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Introduction

This study describes a method to perform an image to image translation by means
of a deep generative model. Its purpose is to obtain, from abdomen CT images
with no contrast, contrast enhanced CTs and vice versa.
The entire study was carried out through a six-month internship in Paris at the
Ecole Nationale Supérieure des Télécommunications (TELECOM Paris), in the
department of Image, Data, Signal (IDS). The medical images are obtained from
different databases that are available online, and they specifically analyse only the
abdominal component of patients, from the lungs to the femoral head.
In particular, the generative model is composed of Cycle Consistent Adversarial
Networks (called CycleGAN), whose main properties are based on the recent model
described by Zhu et al. [1]. Where they describe two generators, based on deep
neural networks, able to generate new images starting from two unpaired sets of
images with different characteristics.
One of the main problems related to medical imaging is the small number of images
in the databases, provided by hospitals or available online in open-access, which is
usually not enough to accurately train deep learning methods. The lack of large
data-sets in medical imaging, with respect to other branches of Computer Vision,
is due to the fact that acquiring medical images is usually expensive and difficult
and that in many cases images can not be distributed in open-access for privacy
reasons. To help identify pathologies, doctors often inject a contrast agent, e.g. io-
dine or barium-based, which is absorbed and then evacuated by the body. Injected
images better highlight the interface between different tissues and structures (e.g.,
kidney/tumor), facilitating the identification of possible pathologies in the patient
and are therefore usually preferred to non-injected images for segmenting anatom-
ical organs for surgery planning or research purposes. Unfortunately, however, for
many patients the use of contrast agents is not always viable due to the possiblility
of complications: such as allergic reactions or chronic pathologies [2]. This obvi-
ously makes it more difficult to diagnose the disease and limits the production of
certain types of images. For this reason, this study describes a method where we try
to artificially generate medical images with the contrast, even though it had never
been injected into the patient. In particular, CT images can be improved through
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Introduction

the insertion of contrast agent in different phases: in this study we focused on im-
ages acquired in the early-arterial phase. At the same time we apply the inverse
transformation, obtaining contrast-free CT images, which can be used to increase
the number of available data sets with images that have an excellent ground truth.
The translation is done by using only healthy patients, to we prevent the genera-
tion of artefacts of any pathologies, such as thrombosis or stenosis. These are only
visible in the images with contrast inserted, because in the image without contrast
there is greater homogeneity between different anatomical structures. Hence the
generation of pathological elements may be difficult for a doctor to interpret. The
use of databases with patients with pathologies may be the baseline for a future
study.
The first chapter briefly describes the type of medical image used in this study; the
technology with which it is obtained and its main characteristics. The importance
of the use of contrast agents for medical treatment is also explained in more detail,
as well as the main problems that may prevent their use.
The second chapter describes the main instruments used for the study: starting
from the theory behind machine learning, up to the characteristics and advantages
of Deep learning, where some of the main neural network models and generative
models currently used, such as the GAN and CycleGAN, are described.
In the third chapter, the most recent studies, where a Generative Adversarial Net-
work (and its variants) has been used to obtain new medical images, are detailed.
Particular attention is given to the CycleGAN, which seems to be well suited for
the goal of this project.
In the fourth chapter, we describe the employed data-sets and all the pre-processing
steps we proposed.
The fifth chapter describes in details the proposed method which is based on the
well-known CycleGAN architecture. We highlight the main features and different
steps to improve the quality of the data generated.
The sixth chapter describes the methodology with which the results obtained were
evaluated, from a qualitative and quantitative point of view, and the parameters
with which they were evaluated. In the final part, comments on the implemented
generative model are elaborated from the results acquired, describing possible fu-
ture implementations with this technology and also analysing new possible improve-
ments that can be applied to the study.
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Chapter 1

Biomedical Aspects

First of all, this chapter describes the Computed Tomography and how it is able to
produce medical images for diagnostic applications, which were the fundamental
data on which the entire study was built. It is then described how the contrast
agent act and how it promote the visualization of biological tissues, providing bio-
chemical information on different organs and their performance. In the third and
final section, the use of CT images to diagnose abdominal organ pathologies is
described.

1.1 Computed Tomography

Computed Tomography (also known simply as CT) is a diagnostic imaging tech-
nique. It was born and diffuses thanks to its capacity to overcome the limitations of
traditional radiography. CT in particular, allows to discriminate tissues, with very
close attenuation coefficients and to display 3D volumes with an high resolution.
The principle for the calculation of the attenuation coefficients is based on Lambert-
Beer’s law, which relates the variation in the number of photons belonging to radius
X, after hitting a material, with a specific linear attenuation coefficient:

N = N0e
−µx (1.1)

Where N0 represents the number of photons striking the material, while N repre-
sents the attenuation after they have passed through it. The attenuation coefficient
is indicated by µ, and x represents the space covered in the material.
The image is obtained with an X-ray tube, that can produce a beam of X-rays
and a group of detectors, whose disposition and number can vary depending on
the generation of the machine, which are used to deduce the density of the tissues
affected by the photons of the X-rays. In fact, at the beginning the machines were
composed of a series of collimators aligned with each other, always positioned in
opposition to the photon beam emitters. Subsequently it was decided to keep only
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1.1. COMPUTED TOMOGRAPHY

the X-ray tube moving and to create a ring with detectors [3].
Thanks to a technology called slip ring, the X-ray tube takes power directly from
the circular track on which it rotates, minimising resistance and the friction to
reduce electromagnetic disturbances as much as possible. Moreover, thanks to the
realization of multisclices scanners, it was possible to obtain more images of the
patient at the same time, in this way the exposure time is reduced.
Using an angular sampling, each volumetric element of the body section analysed is
irradiated from different angles, successively its radio density is calculated through
a Filtered back projection algorithm. In this way it will be possible to obtain the
desired 3D volume. This strategy is necessary to overcome the problem of identi-
fying tissue layers covered by others with a higher absorption coefficient.
The average thickness of each slice of the patient is approximately 0.5 mm, while
the typical resolution is 512 x 512 pixels (or 1024 x 1024).
The density of different biological tissues is calculated using a linear attenuation
coefficient expressed in Hounsfield units (HU).

µ(HU) = 1000
µ− µH2O

µH2O

(1.2)

Where µ represents the linear attenuation coefficient of the hit tissue, while µH2O

represents the linear attenuation coefficient of the water. This densitometric scale
is adimensional and traditionally includes 2000 values, starting from a minimum of
-1000, the region of ray transparent. While in the higher extreme we find highly
radiopaque elements such as bone (0 HU corresponds to water density) [4].
In order to display the image in the best possible way there is the possibility to
select the range, which takes the name of window (Fig. 1.1), of grey values that
can be displayed. So it is possible to observe only some tissues and discriminate
biological elements that have very similar attenuation values. Anatomical districts
such as the chest, for example, need different windows in order to correctly recreate
the entire volume; since there are lungs and bone components that exhibit different
levels of radiopacity.

Figure 1.1: A Window Width for soft tissue. Adapted from [5].

In conclusion, the quality of the volume acquired by CT is also influenced by the
scanning time, which depends on the rotation speed of the X-ray tube and the
number of slices acquired. In particular,the pitch factor measures the ratio between
the number of rotations acquired and the gap between them.
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1.2. COMPUTED TOMOGRAPHY CONTRAST AGENTS

Obviously a slower acquisition leads to a higher quality of images, but the collateral
effect is to expose the patient to a higher dose of radiation.

1.2 Computed Tomography contrast agents

The introduction of contrast agents for Computed Tomography has allowed a con-
siderable increase in this diagnostic technique, thanks to an improved visualization
of the anatomical components of interest, like the interface between two different
tissues (e.g., liver/tumor) and making easier the identification of eventual patholo-
gies. However, other imaging techniques, like MRI, are considered safer because
they do not use ionizing radiations. Contrast materials to be used in clinical trials
must satisfy several requirements before [6]:

• The contrast and its metabolites have to not be toxic and have to be eliminated
without complications by the body in a short amount of time (<24 hours).

• The presence of the contrast agent must favour the visualization of the area
of interest relative to the surrounding fluids and tissues by, at least, a factor
of 2.

• Reaching the target area by the ionizing element must be sufficient to perform
a complete CT scan inside the hospital.

• The contrast element have to be readily soluble or form stable suspensions at
aqueous physiological conditions.

Obviously this should also be done to reduce the amount of radiation that affects
the patient during the medical examination.
There are different contrast media that can be used, which are able to change the
amount of X-rays through tissues. For this reason they can be divided according to
the fact that they have a higher or lower absorption than the target organ: there are
positive contrast agents, like barium and iodine, and negative, like air and carbon
dioxide. The positives have a elevate probability of interacting with the emitted
photons because they have a high atomic number (56 for barium and 53 for iodine).
The first in particular, present as Barium sulphate, is used for digestive tract ex-
aminations. It is given by oral via; it remains in the intestinal lumen without being
absorbed or causing toxic reactions and then it is eliminated through the stool.
On the other hand, the use of iodine alone has slowly been replaced for medical ap-
plications due to its high concentration and toxicity. Therefore, the use of contrast
media with iodine atoms bound to organic molecules, has become widespread. Ini-
tially, many ionic contrast agents with iodine were studied, which showed a strong
tendency to interact with biological cells, like peptides and cell membranes. In
addition, it was observed that such instruments with a high osmolality (8 times
higher than that of plasma) caused a high possibility of adverse reactions in the
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1.3. ABDOMINAL CT

body and increased pain and heat sensation in the area where they were injected.
This led to the development of a more recent category, the non-ionic iso-osmolar
contrast agents, which had an osmolality equal to that of blood plasma [2]. These,
however, don’t present a lower quantity of iodine inside but they show the same
contrasting effect inside the organs. At the moment, they are used especially for CT
exams, because the speed of new devices and the diffusion of automatic injection
instruments, have guaranteed the control of the quantity and the speed of injection
[7]. In this way the scans execution times is optimized.
Despite the introduction of non-ionic contrast media has almost completely elim-
inated ionic contrast media from the market, the incidence of side effects has not
completely disappeared, although it has considerably decreased. In fact, the pres-
ence of side effects is around the 3% of patients.
Adverse reactions can be divided into two categories: the predictable and the un-
predictable [2].
The first ones are linked to pre-existing pathologies within the patient, and depend
on the quantity of the contrast agent inserted. For this reason they are not always
used for fear of excessively negative reactions.
The second category is linked to allergic reactions of the patient, caused by molec-
ular elements within the contrast agent, and they are independent of the dose ad-
ministered. The kidney in particular is the organ most subject to toxic reactions,
leading to the formation of acute renal failure, or a deterioration of an already
existing renal failure. The administration of contrast medium is also not recom-
mended in all patients with diabetes mellitus, heart failure, dehydration or who
have already taken nephrotoxic drugs.
In conclusion, in these situations, the use of contrast agents is strongly not recom-
mended or even forbidden. In this way, it is impossible to obtain medical images
of higher quality, useful for diagnostic purposes. All these situations limited the
possibility of obtaining new data.

1.3 Abdominal CT

Regarding the analysis of the abdominal component, CT has recently established
itself as a second instance method, bypassing traditional radiology, demonstrating
that it is very useful in the management of patients with acute abdominal pain [8].
This imaging technique, in fact, allows a good visualization of arterial and venous
vessels, parenchymes and main abdominal organs. Furthermore, one of the main
advantages is that it allows the direct visualization of all the components of the
urinary apparatus, that are external to the excretory system. However, image vari-
ations caused by the presence of contrast are not necessarily uniform and depend on
numerous physical and biological factors, like blood flow in tissues or extracellular
component in a biological constituent, or even on the physical characteristics of the
machinery itself.
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1.3. ABDOMINAL CT

The development of special equipment, such as spiral and multi-layer CT, has given
the possibility of a three-dimensional examination of the vessels and, at the same
time, a less invasive diagnostic examination (like Angio-CT). The injection of the
contrast agent into the blood vessels takes place with a very rapid injection rate,
approximately 3 ml/sec, using an automatic injector, after supplying the patient
with at least 500 ml of water [9].
It is possible to identify 4 different phases, depending on the time between con-
trast administration and patient irradiation. The arterial phase takes place first,
approximately after 15-25 seconds, where the renal arteries are displayed as hyper-
dense; while the renal veins are displayed at the end of the arterial phase. After
approximately 30-40 seconds, it is possible find the corticomidollar phase, which
is contradicted by an improvement of the renal cortex. This is followed by the
nephrographic phase (after about 80-120 seconds), where there is an opacification
of the renal parenchyma. Finally, after a few minutes of contrast medium inser-
tion, there is the excretory phase. Which is characterized by an opacification of
the ureter, followed by the elimination of the contrast agent from the organism. It
is obviously possible to make acquisitions of multiple phases if necessary, for diag-
nostic purposes.
In the Figure 1.2 it is possible to observe how two CT axial images appear before
and after the insertion of the contrast. In particular, thanks to the use of contrast,
it was possible to identify the cystic lesion in the left kidney [10].
Therefore, the first image, without the insertion of contrast, shows the difficulty
from a diagnostic and an image processing point of view, to identify the renal com-
ponent from the other abdominal organs. This is caused by a greater homogeneity
of the data on the image. The use of contrast facilitates the identification of these
structures. In conclusion, the generation of this type of image is extremely useful
for diagnostic purposes and for image processing models.

Figure 1.2: (a) Non-contrast axial CT of the abdomen. (b) Contrast-enhanced
CT (with arterial phase), axial section showing a cystic lesion located in the

subcutaneous plane. Adapted from [10].
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Chapter 2

Learning Deep Generative Models

As briefly described earlier, the core of the project carried out at Telecom Paris is
based on the study and application of a particular generative model, which is able
to produce the required data.
These particular models have spread especially in recent years, with an increasing
number of studies every year and is applied to numerous sectors, from music to
image formation. It can be briefly described as: a generative model describes how
a dataset is generated, in terms of a probabilistic model. By sampling from this
model, we are able to generate new data [11]. To underline its main characteristics,
it is necessary to compare it to another model, the discriminative modeling. The
main difference is that every observation in the training set has a label (for this
reason it is often associated to supervised learning, where it learns a function that
is able to map from an input to an output with the help of labeled training set).
In this way the model estimates p(y|x), that is the probability that the sample x
belongs to class y. The real class to which input belongs is called ”desired output”,
while the error of the network can be easily identified as the difference between the
desired output and the real output of the classifier. Even a generative model can
be trained through a labeled dataset set, but not necessarily; its main goal is to
understand the probabilistic distribution of different samples.
The model also includes a random element that is able to generate new elements,
but with the same features. Therefore, this characteristic allows one to work with
numerous datasets, whose label is not always applicable.
To fully understand these concepts, it is necessary to clarify the elements present
at the base; starting from simple neural networks models up to the most complex
deep convolutional neural networks.
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2.1. UNSUPERVISED LEARNING

2.1 Unsupervised learning

We speak of unsupervised learning when the data for training consists of a set of
input vectors without any corresponding target value. In fact, the model performs
a sort of cluster, reorganizing the inputs and identifying a series of common char-
acteristics to try to make predictions and considerations.
This leads to a greater difficulty to understand the learning process of the model,
because we do not know exactly on which input characteristics it is based. In the
study described in the following chapters, this type of learning is largely protago-
nist.

2.2 Neural Networks

In machine learning, systems able to learn with dataset. These are also evaluated
through a set of data called test sets, which are usually different from the data used
to train my system to identify a logical relationship within them. Neural networks
(NNs) is one of the most common structures of machine learning, whose name
depends on its close similarity to the biological structures of the nervous system
[12]. The Figure 2.1 summarizes the main elements that compose a NN.

Figure 2.1: An example of a NN structure.Adapted from [12]

On the left there is the input layer, where the network receives data from the outside
(made up of 5 elements). Subsequently the information is propagated through two
hidden layers of neurons and, at the end, the information passes to the output
layer which represents the prediction of my model.The number of hidden layers can
be of different values, depending on the model you want to develop. The arrows
that connect the different dots show how neurons are connected to each other and
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2.3. LOSS FUNCTION

how information travels through the network. These connections are characterised
by weights, whose value contains the key information that the network is able to
process.
The weights are initially initialized with random or predefined values and then,
depending on the analyzed data, change their value to facilitate the learning process.
An epoch is when all the data has been passed through the network; then the data
is passed again with the weights now changed, in this way the NN ”learns”.
The information travels from the input layer to the output layer, and is known as
forward propagation. When it reaches the output layer, its quality is evaluated in
order to train the whole network.

2.3 Loss Function

The network output does not match the target output, the difference is used to
calculate the loss function (L), so you can see ”how well my algorithm is working”.
The network has to modify its own weights (and the relative bias), to try to min-
imize L. There are numerous functions available, so it is essential that the chosen
function is able to capture the characteristics of our problem, and be motivated by
concerns that are important to the project [13].
There are different types of functions depending on the model, two main categories
can be distinguished, and they are associated with regression or classification prob-
lems. The project is related to the first group. In the study it was decided to use
the functions described below.

2.3.1 Mean Square Error (L2)

MSE =

∑n
i=1 |yi − ŷi|2

n
(2.1)

MSE is the most used function in case of regression problems. Where yi indicates
the output of the model, ŷi represents the desired output and n the number of
elements. This indicates the sum of the squares of the distances between the target
and the predicted values. L2 has a higher gradient for large loss and decreases
when it approaches zero, making it more accurate at the end of the training phase,
where a lower loss is expected.

2.3.2 Mean Absolute Error (L1)

MAE =

∑n
i=1 |yi − ŷi|

n
(2.2)

Where yi indicates the output of the model and ŷi represents the desired output and
n the number of elements. In this case the regression metric is based on the average
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2.4. DEEP LEARNING

of errors within a group of predictive values, without considering their direction.
This is the average of the modules of the differences of the predictive values. This
function is also more stable if there are outliers within the training data.

2.4 Deep Learning

Deep Learning (DL) is a subcategory of machine learning, where you find models
such as neural networks. DL was developed as early as the 1980s. It is currently
one of the main fields of interest related to AI technology. It was spread at the
beginning of the new millennium thanks to the arrival of big data, which favoured
economic and scientific interest in this sector.
In addition, these models are now known thanks to improved hardware structures,
computational power (GPU) and the availability of large datasets. The NNs used
in this field exploit a high number of hidden layers in order to obtain a higher
level of abstractions, in this way very complex problems can be solved through fea-
tures recognition [14]. The Figure 2.2 below summarizes the main elements present
within a DL model.
One of the specific frameworks for DL is tensorflow, which provides optimized
modules for algorithm development, but the entire project was written thanks to
Pytorch, an open source project developed by Facebook. A framework widespread
especially in recent years, which uses a technique known as dynamic computing
to simplify the training of NNs, and the different commands imitate the conven-
tional programming model, making it very popular especially for researchers and
engineers.

2.4.1 Activation Functions

The activation function f determines the output value Y of the neuron, based on
the sum of the input values, which are multiplied by weights(w). This relation
Y = f(

∑
w ∗ x) describes the situation.

There are several functions which are characterized by some properties, like the
range. When the range of the function is limited, the training tends to be more
stable because pattern presentations significantly affect only limited weights. While
an infinite range causes a more efficient training, but a smaller learning rate is
needed because the weights vary more.
Now the activation functions that have been considered in the project are briefly
described.
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2.4. DEEP LEARNING

Figure 2.2: Flowchart of a DL algorithm. The grey boxes indicate the component
that are able to learn from data. From [14].

2.4.2 Rectified Linear Units (ReLU)

This particular activation function, as you can seen from the graph, returns zero if
the input is less than 0, instead if the input is greater than 0, the output is equal
to the input. Therefore the output range has only a lower limit.
ReLU is a non-linear function and has the advantage, compared to other popular
activation functions, of speeding up the model. Its application spread especially in

12



2.4. DEEP LEARNING

Figure 2.3: The graph of ReLU function. From the documentation of Pytorch

Deep learning applications, and other slightly different activation functions soon be-
came popular. In fact, one of the main limits is that the neuron remains completely
inactive when input is less than zero, significantly reducing the flow of information
when the number of ”dead” neurons is very high.
Leaky ReLU slightly is different because on the left side of the graph, the output
is not completely null but has a slight slope. This means a small leak, and avoids
the ”death” of the neuron in the network by extending its range.

2.4.3 Hyperbolic Tangent Function

Moreover, as recommended by several studies, the Hyperbolic Tangent Function
was also used in the models of the project. This activation function is very similar
to the classic Sigmund function, but in this case its codomain goes from -1 to +1
(Figure 2.4) .
As described in the following chapters, this function is fundamental to guarantee
stability during the training process of our generative model

2.4.4 The optimization algorithms

In the NNs there are different optimization models, which iteratively minimize
(or maximize) an objective function (J(θ)). The classical gradient descent method
updates the parameter θ along the opposite direction of the gradient of the function
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2.4. DEEP LEARNING

Figure 2.4: The graph of Tanh function. From the documentation of Pytorch

(J(θ)), where the learning rate η determines the width of the variation.

θt+1 = θt − η∇θJ(θ) (2.3)

However, for the computation of ∇(J(θ)), it is necessary to use all samples in the
training set, risking to converge to a local minimum or an excessive variance.
For this reason other models have been developed. These models update the gradi-
ent after a specified number n of samples (mini-batch), to make convergence more
stable and reduce the variance of the gradient. Or, alternatively, the stochastic
gradient descent method (SGD), updates when a random sample is taken at each
iteration.
The introduction of the momentum was a big innovation, to speed up the learning
process. The idea is to calculate an exponential moving average of the previous
gradients, to optimally direct the update of θ.
The optimizer ADAM [15] (Adaptive momentum estimation) is based on two co-
efficients. ADAM memorizes the exponential moving average of the squares of the
gradients and the exponential moving average of the previous gradients. In this
way, it exploits the first moment, the mean (mt), and the second, the variance (αt),
of the gradient. Where η is the step size (it can depend on iteration). This method
to optimize the gradient is the most efficient to stabilize the CycleGAN during the
training phase. In particular it was demonstrated that reducing the momentum β1
from 0.9 to 0.5 helps stabilize training [16].
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2.4. DEEP LEARNING

The (2.4) indicates the optimizer ADAM:

θt+1 = θt − η
mt√
αt + ε

(2.4)

2.4.5 Polling Layers

One of the problems related to convolution is the creation of future maps that are
too sensitive to the position of the different features. In addition, there is also
the problem of overfitting, i.e. when the network is so tuned with data during the
training phase that it not able to generalized for validation and test sets. In these
cases you may notice a drop in performance during the test phase compared to the
training and validation phase.
Pooling Layers down-sample the features maps, providing benefits to the whole
structure and reducing computational costs. Even if the image has a lower res-
olution than the input, the main structures remain. This process also causes a
denoising on the images.This procedure guarantee to keep the representation ap-
proximately invariant to the small translations of the input [14].
There are two main common pooling operations:

• Max-Pooling: where you take the maximum value between pixels for each
patch in the feature map.

• Average-Pooling: where the final result is the average between the pixels within
the patch

The first technique works better, because in a nutshell it is more informative to
analyse the maximum presence of different features rather than their average [17].
Therefore, sometimes the most efficient strategy for down-sample and avoid infor-
mation loss is not using a Stride Value greater than 1, but selecting the main feature
activation on small patches.
However, it has been observed that in GANs it is more useful to use a larger Stride
rather than max-polling for the generator, allowing it to learn its own spatial up-
sampling [16].
The Figure 2.5 shows the result of the application of this technique.
Among other techniques to avoid overfitting, there is Dropout which consists of
randomly setting a certain number of neurons to zero (Dropout Rate) [18]. This
strategy was also applied in the model; the generator in this way, tries not to focus
only on some features.
The choice of this value as well as many other hyper parameters, among which the
learning rate has a great relevance, favour the gradient descent to reach the solution
of the problem.
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Figure 2.5: Pooling and downsampling. The figure shows a max-pool width of three
and a stride between pools of two. This application reduce the number of feature.
Reprinted from [14]

2.4.6 The Batch Normalization

The training phase of a NN is very sensitive to the different parameters assigned
and also to the values of the weights at the beginning of the first epoch (this will
also be specified later for CycleGAN).
The Internal covariate shift is a problem of instability during the training phase,
this is linked to the fact that all layers are updated from the output to the input.
The training of the nets is conditioned by the fact that the input distribution of
each layer changes, due to the change of the previous one. This leads to a slowing
down of the training phase and the achievement of convergence [19].
Batch Normalization is a method realized to coordinate the updating of the different
layers.It re-parameterize the model so that some units always remain standardized
[17], stabilizing the entire process during the update of the layers.
Batch Normalization is based on standardization by calculating the average and
standard deviation of each input variable for each mini-batch.

2.5 U-Net

Now two types of deep networks are presented, which have been very popular
recently:the U-Net and the Res-Net. These models are used to build the two gen-
erators in the Generative Adversarial Network, because they showed a great ability
to identify the main features on which the generative model must be based in order
to create new data. The U-Net is studied to exploit data augmentation in order to
work with datasets that are not too large; especially in the biomedical field, where
it tries to gain an output that includes localization (a label is assigned to each
pixel).
The U-Net is a fully CNN, and its name derived from its particular architecture, it
was designed for the segmentation of biomedical images [20]. As can be seen from
the Figure 2.6, the left-side consists of a contraction path: composed of three 3x3
convolutions, each followed by the respective activation function (ReLU) and a 2x2
max-pooling for downsampling. In the latter case the number of feature channels
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is doubled each time, to allow the network to propagate information up to the
higher resolution layers. In the right side there is the expansion path, where 2x2
convolution (called up-convolution) are applied to halve the number of channels
and upsampling. There is also a concatenation with the cropped feature map with
the same size, obtained directly from the left branch of the network. In this way,
the localisation information is preserved. Also in the right-side ReLU are applied.
In the last layer, a 1x1 convolution is applied to analyse each feature vector, de-
pending on the number of desired classes.
From this network architecture, several modifications were applied for biomedical
imaging: such as the 3D U-Net for volumetric segmentation [21] or the V-net,
where the segmentation of MRI prostate volumes was optimized thanks to the Dice
overlap coefficient, between the ground truth and predicted result [22].

Figure 2.6: The architecture of the U-Net. Reprinted from [20]

2.6 Residual Networks

The deep Residual Network (ResNet) is another model of CNN that has been very
popular and used, since it was first introduced in 2015 [23].
This structure was used to create the generator within the CycleGAN, as will be
shown later, the ResNet demonstrated greater stability than the U-Net during the
training phase.
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Before its introduction, the NNs, with increasing depth due to the number of layers,
were characterized by a saturation or even degradation of the performance. Fur-
thermore, ResNet solves the notorious vanishing gradient problem, i.e. when the
gradient is back-propagated up to the first few layers, reducing until it disappears
completely. To solve this problem someone try to add, for example, an extra loss
as supervision, but it was useless [24].
The winning idea of this model is to add an ”identity shortcut connection”, to
skip one or more layers [23]. This does not degrade the accuracy of the network,
because the NN stack simply identity mappings and performance are the same.
The fundamental element is the ”block”, consisting of a series of identity mappings
where, at the end, the input of the block is added to the output (Figure 2.7). This
operation of ”addition” is performed element by element. In the case where the
input and output have a difference size, different padding techniques can be applied
to concatenate the elements. The central idea is that letting the stacked layers fit
a residual mapping is easier than letting them directly fit the desired underlaying
mapping.
This model has made it possible to develop NNs with an increasing number of
layers, avoiding, at the same time, degradation of performance and gain accuracy
from a considerably increased depth.

Figure 2.7: Residual learning: a building block. Reprinted from [23]

2.7 A Deep Generative Model: the GAN

The GAN is a generative model, consisting of two fundamental elements: the gen-
erator (G) and the discriminator (D) [25]. They are composed by deep NNs to
produce data from a known distribution. The input of G is z, which is pure noise.
The output must be as similar as possible has a random sample chosen by the data
distribution. The input of the discriminator instead is a vector randomly chosen
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from the samples synthesized by G or from the real distribution, its output indi-
cates the probability that this element has been created by the network generator
(Figure 2.8).

Figure 2.8: Model of a GAN

The main objective of the generator is to be able, not only to create data as realistic
as possible, but also to be able to fool D, this instead tries to identify as much as
possible the fake data from the original ones. In this first and simple description of
a GAN, the information is back propagated from D to G, in this way the generator
adapts the weights of its network only thanks to the information obtained ”from his
competitor”. Training can be seen as a mini-max game between two adversaries.
The objective functions of both networks can be summarized with the equation:

Ex log(D(x)) + Ez[log(1−D(G(z)))] (2.5)

The generator tries to minimize it and the discriminator tries to maximize it. The
G(z ) represent the output of G when given noise z, while D(x ) is the probability
that the data is real.
Often both networks are optimized with the same step, but in different models, it
is necessary to alternate through k steps the optimization of the discriminator with
one step instead for the G. In this way we try to avoid a too weak discriminator,
which would lead to the generation of images whose data distribution would be
too different from the original. On the other hand, it is also necessary to avoid a
classifier that is too strong and a generator that is therefore unable to fool it.
It is observed how D tries to maximise the log-likelihood to estimate the probability
that, given x, this belongs to the real distribution, while the generator tries to do
the opposite thing.
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The discriminator often presents a common architecture, composed of several con-
volutional layers and a dense output, which contains the probability of the input to
belong to it. However, in the original project, the discriminator was composed of
dense layers, which led to a lower predictive ability. Furthermore, several variants
regarding loss were analysed to improve the abilities of the discriminator through
time, such as the use of class labels combined with the use of cross entropy loss
[26]. Moreover, to stabilize the discriminator during the training phase, several
losses have been suggested over time: starting with vanilla GAN [25] based on
Binary Cross Entropy, this function is used between the output vector and the
response vector composed of 1 or 0 depending on the corresponding label. Other
loss functions were based on Wassertein distance [27] (obtaining the models known
as WGAN) or f-divergence [28]. These variations were often adapted to the type
of data that the GAN need to train on, to ensure higher stabilization and avoid
collapse mode. Collapse mode happens when the generator focuses only on some
features or samples, which are able to fool the discriminator without adding more
information. Basing these observations only on, the loss gradients precipitate very
quickly towards zero with the conviction that they are achieved to convergence,
even though this is linked only to a few significant samples of the input distribu-
tion. Obtaining, in the end, only a weak generator that is not able to improve its
output vector.
The use of different losses was also determined by the common objective of reduc-
ing another major problem linked to the training of GANs, ”the oscillating loss”.
A great oscillating loss can often produce non-optimal results, making the conver-
gence of the model impossible. The ideal would be to obtain a stable loss, with a
constant increase or decrease. Moreover, freezing the discriminator weights is fun-
damental to stabilize it during the training of the generator, where its weights will
be updated in relation to the chosen loss value. All this is necessary to make sure
that the discriminator is not too able to identify the images generated, preventing
the optimization of the generator.
On the other hand, for the generator there is often a more complex architecture. It
has the same goal as a decoder of a Variational Autoencoder, which is to convert
a vector into the latent space of an image, whose distribution, in this way, allows
new data to be generated.
Also, for the generator, there have been several transformations of its original archi-
tecture; an example is the use of a variational autoencoder network (VAE), where
we can find the pixel-wise reconstruction loss to generate new data from the original
[29].
Another very common type of structure for generating new images is conditional
GAN (CGAN), so called because extra features or conditions (like class label, text
descriptions, object locations or sketches) related to the desired properties in the
output, were added to the discriminator to obtain higher quality results, during the
generation [30]. In this way the model forces the difficult relationship between the
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latent space of the generator and the output of the new images.
Often image pairs, have been used as input through different supervision models.
For example, based on segmentation with dice loss [22]. The dice loss allows to
measure the overlap between two sets, related to the foreground and background
of the image.

2.8 The CycleGAN

Figure 2.9: Examples of CycleGAN application using zebras and horses from
ImageNet. Reprinted from [1]

The CycleGAN represents a different generative model, mainly based on the
integration of two different GANs. The codes and implementation of the model
was on Pytorch. It was mostly based on the recent work of Zhu et al. [1], where
the CyleGAN was described and examined.
The principal characteristic of this network is its ability to generate new data, over-
coming the limitation of working with a dataset of paired images. This is necessary
for others popular transfer models, which allows the translation of images into dif-
ferent domains, like pix2pix [31].
Therefore CycleGAN, is significantly more adapted to work in medical field be-
cause it is rare to have pairs of images of the same patient, acquired with different
techniques or characteristics.
Thanks also to the wide area of application, another model called UNIT [32] specific
for unpaired samples, has been created. This generative model, unlike CycleGANs,
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is composed of two variational autoencoder networks (VAESGANs), which both
work on two different domains, but they share the same latent space. In different
papers these models and their performances are often compared due to their ability
to work with the same type of data.
Thanks to its particular architecture CycleGAN is able to train image translations
at the same time from both domains, from X to Y and vice versa (Figure 2.10). It
is composed of: a generator Gxy to transform CT images from Y to X (indicates as
F), and Gyx to translate the image from X to Y domain (indicates as G).
There are also two discriminators (Da and Db) to improve the quality of the im-
ages, identifying the real images from those synthesised by the generators. The
work done by the discriminators determinate the adversarial loss to to update the
weight of the NNs. In addition to this there are two other contributions from: Cycle
Consistency Loss and Identity loss.

2.8.1 The Cycle Consistency Loss

The goal of the two generators (G and F) is to create a mapping function that is
able of generating data corresponding to the target distribution. In addition they
should have the ability to always learn from the same dataset to generate random
permutations in the target images, where the learned functions are still able to
create a proper output distribution. For this purpose the adversarial loss alone is
not enough, it is necessary to introduce the Cycle Consistency Loss.
The latter is based on taking a sample (x̂) generated by Gxy and using it as input
for the Gyx generator. The same thing is done for the other domain. In this way
the model tries to reconstruct the starting image, for both generators.
The Equation (2.6) represents the loss:

Lcyc (G,F ) = Ex∼pdata(x) [||F (G (x))− x||1] + Ey∼pdata(y) [||G (F (y))− y||1] (2.6)

The loss of the model in this case is evaluated through the L1 norm.
In the fourth chapter, as suggested in [33], its influence will be reduced in the last
epochs, during the training phase, because it can induce the generator to not eval-
uate the necessary changes to improve the quality of the output images.
The Figure 2.10 shows the scheme of the forward/backward Cycle Consistency
Loss, this technique is already known in the literary environment, such as the field
of literary translations, called ”reverse translation and reconciliation” (M. Twain
mentions it in his works).
However, the application of Cycle Loss alone is not enough to generate realistic
images, indeed it has been observed that it alone often causes mode collapse, pro-
ducing images that are perfectly identical to the input images.
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Figure 2.10: Diagram of how cycle loss works: on the left, there is the forward
Cycle-Consistency, on the right there is the backward Cycle-Consistency.

Reprinted from [1]

2.8.2 The Identity Loss

Identity loss is a supplementary parameter that is added to improve the quality of
the generated images. It is added in order to preserve and improve the colour in the
images, which is extremely useful in CT images with contrast, where the intensity
and variation of the pixels is essential for diagnostic purposes.
It is based on taking as input a sample x, belonging to the target domain X, and
passing it through the Gxy, in this way the generator learns an identity mapping
function.
The L1 norm is used to evaluate the loss [1]. The Equation (2.7) represents the
loss:

Lidentity (G,F ) = Ey∼pdata(y) [||G (y)− y||1] + Ex∼pdata(x) [||F (x)− x||1] (2.7)

In the Figure 2.11 it is possible see how the application of this element to improve
image quality.

Figure 2.11: Examples of the effect of Identity loss on Monet’s paintings.
Reprinted from [1]
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2.8.3 The architecture of the Discriminators

The two discriminators inside the model must return the probability that the image
furnished belongs to the real distribution or is a fake.
There are several tips that help in this objective.
Actually, the discriminator does not assign the probability to each pixel of the input
image, but often divides it into overlapping zones called patches, and assigns the
probability to each of them according to the content of the different features. This
technique is called PatchGAN. In this way, the performance of the discriminator is
not completely based on the content of the input, but it is focuses on its features.
In the realized model (described in the method proposed), the discriminator is com-
posed of 3 convolutional layers. Where, starting from an image with one channel,
at the beginning a filter with 64 channels is applied and at the end 256 features
channels are obtained, the stride is 2. To avoid the vanishing gradient problem,
by zeroing a large number of neurons in the NN due to the ReLU, the activation
function Leaky ReLU is used with a gradient of 0.2 [16].
To initialise the weights, a normal distribution with mean equal to zero and stan-
dard deviation of 0.02 was used. All these characteristics are described in [1], they
are applied in the CyleGAN model developed, reported in the fourth chapter.
The aim of the discriminator is opposite to that of the generator, for this reason
sometimes its loss grows in an exponential way (indicating that it is too good to
recognise the real images), in this case it is necessary to use as input noise images
to fool it. Another alternative, applied during the project also, is to invert, with a
probability of 5%, the labels relative to fake and real images, to avoid training a
too weak generator [33].
Another suggestion, to prevent an excessive oscillation during the training phase of
the model,is using as input of the discriminator not the last synthesized image, but
an image chosen randomly from a set of K elements [34]. This also avoids the prob-
lem called ”absence of memory”, which can cause divergence if the discriminator
does not notice some artifacts. In this way, the generator, will apply them again for
all future images. A buffer of K images is created, and a mini-batch of k images.
At each iteration the discriminator takes k/2 images, which are then replaced by
others generated in the next iteration. In this way the buffer size (K) is constant.
This particular technique is included in the CyleGAN model developed, with a K
equal to 50.

2.8.4 The architecture of the Generators

Two models of DNNs were used for the generator architectures: the U-Net and the
ResNet.
For the latter the construction was based on the model of Johnson et al. [15], where
6 blocks are used to train images with dimension 128 x 128. In the case of 256 x
256 images , the number of residual blocks is 9.
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In the first layer there is a convolutional layer, with a kernel 7 x 7, where 64 filters
are applied and with a stride of 1. The activation function is ReLU. The following
layers are characterised by a kernel with dimension 3 x 3 and with a stride of 2.
In addition, the technique of reflection padding was used to keep the size constant
after each convolution.
While for the U-net, there are 64 filters in the first layer, and the number of down-
samplings is 7. For this reason an image 128 x 128 arrives at the bottleneck with
dimension 1 x 1. For the convolutions in the decoder section, it was applied a 2D
transposed convolution operator over the image, to reduce the formation of arti-
facts in the image synthesis [16], with a 4 x 4 kernel, a stride 2 and a padding 1.
For all layers the batch normalization is applied, to reduce the stability of the net-
work and its oscillations. It is applied to both the discriminator and the generator,
except for the output layer of the generator and the input layer of the discriminator.
For both the models of DNNs, in the output layer the hyperbolic tangent (Tanh)
activation function is applied, int his way the data are scaled between [-1, 1]. For
the remaining layers the ReLU activation function is applied to promote sparse
activation.
To conclude, as suggested by several papers, dropout is applied to improve the
sparsity of information, putting some weights to zero and to reduce features depen-
dencies in the network (reducing the problem of overfitting).
The architecture of the ResNet and the U-net described in [14], were also applied for
the NNs which are used to compose the CycleGAN model of this study, described
in the fourth chapter.
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Chapter 3

The State Of The Art

The lack of a large quantity of data is one of the main problems related to medical
imaging, this is due to several factors from the high cost of production to problems
related, to the privacy of patients. All these factors represent a significant problem
from the point of view of deep learning, because sometimes the lack of data leads
to a worse performance of the networks.
Therefore, generative models, have been extremely well-treated in recent years, as
they represent an excellent way of overcoming this gap, trying to produce new data.
These are very difficult to assess quantitatively. At the moment, in fact, the im-
ages generated are evaluated mainly by visual inspection. However, in the results
of the project, a new method for evaluating images is presented, which has been
increasingly used recently.
From the various studies presented, the backbone is the paper introduced by Good-
fellow [25], who presented a new network model, called Generative Adversarial
Network (called GANs for short) and pointed out that one of the main future chal-
lenges of this new model involved exactly the application in the medical field and
the opportunity to solve the main challenges in this sector.
This chapter will present the main evolution and the use of the Generative Adver-
sarial Networks, underlining how their performance and application have evolved
over the years to the present day, creating progressively more complex structures
such as the Cycle Consistency Adversarial Network.
In the last few years several studies have been carried out in different applications
in the medical imaging, these areas can be divided into: reconstruction, image syn-
thesis, segmentation, classification, detention and registration [35]. In particular,
this chapter makes a review of the state of the art of GAN’s application in the
medical sector, more specifically in image-to-image-translation.
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3.1 Applications of GAN to generate medical im-
ages

The GAN is a particular generative model characterised by the simultaneous train-
ing of two different networks: a generator (G) and a discriminator (D), sometimes
called the critic. The term adversarial is given by the fact that both nets have the
opposite goal.
The main objective of the generator is to be able, not only to create data as realistic
as possible, but also to be able to fool D, which instead tries to identify as much
as possible the fake data from the original ones.
The first element of the network, the generator, has the job of learning the distri-
bution of data from a specific dataset, in this way it can generate new data with
as similar a distribution as possible. The discriminator is its counterpart, whose
purpose is to identify and distinguish between the images generated by the gener-
ator from original images, taken from dataset. For this reason, this network can
be described simply as ”a game between two opponents”, the generator and the
discriminator. Its main features were discussed in the previous chapter.
The generation of new images, starting from simple noise or pre-existing medical
images, is also studied to improve the performance of Deep Neural Networks dur-
ing the training phase. It provides more elements to train, compared to the classic
data augmentation where there are: transformations, rotations or zooms. However,
these simple variations in shape, size or contrast can sometimes lead to performance
deterioration for a classifier or segmentor network.
Recent studies have tried to exploit GANs, for the unconditional generation (i.e.
without the addition of special conditions to facilitate the generator’s job). There
are several variants of the simple GAN for this purpose: such as the Deep convolu-
tional Generative Adversarial Network (DG-GAN) or the Progressive Growing of
GAN (PGCGAN). In the latter, in particular, the main characteristic is the growth
of both the generator and the discriminator, starting from a low resolution and then
adding layers that increase fine detail.
In [36] a DG-GAN was used to generate images of lungs with benign or malignant
nodules, to try to analyse the main features present in both cases, to facilitate the
identification of any pathologies by radiologists. The study was carried out on 2D
images, and the evaluation was just based on a visual analysis by two professional
radiologists to assess the quality of the fake nodules present. Possible future ap-
plications would have involved the training of possible networks or the training of
future doctors. In addition, the images were subjected to an intensive screening
and selection process. This limits the amount of data available. However, in this
project, efforts were made to generalise the type of images used as input as much
as possible. The model is also limited to 2D data only.
While in [37] the generator is trained to translate from simple noise images to
high quality images containing liver lesions. These images were then used to train
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a CNN, comparing the results with the classic data augmentation. The latter
method, in fact, caused excessive image variations, reducing in this way network
performance. The performance of the classifier increased from 78.6 % sensitivity
and 88.4% specificity to 85.7% sensitivity and 92.4% specificity, thanks to fake im-
ages.
In [38] a PCGAN is used to translate low quality images into mammograms with
high resolution and highly realistic. To realize this project, a large dataset with
over one million images was used, but excluding images containing post-operative
artifacts or presenting extraneous elements to the body (like metal clips, pacemak-
ers or stents). Despite the instability of the generator, caused by the fact that the
optimal point of the GAN corresponds to a saddle point, at the end they obtained
images with a resolution of up to 1024 x 1024 , useful for Full Field Digital Mam-
mograms (know as FFDM).
The Figure 3.1 below, allows you to observe the difference between the original
images and those completely generated by the GAN at the end of training. Despite
the excellent visual results, there are still some artifacts in images, such as the
bright or black spot and stretching effect. Therefore, the images are difficult for
doctors to assess visually.

Figure 3.1: Randomly sampled examples of real and fake cranial-caudal views.
Reprinted from [38]

3.2 Application of CycleGAN on medical images

The CyleGAN, essentially, consists of two generators to achieve the translation be-
tween two unpaired sets of images, as described in the original project [1]. There
have been several studies that applied CyleGAN with medical images as data,
for example in the field of image reconstruction and denoising, to increase image
quality. Indeed, it was applied to images obtained during multi-phase coronary CT
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angiography, to reduce the noise present when using a low dose without affecting the
detailed texture and image quality. This was also possible by the implementation of
the identity loss [39]. In [40] using cycle Wasserstein regression adversarial training,
it was possible to obtain CT images with a super resolution, from images with a
low resolution, maintaining anatomical information and reducing image noise. In
this way, using generative models, it has been possible to overcome the problem
related to the limited number of paired data available. However, to improve the
results obtained, paired images were also used.
The use of CycleGAN has also become very popular for the synthesis of cross modal-
ity images, where from images obtained by magnetic resonance imaging (MRI) or
CT, we can obtained images from other techniques. All this has numerous advan-
tages: it avoids wasting extra time to carry out another screening, reducing the
costs related to it. Moreover in this way it’s possible to avoid the use of additional
radiation to the patient. Further, because some techniques, like MRI permits the
visualization mainly of soft tissues, unlike X-rays, which promote the visualization
of bones and other tissues with a very high attenuation coefficient. Cross modality
synthesis allows the visualization of different anatomical structures, which is more
useful for diagnosis. However, it must be considered that this translation has a
limited clinical importance. The patient often does not undergo both procedures.
MRI is more specific for analysing small regions of the patient (with a higher res-
olution), whereas CT is more specific for large portions of the body (with a lower
resolution).
Combining adversarial, cycle- consistency and voxel-wise losses, it is possible to
obtain a generative model capable of converting 2D CT images of the brain into 2D
images obtained through magnetic resonance imaging. To facilitate the diagnosis of
eventual pathologies that are difficult to diagnose through CT [41]. This procedure
can also be used for other applications such as CT-PET translation.
A difference process was also analysed, starting from images obtained with mag-
netic resonance imaging to obtain 2D images of CT [42]. Using two convolutional
neural networks (CNN) as generators and two discriminators. Thanks to genera-
tive cycle consistency loss to obtain images as accurate as possible to the originals,
with a dataset of 24 patients, who had submitted to both medical procedures to
evaluate the new synthesized images. The results are visible in the Figure 3.2. In
this study the images obtained with unpaired images were even better than using
paired images.
While in [43], it was shown that simple image generation using cycle-consistency
loss is not sufficient. In this paper the generator, composed of a CNN, is also trained
with a shape consistency loss, in order to avoid geometric distortions in the forma-
tion of MRI 3D cardiovascular images. The generator is supported by a segmentor,
which is fed by the images of both domains, and its training is alternated with that
of the generator. To prevent the volumes of the cardiac images from be distorted.
In this way it is possible a quantitative evaluation through segmentation and Dice
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Figure 3.2: From left to right Input MR image, synthesized CT image and the
real CT image. From [42]

.

loss, of the new volumes that are generated by the network (the volume-to-volume
translation is much more difficult to implement than 2D translation).
However, the method proposed in the following chapters focuses on assessing the
quality of the images obtained, without using other network models that have al-
ready been trained. In fact, a measure is proposed to objectively evaluate the
distribution of the data produced by the generator.
In addition to this kind of translation, there are numerous other studies that use
CycleGAN to create images that appear to be generated by positron emission to-
mography (PET) [44], to highlight particular organs or lesions. An additional
translation that has been analysed is the possibility of translate from MRI images,
obtained with T1, to images with T2. Although there is often the presence of both
in medical imaging, only T2 may be more suitable for viewing different components
like parenchyma, or T1 for better anatomical vision [45].
It’s also possible to compare the performance of the CycleGAN with the UNIT
model because of their similar construction and the possibility of working with un-
paired medical images.
In [46], the two generative models are compared to a simple GAN (composed of a
CNN), to transform MR brain images, with T1 and T2, into CT images and vice
versa. Using quantitative comparisons, the simple generator is not able to produce
very realistic images, while CycleGAN and UNIT, trained with adversarial loss also,
are able to produce a lot of realistic images. The Mean Absolute Error (MAE) was
applied to all three models, through comparison with ground truth. In particular,
these two models demonstrate to be able to generate much more accurate medical
images: from a quantitative point of view their results are extremely similar, with
the CycleGAN showing a small improvement for T2 images, while the UNIT with
T1.
On the other hand a model with a good score from a quantitative point of view
does not necessarily generate realistic images for a radiologist. Images were then
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subjected to a classifier to distinguish between T1 and T2. However, T2 shows
more difficult to be classified because of its darker colour; the classifier is only one
of many ways in which generative models can be qualitatively evaluated. Anyway,
the model had trouble at the edges of the image and in the portions of the brain
where there was a greater variation in intensity. The greatest difficult, in the paper,
is the use of parameters or scores to determine the quality of the data obtained from
the generator.
As demonstrated in [47], using just one GAN to work on complex images, like reti-
nal fundi images, is not enough for stability and noise problems. For this reason,
two GANs models were used, to obtain in the first phase the segmentation masks,
while in the second phase create the corresponding retinal fundi images. While the
discriminator is a common CNN, with two convolutional layers, the generator is a
deeper neural network, with more layers, fully convolutional and without pooling
layers. This configuration has demonstrated to be more stable and efficient. To
evaluate the reliability of the generated data, they were used to train a U-Net seg-
mentor, to create a segmentation mask from retinal fundi.

Figure 3.3: Comparison of real and fake segmentation mask of vessel tree in the
retina. Adapted from [47]

Also in this case there were difficulties to obtain quantitative results directly on
the synthesised images generated by the two GANs. It was decided to directly
compare the U-Net’s training results with another database, using the Kullback-
Leibler divergence score as a quality factor. This paper highlights, not only how
the use of two GANs allows more realistic results, but also underlines the difficulty
and the different methods proposed to analyse directly, the images generated.
In a recent study the use of CycleGAN to transform contrast CT abdomen images
into non-contrast CT was evaluated, these images are then used for data augmenta-
tion during the training of a segmentation network [48]. Therefore, the generative
model was build in order to create realistic images as much as possible, to train a
network with a smaller number of images available (linked to the common problem
of the lack of large datasets of medical images).
It has been shown that the U-Net segmentor, thanks to the increase of data during
training phase, performed better. The U-Net is trained with a small batch size of
16.
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Figure 3.4: From left to right. Examples of true contrast CT images and synthetic
CT images without contrast. Image taken from [48]

The network shows an increase in the quality of kidney, liver and spleen segmen-
tation, estimated by the Dice loss; which increased especially when it was trained
with the images generated by the model while the volume estimation error decreases
from 0.450, for the classic augmentation method, to 0.189 for the use of CycleGAN.
It was demonstrated that the augmentation with generated data, increase more the
performance in comparison to the standard augmentation method and histogram
equalization. Even simple augmentation using spatial transformation is not the
optimal solution with CT images, where attenuation or modification depends on
various biological factors. This result is also linked to the strong local differences
related to intravenous contrast injection, where the intensity variation changes in
different organs (especially in the kidneys where it accumulates) and in different
patients. The model is limited only with 2D slices and not 3D volumes.
However, CycleGAN has showed some difficulties in the preservation of boundaries
structures in images where there is a large close presence of muscles, bones and
tendons, such as the pelvic region [49].
In [50], have attempted to translate from MRI images to the corresponding CT
images in this region, to emphasize especially the bone component useful for diag-
nostic examinations. They added a loss function, called gradient consistency loss,
which evaluates the consistency of each pixel of the image gradient, by evaluating
the difference between the actual image and the image generated from the network.
The improvements of performance are highlighted by the improved DICE score,
with a U-Net, to segment anatomical components like the femur (where the new
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images have kept their shape near the femoral head and adductor muscle), the glu-
teus medius and the pelvis.
A similar approach has been applied in the pelvic region by Kida et al. [51], where
it was pointed out that an incorrect initialisation of weights on the neural network,
induced the generator to produce completely distorted images and to learn an in-
correct function mapping. In this case the translation was from a cone-beam CT
(where X-rays have a cone shape) to a planning CT.
One of the most recent studies is the one presented this year at MICCAI, which
is a conference organized for scientists in the areas of Medical Image Computing
and Computer Assisted Interventions. They try to add contrast in CT abdomen
images, starting from images without contrast [52]. Underlining the importance of
preserving small elements during the translation between domains, like little calci-
fied plaques present in the renal aorta and pelvic arteries.
This study was characterized by the introduction of a network, based on a shared
latent variables from a Gaussian mixture model. In this way the model is applied
to a CycleGAN and to a UNIT net, where two models of variational auto-encoders,
which compose the two generators, and a common latent space z is present. The
Figure 3.5 describe the model.

Figure 3.5: The model presents a common latent space, where variables lie in a
Gaussian distribution. Reprinted from [52]

From each of the 512 x 512 medical images, different small patches (32 x 32) are ex-
tracted, which present the many features extracted from the original image. From
each images of both domains, the different variables are divided into K clusters
inside z, each with a Gaussian distribution with an average and standard devia-
tion. The optimal number of clusters identified for that specific dataset is K = 25.
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The images are then reconstructed with the help of two generators, two variational
auto-encoders (VAEs). In particular the VAE loss is based on the KL divergence, if
the distribution in z diversifies too much after the priority distribution. To improve
the quality of the images, a cycle consistency constraint is inserted, where the net
try to resemble the images in their original domain.
Also in this case, the quantitative performance evaluation is applied on another
trained network to identify and segment calcified plaques in renal vessel and pan-
creas. The images used for training are 140 unpaired CT images. For both situa-
tions the trained net has a better Dice score for segmentation and a greater focus
on the preservation of fine structures. This is possible thanks to the creation of
clusters in the common latent space and the presence of a cycle loss. This allowed
the network to identify groups of images with similar characteristics.
For the model that has been developed in the last few months, a similar method has
been applied. It is based on the identification and distinction of different sections
of the patients’ bodies, and on the focus of the renal component. This method
exploits a common feature of medical image databases, which is that they consist
of unpaired images. CycleGAN, in fact, is developed for this type of data. In ad-
dition, in the final part of the study, an attempt is made to develop a method for
evaluating the data generated. That it can also be applied to other studies. Indeed,
in contrast to the projects described before, which were based on the application of
other neural network models; we use metric and visual analysis, in order to make
it easier to objectively compare the generated data.
Another important aspect that was taken into consideration was the use of only
healthy patients to realise the training and test set, to homogenise the input data.
As described in [53], the transformation of images from one domain to another
can produce distortions or hallucinations in the distribution of output data. This
happens when patients with different health conditions, leading the generator to
produce wrong elements in the generated image. For this reason, the output images
are not subject to direct interpretation by the doctor, as this could lead to wrong
diagnoses. A more adequate use is, therefore, the training of deep networks.
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Chapter 4

The organization of CT images

The entire project describes a method to transform normal abdominal CT images
into contrast-enhanced CT images, and vice versa, using a Cycle-Consistent Adver-
sarial Network (CycleGAN). In the first part, the chapter describes the databases,
from where the project data are extracted: highlighting the characteristics and the
number of patients selected.
The second, and final, section describes the pre-processing of the data in order to
improve the quality of the images and facilitate the identification of key features
by the Neural Networks.

4.1 Division of data

The images were obtained from the Cancer Imaging Archive (TCIA), which contains
a large archive of medical images of different diseases available for free download
to the public.
The aim is to obtain several generic image databases that are suitable for the study,
which are acquired directly from the CT scanner and were not previously processed
or modified.
After a careful selection, three databases of abdomen CT images were chosen, whose
number of patients involved is described in the Table 4.1.
The first database presents scans of 825 patients, who were analysed for the possi-
ble presence of polyps, this database is characterised by the presence of a dilated
colon. The CT scans were all obtained without the insertion of contrast inside the
patient. It was divided according to the presence (or absence) of polyps and their
dimension. It was decided to work only with scans of healthy patients, because
the presence of tumour cells or other abdominal pathologies would have produced
greater variability in the images, making it more difficult for GANs to generate new
images. This was done for all the databases. For this reason of the 825 patients
present, only 213 healthy elements were kept.
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The second database consists of 89 abdomen CT scans, where the position of the
lymph nodes has been previously marked, but the patients don’t present any ab-
dominal pathology. The images of the relative scans are characterised by the pres-
ence of contrast inserted with arterial phase.
The third, and the last, database presents 82 CT scans of contrast images, acquired
70 seconds after intravenous contrast injection in portal-venous. The database was
created using the pancreas as a reference for possible donors. In this case the pa-
tients do not present also major abdominal pathologies or lesions. Two different
domains were obtained from the three starting databases: domain A, composed
of the last two sets, is made up only of images with the contrast injected; while
domain B, is made up of normal CT scans. More specifically, only contrast inserted
in early arterial injection phase, where the kidneys and major renal vessels are more
visible, was analyzed. All images have an high resolution of 512 x 512 and are in
DICOM format.

Domain Database Female Male Unknown
B CT Colonography 103 93 17
A CT LymphNodes 43 46 0
A CT Pancreas 0 0 82

Table 4.1: Number of patient for each database

The images were all converted from DICOM to NIfTi format. The first one, in
fact, despite it is very flexible, powerful and have a great interoperability between
different software, is not very efficient for image and signal processing [54]. In addi-
tion, a single 3D volume, stored as a series of 2D slices, can occupy a considerable
amount of space.
On the other hand, the NIfTi format, it is simpler than DICOM, stores a volume
in a single file, allowing to occupy less space. All the related metadata contained
in the original DICOM files were transcribed into appropriate JSON files (called
headers), for each patient’s 3D volume.
The conversion was possible thanks to MRIcroGL, which allows to view 2D slices
and renderings of your brain imaging data.
All patients were then divided, to facilitate the selection, according to the hierar-
chical scheme presented below (Figure 4.1). Through the analysis of the metadata,
only patients in the supine position were preserved, while those in the prone posi-
tion were removed. That’s because the first kind of position represents the standard
CT scan protocol, for this reason is more common. Similarly, patients whose scans
were acquired in lateral decubitus, left and right, view (indicates with HFDL and
HFDR) were also removed.
This selection, applied mainly for the first database, was performed to try to keep
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Figure 4.1: Scheme of the organisation of patients in the dataset

the disposition of the different anatomical components as homogeneous and invari-
ant as possible. Subsequently, the position in which the patient’s feet are facing the
front of the imaging equipment (i.e. feet entering the front of the equipment) was
taken as standard (indicates with FFS). In order to avoid losing too many patients,
all those who were positioned toward the front of the imaging equipment with the
head (Head First Supine position) were converted into arrays and then inverted,
along the third dimension, to align with the others. The Figure 4.2 shows three
samples taken from the each databases.

Figure 4.2: (A) Non-contrast image, from CT Colonography. (B)
Contrast-enhanced (with arterial phase) image, from CT LymphNodes. (C )

Contrast-enhanced (with arterial phase) image, from CT Pancreas
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4.2 Pre-processing of data

The purpose of pre-processing is to improve the data furnished, to facilitate iden-
tification of key features and the learning of the network.
First, the pixel size distribution, for both domains, was calculated by analysing
each NIfTi file. The Figure 4.3 below represents the distribution of the data. The
third dimension indicates the 3D space between two consecutive slices of the same
patient, which is based on the frequency with which they were obtained. The im-
ages are then resampled, often the median value for each axis of the spacing is
taken as the standard value. However, this choice may cause loss of information or
undesirable distortions. The resampling of all images is performed by a third-order

Figure 4.3: Distribution of pixel sizes of X and Z axes of domain A.

spline interpolation, whose zoom factor is calculated as the ratio between the pixel
size of the corresponding image and the total average [55]. The resampling is ap-
plied for each axis, in order to prepare for a future application with 3D volumes
also.

Domain X Y Z
A-With Contrast 0.8 0.8 1.0
B-No Contrast 0.7 0.7 0.8

Table 4.2: Average pixel size (mm) for each axis

This interpolating function for medical images, has been proven to produce: fewer
errors, a minor loss of information and does not apply a large smoothed effect,
compared to other interpolating functions such as the nearest neighbour or linear
[56].
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Subsequently, to facilitate the visualisation of interesting anatomical components,
all images, with and without contrast, are clipped (this is possible thanks to the
conversion of the data into numpy arrays). In the CT images, the intensity of the
different pixels depends on the chemical and physical properties of the different
tissues.
All values for both domains are then kept within the range: [-70, 303].
This operation makes it easier to identify the bone component, which stands out
more in the image, and also the contrast present in the vessels and kidney compo-
nents.
The next step is to create a function to remove the presence of the ”white bar”,
visible in the first column of Figure 4.4. This artifact is caused by the presence of
the machine itself. This function keeps the pixels with an intensity different from
the background which are close to each other, i.e. only those of the abdominal
component (Figure 4.4). In this way the generator is not disturbed by unnecessary
element when it is identifying the fundamental features.

Figure 4.4: The removing of the artifacts in the background.

The data, subsequently, are normalised with z-scoring, where each image is modi-
fied by subtracting the mean and dividing by the standard deviation of the dataset.
The values identified are: a mean of -42 and a standard deviation of 63. For the
first two databases, used to compose the two domains, the same values are applied
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for the normalisation [55]. Usually GANs take as input data, normalised values be-
tween -1 and 1, this was done by taking the maximum value of for each 2D image.
Because this normalization did not lead to optimal results, it was also tried not to
apply it. Finally, at the end of this process, choosing to work in 2D, all images are
resized from 512 x 512 to 128 x 128. These are the input for the generative model.
The reduction of size provokes an inevitable loss of information in the image, but
this was applied to make the training computationally less expensive and faster.
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Chapter 5

Proposed method: CT image

translation using CycleGAN

This chapter describes the application of the generative model to obtain contrast-
enhanced CT from contrast-free images. The translation is also in the opposite
direction.
The chapter describes the principal characteristics of the model developed and the
main problems observed during the project. In particular, the last sections describe
the different strategies applied to improve the data produced by the generator and
to increase the stability of the GANs.

5.1 Parameters of CycleGAN

First of all, an apposite dataset was written, with Pytorch, able to provide the two
generators with 2D random images, relative to the two different domains, which
are converted in vectors and provided as input.
As mentioned in the previous chapter, the complete loss of the elaborated model is
described in the 5.1.

L (G,DX, DY, F ) = LGAN (G,DY, X, Y ) + LGAN (F,DX, Y,X) +

λ1(Lcyc (G,F ) + Lcyc (F,G)) + λ2(Lidt (F,X) + Lidt (G, Y ))
(5.1)

In the 5.1 the two generators are indicated by G and F, and the two set of images
are described by X and Y. The λ1 is the weight for the cycle loss, and λ2 is the
weight for the identity loss, which is preferable to impose with a value that is less
than 1/10 of the cycle loss, since this affects the intensity of the pixels and must
not excessively modify the morphology of the generated image. Several tests were
carried out to identify the best combination of these two weights, in the end we
chose as λ2 equal to 0.5 and λ1 equal to 10. For identity and cycle loss, it must be
considered that they involve the two generators present to promote training in both
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directions. For this reason their contribution is given by the sum of both directions.
The performance of the generator is evaluated with the mean squared error. This
criterion is calculated between the output of the discriminator and a matrix com-
posed of ones, corresponding to the labels of a real image.
In this way the generator modifies the gradients of the network to reduce this dif-
ference, which indicates that the discriminator is being fooled and interprets the
image created by the generator as real. While the Identity and Cycle loss are eval-
uated with the mean absolute error (MAE).

Figure 5.1: Pipeline of the main elements of developed model

The Figure 5.1 shows the organisation of the main elements of the generative model:
starting from an image taken from domain B, through the generator we obtain a
corresponding image with the inserted contrast. This last one is used as input for
the discriminator besides a real image taken directly from the database. At the
same time the obtained image is used as input to realise the Cycle-Consistent loss.
This organisation is repeated symmetrically in the opposite direction, so that both
directions of translation are trained.
Among the various other hyper-parameters initially set, the training phase consists
of 200 epochs, while the learning rate trend (Figure 5.2) starts at 2∗ 10−5 and then
reduces linearly to 0, from the 100th epoch. Based on the CycleGAN model de-
scribed in [1], the learning rate was initially set to 2∗10−4. This value is considered
optimal for different types of data, but it was observed that for this type of medical
images it was too high. For this reason it produced undesirable divergent behaviour
in the loss function and an unstable training process. Exponential reductions were
also not particularly effective, as they led to a too fast reduction in the learning
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rate. In the same way, in order to favour the generation of good quality images,

Figure 5.2: Learning rate trend

the size of the images was reduced to 128 x 128, and a first dataset was created
consisting only of female patients, to avoid additional variation linked to different
anatomical elements present.
It was observed that different patients, present as input to the generator a high vari-
ation related to the different anatomical components that were displayed. Indeed,
these anatomical components characterise the images with very different features:
such as a high bone component is visible in the lower part of the pelvis or the lungs,
which, for the low attenuation coefficient of air, are characterised by a much lower
pixel intensity.
To solve this limitation it was decided to select a reduced number of slices. For
domain A, after manually analysing 10 patients, it was decided to take only about
150 images for each. Identifying the mid-point where the lungs and anterior iliac
spines begin to appear.
On the other hand, for the domain B, a range of 175 image is taken for the same
section, the difference is related to a smaller distance between two adjacent acquired
images (visible in the Table 4.2). The number of data available is:

• For domain A, consisting of the database CT LymphNodes, 79 patients (43
women and 36 men) are considered. The number of data used for the training
phase is 11850.

• For domain B, consisting of the database CT Colonography, 68 women are
considered. The number of data used for the training phase is 11900.
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Initially, the input of the model was composed of a single image, then it was de-
cided to use input with a batch size of 10. The use of a high batch size and of a
batch normalization, facilitates the stabilization during the training phase for the
discriminator and the generator. However it is not applied on the last layer of the
generator and on the first layer of the discriminator [57]. The architecture of the
two Deep NNs is described in the section 2.8.4. With these characteristics, the
U-Net and ResNET were tested as generators. The Figure 5.3 compares the losses
of the generators, built with two different models. It can be seen that both have a
high instability initially, with the U-Net showing several peaks. Finally, both mod-
els converge towards the same value. However, the values obtained are very high.
The Identity Loss presents a highly unstable trend, though the values reached by
it are extremely lower than those of the generator and the Cycle Loss (Figure 5.4).
The latter shows an extremely unstable trend. The U-net, in particular, exhibits a
much greater range of variation than ResNET.
However, the performance of the different losses during the training phase is not
the only way of identifying the best combination of hyper parameters and assessing
the model.This represents one of the main limitations of generative models based
on GANs. In addition to a quantitative analysis, a visual examination of the gen-
erated image quality was applied. The U-Net, despite having a similar pattern
to the ResNET, produced a very different distribution of data. Generating highly
unrealistic images. The Figure 5.5 shows examples obtained from the generative
model, trying to transform images from domain B, to domain A. In this respect
it is noted that there is a marked increase in pixel intensity in the whole image.
This change also affects the background. There is a greater visibility of the kidney
component, but the other anatomical components also undergo a big variation.
Another problem is the alteration of the anatomical component, which can be very
dangerous for diagnostic purposes. In particular, in the U-Net, it is noted that the
generator particularly modifies the liver, adding non-existent components.
In order to improve the results obtained so far, different modifications have been
added to obtain better results at the end.
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Figure 5.3: The trend of the Generator Loss.

Figure 5.4: From left to right: Identity and Cycle Loss trends.

5.2 The implementation of Wasserstein loss

GAN is based on the discriminator that tries to distinguish real images and images
created by the generator.
The discriminator used in the model divides input images into different patches
and assigns as a value 0, if it identifies it as a real image, otherwise it assigns 1 if
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Figure 5.5: From left to right: Examples of true simple CT images and synthetic
CT images with contrast, generated by the U-Net and by the ResNET.

it believes it was created by the generator. In the same way, the image provided as
input to the discriminator, determines: a matrix with only 0, if it has been taken
from the original dataset, or with a matrix filled with ones, in the case where it is
taken directly from the output of the generator. The difference between this lat-
ter matrix and the one based on the discriminator’s ”deductions” determines the
discrimination’s loss. In this way, the discriminator tries to classify the probability
of the furnished image as real or false, which encourages the generator to produce
more realistic data to fool the discriminator.
This difference is initially calculated with the squared L2 norm (a criterion that
measures the mean squared error). At the beginning, his criterion was considered
more reliable, although in [1] the CycleGAN was constructed using the Binary Cross
Entropy,calculated between the target and the output. The latter loss, however,
led to the generation of images of low quality. They were analyzed by a visual
inspection.
Through a careful analysis of the most recent papers with generative models, it
was found that the implementation of the Wasserstein loss represents one of the
best solutions for the generation of good quality images. Furthermore, it favours
the stability of the network in the training phase (which is compromised by the
training of both neural networks present) and convergence.
The discriminator does not assigns a probability, but it scores the realness or fake-
ness of input data. The two generators are trained to minimise the distance between
the distribution of the real data taken from the dataset and the distribution ob-
tained from the generated images. This distance is defined Wasserstein distance:
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which is continuous, differentiable and gives a linear gradient, even when the dis-
criminator is well trained. It is described as the shortest average distance necessary
to move the probability, from one distribution to another. Indeed, it has been
noted in the previous cases, the discriminator learned very quickly to distinguish
real from fake images, and fails to provide useful gradient information to update
the corresponding generator [27].
However, due to the Wasserstein loss, the discriminator will converge to a linear
function, but continuing to provide useful gradients for the model. Moreover, one
of the main problems with the training of GANs is that the loss trend does not
always correspond to the quality of the images generated. These must be checked,
at the end of each process, by a visual analysis. Through the implementation of
the Wasserstein GAN, it is possible to promote the correlation between the loss of
the discriminator and the quality of the data produced.
To implement it, a linear activation function was added to the last layer of the
discriminator. In [27] to train the discriminator the weights are clamped within a
specific range [-c, c] after each update, in order to have a compact space. In addi-
tion the discriminator is updated more times than the generator in each iteration.
This solution, however, was not suitable for the developed network, because the
discriminator obtains immediately much better results than the generator.
The restriction of the weights can cause the vanishing gradients and undesired be-
haviour. This happens when a too small range [-c, c] is chosen. It also makes the
model extremely sensitive to hyper parameter c.
A small variant based on the gradient penalty was implemented, as proposed in
[58]. In this case, instead of clipping the weights of the discriminator, a limitation
is imposed on their length. The loss of the discriminator is described in 5.2.

LD = D(x)−D(G(z)) + γ(‖∇x̂D(x̂)‖ − 1)2 (5.2)

The first two elements of the equation 5.2 can be found in [27] and [58]. They
indicate that the discriminator wants to separate as much as possible the real data
and the data created by the generator, increasing the difference between them.
The output values will be as large as possible for fake samples and as small as
possible for samples from the original dataset. In the formula, X is the input of
discriminator and Z is the input of generator. The third element is the gradient
penalty. It takes the gradient at x̂, a randomly weighted average between a fake
and a real sample from the dataset (5.3).

x̂ = εx + (1− ε)G(z) (5.3)

Data are interpolated,and ε is a random value, chosen between 0 and 1. These
points obtained, should have a gradient norm of 1. So instead of applying clipping,
the gradient penalty punishes the network if the gradient norm deviates from its
desired norm value 1. For the built model λ in 5.2 is set to 10. While for the loss
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of the generator the equation 5.4 is applied. The generator tries to minimize it, to
fool the discriminator.

LG = D(G(z)) (5.4)

In addition, the activation function in the last layer of the NNs, of both generators,
has been modified. Initially, the hyperbolic tangent function (Tanh) was simply
applied, with an output range of [-1, 1]. However, multiplying this function by
6, the range was increased to [-6, 6]. In fact, the values inside the image, due to
the Z score and the clipping applied in the pre-processing phase, make the pixels’
value limited within the range [-0.5, 5.5]. In this way, by increasing the range of
the activation function, the pixels can be modified by the generator, allowing it to
reach any value within the range.
Another important change, that has led to a considerable improvement in results,
is the use of the input image as a template on which the generator can generate new
data. It is added directly to the output. In this way the two generators do not have
to build the image completely from zero, but they focus more on the main changes
they want to apply to their output. This template is applied in both directions.

5.3 Application of binary masks

Thanks to a a visual evaluation of the images saved at random epochs during the
training phase, it was noted that the generator did not only modify the abdominal
components visible in the CT image, but also corrected the intensity of the pixels
in the background. This was due to possible noise in the background, which influ-
enced the network.
A binary mask was implemented, in order to focus the neural network only on the
anatomical component. This takes only the abdominal component, making in this
way that the modifications related to the intensity of the pixels concern only this
section. This solution is visible in different papers, where Generative Adversarial
Networks are implemented. In [59] for example a binary mask is generated, in this
way only the surgical mask of the subject is taken, leaving out the rest of the face.
The mask is realized thanks to the implementation of a function, which identifies
the pixels with an intensity greater than the minimum value of the image (corre-
sponding to the background). The edges of the pixel regions are then gradually
expanded due to the effect of dilation. Their area is extended, while the blanks
in these regions become smaller. Thus a binary mask is created whose foreground
pixel corresponds only to the anatomical component (Figure 5.6).
The mask is calculated for each input image. It is then multiplied in the last layer,
where the Tanh activation function is applied. Thereby all the variations present in
the background are set to zero and only pixels relating to the anatomical component
are kept intact. Consequently, the net focuses only on the abdominal component,
modifying it.
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Figure 5.6: Randomly sampled example of a mask obtained from an input image.

5.4 Identification of the renal section

The main purpose of the study is to train the generator to artificially insert the
effect related to the injection of contrast agents in the patients. It is based on the
objective of generating a data distribution that corresponds as much as possible to
a dataset composed of abdominal CT images of patients in whom contrast agent
has been inserted to favour the visualisation of the renal component.
Previously, it were described the main improvements that were applied to the NNs
that constitute the CycleGAN model. We tried to homogenize as much as possible
the type of images used as input of the two generators: to favour the visualization
of the effect related to the contrast medium and, then, a binary mask was applied
to focus only on the abdominal component.
However, it was noted that the images provided as input for the two generators
had very different characteristics. Initially, the number of slices for each patient
was limited, thanks to the manual identification of a specific range. Which starts
from the end of the lungs until the formation of the hip. However, the average
position was calculated on a limited number of patients corresponding to 10% of all
those available. For this reason, different patients had different acquisition ranges
and different characteristics. These were partly due to the presence of different
machines. These differences are visible in both domains.
However, a new approach was needed to identify only those anatomical components
for each patient in the study. The difference between the images, due to the inser-
tion of contrast, is only visible at the level of the kidneys and the most important
renal vessels. Nevertheless, using as input images of different anatomical compo-
nents, such as the pancreas or stomach, confuses the model and makes it tend to
add the contrast effect to these components also.
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On the other hand, because the images of the two domains at the level of the
stomach (or liver) are very similar, the ResNET has difficulty to identify different
features and applying them the contrast effect. Therefore, it is necessary to identify
and select different sections for each patient, based on the main anatomical com-
ponents. A similar approach can be seen in [52], where to facilitate the formation
of new abdominal images by exploiting CyleGAN, the different images are divided
into clusters according to the features present. To avoid excessively modifying the
model, a different technique was adopted.
A function was developed to calculate, for each patient slice, the number of pixels
with a minimum value. In a grey-scale image the minimum value corresponds to
black. From the graphs obtained for each patient we observe a decisive increase in
the number of black pixels, in the last slices. This increase is due to the presence of
the lungs, which are filled with air. This area, having a very low X-ray attenuation
coefficient, does not absorb the incident energy and form black spaces in the image.

Figure 5.7: Evolution of the number of black pixels in two samples: from domain
B (upper) and A (lower).

As can be seen in 5.7, patients belonging to different domains present similar graphs.
It is necessary point out that hat domain A, from now on, is composed only of pa-
tients taken from the PANCREAS CT database. This is indispensable because it
has been observed that both images taken from the latter database and from CT
Colonography, are marked by a full colon. Probably due to the lack of intestinal
cleaning prior to the clinical examination. In this way, the homogeneity between
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the two domains increases.
For each patient the corresponding graph is obtained, where it is visible an increase
in the number of black pixels in the last 100 slices, due to the presence of the lungs.
In this section a landmark is placed at the maximum point which indicates the
average height of the lungs, before the cardiac component appears.
Therefore from each landmark four specific sections are determined, which corre-
spond to the presence of certain anatomical components. This division and the
length of each section is described in the Table 5.1.

Database Section 1 Section 2 Section 3 Section 4
CT Pancreas 40 60 60 120
CT Colonography 50 70 70 150

Table 5.1: Number of slices of the four sections identified for each database

The first section starts at the landmark and includes the lungs. The second sec-
tion shows the liver and part of the kidneys. The third section includes the colon
and the kidneys, until they disappear. The fourth section shows the bladder. The
difference in numbers between the two domains, is determined by the thickness of
each slice acquired. Furthermore, the fourth section is not always well defined, as
some acquisitions on different patients end before it.
It is necessary to point out that despite this more precise identification and viewing
of different anatomical sections, there is still a discrete variability between patients.
This is also present because we did not want to excessively select and process the
data provided. Because the purpose is to develop a model able of working with
highly variable data directly provided by the CT scanner. Thus we try to make the
identification of fundamental features of the data distributions more stable, more
specific for the analysed body section. here the effects of the contrast agent are
more visible
This way produces a specific division for each patient used in training.

• For domain A, consisting of 77 patients from the Pancreas CT database, 9240
input images are used, which are taken only from sections 2 and 3.

• For domain B, consisting of 69 patients from CT Colonography, 9660 input
images are used, from the sections 2 and 3.

Compared to previous versions, there is a decrease in the number of data, at the
same time there is a greater precision about the anatomical section of interest.
These techniques applied to the generative model allowed for greater stability and
improvement of the final results, which are described and evaluated in the next
chapter.
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5.5 Application of 2.5D Neural Networks

One of the main problems noted in CycleGAN is the difficulty that the model has
in identifying the exact portion of the image in which the contrast is inserted, mod-
ifying the values. Indeed, it was observed that the increase in pixel intensity, during
the translation from the B domain to A, is concentrated in the renal section, but,
at the same time, involves other abdominal components also.
One way forward is to move from the simple 2D technique to 2.5D. This consists
in using as input, not a 2D grey-scale image (distinguished by a single channel),
but three consecutive slices: each of which is inserted into one of the three specific
channels, like a classic RGB image. Accordingly, the number of input and output
channels of the generators, and the input of the discriminator are modified. This
technique is known as 2.5D or pseudo 3D.
In this way we try to provide a minimum of three-dimensional information to the
generative model. It, along these lines, can more easily identify the portion of the
body subject to the change due to the contrast agent.
However, this technique has led to a decrease in the quality of the images pro-
duced. This is attributed to the use of axial images. More precisely, it is due to the
anatomical differences between two consecutive slices and the space between them.
These differences are related to the acquisition time of the CT scan. This makes
it more difficult for the generator to correctly identify the anatomical portions of
interest. Different results could be obtained with the use of coronal images. Where
the space between 2 consecutive slices is smaller and, for this reason, the anatomical
difference present between them is reduced. In fact, the Table 4.2 shows that the
third dimension is higher in the selected databases. This characteristic leads to a
worse quality of images created by the two generators.
The Figure 5.8 shows the results of this technique obtained during the test phase.
As can be seen, the generator (composed of the U-Net), in the attempt to add con-
trast, slightly increases the intensity of the pixels, not in a significant and precise
way. The relative residual map shows that the greatest increase is in the spine, while
the renal component undergoes a slight alteration. The residual map is created by
subtracting the output with the input data, in order to identify and quantify the
anatomical components that undergo major changes in the image.
In the case of ResNET, however, the generator is unable to apply any substantial
change in the output image, except only in the rachis. With the application of 2.5D,
the precision of the generative model does not improve, but actually deteriorates.
In the next chapter, the results are described, analysed and commented, from a
qualitatively and quantitatively point of view.
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Figure 5.8: From left to right : the input image, the output with the added
contrast agent and the relative Residual map
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Chapter 6

Results and Discussions

In this chapter we describe the results obtained by applying the developed deep
generative model.
In the first section we show and comment the qualitative results, highlighting the
characteristics that determined their formation.
In the second, and last, section the obtained results will be evaluated from a quan-
titative point of view, thanks also to the introduction of the Frèchet distance as an
evaluation parameter.

6.1 Qualitative results

In the first place, the qualitative results are analysed. The entire project was based
on the use of two unpaired sets containing two different types of images. This
entails that the results were not evaluated in the classical way, by analysing the
data labels and through validation. The generated images that have been obtained,
are now presented. These images generated by the CycleGAN are obtained from
6 patients of the Test-Set: where 3 patients present contrast-enhanced CT, and
another 3 without contrast. The patients in the Test-Set were divided into four
different sections and only the images relating to the renal region were selected, for
a total of 180 2D images.
The Figure 6.1 shows some samples of the data generated by the U-Net. In partic-
ular, there is the input image that is provided to the generator and the mask that
is applied to force the model to modify only the values concerning the abdominal
component, avoiding the background. It is also visible the image created by the
NN and the relative Residual map. The latter is produced by calculating the dif-
ference, between the output and the input data of the generator. This values are
then normalized between 0 and 1, where 1 normalized the maximum addition of
contrast for the first line while the maximum removal for the second line. In this
way, the map makes it easier to identify the portions of the image in which the
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model has concentrated and produced the main variations.
In the first line of Figure 6.1, the CycleGAN tries to artificially add contrast: the
intensity of the pixels increases mainly in the renal section. Whereas in the second
row the generator tries to remove the effect due to the contrast medium: there is
the mask and the corresponding Residual map, where it is possible to see that the
pixel intensity is lowered but in a less precise way, however, the major changes are
in the renal area. To analyze in more detail, the Figure 6.2 shows the application of

Figure 6.1: From left to right : Input image, mask, generated CT image and the
relative Residual Map. First line synthetic addition of contrast injection, second

line synthetic removal.

the generative model to add the effect of the contrast agent: the input and output
images obtained during the translation between the two domains and the corre-
sponding Action Map. Where the kidneys and their blood vessels, which are more
distinguishable, have been manually segmented and marked with a red curve. On
the other hand, the blue curve indicates the elements of the generated image that
are subject to a greater variation with respect to the input data. It is possible to
notice that these variations remain inside the abdominal component, thanks to the
application of the mask, and involve mainly the renal component. From the output
images it can be seen how the net can increase the contrast in the required areas,
although in a homogeneous way. It is not able to distinguish between parenchyma
and vessels , as happens in a real image with contrast agent. While, Figure 6.3
shows how the generator tries to remove the contrast effect by decreasing the pixel
intensity, with a greater variation in the kidneys. The main variations involve the
abdominal component, thanks to the application of the binary mask.
The U-Net tries to identify the main features that distinguish data from the two
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Figure 6.2: From left to right : Input image, generated Contrast-enhanced CT
image, and the relative Action Map

domains applying distinguishable variations and producing realistic images. From
the output images, it is possible to observe how the kidneys and small areas related
to the renal arteries are identified and modified by the network, even if only par-
tially. However, the generator leads to the formation of low-contrast images rather
than images without contrast where the distribution of pixel intensity is more ho-
mogeneous.
From the Res-Net results (Figure 6.4) we can instead see that the NN is able to
determine when it is necessary to increase the pixel value to create the contrast

56



6.1. QUALITATIVE RESULTS

Figure 6.3: From left to right : Input image with contrast, generated image, and
the relative Action Map

effect and when it was necessary to remove it. However, the modifications involve
the entire abdominal component almost equally, with no particular attention to the
renal section and the blood vessels. Moreover, these variations are very small and
difficult to distinguish from a visual examination.

57



6.2. QUANTITATIVE RESULTS

Figure 6.4: Input image without contrast and generated image by Res-NET

6.2 Quantitative results

The results obtained from the generative model are now described from a quan-
titative point of view. In the first part, the parameters combination identified to
improve the stability of the neural networks is described,; then the data distribu-
tions obtained are analysed. In the second part, the results obtained are analysed
using the Fréchet Inception Distance. The training of the entire CycleGAN model
with Res-Net as generators takes about 40 hours to complete. This is due to the
simultaneous training of two Res-Net and two discriminators made up of three con-
volutional layers. In the case where the generators are made up of two U-Net, the
training time increases to about 48 hours, due to the larger number of parameters.
Different combinations of hyper parameters have been tested for optimal results
and an increased stability. The introduction of the Wasserstein distance helps to
favour the quality of the generated data and to avoid mode collapse and improve
the stability.
As described in the previous chapter, an extremely small learning rate was con-
sidered necessary to avoid overfitting. In addition, a batch size of 10 elements is
fundamental to guarantee stability to the model, applying batch normalization. A
larger size was not possible due to the size of the different graphics cards used.
The use of the Adam optimiser and the linear decrease of the learning rate, in the
middle of the training phase, favours a better quality of the data generated by the
model and avoid instability.
The Figure 6.5 shows the Cycle and Identity Loss trends. It can be observed how
the trends, for both the model of deep NNs, tend to converge towards zero, fol-
lowing a stable decreasing trend. However, as described in [33], the use of Cycle
Consistency loss facilitates the stabilisation of the generator in the initial steps of
the training phase, but becomes an obstacle for the generation of realistic data.
This happens mainly in the last stages of the training phase. For this reason, it
was decided to gradually decrease the weights of the two losses in the last stages.
The same change is applied to the identity loss, to keep the ratio between the two
weights constant. The Figure 6.6 shows the variation of the two weights: starting
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Figure 6.5: Trend of the Cycle and Identity Loss

from the 150th epoch in a gradual way, subtracting a constant K every 10 epochs,
until the end of the training phase. For the Cycle loss K is set equal to 1.25, while
for the reduction of the Identity loss, K is set at 0.0625. In this way, we decrease
the influence of both loss for the generation of new data (without eliminating it
completely), while keeping the proportion between them constant.
Moreover one of the main problems related to GANs, is the difficulty of quanti-
tatively evaluating the results obtained, because often it is not sufficient a visual
analysis alone. Thus, in order to have a quantitative evaluation of the data gen-
erated, two parameters, very common in statistical classification, are calculated:
precision and recall.

• Recall is a measure of completeness. It indicates the ratio between the true
positives and the sum of true positives and false negatives. It is determined
by the ratio between the number of pixels belonging to the two areas (red and
blue) and the number of pixels belonging to the red area, (i.e. the portion
relating to the kidneys,which is manually segmented). Recall indicates the
ability of the generator to correctly identify the portion of the image that
have to be subject to variation, corresponding to the renal component and the
blood vessels.

• Precision is a measure used for classification or pattern recognition. It indicates
the ratio between the number of true positives and the sum of true positives
and false positives. It is determined by the ratio between the sum of the value
of the pixels of the residual map, belonging to the two areas visible in the
Action map (red and blue), and the total sum of the value of the pixels in the
blue area. . Precision makes it possible to determine if most of the changes in
the generator have been concentrated in the target portion of each image.
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Figure 6.6: Evolution of the weights of Cycle (upper) and Identity (lower) loss

For our study, when the the combination of hyper-parameters providing the best
results has been determined, 3 patients, from each domain (belonging to the Test-
Set), are chosen to generate 10 new images, by means of the CycleGAN. In this
way, 20 fake images are obtained, completely generated by the U-Net. The first
three images for each domain are visible in the Figure 6.2 and 6.3, the others are
included in the appendix. On these 20 fake images, the Recall of the action area
and the Precision of intensity variation, are applied. The figure 6.7 shows results
on data of syntethic contrast enhanced images obtained from CT Colonography
(non-contrast) database. It can be seen that the precision is often higher than the
recall value. This indicates that the model does not completely identify the section
of the image that needs to be modified, but the parts that undergo greater variation
belong to the renal component. This reflects what can be seen from the residual
map in the Figure 6.2. Furthermore, in some images, like in the third row of the
Figure 6.2, the kidneys are not much present in the CT image, but only a portion
with also a small part of the renal artery is visible. For this reason,the model has
more difficulty to identify this small anatomical portion.
The Figure 6.8 shows instead results on the data of synthetic non-contrast images
obtained from the Pancreas CT (contrast) database. In this case the recall values
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Figure 6.7: Recall and Precision of 10 images generated by the U-Net to add the
contrast effect

Figure 6.8: Recall and Precision of 10 images generated by the U-Net to remove
the contrast effect artificially

are much higher than the precision. This implies that the model modifies several
elements of the image, which should not be affected by the contrast changes, but
among these elements there are also the target renal and vessels areas. These
results reflect the qualitative ones, where we can see that it is as if we switched to
a low-contrast rather than a non-contrast, as mentioned before. On reason of this
behaviour could be because the contrast medium in the arterial phase does not only
involve the kidneys and vessel, but can also cause an effect on other anatomical
elements. For this reason, the generator modify elements that do not belong to
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the interested area. Anyway, it is still unclear how this problem arises only in this
”direction” of change.
It is important to point out that the results obtained up to now have been calculated
using the blue action are, calculated by applying a threshold of 0.7 (with a maximum
of 1.0) on the residual map. In fact this was the result of a pixel-by-pixel difference
between the output image and the input. The figure 6.10 shows how the precision in
the two translations changes according to the increase of the threshold (from 0.7 to
0.8 and 0.9). When the generator tries to remove the contrast, it is observed that the
precision increases. This indicates that the major changes actually appears inside
the renal component for the most part of the test images. When the generator tries
to add the effect of contrast, as the threshold is increased, the precision remains the
same or gets worse. This indicates that the generator is not only applying the main
changes within the renal component, but other anatomical portions are affected.
In the Figure 6.9, the precision is calculated on a test where the binary mask was
not applied during the training phase. It can be seen that the precision (whit the
same value of threshold of 0.9) when the mask is not applied decrease a lot. The
same happens in the opposite direction, when the generator, tries to insert the
contrast effect. This indicates that the binary mask is essential for both generators
to focus on the abdominal component, ignoring the background and black holes
present within the anatomical components.

Figure 6.9: Variation of precision when the binary mask is applied
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Figure 6.10: Variation of precision according to threshold value

6.2.1 The application of Fréchet Inception Distance

As stated above, one of the main problems related to generative models is the diffi-
culty of qualitatively evaluating the results obtained. In fact, the evaluation of loss
and validation are not always directly related to the quality of the data obtained
by the generator. For this reason, models are very often evaluated through the
implementation of an additional NN, such as a classifier or segmentor, which are
applied directly to the new generated images. In this way, it can be assessed the
improvements and the performance of this network, with the introduction of new
data. Examples of these applications can be seen in the third chapter. New param-
eters have been introduced for the objective evaluation of generator performance,
directly applicable to the new data. To do this, the Fréchet Inception Distance
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(FID) was applied as a comparative instrument. The FID score, also called as
Wasserstein-2 distance, has lately become more and more popular, replacing the
inception score (ID score). Indeed, ID Score only considers the generated images,
without comparing them to real data. It also necessitates a classification Net,
trained on ImageNet. The FID score measures the distance between two normal
distributions, by measuring the mean and the standard deviation [60].
In the case of multivariate distributions, like those we have obtained from Cy-
cleGAN, the covariance matrix is calculated in the formula, which allows us to
determine the relationship between the two distribution of image data that have
been obtained.

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2), (6.1)

Where µg and µr are the mean of the generated and real and images and Σg Σr

are the relative covariance matrix. Tr represents the trace linear algebra operation,
e.g. the sum of the elements along the main diagonal of the square matrix. The
formula is applied on two different data distributions, which correspond to the data
belonging to the real dataset and the data obtained from the generator. A low FID
score indicates a small distances between the two domain of images; which indicates
an high quality of the data distribution obtained by the model.
To calculate this parameter we use a network model InceptionV3, which is an image
classifier, trained with a large number of images taken from ImageNet.
In particular, to calculate the FID score, it is necessary to cut at the level of the
third and last pooling layer, before the output classification layer. The pooling
layer of the model is used to capture the specific features of an input image. The
last pooling layer consists of 2,048 activation; each image from both domains is
converted as 2,048 activation features. This process is known as the coding vector
(or feature vector) for the image. In this way a vector with 2,048 features is obtained
for the collection composed of the images generated by the generator. The feature
vector is then also calculated from the real images to provide a reference of the
distribution of the original data. In this way, the final result will be the set of 2.048
feature vectors for real and fake images, and the Equation 6.1 is applied to these
vectors.
However, it is necessary to point out that there are some limitations regarding the
use of the FID score, for this reasons it is not yet always used. This is because
it requires a pre-trained model on a large number of images whose characteristics
may not be helpful in identifying the features of the analysed data. As in our case,
where the ImageNet database is different from the medical images databases used.
It should also be independent of the number of samples that are included, however,
due to the presence of bias, this can affect the value of the metric. Finally, it
uses limited statistical data: mean and variance are in fact first order moments.
Therefore they are not necessarily able to cover all aspects of the data distribution,
which moreover do not present, a perfect multivariate normal distribution. For this
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reason, qualitative evaluation is still essential to identify the desired model and to
debug it.
The Test-Set consists of 5 patients, from each point domain 256 fake images are
taken. On these data the FID score is calculated, to determine the distance between
2 sets of images. As a reference parameter we take the distance between 2 sets of
images, composed of 256 images taken from CT Pancreas, belonging to domain A
(with contrast injected), and CT Colonography, belonging to domain B (contrast
free). The Table 6.1 shows the results of the Frechet distance, where A and B
indicate the corresponding domain.

• The distance between the two sets of real images is 0.10. The small value
indicates that the distance between the two sets of images is very close. This
is because, the presence of contrast does not change physiological aspects of
the patient, but only the intensity of some pixels. Furthermore, for all data,
part of the image is composed of the background.

Model A fake - B fake A fake - A real B fake - B real
U-Net (no Mask) 0.07 0.62 0.64
ResNET 0.08 0.40 0.50
U-Net 0.3 0.23 0.50

Table 6.1: FID score for different models

The first column evaluates the distance between the two sets of images completely
generated by the generator (A fake - B fake). In this way we evaluate the difference
between the two types of images created based on the relationship to the reference
distance between real images. In the first case analyzed the two false distributions
turned out to be very similar to each other. Moreover it can be seen, in the second
and third columns that, not using the binary mask leads to the generation of a data
distribution that is very different from the real one, for this reason the FID score
is high.
The ResNET, however, is not able to modify much the data provided as input. This
is also indicated by the FID score which is very close to the reference value. For
this reason, the generated images are more distant, and therefore more different,
than the corresponding real images taken from the two databases.
The U-Net shows that it generates fake images with contrast very similar to the
real ones (A fake - A real); in the opposite direction instead (B fake - B real) the
Frechet distance indicates that the results are not yet optimal. However, the U-Net
also shows a high ability to differentiate the generated images, belonging to the
two domains (A fake - B fake). For this reason, the distance between the two sets
of fake images is three times higher than the reference distance between the real
distributions.
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6.3 Conclusion and Future steps

The objective of this thesis was to propose a method to perform a cross-domain
CT image translation, through a specific generative model, the CycleGAN. In par-
ticular, we tried to obtain from a set of unpaired CT images with contrast agents,
acquired in the arterial phase, CT images where contrast injection is not present
and vice versa.
The project starts from the original CycleGAN implementation and then we apply
a series of modifications to improve the quality of the output data distribution.
In the first part, we focused on identifying the most appropriate type of medical
images for this type of study, selecting the most suitable data. It is understood
that this selection and pre-processing of data is fundamental to improve the quality
of the data used an input and to reduce their variability. In fact, to improve the
quality of the results it was necessary to identify the portion relating to the kidneys
and main renal vessels within each full scan of the training patients. In this way we
exclude those anatomical components, such as the lungs or femoral bones, which
are not involved in the insertion of the contrast medium, leading the network to
focus on unnecessary elements. For the same reason we only limited the use to
healthy patients, to avoid possible distortions. In fact, if the generator tried to add
contrast, analysing pathological patients, it could create hallucinations or distor-
tions because of the lack of information on images without contrast, as a results of
the homogeneity of the different structures within it. In addition, the application
of the binary mask for each input image has been shown to be fundamental in
allowing the NN to focus on the anatomical components and to avoid modifying
the intensity of the background pixels or the spaces between organs.
The proposed method makes it possible to obtain additional images with different
characteristics, from some specific medical image databases. In our case the varia-
tion is related to the insertion of the contrast agent. Through this technique way it
is possible to make a first step towards solving one of the main problems related to
available medical databases: the lack of a large amount of data available. The work
carried out does not aim to prevent patients from inserting contrast medium during
medical examinations, but instead aims to increase the amount of data available
for deep networks (for data augmentation, for example). Although the results are
not yet very accurate. It is observed that the model was able to identify when it
was necessary to increase, or decrease the pixel density , in order to perform the
translation from one domain to another. Furthermore it also identifies the portions
of the kidneys and the major vessels subject to variation when it has to introduce
contrast agent, but not completely or very accurately. There has been a significant
improvement in image quality compared to the first experiments with the origi-
nal CycleGAN model. However, the generative model is still not able to obtain
contrast-free images, instead it produces low contrast CT images.
As described in the chapter on the State of the Art there is no standard procedure
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to evaluate the performance of the GANs. In the results section, an attempt is
made to evaluate the performance of CycleGAN from a quantitative point of view,
using statistical parameters to assess the accuracy of the generated data distribu-
tions. Furthermore, the Fréchet inception distance is used as a measure to evaluate
the distance between the real data distributions and those generated by the Neural
Network. This score is becoming popular in this field. In our project, it was applied
to evaluate the conditions for obtaining the most realistic data possible. Its use can
play an important role in the comparison and in the evaluation of the performance
of different GANs developed in future research.
The generative model can be improved, overcoming one of the main problems of
this study, the limited variability of the data. It is possible to take a step forward by
also using pathological patients, such as thrombosis. In this way, it can be analysed
if the generative model is able, based on the information in the image, to create the
corresponding contrast-enhanced image. Indeed in future work we might be able
to study if the generative model can detect the information relative to pathological
elements in a contrast-free image, while the doctor is unable to extrapolate this
kind of information. A further improvement that can be applied is the addition of
an independent and trained classifier net to identify and classify the images used
as input according to their anatomical components present within. This makes the
algorithm independent of the chosen database and provides a more precise division
of the images than the four section division applied in the training phase.
Moreover, by adding an additional local discriminator that analyses patches taken
from the image to focus locally on specific regions of the image, it is possible to
make a further improvement that involves the discriminator
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