came 

from sensors on these segments during functional tests performed by five subjects. Motion sensor data 

were calculated in the form of quaternions and the quaternion-based fusion of gyroscopic and 

accelerometric data was done using different filters: (1) normalized least mean square filter, (2) 

recursive least mean square filter, (3) quasi-static sensor fusion, (4) standardize Kalman filter and (5) 

modified Kalman filter. For all segment and test the modified KF and the quasi-static sensor fusion 

algorithm resulted most accurate solutions. 

QUASI-STATIC SENSOR FUSION ALGORITHM 

Quasi-static sensor fusion algorithm, implemented by Favre et al. [14] , continuously monitors 

each sensor’s activation to identify quasi-static events and to determine the change in angular output 

between two samples. Quasi-static events are defined by values of acceleration and angular velocity 

combined with some parameters empirically estimated from a previously collected gait recording. 

When a quasi-static event occurs, the algorithm adjusts the sensor fusion so that the quaternion in 

weighted in favour of the accelerometric-based orientation; otherwise, it favours the gyroscopic-based 

orientation. Algorithm performance improves by looking at the previous static event and making a linear 

regression between these two subsequence states to adjust the baseline between them. 

MODIFIED KALMAN FILTER 

Standard KF functioning is based on fusing orientation derived from accelerometric and 

gyroscopic data and modified KF uses the same model but in this case accelerometric-based orientation 

and gyroscopic-based orientation have different weight because they are calculated with different 

parameters. In addition, the measurement noise, monitored during each step, is used as a weighting 

factor to both standard and modified KF and it is defined on two levels. The weighted factor will be set 

in favour of one of them based on the quasi-static events, selecting the signal that most trustworthy. 

For the standard KF the choice was between one orientation based on gyroscopic-based orientation 

alone and one orientation based on a mix of gyroscopic-based and accelerometric-based. In contrast, 

orientation for the modified KF the choice was between a mix of gyroscopic-based and accelerometric-

based with high accelerometer threshold and one with low accelerometer threshold. 
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MADGWICK FILTER 

Another orientation filter applicable to IMU and MARG (Magnetic, Angular, Rate, Gravity) 

sensors is the Madgwick filter (MF)  [15]. This filter performance exceeds the accuracy of base KF and 

presents the following advantages and innovative aspects:  

1. Computationally inexpensive  

2. Effective at low sampling rates thanks to an analytically derived and optimized gradient-descent 

algorithm 

3. Contain one (IMU) or two (MARG) adjustable parameters defined by observable system 

characteristic. 

4. On-line magnetic distortion compensation algorithm and bias drift compensation 

Estimation of orientation of the sensor fusion frame relative to the earth frame is obtained 

through the fusion of the orientation calculations (in quaternion form) 𝑞𝜔,𝑡𝐸
𝑆  (from angular rate) and 

𝑞𝛻,𝑡𝐸
𝑆  (from vector observation). This filter employs a quaternion representation of orientation to 

describe the coupled nature of orientation in three-dimensions and is not subjected to the problematic 

singularities associated with a Euler angle representation. 𝑞𝜔,𝑡𝐸
𝑆  is calculated by integrating the 

quaternion derivate describing the rate of change of orientation of the GCS to SCS, obtained from the 

gyroscope measurement of the angular rate about x, y and z axis. Instead 𝑞𝛻,𝑡𝐸
𝑆  is calculated using the 

gradient descent algorithm, an optimization method characterized by an initial condition 𝑞̂0𝐸
𝑆  and a step 

size μ and by an objective function depending on the predefined reference direction of the field in the 

GCS 𝑑̂ 
𝐸  and on the measured direction of the field in the sensor frame.  

The fusion of two type of orientation calculations depends on a parameter 𝛾𝑡 that defines 

weights applied to each orientation calculation. An optimal value of 𝛾𝑡 can be defined to ensure that 

the weighted divergence of 𝑞𝜔,𝑡𝐸
𝑆  is equal to the weighted convergence of 𝑞𝛻,𝑡𝐸

𝑆 . The magnitude of the 

filter gain that influences this weight parameter, need to be low enough that the divergence caused by 

magnetic and gravitational field observations is reduced to an acceptable level, but it has also a 

minimum value accepted dependent on gyroscope measurement error. The MF estimate the gyroscope 

measurement error as a gradient of error surface created by the magnetometer and accelerometer 

measurements, using an analytical derivation of the Jacobian and operating on a normalized gradient 

of the error surface. For this reason, this filter results low computational load and enables the 

formulation of an optimal filter gain based on system characteristics. 
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2.3. INERTIAL SENSOR IN CHILDREN MOVEMENT ANALYSIS 

Although inertial sensor systems are becoming a widely used tool for gait analysis for clinical 

and research practice, in both healthy and pathological adult populations, there are still few data on the 

validity of these systems for use with children. Inertial sensor in addition to represent a useful 

alternative to optoelectronic systems being easy to apply and self-contained and allowing natural 

movement patterns analysis, also have increased possibilities in both paediatric and neurological 

population. 

Gait requires complex neuromuscular coordination and walking is an emblematic part of 

development by allowing the child to explore and interact with the environment. Reference values from 

typically developing children and young adults are necessary to inform clinicians and researchers on 

typical gait maturation patterns, guide clinical practice and compare motor outcomes in children with 

gait abnormalities. S Voss and colleagues [16] tried to provide a normative database of spatiotemporal 

gait parameters in healthy children and young adults 5-30 years old. The parameters selected included: 

stride length, stride length variability, gait speed, cadence, stance and swing as percentage of gait cycle, 

double support time, foot strike angle, toe-off angle, toe-out angle, turn duration, peak turn velocity 

and number of steps to turn (Table 2). A database provides standard values, based on statistical 

population, to which researchers and clinicians can measurement obtained in their studies on 

pathological subjects. 

The commercially available Mobility Lab Opal system (figure 11) has been used in Voss work. It 

consists in six sensors to place on the dorsal aspect of each foot and wrist, on the lumbar trunk at 

approximately L5, and approximately two centimetres below the sternal notch. Data recorded are 

collected by a laptop wireless and processed by Mobility Lab software containing the instrumented walk 

test; spatiotemporal parameters are then quantified with algorithm developed by manufacturer. 
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Evaluation of the data collected from the tests, was made by dividing the subjects by age, based 

on previous studies in the literature: 5-6, 7-8, 9-10, 11-13, 14-21, 22-30 years old. Participants were 

asked to perform the i-WALK test, that consists in two minute walk along a 25m walkway, in two 

directions. Test was performed under two conditions: at self-selected speed and walking as fast as 

possible. Descriptive statistics were therefore applied to all parameters. For the database 

determination, data were considered with absolute values and normalized to height. The study also 

analysed age specific changes in spatiotemporal gait and turning parameters. Results arise the 

increasing absolute stride length and gait speed and decreasing cadence, in both speed conditions, with 

advancing developmental age that is related to increasing stature. Indeed, stride length normalized to 

height do not vary between age groups in either condition. It is worth mentioning that all measures of 

foot position in children ages 7-8 demonstrated high standard deviation, possibly reflecting the 

maturation of the neural control mechanism for gait stability. In addition, results suggested that gait 

may not be mature until age 12. 

 

 

 

 

 

 

 

Figure 11Mobility Lab sensors placement  [16] 
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Take into account the different sizes and anatomical proportions in children is important when 

using adult-developed protocols and algorithms. Achieving functional gait and maximizing ambulatory 

independence are two of the most important functional outcomes for children suffering from 

musculoskeletal and neurological pathologies. It is crucial for clinicians to be able to analyse gait children 

to recognize and attempt to correct any impairments and sub-optimal movement patterns that may be 

limiting functional capacity. As demonstrated in the J. L. Lanovaz [17] study, neglecting the different 

anthropometric characteristics can lead to greater errors in the movement analysis of children. 

 

Table 2 spatiotemporal gait parameters in healthy children and young adult database defined by S.Voss study  [16] 
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J. L. Lanovaz et al. proposed to validate spatiotemporal data from the MobilityLab, system 

before mentioned, comparing it to a 3D motion capture system using Bland-Altman method. While 

temporal measurements were similar between the two systems, MobilityLab demonstrated a consistent 

bias with respect to measurement of the special data, whose error is due to difference in relative leg 

length and gait characteristic in children. In fact, indirect measurement such as spatiotemporal 

parameters, often rely on algorithms with assumptions and reference values based on adult data. To 

data collection, height was obtained using a stadiometer and leg length was estimated as a percentage 

of it and defined as the vertical distance between great trochanter and the ankle during standing. The 

four variables compared between the two systems are: stride time, stance time, stride length and stride 

velocity. While stride time and stance time were comparable between the two systems, stride length 

and stride velocity showed larger biases, attributable to error in leg length values that is a fixed 

percentage of total height based on published data for adults (49,1%). In children, leg length proportion 

is smaller: mean 42,7% in this study. MobilityLab collects angular motion data only from the shank and 

uses a prediction formula, also based on adult data, to estimate the thigh position. J. L. Lanovaz 

developed a stepwise linear regression to model stride length error that includes the independent 

variables shank range of motion, stride time and leg length. Error correction was added to the original 

stride length to generate the correct value. 

As mentioned above, a crucial issue about IMU is the calibration procedure and the definition 

of the anatomical coordinate systems. In children gait analysis we need to consider, further to different 

anatomical proportions, also the less collaborative approach that is possible to aspect from children. In 

this regard, it is worth mentioning the Outwalk protocol, developed in A. G, Cutti work [18] to easily 

measure the thorax-pelvis and lower-limb 3D kinematics on children with cerebral palsy. This kinematic 

model assumes thorax, pelvis, thigh, shank and foot as rigid segments. Thorax-pelvis, hip and ankle joint 

are deemed as ball and socket, while knee is assumed as a “loose” double- hinge joint, with one rotation 

(flexion–extension) occurring about a mediolateral axis fixed in the distal femur and the other rotation 

(internal–external) occurring about a longitudinal axis fixed in the tibia. 

To estimate the knee FE axis direction is the first step to define the anatomical coordinate 

systems of the thigh and shank segments. The orientation of the IMU over thigh and shank is measured 

during pure knee FE task. To allow the possibility to perform the test on a wider population, FE 

movement can be done autonomously standing in an upright posture by a patient able to do that, or 

passively with the subject lying in supine position while a therapist executes the knee FE movement.  

To define the anatomical coordinate systems of body segments and to express their orientation in the 

corresponding SCSs, the orientation of these last are measured during a static trial. Also, two static 

posture were proposed: 
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1. upright position with the back straight, looking forward, knee centre aligned to the ASIS 

(anterior superior iliac spine) and the line from the 2nd metatarsal head to the calcaneus of the 

right foot parallel to the same line of the left foot (figure 12) 

2. supine position with the back on a mat, the hip flexed h degrees and the knee flexed k degrees, 

the knee centre aligned with the ASIS and feet in neutral position and parallel to each other as 

in posture 1 (figure 13). 

The Outwalk protocol takes about ten minutes to complete and does not need any specialized 

device other than the inertial sensors. The definition of the distal knee CS presents an advantage with 

respect to the CS recommended by the ISB. Indeed, the medio-lateral axis (Z) of the CS is defined along 

the mean FE axis of rotation of the knee, while in the ISB the femur Z axis is obtained as the last axis 

after the longitudinal and posterior axes are computed. This means that the medio-lateral axis of 

rotation of the knee in the ISB anatomical CS is not directly controlled, and its direction can be different 

from the inter-epicondylar axis. 

  

Figure 12 upright calibration posture Figure 13 supine calibration posture 
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2.4. OVERWEIGHT CHILDREN GAIT CHARACTERISTICS 

Obesity is associated with numerous health problems such as hypertension, type 2 diabetes, 

but it is also associated with orthopaedic problems due to the overload ton musculoskeletal structures. 

Being obese/overweight has been linked to various changes in musculoskeletal structures and mobility, 

those predispose subjects to greater soft tissue and skeletal injury with repetitive loading task and this 

may negatively affect their desire to engage in physical activities. Gait analysis on obese and overweight 

subjects and therefore the identification of its characteristics could allow clinicians to recognize other 

disease. Previous literature showed differences in spatiotemporal parameters similar to those in obese 

adults, with longer gait cycle and stance phase duration and a reduced cadence. Also, flatter foot pattern 

at heel contact was reported.  

N. Pathare [19] and colleagues work proposed a comparison between healthy weight, 

overweight or obese children to investigate difference in gait, balance, muscle strength and physical 

activities. Velocity, cadence, stride length, heel-to-heel base of support and stance cycle were measured 

during a walk performance with GAITRite portable single layer sensitive walkaway system. Balance was 

assessed using the OLST (one leg stance test) in the eyes-open condition and handgrip strength was the 

method considered to evaluate the upper extremity strength. Children involved in this study were 5-9 

years old, distributed in the three groups based on body mass index (BMI), calculated using the Center 

of Disease Control and Prevention’s BMI Percentile Calculator for Child and Teen. 

Experimental results arise a significant difference in heel-to-heel base of support distance 

showing greater values in overweight /obese children compared with health weight. It could be related 

to increased adipose tissue in the thigh and a need to increase postural stability. Regarding balance has 

been found that overweight/obese children were not able to maintain single limb stance as long as the 

healthy weight children. Authors report that impaired balance could be due to inadequate muscle 

function or caused by the altered joint torque needed to stabilize the body, over a reduced base of 

support. Whether impaired balance is due to inadequate muscle function or altered joint torque needed 

to stabilize the body over a reduced base of support is not known. Obese children had a higher grip 

strength than their counterparts, maybe because they develop more far-free mass with increased 

adiposity that could help support extra load. On the contrary lower leg strength results greater in 

healthy weight children that present a significantly greater vertical jump height than overweight. (table 

3) 
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From literature is clear that obese children move less and with greater difficulty than normal 

weight counterparts but expend comparable energy. Increased metabolic cost have been attributed to 

poor biomechanics leading to a worse performance, although flexibility and absolute muscle strength 

are comparable in overweight and health weight children. S. P. Shultz et al. study [20] assessed 3D lower 

extremity joint powers in two walking cadences. They calculated mechanical power at the hip, knee, 

and ankle, in sagittal, frontal and transverse planes during self-selected and fast walking speed (figure 

14). Obese children require larger sagittal plane joint powers to control the trunk and prevent the 

collapse of the lower limb, while promoting locomotion through greater propulsion. They also required 

greater frontal plane joint powers at the hip and knee to control external adductor moments during 

weight acceptance and raise the pelvis quickly for adequate toe clearance. Greater mass and cadence 

create a gait cycle that requires more mechanical power. It has also been noticed that obese children 

had considerably greater differences between walking cadences than normal weight children. Increased 

muscular power to maintain to maintain a faster cadence may cause obese children to fatigue more 

quickly and have difficulty managing faster paced walking. 

Table 3 parameters measured by GAITRite system during a walk performance  [19] 
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J. Nantel et al.  [21] specifically studied the different gait strategy developed by obese children, 

analysing mechanical power spent during walk task. Their work had the aim to determine the impact of 

excessive body weight on gait parameter through the comparison of spatiotemporal, kinematic, and 

kinetic parameters in obese and non-obese children during self-spaced walking. Statistical analysis on 

kinematics parameters showed the single support phase duration shorter in the obese group compares 

with the normal-weight children group and consequently the double stance phase longer in the first. 

Another important result from J. Nantel work is that obese children modified their hip motor 

patterns by shifting from extensor generation to flexor absorption earlier in gait cycle, compared with 

non-obese children. This led obese children to significantly decrease the mechanical work done by hip 

flexor because this early eccentric hip flexor contraction requires less energy than a concentric 

contraction. Mechanically, when a muscle absorbs energy by lengthening its muscle fibres, the energy 

can be transferred to the subsequent concentric (power generation) phase. To quantify the amount of 

energy transferred from the hip absorption to the hip generation phases, the ratio was used. Obese 

children are mechanically less efficient at transferring energy, since the mechanical work in hip 

generation was comparable in two groups, while the ratio was higher in obese children. Some energy 

maybe lost as heat, in the passive biological components, or transferred to another plane such as frontal 

plane. Another possibility is that this energy absorbed during the eccentric contraction could be used 

to control the larger trunk inertia that needs to be stabilized during walking.  

Figure 14 3D lower extremity joint powers in two walking cadences  [20] 
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It is worth nothing another effective way to detecting gait anomalies in terms of symmetry, 

through study of trunk acceleration: the harmonic ratio, a parameter computed after processing trunk 

acceleration in frequency domain. Harmonic ratio is calculated for anteroposterior, vertical and 

mediolateral directions, quantifies step-by-step or stride-by-stride symmetry being higher values of 

harmonic ratio representative of greater symmetry. The V. Cimolin study [21] aimed to assess the 

applicability of harmonic ratio as a parameter useful in discriminating difference in gait associated with 

a lack or excess of body mass in cohort of healthy children and early adolescents. Participant to the 

experiment were 7-14 years old subject, those were divided in three groups: underweight, normal 

weight and overweight. The findings of V. Cimolin study indicated some interesting difference in 

harmonic ratio values of three groups, particularly in medio-lateral direction where underweight 

children present reduced symmetry, while overweight children exhibit highest values of harmonic ratio 

in the medio-lateral direction. This result may be correlated with the larger step width previously 

observed in obese subjects to increase stability. A non-linear relationship between harmonic ratio and 

BMI exists and is represented by a curve with a steeper gradient for BMI values 12-20 kg/m² and a 

plateau after for higher BMI (figure 15). Hence harmonic ratio could represent a useful complement to 

the conventional spatiotemporal parameters and could give a point of view on the gait focused on 

center of mass, instead of to lower limbs.

Figure 15 Trend of HR in the ML direction, with the BMI for all partecipants  [21] 
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3. MATERIALS AND METHODS 

3.1 MATERIALS 

3.1.1. POLYCENTRIC KNEE JOINT MODEL 

Knee joint is a really important articulation, that results essential for activities of human lower 

extremity, such as gait. It is formed by many different components such as menisci, cartilages, ligaments, 

and muscles allowing complex mechanical responses to different types of physiological loads. The study 

of human articulations movement requires, besides reliable motion capture techniques, body modelling 

that best represent structures and operations.  [23] 

In most of human motion analysis studies, body articulations are assumed as standard single 

hinge joints or monocentric spherical ones, characterized by just one axis of rotation or center of 

rotation. Therefore, most of the authors choose the model of lower limbs consisting of seven segments 

(pelvis, thighs, shanks, and feet), connected by six joints (hips, knees and ankles). However, this 

assumption, especially for the knee joint, represents an approximation. The human knee is comprised 

of three rigid bodies: femur, tibia and patella. It has been demonstrated that during joint motion patella 

remains in contact with the femur but rotates and translates with respect to the tibia. Interaction 

between these three rigid bodies makes modelling it more difficult with respect to others human 

joints.  [23] 

Even if physiologically the knee joint allows a flexion-extension, internal-external rotation, and 

abduction-adduction, in the literature only the flexion-extension movement is usually analysed since it 

has the greatest range of motion. Hence, the analysis of knee kinematics is reduced to the sagittal plane 

(1) as a rotation around FE axis estimated as the line passing through-out the medial and lateral 

epicondyles (predictive methods) or (2) as the relative motion between shank and thigh (functional 

methods).  

In this work, the knee joint model that has been used also includes the effect of the roto-

translation kinematics, considering two AoR: fixed axes of rotation (fAoR) and mobile axes of rotation 

(mAoR). As it is explained in the report of M. Galletto et al.  [24] the model is composed by three 

elements connected with flat hinges.  Each hinge is then rigidly coupled to a cogwheel, so as to realize 

a gear in the center of the middle element, constraining the entire movement of the three elements. 

Therefore, if the first element is fixed and the second one rotates of θ angle with respect to its 

orientation, the third element rotates of 2θ angle. The mechanism of the utilized prototype consists in 
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two equal hinges rigidly fixed on three rectangular beams. The whole thing is assembled into a dummy 

leg model, reproducing both a thigh and a shank (Figure 16) 

 

Figure 16 (a) frontal view of the polycentric hinge, (b) side view of the polycentric hinge, (c) dummy leg model based on the 
mechanical polycentric hinge.  [24] 

Considering this model during the FE movement where the shank moves relative to the thigh, 

if the shank rotates of Δθ with respect to the intermediate element, it rotates of 2Δθ with respect to 

the thigh. (figure 17) 

 

(a) 

(b) 

Figure 17 (a) polycentric hinge model, (b) polycentric hinge degree of freedom.  [29] 
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3.1.2. XSENS MTx INERTIAL SENSORS  

Xsens MTx is a complete miniature inertial measurement unit (figure 18) containing a tri-axial 

accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer (Xsens, The Netherlands). Moreover, 

it includes an embedded processor that allows the sensor to accurately track 3DoF orientation as well 

as to provide kinematics data (3D acceleration, 3D rate of turn and 3D earth‐magnetic field).  [25] 

 

The MTx casing is made of polyamide and it is designed to be as light weight as possible, and to 

be friendly for use on human body. The housing is dust resistant, but it is not waterproof. The case 

sensor has a total size about 38 x 53 x 21 mm (Figure 19). The origin of the MTx is defined by the physical 

location of the accelerometer. Although the MTx is primarily an orientation sensor, knowing the position 

of the true origin is important for application where accelerations are measured. It is reported the 

translation vector between the origin O = [0, 0, 0] and a screw hole, chosen as reference point on the 

outside of the casing O’= [4.5, 7.4, -9.5].  [25] 

 

Figure 18 MTx case and SCS 
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Table 4 summarizes the physical properties of the MTx. The average operating power 

consumption in 350mW (~ 70mA * 5 V) and the efficiency of the power input decrease with increasing 

the supply voltage. The small size and the light weight of each MTx contribute to providing an easy to 

wear and portable technology. Utilizing cable 1 m long, delivered with MTx Development Kit, is possible 

to chain sensors. One sensor is then connected with the Xbus Master, that allow communication with 

PC. However, communication between sensors and PC is also enabled through Bluetooth technology.  

The MT Manager software for Windows XP/Vista is an interface that allows the user to (1) record 

data, (2) to view 3D orientation in real-time, (3) to export log files to ASCII, (4) to change and view various 

device settings and properties, and (5) to interactively “chat” with the MTx trough a terminal emulator. 

 [26] 

After physically connecting one or more devices to the PC through USB connection or via Bluetooth, MT 

Manager configures them to start recording data. In order to use the acquired data in other programs 

such as Excel or MATLAB, MT Manager allows the user to export the data to a text file.  

Figure 19 MTx dimensions 
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Inertial and magnetic data could be returned in output in both “calibrated mode” (only physical 

calibration model applied) and “un-calibrated mode” (which may be useful to analyse the source of the 

signal). The calibration of MTx is made according to a physical model of sensor response that correlates 

sampled digital voltage 𝑢 to a respective physical quantity 𝑠, to obtain the MT Test and Calibration 

Certificate provided with the sensors. Calibrated sensor readings are expressed in the right-handed 

Cartesian Sensor Coordinate System (SCS), which is defined as fixed on the device, lined up to the 

external housing of the MTx (Figure 19). Alignment between the SCS and the bottom part of the plastic 

housing is guaranteed to <3°. The non-orthogonality between the axis of the SCS is <0.1°.  [25] 

The Global earth-fixed Coordinate System (GCS) is defined as a right-handed Cartesian system 

with X axis positive when pointing to the magnetic north, Y axis towards West direction, Z axis positive 

when pointing up. The MTx calculates the orientation of SCS with respect to GCS (Figure 20).  

 

Table 4 MTx physical properties overview  [25] 

Figure 20  Default local earth‐fixed reference co‐ordinate system NWU (North-West-Up) 
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The output orientation can be presented in different parametrizations:  

(1) Unit Quaternion: it represents a rotation about a unit vector 𝑛 through an angle α. The 

quaternion 𝑞𝐺𝑆 rotates a vector in the sensor co‐ordinate system (S) to the global reference co‐

ordinate system (G) 

 𝑞𝐺𝑆 = (𝑐𝑜𝑠
𝛼

2
, 𝑛 ∙ 𝑠𝑖𝑛

𝛼

2
) = (𝑞0, 𝑞1, 𝑞2, 𝑞3) (9) 

(2) Euler Angles: XYZ Earth fixed type angles (subsequent rotations around global X, Y and Z axis) 

• 𝜑 (roll): rotation around XG, defined from [-π;π] 

• 𝜃 (pitch): rotation around YG, defined from [-π/2;π/2] 

• 𝜓 (yaw):  rotation around ZG, defined from [-π;π] 

(3) Rotation Matrix (or Direction Cosine Matrix): it is interpreted as the unit‐vector components of 

the sensor coordinate system S expressed in G. For 𝑅𝐺𝑆 the unit vectors of S are found in the 

columns of the matrix. 

The output definition in rotation output mode is: 

output data = 

where the rotation matrix is determined like: 

 
𝑅𝐺𝑆 = [

𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

] (10) 

 

The orientation of the MTx is computed by the Xsens Kalman Filter for 3 DoF orientation (XFK-

3). The design of the XKF-3 algorithm can be explained as a sensor fusion algorithm where the 

measurement of gravity performed by 3D accelerometer and the measurement of the Earth magnetic 

north performed by the 3D magnetometer compensate for otherwise slowly, but unlimited, increasing 

errors from the integration of rate of turn data (angular velocity from the rate gyros). This type of drift 

compensation often characterizes Attitude and Heading Reference. 

The accelerometer inside the MTx measures gravitational acceleration and acceleration due to 

the object movement with respect to its surroundings. Hence, it is used in XKF-3 to stabilize the attitude 

(roll and pitch) considering the assumption that on average the acceleration due to the movement is 

zero. The drawback of this hypothesis is that during this time the rate gyroscope must be able to track 

the orientation accurately, but rate gyroscopes used in MTx are able to track accurately the orientation 

for a short period, that is often shorter than that required for many applications.  

𝑎 𝑏 𝑐 𝑑 𝑒 f 𝑔 ℎ 𝑖 
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The magnetometer inside the MTx measures the local (earth) magnetic field, which is used to 

stabilize the heading. XKF-3 is able to track possible disturbances, instead of incorrectly ignoring them. 

In addition, in case of structural magnetic disturbances, the computed heading will slowly converge to 

a solution using a “new local magnetic north”. However, heading does not directly affect the inclination 

estimation. 

XKF-3 makes use of different “scenarios” to consider the appropriate assumption since 

characteristics of the acceleration and magnetic field change for different applications. Scenarios are 

divided in “human”, “machine”, and “marine” types of motion. In human gait analysis the “human” 

scenario is adopted for slow movements typical for an indoor environmental, and “human_large_accel” 

scenario for faster movements.  

 

3.1.3. SILICON IMPLANTS 

In order to understand how soft tissue artifacts could be reduced during gait sessions recording, 

specifically in obese subjects, it is necessary to simulate the soft tissue using a material with similar 

mechanical characteristics. “Soft tissue” is a collective term for all non-bony tissues, those ones have 

not been hardened by process of ossification pre calcification. They connect, surround, or support 

internal organs and bones, and include muscles, tendons, ligaments, fat, fibrous tissue, skin, lymph and 

blood vessels, fasciae, and synovial membranes. In this work, the interest was firstly oriented to 

reproduce the behaviour of the fat tissue, that is the component that mostly diversifies overweight and 

normal weight subjects.  [27] 

The study of J. L. Sparks et al.  [28] evaluated the ability of silicone materials to mimic the 

distribution of stress in muscle tissue under concentrated loading. The longterm goal of the work was 

the development of a simulator that mimics the biomechanical conditions of stress and strain in deep 

muscle. The paper focused on (1) shear modulus, a mechanical property indicative of how stiff a material 

feels to the touch, and (2) the ability of a material to mimic the nonuniform stress distribution in tissues 

subjected to indentation type loading, such as that which occurs in muscle compressed by a bony 

prominence. Authors have considered silicone rubber to mimic soft tissues behaviour because of its 

ability to retain its shape, its resistance to the degradation and because it can be obtained in different 

degrees of stiffness to mimic its mechanical properties. 

Three silicone formulations were considered: Ecoflex 0030, Ecoflex 0010, and Dragon Skin 

(Smooth-On, Inc, Easton, Pennsylvania). Unconfined compression experiments were conducted on 

them to quantify the mechanical properties of candidate silicone materials and compare them with 
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published values for biological tissues (table 5). All three formulations demonstrated shear moduli 

suitable with biological tissue.  On Ecoflex 0030 was also carried out a test to investigate the ability to 

mimic the nonuniform stress distribution muscle, demonstrated under concentrated leg. Silicone 

performance was compared with porcine muscle one, observing similar nonuniform stress distribution 

patterns.  

Based on the results of the material characterization experiments (Tables 4 and 5), a Patient 

Simulator Prototype was defined using silicone materials tested to simulate soft tissues: Dragon Skin 

was used as muscle, Ecoflex 0010 as fat, and Ecoflex 0030 as skin. One limitation that this simulator 

presents is the fact that the interfaces between the tissue layers (skin-fat, fat-muscle, muscle-bone 

interfaces) require further development to reflect anatomical structure. The model ultimately must be 

validated against biologic tissue representing all tissue components covering a bony prominence. 

However, qualitatively silicone-based tissue analogues are able to mimic the basic trend of a stress 

concentration developing in the material in the region of a bony prominence, when subjected to 

compressive loading, but they were not able to mimic all the complex features of biological tissue 

biomechanics, because of their significantly different structure and composition.  

In patent Trotta 2019  [28] is presented a concrete example of human tissues simulator that 

could be considered. The described patient simulator was developed to provide a non-human 

interactive format for teaching and learning techniques, with a system providing a realistic tactile 

feedback, on which medical personnel and medical student could train and get familiarity with needle, 

scalpel, and suture techniques. The patient simulator represented in figure 21 includes a torso, legs, 

arms, and a head. We could put the attention to the thigh tissue insert because is where sensors will be 

positioned in tests carried out in this thesis work (figure 22).  

 

 

Table 5 literature ranges for shear moduli of biological 
tissues. data from compression testing  [27] 

Table 5 best-fit hyperelastic material constants for silicone 
rubber formulations  [27] 
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All the tissue inserts of the simulator have a similar layered structure, but relative thicknesses of the 

layers and the size and shape of the insert are adjusted to properly simulate the desired anatomical 

feature. The layered structure consists of four or five layers, formed from material having appropriate 

mechanical properties: 

• skin layer (134 in figure 23): the surface layer, manufactured blending materials with a higher 

shore hardness with materials with a lower shore hardness, to mimic skin characteristics 

• subcutaneous layer (138 in figure 23): intermediate layer manufactured from a blend of silicone 

types 

• fascia layer (140 in figure 23): dense layer of connective tissue that is resistant to unidirectional 

tension forces and surrounds muscles, organs, and other soft structures. In some instances, 

Tyvek is utilized to form the fascia as it responds in a manner similar to the fascia when 

punctured, cut and/or sutured. 

• muscle layer (142 in figure 23): layer with greater resistance compared with skin and 

subcutaneous ones.  

• backing layer: layer that should incapsulate the muscle, fascia, and subcutaneous layers while 

providing a surface that sits within the insert’s recess in the manikin.  

 

 

 

 

Figure 21 patient simulator No US 10438510B2  [28] 

Figure 22 portion of the patient simulator 
illustrating a thigh tissue insert  [28] 
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It could be also considered some studies that describe methods to evaluate human tissues 

characteristics in order to apply it to define tissues properties in obese subject and then adjust patient 

simulators designed since normal weight subjects. F. Frauziols et al.  [29] proposed a non-invasive 

method to identify in vivo the passive mechanical properties of deep soft tissues in the human leg. 

Taking into account the non-linear behaviour of these tissues, the study considered the leg soft tissue 

composed of different compartments: 

• the compartment composed of adipose tissue and skin, which, in this study, is referred to as 

superficial soft tissues, 

• the Fascia cruris, which is a collagenous membrane separating both compartments, 

• the compartment of soft tissues surrounded by the fascia cruris, mainly composed of muscular 

tissue, which, in this study, is referred to as deep soft tissue compartment. 

The method proposed combined an axisymmetric multilayer (i.e., skin, adipose tissue) finite 

element model with an indentation experiment to identify the mechanical properties of each forearm 

soft tissue. Finite element models of the leg in a relaxed initial state and a compressed state with 

stocking were compared to MRI scans of the legs in the same two states. The finite element model was 

composed of two compartments of soft tissues, allowing a distinction between the mechanical 

properties of adipose tissue and muscular tissue. (figures 24) 

Figure 23 tissue insert layered structure [28] 
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In R. Cuccaro et al. [30] study, a detailed description of the experimental apparatuses for the 

sound speed and the attenuation coefficient measurements is given. Tissue-mimicking phantoms play 

a crucial role in medical ultrasound research because they can simulate biological soft tissues. In last 

years, many types of polymeric tissues have been proposed and characterized from an acoustical and a 

thermal point of view. In this work, considering the necessity to develop laboratory standards for the 

measurement of ultrasonic exposure and dose quantities, the attention is focused on the uncertainty 

evaluation both result and analysis algorithms. Furthermore, the realisation of multi-components 

phantoms, Agar and Phytagel based tissue-mimicking gels along with others long chain molecules 

(dextrane or polyvinyl alcohol) and scattering materials (silicon carbide and kieselguhr) are investigated. 

This paper reported accurate speed of sound and attenuation coefficient measurements. Speed 

of sound is measured by a pulse-echo technique in far-field condition, using an optical glass buffer rod; 

while attenuation coefficient is determined by an insertion technique, using demineralized water as 

reference material. To identify the material parameters of both constitutive models an inverse method 

was implemented: (a) Extraction of force-displacement curves from the bi-dimensional model, (b) 

Definition of a cost function quantifying the mismatch between numerical and experimental force-

displacement curves, (c) Minimization of the cost function with the genetic algorithm implemented in 

Matlab®. 

Kevin M. Moerman et al.  [31] assess the use of Digital image correlation (DIC) in combination with 

finite element modelling to determine the bulk material properties of human soft tissue. A two camera 

DIC setup was then used to record the 3D surface deformation. The experiment was simulated using a 

finite element model. Two camera DIC configuration combined with FE modelling to determine the bulk 

 

Figure 21 B)  3D simulation and plain strain 
simulation on 3D leg finite element model  [29] 

Figure 24 A) indentation experiment on the leg  [29] 
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mechanical properties of materials leads to represent it using hyperelastic Neo-Hookean constitutive 

laws. To verify this method, indentation tests were performed on a silicone gel phantom. 

The soft tissue phantom was moulded in a cylindrical polypropylene container and black paint 

speckles (0.22 mm) were applied to the top surface of the gel. A circular indenter was then used to apply 

compression up to 11,7 N (figure 25). The deformation of the top surface of the gel and the indenter 

displacement was then calculated by a software analysis. To simulate the compression, an axisymmetric 

finite element model of the gel indentation was created. The material parameters were iteratively 

altered until a good match with both the experimental indenter force and deformation was obtained. 

Overall, from this study results raised that when the correct bulk material properties are applied, 

the finite element model has a good capability of reproducing the experimental boundary conditions.  

Biological soft tissues are not easy characterizable because exhibit a strongly nonlinear 

viscoelastic behaviour. So, it is often necessary to study them from different points of view to get a 

complete information. As a solution The S. Nicolle et al. study [32] aimed to develop a new constitutive 

law capable of predicting our experimental data in both linear and nonlinear viscoelastic regime with as 

few parameters as possible. The authors worked in particular to report additional material properties 

of kidney and liver tissues in oscillatory shear and constant shear rate tests. Considering soft tissues as 

a single-phase continuum, many attempts have been made to theoretically depict their gross material 

response. The linear behaviour at small strain is usually fitted with a generalised Maxwell or Kelvin 

model to account for the time dependence of their properties. Few models based on the fractional 

calculus were suggested for describing the linear viscoelastic response of biological soft tissues. 

 

Figure 22 silicone gel phantom model and piston  [31] 
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After considering literature, it was decided to create one-layer implants in silicone material. 

Some of silicone materials utilized in mentioned studies, were compared to manufacture implants to be 

used in our tests. Table 6 shows mechanical parameters values of biological tissue and silicone materials, 

according to literature studies. 

Table 6 silicone material mechanical characteristics 

* referred to soft tissue (liver&kidney) 

**Averaged values gathered from multiple sources on the web 

Considering which materials had more similar characteristics with soft tissues, both ECOFLEX 

0030 (Smooth -On, Inc., Easton, Pa) and ECOFLEX 0010 (Smooth -On, Inc., Easton, Pa)  [34]were fitted to 

the use. However, taking into account that density values of two silicones were almost equal, ECOFLEX 

0030 was finally chosen.  

Therefore, two silicone implants have been manufactured (figure 26) to be used as soft tissue 

simulators. ECOFLEX 0030 is a platinum-catalysed silicone whose two components Part A and Part B are 

mixed 1A:1B weight or volume. To prepare implants the procedure indicated by the producer has been 

followed: 

1) Pre-mix part B 

2) Dispense amounts of parts A and B into mixing container 

3) Amalgamate the mixture for 3 minutes paying attention on scrapping the sides and the 

bottom of the mixing container several times 

4) Let silicone implants to cure at room temperature (18°C-23°C) for at least 24 hours 
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5) Remove the silicone implants from the moulds. 

Two different moulds were used to manufacture implants used in this work. The smallest 

implant (diameter 9cm, thickness 2,5cm) was used to simulate soft tissue on the shank (Figure 26-1), 

while the other one (diameter 9,5-10,5cm, thickness 3,5cm) was used on the thigh (Figure 26-2), where 

soft tissues are greater. 

 

3.1.4. KINOVEA SOFTWARE 

Kinovea is an open-source software designed and developed to perform video analysis, 

especially in the sport field. In addition to 3D optoelectronic systems, which are the gold standard for 

motion analysis, 2D analysis with traditional videos can be a good compromise, especially when the 

performance cannot be carried out in a laboratory, as some sportive tasks. Kinovea allows to perform 

2D analysis of the movement, therefore it is necessary to place camera utilized as far as possible 

perpendicular to the plane of motion considered. Most of the video formats available on the market are 

compatible with the software, files from compact cameras, smartphones, tablets, and professional 

video cameras.  [35] In figure 27 is reported Kinovea interface. 

 

Figure 23 ECOFLEX 0030 implants 
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Kinovea is organized around four core missions related to studying human motion:  

• OBSERVATION:  it is possible to slow down time for high-speed movement analysis or performs 

images transformation like “rotate”, “zoom”, “mirror”, “deinterlace”, “fix aspect ratio”. In 

addition, videos with heterogeneous framerates can be synchronized and also overlayed on top 

of each other. Time in Kinovea can be represented in various units like the frame number, the 

total milliseconds since start, or a classic timecode format. 

• ANNOTATION:    key images of interest can be created with also text comment attaches to them. 

Basic annotation (labels, numbers, lines, markers, etc)  or annotation drawings can be copied 

and pasted around the frames videos and can also be painted permanently on the video frames. 

It is also possible let to draw attention to something using the spotlight or magnifier tools. 

Annotations are saved to KVA files (XML); they are vector based and can be modified at any 

time. The KVA file associated with a video is automatically reloaded. Other export options allow 

to save the individual frames or key images to separate files, create video slideshows and create 

videos with pauses on key images. 

• MEASUREMENTS: Kinovea measures time spans using the chronometer and distance and angles 

using the line, angle and goniometer tools. Even if the plane motion is not aligned with the 

camera, using a grid-based calibration lets perform measurement. The program is also able to 

track single point trajectory or track the evolution of a multi-point object. Then, linear 

Figure 24 Kinovea workspace. 1: principal menu', 2: file explorer area, 3:video area, 4: key image control area, 5: play 
control area.  [35] 



46 
 

kinematics based on trajectories of points or multi-point object can be obtained, as well as 

angular kinematics for angle tools and custom tools containing angles.  

• CAPTURE: the main interface to capture and record camera streams can be configured for a 

single camera, two cameras or one camera and one playback screen. Image rotation is 

supported in the capture module and allow more flexible options in camera placement and 

orientation. Annotation tools can be used to create alignment guides and get posture feedback. 

When recording, these guides will be saved in a separate file and reloaded when playing the 

camera performance: save the camera frames in real time, with corresponding video. Various 

recording approaches can be used depending on use-case and delay, or in a batch operation at 

the end of the recording period. [35]
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3.2. METHODS 

3.2.1. PRELIMINARY TESTS PROTOCOL 

Preliminary laboratory tests were carried out using the polycentric knee model and the silicone 

implants fixed under sensors. Four different sensors configurations were considered to evaluate sensors 

position influence on measurement. The aim of the preliminary tests was to identify the best inertial 

sensors setup in calculating knee flex-extension angle. Preliminary tests were also intended to verify the 

suitability of the process utilized to estimate knee angle, during the flex-extension (FE) movement 

performed with the leg model and also during a real walk. 

The four configurations involved one sensor placed on the thigh and one on the shank and a 

fixed sensor as reference. During the preliminary tests a sample frequency of 100 Hz was used. Sensors 

were cascaded so that sensor on the shank was connected with sensor on the thigh, that related to a 

reference sensor, which interfaced with the control unit that communicates with MT software. The 

reference sensor was firmly fixed on the table and its coordinate system has been considered as the 

local global coordinate system (GCS), so that measurement of sensors placed on the leg model have 

been referred to this GCS (figure 28).  

 

z 

x y 

b) a) 

Figure 25 a) Top view of the laboratory fixed sensor. b) lateral view of the laboratory fixed senso, near the leg model 
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Implants were fixed between the leg and the sensor without any adhesive tape since strapping 

of the sensor bandage was enough to holding them tightly (figure 29). As specified before, implant 1 

was placed on the thigh, while implant 2 on the shank. 

For the thigh, three different positions were considered: frontal, lateral, and posterior. Medial 

position was excluded because during gait the sensor could be easily hit by the contralateral lower limb. 

For the shank just two position were evaluated: on the lateral side and on the tibial plateau. Posterior 

and medial position were not assessed primarily to avoid placing the sensor on the gastrocnemius 

muscle, that could provoke disturbance in collecting signals, and, for the medial position, also for the 

reason considered for the thigh sensor. Sensors position in any configuration are resumed in table 7 and 

represented in figure 31. In any configurations, sensors, both on the thigh and on the shank, considering 

leg in vertical position, were placed with X axis positive pointing down; consequently, Y axis were also 

on the case sensor plane and Z axis positive pointing outside sensor case (figure 30).  Sensor fixed in the 

laboratory was positioned on a horizontal plane, meaning XY plane was approximately parallel to the 

floor; Z axis was positive pointing up. Trials were performed positioning leg model so that foot pointed 

as positive X axis of the GCS (figure 29 b).  

 

 

 

 

Figure 29 silicone implant under sensor on the leg 

Figure 30 Orientation of coordinate system on 
sensors on the shank and on the thigh. 
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Table 7 Configuration: sensors position 

 

All evaluated movements were recorded with a camera from the lateral side, so that relative 

rotation between shank and thigh could be analysed with Kinovea software, on the sagittal plane (2D). 

A camera being positioned laterally to the leg model, record the flex-extension movement. The purpose 

was to frame in such a way that the obtained image 2D represented as much as possible the plane of 

the movement. Then, with Kinovea tracking tool, coordinates of three marked points were defined 

during each frame (sample frequency of 50 Hz) of the movement. Markers were chosen so that lines 

passing through them contain the knee angle. 

To assess the influence of sensors placement, in the preliminary laboratory tests, FE movements 

with the polycentric knee model were recorded using the four configurations. Flex-extension movement 

has been performed keeping steady the thigh segment horizontally, placing it on the horizontal table 

surface. Shank segment acted passively the movement, starting from a flexed position (about 90°, as 

showed in figure28b). Relative angle between thigh and shank was calculated from orientation matrix 

Xsens output. From the three obtained angles, approximation of FE angle was identified and compared 

CONFIGURATION REFERENCE SENSOR THIGH SENSOR SHANK SENSOR 

1 GROUND LATERAL TIBIAL PLATEAU 

2 GROUND FRONTAL TIBIAL PLATEAU 

3 GROUND POSTERIOR TIBIAL PLATEAU 

4 GROUND LATERAL LATERAL 

Figure 31 Top view of sensor coordinate systems in each configuration. 
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to knee angle derived with Kinovea 2D analysis. Comparing results, one of the four configurations was 

identified as the best to be used in the following tests. 

Then, to evaluate the behaviour of silicone implant and confirm that angle estimation method 

utilized still result reliable a real gait task was performed. Measurement test was conducted placing 

sensors on the thigh and on the shank and the two implants were fixed in between the sensors and the 

lower limb (figure 32). Sensors were attached using configuration 1 only on the right leg with their elastic 

bandages. Test consisted in a one direction straight walk, 5 meters long, at a self-selected speed. The 

trajectory of the completed route was approximately parallel to the x-axis of the GCS, with opposite 

direction. 

 

3.2.2. PROTOCOL: EXPERIMENTAL TEST 

The effectives experimental trials were performed placing sensors in configuration 1 on the leg 

model and with a sample frequency of 50 Hz. Trials were carried out placing two sets of sensors on the 

body segments. Both on the thigh and on the shank, a sensor was placed on the implant and one directly 

on the leg model. Sensors on the same segment were placed as much as possible one beneath the other, 

so that each set of sensors was in configuration 1.  Implants were attached to the leg model by adhesive 

tape, and also the sensor were fixed to the silicone implant with another adhesive tape. No elastic bands 

Figure 32 walk test sensors placement (configuration 1) 
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were used to fix sensors on the implants or implant on the rigid segment. The aim was to better simulate 

soft tissue, avoiding an unrealistic steady behaviour of the implants kept in place by the sensors’ 

bandage (figure 33,34).   Instead, sensors on the rigid leg surface were firmly fixed using their elastic 

bands.  

 

Two trials were performed. Firstly, the same trial as the preliminary test was conducted. In 

addition, to get closer to a real walking movement, flex-extension movement were performed with the 

leg in vertical position. So, the two trials were (figure 35): 

• TRIAL 1: thigh segment was kept steady in horizontal direction and shank segment 

performed the flex-extension.  

• TRIAL 2: thigh segment was kept steady in vertical direction and shank segment 

performed flex-extension. 

 

 

 

Figure 33 Two sets of sensors placed in configuration 1. Figure 34 Sensors on the thigh: the top one placed on the 
silicone implant and the lowest directly fixed un the leg 
model by the bandage. 
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 For each trial, flex-extension movement has been simulated moving manually the shank 

segment. To avoid an overly controlled movement, the leg-model foot has been tied to a lanyard 

through which the movement of the body segment has been induced. Trials have been performed at 

two different velocity (normal and fast) to evaluate the influence of this parameter on sensor 

measurements, in presence of soft tissue. Tests performed are resumed in Table 10. 

Table 10 Test with two sets of sensors in configuration 1 

TRIALS 1 2 

VELOCITY Norm. Fast Norm. Fast 

IMU  

configuration 1 

Two sensors on the rigid leg 

model (thigh and shank) 
    

Two sensors in the silicone 

implant (thigh and shank) 
    

 

Knee angle for trials performed has been firstly estimated from Xsens orientation, as in the 

preliminary tests. Then, raw data of the gyroscope and of the accelerometer were considered to 

alternatively calculate sensor orientation, utilizing imufilter Matlab function. Orientation data obtained 

were utilized to estimate angle between thigh and shank segment with same process applied on Xsens 

output.  

After analysing results, the effort has been to improve imufilter restuls by tuning parameter of 

imufilter. Tune Matlab function has been utilized to automatically optimize the parameters of the 

T2 T1 

Figure 35 Trial 1 (T1), trial 2 (T2), in configuration 1 
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implemented filter. The optimization algorithm on which tune is based has as its objective a “ground 

true”, that in this case was the measure provided by Xsens.  

 

3.2.2. DATA ANALYSIS TO CALCULATE KNEE ANGLE  

In this section is described how the knee angle was calculated with Kinovea, from Xsens orientation 

matrix, and finally from linear acceleration and angular velocity using imufilter. 

KINOVEA 

FE knee angle has been evaluated firstly by a 2D dimension analysis. Each test has been recorded 

with a video camera and then videos have been processed with Kinovea software, exploiting the 

program function that allows to identify the trajectory of a single point. After setting the origin of the 

reference system, three markers have been created in correspondence of three point on the leg model, 

that define the knee FE angle: M, on the malleus prominence; CoR, approximately on knee model center 

of rotation; S1, roughly on the thigh segment axis. The three points identified two lines intersecting in 

CoR point and that describe the knee FE angle (figure 36). Trajectories of these three points provide 

their respective 2D coordinates at each time frame. From points coordinate, angular coefficients of two 

lines have been calculated and therefore the knee FE angle has been estimated. 

Kinovea track output is extracted as .xlsx file and points coordinates are in matrix form: 

 
𝑆1 = [

𝑥𝑆1 𝑦𝑆1

⋮ ⋮
𝑥𝑆𝑁 𝑦𝑆𝑁

]            (𝑁 = 1, … , 𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠) (11) 

 
𝐶𝑜𝑅 = [

𝑥𝐶1 𝑦𝐶1

⋮ ⋮
𝑥𝐶𝑛 𝑦𝐶𝑛

] (12) 

 
𝑀 = [

𝑥𝑀1 𝑦𝑀1

⋮ ⋮
𝑥𝑀𝑛 𝑦𝑀𝑛

] (13) 

To define the angular coefficients 𝑚1 and 𝑚2, the definition of this parameter has been utilized: 

 
𝑚 =

∆𝑦

∆𝑥
 (14) 
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 So, angular coefficient for each line has been calculated:  

The value of the angle α between the two identified lines is calculated and it results to vary at each time 

frame during FE movement: 

 𝛼 = 𝑎𝑟𝑐𝑡𝑔 (|
𝑚1 − 𝑚2

1 + 𝑚1 ∙ 𝑚2
|) (17) 

 Equation (17) identify the acute angle between two lines, means the “external angle” in this case (figure 

36). Considering the supplementary angle, instead of the absolute value between thigh and shank 

segment, allows to obtain a result that is more coherent with the direction of negative rotation in the 

extension phase. 

The trend of the angle value obtained in this phase were used to check the knee flex-extension angle 

calculated from inertial sensors measurements. 

 

XSENS 

In both preliminary test and experimental trials, knee angle has been derived from orientation 

output by Xsens algorithm. The Xsens “Rotation matrix” output mode returns for each time frame an 

𝑚1 =
𝑦𝑆1 − 𝑦𝐶𝑜𝑅

𝑥𝑆1 − 𝑥𝐶𝑜𝑅
 

𝑚2 =
𝑦𝐶𝑜𝑅 − 𝑦𝑀

𝑥𝐶𝑜𝑅 − 𝑥𝑀
 

 
 

(15) 

 

(16) 

Figure 36 schematic representation of knee FE angle estimation with Kinovea: m1 and m2 are the angular coefficient of two 
lines passing through the three tracked point and determining α knee angle. The green curve represents the M point trajectory. 
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array with a row of data in three directions from accelerometer, gyroscope, and magnetometer and the 

nine elements of the sensor orientation matrix (table 8). 

Table 8 sensor output "Rotation matrix" mode 

1 2 3 4 5 6 7 8 9 10 … 

Counter (time) acc. x acc. y acc. z gyr. x gyr. y gyr. z mag. x mag. y mag. z … 

 

… 11 12 13 14 15 16 17 18 19 

 𝑅11 𝑅21 𝑅31 𝑅12 𝑅22 𝑅32 𝑅13 𝑅23 𝑅33 

 

From 𝑅𝑖𝑗  elements, the rotation matrix, that describes the orientation of the sensor coordinate system 

(SCS) to the earth fixed coordinate system (ECS), is reshaped: 

 
𝑅𝑆 

𝐸𝐹 = [

𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

] (18) 

 

The rotation matrix 𝑅𝐺𝑆 is defined in terms of Euler angles as the combination of three elemental 

rotations about each of the directions of the reference system.  

 𝑅𝑆 
𝐸𝐹 = 𝑅𝜓

𝑍 𝑅𝜃
𝑌𝑅𝜑

𝑋 (19) 

 

𝑅𝑆 
𝐸𝐹 = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 −  𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜓
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 −  𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜓

−𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜃
] (20) 

 

For each sensor, a rotation matrix that expresses the orientation of the sensor to the earth fixed 

system has been achieved. So, for the early two tests phases, in which three sensors have been used, 

three rotation matrixes have been obtained: 

⎯ 𝑅 
𝐸𝐹

𝐺 : orientation of sensor used as a reference in the Earth fixed reference system, 

⎯ 𝑅 
𝐸𝐹

𝑡ℎ𝑖𝑔ℎ : orientation of the sensor on the thigh in the Earth fixed reference system, 

⎯ 𝑅 
𝐸𝐹

𝑠ℎ𝑎𝑛𝑘 : orientation of the sensor on the shank in the Earth fixed reference system. 

To calculate the knee FE angle starting from the initial position, it is necessary to refer measurement 

of dynamic trial to the correspondent static condition. Before starting each test, the polycentric knee 

was left in position for five seconds. Therefore, the orientation during this period could be considered 

not changing significantly and for this reason the orientation matrix of a single instant (e.g., the first or 
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the last time frame) of time could be assumed sufficient to describe the orientation in static condition. 

However, for a more reliable and meaningful measurement, the static reference has been considered 

as the average of all output rotation matrixes during static recording.  

For each sensor, this static reference matrix 𝑅𝑆𝑛𝑆𝑇 
𝐸𝐹  (Sn identify a generic sensor) is obtained 

extracting three angles of rotation around axes, for each instant of time, from the output matrix, 

according to convention described on Xsens Manual. 

 𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑅32, 𝑅33) 
(21) 

 𝜃 = −𝑎𝑟𝑐𝑠𝑖𝑛(𝑅31) 
(22) 

 𝜓 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑅21, 𝑅11) 
(23) 

Then, the mean value of each angle has been calculated and the averaged rotation matrix has 

been derived from them. This procedure has been repeated for all sensors on leg-model segments and 

for each different trial performed. 

 
𝜑𝑚𝑒𝑎𝑛 =

∑ 𝜑𝑖
𝑁′
𝑖=1

𝑁′
                 𝑖 = 1, … , 𝑁′𝑠𝑡𝑎𝑡𝑖𝑐 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (24) 

 
𝜓𝑚𝑒𝑎𝑛 =

∑ 𝜓𝑖
𝑁′
𝑖=1

𝑁′
 (25) 

 
𝜃𝑚𝑒𝑎𝑛 =

∑ 𝜃𝑖
𝑁′
𝑖=1

𝑁′
 (26) 

𝑅𝑆𝑛𝑆𝑇 
𝐸𝐹 = [

𝑐𝜃𝑚𝑐𝜓𝑚 𝑠𝜑𝑚𝑠𝜃𝑚𝑐𝜓𝑚 −  𝑐𝜑𝑚𝑠𝜓𝑚 𝑐𝜑𝑚𝑠𝜃𝑚𝑐𝜓𝑚 + 𝑠𝜑𝑚𝑠𝜓𝑚

𝑐𝜃𝑚𝑠𝜓𝑚 𝑠𝜑𝑚𝑠𝜃𝑚𝑠𝑖𝑛𝜓 + 𝑐𝜑𝑚𝑐𝜓𝑚 𝑐𝜑𝑚𝑠𝜃𝑚𝑠𝜓𝑚 − 𝑠𝜑𝑚𝑐𝜓𝑚

−𝑠𝜃𝑚 𝑠𝜑𝑚𝑐𝜃𝑚 𝑐𝜑𝑚𝑐𝜃𝑚

] 
(27) 

where 𝜃𝑚 = 𝜃𝑚𝑒𝑎𝑛, 𝜑𝑚 = 𝜑𝑚𝑒𝑎𝑛, 𝜓𝑚 = 𝜓𝑚𝑒𝑎𝑛. 

 Orientation in static condition of sensors on the shank and on the thigh, has been referred to 

the GCS. Sensor that defined the GCS has been placed with the aim to orientate one of its axes almost 

parallel to the leg-model AoR, so that the plane identified from the other two axis, resulted the one 

where the FE movement was most. Matrix (28) and (29) describe the orientation of thigh and shank 

sensors placed with respect to the GCS, in static measurement. 

 𝑅𝑡ℎ𝑖𝑔ℎ𝑆𝑇
=  𝑖𝑛𝑣( 𝑅𝐺𝑆𝑇 

𝐸𝐹 ) ∙ 𝑅𝑡ℎ𝑖𝑔ℎ𝑆𝑇 
𝐸𝐹

 
𝐺  (28) 

 𝑅𝑡ℎ𝑖𝑔ℎ𝑆𝑇
=  𝑖𝑛𝑣( 𝑅𝐺𝑆𝑇 

𝐸𝐹 ) ∙ 𝑅𝑡ℎ𝑖𝑔ℎ𝑆𝑇 
𝐸𝐹

 
𝐺  (29) 

 

Similarly, the orientation of the sensors on the leg-model have been referred to the GCS for each instant 

of time of the dynamic measurements. 
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 [ 𝑅𝑡ℎ𝑖𝑔ℎ 
𝐺 ]

𝑖
= 𝑖𝑛𝑣 ([ 𝑅𝐺 

𝐸𝐹 ]
𝑖
) ∙ [ 𝑅𝑡ℎ𝑖𝑔ℎ 

𝐸𝐹 ]
𝑖
             𝑖 = 1, … , 𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (30) 

 [ 𝑅𝑠ℎ𝑎𝑛𝑘 
𝐺 ]𝑖 = 𝑖𝑛𝑣 ([ 𝑅𝐺 

𝐸𝐹 ]
𝑖
) ∙ [ 𝑅𝑠ℎ𝑎𝑛𝑘 

𝐸𝐹 ]
𝑖
            𝑖 = 1, … , 𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (31) 

 

Therefore, to calibrate dynamic trials, the obtained orientation of the sensors on the thigh and 

on the shank to the GCS have been pre-multiplied by the orientation matrix determined in static 

condition for the respective trial. This calibration procedure enables to consider orientation of the 

sensors relatively to their initial position. 

 [ 𝑅𝑡ℎ𝑖𝑔ℎ 
𝐺 ]

𝑖
= 𝑅𝑡ℎ𝑖𝑔ℎ𝑆𝑇 

𝐺 ∙ [ 𝑅𝑡ℎ𝑖𝑔ℎ 
𝐺 ]

𝑖
             𝑖 = 1, … , 𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (32) 

 [ 𝑅𝑠ℎ𝑎𝑛𝑘 
𝐺 ]𝑖 = 𝑅𝑠ℎ𝑎𝑛𝑘𝑆𝑇 

𝐺 ∙ [ 𝑅𝑠ℎ𝑎𝑛𝑘 
𝐺 ]𝑖             𝑖 = 1, … , 𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (33) 

 

Then to obtain the orientation of sensor on the shank to the sensor on the thigh, the relative 

rotation matrix has been determined, for each time frame: 

 𝑅 
𝑡ℎ𝑖𝑔ℎ

𝑠ℎ𝑎𝑛𝑘 = 𝑖𝑛𝑣 ([ 𝑅 
𝐺

𝑡ℎ𝑖𝑔ℎ]
𝑖
) ∙ [ 𝑅 

𝐺
𝑠ℎ𝑎𝑛𝑘]

𝑖
 (34) 

 

The obtained matrix has the same configuration reported on Xsens Manual and so the Euler 

angles, correspondent to segments relative orientation, have been calculated using equations (21), (22), 

and (23). Angles have been extracted for each instant to observe the variation during knee flex-

extension movement.  

A summary of the procedure described here is reported in figure 37. It has been applied both 

in preliminary tests to four configuration and in experimental tests to each set of sensors placed in 

configuration 1. 
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ORIENTATION FROM RAW DATA: IMUFILTER  

Moreover, raw data from accelerometer and gyroscope have been considered to calculate 

orientation from a post elaboration procedure. The aim was to achieve knee flexion-extension results 

in agreement with those obtained from Xsens, but starting from linear acceleration and angular velocity 

data. The raw data considered have been elaborated with imufilter Matlab function, that takes as input 

linear acceleration and angular velocity from sensor readings and output orientation and filtered 

angular velocity. The system object created by this function is an indirect Kalman filter, that uses a nine-

element state vector to track error in the orientation estimate, the gyroscope bias estimate and the 

Figure 37 block diagram of knee angle calculation from Xsens output orientation 
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linear acceleration estimate. The system object defined for this study had the properties resumed in 

table 9. 

Table 9 Imufilter properties 

PROPERTIES VALUES 

Sample Rate (Hz) Sensor measurement frequency: 50 

Decimation Factor Default: 1 

Accelerometer Noise (m/s²)² 0.0006 

Gyroscope Noise (rad/s) ² 0.0002 

Gyroscope Drift Noise (rad/s) ² Default: 3.0462e-13 

Linear Acceleration Noise (m/s²)² 0.0025 

Linear Acceleration Decay Factor Default: 0.5 

Initial Process Noise (Matrix 9x9) Default 

Orientation Format Rotation Matrix 

 

The first 9 columns in the Xsens rotation matrix output mode (table 8) contain linear 

acceleration, angular velocity, and magnetic field measurement, in three directions of the SCS.  As well 

as for orientation matrix, also for raw data it is possible to know values for each instant of time (in rows), 

so as to be able to evaluate the trend in time. Indeed, imufilter allows to reconstruct the orientation 

matrix for each instant starting from linear acceleration and angular velocity data. Therefore, the 

purpose is to obtain rotation matrix similar to the ones directly output from sensors filter and calculate 

flex-extension angle with the same procedure related before. 

To calibrate measurements, sensors orientation during dynamic trials have been referred to the 

static orientation, as in the previous procedure. As static reference, firsts 15 samples of record were 

considered to calculate an averaged orientation matrix. From static period, the mean value of 

acceleration and angular velocity have been computed. 

𝑎𝑐𝑐𝑆𝑛,𝑚𝑒𝑎𝑛 =
∑ [𝑎𝑐𝑐𝑆𝑛 ]𝑖

𝑁′
𝑖=1

𝑁′
 

𝑖 = 1, … , 𝑁′𝑠𝑡𝑎𝑡𝑖𝑐 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (21) 

𝑔𝑦𝑟𝑆𝑛,𝑚𝑒𝑎𝑛 =
∑ [𝑔𝑦𝑟𝑆𝑛 ]𝑖

𝑁′
𝑖=1

𝑁′
 

 (22) 

 

𝑎𝑐𝑐𝑆,𝑚𝑒𝑎𝑛 and 𝑔𝑦𝑟𝑆,𝑚𝑒𝑎𝑛 values have been used as input in imufilter function, obtaining a unique 

orientation matrix, relative to the static record. This procedure has been repeated for any sensor, 

obtaining a static matrix describing the orientation the earth fixed coordinate system with respect to 



60 
 

the sensor system. As well as in previous descripted procedure, to define relative orientation between 

shank and thigh, matrixes that expressing orientation of SCS to ECS are needed. Therefore, imufilter 

output matrixes have been inverted obtaining 𝑅𝑡ℎ𝑖𝑔ℎ𝑆𝑇 
𝐸𝐹 , 𝑅𝑠ℎ𝑎𝑛𝑘𝑆𝑇 

𝐸𝐹 ,  and 𝑅𝐺𝑆𝑇 
𝐸𝐹 .  

 Then orientation in static condition, of each sensor attached on a body segment, has been 

referred to the static GCS, by pre-multiplication to the static matrix of the fixed sensor. (equation 29 

and 30) 

As regards dynamic trials, for any instant, acceleration and angular velocity vectors have been 

input in imufilter function, that calculates the correspondent orientation. Also, these matrixes have 

been inverted to obtain orientation of SCS to ECS. Then the orientation of sensor on the thigh and on 

the shank were referred to the GCS.  (equation 31 and 32) 

Therefore, for each sensor, orientation during dynamic measurement, expressed in GCS, has 

been calibrated with respect orientation in static condition, also in GCS. For achieve this result, the 

dynamic rotation matrix relative is pre-multiplied, at any instant of time, by the static rotation matrix. 

(equation 34) 

As well as for matrix output from Xsens, knee angles were extracted from rotation matrix obtained, 

describing relative orientation between thigh and shank. Convention declared by the Xsens manual was 

considered and Euler angles were calculated with equations (21), (22), (23). This procedure is summed 

up in figure 38. 
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To improve knee flex-extension results achieved, parameters of the implemented filter could 

be modified to identify a better performance. So, the Matlab function tune has been used to 

automatically adjust the properties of the imufilter to reduce estimation error. The function fuses the 

sensor data to estimate the orientation and uses the comparison to the orientation considered as 

reference, means orientation output from Xsens algorithm, to enhance estimation. Tune consists of an 

Figure 38 Block diagram of process to estimate knee angles from raw data. 
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optimization algorithm, that utilises as initial condition the property values in the imufilter implemented. 

Parameters optimized with this function are accelerometer noise, gyroscope noise, gyroscope drift 

noise, linear acceleration noise and linear acceleration decay factor. The function computed a hundred 

iterations, five iteration for twenty cycles. 

Sensor orientation has been estimated again with filter updated with tuned parameters. As with 

initial filter, raw accelerometer and gyroscope data were input in the filter and angle between thigh and 

shank has been estimated as descripted before. Figure 39 is an infographic of this procedure. 

 

  

Figure 39 Block diagram tune functioning 
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4. RESULTS 

4.1 PRELIMINARY TESTS 

First tests performed aimed to evaluate two aspects: (i) the best sensors’ configuration and (ii) 

testing the manufactured silicone implants.  

The 2D evaluation of knee FE angle, defined with Kinovea, were used to monitor the trend of 

the angle of interest, on the approximate sagittal plane. Angle values obtained with Kinovea tracking, 

depend greatly on point tracked position, are influenced by camera position, from which depends the 

orientation of the plane which calculation are done on. Nevertheless, with the necessary measures, 

good results can be achieved and can be used to monitor knee flexion-extension movements. So, angles 

estimated from Xsens output orientation, have been compared with Kinovea angles. Graphics (figures 

40-43) show angles referred to respective firsts static samples averaged values.  Time axis cannot be 

overlapped since sensor and camera registration were not synchronized. 

 

 

 

  

Figure 40 Knee angle estimated with Kinovea track (left) and with Xsens algorithm (right). configuration 1 
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Figure 41  Knee angle estimated with Kinovea track (left) and with Xsens algorithm (right). configuration 2 

Figure 42 Knee angle estimated with Kinovea track (left) and with Xsens algorithm (right). configuration 3 

Figure 43 Knee angle estimated with Kinovea track (left) and with Xsens algorithm (right). configuration 4 
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Overall, it could be observed that Xsens algorithm is able to output orientation data that allow to 

estimate pretty correctly knee FE angle values. Indeed, for three out of four configuration 

(configurations 1,2,3), a sinusoidal trend, with an amplitude of approximateli 90°, has been obtained. 

Only with sensors places in configuration 4,  the angle of interest results underestimated. Since this is 

the unique configuration in which sensor on the shank was placed lateral side instead of on the tibial 

plateau. The different performance could be due to the shank sensor position. Configuration 2 and 3 

leads to estimate the angle with opposite direction of rotation, to the expected one.  

 To asses quantitatively difference in angle estimated with the two methods, range of motion 

(ROM) of the flex-extension movement has been calculated. First, the ROM values for each cycle have 

been compared. Then, both for Kinovea and Xsens data, the mean value and the standard deviation 

parameter have been derived. Finally, the difference of the two means was calcolated for each 

configuration. Table 10  summarizes the numerical values considered.  

 Bar plots in figure 44 compare ROM values, showing mean values and standard deviation 

interval for any configuration. Overall Xsens algorithm appears to output sensors’ orientation that lead 

to underestimated knee angle amplitude. Nevertheless, barring configuration 4, differences between 

Kinovea mean and Xsens mean values, in any configuration, are below 15°. So, discrepancies can be 

considered acceptable, allowing to confirm that Xsens algorithm is reliable also in presence of the 

implants to simulate soft tissues and to assess that angle estimation procedure is appropriate. 

Therefore, the preliminary tests allow to identify the configuration 1 as the best configuration for the 

next test phase. 
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Table 10  Knee angle minimum and maximum values estimated by Kinovea (K) and Xsens (X) for each cycle, for any configuration. For each configuration  maximum, minimum and ROM value 
for each cycle and relative mean and standard deviation values. 

  

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 

Mean ROM ± Dev.St 

ROM 

(°) 

|Mean ROMK 

– mean 

ROMX| 

(°) 
Configuration  K X K X K K K X K X K X 

1 

Max 21.4 46.2 23.2 47.9 22.6 48.7 11.8 47.6 21.5 38.8 
  

 

Min -85.1 -46.1 -83.8 -46.2 -84.0 -46.6 -80.8 -46.3 -82.9 -46.9  

ROM 
94.7 85.7 102.3 93.9 106.6 95.3 107.0 93.1 106.4 94.1 

104.9 ± 

5.3 
92.4 ± 3.8 12.5 

2 

Max 3.4 83.4 8.1 83.1 8.2 83.7 8.8 83.7 7.9 83.5    

Min -91.4 2.5 -92.6 -1.6 -91.5 -1.8 -91.7 -2.6 -90.6 -0.5    

ROM 97.9 86.3 99.8 84.0 99.0 85.6 100.1 84.6 94.1 81.0 98.8 ± 2.4 84.3 ± 2.1 14.5 

3 

Max 5.4 65.9 5.8 66.5 5.7 66.7 4.2 66.1 5.7 66.2    

Min -92.8 -32.4 -92.9 -33.8 -92.8 -32.9 -92.5 -32.9 -93.4 -34.2    

ROM 
99.8 99.6 97.3 100.8 99.2 99.8 99.3 101.2 98.8 99.6 99.5 ± 0.4 

100.2 ± 

0.7 
0.7 

4 

Max -4.7 9.7 0.6 9.1 1.7 11.7 2.8 6.2 -2.7 -68.0    

Min -95.7 -66.7 -96.3 -67.1 -96.1 -67.2 -96.0 -67.1 -96.3 -68.0    

ROM 
102.5 64.7 107.7 67.1 105.2 69.3 105.9 68.2 97.1 61.4 

104.1 ± 

4,1 
66.1 ± 3.1 38.0 
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Walking test has been carried out to evaluated the estimation of knee angles in presence of 

simulated soft tissues, during a real gait movement with sensors placed in configuration 1. Knee angle 

has been calculated from Xsens output orientation, with the same procedure utilised for precedent test 

on leg model.  So also in this case orientation of sensors on the thigh and on the shank have been 

referred to the laboratory fixed refernce sensor. The walk was carried out with a trajectory 

approximately parallel to the X axis of the laboratory GCS, but with opposite direction, as subject feet 

point negative X axis. Consequently, the Y axis is positive pointing from medial to lateral side of the right 

leg on which sensors are attached. For this reason, the flexion movement is represented as a negative 

rotation, while extension has positive value. 

Figure 44 Comparison between Kinovea (green) and Xsens (red) ROM absolute value for each cycle of flex-extension 
movement. Mean value (continuous line) and standard deviation (broken lines) on all cycles are represented. 
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Knee angle estimated in this trial (figure 45) has an average ROM value of (49.2±6.3)° (table 11). 

Angle graphic shows a periodical trend with a higher frequency compared with precedent trial, 

compatible with a faster movement performed. The shape of the signal differs a little from the knee 

angle standard one. Leaving aside possible specific characteristics of the subject walk, anomalies could 

be due to the coordinate system to which measurement are referred, since real functional axes of the 

joint are not being involved. However, it can be stated that also during a real gait, sensors and angle 

estimation procedure are suitable, even in presence of simulated soft tissues. 

 

 

 

Table 11 Knee range of motion during walk trial 

 ROM (°) 
Mean ROM ± Dev.St ROM 

(°) 

CYCLE 1 2 3 4 5 6 7 8  

 34.3 51.6 48.9 52.7 54.1 50.6 51.8 49.3 49.2 ± 6.3 

 

 

Figure 45 Knee angle during walk trial, in presence of simulated soft tissues 



69 
 

4.2 EXPERIMENTAL TRIALS 

4.2.1 XSENS RESULTS 

For the next phase, sensors were attached to the leg both with and without implants, to better 

compare measurement in presence of soft tissues. Indeed, it allows to compare Xsens measurement in 

presence of soft tissue artifact, with the same Xsens algorithm’ result in case of soft tissue absence. So, 

for these tests, angle estimated from sensors on the rigid part of the leg model were considered as the 

“real values” and the distance from them was evaluated for angles estimated from sensors fixed on the 

implants. 

Angles estimated with Xsens orientation output, from the two sensors set (on the rigid part or 

on the implant) have been directly compared on the same graphic, since they regard the same 

performed movement. Comparison has been assessed for horizontal trial (trial 1, figure 46) and also for 

a vertical trial (trial 2, figure 47), that better approximates the walk movement. Graphic generated 

indicate a really good match of the two angle signals in trial 2, while for trial 1 measurement with sensors 

on the implants do not reaches the peaks values measured by sensors on the rigid part. The inversion 

of the peak observed could be related to the oscillatory movement due to the silicone implant presence. 

It could be more evident in trial 1, where the thigh segment is held fix in a more stable way, making the 

silicone oscillation freer. It is possible that in trial 2, where the thigh segment was kept steady holding it 

in hands, the silicone implant followed more the leg-model movement, without suffering a “recoil”. In 

addition, compared to previous tests in which this behaviour was not observed in configuration 1, the 

different way in which implants and sensors were attached can be considered. In the firsts tests silicone 

was less free to oscillate as held by sensors band. 

It also can be observed that, for both trials, while for the first cycles the two signals are almost 

perfectly overlapped, towards the end the matching decreases. Signals compared are affected by 

different drift errors that are better corrected at the beginning of the measurements. 
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Figure 276 Comparison between knee angle estimated by sensors on the implants and 
sensors directly on the rigid leg surface. (Trail 1) 

Figure 47 Comparison between knee angle estimated by sensors on the implants 
and sensors directly on the rigid leg surface. (Trail 2) 

 



71 
 

Angular signals analysed in the two trials have been compared quantitatively with RMSE (Root 

Mean Square Error) parameter that indicates the mean discrepancy between the values of angle 

calculated from sensors on the implant measurement and of angle from sensors on the rigid part. RMSE 

results are reported in Table 12.  

 

 

 

 

𝑅𝑀𝑆𝐸 =
√∑ (𝜗𝑖,𝑖𝑚𝑝𝑙𝑎𝑛𝑡 − 𝜗𝑖,𝑟𝑖𝑔𝑖𝑑𝑝𝑎𝑟𝑡

)
2

𝑁
𝑖=1

𝑁
            𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 

 

(35) 

Table 12 RMSE between measurement of the two set of sensors utilized, for trial 1 and trail 2. 

 T1 T2 

RMSE (°) 17.2 5.4 

 

 Obtained values verified what expected, since in trial 1 RMSE results higher demonstrating a 

worse match between measurement. Moreover trial 2 has a low RMSE, confirming that, at least for 

vertical trial, the Xsens algorithm results reliable despite of soft tissue artifact influence. 

  

4.2.2 IMUFILTER RESULTS 

Furthermore, the imufilter Matlab function has been utilised to evaluate the orientation 

measurement from raw data of accelerometer and gyroscope.  Parameters of the implemented filter 

have been tuned by tune Matlab function, as described. Knee angle has been calculated before and 

after parameters tuning. If sensors orientation obtained with imufilter untuned do not allow to calculate 

a realistic angle value, tuned parameters lead to significantly better results. Knee angles derived from 

Xsens algorithm and from imufilter untuned and tuned have been compared in a unique plot, both for 

sensors directly attached to the leg and for sensors on the silicone implants (figures 48-51).  

Angles calculated for the trial 2 can be considered a good result since signals have similar 

shapes, differing for amplitude of the wave. In addition, as expected, imufilter tuned lead to an 

intermediate value of the knee angle, closer to the Xsens result than imufilter untuned one. On the 

contrary, in the trial 1, untuned imufilter does not allow to achieve a realistic flex-extension angle. With 

tuned imufilter a signal similar to Xsens angle is obtained, but with opposite values. This aspect cannot 

be considered totally negative, because if imufilter signal was inverted, it would match rather with Xsens 

signal. The opposite sign of the angle may be due to the behaviour in the static condition to which the 

dynamic orientation is referred.  
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Figure 48 Comparison of knee angle obtained with Xsens algorithm, 
imufilter function untuned and tuned, for sensors on the rigid part. Trial 1 

Figure 49 Comparison of knee angle obtained with Xsens algorithm, 
imufilter function untuned and tuned, for sensors on the implants. Trial 

 



73 
 

 

 

 

Figure 50 Comparison of knee angle obtained with Xsens algorithm, 
imufilter function untuned and tuned, for sensors on the rigid part. Trial 2 

Figure 51 Comparison of knee angle obtained with Xsens algorithm, 
imufilter function untuned and tuned, for sensors on the implants. Trial 2 
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 Fast trials (figure 52-55) carried out both in horizontal and in vertical position lead to similar 

considerations of trials at normal speed. Indeed, also for fast trials, differences related to the type of 

movement can be found. Moreover, application of imufilter tuned enhance results particularly in 

presence of simulated soft tissue. However, what is worth considering is the comparison between 

correspondent trials at different velocities. Specifically, it can be observed that in fast trials knee angle 

does not result negative, in opposition to the expected value. Instead, an anomalous shape is observed 

for the trial 2, for the angle derived from sensors on the rigid leg surface, while sensors on the implants 

maintain an attitude similar to that of the trial at normal speed. Focusing on the measurement of the 

fast trial 2 relative to sensor on the rigid part, it can also be noticed that imufilter untuned leads already 

to a signal really matching with Xsens angle. Maybe for this reason the tuning of parameters gets worse.  

So, it can be assumed that the velocity of the movement influenced the imufilter performance 

and that, overall, a faster movement lead to better results. However, it needs to consider the variability 

of each trial, since also other environmental variables can affect measurements. Next experimental tests 

concern only the slow trials to decrease the number of variables and focus on filter characteristics.  

  

 

Figure 52 Knee angle from orientation output of Xsens, imufilter 
untuned and imufilter tuned of sensors on rigid part. Trial 1 fast 
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Figure 53 Knee angle from orientation output of Xsens, imufilter 
untuned and imufilter tuned of sensors on implants. Trial 1 fast 

Figure 54 Knee angle from orientation output of Xsens, imufilter 
untuned and imufilter tuned of sensors on rigid part. Trial 2 fast 
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So, fot the slow trials, the distance between the imufilter orientation output (both tuned and 

untuned) from aimed orientation (obtained with Xsens) has been calculated, with ad apposite Matlab 

function, to quantitatively understand derived graphics of the knee angle (figures 48-51). These distances 

have been compared both for sensors on the implants and for sensors on the rigid part (figures 56-659). 

For the graphics of the trial 2, on which the imufilter works better, the tuned distance appears 

significantly lower than untuned distance. A trend is observed in all graphics, representing increasing 

error during the time, that is in agreement with what observed in precedent plots. 

Figure 55 knee angle from orientation output of Xsens, imufilter 
untuned and imufilter tuned of sensors on implant. Trial 2 fast 

Figure 56 Orientation error: tuned and untuned filter output 
comparison, for set of sensors on the rigid leg surface. Trial 1 
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 Figure 57 Orientation error: tuned and untuned filter output 
comparison, for set of sensors on the rigid leg implants. Trial 1 

 

Figure 58 Orientation error: tuned and untuned filter output 
comparison, for set of sensors on the rigid leg surface. Trial 2 
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The Root Mean Square (RMS) of the distance considered have been determined. RMS 

parameter gives a measure of the estimation error with respect to the orientation computed from the 

Xsens algorithm. Obtained values are resumed in table 13. 

 
𝑅𝑀𝑆 = √

∑ 𝑑𝑖
2𝑁

𝑖=1

𝑁
 

 

𝑁 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

𝑑 = 𝑂𝑋𝑠𝑒𝑛𝑠 − 𝑂𝑖𝑚𝑢𝑓𝑖𝑙𝑡𝑒𝑟 

𝑂 = 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 

(36) 

    

The assessment of the RMS parameter allows to observe a lower estimation error for the trial 

2 in any considered condition, since RMS values are significantly smaller than those of the trial 1. For 

the trial 2 it also possible to check that for tuned filter the difference between RMS values for sensor 

without and with implants under is less than that obtained with the untuned filter. For each trial, for 

both sensors on implants and on the rigid leg, the imufilter tuned corresponds to a lower RMS value 

compared to the corresponding RMS from the untuned filter.  

 

 

 

 

Figure 59 Orientation error: tuned and untuned filter output 
comparison, for set of sensors on the implants. Trial 2 
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Table 13 rms values of sensor orientation calculated with tuned and untuned filter. 

 

 

 

 

 

 

Therefore, the performances of imufilter untuned and tuned in absence or in presence of 

simulated soft simulated soft tissues are compared. Knee angles obtained with both sets of sensors 

have been plotted on the same graphic as for Xsens initial considerations (figure 60-63). RMSE 

parameter has been determined to evaluate the difference between the two angular signals (table 

14). 

 Table 14 RMSE between knee angle estimated from imufilter untuned and tuned output, of the two set of sensors utilized, for 
trial 1 and trail 2. Imufilter tuned result compared to those obtained from Xsens measures. 

 

 

  

RMS (°) 

T1 
imufilter 

untuned 

imufilter 

tuned 
 T2 

imufilter 

untuned 

imufilter 

tuned 

IMPLANT 67.4 95.5  IMPLANT 28.8 26.7 

RIGID PART 59.7 86.8  RIGID PART 33.9 26.9 

RMSE (°) 

 T1 T2 

Xsens 17.2 5.4 

Imufilter untuned 15.5 4.8 

Imufilter tuned 22.5 9.9 
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Figure 60  Comparison between knee angle estimated by sensors on the implants and sensors 
directly on the rigid leg surface, from imufilter untuned orientation estimation. (Trail 1) 

Figure 61  Comparison between knee angle estimated by sensors on the implants and sensors 
directly on the rigid leg surface, from imufilter untuned orientation estimation. (Trail 2) 
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Figure 62 Comparison between knee angle estimated by sensors on the implants and sensors 
directly on the rigid leg surface, from imufilter tuned orientation estimation. (Trail 1) 

Figure 63 Comparison between knee angle estimated by sensors on the implants and sensors 
directly on the rigid leg surface, from imufilter tuned orientation estimation. (Trail 2) 
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RMSE values comparing sensors on rigid leg and on implant calculated from imufilter untuned are 

lower than those calculated from Xsens. It means that the presence of silicone implants does not 

particularly affect the filter performance. However, considering precedent observations, since this filter 

does not lead to a good angle estimation, a low RMSE value is a side aspect. 

Instead, RMSE comparing sensors on rigid leg and on implant estimated from imufilter tuned 

result greater than those obtained from Xsens orientation output. Indeed, as it can be observed from 

graphics regarding Xsens measurements (figures 46,47), except for the peaks value, the two signals 

match rather well. The advantage of imufilter tuned is that the orientation of the sensor at the end of 

the flexion/extension movement seems to be better estimated, since relative knee angle signals better 

represent the peak trend. Nevertheless, RMSE values result higher because two signals in figures 63 are 

never as overlapped as are those related to Xsens measures in some intervals. So, although the 

numerical values do not confirm the improvement in the angle estimation, it is worth considering the 

contribution of imufilter tuned, in addition to Xsens algorithm. 

 

The imufilter tuned performance depends on the initial parameters considered for the imufilter 

implementation. Variables optimized by tune function are measures of noises variance tolerated by the 

filter, that define filter accuracy. So, to achieve better results, initial parameters have been changed 

examining different combinations. Actually, an improvement has been found by increasing noises 

values, as if the initial implemented filter was too filtering, also in agreement with the obtained lower 

amplitude values. It is possible that since Xsens sensors tolerate a greater noise than imufilter 

implemented, increasing noise parameters values, the new implemented filter results more similar to 

Xsens algorithm.  It could also be considered that a coarser filter allows to obtain less oscillating 

orientation values better describing the orientation trend.  

To evaluate knee angles obtained with parameters variations and compare them to precedent ones, 

the RMS value on the distance from Xsens orientation output has been calculated both for untuned and 

tuned imufilter orientation outputs. A resume of attempted parameter changes, and derived RMS values 

is presented in table 15. 

RMS defines the discrepancy between the imufilter output and the Xsens orientation output, that 

has been considered the gold standard for these trials. However, the study tries also to understand if 

using imufilter could improve the Xsens algorithm downside, that mainly regards the peaks trend of the 

knee angle derived from sensors on the implants. To evaluate this aspect, the RMSE between angle 

signals obtained from sensors attached with or without the silicon implant under them has been 

considered for any filter implementation (table 16). 
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Table 15 RMS between distance of imufilter tuned or untuned to Xsens orientation. (p=implant, r=rigid part, u=untuned, 

t=tuned) 

RMS (°) 

 
default v1 v2 v3 v4 

Gyroscope noise 

(rad/s) ² 
0.0002 0.002 0.0002 0.0002 0.002 

Accelerometer noise 

(m/s²) ² 
0.0006 0.0006 0.006 0.0006 0.006 

Linear acc. Noise 

(m/s²) ² 
0.0025 0.0025 0.0025 0.025 0.025 

      

 u t u t u t u t u t 

T1 
p 67.4 65.1 55.5 33.9 66.2 114.4 65.1 45.6 59.8 37.0 

r 59.7 54.8 30.1 14.7 47.6 93.4 23.5 30.1 18.6 13.9 

 u t u t u t u t u t 

T2 
p 28.8 26.7 21.8 20.4 27.6 26.0 27.5 116.7 22.0 14.1 

r 33.9 26.9 25.1 29.1 30.4 26.8 23.0 20.1 19.4 30.3 

 

 

Table 16 RMSE between angle signals derived from sensors on the implants and from sensors on the rigid part. (v1, v2. v3, 
v4 refer to parameters variation described in table 14) 

RMSE (degree) 

 Xsens imufilter tuned 

  default v1 v2 v3 v4 

  u t u t u t u t u t 

T1 17.19 15.5 22.5 7.4 17.2 10.8 14.0 18.4 7.6 16.6 14.7 

T2 5.38 4.8 9.9 3.0 10.9 4.0 11.9 2.5 12.0 2.2 9.9 

 

 In first filter variations, one parameter at a time has been modified to understand which type 

of result it influenced. Overall, any considered parameter modifications allow to achieve a minor 

distance from Xsens orientation for sensors placed on the rigid surface of the leg model and also for 

almost all measurements from sensors on implants. Variation of gyroscope noise (v1) leads to a 

significant reduction of RMS for both tuned and untuned orientation, and for both trials. Instead, 
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increasing the linear acceleration noise, result in a greatly reduction of difference between 

measurements of sensors on implants and sensors on rigid part, for the trial 1; unfortunately, this filter 

makes worse performance for the trial 2. 

 Then a fourth attempt was considered, combining all the previous tests and modifying all the 

parameters at the same time. The filter implemented with these parameters seems, on the whole, to 

lead to the best results. Therefore, knee angles obtained with sensor tuned orientations, have been analysed 

comparing them to untuned relative orientation and Xsens orientation. Figures 64-67 show the graphics that 

compare the three angles, updated in agreement with the new imufilter implemented.  

 

 

 

 

 

 

 

 

Figure 64 knee angle from Xsens, imufilter v4 untuned and tuned comparison. 
Trial 1, sensors on rigid part 
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 Figure 65 Knee angle from Xsens, imufilter v4 untuned and tuned comparison. 
Trial 1, sensors on implants 

Figure 66 knee angle from Xsens, imufilter v4 untuned and tuned comparison. 
Trial 2, sensors on the rigid part 
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Graphics in figures 68-71 represent the distances between the orientation output from imufilter 

tuned and untuned, and the Xsens orientation estimation. As expected, based on RMS values calculated, 

distance from Xsens orientation is evidently smaller than in precedent graphics, especially for the trial 

1. 

 

 

Figure 68 imufilter v4 tuned vs untuned orientation distance from Xsens 
orientation output. Trial 1, sensors on the the rigid part 

Figure 67 knee angle from Xsens, imufilter v4 untuned and tuned comparison. 
Trial 2, sensors on the implants 
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Figure 69 29 imufilter v4 tuned vs untuned orientation distance from 
Xsens orientation output. Trial 1, sensors on the implants 

Figure 70 imufilter v4 tuned vs untuned orientation distance from Xsens 
orientation output. Trial 2, sensors on the rigid part 
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As it could be already deducted from RMS values, tune imufilter in this case has a better 

performance on the trial 1. Indeed, it starts from a worse untuned orientation, resulting in angle signal 

more distant from the Xsens goal, and it achieves angles really similar to the ones of Xsens after the 

tuning of parameters. Imufilter tuned applied to sensors on the implant in the trial 1 also allows to 

reconstruct the peak trend.  

Instead, in the trial 2 the tuning of the filter parameters leads to a worse result, as the angle 

obtained from the orientation output by imufilter tuned gets away from the Xsens angle estimated. 

From this observation it is possible to consider that the type of movement carried out influenced the 

tuning of the parameters. So, to achieve better results, depending on the movement, it would need to 

set different initial parameters of the imufilter implemented. 

Finally, the influence of the simulated soft tissues has been evaluated also for imufilter 

implemented with the described variation (v4). Figures 72-75 show signals directly compared. RMSE 

values calculated before (table 16) indicate that utilizing imufilter tuned v4, in addition to Xsens 

algorithm, similitude between signals is greater. This observation leaves to deduce a lower dependence 

of imufilter tuned from the simulated soft tissue artifact. 

 

Figure 71 imufilter v4 tuned vs untuned orientation distance from Xsens 
orientation output. Trial 2, sensors on the implants 
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Figure 72  knee angle estimated from orientation output by imufilter (v4) untuned. 
comparison between measurement from sensors on the rigid part and on the 

Figure 73  knee angle estimated from orientation output by imufilter (v4) untuned. comparison 
between measurement from sensors on the rigid part and on the implants. Trial 2 
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Figure 75 knee angle estimated from orientation output by imufilter (v4) tuned. comparison 
between measurement from sensors on the rigid part and on the implants. Trial 2 

Figure 74 knee angle estimated from orientation output by imufilter (v4) tuned. comparison 
between measurement from sensors on the rigid part and on the implants. Trial 1 
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5. CONCLUSIONS 

 

The aim of this thesis was the measurement of the knee angle using IMU sensors in presence 

of soft tissue. A literature review was carried out to define the state of the art reducing the influence of 

the soft tissue artifact on the human movement analysis. Indeed, optoelectronic systems represent the 

gold standard that is usually adopted and on which most of the studies have been carried out. IMUs 

represent an emerging technology with numerous advantages that can be exploited to obtain promising 

results. The conducted literature research also moved to deepen the use of inertial sensors on 

overweight children for gait analysis, since the purpose of this work was to focus on this category. When 

children are involved, some extra measures should be taken into account, considering that standard 

protocols could be not usable due to different body dimension or to less collaborative response. 

More in detail, this work consists in a pilot study focused on the estimate of the angle between 

two body segments starting from orientation data of the sensors on them. Accordingly, experimental 

tests of flexion-extension movements were performed on a leg-model with a polycentric knee, by 

positioning inertial sensors both directly on the rigid part and on silicone implants simulating soft tissues 

behaviour. 

Preliminary tests carried out with the thigh segment in a horizontal position aimed to evaluate 

four different configurations of sensors placement and to identify one of them for subsequent tests. 

The selected configuration provided that the sensor on the thigh was attached on the lateral side and 

the sensor on the shank was placed on the tibial plateau. Moreover, these initial tests intended to verify 

the process utilized to estimate angle between two sensors, having as input their orientation with 

respect to the global coordinate system. In addition, these first tests also assessed the reliability of the 

Xsens algorithm in presence of simulated soft tissue. Obtained angle signals were compared to angles 

derived from a 2D evaluation of the movement with Kinovea software. Overall, preliminary tests allowed 

concluding that the angle estimation process is able to output realistic results, at least in terms of 

amplitude, and that Xsens measures are not too disturbed by silicone implants effects. Positive angle 

obtained with two of the configurations may be dependent by sensors positioning, but it is also possible 

that the estimation procedure is not suitable for any position of the sensors.  

Another preliminary test conducted on a participant consisted in a walking trial.  Sensors were 

positioned according to the configuration 1. Results lead to assume that the angle estimation procedure 

and the Xsens orientation output, in presence of simulated soft tissue, work well. 
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 The effective experimental tests consisted in performing flexion-extension movements on the 

leg-model. Two different trials were carried out, by positioning the leg both horizontally and vertically. 

In both trials, two sets of sensors were placed contemporarily on the leg-model, one on silicone implants 

and one fixed on the rigid model. This configuration allows to directly compare measurements of the 

two sets, highlighting the soft tissue effects, that resulted more evident for the trial 1, where the RMSE 

value between the two compared signals was greater. 

 Then, a sensor fusion procedure was considered to estimate sensors orientation from 

accelerometer and gyroscope data. The imufilter Matlab function was utilized to create an object system 

based on the inverted Kalman filter, from which the orientation value can be obtained. To assess the 

suitability of the implemented filter, angles extracted with the precedent procedure were compared to 

angles obtained from Xsens output orientation. In addition, imufilter parameters were optimized with 

tune Matlab function, to improve results with respect to the Xsens ones. From these tests, it can be 

assumed that imufilter tuned could improve results in some case, depending on the performed type of 

movement. 

 To make the filter more suitable for sensors characteristics, initial properties of imufilter were 

manually varied to find a combination that leaded to better results. So, a different imufilter untuned 

and tuned were created and used to estimate sensors orientation. The knee angles calculated with this 

filter are similar to the Xsens results, meaning that the crated imufilter has a good reliability. Indeed, the 

use of imufilter tune allows in some trials to better reconstruct the shape of peaks. Difference of 

performance were noticed particularly for angles estimated by sensors on silicone implants.  

So, it is worth considering the use of imufilter tune in addition to Xsens algorithm, for 

measurement of overweight subject, to achieve better results. A future improvement in this direction 

could be obtained by defining imufilter parameters directly providing a greater performance, without 

the need to a post-processing with tune function and without a dependence from the Xsens algorithm.   
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