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Summary

Muscle loss and tissue degradation are two conditions which manifest ap-
proximately in 40% of cancer patients. These conditions can also become a
disease like sarcopenia or cachexia. The causes of cancer-related weight loss are
different, and this condition reduces the response for both medical and surgical
cancer treatments, as well as it increases the risk of mortality. For these rea-
sons, weight loss should not be underestimated but, on the contrary, it has to
be monitored in order to improve the benefits of cancer treatments.

There are different techniques to evaluate body composition and diag-
nose cancer-related muscle loss, both non-imaging techniques and imaging tech-
niques. Several studies have shown that it is no more necessary to segment
muscle tissue in the whole body 3D image, because techniques like magnetic
resonance imaging (MRI) or computer tomography (CT) provide the possibility
to study the third lumbar vertebra level (L3) where muscle area is correlated to
whole body muscle mass. Thus, spotting L3 slice is an important task and the
radiologist needs, at least, 5 minutes to detect and segment it.

Up until now, only few automatic methods based on computational neural
network (CNN) have been proposed in order to detect L3 vertebra. However,
they require a training part and, moreover, a big dataset and this can be a
problem for the ones who do not have enough data. Therefore, the aim of the
study in to create an automatic algorithm for L3 slice detection without using
neural network architectures, so that a small database would not be a problem.
To this effect, 24 patients are analysed in this study and, considering that every
patient provides 3 or 4 CT scans, the final database is made by 80 acquisitions.
For the purpose of the study, the technique is based on human body spinal
cord characteristics at thoracic and lumbar level. Every CT image is converted
into a binary mask to highlight bone presence, then the there is a focus on
the number of white pixels (NoP) which denote a sort of minimum at lumbar
vertebrae level. This consideration is used to analyse pixels presence just in a
certain area of the masks, a region corresponding to vertebrae positions, called
vertebra area mask (VAM). Thanks to the VAM it is possible to examine just
the pixels referred to vertebrae in lumbar interval and, sliding down from the
thoracic to the sacral ones, there is a sort of pending/rising trend of the NoP.
Every maximum corresponds to a vertebra position.

As a result, the mean errors in slices is under 5, and for 50 out of 80 CT
scans the error is under 3. In addition, for some patients the error is between
10 and 20 and it has been proved that in such cases the algorithm gives as
output vertebra adjacent to L3. Finally, despite the limitations to be solved, it
is concluded that the algorithm can be used especially for the ones who do not
have the possibility to obtain a big database.
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Resumen

La pérdida muscular y la degradación del tejido son dos afecciones que
se manifiestan aproximadamente en el 40% de los pacientes de cáncer. Estas
afecciones también pueden convertirse en una enfermedad como la sarcopenia
o la caquexia. Las causas de la pérdida de peso relacionada con el cáncer son
diferentes, y esta condición reduce la respuesta para los tratamientos médicos
y quirúrgicos del cáncer, aśı como aumenta el riesgo de mortalidad. Por estas
razones, la pérdida de peso no debe subestimarse, sino que, por el contrario,
debe vigilarse para mejorar los beneficios de los tratamientos del cáncer.

Hay diferentes técnicas para evaluar la composición corporal y diagnosticar
la pérdida muscular relacionada con el cáncer, tanto técnicas no de imagen y
técnicas de imagen. Varios estudios han demostrado que ya no es necesario seg-
mentar el tejido muscular en la imagen 3D de todo el cuerpo, porque técnicas
como la resonancia magnética (RMN) o la tomograf́ıa computarizada (TC) ofre-
cen la posibilidad de estudiar el tercer nivel de vértebras lumbares (L3) donde
el área muscular se correlaciona con la masa muscular de todo el cuerpo. Por lo
tanto, detectar la rebanada L3 es una tarea importante y el radiólogo necesita,
al menos, 5 minutos para detectarla y segmentarla.

Hasta ahora, sólo se han propuesto pocos métodos automáticos basados en
la red neuronal computacional (CNN) para detectar vértebras L3. Sin embargo,
requieren una parte de entrenamiento y, además, un gran conjunto de datos y
esto puede ser un problema para aquellos que no tienen suficientes datos.

Por lo tanto, el objetivo del estudio es crear un algoritmo automático para
la detección de cortes L3 sin utilizar arquitecturas de red neuronal, de modo
que una pequeña base de datos no sea un problema. A tal efecto, se analizan
24 pacientes en este estudio y, considerando que cada paciente proporciona 3
o 4 tomograf́ıas computarizadas, la base de datos final se realiza mediante 80
adquisiciones. A efectos del estudio, la técnica se basa en las caracteŕısticas de
la médula espinal del cuerpo humano a nivel torácico y lumbar. Cada imagen
de TC se convierte en una máscara binaria para resaltar la presencia o sea,
entonces hay un enfoque en el número de ṕıxeles blancos (NoP) que denotan
una especie de mı́nimo a nivel de las vértebras lumbares. Esta consideración se
utiliza para analizar la presencia de ṕıxeles sólo en un área determinada de las
máscaras, una región que corresponde a las posiciones de las vértebras, llamada
máscara de área de vértebras (VAM). Gracias al VAM es posible examinar sólo
los ṕıxeles referidos a las vértebras en el intervalo lumbar y, deslizándose desde
las torácicas a las sacras, hay una especie de tendencia pendiente/ascendente de
la NoP. Cada máximo corresponde a una posición de vértebras. Como resultado,
los errores medios en los cortes están por debajo de 5, y para 50 de 80 tomograf́ıas
computarizadas el error está por debajo de 3. Además, para algunos pacientes



el error está entre 10 y 20 y se ha demostrado que en tales casos el algoritmo
da como vértebra de salida adyacente a L3.

Finalmente, a pesar de las limitaciones a resolver, se concluye que el algo-
ritmo puede ser utilizado especialmente para aquellos que no tienen la posibili-
dad de obtener una gran base de datos.

Palabras clave

Pérdida de peso, sarcopenia, composición corporal (BC), tercera vértebra
lumbar (L3), tomograf́ıa computarizada.
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1 Introduction

In this chapter, the clinical context of the master’s thesis is presented.
Muscle loss in cancer patients, which can also become a disease (for example
sarcopenia or cachexia), is explained and the methods of diagnosis as well as
the possible treatments are examined. Tissue degradation is present in approxi-
mately 40% of cancer patients and this condition negatively affects the prognosis
and survival rate of cancer patients [1].

1.1 Cancer and weight loss

Cancer disease is one of the biggest problems in the medical world, con-
sidering that in 2018 there were more than 18 million cases worldwide and this
number is constantly increasing year by year [2]. This disease is not uniform
but can affect different organs of the body in different ways and this makes it
difficult to reduce the level of mortality. As it is possible to see in Figure 1.1,
in 2018 the most affected organs were colon (13.7%), breast (12.1%), prostate
(11.7%) and lung (10.1%).

Figure 1.1: Most prevalent cancer types in 2018 in the world (both sexes, all
ages) [2].

Cancer disease is very often associated with a progressive decline in the
state of nutrition. In simple words, this means that the various elements that
make up the body (organs, muscles, blood) are no longer in the state of balance



that characterizes the healthy individual (good state of nutrition). The most
obvious sign of this condition is typically weight loss [3].

The causes of cancer-related weight loss are different. The most frequent
are changes in the metabolism due to the cancer itself, but cancer treatments
also have important side effects on the organism. The growth of the cancer
induces changes that influence not only the organ or the affected tissue, but the
entire organism. In fact, the cancer is perceived by the organism as a foreign
body which triggers an immune system response, resulting in the production of
substances that result in major changes in metabolism [3].

Cancer therapies (chemotherapy, radiotherapy, molecular target therapies)
are effective, but they can cause appetite reduction, muscle weakness, nausea,
vomiting, mouth ulcers and gastrointestinal mucous membranes alteration, es-
pecially in the period immediately following the therapeutic cycle. As a result,
the patient also loses weight due to therapy. In addition, if the cancer required
extensive surgery with removal of important parts of the digestive system, this
can lead to alterations in digestion and nutrient absorption [4].

Weight loss reduces the response to both medical and surgical cancer treat-
ments and increases the risk of mortality. For this reason, weight loss should
not be ignored, nor underestimated, neither by the oncologist nor by the patient
who must ask his doctor to be weighed regularly.

If natural nutrition is still possible, it is recommended to develop a per-
sonalized diet plan in the context of a nutritional program, taking into account
the food preferences of the patient, if possible. If the amounts of food taken
are insufficient to meet the nutritional needs of the patient due to anorexia or
the gastrointestinal consequences of therapies, natural nutrition should be sup-
plemented with specific products called oral nutritional supplements. If this
approach proves insufficient, it is necessary to consider, on the advice of the
doctor, the use of artificial nutrition, enteral or parenteral, in hospital or at
home [4].

1.2 Sarcopenia and Cachexia: definition and epi-
demiology

The clinical definition of sarcopenia states that it “is a condition character-
ized by loss of skeletal muscle mass and function” [5]. In the last decade, the
relation between diseases like sarcopenia (or cachexia) and cancer patients has
been analysed [5]. Regarding cachexia, this pathology is considered as a side
effect in cancer patients and it consists in muscle degradation[6].

These pathologies do not have a general definition valid for all the cases
but they both have muscle tissue as target. In particular, sarcopenia involves
a continuous and uniform loss of skeletal muscle mass, whereas cachexia can
be more aggressive, causing an extreme muscle deterioration [7]. Since chronic



patients (especially cancer patients) often suffer from muscle loss, it is impor-
tant to monitor the muscle mass. Studying muscle loss can help physicians to
improve the benefits of cancer treatments. The causes of that can be due to
different aspects like malnutrition, drug-related side effects, sickness and nau-
sea. For example, 40% of the new diagnosticated cancer patients say that they
experienced unexpected loss of weight, with other side effects being fatigue and
weakness [1]. Figure 1.2 illustrates the correlations between a decrease of muscle
strength and age, in correspondence of presence of a disease [8].

Figure 1.2: Relationship between muscle strength and age [8].

Different studies have shown that a prevalence of sarcopenia in advanced
cancer patients exists, considering different types of cancer, different stages of
the illness and different ways to analysing it [9] [10] [11]. Usually, muscle mass
loss starts to appear during the third decade of life, which could be seen as a
turning point where age can be associated with skeletal mass.

Scientific research has shown on more than one occasion that proper nu-
trition delays the onset of sarcopenia and prevents its worst consequences [9].
Figure 1.3 shows how the presence of sarcopenia decreases the survival rate of
cancer patients [12].



Figure 1.3: Survival rate of patients stratified by the presence of sacropenia [12].

1.3 Diagnosis

The cellular level of body composition (BC) consists of body cells (body
cell mass) and their surrounding extracellular water, plus the skeleton and con-
nective tissue. Although there is some lipid in the form of cell membranes, this
compartment is largely fat-free and these components are sometimes termed the
fat-free mass (FFM) or in older terminology the lean body mass (LBM) [13].
The body cell mass is responsible for almost all of the basal energy expenditure
of the body, since that is where cellular metabolic and respiration processes take
place. Together with the adipose tissue compartment (which consists mostly of
fat), this level is often referred to as a two-compartment model, i.e., FFM and
fat mass (FM). In the healthy individual, the FFM has a relatively constant
composition, with a water content of 72–74%, an average density of 1.1 g cm-
3 at 37 ➦C, a potassium content of 60-70 mmol kg-1 in men and 50–60 mmol
kg-1 in women, and a protein content of 20% [13]. BC is an important factor
to be studied, in patients with chronic diseases. This factor can be used also
to enhance aspects like nutrition care and to personalize chemotherapy dose
calculation taking in consideration muscle and adipose percentages. Figure 1.4
illustrates the muscle-lipid system.



Figure 1.4: Representation of muscle-lipid system, with explanation of how
muscle and lipid tissue are composed [4].

There are different techniques to evaluate BC and to diagnose cancer-related
muscle loss, both imaging techniques and non-imaging techniques. For exam-
ple, regarding the non-imaging techniques the most famous are Anthropom-
etry (which measures subcutaneous fat) and Bioelectrical impedance analysis
(BIA), which consists of a small AC electrical current injected through the body.
Thanks to the inverse relationship between impedance and total body water,
BIA can estimate the amount of muscle tissue.

Instead, imaging techniques are usually used mores widely because they
offer better accuracy and resolution, which implicitly lead to a more accurate
diagnosis. The following techniques are the landmarks for diagnosis of sarcope-
nia through imaging: Dual Energy X-Ray Absorptiometry (DEXA), computer
tomography (CT) and Magnetic resonance imaging (MRI), echography [8].

1.3.1 Non-imaging techniques

BIA is currently recognized as a routine test to study body composition.
It is a non-invasive technique, cost effective and it is also a reliable method for
analysing BC in clinical routine. BC has a relevant impact on the transit of
time of an electric current through the tissues. This physical aspect can be used
to measure the electrical characteristics of the tissues and after that estimate
different parameters as total body water (TBW) and fat-free mass (FFM). The
biggest limitation of this technique is the variability in chemical composition of
FFM, which depends on different aspects like age, sex and disease.



1.3.2 Imaging techniques

Dexa

It is based on the principle of differential attenuation of an X-ray beam,
at two energy levels, when passing through the tissues. This attenuation is
recordable and related to the body composition of the subject being examined.
The device uses a matching X-ray beam with no dispersion in the environment.

Figure 1.5: Calculating BC with a DEXA image. (a): bone-fat-lean tissue mass
map. (b): pixel-level fat percentage map. (c): fat percentage threshold map.
In (d) t1 = 25% and t2 = 60% are the threshold for DXA system by default.
(e): intensity thresholds [14].

Compared to other imaging techniques, DEXA is inexpensive and has a
shorter scan times and also radiation exposure. The device is made by a C-arm
containing the x-rays source (below the patient in supine position) and there
are two different energy levels that are specific for soft tissue and for cortical
bone. Moreover, thanks to a collimator between the patient and the source,
scatter is minimized. The two different energy level (a low one and a high
energy photon emission) are detected and combined, creating a planar image.
Figure 1.5 illustrates an example of a measurement of BC throw DEXA imaging
[14].

Importance of L3 slice

To study body composition theoretically it is necessary to segment muscle
tissue in the whole body 3D image to obtain the extend of it. However, stud-
ies have shown that muscle area at third lumbar vertebra (L3) is correlated to



whole body muscle mass [15] [16]. This parameter can be obtained with struc-
tural imaging techniques like MRI or CT, which provide cross sectional images
to study the L3 level. Figure 1.6 illustrates an example of the whole spinal
cord, underlining L3 position and explaining some differences between thoracic
vertebrae and lumbar ones. For example, usually thoracic vertebras have long,
sharp spinous processes and articular facets for ribs, while lumbar vertebras
have shorter spinous processes and larger body [17]. To measure the patient’s
BC, radiologists needs at least 5 minutes [18] because this process is made by
two steps: first of all, the radiologist has to spot the slice corresponding to L3
vertebra and then, to segment this image manually. Moreover, it is important
to remember that these two steps are very operator-dependent, which causes a
non-significant variability in this process (radiologists are prone to mistakes).
Despite the variety of techniques, MRI and CT are still considered the standard
techniques for body composition evaluation, since the cross-sectional images can
be segmented and used to measure muscle and fat mass [19].

Figure 1.6: Main differences and locations of human vertebras [17].

MRI

MRI uses magnetic fields and radio waves to produce thin-layer tissue im-
ages (tomographic images). Normally, protons inside the tissues rotate, generat-
ing small magnetic fields that are randomly aligned. When they are surrounded
by the strong magnetic field of the MRI, their magnetic axis aligns along that



field. Subsequently, the application of a radio frequency pulse causes the axis
of many protons to align momentarily in the opposite direction of the field, in
a condition of high energy. After the pulse, the protons relax and resume their
original alignment in the magnetic field of the MRI. The magnitude and speed
of the energy release that occurs with the return to basal alignment of protons
(relaxation T1) and by their oscillation (precession) during the release of en-
ergy (relaxation T2) are recorded as localized signal strength spatially by a coil
(antenna) present inside the apparatus RM. Computer algorithms analyse these
signals and produce detailed anatomical images. By controlling radio frequency
pulses and gradient oscillations, some computer programs produce specific pulse
sequences that determine how the image is obtained (weighed) and how different
tissues appear [20]. The MRI images can be:

❼ T1 weighted

❼ T2 weighted

❼ Proton density weighted

This technique manages to generate high resolution images and thanks to
the differences between the molecular properties in different tissues it is pos-
sible to have a good representation of different soft tissue like water, fat and
muscle. Moreover, it is possible to evaluate muscle structure by using different
acquisition protocols. For example, with DIXON MRI it is possible to obtain
water-fat separation and consequently reach a more precise measurements of
muscle volumes and the percentage of fat infiltration [21].

Figure 1.7: Example of two images at the same level: (a): T1 weighted MRI
and it is possible to see in a better way soft tissue and adipose tissue. (b):
T2 weighetd MRI image in which liquids and pathological conditions (cancer,
inflammation, trauma) are seen in a better way [22].



As Figure 1.7 shows, there are two different MRI images: in the one on
the left there is an example of T1 weighted MRI, hypointense image, whereas
in the right there is an example of T2 weighted MRI image in which liquids
are emphasized [22]. Moreover, with more advanced techniques there is also the
possibility to detect fatty infiltration and percentage of intracellular fat. This
can be an important aspect especially in cancer conditions, where usually this
value tends to increase.

MRI does not produce side effects (there is no ion dose like in CT exams),
and for all these reasons it is considered a reliable method for studying BC. The
limits of MRI are high costs and limited availability, which are the reasons for
which this technique is mainly limited to research .

CT

CT is a computerized X-ray imaging technique in which X-rays are beamed
at a patient and rotated around the body very quickly, so that it is possible
to obtain an image of a slice of the patient’s body. These slices are named
tomographic images and, compared to a simple X-ray test, contain much more
detailed information, also because thanks to the creation of these slices it is
possible to obtain a 3D image of the patient, which can be very useful for
the identification of different problems like cancer or abnormalities. As said,
CT, like MRI, provides cross-sectional images and, thanks to their different
characteristics, it is possible to discriminate between different kinds of tissue.

This technique is based on different X-ray attenuations, which is quanti-
tively measured in Hounsfield units (HU). The Hounsfield unit is a standard
unidimensional form to express CT numbers. Reference values are 0 HU for
water and -1000 for air. For muscle density, normal attenuation values are in
the range between 40 to 100 HU but fatty infiltration can modify these in a
huge way bringing them to negative ones (from -200 to -35 HU). Using those
values it is possible, through post-processing analysis, to measure the extend
of different tissues, like muscle, visceral adipose tissue or subcutaneous adipose
tissue.



Figure 1.8: Example of different tissues at L3 level [6].

HU density thresholds can be used for muscle segmentation after removing
visceral organs: in Figure 1.8 it is possible to see how images are chosen at a
specific axial slice (usually L3 vertebra) and then having a muscle segmentation
using a software, which includes HU values between -20 and 150.

However, this technique presents an important limitation: the radiation
exposure must be considered also because each CT scan consist in 1 to 10 mSv,
varying on the dose of radiation and the target. There is also a low-dose CT
scan that are about 1.5 mSv, but, in any case, side effects due to X-rays must
be considered [23].

Table 1 shows the main differences between some of the discussed tech-
niques. As it is possible to notice from the table, all the techniques discussed
are validated and the election between one of them depends on the specific
patient and on the corresponding specialist.

Table 1: Main characteristics of MRI, CT, DEXA and BIA [5].

In order to provide a good spatial resolution and distribution of muscle
and adipose tissue the best techniques are MRI and CT, with DEXA it is
not possible to obtain the same results [5]. It is important to underline the



differences between MRI and CT, so that to have the correct information to
understand when one is better to use than the other one. In particular, with
MRI it is possible to obtain better soft tissue contrast in respect to CT but is a
very low-cost test; on the other side, CT is much more accessible, cheaper and
is faster.

1.4 Treatments

Currently, there is no approved medical treatment that can prevent sar-
copenia. For several decades, however, there has been a number of pharmaco-
logical studies aimed at understanding whether the use of hormones, such as
testosterone and growth hormone, allows the maintenance of muscle mass and
strength, in spite of aging [24] [25].

While it is true that no medical treatment is capable of avoiding sarcopenia,
it is also true that there are several natural remedies that can counteract the
physiological decline of muscle mass and strength related to age and prevent
the worst consequences [24]. These natural countermeasures consist in constant
exercise and in a diet in line with the needs of muscle tissue and the human
body in general, in old age.

As said, one possible treatment can be the change of diet habits. At the
base of the ideal diet to fight sarcopenia there is the consumption of [26]:

❼ Foods rich in healthy protein. This is the most important point; foods
rich in healthy proteins include: fish (e.g. trout or salmon), crustaceans,
nuts, lentils, quinoa, beans, tofu, lean parts of poultry and lean cuts of
beef

❼ 3 to 5 servings of fruit and vegetables

❼ To validate the implemented algorithm

❼ Foods low in sodium, fat and/or sugar. The advent of patient-centred
care has increased attention to the fact that different molecular changes
can result in the need to have different therapeutic approaches to similar
conditions such as sarcopenia. Variety of molecular changes resulting in
changes in myo-fibre metabolism and alterations in satellite cell properties

The practice of physical exercises has been shown to improve muscle mass
and strength, but is not always feasible in elderly subjects, and it is not yet
known how long its effects last after it is discontinued. Moreover, it has also
been demonstrated that this kind of treatment it is not enough to contrast the
loss of muscle mass in elderly people, for which it is necessary to add drug
therapies [26].

Pharmacological treatment is a major area for research. A variety of drugs
are being tested for their effects on muscle mass and strength, such as Ghrelin,



GH secretagogue and myostatin inhibitor, but at present few results have been
achieved, some of which are controversial [26].

Testosterone is one of the most important steroid hormones and it stimu-
lates development of secondary sexual characteristics in men, like muscle growth.
The results of the different studies are not consistent. The administration of
testosterone to young people is associated with an increase in muscle mass, but
not in strength. In the elderly, high testosterone doses increase contraction
force, but this treatment has been associated with severe complications, con-
traindicating its use. Growth hormone (GH) supplementation has created a
multi-million market in anti-aging medicine programs. Administration of GH
improves body composition by increasing muscle mass, reducing fat mass, and
decreasing bone demineralization rate, but there is strong evidence that it does
not improve contraction or functional capacity and does not induce positive
metabolic changes. Moreover, long-term testosterone therapy could be also as-
sociated with side effects that can be physical (like prostate hypertrophy and
high blood pressure) or behavioural (especially aggression) [27].

Monitoring vitamin D can be also useful in order to enhance problems with
muscle loss and leak of strength. 25(OH)-vitamin D (vitD) quantity decreases
with age. Many studies show that in elderly people there are extremely low
vitD values. Low vitD is correlated with loss of muscle strength, this is why
supplement of vitD produce a functional improvement. Many studies have re-
ported extremely low vitD levels in elderly people. Without entering too much
in details, normal values of vitD are considered those above 30 ng/mL, whereas
there is vidD deficiency with values under 12 ng/mL. Usually cancer patients
have vitD deficiency and dosing of vitamin D can help in not losing too much
strength, as well as it can regulate the entire process of tumorigenesis, from
initiation to metastasis process [28].

1.5 Context

The present Master’s thesis is carried out in the Biomedical Engineering
and Telemedicine Centre of the Escuela Técnica Superior de ingenieros de Tele-
comunicación, Centre for Biomedical Technology of the Universidad Politécnica
de Madrid. Specifically, it is conducted in the “Medical images, surgical training
and image guided surgery” research laboratory.

1.6 Chapter structure

This project of thesis contains 7 chapters, starting from the general problem
and finishing with the future possibilities in this field. In particular, the first
and current chapter is a summary of the clinical contest, giving a brief but
intense idea of how important muscle loss is due to diseases like sarcopenia and
cachexia in cancer patients. Moreover, this chapter contains also the reasons
for which medical images are the best (thanks for MRI and CT cross-section



images) for analysing this loss. The second chapter contains the part regarding
the objectives to achieve during this project. The third chapter is about the
state of the art. After that, the fourth chapter presents the materials, i.e. the
databases used for the training set and test set and the software used to write
the algorithm. Chapter five contains the results obtained the validation of the
algorithm. Chapter six and seven, finally, are related to the discussion and
conclusion parts, respectively. After that there is the bibliography in which
there are present all the articles from where the information where collected
and used for the realization of this Master thesis.



2 Objectives

Time and interoperator variability are the two main factors that show the
benefits of an automatic way to reach this goal is needed. Thus, the aim of
this project is to develop an automatic algorithm to detect L3 level in whole
body 3D CT scans. To perform this study, the following secondary objectives
are defined:

❼ To define pre-processing steps to account for possible intensity-related
differences and artifacts in different CT scans.

❼ To design and to develop the automatic L3 slice detection algorithm.

❼ To validate the implemented algorithm with a retrospective study cohort
composed of CT scans acquired on the same scanner and same acquisition
protocol.



3 State of art

As described in 1.3.2, CT is one of the gold standard methods to evalu-
ate images and, thanks to its characteristics, it is possible to work with cross-
sectional images (2D) or with 3D images. Normally, whole body CT scans are
acquired and the L3 slice is selected manually. However, only two recent studies
have been found that describe automatic L3 slice selection algorithms. There
are different kind of possibilities to find L3 slice in a full CT scan, which usually
includes more than 300 slices (a whole CT scan can contain also more than
700 images). In particular, in this subsection two techniques are presented that
allow to find L3 slice in a different way.

These two techniques have the same characteristic: they are based on net-
works that need training. This is one of the challenges of this master thesis,
trying to find a different method which does not need training part, saving com-
putational time and power remaining aware of the fact that usually a network
architecture can give better results.

3.1 Definition of dataset and pre-processing

DICOM1 is the standard and universal format for the storage of CT images.
Usually the images have a resolution of 512 by 512 pixels, which corresponds
to a total of 264144 pixels per 2D image slice. To obtain better results and to
make it easier to work with these images, pre-processing steps can be added
to the image analysis methodology. Standard pre-processing steps can be, for
example, the conversion of the DICOM files into other type of images (like png
or jpeg), the normalization of the pixel values and the transformation of the
images from RGB to grey-scale format.

1Digital Imaging and Communications in Medicine — international standard for medical
images and related information. It defines the formats for medical images, with the data and
quality necessary for clinical use. This format is commonly used in almost every cardiology,
radiology imaging and radiotherapy device (X-ray, CT, MRI, ultrasound, etc.), and nowadays
it starts to be used in different medical domains such as ophthalmology and dentistry. DI-
COM➤ is one of the most widely organised healthcare messaging Standards in the world. It
is so used that it is possible to say that in this moment there are billions of DICOM➤ files
in use for medical problems [29].



3.2 Spotting L3 slice using deep learning algo-
rithm

In 2017, Soufiane Belharbi et al. [30] presented a whole automatic system
for choosing a defined slide in a full 3D CT scan is illustrated. This study mainly
relies on a machine learning regression method. It is possible to define 3 main
steps:

❼ CT images converted into Maximum Intensity Projection (MIP) images

❼ Prediction of a window using a Convolutional Neural Network (CNN)

❼ Analysis of the prediction structure in order to predict the slice corre-
sponding to L3 in the CT scan

3.2.1 Dataset and pre-processing

This approach is applied to the spot of the L3 vertebra and the starting
database contained 642 CT scans, all from different patients. All the CT scans
come from author’s clinical centre and there is a heterogeneity between the
patients in terms of age, sex, acquisition protocols (low dose acquisition (100–120
kV) and slice thickness (2-5 mm). the dataset is split into 5 folds, and this
operation allows a cross-validation procedure. The split, applied at the patient
level, avoid that a given CT scan specify windows in different sets.

3.2.2 Model Architecture

It is important to underline how using this kind of approach requires a
huge amount of memory, as well as computational resources, especially for the
training part, which is required in order to use a CNN architecture. In order to
avoid these problems, the approach described in Figure 3.1 was adopted: first
of all, the CT scan is converted into MIP images. This operation allows to
convert a 3D input into a 2D input, drastically decreasing the computational
and memory stores and avoiding an important leak of information.

After that, the MIP image is treated to create a sliding window which will
be the input of a CNN, with fixed dimensions. Transfer learning2 (TL) was
used to train this CNN, creating a TL-CNN, which computes its predictions for
every location of the sliding window, creating a prediction sequence. Finally,
this sequence is processed and L3 position is estimated in the whole CT scan.

2Transfer learning: machine learning method where a model extracted for a task is repro-
cessed as the starting point for a model on a second task. It is a popular approach in deep
learning: pre-trained models are used as the starting point on computer vision and natural
language processing tasks [31].



Figure 3.1: Illustration of the main steps used to estimate L3 slice [30].

3.2.3 Data processing

The main goal of the first step (MIP transformation) is to reduce the com-
putational and storage weight in order to have a faster algorithm even losing
some information. In this case, producing a MIP image brings to frontal view
in which patient’s skeleton is perfectly seen and the authors assume that this
kind of image gives enough physical information so as to detect L3 slice. It was
also tried to choose other views (as well as combination of different views) but
no one of them could produce the same results as the one related to the frontal
view alone.

The initial input size, for DICOM images with size 512 x 512, is given by
512 x 512 x N, where N is the number of slices. So, for example, if the whole CT
scan contains 1000 slices, the final result would be 262 million inputs. Thanks
to the conversion into MIP images the input size is drastically reduced to 512
x N, which corresponds to only 512 thousand inputs. In Figure 3.2 there is an
example of detection of L3 slice for 3 different patients.

CNN is one of the neural network architectures where a convolutional layer,
which performs a non-linear filtering process, is the main building block. This
convolution could be seen as a feature extraction in which the values of the
convolution kernel are the layer parameters. It is important to notice how every
single layer can give a different set of features from the previous layer.



Figure 3.2: Example of normalized MIP images with L3 position highlighted by
the green line [30].

During the last years, transfer learning methods are more and more used,
also because these methods allow to overcome the loss of training data [30]. TS
is based on adapting models, trained for several goals. The initial weights are
set with weights taken from a different pre-trained CNN, and then adjusted in
order to achieve the target.

3.2.4 Decision process

Sampling windows over a MIP image can produce two different sets of
windows: one containing the L3 vertebra and one without the L3 vertebra.
The authors propose a regression method, where adding the window without
L3 to the dataset means that the CNN learns the offset of the L3. This offset
is, unfortunately, very difficult to learn so that the decision is not include the
window without L3 but only the one containing the target vertebra.

The decision process is made by the sliding window over the MIP images,
which give as result the relative L3 position inside the window. The real position
of the L3 slice should decrease one by one (in CNN outputs), as shown in
Figure 3.3. CNN output should evolve linearly along the sequence of windows,
leading to a noisy straight line with a slope of -1 (green segment represents the



theoretical slope). The L3 position can then be estimated as the central position
of that segment.

Figure 3.3: Example of CNN output sequence with the typical straight like of
slope (theoretical one in green. In the graphyc of the right there is illustrated
the correlation between CNN output and slope [30].

3.2.5 Results

In Table 2 it is possible to compare the errors given by CNN and the errors
done by three different radiologists. In this case, it is important to underline
how radiologists usually are more precise than automatic methods, but these
results show also that there is some variabilities among different radiologists
whereas the automatic methods give the same output. This prediction shows
robustness by averaging several predictions.



Errors (slices)/ CNN4 VGG16 Radiologist Radiologist Radiologist

operator #1 #2 #3

Review1 2.37➧2.30 1.70➧1.65 0.81➧ 0.87 0.72➧1.51 0.51➧0.62

Review2 2.53➧2.27 1.58➧1.83 0.77➧0.68 0.95➧1.61 0.86➧1.30

Table 2: Comparison between errors given by CNN and by three different radi-
ologists [30].

3.3 Automatic L3 slice detection in 3D CT im-
ages using fully-convolutional networks (L3
UNet-1D)

In 2018, Kanavati Fahdi et al. [18] took inspiration from [30], trying to
enhance further the performances of the previous study. In particular, there are
two methods described in the article: the first one, as the previous one, converts
a 3D CT scan into MIP image which is then used as input to a 2D convolutional
network (in order to predict L3 slice position); on the other hand, the second
method is a modified architecture which works with 1D output size. The second
method, compared to the previous study, is faster thanks to the fact that there
is one dimension less, and the results show the same prediction accuracy [18].

3.3.1 Dataset and pre-processing

The authors collected a dataset consisting of 1070 CT images, from different
sources like Cancer Imaging Archive (TCIA) or Hammersmith Hospital (HH),
London. Since the final dataset is a combination of different datasets, Figure
3.4 illustrates two parameters: 1) the distribution of the slice thicknesses and
2) the image heights, while Table 3 contains the errors between annotators A
and B.

Figure 3.4: Slice thickness distribution and image heights of the dataset [18].



Table 3: Errors between annotators A and B, reported in mm and in number
of slices. The error in slices was calculated by dividing the error in mm by the
slice thickness (without rounding) [18].

Regarding pre-processing, as in the previous study the first step is a conver-
sion of the 3D CT scan into MIP images, which returns an image of the sagittal
plane. Differently from the method described in [30], the authors of this article
choose to compute a smaller sagittal view, eliminating the outer edges of the
pelvis and having in this way a better view of the sacrum vertebra. Sacrum
vertebras position, if a bottom-up approach is used to find L3, is essential. It
was considered that, in the majority of the patients, the spinal column is central
in the image so MIP image was restricted to the range [-20, 20] starting from
the centre of the MIP image. Moreover, considering that every CT slice has a
different thickness, a pixel size normalization is adopted to have a reliable input
to the algorithm. The last step consists in the elimination of majority of soft
tissues: this is obtained thresholding the images in the range 100 – 1500 HU.
Figure 3.5 shows a representation of a restricted MIP image.

Figure 3.5: Examples of extractions of different MIP images from a stack of CT
slices. From the starting stack of CT slices, it is possible to extract a frontal
MIP image (on the left), a sagittal MIP image (on the center) and a restricted
sagittal MIP image (on the right) [18].



3.3.2 Model Architecture

The 2D architecture consists of a several down-sampling and up-sampling
blocks, this is the reason it is called UNet-like architecture (with the latter
copying the former). Each block is made by one or two convolutional units
and every unit is a 3x3 convolution. The concatenation between the output of
the up-sampling blocks and the outputs of the down-sampling blocks is called
skip connection, used to associate the down-sampling path to the up-sampling
path. The result is a 2D confidence map prediction output, which has the same
dimensions of the input image. This network has 8,493,537 parameters and it
is named L3UNet-2D.

Similarly, in the 1D version the FCNN is based on the UNet structure.
In this case, the down-sampling path remains the same as the previous one
but there are important differences in the part regarding the application global
horizontal max-pooling along the up-sampling path. Here the result consists
into a 1D convolutions for the up-sampling, obtaining a 1D output with same
size as the height of the input image. The network in this case has 6,189,025
parameters and it is named L3UNet-1D. The authors use a fully convolutional
network (FCNN) based on UNet architecture3 with two different outputs: a 2D
confidence map and a 1D confidence map output. Figure 3.6 shows the two
network architectures.

Figure 3.6: Network architecture of the 1D and 2D versions [18].

3Unet is one of the existing network architectures, used for semantic segmentation. It is
made by contrasting path and expansive path [32].



To improve generalisation execution, an augmentation approach is used.
In order to achieve this, some transformations were applied to the images to
simulate variants. The transformation applied are:

❼ Horizontal flipping

❼ Intensity offset

❼ Vertical image sub-sampling

❼ Scaling

❼ Piece-wise affine deformations

Point-wise annotations are converted into confidence maps for each MIP
image. Position of L3 slice along the y-axis is the only accessible annotation.
There is one assumption: the spine is mostly located in a fixed x-axis range.
There is a generation of the ground truth confidence maps for the frontal MIP
images. Defining yi as the ground truth coordinates of L3 slice for image i, the
value of the confidence map is expressed as:

Where:

❼ fi is the step function below:

❼ gσ is a gaussian filter function

❼ ν is an offset

❼ A is the maximum normalization ||Hi(x, y)||∞

In the 1D architecture fi is simply an indicator function:



Figure 3.7 illustrates example images with ground-truth confidence maps cov-
ering the images.

Figure 3.7: Different images with ground-truth confidence map (in red) [18].

3.3.3 Results

Performance obtained are comparable to the ones obtained in [30], with
a median error of 1mm (almost equal to the human error) using the L3UNet
models. Moreover, 1D architecture gives slightly better results than the 2D
architecture. The slice location along the y-axis is the only accessible annota-
tion, it is easy to apply the 1D architecture both to the frontal MIP and to the
sagittal MIP. In Table 4 there are error values for 2D frontal architecture and
for 1D architecture applied to both the frontal and the sagittal view and Figure
3.8 shows the different views.

Table 4: Cross validation results for L3UNet-2D and L3UNet-1D (both frontal
and sagittal view). The last column refers to the number of outliers with error
> 10 [18].



Figure 3.8: Prediction outputs: four different predicted confidence maps. (a)
and (b) refer to a L3UNet-2D frontal view, (c) refers to a L3UNet-1D frontal
view and (d) refers to a L3UNet-2D sagittal view [18].

In a small group of images, the prediction is incorrect and the difference
to the L3 slice is usually one vertebra. Figure 3.9 illustrates some examples of
outliers, one referring to an error occurred in 2D architecture and one referring
to the 1D architecture [18]. In conclusion, it is possible to say that this method
works, and the results are comparable to the ones obtained in [30].

Figure 3.9: Outlier cases: incorrect identification of L3 vertebra by L3UNet-2D
(on the left) and by L3UNet-1D (on the right) [18].

3.4 Automatic Vertebra Annotator

Voronoi Health Analytics is a medical software company that develops med-
ical image analysis solutions for clinics, hospitals and research institutes. Among
the several diagnostic and clinical support tools created by this company, a new
software is under development which analyses and extracts patient’s BC after
predicting vertebrae positions in a whole body CT scan. The Automatic Verte-
bra Annotator (AVA) is an application to quickly select and extract individual



slices, starting at the first thoracic vertebra until the sacrum [33]. Figure 3.10
illustrates an example of the AVA interface.

Figure 3.10: Example of AVA interface [33].



4 Materials and methods

4.1 Materials

4.1.1 Database

The database used for this project is composed by 24 patients treated
for Hodgkin and non-Hodgkin lymphoma. 3 or 4 whole body CT scans were
acquired for each patient, taken during different months in order to monitor
the clinical process. This database is provided by the Department of Nuclear
Medicine of the Hospital Universitario 12 de Octubre, Madrid, and every CT
scan is composed by approximately 300-700 DICOM images. A total of 80
CT scans are available from 24 patients However, due to the time gap between
image acquisitions of the same patient, in this project, each image, and more im-
portantly L3 slice position, is considered sufficiently different for the validation
process.

4.1.2 Software

Nowadays the panorama of coding software offers several possibilities: for
this project, the choice fell on Python, which is a high-level programming soft-
ware. This software is simple, it is easy to learn how to code in Python and, in
addition, supports different modules and packages. Python needs an interpreter
and, for this project, Anaconda is used, in particular Spyder. As said, Python
supports different libraries and packages and, for this project, the used packages
are the following:

❼ The Pydicom4 package is a group of functions designed to manipulate
DICOM files using Python code. This package is needed for loading the
DICOM files.

❼ The Skimage5 package contains several image processing routines like fil-
tering or creating binary masks.

❼ Matplotlib6 is a Python library through which different visualizations can
be created. This plotting library is useful to visualize data.

4https://pydicom.github.io/ [Last access: Jenuary, 02 2021]
5https://scikit-image.org/docs/0.13.x/overview.html [Last access: January, 02 2021]
6https://matplotlib.org/contents.html [Last access: January, 02 2021]



❼ Scipy7 is a library, which collects different mathematical algorithms and
functions. These provide level commands and classes useful to manipulate
and to visualize data.

❼ Numpy8 access to a multidimensional array objects and many functions to
obtain fast operations on arrays, like mathematical or logical operations,
like shape manipulation, random simulation and a lot of other functional-
ities.

❼ OpenCV9 (CV2) is a library which has important tools regarding com-
puter vision and machine learning.

❼ The Os10 package is principally used for reading and writing files. Through
Os it is possible to create temporary files and directories.

❼ The time11 package provides several time-related functions and in this
project it is used in order to calculate the computational time of the
algorithm.

4.2 Methods

As explained, the goal of the project is to find the slice corresponding to
L3 vertebra in a whole CT scan, using an automatic algorithm. The following
steps are the summary of the adopted approach used to reach that goal: first
of all there is a data preparation part, in which DICOM files are loaded; then
some pre-processing is done in order to increase the homogeneity of the different
CT scans; after that, there is the prediction of L3 slice; finally, a validation of
the algorithm is executed. Figure 4.1 illustrates the pipeline of the project:

Figure 4.1: Pipeline of the methods adopted in this study

4.2.1 Data preparation

The first step is to load every CT scan and one by one the slices are inserted
into an array. The dimensions are 512x512xN, where N is the number of slices
inside a CT scan and, in this database, there are CT scans with different number
of slices (from 300 to more than 700 slices).

7https://www.scipy.org/docs.html [Last access: January, 02 2021]
8https://numpy.org/devdocs/user/whatisnumpy.html [Last access: January, 02 2021]
9https://opencv-python-tutroals.readthedocs.io/en/latest/ [Last access: January, 02 2021]

10https://docs.python.org/3/library/os.html [Last access: January, 02 2021]
11https://docs.python.org/3/library/time.html Last access: January, 02 2021]



The arrays are created to be able to use cycling operations. Once the CT
slices are loaded, the algorithm determines if the sliding sequence is bottom-up
or top-down. This is a very important aspect because the script is written for
top-down sequences, not for bottom-up ones. After determining if the direc-
tion of the slices is a top-down one or not, if the answer is positive the array
containing the CT slices remains the same, otherwise it is simply inverted.

Having a homogenous dataset helps in the project, and since the CT scans
are taken from different patients the first thing to do in order to enhance the
homogeneity is an image intensity normalization. In this project, image normal-
ization is done simply by dividing each pixel by the maximum value in the image,
in order to have images where 1 corresponds to white colour and 0 corresponds
to black.

4.2.2 Data processing

At this point, with a matrix composed by N normalized images, binary
masks are created in order to isolate as much as possible the pixels correspond-
ing to bone. Bone presents high intensity values (226-3071 HU) in CT scans
[34] and, as result, is hyperintense in the images. But it is also important to
consider attenuations and other side aspects that could still appear in masks, so
a relatively high threshold is chosen. This decision is taken in order to account
for intratissue variations of pixel intensity. After these considerations, a global
bone segmentation threshold of normalized images is used, so that pixel values
lie in the range [0,1]. Lastly, after threshold segmentation and mask creation,
two more operations based on region connectivity are performed to clean the
masks:

❼ Deletion of the element with the maximum axis length, which corresponds
to the patient bed.

❼ Deletion of small elements that do not have a certain area to avoid random
white pixels in the masks.

The idea of segmenting only bone areas arises from some considerations re-
garding human anatomy. Starting from the head area and sliding down through
the spinal cord, first, a progressive decrease of bone presence due to the end of
the ribs can be observed, reaching a minimum at the lumbar vertebrae levels.
After that, an increase of bone presence can be observed, in this case due to
the iliac crest. These considerations can be quantified examining the number
of white pixels (NoP) in each slice of the previously created binary mask. To
study its trend, the NoP of each slice is plotted. Moreover, in order to avoid
problems linked to some discontinuities in the NoP, the plot is smoothed.

As said, a negative slope of the NoP can be observed that is due to the
absence of ribs in the CT scan when moving downwards slice by slice. The NoP
increases again once reaching the iliac creast. In this case, it is possible to fix
an NoP threshold, which encompasses the slices of the least NoP and should



end with the L4 or L5 slice. Since the majority of CT scans present this trend,
the mean of NoP is chosen as threshold. This way, the choice of the threshold
is specific to every CT scan. The intersection of the threshold with the NoP
function shows how there is a central interval in which the NoP is under the
value, or interval of interest (IOI). Figure 4.2 [35] illustrates the detection of the
slices containing the L3.

Figure 4.2: Figure (a): schematic representation of the IOI detection containing
the L3 slice. Figure (b): theoretical intersection between the threshold and the
spinal cord [35].

This part of the methodology is based on the visual identification of land-
marks in axial CT slices when manually selecting the L3 slice following the
Alberta protocol. An in-depth explanation is given below in section Physical
features of spinal cord.



4.2.3 Anatomical features of spinal cord

The Alberta protocol is a standardized method to calculate BC starting
from a CT scan, defined by TomoVision (Virtual Magic, Inc., Magog, Canada).
A crucial step is the identification of the L3 slice, and its detection is described
based on anatomical landmarks. As shown in Figure 1.6, there are some differ-
ences between the several kinds of vertebrae and these differences can be used
in order to detect a specific one [17].

Figure 4.3 show the position of the lumbar vertebrae between the thoracic
and sacral vertebrae. In particular, there are 12 thoracic vertebrae, 5 lumbar
vertebrae and 5 sacral vertebrae and despite their closeness, there are important
features to discriminate them.

Figure 4.3: Main differences between thoracic vertebrae and lumbar vertebrae
[17]

Thoracic vertebrae are characterized by a rib-attachment, producing the
bony thorax. This feature is the key to discriminate between thoracic verte-
brae and lumbar ones. Since lumbar vertebrae have no rib-attachment they
have longer transverse processes that point more horizontally. The first lum-
bar vertebra is the first vertebra without rib attachment and with horizontal
transverse processes. Now that L1 is found, to find the other vertebrae it is suf-
ficient to count descending in the image volume, using the transverse processes
as yardstick. Since there is space between one vertebra and the following one
and considering that the distance between 2 CT or MRI slices is in the order
of millimetres, during the sliding of the slices it is possible to notice how the
transverse processes disappear and reappear. This disappear/reappear process
can be used as a counter in order to define the vertebrae numbering.



Another possible feature is that, usually, not only lumbar vertebra does
not have rib attachment but also, at L3 level, there is no rib presence. If ribs
are present in the image it probably means that that slice is at L1 or L2 level.
Figure 4.4 [17] shows the main features present from T12 to L4 vertebrae.

Figure 4.4: Example of CT slices from T12 vertebra to L4 vertebra. The most
relevant features are explained in the figure [17].

Apart from the features regarding thoracic vertebrae, the iliac crest is
present at the L4 level. However, at the superior L3 level it is not usually
possible to see iliac crest. Moreover, L4 vertebra is also usually characterized
by shorter transverse processes (Figure 4.5).

Figure 4.5: Focus on L4 vertebra which usually has shorter transverse processes
and at its level can be presence of iliac crest [17].



Finally, sacral vertebrae are easy to be detected because, besides the pres-
ence of the pelvis, they are fused together. In any case, usually it is not neces-
sary to consider sacral vertebrae in order to find L3 position because the other
features give enough keys to find it.

After the definition of the IOI, the next step is to identify the L3 slice,
which is located inside the IOI. In this case, the analysis is just focused on
the vertebrae, and for this reason a specific 2D mask is created, which is used
as a reference region of interest. The IOI is a 3D binary mask composed of
approximately 50-100 slices and is reduced to a single 2D mask representing
the vertebrae area. This mask is obtained performing slice by slice operations.
Starting from a total black image (all pixel intensities equal to 0), an OR-logical
operation is performed between this image and the first slice of the IOI. The
result of this operation, along with the subsequent slice of the IOI, are then
the inputs of a new OR-logical operation. This way, since both 1 OR 0 and 1
OR 1 are equal to 1, all pixels referring to bone are selected. This operation
is performed subsequently until the last slice of the IOI, obtaining a binary
mask in which the ‘true’ pixels correspond to the superimposed masks of the
individual slices of the IOI.

However, given that the IOI is composed by 50-100 slices, ribs and probably
part of the iliac crest might also be present, apart from the vertebrae. To
solve this problem, 2 approaches are proposed. Both techniques generate a
binary mask in which just the pixels referring to vertebrae are considered, called
vertebrae area mask (VAM).

❼ A semi-automatic approach using region growing: Once the OR operations
are finalised, , the user chooses the correct seeds and the algorithm creates
a mask in which only the white pixels connected to the seeds are taken
into consideration.

❼ An automatic approach using vertebrae characteristics: Once the 2D bi-
nary mask is created, the different non-connected elements correspond to
vertebrae, ribs and/or other regions. It is probable that the element with
the largest area is the one corresponding to the vertebrae. Looking at the
vertebrae from an axial point of view it can be observed how they are not
exactly in the same position due to the curvature of the spinal cord. In
this case, this aspect is taken advantage of because it increases the area of
the element corresponding to vertebrae locations. In this automatic ap-
proach, the element with the largest area is isolated and all other regions
that are not connected are eliminated.

Now that the VAM is created the L3 slice can be detected in the IOI.
Moreover, thanks to this algorithm, it is also possible to detect the other lumbar
vertebras. Due to the spaces between adjacent vertebrae the function of the NoP
of the IOI masks shows peaks and valleys. In a central slice of a vertebra the
NoP is higher, whereas the space between two vertebras corresponds to a relative
minimum. Lastly, the peaks of that specific signal are detected and the number
corresponding to the L3 slice is identified. The assumption for L3 identification



is that the intersection between IOI and NoP is somewhere between L4 and L5
level, so that if the last peak is close (< 10 slices) to the end of the IOI it is
considered to be L4. On the contrary, if the last peak has more than 10 slices
distances from the end point of the IOI, this is defined as L4. In order to define
the position of the others lumbar vertebrae, it is sufficient to count backwards
the peaks. In this way L3 position is determined.

4.2.4 Validation

The correct L3 slice of all images of the available database is visually se-
lected following the Alberta protocol described above. In order to validate the
algorithm, the distance (in number of slices) from the predicted L3 slice and
the one visually selected is calculated. This operation is done for both the
semi-automatic method and the fully automatic one. Calculating the distance
between the prediction and the correct L3 slice is considered the accuracy of
the algorithm.

Moreover, the computational time of the two methods is calculated, which
is measured for all the CT scan per each technique. All the time variables
per each method are then averaged in order to obtain the mean values of the
processes.



5 Results

5.1 Pre-processing

As explained in 4.2, the first binary masks are created from DICOM files
by thresholding. Figure 5.1 shows the limitations of thresholding, because other
tissues present the same pixel intensity as the bone, as well as part of the
structure of the patient bed. The masks are then cleaned deleting automatically
the elements of the patient bed and little parts of different tissues. Region props
is used both for the measurement of the element with major axis length and for
the deleting little elements (with area < 30 pixels). For both these operations,
8-connected neighbourhood pixels of the elements are considered as structural
element. Figure 5.2 shows examples of the cleaned masks.

Figure 5.1: Figure in the left shows the result after image thresholding. The
enhanced mask on the right is obtained thanks to the post-processing



Figure 5.2: Two different examples of mask creation. The left column shows
the original CT slices taken from different patients, whereas the right column
shows the respective binary masks.

5.1.1 Interval of Interest

The detection of the IOI is done by analysing the regions of the binary
masks. As explained in the previous chapter, at L3 level the only bone compo-
nent is usually due to the vertebra and the expectation is a negative slope of the
NoP in each slice until a global minimum when starting from the top of the 3D
volume. Figure 5.3 shows some examples where the graphs represent the NoP
(Y axis) of each slice of the binary masks (X axis).



Figure 5.3: Examples of the typical “downhill” trend in correspondence with the
lumbar vertebrae. The green line corresponds to the threshold used to find the
IOI. The orange curve corresponds to the smoothed NoP. The ellipses highlight
the IOI

The IOI is then used for the creation of the VAM, but it is necessary to
precise some points:

❼ First, adjacent masks can have big differences in NoP, therefore the graph
is smoothed. This operation is necessary to avoid problems linked to this
sort of discontinuities.

❼ Second, as it is possible to notice in the examples of Figure 5.4, the slopes
are usually steeper in the rising part. This is due to the iliac crest and it is
possible to imagine that the intersection of the threshold and the graphic
of white pixels is at L5 level.



Figure 5.4: Red lines approximate the slope of the descending part, while black
approximate the slope of the rising trend. These examples show how usually
the rising slope is bigger (in absolute value) than the descending slope

❼ Lastly, there are CT scans in which the descending slope is flatter com-
pared to the rising one, and result in a large IOI. Having a large IOI
produces a VAM with more elements, because it also includes slices with
ribs and maybe other tissue. To avoid this, a limit is fixed and, if the
left NoP-threshold cut-point is under 140, it is automatically set to 140.
Figure 5.5 shows an example of this situation.



Figure 5.5: Some graphs of NoP can produce an IOI that is too large. In cases
like the one in figure (a), the IOI is automatically reduced to avoid creation of
VAMs as the one in (b)

5.1.2 Vertebrae Area Mask

With the creation of the VAM it is possible to monitor just the area related
to vertebrae and the corresponding variation of the NoP. Figure 5.6 shows some
examples: images (a), (b) and (c) show a lateral stability of the position of the
vertebrae in patients without relevant problems in the spinal cord. Moreover,



due to the curvature, the shape of the VAM is similar to a bigger vertebra with
many transversal processes. However, image (d) is a VAM of a patient which
probably suffers for scoliosis (d), this is the reason for which the or mask is not
symmetrical with the y axis.

Figure 5.6: (a) (b) (c): three examples of VAM obtained from patients without
relevant problems at the spinal cord. (d): example of an VAM probably obtained
from a patient suffering from scoliosis, and this reflection is made by considering
the non-symmetry of the VAM with respect to its Y axis

As said in 4.2.3, in order to obtain the VAM it is necessary to select the
correct element of the mask created through OR-operations, and this is done in
two ways. The first method is a semi-automatic one and the user chooses the
correct element manually. This is done thanks to a region-growing algorithm
which, after receiving the input seeds, starts to grow until all the 8-connected
neighbourhood pixels of the element give origin to the final mask. Instead, the
second method consists in the choice of the element with bigger area. Figure
5.7 shows an example for both the techniques.



Figure 5.7: (a): example of region growing process: the user chooses the seeds
with the mouse and the process starts, giving as output the VAM made by the
elements connected to seeds. (b): Examples of the automatic method, which
chooses the element with the largest area for the creation of the VAM.

5.1.3 L3 detection

Figure 5.8 shows the graph of the NoP in the IOI after clearing the binary
masks. The relative maximums correspond to vertebrae positions, whereas the
relative minimums correspond to the space between two adjacent vertebrae,
where the presence of bone is lower. In this way, considering the positions of the
local maximums, it is possible to define not only the L3 slice, but also the others
lumbar vertebrae. Figure 5.8 illustrates how each maximum corresponds to a
lumbar vertebra. Comparing the CT slices to the masks at the peak positions,
the anatomical landmarks described previously can be identified (Figure 5.9).
First of all, as explained in the Alberta protocol, at L1 and L2 level can still be
rib presence, as figure (a) and (b) show. Instead, at L3 level (c) usually there
is no rib presence. Finally, at L4 level the iliac crest can be seen, as figure (d)
illustrates.



Figure 5.8: Peak positions corresponding to lumbar vertebrae positions

Figure 5.9: Group of CT slices with respective masks. These images show how,
thanks to peaks detection, also the others lumbar vertebra can be estimated

5.2 Validation

The developed algorithm is validated with all available images of the database.
The performance is determined by calculating the difference between the pre-
dicted position and the correct position defined manually following the Alberta
protocol. Figure 5.10 shows a graph of the differences, not taking into con-
sideration 3 outliers. A positive error indicates that the detected L3 slice is
above/under the visually identified L3 slice. The mean (➧ SD) error is 5.12 ➧

7,96 slices with the largest error being 27 slices.



Figure 5.10: (a) Graph of the errors calculated as the difference between the
prediction and the correct L3 position. (b) boxplot of the errors, to show the
shape of the distribution, its central value and its variability.

The last aspect that is interesting to consider is the computational time of
the algorithm. In order to give significant numbers, all the computational times
of the automatic processes are averaged to obtain the mean (➧SD). The same is
done for the semi-automatic technique. Table 5 shows the average time needed
to obtain the L3 slice position for both techniques.



Time (s)

Mean AM ➧ SD 14.75➧1.53

Mean SAM ➧ SD 49.01➧16.59

Table 5: Mean and SD of the computational time calculated for both the auto-
matic (AM) and the semi-automatic methods (SAM).



6 Discussions

Measurement of BC has a significant importance on the valuation of nutri-
tional status in cancer patients. In particular, L3 level is considered the gold
standard region of the human body to study this feature. BC is calculated
thanks to an image segmentation after the detection of this slice, however, up
until now the only ways to perform a detection of that particular level, except
for the visual detection, are based on CNN architectures which requires a vast
dataset and a training part. Therefore, the aim of the current study is to detect
that level (and, potentially, also detect other vertebrae in a CT scan) without
neither neural networks nor any type of training, but to base the algorithm
on anatomical landmarks detectable in CT scans. A dataset of 80 CT scans
provided by the Hospital Universitario 12 de Octubre in Madrid is analysed in
order to evaluate the efficiency of the technique.

The masks creation shows good performance in highlighting just the bone
components of the images. While some present other elements (like part of
the structure of the patient table), the final prediction is not affected for one
reasons: by focusing the study just in the VAM area, all the other elements in
the mask become insignificant. Moreover, regarding the IOI, it is shown that the
rising trend just after L3 position is due to the iliac crest, which usually appears
at L4 or L5 level. For this reason, the intersection between the threshold and
the positive slope of the NoP graph is assumed to be at L5 level, because the
increment is very rapid, and this is due to the presence of the iliac crest in the
image (and respectively in the masks).

Regarding patients with particular problems to the anatomy of spinal cord,
the only case present in the database is analysed correctly. Even if there are
no other cases of this kind, theoretically diseases like scoliosis should not be
problems for the algorithm. However, they should be assessed on a case-by-case
basis.

The analysis of the NoP demonstrates the theoretical assumption of the
alternating relative maximums and minimums in correspondence to vertebrae
positions. This consideration was to be expected because the spaces between
vertebrae there is less bone presence (intervertebral discs are smaller that the
vertebrae). Moreover, thanks to this trend not just the L3 level, but also other
lumbar vertebrae can be detected. The only operation to do is count the peaks.

Regarding the differences between the automatic method and the semi-
automatic one, for this database, the performances in terms of final prediction
are the same. The semi-automatic method is proposed for the cases where the
operator prefers a visual feedback. For example, it may be useful for patients
with very particular problematics which have internal prothesis, which could
influence a lot the prediction. This method can be considered more reliable



because there is a feedback from the operator but since the results are the same
it is possible to say that the automatic method is better.

Apart from that, the only consideration to do about the difference between
the two methods regards the computational time. As can be expected, the
semi-automatic method is slower than the automatic one. This difference of
time is due to the region growing process. The creation of the final element
starting from the seeds takes more time than just choosing the element with the
maximum area. Table 5 shows the values obtained for both the techniques and
the conclusions to be made are:

❼ The mean of time for the automatic method is lower.

❼ The computational time for the automatic method is much more sta-
ble. Its standard deviation is of the order of 10%, whereas for the semi-
automatic technique it is more than 30%.

❼ The region growing process is highly relevant in terms of time, and it
is also highly variable as regards different CT scans. This is due to the
dimension of the VAM, because the bigger it is and the more time it takes
to be processed.

The results obtained can be considered acceptable, but the present algo-
rithm does not reach the performances of the studies discussed in the state
of art, where the errors on the final prediction are 1.53➧4.22 slices [18] and
2.37➧2.30 [30]. The results are worst for this algorithm, but it is necessary to
take into consideration that this limitation can be avoided because one of the
peaks is L3.

Regarding the wrong predictions, it is important to evaluate a recurrent
condition: for all the cases in which L3 is not detected correctly the algorithm
gives as output still a lumbar vertebra, adjacent to L3. In the majority of cases
it is the L4 vertebra, but in few cases it is L2. The histogram of the error in
Figure 6.1 shows that usually the error is under 5 slices, or over 10. These results
can be seen as the fact that the algorithm gives as output a central position of
the vertebra, but in the wrong case the output refers to a vertebra adjacent to
L3. The distance between 2 vertebrae is different from people to people but,
considering a mean, it can be considered as 3-4cm [36]. Since the slice thickness
of the of the CT scans is 5mm, and considering that the distance between two
vertebrae is about 10-20 slices, this can be seen as a good result because the
mean error is less than the distance of two vertebrae. Moreover, there are only
two cases where the error is more than 20 slices.



Figure 6.1: Histogram of the prediction errors. As it is possible to notice, a
good percentage of prediction has an error under 5 slices, whereas the errors in
the range [10-20] (in absolute values) usually refers to a vertebra adjacent to L3
(L2 or L4)

Concerning the outliers mentioned in the previous 5.2, Figure 6.2 shows
the graphs of the NoP for the relative CT scans. As it is possible to notice, the
graphs present large peaks and valleys along the whole CT volume. This trend
makes it impossible for the algorithm to choose the correct IOI and this brings
to a failure to predict . For (a) and (b) the prediction is solved just reducing
the CT to 400 slices, starting the count from the top (head). Regarding figure
(c), the pixel intensities are more homogeneous (less contrast between different
tissues) than the one in (d), which is a NoP graph of a CT scan with correct
prediction. This causes a NoP graph with less pronounced peaks and valleys in
its smoothed version as more pixels are segmented by the selected bone tissue
threshold.



Figure 6.2: (a) (b) (c) are the NoP graphs of the outliers. For (a) and (b) the
prediction become correct if the number of CT slices is reduced to 400, starting
from the top (head). Regarding (c) there is still no prediction even with the
reduction of the CT scan. Its shape is weird in respect to the graph in (d),
which is the NoP of a CT scan with correct prediction.

Finally, since the only physical aspect present into the DICOM files is
weight, the correlation between this parameter and the error in slice is eval-
uated. This is done by calculating Pearson’s correlation coefficient between the
patient weight and the error in slices. The obtained correlation coefficient is
r = 0.09 (p=0.39), showing a weak and not statistically significant correlation
between the two variables. Therefore, it can be concluded that patient weight
does not influence the detection of the L3 slice. The main limitation of this
study is the recurrent problem of predicting an adjacent vertebra, despite the
fact that the correct L3 position is still present because it is one of the peaks.
Another limitation is the scarcity of information of the database: sex, age and
height are not present, and this makes difficult to evaluate the correlation be-
tween those factors and the wrong prediction. Despite those limitations, the
results are coherent in the majority of the cases with the operator predictions
with just 1 outlier.

The main limitation of this study is the recurrent problem of predicting an
adjacent vertebra, despite the fact that the correct L3 position is still present
because it is one of the peaks. Another limitation is the scarcity of information
of the database: sex, age and height are not present, and this makes difficult to
evaluate the correlation between those factors and the wrong prediction. Despite
those limitations, the results are coherent in the majority of the cases with the
operator predictions with just 1 outlier.



7 Conclusion

This master’s thesis is based on the study of L3 slice detection with the aim
of a segmentation executed on that level in order to study body composition
in cancer patients. In particular the database is made by CT scans coming
from patients treated for Hodgkin and non-Hodgkin lymphoma and it is known
that cancer patients suffer for muscle loss. Monitoring BC can be important
for the treatment and studying its composition at L3 level is one of the gold
standards for that clinical background. Currently, the automatic methods to
detect L3 slice are based on neural network architectures like CNN, and such
techniques require huge datasets and training parts. Thus, the main objective of
the present study is to provide a non-neural network architecture-based method
to detect L3 slice automatically. Thus, taking into consideration the physical
features of human body described by the Alberta protocol, this algorithm has
been developed. Thanks to the VAM it is possible to analyse just the area
of each slice in which vertebrae are present. In this way, it is theoretically
possible to spot also other vertebrae. L3 detection does not reach the same
performances as the studies in the state of art, but this algorithm is structured
in order to give more vertebrae position and for this reason which the results are
good. Lastly, considering the limitations of the study described in the previous
chapter, it is possible to define several possible future works. The following
future improvements and research lines are proposed:

❼ To enhance the L3 prediction: as explained, finding lumbar vertebrae
positions is not a problem for the developed algorithm, but not always the
choice is the correct one. To solve this, the L4 position can be focused on
instead of L3, as it presents shorter transversal processes and at L4 level
the iliac crest starts to appear.

❼ To detect of other vertebrae: Taking into consideration physical aspects
of the body it may be possible to detect any vertebra in the spinal cord.
Therefore, the detection of other vertebrae apart from L3 is proposed as
a future addition to the algorithm.

❼ To consider particular conditions that affect the anatomy of the spinal
cord like scoliosis or the presence of internal prothesis.

❼ To implement a tissue segmentation algorithm (vertebrae prediction + BC
assessment): in this way the algorithm would be complete starting with
the detection of the slice corresponding to L3 and finishing with a BC
measurement.

❼ To study the correlation between a wrong prediction and the error, and
features like height, sex age. Since the database used for this project has
just the weight of the patients.



In conclusion , this master’s thesis gives an innovative idea for vertebrae detec-
tion. This project can be the first part of a complete algorithm which give as
final output the BC at any level of the spinal. Moreover, it can be useful both
in that cases in which a large database is not available and also it can be used
as a first tool before radiologist’s prediction.
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A Ethical, economic, social and
environmental aspects

A.1 Introduction

The study of body composition can be of great importance for cancer pa-
tients because therapies and treatments can be customized to individual patient
needs. Given the high percentage of cancer patients suffering from tissue degra-
dation, the study of body composition has now a bigger importance. One of the
methods to evaluate it without having to analyse the entire body of the patient
is to study the composition at the level of the third lumbar vertebra.

Over the years, automatic methods have been developed for the detection of
this level, but nowadays the available methods are based on CNN architectures,
which require a large amount of samples in addition to a training process. For
this reason, it would be desirable to have an algorithm still automatic, but that
can be used even in those cases where you do not have a large amount of data
available. An algorithm based on vertebrae characteristics is developed in this
master’s thesis. This algorithm could lead to a reduction in costs as well as
a greater effectiveness of the times, since it would be possible to study more
patients in the same unit of time. Finally, more importantly, in the first place
reducing time would benefit patients, who would receive diagnosis/care in less
time.

A.2 Most relevant impacts of the project

Primarily, this project has a social impact that affects the patient’s health
and would also reduce costs and time within a radiology department. To avoid a
negative social aspect and considering that all the data analysed came from real
hospital patients, all the resources were anonymized. In addition, the regulations
followed are:

❼ Ley Orgánica 15/1999, de 13 de diciembre, de Protección de Datos de
carácter personal (LOPD)

❼ Real Decreto 1720/2007, de 21 de diciembre, por el que se aprueba el
Reglamentode desarrollo de la Ley Orgánica 15/1999, de 13 de diciembre,
de Protección de Datos de carácter personal (RDLOPD)

❼ Ley 41/2002, de 14 de noviembre, básica reguladora de la autonomı́a del
paciente y de derechos y obligaciones en materia de información y docu-
mentación cĺınica (LAP)



❼ Reglamento (UE)2016/679 del Parlamento Europeo y del Consejo de 27
de abril de 2016 relativo a la protección de las personas f́ısicas en lo que
respecta al tratamiento de datos personales y a la libre circulación de estos
datos y por el que se deroga la Directiva 95/46/CE (Reglamento General
de Protección de Datos (RGPD), aplicable a partir de mayo de 2018

❼ Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Person-
ales y garant́ıa de los derechos digitales

Furthermore, this project has no environmental aspects and does not produce
waste that could damage the ecological system. Table 6 illustrates the main
ethical, economic and social aspects described so far.

Regulations, laws
Relevant Description Affected group/ standards and
aspects sectors ethical codes of

reference
Health and quality Cancer Patients

Social life of cancer which express In relation to the
patients with weight loss data protection law
muscle loss

Related to the Medical personnel In relation to
Ethical commitee of and patients human rights and

ethical aspects bioethics
Economic Cost reduction due Medical sector

to time reduction

Table 6: Main ethical, economic and social aspects

A.3 Conclusion

In conclusion, this study aims to improve the efficiency of what can be
scientific research or can also, after implementing the necessary improvements,
be used within a radiology department. In addition, as the software does not
suffer operator-dependent errors, the implementation of such software (in addi-
tion to the automatic segmentation algorithm) would greatly reduce costs but
especially the time, since the speed of the algorithm would allow many more
patients to be evaluated in the same time frame. However, it is important to
note that, at the moment, the algorithm is not tested with special cases of al-
tered spinal cord anatomy, like scoliosis. The only case present in the database
has had a correct prediction but not enough to determine the effectiveness of
the algorithm for such specific cases.

Therefore, to conclude, the long-term objective of this project is a future
hospitalization of the same, to be used as the first necessary step in the tissue
segmentation process. Also, since the algorithm is able to recognize not only L3
but also other vertebrae, it could be interesting for the doctor so as to have a



first impression on the clinical state of the patient and then decide whether to
deepen the exams or not.



B Economical budget

❼ Human Resources Costs: the salary of the people who are part of the
project are considered. Table 7 illustrates the cost of the engineering
student.

Hours Cost/Hours Total
Engeering student 900 20e 18000e
Total 18000e

Table 7: Human Resources Cost

❼ Material Resources Costs: this part contains the costs of materials and
resources needed for the whole project. Cost per unit, the month of use
and the depreciation of the device are all considered and Table 8 shows
the total cost.

Purchase Use Deprecitation Total
price (Months) (years)

Personal computer 900e 5 8% 75e

Table 8: Material Resources Cost

❼ Total cost: the general cost and the industrial benefit are both considered
in this estimation. It is important to underline that the general cost is
considered as the 15% of the direct cost, whereas the industrial benefit
is calculated as the 6% of the total amount of direct and indirect costs.
Table 9 shows the total budget.



Human Resources Costs (Direct cost)

Hours Cost/Hours Total
Engeering student 900 20e 18000e

Total 18000e

Material and resources costs (Direct cost)

Purchase Use Deprecitation Total
price (Months) (years)

Personal computer 900e 5 8% 75e

Total 18075e

Overhead cost
(Indirect cost) 15%DC 1575e

Industrial profit 6%(DC+AC) 724,5e

Subtotal Budget 20374,5e
IVA (21%) 4278,6e

TOTAL
BUDGET 24653,1e

Table 9: Total cost.
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