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Abstract

Gesture recognition is a computer discipline based on mathematical algorithms for
the interpretation of human gestures. In recent years, recognizing and identifying
hand movements have gained a lot of interest due to the increasing of Human-
Computer Interface (HCI) applications like the control of mobile apps, robotics,
video games, and, in the clinical field, prosthesis and robotic limb control. Sev-
eral techniques are currently available for data collection: this thesis focuses on
the acquisition of the surface ElectroMyoGraphic (sEMG) signal, by applying non-
invasive electrodes on the skin above the muscle of interest.

This thesis work studies the implementation of dry electrodes for sEMG acqui-
sition, evaluating signal quality by means of the Signal-to-Noise Ratio (SNRdB).
An acceptance value of 10 dB has been fixed, in order to consider the signal suit-
able for an event-based extraction technique. In particular, the final goal is to
develop an embedded low-power system for gesture recognition based on the Av-
erage Threshold Crossing (ATC) technique, which is performed by establishing a
threshold above the sEMG signal at rest condition and averaging the number of
over-crossings inside a fixed time window.

With the aim to replace wet with dry electrodes, a first analysis involves three
types of dry ones. Dry electrodes with the highest SNRdB are selected for the sub-
sequent EMG acquisitions. The sEMG signals are detected using a custom PCB
developed by the research group and they are digitalized by means of a Data Acqui-
sition System (DAQ) for further processing. To increase the SNRdB a Driven Right
Leg (DRL) circuit available onboard was tested in order to reduce the common-
mode noise on the skin and match the body’s reference potential to the circuit’s
reference voltage.
To allow an embedded application, the research group has developed an improved
PCB characterized by a MicroController Unit (MCU) onboard. The MCU permits
to transfer data via Bluetooth, so there is an incrementation of SNRdB because
the board’s connections reduce the noise previously introduced through the DAQ
system. This configuration was tested by means of procedures similar to the ones
of the previous version, adding a comparison with wet electrodes.
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Finally, a 3D model of the armband has been designed, composed of seven acqui-
sition channels secured together by a plastic strip. One package was effectively
prototyped to perform the tests. The SNRdB calculated averaging all the contrac-
tion was equal to ~22 dB for the acquisition with wet electrodes and to ~17 dB
for dry ones. The obtained SNR revealed a good quality of the acquired sEMG
signal, thus confirming the feasibility of an armband for ATC-based hand gesture
recognition.
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Chapter 1

Introduction

1.1 Fundamentals of Muscular system
The muscular system is an organ system responsible for body movements, main-
taining posture, protecting the underlying organs, and blood flow through the body.
Together with the skeletal system constitutes the locomotor apparatus.
To do their job properly, the muscles must be able to respond faithfully and quickly
to the commands that come from the Central Nervous System (CNS).
In the human body, there are about 600 different muscles that can be divided into
3 main groups [1], as shown in Figure 1.1:

• Skeletal Muscle: characterized by the presence of streaks and responsible
for joint movements. It is controlled by the peripheral portion of the CNS,
thus being a volontary muscle. Skeletal muscles are connected to the bones
through tendons.

• Cardiac Muscle: similar to skeletal muscle because of its striation, but it is
an involuntary muscle. It is located inside the heart and its contractions are
due to the generation of action potentials by pacemaker cells that allow the
entire network of cells to contract evenly.

• Smooth Muscle: its name is due to a lack of streaks, typical of previously
defined muscles, thus it appears uniform, under the microscope. It is found
in blood vessels, internal organs, and structures that are not under voluntary
control, being activated by the autonomic nervous system.
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Introduction

Figure 1.1: Types of muscular system [2].

1.1.1 The Skeletal Muscle

Skeletal muscles characterize the forearm, so, to efficiently develop an armband
for hand gestures recognition, it becomes important to analyze the structure and
functioning of this type of muscle. It is also important to analyze its operation to
understand how it performs its movements, since they will be analyzed thanks to
the acquiring of electromyography signal, which will be explained in Section 1.2.
Most skeletal muscles are connected to at least two bones, although there are ex-
ceptions where these are directly connected to the skin, cartilage, or other muscles.
They connect to the bones through the tendons, structures formed by elastic con-
nective tissue that transmits to the bone the muscle’s strength.
Analyzing its structure, skeletal muscle consists of tissues such as skeletal muscle
fibers, nerve fibers, blood vessels and connective tissue, the different sections of his
structure are represented in Figure 1.2. In particular, the connective tissue con-
sists of 3 layers, epimysium, perimysium and endomysium, which have the task of
defining and maintaining the structure of the muscle [3].
The Epymisium is the outer layer and it has the task of protecting the muscle from
friction with adjacent muscles and bones; it also allows contraction and movement.
At his end, it joins with other connective tissues to form the tendons. Looking at
the cross-section of the muscle it is possible to notice that the latter is structured
in bundles called fascicles that are coated with the intermediate connective tissue,
Perymisium. Inside each fascicle, there are hundreds of muscle cells named muscle
fibers. The muscle fibers are equipped with different nuclei and extend along the
entire length of the muscle. Each of them is coated with Endomysium which plays
the role of transferring the force produced by the fibers themselves to the tendons.
Inside, it contains the extracellular liquid and all the nutrients necessary for the
fiber’s survival.
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Figure 1.2: Structure of the Skeletal muscle [4].

Muscle fibers are equipped with numerous nuclei arranged below the fiber’s
plasma membrane, which is called sarcolemma. Inside the muscle fiber, there is a
cytoplasm that, together with mitochondria and rod shape elements, forms struc-
tures called myofibrils. Myofibrils contain the contractile apparatus of muscle fiber,
which consists of overlapping thick filaments formed by the myosin protein and thin
filaments formed by the actin protein. Each myofibril is coated with the sarcoplas-
mic reticulum (SR) and it is in association with transverse tubules (T tubules),
which are connected to the sarcolemma and penetrate into the cell. The sarcoplas-
mic reticulum has the task of storing and releasing calcium ions (Ca2+) when the
muscle cell is stimulated to contract. Calcium ions play the role of chemical mes-
sengers inside the cell at the level of myofibrils. They were released in response
to an electrical signal and transmitted from the sarcolemma to the T tubules. As
a result, SR and T tubules are very important in activating muscle contraction
because, by transmitting the signal from the sarcolemma to myofibrils, they enable
the cell to respond to the nervous signals.
Looking at the structure of skeletal muscle at the molecular level, muscle cells have
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streaks due to the ordered arrangement of fibers within myofibrils. Along the lon-
gitudinal direction of the muscle, thick filaments and thin filaments alternate in a
2:1 ratio. The contractile unit of striated muscle tissue is the sarcomere; as a result,
myofibrils consist of the sequence of sarcomeres.
At this point, looking at Figure 1.3, it is possible to define the Z line, that repre-
sents a transverse line to the longitudinal direction of the muscle and that marks
the line of separation between two sarcomeres, and the M line, always transverse,
which represents the connection between two thick filaments. At the microscopic
level, in addition to these vertical lines, it’s possible to observe 3 zones. The A
band, dark, which is composed of overlapping actin and myosin filaments. H Zone,
a small area in the middle of the A band, appears clearer, consisting only of myosin
filaments. Finally, the light-colored I Band is composed of actin filaments [5].

Figure 1.3: Muscle fiber [6].

The thick and thin filaments of the sarcomere, as mentioned above, are com-
posed of myosin and actin which are contractile proteins. In particular, as can
be seen in Figure 1.4, thin filaments are composed of two spiral-wrapped actin
protein chains, while thick filaments are composed of myosin bands, ended by a
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particular structure, named head. This head of the myosin has a dual function,
it attaches to actin filaments allowing the shortening of the sarcomere and it acts
as an enzyme, splitting Adenosine TriPhosphate into Adenosine DiPhosphate plus
Inorganic Phosphate:

ATP ⇒ ADP + Pi
This last function is important because the execution of a contraction by the muscle
requires some energy. Specifically, A bands don’t change their length during a con-
traction while I bands and H zones become shorter. That means when the muscle
cell contracts, the thick filaments don’t change the length and the thin filaments
flow along the thick filaments moving towards the inner part of the H zone. So,
the Z lines on the sides of the sarcomere both move closer together, resulting in
the shortening of the sarcomere itself. This is called model of the flow of muscle
contraction filaments, and the sliding of thick and thin filaments takes the name of
transverse bridge cycle.

Figure 1.4: The sarcomere [3].

To perform a voluntary movement, the skeletal muscle is controlled by the pe-
ripheral part of the CNS, particularly by the Somatic Nervous System. The Somatic
Nervous System has the task of transferring movements and sensory information
from the CNS to the rest of the body and vice versa. In particular, the CNS is
connected to skeletal muscle fibers via a single motor neuron. Simultaneously, how-
ever, a single motor neuron innervates several muscle fibers, the set formed by the
motor neuron and all the all the muscle fibers innervated by it, takes the name of
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motor unit (MU).
The MU is the functional unit of the skeletal muscle system because it is the small-
est unit that can be isolated from the CNS. Observing the motor unit in more
detail, looking at Figure 1.5, it is composed of 4 fundamental components:

- the cell body, containing the dendrites which collect the electrical signal;

- the axon, through which the signal is transferred;

- the neuromuscular junction, the point where the axon fits on the muscle fibers;

- the muscle fibers innervated by the motor neuron.

When an electrical impulse activates a motor neuron, this stimulates the contraction
of its motor unit’s muscle fibers.
Inside the muscle, however, there are several types of muscle fibers: type I fibers,
which require oxygen consumption and are resistant to fatigue, and type II fibers,
which do not require oxygen consumption and are less resistant to fatigue. Also,
the smaller fibers are generally type I fibers, while the largest fibers are type II
fibers. When a voluntary muscle contraction is performed, the CNS will not recruit
motor units randomly but will recruit them according to the Henneman Principle,
which says that the CNS recruits motor units from the smallest to the largest one.
As a result, the smaller fibers are type I ones because they will be recruited earlier
and will have to work for longer than larger type II fibers [5].

Figure 1.5: Motor unit [7]. Axon of motor neurons extend from the spinal cord to
the muscle. There wach axon divides into a number of axon terminals that form
neuromuscular junctions with muscle fibers scattered throughout the muscle.
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Once the functioning of skeletal musle is understood, an additional distinction
according to its anatomical arrangement can be made [8]. As can be seen in Figure
1.6 there are 4 different types of skeletal muscles:

• Parallel muscles: They are composed of parallel bundles and represent the
largest group among skeletal muscles. Normally they are long muscles; as a
result, their contraction causes great movements. They are not very strong,
but they have good resistance. This group includes both fusiform muscles
characterized by a variable diameter along its length and non-fusiform muscles
that have a more rectangular shape.

• Circular muscles: They are composed of fibers arranged concentrically around
an opening or indentation and regulate the inputs and outputs with the out-
side. They are typical sphincters’ muscles, but they are different from the
analog characterized by smooth muscles because they are under voluntary
control.

• Convergent Muscles: These muscles are characterized by a common point
of origin that is larger than the insertion point. Muscle bundles extend from
the point of origin in a way that is not necessarily ordered in space, allowing
to cover a large surface area. Due to his distribution, which leads to having
more muscle fibers, the strength developed by these muscles is high.

• Pennate muscles: They are characterized by having the tendon that crosses
its length. They have a large number of muscle fibers per unit; as a result, they
develop very high strength, but they have the disadvantage that they get tired
quickly. A further division of this group according to the fibers’ arrangement
concerning the tendon is possible. Unipennate if the bundles are on the same
side of the tendon, bipennate if the bundles are located on both sides of the
tendon, multipennate if the central tendon branches into the pennate muscle.

As shown in Figure 1.6, the Extensor digitorum, a forearm muscle, is a unipennate
skeletal muscle. After giving a general view of the structure and functioning of
skeletal muscles, in the next section the forearm muscles will be defined; it is
really important to well define these, because the final objective of the thesis is the
development of an armband for hand gestures recognition.

7
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Figure 1.6: Shapes of skeletal muscle [9].

1.1.2 Forearm muscles
From a skeletal point of view, the forearm results to be quite simple as it consists
of only 2 main skeletal segments: the ulna and the radio. From a muscular point of
view, it becomes considerably complicated as there are different muscles to carry out
the different movements. A first division is possible by separating the forearm into
two compartments, an anterior compartment in which flexor muscles are present
and a posterior compartment in which the extending muscles are present. In detail:

• Anterior compartment: the muscles in the anterior compartment of the
forearm are responsible for pronation, flexion of the wrist and fingers. As
shown in Figure 1.7, it’s possible to make an additional division into 3 cate-
gories, superficial, intermediate and deep compartment.
In particular, there are 4 muscles in the superficial compartment that have
the characteristic of having the origin from a common tendon that arises from
the medial epicondyle of the homer: Flexor Carpi Ulnaris, Palmaris Longus
and Flexor Carpi Radialis are 3 muscles whose main action is that of flex-
extension of the wrist, Pronator Teres is responsible for the pronation of the
forearm.
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In the intermediate compartment, there is only one muscle, Flexor Digi-
torum Superficialis, which has the function, when it is contracted, of flexing
the metacarpal-phalanx joints, the interphalangeal joints and the wrist.
Finally, there are 3 muscles in the deep compartment. Flexor Digitorum
Profondus is the only forearm muscle responsible for flexing the distal inter-
phalangeal joints of the fingers, allows flexion of the wrist and, like the Flexor
Pollicis Longus, allows the flexion of the metacarpal-phalanx joint, the main
action of Pronator Quadratus, instead, is the forearm pronation [10].

Figure 1.7: Anterior forearm muscle. From left side to right side: Superficial,
Intermediate, Deep [11].

• Posterior compartment: the muscles in the posterior compartment are
responsible for the extension of the wrist and fingers; besides, they are all in-
nervated by the radial nerve. Similar to previous case, it is possible to further
divide into 2 categories, superficial and deep compartment.
In the superficial compartment there are 7 different muscles. The Extensor
Carpi Radialis Longus and Brevis perform the function of wrist extension and
abduction, while the Extensor Carpi Ulnaris of wrist extension and adduc-
tion. The Brachioradialis is responsible for elbow flexion; on the contrary, the
Anconeus extends and stabilizes the elbow joint as well as abdurizing the ulna
during pronation. The main action of the Extensor Digitorum Communis is to
extend the medial 4 fingers and contributes to the extension of the wrist. The
last muscle present in the surface compartment is the Extensor Digit Minimi

9



Introduction

which has the task of extending the little finger and contributes to the exten-
sion of the wrist.
In the deep compartment there are 5 muscles. The Supinator who, as the
name suggests, is responsible for the supination of the forearm. The Abductor
Pollicis Longus extends and abdicates the thumb; in contrast, the Extensor
Pollicis Lungus extends all thumb joints while the Extensor Pollicis Brevis
extends only the prosthetic joints of the thumb. Finally, the Extensor Indicis
has the task of extending the index finger [12].

Figure 1.8: Posterior forearm muscle. From left side to right side: Superficial,
Intermediate, Deep [11].

1.2 ElectroMyoGraphy (EMG)
Muscle contraction, due to the propagation of action potentials along muscle fibers,
generates electrical activity, particularly an electrical signal that falls into the cate-
gory of biomedical signals. With electromyography (EMG), it is possible to observe
this biomedical signal. As mentioned in section 1.1.1, muscle fibers are contractile
units that are controlled, not individually, by the CNS, which directly controls each
MU. When a motor neuron is activated, this one will generate an action potential
that propagates along the motor neuron’s axon at a speed of ~70 m/s [13]. Once
it arrives at the fibers innervated by the motor neuron, at the level of the neuro-
muscular junction, the fiber membrane will be excited with consequent generation
of the action potential of a single fiber that propagates left and right towards the
tendons with a propagation rate of about ~4 m/s [14].
The action potential is associated with a transmembrane current that determines
an extracellular electric field that can be measured via EMG. In detail, the depo-
larization of the membrane results in the opening of the Na+/K+ channels resulting
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in the ions moving from one part to another. The transfer of ion charges between
the inside and outside of the fiber results in the generation of a single potential
called intracellular action potential (IAP).

Figure 1.9: Intracellular Action Potential (IAP) [15].

As shown in Figure 1.9, IAP is divided into 3 phases: Depolarization, the rest-
ing membrane potential is equal to -70 mV, when it is stimulated and exceeds a
certain threshold (equal to -55 mV) the action potential is generated. In the depo-
larization phase, there is the opening of the calcium channels with the consequent
entry of the calcium ions and the peak of the membrane potential (equal to +40
mV) is reached. Repolarization, in which the potassium channels are opened with
consequent spillage of the potassium ions; at this stage, the membrane potential
descends again towards the value of the resting potential. Before stabilizing on the
resting value, there is the third phase called Hyperpolarization in which the mem-
brane potential becomes more negative and then stabilizes on the rest value [16].
Since the smallest command unit by the CNS is the MU, when the motor neuron
is activated, an action potential is generated for each fiber innervated by the mo-
tor neuron. So, to read the signal, there will be a summation in time and space
of all these action potentials and the muscle generate what is called the motor
unit action potential (MUAP). In addition, when a motor unit is stimulated
sequentially, it generates a train of motor unit action potentials (MUAPT).
To acquire this electromyography signal, there are two main techniques:

• Intramuscular EMG: the signal acquired represents the activity of the in-
dividual motor unit, the sampling electrode is given a needle shape and it is
inserted into the muscle. It is very close to the muscle, so the electrical activ-
ity doesn’t have interference due to the presence of fat tissue and skin. This
allows studying in detail the potential. The disadvantage of this technique is
that it is an invasive technique; it can be carried out only by a doctor and
cannot be used in dynamic conditions [17].
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• Surface EMG: the signal acquired represents the activity of all motor units
activated below the sampling system, the electrodes are placed externally on
the skin. Consequently, this technique is non-invasive, easy to use and allows
to make acquisitions in dynamic conditions [18].

In the case of surface EMG, it is possible to further distinguish biopotential sam-
pling techniques.

Monopolar configuration: as shown in Figure 1.10, a surface electrode is
placed on the skin near the muscle while a second reference electrode is placed in a
neutral position. The acquired signals are the input of a differential amplifier and
their difference is acquired. With this technique, the withdrawal volume is high so,
even if it is easy to implement, it is not recommended as a lot of noise is acquired.

Figure 1.10: Monopolar configuration [19].

Bipolar configuration: as shown in Figure 1.11, a pair of surface electrodes is
located near the muscle at an interelectrode distance of ~2 cm. In addition, there
is a third reference electrode positioned in a neutral zone. The signals coming out
from the two electrodes represent the input of an instrumentation amplifier that
suppresses the noise common to both and amplifies the difference. This technique
is called single differential acquisition and it is the most widely used biopotential
sampling technique.

Figure 1.11: Bipolar configuration [19].

Looking at Figure 1.12, it is possible to expand the single differential acquisition
by increasing the number of surface electrodes and cascading instrumentation am-
plifiers. If there are 3 sampling electrodes, 1 reference electrode and 3 amplifiers,
that is defined as Double differential acquisition.
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Figure 1.12: Comparison between sampling techniques, configuration and signal
acquired.

1.2.1 Surface ElectroMyoGraphy (sEMG)
To perform muscle movement, the CNS must recruit several MUs to activate all the
fibers of the muscle interested in movement. Through sEMG, the electromyography
signal is taken, which is given by the sum of the different MUAPT that have been
activated during muscle contraction. To assess the state of muscle health and the
motor units recruited, it will be necessary to decompose the raw EMG signal taken
as seen in Figure 1.13.

Figure 1.13: sEMG signal decomposition [20].

The sEMG technique has many applications and is mainly used for: diagnosis
of neuromuscular diseases, analysis and determination of abnormalities or mus-
cle disorders, muscle rehabilitation and using the sEMG signal for the control of
prostheses and orthosis [21]. From a technical point of view, this signal has a peak-
to-peak amplitude between 0 and 10 mV, while its frequency component is between
0 and 500 Hz with most information between 50-150 Hz [22].
To acquire the signal using this technique, it’s necessary to place the electrodes on
the subject’s skin. It’s possible to use a single pair of electrodes or an electrode
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matrix; this depends on the final application and the precision that you want to
achieve in determining muscle activity. The positioning of the electrodes with re-
spect to the muscle turns out to be a critical step in acquiring sEMG because an
incorrect positioning would result in a wrong acquisition of muscle activity. As
mentioned in section 1.2, this technique has the advantage of not being invasive
and being able to be used by everyone, unlike the Intramuscular EMG. At the same
time, it also has some limits that are important to know when you want to use it,
in particular, there are different sources of noise [23]:

• Crosstalk: the sampling system, in addition to observing the activity of the
interested muscle, also takes the activity of neighboring muscles that have
been activated. In this case, the withdrawal volume of the system may include
the territory of motor units of another muscle, this type of problem is always
present, but it can be reduced by improving the positioning of the electrode
pair, for example, by changing the orientation of the sampling system respect
to the direction of the fibers or by changing the interelectrode distance to
change the acquisition volume.

• Electrical noise: there are two main types of noise, intrinsic noise introduced
by electronic components and noise due to network interference. The first is
due to the presence of electronic components and it has frequency components
between 0 Hz and a few thousand Hz. It cannot be completely eliminated, but
what can be done to reduce it is to use quality electronic components. The
second one is generated by the electromagnetic devices present in the room; it
has a wide range of frequency components even if the dominant frequency is
50 Hz for EU and 60 Hz for USA. It is important to reduce it because it has
an amplitude equal to 3 times the sEMG signal.

• Movement artifact: this problem is caused by the interface between the
electrode surface and the skin and the relative movement of the cables that
connect the system to the amplifier. In this case, most frequency noise is in
the range 0-20 Hz and it can be reduced with proper circuit design and quality
electronic components.

• Muscular fatigue: In a fatigue condition, the conduction speed of the mus-
cle fibers decreases and this leads to a reduction in the average and median
frequency (explained in section 1.2.2), while observing the amplitude variables
the average rectified value and the RMS value (also explained in section 1.2.2)
increase.

The electrodes used to capture the sEMG signal are specific electrodes for biopoten-
tial sampling. The characteristics of these electrodes will influence the acquisition
system, in particular, it will be necessary to consider their shape and size, the inter-
electrode distance, the material of which they are made and their positioning. The
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materials must be conductive so that the electrical activity of the muscle can be
observed, those that are normally used are Ag/AgCl (silver/silver-chloride), AgCl
(silver-chloride), Ag (silver) and Au (gold) [23]. In addition, for doing sEMG, it
is common to use 2 different types of electrodes that have the same principle of
operation but differ in how they are applied. In Figure 1.16 it is possible to observe
the two different models of equivalent circuits related to the 2 different types.

• Wet electrode: it is the most used to take EMG, EEG (ElectroEncephaloG-
raphy) and ECG (ElectroCardioGraphy) signal sampling tests, due to an easy
application and adhesion of the electrode itself on the skin. To function, it is
necessary to apply an electrolytic gel on the metal surface that will come into
contact with the skin; this allows better adhesion of the electrode itself and
allows to lower the electrode-skin impedance. For the metal part, the most
common material is Ag/AgCl. This type of electrode, however, has some dis-
advantages [24], first of all, to be able to adhere well to the skin, it’s necessary
to apply the gel, and therefore, a preliminary phase of preparation of the skin
is due. If long time acquisition is necessary, the gel under the electrode is
absorbed leading to an irritation of the skin and to worsening of performance
because of a change in electrical characteristics like its impedance. Finally,
these electrodes are not reusable, they are disposable, and they are difficult to
recycle. An example of these ones is shown in Figure 1.14.

Figure 1.14: Example of wet EMG electrode on the market [25].

• Dry electrode: in today society, where the Internet of Things (IoT) concept
is increasing, it becomes important to have continuous monitoring even in
medical applications. With the idea to have wearable devices on a patient for
continuous relevant data acquisition and transmission, dry electrodes [24] have
been developed. These electrodes, unlike wet ones, have the advantage of being
reusable; to function, they don’t need to apply any type of gel. Consequently,
there is no problem of preparation and irritation of the skin, and also, there
are no variations of electrical parameters like its impedance. It is possible to
make long-term recordings through direct contact with the skin. However,
these electrodes are characterized by a high electrode-skin impedance which
has to be taken into account in the manufacture of electronic circuitry. Another
problem is that to function well, they must be pressed on the skin; otherwise,
they risk moving during dynamic acquisition. Finally, since there is no gel,
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the fixing on the skin is more complex as it needs the application of certain
supports. An example of these ones is shown in Figure 1.15.

Figure 1.15: Example dry EMG electrode on the market [26].

Figure 1.16: Equivalent circuit model of skin-electrode interface: a) Wet b) Dry [27].

1.2.2 sEMG features extraction
Feature extraction from sEMG is an important step for the development of a con-
trol system. As we can see in the literature, it’s possible to extract the information
from the signal in 2 domains: time domain and frequency domain [28].

TIME DOMAIN
The information extracted in the time domain is the most important for pattern
recognition because it is easy and fast to extract. It’s enough to use the amplitude
of the signal, and it’s not necessary to do any transformation.
Integrated EMG (IEMG): normally, it’s used like a pre-activation index for
muscle activity; it represents the area under the curve of the rectified EMG signal.

IEMG =
N∑︂

i=1
|xi| (1.1)

where N is the length of the segment, i is the increment and xi is the amplitude.
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Mean Absolute Value (MAV): it’s used for detection and measurement of mus-
cle contraction levels. It’s calculated by taking the average of the absolute value of
sEMG signal.

MAV = 1
2

N∑︂
i=1

|xi| (1.2)

Mean Absolute Value Slope (MAVS): it represents the difference between the
MAV of 2 adiacent segments.

MAV Si = MAVi+1 − MAVi (1.3)

Simple Square Integral (SSI): it represents the summation of energy of EMG
signal.

SSI =
N∑︂

i=1
|xi|2 (1.4)

Variance of EMG (VAR): it represents the power of EMG signal as a feature.

V AR = 1
N − 1

N∑︂
i=1

x2
i (1.5)

Root Mean Square (RMS): it represents the amplitude modulated Gaussian
random process where RME is related to constant force and non fatiguing contrac-
tions.

RMS =

⌜⃓⃓⎷ 1
N

N∑︂
i=1

|xi|2 (1.6)

Waveform Length (WL): it’s calculated like the cumulative length of the wave-
form over the time segment and the result represent an indicator of amplitude,
frequency and duration.

WL =
N−1∑︂
i=1

|xi+1 − xi| (1.7)

FREQUENCY DOMAIN
Normally for this domain it is necessary to have more computation time because
it is necessary to switch from time to frequency. Therefore, the features extracted
with this method are not the best solutions for a real-time application because it
is necessary to calculate the Power Spectral Density (PSD).

17



Introduction

Frequency Median (MDF): it’s based on PSD estimation and it represent the
median of the PSD, it divides signal power spectrum in two areas.

MDF = 1
2

M∑︂
i=1

PSDi (1.8)

where M is the length of the PSD and PSDi is the amplitude spectrum at the ith
frequency .

Frequency Mean (MNF): it’s also based on PSD estimation and it represent
the mean value of the PSD

MNF =
∑︁M

i=1 fiPSDi∑︁M
i=1 PSDi

(1.9)

where fi is
fi = i ∗ SampleRate

2M
(1.10)

1.3 The Average Threshold Crossing (ATC) tech-
nique

To make gesture recognition, one of the possible methods is to acquire the sEMG
signal and classify the made gestures through machine learning algorithms. The
different gesture recognition systems will be presented in section 2.2. In general,
data acquisition and transmission chain consist of:

• Acquisition system: characterized by biopotential sampling system, by ap-
plying electrodes on the skin, for example, with bipolar configuration, and
which has the task of acquiring the sEMG signal.

• Analog part: once the raw sEMG signal is acquired, it is necessary to filter
and amplify it to obtain a cleaner signal from the noise; in this part, a pre-
processing is carried out.

• Digital part: finally, there is an A/D converter that has the task of converting
the filtered sEMG signal into a digital signal. The A/D converter is, for
example, controlled by a microcontroller that can have the task of analyzing
the digital signal directly or transferring it to a computer.

The sEMG signal contains a lot of information, so, to consider the continuous vari-
ation of IAP, to analyze this signal, the research group have developed a technique
based on the application of a threshold to reduce the data to be analyzed.
The Average Threshold Crossing (ATC) Technique is an event-driven technique
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that leads to the creation of a quasi-digital signal. This technique is explained in
detail in the following works [29], [30] and [31]. In short, a threshold is defined for
each acquisition channel and each time the sEMG signal exceeds this threshold, an
event called Threshold Crossing (TC) is raised. Next, a time window is defined to
count the of TC events that have been raised, that is, it counts the number of times
the sEMG signal exceeds the threshold value. This signal is defined as quasi-digital
because, for its generation, an A/D converter is not used. Still, it is generated via
hardware using a two-input voltage comparator. One input is represented by the
threshold and the other by the filtered and amplified sEMG signal. At the output
of the voltage comparator, the quasi-digital signal is then generated. In particular,
there is a high level when the sEMG signal has a value greater than the threshold
and a low level otherwise, so it’s getting signal information over time and not in
its analog value. In Figure 1.17 it is possible to observe the operation of the ATC
technique and the voltage comparator.

Figure 1.17: Average Threshold Crossing (ATC).

The TC signal can be used directly as an input of a microcontroller; this trans-
lates into the fact that there is no need to use an A/D converter. This is particularly
important when it is wanted to develop a wearable system. First, the complexity of
electronic circuitry and the area occupied by the components decrease. Moreover,
this event-driven technique leads to a decrease in packets transmitted wirelessly
with a consequent decrease in consumption; thus, this technique is characterized
by low energy consumption. ATC technique can be used to make gesture recogni-
tion but cannot be used to make diagnoses because the sEMG signal is denatured
with consequent loss of information both in time and frequency. So, it is impossible
to do the reverse process that reconstructs the sEMG signal starting from the ATC
signal.
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1.4 Machine Learning Classification Algorithms
Machine Learning (ML), a branch of Artificial Intelligence (AI), consists of learning
based on data to be analyzed and, therefore, on the experience acquired in their
treatment. Many times these two terms are confused, but it is necessary to separate
them. Machine learning is under artificial intelligence, but artificial intelligence is
not just machine learning [32]. As will be in Chapter 2, to do Gesture Recognition,
different machine learning classifiers are used regardless of the various data provided
as input. First, looking at Figure 1.18, classifiers can be grouped into two main
groups [33]:

Figure 1.18: Unsupervised vs Supervised Learning Algorithms [34].

• Unsupervised Learning: no label needs to be associated with the classifier’s
incoming data. The main role of this learning is generally data clustering.
Also, it’s possible to do association rule learning. Some of the main algorithms
in this category are K-means and Gaussian Mixture Modelling.

• Supervised Learning: In this case, each input data is assigned a label indi-
cating the class to which it belongs. With this learning, it’s necessary to have
separate data if there is only one dataset, divided into training sets and test
sets with a percentage generally of 70-80% for training and 30-20% for testing.
Otherwise, if there are two datasets, one is used for training and the other
for testing. The main use with this type of learning is to do classification or
regression. The main algorithms in this category are Random Forest, Support
Vector Machine, Naive Bayes, and Neural Network.

Moreover, two additional categories of machine learning need to be mentioned.
Semi-supervised Learning Algorithm which is a middle ground between the
two defined above. For training both data with its associated label and unlabeled
data are provided. Reinforcement learning Algorithm makes decisions based
on actions to be taken to achieve a better result. In particular, these algorithms
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use estimated errors such as rewards or penalties.
A brief theoretical description of the different types of supervised and unsupervised
learning mentioned above follows.

1.4.1 K-means
K-means is one of the most important machine learning algorithms used for cluster-
ing. As mentioned above, this is unsupervised learning whose data is characterized
by not having label-related information. K-means is an iterative method that has
the purpose of dispersing data in different clusters.

Figure 1.19: K-means clustering.

Initially, it is defined a k value that corresponds to the number of clusters in
which the dataset should be divided [35], with k = 2, the data will be divided into
two parts, with k = 3 in three parts and so on. For each k cluster, the centroid is
calculated, for example, such as the average value of values within the cluster or a
random value is chosen within the cluster. It calculates the distance between each
data of the dataset with each of the k centroids at each iteration. To cluster, the
data is attributed to the cluster whose distance is smaller. Also, at each iteration, it
recalculates the centroid’s value because there is a variation of elements inside the
cluster. This method is iterative and it will end or defining a priori a fixed number
of iterations, or when the change in calculating of centroid it will be stabilized. The
distance between the data and the centroid can be the Euclidean distance, defined
as:

d(xi, yi) =
√︂

(xi − yi)2 (1.11)
Where xi and yi are 2 vectors.
The key parameters that are evaluated in clustering are intra-cluster variability and
inter-cluster distance. The goal is to achieve low intra-cluster variability and high
inter-cluster distance.
The advantages of the K-means algorithm are the easiness of implementation, the
ability to adapt to large datasets, and it ensures convergence. Its disadvantages
relate to the initial choice of k with its relative dependence on initial values and
the difficulty in clustering outliers.
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1.4.2 Gaussian Mixture Modelling (GMM)
Unsupervised algorithm used for clustering, based on a probabilistic approach. The
data is organized into several Gaussian distributions, each representing a different
cluster. In particular, the data will be assigned to the cluster with the highest
probability of membership. Due to Gaussian distributions, each cluster is charac-
terized by unknown parameters, such as mean and variance, which are calculated
by the algorithm implementing the expectation-maximization (EM) [36]. Looking
at Figure 1.20, GMM allows the implementation of different covariance types that
allow to better define the different clusters: spherical, diagonal, tied and full.

Figure 1.20: Different types of covariance.

An advantage of the GMM algorithm is that it allows to create clusters composed
of a small number of data and also represents a generalization of K-means as in its
evaluations, it also takes information from the data’s covariance. The disadvantages
are that it is difficult to estimate the correct number of clusters and, during its
implementation, it has to perform many operations that lead it to have a high
computational cost.

1.4.3 Random Forest (RF)
First, in order to evaluate the functioning of this algorithm, it is necessary to
introduce the Decision Tree algorithm, a non-parametric supervised learning
method used to make classification and regression [37]. This algorithm, showns in
Figure 1.21 is based on decisions that form a branched structure. In particular, 3
fundamental nodes connected by branches are defined: root node that represents
the starting decision, decision node that represents the various decisions to be made
to converge to a class and the leaf node that represents the final classification of
the data.
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Figure 1.21: Decision tree algorithm [38].

What has been defined so far represents a single decision tree. What Random
Forest does is to create a forest of classification trees that leads to a definitive choice
of the class based on an evaluation of many trees. The final result represents the
majority of the forecasts obtained. By evaluating many random trees, the result is
more accurate than that obtained by a single decision. In Figure 1.22 is shown the
Random Forest structure.

Figure 1.22: Random forest algorithm [38].

One of the main advantages of this algorithm is the reduction of the overfitting
problem. Moreover, it is based on decisions, so it is not necessary to perform a
normalization of the data which can have both categorical both continuous values.
Considering the disadvantages, this algorithm is formed of many decision trees ,
thus requiring a high computational cost to obtain outputs from each of them and
combine the various results.
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1.4.4 Support Vector Machine (SVM)
Supervised machine learning technique used for classification and regression. SVM
is based on the principle of margin calculation, in particular, it draws the margins
between classes in order to obtain the maximum distance between class and mar-
gins with the objective to minimize classification error. The basic concepts of this
algorithm are [39]:

• Separating hyperplane: Imagining to have data that can be easily separated
linearly, SVM draws a line between the different clusters. In an N-size SVM
space, it draws a separation to N-1 dimensions. So, in the case of 2 dimensions
a row is drawn and in the case of 3 dimension a plane is drawn.

• Maximum margin hyperplane: SVM draws several lines to separate the clus-
ters; each of them will lead to a different classification. SVM takes the line
that is about halfway between the different clusters and has the maximum
distance from the marginal components belonging to the different clusters to
maximize the correct classification.

Figure 1.23: SVM hyperplane [40].

In Figure 1.23 it is possible to observe how the data is easily separable linearly;
however, since it is possible to have nonlinear data available, it is important
to define another parameter.

• Kernell function: A mathematical solution that allows the SVM to classify
data by adding a dimension. In Figure 1.24, it’s possible to see how the data
are separate by adding a dimension. It’s necessary to be careful in choosing
the Kernel as adding size could lead to an exponential increase in the search
for solutions as the data is characterized by an extra dimension.
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Figure 1.24: Kernel function [41].

The advantages of SVM are that it is a versatile algorithm because you can use
different kernel functions, it is efficient both in terms of memory and when the
number of dimensions is greater than the number of samples. Its disadvantages
are operating problems when classes overlap and do not define any probabilistic
classification estimation. It has problems even if the number of functions per data
is greater than the number of trained sample data.

1.4.5 Naive Bayes (NB)
Supervised learning algorithm used for clustering and classification built on a prob-
abilistic classifier. It is based on Bayes theorem with 2 assumptions, it considers
each data as an independent value and each data give the same contribution for
the result [37]. Moreover, it is defined as a probabilistic classifier because it is built
on conditional probability, which means the algorithm calculates the probability of
an event looking at something before, as shown in Figure 1.25. The mathematical
expression of Bayes theorem is:

P (y|x) = P (x, y)P (y)
P (x) (1.12)

Using the probability terminology the prior equation can be written as:

Posterior = Prior ∗ Likelihood

Evidence
Where the Prior therm is defined as

P (y, x) =
d∏︂

j=1
P (xj|y) (1.13)
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Figure 1.25: Naive Bayes classifier, an example of conditional probability with
classification of dogs and cats.

This algorithm’s advantages are that it has a short operating time, is suitable for
solving multiclass problems and provides better performance than other classifiers
when the independence hypothesis is verified. Precisely, this is one of the main
disadvantages of this algorithm. In reality, it is difficult to verify the hypothesis of
independence, leading to the possibility of incorrect estimates.

1.4.6 Neural Network (NN)
Neural Network, or Artificial Neural Network (ANN), is a machine learning algo-
rithm that tries to create links to store and elaborate information like the human
brain. The brain is characterized by numerous neurons that communicate with
each other through synapses, in the case of NN, it is important to define some
fundamental parameters to simulate brain activity. It is necessary to specify the
number of neurons, define how neurons are connected to each other and define the
learning algorithm. Particularly, in the case of the supervised learning algorithm,
the NN will make classification and in the case of unsupervised learning algorithm
NN will create clusters [37]. In the case of supervised NN, the algorithm is itera-
tive. At each iteration in the training phase, it changes neurons’ weight to decrease
the classification error. Each neuron is called perceptron; the most common NN is
characterized by many neurons and is called multi-layer perceptron. 3 main layers
are defined as can be seen in Figure 1.26:

- Input layer : neurons that receive input directly from the external environment.

- Hidden layer : receive and analyze data from the input layer or other hidden
layers. It’s possible to define several hidden layers.

- Output layer : after the hidden layer processing information, it provides output
for the external environment.
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Figure 1.26: Layers of Artificial Neural Network [42].

Each neuron is formed by a certain activation function that must be satisfied in
order to activate the neuron, this activation function can be linear or non-linear.
The advantages of neural networks are that following training, it can process data
with incomplete information, has good performance even with non-linear data and
has a high computing power that allows performing multiple processing simulta-
neously. However, neural networks generate an output without knowing the exact
obtaining procedure. For the training phase requires a high amount of data, many
more than the other algorithms, which involves a high computational cost.
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Chapter 2

State of the art

2.1 ATC application in sEMG detection
In the literature of recent years, it is possible to observe several studies in which
the ATC technique has been used in sEMG applications. An important work in
this field was carried out by the Istituto Italiano di Tecnologia (IIT) which demon-
strated the possibility to acquire strength muscle information using the ATC tech-
nique combined with an Impulse Radio Ultra-Wide Band (IR-UWB) technology.

In the first study [43], they did was about the development of a wireless device
for biomedical applications. Taking advantage of the ATC technique, they com-
bined it with the IR-UWS wireless protocol instead; so, they don’t transmit the
entire sEMG signal but only short pulses. This reduces the power consumption.
In particular, the data was transferred each time a TC event was generated. In
this article, they also validate the ATC parameter by calculating the correlation be-
tween this parameter and the muscle strength value, acquired by the dynamometer,
and between the force value and the Average Rectified Value (ARV) of the sEMG
signal. They obtained a correlation between ATC and force of 0.95 ± 0.02 and a
correlation between strength and ARV of 0.97 ± 0.02.
After that, a second work was done [44] starting from what was described in the
previous paragraph in which some improvements were introduced. It was applied a
multichannel capture and wireless data transmission took place through an Address-
Event Representation (ER) approach. This study further underlined that using the
ATC technique comports a reduction in power consumption. Also, there is a re-
duction in the board’s size as thanks to the use of quasi-digital signal it is not
necessary to insert the ADC inside the board. To further validate the ATC pa-
rameter, its robustness was considered by evaluating some parameters. When the
signal to noise ratio (SNR) changes, certain robustness of the ATC parameter is
obtained for values greater than 5-6 dB. Moreover, the latter is not affected by
distortion and saturation effects of the amplifier. Finally, by assessing event losses,
the correlation was maintained with a tolerance of 70% of lost events.
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In [45] it is developed a wearable device to capture and process sEMG data that
use the ATC event-driven approach to reduce data that would be used later in the
evaluation of muscle activity patterns in rehabilitation medicine. [46] developed
a wearable acquisition board on which experimental validation tests were carried
out. In [30] the ATC technique has been used to develop a system that would con-
trol in real-time Functional Electrical Stimulation (FES), a technique that allows
functional muscle contraction through the application of a stimulator and that is
applied in the rehabilitation field where support to the patient is needed to make
certain movements.

Finally, in recent years, it’s started to use the ATC technique to make Hand
Gesture Recognition, a discipline that will be explained in Section 2.2. The first
work on this topic was carried out by [47] in which, through 3 acquisition channels
positioned on the forearm, it was acquired the ATC signal characteristic of 4 hand
movements (wrist flexion, wrist extension, hand grasp, wrist radial). The acquired
signal was used to train Machine Learning Algorithms that allow gesture recogni-
tion. It is used the Support Vector Machine (SVM) algorithm that was trained on
MATLAB using statistics and machine learning toolbox. The classifier reported
satisfactory results both in terms of accuracy and classification time. In particular,
it was obtained an average accuracy of 92.87% and a latency period of 160 ms. The
subsequent work on this area was carried out by [31]. It was increased the number
of gestures to be classified; in addition to those mentioned above the wrist ulnar
deviation and idle state gestures were introduced. Also, in this work, the classifier
was uploaded to an MCU, Apollo2 of Ambiq (low-power device) to make an em-
bedded system. In this study, a neural network (NN) was used as a classifier and
with the dataset used it was obtained an average accuracy of 92.3% and latency of
268.5 ms. [48] evaluated the same dataset [31] using other classification algorithms,
SVM classifier and K-Means classifier. The first case achieved an average accuracy
of 94.49% with an overall latency of 239.85 ms. In contrast, in the second case,
an average accuracy of 95.14% with a total latency of 130,124 ms was obtained.
Lastly, in [49] the prior dataset was further expanded with two gestures (pinch grip
and open hand); in total, there were a total of 8 movements. This work focused on
evaluating different machine learning algorithms, in particular, it was considered
NN, SVM, Random Forest (RF), Naive Bayes (NB) and Gaussian Mixture Mod-
elling (GMM). Considering a balance between the parameters, the best performing
is the NB classifier characterized by accuracy of 81.5%, a classification time of 140
µs and energy per prevision of 0.55 µJ.
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2.2 Gesture recognition
Gesture recognition is a computer discipline based on the use of mathematical al-
gorithms for the interpretation of human gestures. In recent years, recognizing and
identifying hand movement have gained a lot of interest due to the increasing of
Human-Computer Interface (HCI), some examples of application are reported in
Figure 2.1. Regardless of their application, gesture recognition systems are made
as follows:

Data acquisition ⇒ Feature extraction ⇒ Classification

As shown in the literature [50], gesture recognition systems have several appli-
cations.

Figure 2.1: Common application area of hand gesture recognition system [51].

PC and Tablet App. Hand movements can be used as an alternative input
device when interacting with PCs by creating direct interaction between the user
and the desktop. For example, by using systems that recognize the gesture, it’s
possible to control the mouse, drag files, move and paste files and control slides in a
presentation [51]. Also, considering the smart wearable devices that are becoming
more and more popular, it’s possible to think it’s using can directly control appli-
cations. [52] has proposed a smartphone application that uses the smartwatch for
gesture recognition, these devices are connected via Bluetooth. In particular, inside
the smartwatch, there are some sensors such as an accelerometer, linear accelerom-
eter and gyroscope; thanks to that, it is possible to identify the movement of the
user’s wrist. In this work, it is possible to download an application on Smartphone
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and Smartwatch that captures the data provided by the sensors and classifies in
real-time the gestures made using Tensorflow. The frequency of data acquisition
from sensors is 100 Hz. Those are classified 5 different movements with a Bidirec-
tional LSTM based deep neural network model, it is obtained an accuracy of 96%.

Virtual Environment. This is based on a 3D model. Thanks to hand gesture
recognition, it is possible to interact in real-time with the model and manipulate
virtual objects [51].

Home Automation. With the development of home automation, intending
to have a home characterized by many smart appliances, it is possible to think of
using gesture recognition to control smart devices. [53] proposed the use of a smart-
watch containing different sensors (accelerometers and gyroscopes) for the control
of household appliances inside a house, taking advantage of the movements of the
hand. The proposed system consists of 3 parts, the smartwatch for data acquisi-
tion and transmission, the smartphone on which there is an application that has
the task of classifying the gesture made and sending the data to the home automa-
tion platform, and finally, the home automation platform with its connected smart
devices. From 20 different subjects are asked to perform 18 different gestures to
classify. The sampling frequency of the smartwatch is 25 Hz. Two different neural
networks have been implemented to perform gesture recognition, based on a deep
convolutional neural network (CNN) and a DeepConvLSTM. To assess the accu-
racy in the classification, F-1 Score was calculated, for CNN a value of 73.7% was
obtained, while in the case of DeepConvLSTM a value of 75.8%.

Robotic control. It’s considered one of the most interesting applications. An
example is a human-robot interaction proposed by B. MA et al. [54] in which the
acquisition of images via Kinect camera is controlled by a hexagonal robot. They
developed a system that detects fingertips. In particular, it continuously captures
the image of the fingertips from which it creates a hand model, compares the model
with a library containing the hand gestures and once it is located, it wirelessly
transfers the information to the robot that will change its shape (hexagon, square,
triangle, etc.).

Gaming. The purpose of this application is to allow greater physical inter-
action by the user with virtual reality. In the article proposed by S. Rautaray and
A. Agrawal [55], it was used some image processing algorithms such as Camshift
and Lucas Kanade along with haar cascade classifier in which the acceptability,
usefulness and ease of use by the user have been taken into account to demonstrate
the accuracy of the system. The application must meet the constraints of classify-
ing the gesture in real-time. Image processing techniques have been implemented
in C++ using the OpenCV library. In this game, the user makes 4 gesture to move
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a man attacked by a bird. 15 different users were considered t assess performance.
The results show a gesture recognition rate from 93% to 80% for different gestures.

Sign language recognition. This kind of application would make it possi-
ble to overcome communication barriers by deaf people with the rest of society.
Ming Jin Cheok et al. [56] propose in detail analysis of the techniques used in hand
gesture recognition; in particular, sign language. It is also remembered that the
fundamental parameters in the evaluation of this kind of system are scalability,
robustness, user independence and real-time application. Sign language is partic-
ularly complex in that it includes movements of fingers, hands, arms, head, body
and facial expressions, and there are different types of language. The most widely
used in literature are the American Sign Language (ASL), Indian (ISL) and Arabic
(ArSL). An analysis of the different gesture recognition techniques is carried out,
both through the use of cameras both through sensors and different types of classi-
fiers (SVM, ANN, k-NN, unsupervised static classification method) are compared.
In this article, some tables contain interesting results. In the case of vision-based
gesture recognition, evaluating the accuracy in classifying the ASL, accuracy val-
ues are obtained between 89.1% and 95% using HMM classifier. In the case of
sensor-based gesture recognition, evaluating the accuracy in classifying the ASL,
the results are from 79.83% with SVM classifier to 99.1% using MLP-NN Naive
Bayes classifier.

Clinical and health. With greater human-machine interaction, it’s possible
to use gesture recognition to control prostheses and orthosis and manipulate digi-
tal images by a doctor during an operation while keeping your hands sterile. J. P.
Wachs et al. [57] proposed a system called "Gestix", video capture and hand gesture
recognition system used for handling and navigating MRI images within a medical
record. The system had a frame rate of 150 Hz and was tested by a surgeon dur-
ing 2 neurosurgical biopsy surgeries at Washington Hospital Center. Subsequently,
tests were carried out by 10 students who reported accuracy of gesture recognition
equal to 96% for the 8 gestures made.

Looking before, it’s possible to see that there are different types of systems to
be able to do hand gesture recognition that is based on different data acquisition
systems:

• Stereo camera: Mohidul Alam Laskar et al. [58] have proposed a method
for hand gesture recognition based on stereo cameras. They wanted to go
from 2D recognition to 3D recognition so they could also take advantage of
depth information. Before capturing the images to be classified, there was a
preliminary calibration of 2 RGB sensorsand grinding phase of the cameras in
which the geometric relationship between them was calculated. Next, images
captured from both cameras are match and produce a disparity map on which
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the features (position, orientation, and speed) that will be sent to the classi-
fier are extracted. In this case, the classifier used was Conditional Random
Field (CRF). The software was implemented using the OpenCV 2.0 library on
C/C++ programming. The results show an average recognition rate of 88%
for the classification of Arabic numbers (0-9).

• Motion capture: motion capture systems can be used to perform hand ges-
ture recognition. In the article written by N. Bargellesi et al. [59] an algorithm
for gestural recognition of hand movements has been proposed. The motion
capture proposed system consisted of 12 infrared cameras capturing three-
dimensional position data of 8 markers, and the cameras have a sampling
frequency of 340 Hz. Like all MoCAP systems, it is initially necessary to per-
form a phase of identification of markers during camera calibration, the paper
specifies how the coordinate reference system was placed in the center of the
room in the direction of the completion of the gestures. Three different meth-
ods of extracting features were evaluated, they were passed to a recognition
algorithm. In this case, it was the Random Forest classifier. The three dif-
ferent feature extraction techniques were time-series cropping (CROP), time
series resampling (RESAMP) and summary statistics (STAT). The results
show gesture accuracy values of 93% for CROP, 97% for RESAMP and 96%
for STAT.

• Wired gloves: T. Chouhan et al. [60] have developed a low-cost wired glove
to recognize hand and finger orientation with 7 bending sensors, 4 Hall effect
sensors, and one 3-axis accelerometer. The data captured by the different
sensors is temporarily stored in an array. Then they are transmitted sequen-
tially to a computer via a Universal Asynchronous Reception and Transmission
(UART) connection. In the first phase, the data arriving on PC is processed
by a MATLAB script that has the task of training the supervised learning
algorithm (logistic regression), in the second phase, the data that arrives on
the PC are classified by the trained algorithm. For each patient, it was asked
to repeat 20 times each of the 10 gestures they wanted to classify. The results
obtained show that an average accuracy of 96% has been achieved.

• sEMG signal: the sEMG, as described in section 1.2, has many applications.
S. Benatti et al. [61] has developed a wearable device based on sEMG for
real-time hand gesture recognition, an example of the chain of gesture recog-
nition based on sEMG is shown in Figure 2.2. The system developed consists
of Cerebro Afe multichannel that interfaces via SPI to an ARM Cortex M4
microcontroller which has the task of acquiring data and performing classifi-
cation. The data can be stored on an SD card or transmitted via Bluetooth
to a host device. As a recognition algorithm, SVM Classifier was used. In
an initial phase of training the acquired data was transmitted via Bluetooth
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on PC and offline SVM training took place through a MATLAB script. Once
trained, the SVM was loaded into the microcontroller to perform a real-time
classification. The acquisition system consisted of 8 channels and a sampling
frequency of 1 kHz, the dataset was composed of 4 healthy subjects who were
asked to perform 7 movements to be classified. An average accuracy of 89.2%
(92% maximum) was obtained with a computational time satisfactory for a
real-time application.

Figure 2.2: Chain of sEMG gesture recognition based on feature extraction [62].

2.3 EMG Armband for hand gesture recognition
2.3.1 gForce-Pro EMG Armband by Oymotion
Oymotion is a start-up founded in 2015 in Shanghai, that deals with the develop-
ment of biometric sensors, artificial intelligence algorithms to interpret biomedical
signals and gesture control based on EMG, intelligent orthosis and intelligent pros-
thetic hand [63]. They have developed a gesture recognition armband, gForce-Pro,
which monitors biometric forearm signals to track arm position. It’s possible to see
the gForce-Pro Armband in Figure 2.3.

Figure 2.3: gForce Gesture Armband [63].

gForce-Pro allows the recognition of 8 gestures; from a technical point of view,
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this band consists of 8 acquisition channels with bipolar configuration (dry elec-
trode) and a 9-axis motion sensor (accelerometer, gyroscope, magnetometer). The
acquired data is transferred via Bluetooth (BLE4.2) at a maximum distance of 10
meters and the supported platforms with which gForce-Pro can interact are Win-
dows, Android, or MCU like Arduino. The maximum sampling frequency is 1000
Hz, and via hardware, a band-pass filter is applied between 20-500 Hz with a gain
of 1000. Conversion to digital signal is done using an A/D converter. The micro-
controller present in this device is an ARM Cortex M4 High Performance and the
armband is characterized by low power consumption (below 0.1 W).

2.3.2 Myo Armband by Thalmic Lab
The Canadian company Thalmic Lab has developed a gesture recognition armband
called Myo Armband that can be seen in Figure 2.4. Due to its technical character-
istics and easiness of use, this device has numerous applications and many articles
in the literature evaluate its operating [64]. Some examples of applications can be
gaming with virtual reality, a robot control interface and prosthetic control. In
particular, BionIT Labs Company, in collaboration with the department of Innova-
tion Engineering of the University of Salento has developed a prototype prosthesis,
Adam’s Hand, which Myo Armband directly controls.

Figure 2.4: Myo Armband [64].

This band consists of 8 EMG electrodes with a bipolar configuration that have
the task of acquiring muscle activity, a 9-axis Inertial Measurement Unit (IMU,
composed of an accelerometer, a gyroscope and a magnetometer) that evaluates the
position of the forearm in space and a low-energy Bluetooth transmission module
that has the task of transferring the acquired data to the electronic devices with
which it is connected. The sampling frequency of this device is 200 Hz. Also, inside
the band, there is a vibration motor that provides feedback to the user depending
on the intensity and duration of the vibration (e.g. a low battery warning or
a failure). The microcontroller inside Myo Armband is Freescale Kinetis ARM
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Cortex M4 and the Bluetooth data transmission chip is BLE NRF51882. In one
of the 8 compartments of the armband, there is a micro-USB connector that has a
dual function, first, it serves to recharge the battery (there are 2 lithium batteries
3.7 V -260 mAh) and secondly, it permits to charge the firmware on the MCU.

2.3.3 3DC Armband
3DC Armband, designed by Laval University’s Biomedical Microsystems Labora-
tory and shown in Figure 2.5, is a wireless bracelet used to make hand gesture
recognition [65]. In their work, they built a new dataset by capturing data from 22
healthy patients who were asked to perform 11 hand/wrist movements, the subject
in the analysis was standing with the forearm parallel to the floor, and evaluat-
ing the developed system, they compared their results with the Myo Armband,
explained earlier. The armbands were applied simultaneously to the patient’s fore-
arm with the Myo more proximal to the elbow than the 3DC. Several classifiers
with different input signals were used to evaluate performance; in particular, 3 data
types were used, Baseline feature sets, raw EMG signal and features extracted in
time and frequency domain. For the first type, the classifier used is the linear dis-
criminant analysis (LDA) classifier, while for the other 2, a ConvNet classifier was
used. The results showed how the best performance for both armbands is that the
ConvNet classifier had the raw EMG signal as input. It was achieved an average
accuracy of 89.47% for 3DC and 86.41% for Myo Armband. In the case of the LDA
classifier, the average accuracy was 84.82% and 80% respectively.

Figure 2.5: 3DC Armband [65].

3DC Armband is a 3D printed wireless capture system. As a result, this leads it
to have a low price (~150 USD). The band is characterized by 10 bipolar acqui-
sition channels consisting of dry electrodes, a 9-axis inertial unit of measurement
(accelerometer, gyroscope and magnetometer) and a data transmission unit. The
sampling frequency is 1000 Hz and the signal is filtered by a band-pass filter in the
range of 20-500 Hz. Looking at its structure, the band consists of 2 main compo-
nents, the first includes the PCB that has the task of acquiring and processing the
EMG signal, the second includes the 3D container that acts as a box for electronic
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components. Finally, there is a low-power, low-power microcontroller unit from
Texas Instrument, a 100-mAh LiPo battery and a low-power transceiver. The total
weight of the armband is 63 g.

2.3.4 Wearable biosensing system for sEMG
[66] has proposed a wearable device to perform gesture recognition that uses a

surface electrode array to acquire the sEMG signal and that allows training and
updating of the recognition algorithm during its use. Unlike the Armband de-
scribed above, this device is characterized by a different electronic, it is a hybrid
system consisting of flexible electronic for acquisition sensors and a rigid sensor for
signal processing, it’s possible to see this in Figure 2.6. The flexible part allows
a mechanical flexion of the electronics that permit to have a better adaptation to
the physiognomy of the forearm. At the same time, in the rigid sensor, it is loaded
the classification algorithm. In detail, the system consists of a high-density elec-
trode array. There are 64 electrodes in Ag/AgCl representing the 64 single-ended
acquisition channels, to improve adhesion it is applied a conductive gel to each
electrode. The HD electrode array is connected to a miniaturized printed circuit
board (PCB). The system uses a low-power custom application-specific integrated
circuit (ASIC) to collect the sEMG data for classification. The sampling frequency
of the system is 1 kHz, the device is connected to a computer via Wireless and it is
powered by a 3.7 V 240 mAh lithium-ion battery. The device’s overall size is 29.3
cm x 8.2 cm and the total weight is 26 g. The system used to classify is Hyperdi-
mensional (HD) Computing which relies on a data type called hypervectors. For
initial validation of the system, that was acquired data from five patients and the
classification went offline. An interesting aspect of this work is the sensor’s ability
to update the learning algorithm during an online application to considering the
variations that may be during the acquisition of the sEMG signal like sweating,
fatigue and electrode displacement. High accuracy was obtained when was done 21
gestures classification from two subjects, this is equal to 92.87%, with a recovery of
9.5% due to the update of the model in response to changes during the acquisition.

Figure 2.6: HD wearable biosensing system.
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Chapter 3

Acquisition System

With the aim of developing a low-power wearable device to classify hand gestures,
as defined in the first chapter, to use the EMG signal since it contains a lot of
information and therefore has a high computational cost. Still, want to use the
ATC signal, defined in section 1.3. In this thesis work, however, the ATC signal
was not sent to a device after an hardware extraction, but has been calculated
via software following an EMG signal acquisition via an A/D converter, being the
hardware system still to be completely designed. In particular, a board was used
to acquire the EMG signal that was given as input into an A/D converter, in which
output was analyzed via software using MATLAB®. The ATC was extracted, and
also other parameters are extracted, such as features extraction, PSD of the signal,
and the signal-to-noise ratio of muscle activations. The acquisition system [48] is
explained in detail below.

3.1 Printed Circuit Board (PCB)

Figure 3.1: Schematic of sEMG acquisition chain.
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The EMG signal has been acquired with bipolar mode, as can be observed on the
left side of Figure 3.1, "1" and "2" represent the sampling electrodes while "REF"
means the reference electrode. In Figure 3.1, it is also possible to observe the block
"DRL", which is optional; in particular, welding some pins on the PCB there is
the possibility to insert or not insert the part of the circuit containing the DRL. If
you decide to use the board without the DRL to the reference will not arrive the
output of the DRL, but it arrives the reference voltage. To evaluate the board’s
performance, EMG signal acquisitions were made for both the PCBs, that with
DRL and that without the DRL.
In the block diagram above, the final output is represented by the EMG signal; in
reality, the boards used for signal acquisition had already incorporated the possi-
bility of generating TC events. Consequently, the EMG signal represents one of
the two inputs of the voltage comparator, the threshold gives the other input that
the board calculates for each acquisition channel. At the output of the comparator,
there is the TC event. The board transfers TC events to a microcontroller with
the use of wires. The microcontroller has also integrated a Bluetooth transmission
antenna that allows the ATC parameter transmission to a PC. Figure 3.2 shows
the complete printed circuit board.

Figure 3.2: PCB: 22mm x 25mm.

3.1.1 Protection Circuit and Impedance Decoupling

The protection circuit has the task of protecting voltage-sensitive PCB components
from transient voltage events and the accumulation of electrostatic dicharges, ESD,
frequent in integrated circuits of electronic equipment. It consists of low disper-
sion switching diodes, protective diodes, and diode arrays. Also, there are ferrite
microspheres that act as resistances to noise frequencies reducing the possibility of
resonance and leaving the signal waveforms unchanged.
The decoupling of the impedance is applied to decouple the output from the input.
It is composed of Voltage Follower and is located at the beginning of the system
in order to have at the entrance of the circuit the same signals taken from the
electrodes.
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3.1.2 Differential High Pass Filter
The signals coming out from the voltage followers defined above are applied to a
first high pass filtering. In particular, a differential high pass filter of the second
order is applied. That is a passive filter because there are no active components,
like op-amps. As shown in Figure 3.3, it is composed only by R and C. This filter
is used to reduce the noise introduced by motion artifacts during signal acquisition.

Figure 3.3: Differential HPF.

The cutting frequency is defined as:

f = 1
2πRC

(3.1)

R=10 MΩ and a C=470 pF are selected, so the cutoff frequency is f=33.86 Hz.

3.1.3 Instrumentation Amplifier

Figure 3.4: Instrumentation Amplifier

The instrumentation amplifier, shown in Figure 3.4, works like a differential ampli-
fier but consists of an additional pair of amplifiers that improve the input impedance.
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To define the output signal’s gain, it’s not necessary to change all the circuit’s re-
sistances. Still, once you have chosen the component that meets the project’s spec-
ifications, it is enough to select the Rgain to define the total gain. In this case, the
selected instrumentation amplifier is the INA333 from Texas Instruments, whose
gain is defined as:

G = 1 +
[︄

100kΩ
Rgain

]︄
(3.2)

In this case, Rgain=200 Ω are selected so the Gain is G=501. The output of this
amplifier is defined as:

Vout = G ∗ [V2 − V1] (3.3)

3.1.4 Second order multiple feedback low pass active filter

Figure 3.5: LPF

The output of the filter is used as the INA’s reference. That represents the rejection
of the common way; in particular, it allows rejecting certain low-frequency voltages
introduced by the INA itself. The circuit diagram is shown in Figure 3.5. The
cutoff frequency is defined as:

f = 1
2π

√
R2R3C1C2

(3.4)

In this case, R1=R2=R3=150 kΩ, C1=33 nF and C2=6.8 nF are selected, so the
cutoff frequency is equal to f=70.83 Hz.

3.1.5 Adjustable Gain
With this PCB, there is the possibility to increase the board’s gain simply by
varying the gain selector. That allows setting an adjustable gain on the board.
In particular, it is possible to increase the gain by selecting one of the following
multiplications: x1 (500 V/V), x2 (1000 V/V), x3 (1500 V/V), x5 (2500 V/V), x6
(3000 V/V). By default, the adjustable gain is set to x1.
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3.1.6 Second order Sallen-key low pass active filter
As Active LPF, this PCB uses the Sallen-key low pass filter, which is an active
filter of the second order very widespread due to its simplicity.

Figure 3.6: LPF

Looking at Figure 3.6, the gain is defined as:

k = 1 + Rb

Ra

(3.5)

In detail, at this level in this printed circuit board you want a unit gain, therefore,
a component characterized by Rb=0 Ω, Ra=DNP, has been selected. In this case,
R1=R2=27 kΩ, C1=22 nF and C2=10 nF are selected. The cutoff frequency is
defined as:

f = 1
2π

√
R1R2C1C2

(3.6)

With the component selected the cutoff frequency is equal to f=397.42 Hz.

3.1.7 Driven Right Leg (DRL) circuit

Figure 3.7: DRL
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The Right Leg Circuit (DRL) is a circuit known for the acquisition of biological
signals such as EMG, EEG, and ECG. Normally this circuit is added to the signal
amplification chain to reduce interference in a common way; as shown in Figure 3.7,
where the VIN is taken from the instrumentation amplifier. In particular, DRL is
used to reduce common-way noise on the skin and match the body’s reference
potential to the circuit reference voltage. In this case, R1=R2=12 kΩ, R3=330 Ω
and Rg=200 Ω are selected. The output voltage of the DRL circuit go to reference
electrode and it is calculated as:

Vout = −VIN
R1

R2
+ Vref (1 + R1

R2
) (3.7)

3.1.8 Voltage Comparator

Figure 3.8: Voltage Comparator

The voltage comparator, shown in Figure 3.8, is used to generate a TC event. In
particular, when the sEMG signal is greater than a certain threshold, the compara-
tor output signal will be at a high logical level, while in case it is lower, it will be
at a low logical level. ⎧⎨⎩V + > V − → VT C = H

V + < V − → VT C = L
(3.8)

In this application, R1=10 kΩ, R2=1 MΩ and C1=100 nF are selected.
The final output of this board is the TC signal. This signal is transmitted to a
microcontroller (in previous studies it was used Apollo3 Blue by Ambiq Micro).
Thanks to a Bluetooth antenna, it sends the ATC parameter to the computer.
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3.2 Data Acquisition

The sEMG signal acquisitions were made using the NI DAQ USB-6259, a data
acquisition system produced by National Instruments®. Multifunction I/O device
consisting of 32 Analog Input 16-bit and 1.25 MS/s, 4 Analog Output 2.86 MS/s,
48 Digital Input/Output, two 32-bit counters/timers, and digital and analog trig-
gering.

Figure 3.9: NI DAQ USB-6259

The NI DAQ, shown in Figure 3.9, is connected to a PC via USB, and an app
developed by MATLAB®, defined as "Data Acquisition Live", was used to collect
the data. This app, shown in Figure 3.10, after the setting of various parameters,
allows to acquire the input signal of the board and save it in ".mat" format. After
selecting the device used, it is necessary to set several parameters:

• Channel: Define the channel you want to capture; it has been selected AI0.

• Measurement type: automatically set to ’Voltage’.

• Range: Defines the measurement range, this can be setted from "± 0.10V" to
"± 10V"; for the measurements made, it has been set between ’± 5V’.

• Coupling: set automatically on ’DC’.

• Terminal Configuration: set to ’Single Ended’, you can make acquisitions even
in ’Single Ended non referenced’ and ’Differential’ mode.

• Rate (scan/s): represents the sampling frequency, this can be setted from "0.1
Hz" to "1.25 MHz"; for all acquisitions, considering the range of sEMG signal,
the sampling frequency has been set to 1000 Hz.
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Figure 3.10: "Data Acquisition Live" by MATLAB®.

The NI DAQ, set as it has just been defined, has been used to acquire all sEMG
signals, both in the preliminary evaluation related to the different types of dry elec-
trodes and to evaluate the presence of DRL circuit onboard. With this app, only
one Analog Input can be selected so you can capture a single channel. To make a
simultaneous capture of multiple channels is necessary to use another application.

To standardize conditions during signal captures, a 3D model of a support was
developed to allow inter-electrodic distance to be standardized. The support de-
veloped was printed with Formlabs Form 3D printer using "Black Resin".

Figure 3.11: 3D printed support.

Looking at Figure 3.11, the outer circular holes represent the sampling electrodes,
while the central one represents the reference electrode. Considering the circumfer-
ences’ centers, the distance between the external holes and the central one is equal
to 17.6 mm. Consequently, the distance between the centers of the two sampling
electrodes is 35.2 mm. As defined in [67], an acceptable range distance between
active electrodes is 18-36 mm. So, considering the printed support, the distance
between the sampling electrodes is in the acceptable range for doing sEMG acqui-
sition.
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3.3 Signal-to-Noise Ratio (SNR)
The presence of noise always characterizes a biological signal; as a result, the ac-
quired signal is defined as:

x(t) = s(t) + n(t) (3.9)
Where x(t) represents the signal acquired, s(t) the biological signal, and n(t) the
noise. The Signal-to-Noise Ratio (SNR) is calculated to assess the signal quality and
it represents a reliability index of the recording. Low SNR values are a symptom
of poor signal quality, and this makes subsequent processing difficult such as the
detection of muscle activation, estimation of a feature extractions parameter. SNR
is defined as the ratio of signal power and noise power:

SNR = Ps

Pn

(3.10)

Thus defined, the SNR value is between [0, +∞). Moreover, it is possible to give
a second definition by expressing the signal-noise ratio in terms of decibels (dB):

SNRdB = 10 · log10
Ps

Pn

= 10 · log10
σ2

s

σ2
n

(3.11)

In this case, the SNRdB value is between ±∞. There are several other formulas for
calculating the noise signal ratio that changes based on the type of signal (stationary
or non-stationary) and the type of noise.

The SNRdB of muscle activations was calculated for all acquisitions. As defined
in Section 2.1, [44] define a limit greater than 5-6 dB in order to have robustness
of ATC parameter. In order to increment the signal quality, in this thesis an
acceptance value of 10 dB has been fixed to consider the signal suitable for an
event-based extraction technique. An example of muscles activation selected for
SNR calculation is shown in the figure below.

Figure 3.12: SNR of 3 different hand grasp movements
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To calculate the SNRdB as defined above, the noise power was calculated by
considering the first 3 seconds of recording in which there was no muscle contraction
(blue signal on Figure 3.12). To define the signal power, it is necessary to take
another step. Considering the red signal of Figure 3.12, where there is both signal
and noise, to calculate the square of the standard deviation only of the signal, it’s
necessary to calculate first the red one, and then the noise power calculate above
is subtracted. In detail:

PSignal = σ2
Noise+Signal − σ2

Noise (3.12)

Now, with the signal power and the noise power, it’s possible to apply the definition
of SNRdB. Considering the hand grasp movement performed, shown in Figure 3.12,
the SNRdB values calculated for the contractions are:

Contraction SNRdB

1st Activation 9.89 dB

2nd Activation 7.84 dB

3rd Activation 10.99 dB

3.3.1 Different Dry Electrodes
With the aim to develop an electromyographic armband the replacement of wet
electrodes with dry ones is necessary. So, the first analysis involves three different
types of dry electrodes, shown in Figure 3.13:

• BiosignalPlux Conductive Lycra by MindtecStore: conductive elec-
trodes that can interact with ECG, EMG & EDA sensors. They are charac-
terized by a diameter of 7 mm and that are coated with Lycra, this material
is highly conductive. The price is about e85.00 for a package of 5 electrodes.

• Non-gelled Reusable Ag/AgCl with velcro by BITalino: compact elec-
trode fitted with a convenient velcro strap that can interact with ECG, EEG,
EMG & EDA sensors. Electrodes can be used multiple times with or without
gel, they are characterized by a diameter of 5mm and the core is composed
of Ag/AgCl coated polymer. The price is about e11.50 for a package of 2
electrodes.

• Non-gelled Reusable Ag/AgCl by BITalino: compact electrodes that
can interact with ECG, EEG, EMG & EDA sensors. They can be used with
or without gel and can be used multiple times. The core is composed of
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Ag/AgCl coated polymer and there is an optional plastic rim to increase fix-
ation area.The diameter of the core is equal to 7 mm and the acquisition are
doing without the use of plastic rim. The price is about e12.50 for a package
of 10 electrodes.

(a) MindtecStore (b) BITalino with Velcro (c) BITalino

Figure 3.13: Different dry electrodes.

The acquisitions involve 6 different movements: brachial bicep contraction with a
weight of 2 kg, hand grasp, wrist extension, wrist flexion, wrist radial deviation,
and wrist ulnar deviation.
For each of these movements, six contractions were done. To acquire sEMG signal,
these acquisitions are made both for PCB with DRL and for PCB without DRL; the
DRL circuit application evaluation is explained in section 4.1. In total, there are 72
contractions for each electrode evaluated. Figure 3.14 shows the results obtained.

Figure 3.14: SNRdB of three different dry electrodes

In the boxplot, there are all the SNRdB calculated separated for the type of elec-
trode. Looking the Figure 3.14 MindtecStore and BITalino suggest having better
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results than BITalino with Velcro. To evaluate what is the one with the best re-
sults, a separation for the movement was done. In particular, applying the average
of the six contractions in terms of SNRdB, the different values obtained are shown
in Table 3.1.

Table 3.1: SNRdB of different dry electrodes. The values are expressed in dB.

Movement MindtecStore BITalinoVelcro BITalino
Brachial bicep 9.27 8.49 9.48
Hand Grasp 5.43 4.05 7.40

Wrist Extension 11.15 7.27 8.20
Wrist Flexion 3.79 2.62 4.13

Wrist Radial Deviation 8.68 5.62 9.70
Wrist Ulnar Deviation 8.70 4.84 7.11

Looking at Table 3.1, Non-gelled Reusable Ag/AgCl by BITalino has the major
number of highest SNRdB values considering the different movements, in particular
for brachial bicep, hand grasp, wrist flexion and wrist radial deviation. Considering
the last two movements, wrist extension and wrist ulnar deviation, BiosignalPlux
Conductive Lycra by MindtecStore has the highest values.
BiosignalPlux Conductive Lycra by MindtecStore has good performance, but it is
very expensive respect the other one. So, Ag/AgCl BITalino was selected and used
for all the acquisition doing in the rest of the thesis work.
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Chapter 4

PCB Evaluation

Once defined dry electrodes to use, the PCB was tested. At this point, the objective
is to increse the SNRdB in order to have higher quality of sEMG signal; this is
necessary to apply the ATC technique.
Different movements were performed and more sEMG signals were acquired with
the configuration of data acquisition defined in Chapter 3.

4.1 PCB without DRL vs PCB with DRL
With the aim to increase the sEMG signal quality, the application of the Driven
Right Leg (DRL) circuit available onboard was tested. With wet electrodes, this
could not be necessary because the sEMG signal is characterized by high qual-
ity. Considering the disadvantages of dry electrodes, such as difficult fixing on the
skin, the DRL circuit application can reduce the noise introduced by the dry ones.
DRL circuit is used as a connection between the signal source and the amplifier,
as shown in Figure 3.7. In particular, it reduces the noise on the skin by driving
the common-mode voltage from the instrumentation amplifier to the reference elec-
trode’s potential; it matches the body’s reference potential to the circuit’s reference
voltage. Welding some pins, the DRL circuit available onboard was integrated into
the PCB.
For the two different configurations of the PCBs, some movements were performed.
In particular hand grasp, open hand and wrist extension.
For each movement, the isometric contractions were performed seven times. In
total twenty-one contractions were doing for each PCB’s configuration. The results
obtained doing a separation only with respect to the DRL circuit are showns in
Figure 4.1.
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Figure 4.1: No DRL vs DRL evaluation

Looking at the boxplot the presence of the DRL circuit leads to having a higher
SNRdB values both in terms of distribution and median values.

In addition, to evaluate the performance a further distinction is made with
respect to the movements performed. Producing multiple contractions permits to
have more data to analyze and has the advantage of extracting the SNRdB mediated
on the seven ones. The results obtained are reported in Table 4.1.

Table 4.1: SNRdB of different movement, comparing PCB with DRL and without
DRL. The values are expressed in dB.

Movement No DRL DRL
Hand Grasp 6.03 9.49
Open Hand 11.24 13.88

Wrist Extension 10.24 13.83

For all the movements, the highest values are obtained with the PCB containing the
DRL circuit. Furthermore, the averaged values are higher than 10 dB for open hand
and wrist extension. That is an important result because 10 dB is the minimum
value acceptable in considering the sEMG signal as a good quality signal. In this
case, there is a small increment of SNRdB with the DRL circuit.

However, the effect of the DRL circuit can also be observed in the frequency
domain. Calculating the Power Spectral Density (PSD) of the signals, there is a
possibility of seeing a decrease of noise, which is shown in Figure 4.2. Looking at
the PSD, there is an important decrement of noise artifact thanks to the presence
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of DRL. Each PCBs are built to eliminate the network interference at 50 Hz, but
the network interference harmonics are present. That is a problem considering the
EMG band (0-500 Hz).

Figure 4.2: Power Spectral Density

Reducing the common-noise with DRL application, the effect of harmonics of the
network interference is lower. So, Driven Right Leg’s presence on the board is a
good solution both in terms of SNRdB both in terms of signal information in the
frequency domain. For the analysis in section 4.2, PCB with DRL was selected to
be used.

4.2 Gesture Recognition
In this section was make sEMG signals acquisition of various forearm movements.
The idea is to reproduce the movements and acquire signals in the same way that
can be done acquiring signals using an armband for gesture recognition. At the
moment, with the PCB, there is the possibility to acquire only one signal for time.
The acquisition channel is positioned in correspondence with the first muscle. A
sequence of movements was done; in particular for each movement an activation of
5 seconds was performed and between each activation, there were 5 resting seconds.
Finally, the position of the acquisition channel was changed in correspondence to
another muscle.
With the aim to have an armband composed of seven acquisition channels and to
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recognize seven active gestures, seven acquisition of sEMG signals were made in the
different positions. The acquisition channel is positioned at 1/3 of the arm starting
from the elbow, as suggested in [49]. With these configurations, the measurements
can represent the type of sEMG signal for gesture recognition, but there are some
problems. The acquisition channels must be placed simultaneously on the arm.
Acquiring only one channel per time, the starting and the ending point of the
gestures task doesn’t correspond considering the various acquisition channels and
it is necessary to manually align the activation.

4.2.1 Movement performed
Seven active gestures made by the left forearm were performed besides the idle
state. In detail:

• Idle state: the muscles are relaxed, the hand is still, and the forearm rests
on a table without gravity to be contrasted.

• Wrist extension: the most used muscles for doing this gesture are the exten-
sor carpi radialis longus, the extensor carpi radialis brevis and ulnaris together
with some deep muscles. This movement consists to move the back of the hand
towards the distal forearm.

• Wrist flexion: the most used muscles for doing this gesture are flexor carpi
radialis, palmaris longus and flexor carpi ulnaris, as well as flexor digitorum
superficialis and profundus. This movement consists to move the hand palm
towards the inner arm.

• Wrist radial deviation: the most used muscles for doing this gesture are
abductor pollicis longus, flexor carpi radialis, extensor carpi radialis longus
and brevis. This movement consists to move up the hand follow the thumb
direction.

• Wrist ulnar deviation: the most used muscles for doing this gesture are
extensor carpi ulnaris and flexor carpi ulnaris. This movement consists to
move down the hand to the little finger direction.

• Hand grasp: the most used muscles for doing this gesture are flexor digitorum
and palmaris longus, together with many intrinsic muscles of the hand. This
movement consists to close all the fingers in the direction of the hand palm.

• Pinch grip: the most used muscles for doing this gesture are flexor digitorum
superficialis, flexor digitorum profundus, palmaris longus, and flexor pollicis
brevis, together combinated with the adducting for of the adductor pollicis.
This movement consists to doing a grip between the palmar surface of index
finger and the thumb. This movement consists of doing a grip creating pressure
between the palmar surface of the index finger and the thumb.
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• Open hand: all the forearm muscles are involved for doing this movement,
in particular the extensor digitorum. This movement consists to fully extend
the hand maintaining the open palm.

The sequence of movements performed is composed in the order of the gestures
described above and it is shown in Figure 4.3. 5 resting seconds separate 5 seconds
of muscle contraction.

Figure 4.3: Towards an armband: sequence of sEMG signals for gesture recognition.

Considering all movements, for each acquisition channel the SNRdB was calculated
in order to give information on muscle activation. The results are reported in Table
4.2. Small and negative values are due to a small activation; in contrast, the highest
values represent the muscle mainly active for the execution of the specific gesture.

Table 4.2: SNRdB of forearm muscles. The values are expressed in dB.

Channel Extension Flexion Radial Ulnar Grasp Grip Open
Ch1 22.97 8.42 18.19 10.57 15.77 13.40 13.52
Ch2 11.51 11.26 11.70 9.59 13.59 8.85 8.97
Ch3 10.37 21.18 16.70 10.89 12.21 10.67 11.02
Ch4 -1.01 12.30 11.91 1.52 12.06 3.36 2.98
Ch5 -2.69 5.16 -5.62 12.21 0.14 5.20 7.18
Ch6 6.12 5.05 1.81 9.83 13.82 3.92 5.10
Ch7 20.15 10.46 4.45 20.15 5.62 12.93 11.93
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4.2.2 ATC extraction
With the final device, the ATC signal will be extracted using the PCB voltage
comparator to generate TC events and the MCU to transfer the averaging number
of over-crossing inside a fixed time window. In this application, the ATC signal
was extracted via software; different steps were done to do this. After the sEMG
acquisition, the most important step is to define the threshold.
In particular, the first and the last 3.5 seconds of the signals are considered to
calculate the threshold; this signal was called "noise". In this part, there is only
the idle state and there are no activations. Considering the "noise" signal the peaks
were found, which are called "peak". That is necessary to calculate a first threshold
defined as:

thr = mean(peak) + 3 · std(peak) (4.1)

Considering how the final device calculate the threshold, is necessary to add a term
called "hysteresis", equal to 15mV. The final threshold is defined as.

threshold = thr + hysteresis (4.2)

Once defined the threshold, the next step consists of extracting the TC events.
Making a comparison between the sEMG values and the threshold, if the first one
is higher than the second one, the TC event is set to 1, otherwise is set to 0. Finally,
to extracting the ATC signal, the number of TC setting to 1 inside a fixed time
window of 130 ms is counted. The results obtained considering the signals acquired
in Section 4.2.1 were shown in Figure 4.4.

Figure 4.4: ATC extraction for gesture recognition.
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Looking at the Figure 4.4, where the orange signals represent the ATC ones,
it can be observed how the ATC trend follows the trend of the sEMG signal.
To overlap the signals, each ATC signal has been normalized with respect to his
maximum. The ATC signals represent the input for doing gesture recognition. If
supervised learning is used, for the training of the algorithm is necessary to label
the signal defining different labels in correspondence of the different gestures done.

4.3 Improved PCB
The research team has developed an improved acquisition board in which the Mi-
croController Unit (MCU) is positioned directly on the board. That allows an ATC
signal extraction and transmission from the board without going through an ex-
ternal microcontroller. That is an important aspect in order to develop a wearable
device. Furthermore, the MCU permits to transfer data via Bluetooth, both ATC
and sEMG signals. The transmission via Bluetooth leads to an incrementation
of SNRdB because the board’s connections reduce the noise previously introduced
through the DAQ system. In Figure 4.5, the improved PCB is shown.

Figure 4.5: Improved PCB: 20.5mm x 33.2mm.

The main differences of the improved PCB compared to the starting one are:

- Microcontroller Unit: as mentioned above, the microcontroller is located
directly on the printed circuit board. Considering its presence, the possibility
to connect to the board a button for the resetting of MCU is also added.

- Snap electrode socket: at the bottom of the board, there is a compartment
where you can connect the electrode connectors directly to the board. That is
especially important as it reduces the moving artifact during signal capture. In
the previous case, the sockets were connected to the board via floating wires.
Therefore, during the movement’s execution, there was the possibility to have
a movement of the wires that could cause distortions of the signal.

- Size: the size of the starting board was 22mm x 25mm; the improved one,
since it must also contain an MCU, has a longer length and its size is 20.5mm
x 33.2mm.
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- Micro USB: allows you to connect the board directly to a PC. In addition,
when the battery is connected to power the board, if you connect the board
to a PC, it is possible to recharge the battery thanks to an internal charging
circuit.

- Switch button: it turns the PCB on and off when activated.

Also with the improved PCB, there is the possibility to insert or not the DRL
circuit onboard by welding some pins; the evaluation about that can be seen in
Chapter 6.

4.3.1 EMG signal
In this section, the acquisitions were made only with the PCB without the DRL
circuit and the sEMG signals were acquired using the NI DAQ set as defined in
Chapter 3. The transmission of data via Bluetooth was used in Chapter 6. The
sEMG signal detection was made with wet and dry electrodes. Considering the
SNRdB and the PSD in the frequency domain, even if with the wet ones we expect
to find better results than the dry ones, acquiring with both systems allowed us to
make a comparison with the results obtained.
A single forearm gesture was tested, in particular the right wrist extension. During
each acquisition, seven muscle contractions of five seconds were done; between each
contraction, there were five seconds of resting phase. Considering the Range Of
Motion (ROM) of the gesture, the acquisitions were made in four various positions.
The forearm is perpendicular to the arm, and regarding the different positions is
considering the angle generated between the longitudinal axis of the forearm and
the hand in the sagittal plane. In details:

• Rest: the muscles are relaxed, the hand is still, and the forearm rests on a
table without gravity to be contrasted. The angle between the two segments
is equal to 0°.

• Minimal extension: the muscles are contracted with minimal effort. The angle
between the longitudinal axis and the hand is in the range 0°-30°.

• Normal extension: the muscles are contracted with a normal effort. The angle
between the longitudinal axis and the hand is in the range 30°-60°.

• Maximal extension: the muscles are contracted with a maximal effort. The
angle between the longitudinal axis and the hand is in the range 60°-90°.

The sEMG signals acquired are shown in Figure 4.6, where the blue signal represents
the sEMG ones and the orange the ATC ones.
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Figure 4.6: sEMG and ATC signals: Wet vs dry electrode.

Looking at Figure 4.6, both for wet and dry electrodes, the first signal is character-
ized by the presence of some peaks in the ATC signal due to the software calculation
of the threshold. Sometimes there is a single sEMG value higher than the threshold
that generates a single TC event observed when the ATC is extracted.

Considering the frequency domain, in Figure 4.7 the PSD of the sEMG is re-
ported. Making a comparison between signals acquired with wet electrodes and
dry ones is evident the disadvantages introduced by the dry electrodes. With the
wet is not observed a critical component related to network interference and his
harmonics, which can be seen well with dry ones where the network interference
harmonics are evident.

Figure 4.7: Power Spectral Density (PSD): Wet vs dry electrodes.
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Regarding the muscle activation during the different positions, the SNRdB was
calculated for each contraction. In Table 4.3 there are the results obtained by doing
the average of the seven contractions for each position.

Table 4.3: SNRdB of different wrist extension intensity, comparing wet and dry
electrodes. The values are expressed in dB.

Movement Wet electrode Dry electrode
Rest -4.64 -9.13
Min 8.96 6.89

Normal 17.65 12.09
Max 21.21 19.15

For each position, as stated before, the SNRdB calculated for wet electrodes is
higher than the dry ones. Furthermore, as the intensity of the effort increases, the
value increases. The resting values are negatives due to the calculation process of
SNR. Considering the normal and the maximum intensity of wrist extension, even
with dry electrodes, values greater than 10dB are obtained. Indeed, considering
the maximal wrist extension, the values are greater than 20 dB. So, the improved
PCB results seem to demonstrate good quality for sEMG signal acquisition.
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Armband Design

In order to develop an electromyographic armband for gesture recognition, another
important step is to design the CAD model. Considering the armbands present on
the market, described in Section 2.3, two different models were designed.
The forearm circumference is an important aspect to consider during the design
phase. The tool to take the body circumferences is an inelastic meter. The meter
surrounds the body in the right areas, without girding (tightening the tissues) and
making the meter adhere to the skin. The circumference of the forearm is measured
from standing, starting with the arms at the sides. The forearm forms an angle
of 90° with the arm; the hand palm is facing up. The measurement can be done
proximal or distal. In order to position the armband at 1/3 of the forearm length
starting from the elbow, it was considered the proximal values and grouped in 3
sizes.

Table 5.1: Forearm circumference. The values are expressed in cm.

Size Forearm circumference
Small 18-22

Medium 22-28
Large 28-36

Looking the Table 5.1, the range of forearm circumference is between 18-36 cm
in normal person without problem as anorexia and obesity. So, for the armband
design, it is necessary to include some elastic connection to generate a wearable
device for most people. The starting point is developing an armband composed of
seven acquisition channels with bipolar configuration, connecting each other with
some elastic part. The idea is doing gesture recognition with these seven acquisition
channels. In particular, the movements that will be recognized are the ones defined
in Section 4.2.1. The models were developed with Autodesk Fusion 360®.
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5.1 3DC model
The first model is inspired by the 3DC Armband developed by Laval University’s
Biomedical Microsystems Laboratory, described in Section 2.3.3. The inspired
model is characterized by ten acquisition channels where two of these have differ-
ent dimensions due to battery presence. In this thesis work, the seven acquisition
channels that composed the armband have the same dimension because they have
a PCB, three sockets for electrodes and a battery inside each of them.
In the preliminary phase, the measurements of the various components were taken
with the aim to create the model with the right dimension to include inside that
all the components. Two parts compose the single acquisition channel:

- case, that represents the place where are inserted the electronic components;

- cover, closing part of the case.

In detail, the case and cover are shown in the following figures.

Figure 5.1: 3DC case: the measures are expressed in mm.

In Figure 5.1, the dimensions of the case are reported. In particular, length, height,
widths and interelectrode distance are specified. The thickness of the wall is equal
to 2 mm. Considering the side view, there is a hole in the middle of the case;
the idea is to pass an elastic band in the hole to connect a box to another. Dry
electrodes are inserted on the lower surface, where they make a clip connection with
the sockets.

Figure 5.2: 3DC cover: the measures are expressed in mm.
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In Figure 5.2 are reported the dimensions of the cover. In particular, length, height
and widths are defined. The external part of the cover match with the rail of the
box, closing its upper part. Cover closed with the case take the name of "box".
Furthermore, in the upper part of the cover, a structure permits inserting another
elastic band. The second elastic band has the functionality to press the box to the
skin; so, press the electrode to the skin. This part is implement considering the
limits of dry electrodes. In detail, considering the high electrode-skin impedance
of dry ones, if the contact isn’t well pressed, the acquisition signal is characterized
by a lot of noise. The idea with the implementation of the second elastic band is
to improve this aspect.
Inserting the electronic components inside the box, all together represent a single
acquisition channel.

Figure 5.3: 3DC box.

Other than electrodes and sockets, the PCB and the battery are inserted into the
case to compose a single 3DC box. The closing mechanism of the box is shown in
Figure 5.3, it can be understand how the cover slides into the case rail. The idea
is to print cover and box using the rigid "Black Resin" for the Formlabs Form 3D
Printer.
For the design of 3DC model, an improvement of the box model was made. Seven
acquisition channels characterize the final armband; so, for the designing is neces-
sary to use, simultaneously, seven boxes. The box’s position during the acquisition
is standardized, as done in 4.2.1, to acquire the same muscle activation under a
single channel when the subject does different movements.
For example, doing wrist extension that has a good component in terms of flexor
carpi radialis activation, if you make acquisition between different subject for doing
gesture recognition is not good to have the muscle under CH 1 in one case, while
in the other one is under CH 4.
The standardized positions are:

- CH 1: Flexor carpi radialis
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- CH 2: Flexor carpi ulnaris

- CH 3: Extensor carpi ulnaris

- CH 4: Flexor digitorum profundus

- CH 5: Extensor digitorum

- CH 6: Extensor carpi radialis brevis

- CH 7: Brachioradialis

Figure 5.4: 3DC model.

Looking at Figure 5.4, the grey elastic bands represent the connection between the
boxes (acquisition channels), while the black one represents the external band for
press the electrode to the skin. Considering the width of a single 3DC case, equal to
26 mm, and imagining putting the seven ones next to each other, the total width is
equal to 18.2 cm. Between cases, it is necessary to insert also the grey elastic bands.
Assuming a small length equal to 1 cm, the global width of seven boxes + elastic
band is equal to 25.2 cm. So, regarding the forearm circumference is hard to apply
and standardize the 3DC model for all the people inside different size group. 3DC
model was only designed; it wasn’t printed with the Formlabs Form 3D printer.
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5.2 MYO model
The second model is inspired by the Myo Armband of Thalmic Lab, described
in Section 2.3.2. This one is more complex than the 3DC model defined above.
Seven acquisition channels characterize the MYO model. The connection system
isn’t composed of some elastic bands, but a 3D support to connect the acquisition
channels is designed. In this case, a single acquisition channel was printed with
the Formlabs Form 3D Printer. After some prints, making the right adjustment,
the acquisition system’s final model has been designed, printed and tested, making
sEMG signals acquisition. The results obtained are reported in Chapter 6.
In general, the MYO model can be divided into three parts:

- Case, as before, represents the place where all the components are inserted.

- Cover, closing part of the case.

- Support, system to connect all together the seven acquisition channels.

In detail, the schematic of the case, cover and support are shown in the following
figures.

Figure 5.5: MYO case: the measures are expressed in mm.

In Figure 5.5, the dimensions of the case from a different point of view are reported.
In particular, length, height, widths and interelectrode distance are specified. The
thickness of the wall is equal to 2 mm. Considering the back view, the hole gives
access to the switch button that turns "off" and "on" the improved PCB. In the left
side view, the opening represents the possibility of connecting via micro USB the
improved PCB. Furthermore, in the front view, the hole represents the place where
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to insert the button for resetting the MCU. Finally, a gap on the right side view is
inserted to let out some wires eventually.

Figure 5.6: MYO cover: the measures are expressed in mm.

The MYO cover is very similar to the 3DC one. The differences are the dimensions
and the absence, in the upper interface, of the gap for the elastic band’s passing. In
Figure 5.6, length, height and widths are defined. By threading the cover into the
case rail, the system can be closed. As before, case together with cover takes the
name of "box". The box part is printed using the "Black Resin" for the Formlabs
Form 3D printer.

Figure 5.7: MYO support: the measures are expressed in mm.

In Figure 5.7, lengths and widths of MYO support are reported. The height is
equal to 19 mm. Considering the height of the case, the support one is smaller in
order to maintain the same contact surface between the case and skin; augmenting
this section can be rent more difficult the wearability. Furthermore, moving the
external part of the support is possible to close that in a circle representing the
armband. With the support part was given the armband flexibility; so, the idea is
to print MYO support using the "Flexible Resin" for the Formlabs Form 3D printer.
The total length is equal to 25.65 cm. Regarding the forearm circumference, the
model is in the acceptable range but is hard to apply the MYO model for all the
people inside different size group. Some possibilities to solve this problem can be
to reduce the PCB widths or reduce the distance between the boxes.
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The single acquisition channel is defined as "MYO box". The MYO box’s external
part is composed of case and cover; the inside part is composed of all the components
necessary to use for making sEMG acquisition with an embedded system. In detail:

- Sockets and Electrodes: in order to create the clip system, there are three
sockets, one for each dry electrode.

- Stoppers: there are three stoppers different from each other for the place to
be positioned. Looking the top view of Figure 5.5, stopper 1 is placed on the
left opening, stopper 2 in the middle and stopper 3 in the right one. On the
upper surface, there is an opening that allows each stopper to be positioned
in the right position using a screwdriver.

- PCB: improved PCB defined before. It rests on supports inside the case and
is fixed by hooks and battery holder.

- Button: pressing this button, the MCU present on the PCB was resetting.

- Battery: the rechargeable Li-Po battery used is the LP401230 produced by
Cellevia Batteries. Characterized by a rated voltage of 3.7 V and capacity of
110mAh.

- Battery holder : support for the battery. It is inserted inside some holes of the
MYO case and has also the task to fix the PCB inside the MYO Box.

Battery, button and sockets are connected to the improved PCB with the use of
some wires. The different components, except battery, are shown in Figure 5.8.

Figure 5.8: MYO component.

The lateral hole of stoppers allows the output of the wires soldered on the socket
for the connection with the PCB. Stoppers were formed by three protrusions that
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fit under some supports present in the case. Once they are in the correct position,
the protrusions under the support generate a contrasting force that allows beating
the electrode’s push force on the socket. Furthermore, stopper 3 is composed of an
empty pillar on the upper surface; this one matches with the battery holder pillar.

Figure 5.9: Components inside MYO box.

All the components inside the MYO box are fixed, as shown in Figure 5.9. Fur-
thermore, the electrodes on the bottom surface result protrude; this design is due
to a problem coming out from the first prints. At the beginning, the outing surface
of electrodes was smaller, so when the box was fixed around the muscle of interest,
some electrodes can not generate an optimal contact with the skin. An example is
reported in Figure 5.10 where after sEMG acquisition of Biceps Femoris, a Notch
filter at 50 Hz was applied via MATLAB.

Figure 5.10: Notch filter via software.
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Looking at the PSD, the network interference is evident in the blue signal, so the
decision to augment the electrode’s outing surface was taken to increase the con-
tact area. The problem of contact can be understood because when the muscle
contraction is done, that is visualized even in the blue signal where there is a lot of
noise. The PSDs of signals have different y-axis; this is done because the network
interference component is very high for the blue one.

Regarding the seven MYO boxes and the MYO support, all together, they rep-
resent the armband model. The armband was not printed but was only designed,
and the final model is shown in the figure below. When the armband is closed,
MYO boxes’ position is the CH1 - CH7 positions defined for the 3DC model in
section 5.1.

Figure 5.11: Myo model: rigid and flexible components.

Considering the possibility, for the moment, to use only one PCB, a single ac-
quisition channel was tested. As shown in Figure 5.12, two side slots of 2 mm have
been added to the model to fix it around the interested muscle. Inside that, there
is the possibility to pass an elastic band.

Figure 5.12: Myo box used for sEMG acquisition.
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Chapter 6

MYO Box Acquisition

The final MYO box model, described in the previous chapter, was tested by acquir-
ing other sEMG signals. With the aim to develop an electromyographic armband
for gesture recognition, the last tests were done to evaluate PCB and channel ac-
quisition box together. In this section, some sEMG signals were acquired using the
improved PCB with all the MYO box components. As said before, to evaluate the
quality of the sEMG signal, the SNRdB of all muscle contractions was calculated
considering the minimum value of acceptable quality equal to 10 dB. In this chap-
ter, the acquisition was made in different configurations.
The first division concerns the limbs used:

• Upper limbs: movement performed were wrist extension and forearm flexion.

• Lower limbs: movement performed were leg extension and leg flexion.

Except for wrist extension, for all the other movements the contractions were stan-
dardize using different weights. For wrist extension were not use some weights but
the Range Of Motion (ROM) was considered, as in section 4.3.1. Furthermore,
for doing the same contraction, a point was fixed to a defined height. When the
muscle was contracted, the extremity of the limb will reach the point in order to
standardize the last one during the acquisitions.
The weights used are: 0 kg, 1 kg, 2 kg and 4 kg. Standardizing the acquisition
with some weights, the idea is to see an increment of muscle contraction due to an
increase of weight, looking at an augment of SNRdB. For each movement with a
different weight, 10 contractions of 10 seconds were done, separated each one of 30
seconds of resting phase. When the ten contractions were done, there is a resting
phase of 2 minutes before the new weights acquisition. That was done to reduce
muscle fatigue. Furthermore, 10 seconds of idle state was also acquired after every
change of weights. To reduce the effect of muscle fatigue, the movements with the
different weights are carried out in descending order, starting from 4kg and ending
with 0kg.
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For the evaluation of performance, the acquisition was made with two types of
electrodes:

• Wet electrode, Mini adhesive disposable electrodes from COVIDIEN. They
are characterized by a diameter equal to 24 mm, so to apply these to the MYO
box, they were cut.

• Dry electrode, Non-gelled reusable Ag/AgCl by BITalino.

The acquisition with wet and dry allow comparing the calculated SNRdB.
The acquisitions were made with the improved PCB and the data was not taken
with the NI DAQ like before. The sEMG signal is directly transmitted from the
PCB to the PC using the Bluetooth transmission of MCU. A Graphical User In-
terface (GUI) developed by the research group was used to connect the board with
the computer. At the beginning, the ADC resolution of MCU was set to 14 bit
and the sampling frequency was equal to 1000 Hz. With this configuration, there
was a problem in Bluetooth packet transmission. Plotting ten seconds of sEMG
acquisition data on GUI corresponded to thirty real seconds ones, so this is a prob-
lem for acquisition in real-time. Considering the sEMG signal band, the sampling
frequency was reduced to 800 Hz (Nyquist theorem was respected considering the
most information of sEMG signals is between 50-150 Hz) and the ADC resolution
of MCU was set to 8 bit. Doing these changes, sEMG acquisition and transmission
data were in real-time; in detail, the resulting time is equal to 25 ms for 20 bytes.
Furthermore, the GUI permits to save the data in ".txt" format. These are im-
ported and analyzed with some MATLAB scripts. The movements defined before
was done with two different configurations of improved PCB:

• PCB without DRL circuit onboard;

• PCB with DRL circuit onboard.

The testing of PCB with and without the DRL circuit was done to increase the data
for the analysis of the improvements introduced by DRL circuit implementation.
Moreover, even if the project’s final goal is to develop an armband evaluating the
muscle activation of the forearm, sEMG signals of different muscles were acquired
to test PCB and channel acquisition on different muscles and movements.

70



MYO Box Acquisition

6.1 Upper Limbs
The upper limb can be separated into some parts. In particular, shoulder, arm,
elbow, forearm, wrist, hand, and fingers compose it. The upper limb’s parts can
be moved all together or separately, depending on the movement that it wants to
perform. In this case, two different movements are considered that include some
muscle contractions. The MYO boxes were positioned on the top of the muscle
interested for the execution of movements. In detail:

- Extensor carpi radialis, one of the most significant muscle used for doing
wrist extension.

- Biceps brachii, muscle used for doing forearm flexion.

The muscles of the upper limbs are smaller and shorter than the lower limbs ones.
They are less firmly attached to trunk so, they are characterized by high mobility.
The sEMG signal acquisitions were made for the left arm. In Figure 6.1, an example
of the application of MYO box was reported. In particular, the biceps brachii
contraction with a weight of 4kg is shown.

Figure 6.1: Upper Limb: biceps brachii contraction with a weight of 4kg.

6.1.1 Wrist Extension
As said before, the Range Of Motion (ROM) was considered to standardize the
wrist extension. For the idle state, the forearm is placed on a table, while the wrist
extension was separated in three groups: Minimal (0°-30°), Normal (30°-60°) and
Maximal (60°-90°).
Looking at the Figure 6.2, the expected behavior has been verified. In detail, with
the increment of ROM, there is an increment in terms of muscle activation which is
translated in an augment of SNRdB. The SNRdB augments considering the entire
box and also considering the median value. That is verified for all the configura-
tions, both for wet and dry electrodes both for No DRL and DRL circuit onboard.
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Figure 6.2: SNRdB for extensor carpi radialis.

The boxplots contain the ten contractions did for each movement. The distribution
of different contractions is very similar inside every box; that is done because the
movement was standardized in order to have a similar muscle activation between
each contraction. The height of the boxes is small and there aren’t outliers. In
addition to the information extracted from the boxplot, the mean value of ten con-
tractions in different configurations has been calculated and the results are reported
in Table 6.1. Making a comparison between the wet and dry electrodes, the SNRdB
values for wet ones are similar to the dry ones. We expected to have a higher
value for wet electrodes, but sometimes dry ones seem to be greater. That may be
due to a decrease in the adhesive effect of wet electrodes and, even if the muscle
contraction is standardized, the effective muscle activation is not exactly the same
considering the different contractions. Comparing the presence or not of the DRL
circuit onboard, the highest SNRdB was obtained with the PCB containing the DRL
circuit both for wet and dry electrodes. Both for the two types of electrodes, only
for minimal intensity without DRL on board the SNRdB is smaller than 10 dB.

Table 6.1: SNRdB for extensor carpi radialis. The values are expressed in dB.

Wet electrodes Dry electrodes
Movement Intensity No DRL DRL No DRL DRL

Wrist extension

minimal 8.22 13.46 3.06 10.74
normal 12.42 20.38 12.51 21.85

maximal 18.17 25.28 19.18 27.61
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For all the other contractions, this value is higher than 10 dB, so the sEMG signal,
acquired with different configurations, is good regarding the minimum value for
evaluating sEMG signal quality. Considering the SNRdB values for different move-
ments, for wet electrodes, there is an average increment equal to ~6.8 dB, while for
dry ones is equal to ~8.5 dB.
The effect of the DRL circuit onboard has been defined in terms of SNRdB incre-
ment. Also, an analysis in terms of Power Spectral Density (PSD) was done. Con-
sidering the disadvantages introduced by the dry electrode and the first comparison
between wet and dry ones in Figure 4.7, we aspect to have a significant component
related to network interference and its harmonics. Looking at Figure 6.2, calculat-
ing the PSD of the signals, the noise component at 50 Hz and his harmonics aren’t
present. Before, it was used the NI DAQ to acquire and transmit data to a PC
while now the data was transmitted to a PC using the Bluetooth antenna of MCU
present on the PCB. The significant network interference is probably due to the
data acquisition system and, before, the NI DAQ system introduced it.

Figure 6.3: PSD for wrist extension.

Both for wet and dry electrodes, with the implementation of available DRL circuit
onboard, an increment of PSD is verified. Considering the area under the curve,
with the augmenting of muscle activation for doing different movements, there is
an increment of PSD for all configurations. The area under the curve in the Power
Spectral Density evaluation represents the signal’s power, so there is a higher power
with a higher curve. Making a comparison between the presence or not of the DRL
circuit on PCB, there is an increment of the curve both for wet and dry electrodes
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due to the presence of the DRL circuit. Making a comparison between wet and
dry electrodes, the wet ones seem to have slightly greater PSD values. The DRL
circuit application permits to have an increment both in terms of SNRdB both in
terms of PSD.

6.1.2 Forearm flexion
The use of four different weights (0kg, 1kg, 2kg and 4kg) was applied to standardize
the forearm flexion. For the idle state, the forearm is placed on a table, while for
the execution of the movement, an isometric concentric contraction is performed.
As shown in Figure 6.1, the same hand height was achieved with each weight in
order to standardize the angle between the segments.
Considering all the acquisitions making in different configurations, the results ob-
tained in terms of SNRdB are reported in Figure 6.4. Looking at the boxplot,
regarding all the configurations system, there is an increment of the SNRdB. This
incrementation is due to the augment of the weights with consequent increase in
terms of muscle activation. The values present inside each box were the ten muscle
contractions for each weight.

Figure 6.4: SNRdB for biceps brachii.

Looking at the boxes’ heights representing the distribution of SNRdB, the data seem
to be characterized by low variability. There is only one outlier in a contraction
with a weight of 2 kg, using the configuration system characterized by the dry elec-
trodes and DRL circuit on PCB. This outlier is due to a small distribution of muscle
contraction during the movement performed. In particular, the 25th Percentile is
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equal to 23.85 dB, the 75th Percentile is equal to 25.44 dB, so the minimum value
acceptable to not fix an outlier is 21.47 dB. The resulting outliers value is equal
to 21.41 dB, so it is very close to the lower limit. It results an outlier due to the
calculation of boxplot, but at the same time, the value is good in terms of SNRdB
because it is greater than the minimum value of acceptable sEMG signal quality.
Furthermore, there is only one SNRdB lower than 10 dB for a muscle contraction
with 0 kg, using dry electrodes and PCB without DRL. In this case, the SNRdB is
equal to 9.54 dB.
With the increase of muscular effort, the SNRdB augment also considering the
median value. Comparing the DRL circuit’s evaluation, the highest SNRdB were
obtained using the PCB containing the DRL circuit, both for wet and dry elec-
trodes.
Besides, the mediated SNRdB values on all configurations were calculated and re-
ported in Table 6.2. Also this time, comparing wet and dry electrodes, the SNRdB
value are similar; sometimes dry ones are higher than wet ones. The behavior is
respected; with the increase of weight, the SNRdB increase.

Table 6.2: SNRdB for brachial bicep. The values are expressed in dB.

Wet electrodes Dry electrodes
Movement Weight No DRL DRL No DRL DRL

Forearm flexion

0 kg 12.98 13.73 12.89 15.08
1 kg 16.26 21.17 19.73 21.70
2 kg 18.16 25.38 22.05 24.52
4 kg 20.12 27.41 23.95 26.42

For the DRL circuit evaluation, making a comparison between the PCB with and
without DRL, both for wet and dry electrodes, the highest values were obtained for
the PCB containing the DRL onboard. The average increment for wet electrode is
equal to ~5.04 dB while for dry electrode is ~2.28 dB. Considering the acceptable
value for good sEMG signal quality, the SNRdB calculated are characterized by high
values.
Considering the contraction without weights, the average SNRdB is higher than 10
dB for all the configurations. Augmenting the weights, as expected, the parameter
increase. With the maximum weights of 4 kg, SNRdB higher than 20 dB was
obtained for all the configurations, so good quality for muscle activation detection.

6.2 Lower Limbs
The lower limb can be separated into hip, leg, knee, leg, ankle, foot and toes.
Also this time, the different parts can be moved together or separately; generally,
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the upper limbs’ movements are finer than the lower ones. Two movements are
considered for the test and the muscles surrounded by MYO box are:

- Vastus lateralis, one of the most significant muscle used for doing leg exten-
sion.

- Biceps femoris, muscle used for doing leg flexion.

The muscles of the lower limbs are larger and longer than the upper limbs ones.
They are more firmly attached to the trunk so, they are characterized by low
mobility. The sEMG signal acquisitions were made for the right leg. In particular,
the biceps femoris contraction with a weight of 4kg is shown in Figure 6.5.

Figure 6.5: Upper Limb: biceps femoris contraction with a weight of 4kg.

6.2.1 Leg extension
The use of four different weights (0kg, 1kg, 2kg and 4kg) was applied to standardize
the leg extension. The idle state is represented by the person sitting on a physio-
therapy bed with the legs dangling. In addition to weights, to standardize muscle
contraction during leg extension, the foot’s dorsum reached the same height in or-
der to don’t hyperextend the leg with a lower weight.
For all the contraction the SNRdB was calculated and the values obtained are shown
in Figure 6.6. Looking the boxplots, the behavior is respected. Inside each box
there are ten contractions and with the increment of weights there is an increment
of SNRdB. The increment is less evident than the results obtained for upper limbs,
that can be due to the structure of lower limbs muscle.
Considering all the configurations, the median values increase with the augmenting
of muscle activation and all the boxes are characterized by small height. There are
four outliers due to the small distribution of SNRdB values. The worst-case there
is considering the weight of 1 kg with the wet electrode and DRL circuit. The 25th
Percentile is equal to 17.26 dB, the 75th Percentile is equal to 18.21 dB, so the
minimum value to don’t have an outlier is equal to 15.84 dB. The anomalous value
is equal to 15.47 dB, so the difference between the limit and the value is small in
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Figure 6.6: SNRdB for vastus lateralis.

the worst case. The generation of this anomalous value is due to the calculation of
boxplot, but considering SNRdB, the value is higher than the fixed limit of 10 dB.
Looking at the distribution, the muscle activation of vastus lateralis for doing leg
extension is characterized by SNRdB values higher than 10 dB for all the contrac-
tions. Comparing the presence or not of DRL circuit on PCB, the SNRdB seems to
be higher for the DRL one respect the other one.
The average SNRdB are grouped in Table 6.3. Making a comparison between elec-
trodes, the wet ones were characterized by higher values than dry ones for the PCB
with DRL circuit on board while the wet ones combined with PCB without the
DRL have lower SNRdB than dry ones.

Table 6.3: SNRdB for vastus lateralis. The values are expressed in dB.

Wet electrodes Dry electrodes
Movement Weight No DRL DRL No DRL DRL

Leg extension

0 kg 13.86 16.45 14.17 16.12
1 kg 15.02 17.56 15.64 17.29
2 kg 15.99 19.85 18.18 18.90
4 kg 16.59 21.04 19.87 20.01

Considering the electrodes separately, the DRL circuit permits to have higher values
than PCB without DRL both for wet and dry electrodes. The average increment

77



MYO Box Acquisition

due to the DRL circuit is equal to ~3.36 dB for wet electrodes and to ~1.12 dB for
dry electrodes. Regarding the different weights, the SNRdB are characterized by
higher values than 10 dB, so the quality of sEMG signal acquired with improved
PCB and MYO box is good to acquire contractions of vastus lateralis.

6.2.2 Leg flexion
To standardize leg flexion four different weights (0kg, 1kg, 2kg and 4kg) were used.
As shown in Figure 6.5, in addition to weights for standardize muscle activation
during leg flexion, the heel reached the same height during all the movements’
execution. The person in the standing position represents the idle state.
Looking at Figure 6.7, all the SNRdB are reported and inside a box, there are the
ten contractions performed for each configuration. Also considering leg flexion, the
behavior expected was respected. With the augment of weight, it is possible to see
an augment of SNRdB calculated less evident than upper limbs.

Figure 6.7: SNRdB for biceps femoris.

As shown in Figure 6.7, the values seem to be higher than ~20 dB even in the
worst case of 0 kg, which means with this movement, the sEMG acquisition is
characterized by good signal quality greater than 10 dB. The median value increases
with the augment of weights and the boxes result in a small height. A small
distribution characterizes the values calculated for each contraction, the movement
result to be standardized. Considering all boxes, there are only three outliers. The
worst case is for a weight of 0kg with wet electrodes and PCB without DRL circuit
configuration. The SNRdB dB values are equal to 18.90 dB for 25th Percentile,
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19.77 dB for 75th Percentile and the upper limit to define an outlier is equal to
21.08 dB. The anomalous value is equal to 21.36 dB. The outlier results to be an
anomalous value due to the boxplot’s calculation, but this is because the movement
is well standardized and the distribution is small. The difference of its SNRdB value
than the limits is small and higher than the signal quality limit.
In Table 6.4, the average SNRdB mediated between the ten contractions is reported.
Dry electrodes seem to have a higher value than wet ones. Probably that is due
to a better fixation of MYO box with the elastic band than the fixation of the
wet ones where the MYO box is attached to the skin only thanks to the adhesive
part of the wet electrode. The SNRdB is very high; in the worst situation with a
weight of 0 kg and without DRL circuit on PCB, the value is higher than 19 dB;
in all the other situation, it is higher than 20 dB. Only for wet and dry electrodes,
the implementation of DRL circuit permits an increment for all the weights. In
particular, there is an average increment equal to ~2.87 dB for wet ones and equal
to ~3.41 dB for dry ones.

Table 6.4: SNRdB for bicep femoris. The values are expressed in dB.

Wet electrodes Dry electrodes
Movement Weight No DRL DRL No DRL DRL

Leg flexion

0 kg 19.46 21.30 19.80 24.10
1 kg 20.12 23.30 21.56 24.71
2 kg 20.07 23.97 22.45 26.12
4 kg 21.85 24.39 24.59 27.09

Considering all the results obtained with upper and lower limbs, the DRL circuit
application on PCB permits to have an increment in terms of Signal-to-Noise Ratio
(dB) and, in the frequency domain, an increment of Power Spectral Density. These
results were verified for all the acquisitions standardize with weights or ROM,
both for wet and dry electrodes. For making these acquisitions, two MYO boxes
containing the PCB with DRL and the other containing the PCB without DRL
circuit were used. 6 dry electrodes (three for each box) and 24 wet electrodes
(three for every different movement) were used to acquire all the movements. The
advantage of dry ones is the reusability; so, it is possible to use a single configuration
to acquire signals from different muscles. In contrast, with wet ones, it is necessary
to change electrodes when changing the muscle acquired. The use of dry electrodes
is fundamental in order to develop an electromyographic armband for doing gesture
recognition and with these results, the signal quality seems to be good.
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6.3 Towards an armband
Using the MYO box was done the same acquisition defined in Section 4.2 in order
to simulate the sEMG signal acquired for hand gesture recognition. Considering
the results obtained in Section 6.1 and 6.2, the PCB with DRL circuit on board was
inserted inside the MYO box and dry electrodes were applied. This configuration
represents the acquisition system. As in Section 4.2, the acquisition system was
positioned on the top of the interested muscle. When the sequence of movement
was done, the MYO box was positioned on the top of another muscle. The MYO
box positions are the CH1-CH7 defined in Section 5.1.
In Figure 6.8 are reported the sEMG signals and the ATC signals extracted as
defined in Section 4.2.2; in detail, the blue one represents the sEMG while the
orange one represents the ATC. On the y axis, the MYO box position is specified,
but there isn’t the measuring unit. That is done to overlap the ATC and sEMG
signals, the value is normalized respect the maximum due to different magnitude
orders. Looking at the figure, the ATC signals seems to follow the sEMG trend.

Figure 6.8: Gesture recognition.

Considering all the movements performed and the MYO box’s different positions,
the SNRdB was calculated and the results are reported in Table 6.5. As before, the
small values represent a small activation of the muscle acquired for doing a specific
movement but comparing the results obtained with the previous acquisition system
and reported in Table 4.3, this time all the SNRdB are higher than 0 dB. Having
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only positive values means the system can detect also a small muscle activation
with respect to the noise signal.
For example, taking "Wrist Extension", the highest value are obtained for "CH1"
and "CH7" and that are greater than ~25 dB. "CH1" and "CH7" represent the
muscles mostly activated for doing wrist extension.

Table 6.5: SNRdB of forearm muscles. The values are expressed in dB.

Channel Extension Flexion Radial Ulnar Grasp Grip Open
Ch1 25.94 4.04 18.13 16.83 8.29 19.34 19.75
Ch2 12.92 5.54 11.92 2.52 13.19 8.30 6.28
Ch3 7.45 16.19 8.83 1.32 4.89 2.61 0.41
Ch4 6.51 21.02 23.11 10.01 12.51 10.57 8.28
Ch5 5.84 10.08 6.04 20.10 9.28 9.50 12.92
Ch6 14.37 13.41 8.10 16.18 18.67 9.34 10.02
Ch7 25.89 18.52 16.55 25.01 12.36 16.28 21.07

An average of SNRdB considering the different movements performed and acquired
with the seven MYO boxes are reported below. Doing this average the SNRdB will
decrease because it was considered all the muscles for each movement but for doing
a specific movement, certain muscles are activated while others not.
The average SNRdB obtained is higher than 10 dB. Even if for the calculation of
this value muscles activated and not are considered, the parameter gives good infor-
mation in terms of signal quality for each movement performed. That is important
because the signal’s quality is fundamental for calculating ATC signals and, sub-
sequently, for doing gesture recognition. Considering the different movements, the
SNRdB values were equal to:

Movement SNRdB

Wrist extenson 14.13 dB

Wrist flexion 12.69 dB

Wrist radial deviation 13.24 dB

Wrist ulnar deviation 13.14 dB

Hand grasp 11.31 dB

Pinch grip 10.85 dB

Open hand 11.25 dB
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Finally, the average SNRdB separated for the acquisition channel was calculated
and reported below. These values give the information of muscle activation during
the execution of the 7 movements performed. For example, CH3, which represents
the extensor carpi ulnaris, has the lowest value that means it is the muscle less ac-
tivated for doing the sequence of movement. Otherwise, CH7, which represents the
brachioradialis, has the highest value and it represents the most activated muscle.
Considering the different channel position, the SNRdB values were equal to:

Channel SNRdB

CH1 16.05 dB

CH2 8.67 dB

CH3 5.96 dB

CH4 13.14 dB

CH5 10.54 dB

CH6 12.87 dB

CH7 19.38 dB
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Chapter 7

Conclusion and Future
works

This thesis proposed an analysis of sEMG signal quality in terms of SNRdB. In
order to develop an electromyographic armband for hand gesture recognition, to
acquire the signal dry electrodes were used and some PCBs developed by the re-
search group. The final goal is to develop an embedded low-power system based on
the Average Threshold Crossing (ATC) technique.

In the first part, different upper limbs movements were performed and acquired
with a Data Acquisition System (DAQ) to test three different dry electrodes: Biosig-
nalPlux Conductive Lycra by MindtecStore, Non-gelled Reusable Ag / AgCl with
velcro by BITalino and Non-gelled Reusable Ag / AgCl by BITalino. The third one
was chosen and used for all the next acquisitions because it is the best trade-off
between SNRdB and costs.

Once choose the electrodes, in order to increase the sEMG signal quality it
was tested the application of Driven-Right-Leg (DRL) circuit available on board.
Different movements of upper limbs were performed and with the PCB containing
DRL, the highest value of SNR was obtained. The minimum value to define a
sEMG signal of good quality was set to 10 dB, the average SNRdB was equal to
~8.13 dB for PCB without DRL and ~11.71 dB for PCB containing DRL. Further-
more, considering the frequency domain, thanks to the application of DRL, the
Power Spectral Density (PSD) of the signals improves.

Subsequently, two 3D models of an armband for hand gesture recognition were
designed: 3D model and MYO model, each characterized by 7 acquisition channels.
An improved PCB characterized by the MicroController Unit (MCU) presence on-
board with all the other components necessary to insert inside the box represented

83



Conclusion and Future works

the starting point to develop the wearable device model. One package of the MYO
model was effectively prototyped to perform the tests.

In the last part of the thesis, the printed acquisition channels and the improved
PCB were tested in different configurations for the upper and lower limbs. In order
to increase the SNRdB, the Bluetooth antenna present on MCU is used to transmit
data and reduce noise introduced by DAQ system. Considering all the acquisition,
the SNRdB obtained for PCB containing DRL is higher than PCB without DRL. In
detail, the first one is equal to ~21.15 dB while the second one is equal to ~16.98 dB.
The results obtained with dry electrodes and PCB containing DRL demonstrate
a good quality in terms of SNRdB; so, with this configuration is possible to make
sEMG signal acquisition. Subsequently, this can be used to extract ATC signals
and doing gesture recognition.

There are several possible developments concerning this thesis work. From the
hardware point of view, it can be possible to print the flexible part of the MYO
model and the seven acquisition boxes in order to test the designed model. That
is necessary to have an user-friendly armband and easy to place on the forearm. It
is also possible to improve some parts of the PCB. For example, considering the
socket to connect the electrode. At the moment, the sockets are connected to the
PCB with some wires; an improvement can be to fix the sockets directly on board
to decrease the possibility of having movement artifacts during dinamic acquisitions.

Once the 3D model is tested, next step could be to acquire the sEMG signals
from the different forearm muscles in order to generate a dataset for hand gesture
recognition. In a first analysis, the sEMG signal can be acquired with the MYO
model and the extraction of the ATC signal can be made via software for training
and testing the machine learning algorithm. Once tested offline, it can be possible
to directly charge the classifier on the MCU present on the PCB and evaluate the
classification in real-time directly onboard.

84



Bibliography

[1] Shane W. Cummings and Christopher Tangen. Human muscle system. url:
https://www.britannica.com/science/human-muscle-system.

[2] url: https://www.teachpe.com/anatomy-physiology/types-of-muscle.
[3] Biga et al. 10.2 Skeletal Muscle. url: https://open.oregonstate.educati

on/aandp/chapter/10-2-skeletal-muscle/.
[4] Neuro Doc Gnanapavan. Mar. 2015. url: https://multiple-sclerosis-re

search.org/2015/03/mitochondria-again-but-this-time-in-muscle/.
[5] Cindy L. Stanfield. Fisiologia del muscolo. EdiSES s.r.l. - Napoli, 2012. Chap. 12,

pp. 322–359. isbn: 9788879597142.
[6] url: https://www.pinterest.it/pin/732538695620774584/.
[7] iandanforth. Motor Unit. Feb. 2019. url: https://github.com/iandanfor

th/pymuscle.
[8] url: https://www.teachpe.com/anatomy-physiology/shapes-of-skelet

al-muscle.
[9] url: https://courses.lumenlearning.com/boundless- ap/chapter/

overview-of-the-muscular-system/.
[10] Anterior Forearm. June 2016. url: https://basicmedicalkey.com/anteri

or-forearm/.
[11] Forearm Muscles: Origin, Insertion, Nerve Supply Action. url: https://

www . howtorelief . com / forearm - muscles - origin - insertion - nerve -
supply-action/.

[12] Posterior Forearm. June 2016. url: https://basicmedicalkey.com/poste
rior-forearm/.

[13] Action potential velocity. url: https://www.khanacademy.org/test- p
rep/mcat/organ- systems/neuron- membrane- potentials/a/action-
potential-velocity.

[14] Luca Mesin. BIOELECTRIC SIGNALS. Luca Mesin, 2017. Chap. 8, pp. 245–
253. isbn: 9788892332485.

85

https://www.britannica.com/science/human-muscle-system
https://www.teachpe.com/anatomy-physiology/types-of-muscle
https://open.oregonstate.education/aandp/chapter/10-2-skeletal-muscle/
https://open.oregonstate.education/aandp/chapter/10-2-skeletal-muscle/
https://multiple-sclerosis-research.org/2015/03/mitochondria-again-but-this-time-in-muscle/
https://multiple-sclerosis-research.org/2015/03/mitochondria-again-but-this-time-in-muscle/
https://www.pinterest.it/pin/732538695620774584/
https://github.com/iandanforth/pymuscle
https://github.com/iandanforth/pymuscle
https://www.teachpe.com/anatomy-physiology/shapes-of-skeletal-muscle
https://www.teachpe.com/anatomy-physiology/shapes-of-skeletal-muscle
https://courses.lumenlearning.com/boundless-ap/chapter/overview-of-the-muscular-system/
https://courses.lumenlearning.com/boundless-ap/chapter/overview-of-the-muscular-system/
https://basicmedicalkey.com/anterior-forearm/
https://basicmedicalkey.com/anterior-forearm/
https://www.howtorelief.com/forearm-muscles-origin-insertion-nerve-supply-action/
https://www.howtorelief.com/forearm-muscles-origin-insertion-nerve-supply-action/
https://www.howtorelief.com/forearm-muscles-origin-insertion-nerve-supply-action/
https://basicmedicalkey.com/posterior-forearm/
https://basicmedicalkey.com/posterior-forearm/
https://www.khanacademy.org/test-prep/mcat/organ-systems/neuron-membrane-potentials/a/action-potential-velocity
https://www.khanacademy.org/test-prep/mcat/organ-systems/neuron-membrane-potentials/a/action-potential-velocity
https://www.khanacademy.org/test-prep/mcat/organ-systems/neuron-membrane-potentials/a/action-potential-velocity


BIBLIOGRAPHY

[15] Scott Freeman; Healy Hamilton. 2nd ed. 2005.
[16] Cindy L. Stanfield. Cellule nervose e segnali elettrici. EdiSES s.r.l. - Napoli,

2012. Chap. 7, pp. 166–195. isbn: 9788879597142.
[17] Dario Farina Roberto Merletti. “Analysis of intramuscular electromyogram

signals”. In: The Royal Society (Nov. 2008), pp. 357–368. doi: 10.1098/
rsta.2008.0235.

[18] Andrew D. Vigotsky et al. “Interpreting Signal Amplitudes in Surface Elec-
tromyography Studies in Sport and Rehabilitation Sciences”. In: Frontiers in
Physiology (Jan. 2018). doi: 10.3389/fphys.2017.00985.

[19] Muhammad Zahak Jamal. Signal Acquisition Using Surface EMG and Circuit
Design Considerations for Robotic Prosthesis. Ganesh R. Naik, Oct. 2012. doi:
http://dx.doi.org/10.5772/52463.

[20] Alexander Adam et al. Carlo J. De Luca. “Decomposition of Surface EMG
Signals”. In: The American Physiological Society (May 2006), pp. 1646–1657.
doi: 10.1152/jn.00009.2006.

[21] Runer Augusto Marson César Ferreira Amorim. Application of Surface Elec-
tromyography in the Dynamics of Human Movement. Ganesh R. Naik, Oct.
2012. Chap. 16. doi: http://dx.doi.org/10.5772/52463.

[22] Carlo J. De Luca. “Surface Electromyography: Detection and Recording”. In:
DelSys Incorporated (2002).

[23] Dr. Scott Day. “Important Factors in Surface EMG Measurement”. In: Bortec
Biomedical Ltd ().

[24] S. Tam et al. M. Roudjane. “Detection of Neuromuscular Activity Using New
Non-Invasive and Flexible Multimaterial Fiber Dry-Electrodes”. In: IEEE
(2019). doi: http://dx.doi.org/10.1109/JSEN.2019.2933751.

[25] Mini Adhesive Electrodes. url: https://shop.neurospec.com/mini-adhes
ive-electrodes-covidien.

[26] Non-gelled Reusable Ag/AgCl. url: https://plux.info/electrodes/60-
non-gelled-reusable-agagcl-electrodes.html.

[27] Peyman Fayyvaz Shahandashti et al. “Highly conformable stretchable dry
electrodes based on inexpensive flex substrate for long-term biopotential (EMG
/ECG) monitoring”. In: Sensors and Actuators A: Physical (June 2019). doi:
https://doi.org/10.1016/j.sna.2019.06.041.

[28] Christopher Spiewak et al. “A Comprehensive Study on EMG Feature Ex-
traction and Classifiers”. In: Lupine Publishers (Feb. 2018). doi: 10.32474/
OAJBEB.2018.01.000104.

86

https://doi.org/10.1098/rsta.2008.0235
https://doi.org/10.1098/rsta.2008.0235
https://doi.org/10.3389/fphys.2017.00985
https://doi.org/http://dx.doi.org/10.5772/52463
https://doi.org/10.1152/jn.00009.2006
https://doi.org/http://dx.doi.org/10.5772/52463
https://doi.org/http://dx.doi.org/10.1109/JSEN.2019.2933751
https://shop.neurospec.com/mini-adhesive-electrodes-covidien
https://shop.neurospec.com/mini-adhesive-electrodes-covidien
https://plux.info/electrodes/60-non-gelled-reusable-agagcl-electrodes.html
https://plux.info/electrodes/60-non-gelled-reusable-agagcl-electrodes.html
https://doi.org/https://doi.org/10.1016/j.sna.2019.06.041
https://doi.org/10.32474/OAJBEB.2018.01.000104
https://doi.org/10.32474/OAJBEB.2018.01.000104


BIBLIOGRAPHY

[29] B. Sereni. “Design and development of a low-power wearable device for the ac-
quisition of surface electromyography (sEMG) signals with average threshold
crossing (ATC)”. 2016.

[30] F. Rossi. “Low Power System for Event-Driven Control of Functional Electri-
cal Stimulation”. 2017.

[31] A. Mongardi. “A Low-Power Embedded System for Real-Time EMG based
Event-Driven Gesture Recognition”. 2019.

[32] What is Machine Learning: Supervised, Unsupervised, Semi-Supervised and
Reinforcement learning methods. June 2020. url: https://towardsdatasci
ence.com/what-is-machine-learning-a-short-note-on-supervised-
unsupervised-semi-supervised-and-aed1573ae9bb.

[33] Rudolph Russel. Machine Learning. 2018. Chap. 1.
[34] Getting started with Machine Learning. May 2020. url: https://www.geeks

forgeeks.org/getting-started-machine-learning/?ref=lbp.
[35] Liu Xumin et al. Shi Na. “Research on k-means Clustering Algorithm. An

Improved k-means Clustering Algorithm”. In: IEEE Computer Society, Third
International Symposium on Intelligent Information Technology and Security
Informatics (2010). doi: 10.1109/IITSI.2010.74.

[36] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

[37] Ayon Dey. “Machine Learning Algorithms: A Review”. In: International Jour-
nal of Computer Science and Information Technologies (2016).

[38] Decision Tree Classification Algorithm. url: https://www.javatpoint.com/
machine-learning-decision-tree-classification-algorithm.

[39] William S Noble. “What is a support vector machine?” In: Nature Publishing
Group (Dec. 2006).

[40] Maximum margin classification with support vector machines. url: https://
subscription.packtpub.com/book/big_data_and_business_intelligen
ce/9781783555130/3/ch03lvl1sec21/maximum-margin-classification-
with-support-vector-machines.

[41] Support Vector Machines with the mlr package. Oct. 2019. url: https://
www.r-bloggers.com/2019/10/support-vector-machines-with-the-
mlr-package/.

[42] Dec. 2014. url: https://themasterpiece1.wordpress.com/2014/12/
01/666-and-the-thinking-computerto-be-updated-proof-will-be-
added/.

87

https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb
https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb
https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb
https://www.geeksforgeeks.org/getting-started-machine-learning/?ref=lbp
https://www.geeksforgeeks.org/getting-started-machine-learning/?ref=lbp
https://doi.org/10.1109/IITSI.2010.74
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781783555130/3/ch03lvl1sec21/maximum-margin-classification-with-support-vector-machines
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781783555130/3/ch03lvl1sec21/maximum-margin-classification-with-support-vector-machines
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781783555130/3/ch03lvl1sec21/maximum-margin-classification-with-support-vector-machines
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781783555130/3/ch03lvl1sec21/maximum-margin-classification-with-support-vector-machines
https://www.r-bloggers.com/2019/10/support-vector-machines-with-the-mlr-package/
https://www.r-bloggers.com/2019/10/support-vector-machines-with-the-mlr-package/
https://www.r-bloggers.com/2019/10/support-vector-machines-with-the-mlr-package/
https://themasterpiece1.wordpress.com/2014/12/01/666-and-the-thinking-computerto-be-updated-proof-will-be-added/
https://themasterpiece1.wordpress.com/2014/12/01/666-and-the-thinking-computerto-be-updated-proof-will-be-added/
https://themasterpiece1.wordpress.com/2014/12/01/666-and-the-thinking-computerto-be-updated-proof-will-be-added/


BIBLIOGRAPHY

[43] Marco Crepaldi et al. “A quasi-digital radio system for muscle force trans-
mission based on event-driven IR-UWB”. In: IEEE Biomedical Circuits and
Systems Conference (BioCAS) (2012), pp. 116–119.

[44] Paolo Motto Ros et al. “A wireless address-event representation system for
ATC-based multi-channel force wireless transmission”. In: 5th IEEE Internati-
nal Workshop on Advances in Sensors and Iterfaces IWASI (2013), pp. 51–
56.

[45] Danilo Demarchi et al. “Low-Power long term sEMG monitoring modular
system”. 2019.

[46] D. A. F. Guzman et al. “Very low power event-based suface EMG acqui-
sition system with off-the-shelf components”. In: IEEE Biomedical Circuits
and Systems Conference (BioCAS) (2017), pp. 1–4. doi: 10.1109/BIOCAS.
2017.8325152.

[47] Stefano Sapienza et al. “On-Line Event-Driven Hand Gesture Recognition
Based on Surface Electromyographic Signals”. In: IEEE International Sym-
posium on Circuits and Systems (ISCAS) (May 2018), pp. 1–5. doi: 10.1109/
ICECS46596.2019.8964944.

[48] Vincenzo Barresi. “Machine Learning Approaches for Embedded Real-Time
Gesture Recognition”. July 2020.

[49] Matteo Tolomei. “Towards an Electromyographic Armband: an Embedded
Machine Learning Algorithms Comparison”. Dec. 2020.

[50] Rafiqul Zaman Khan and Noor Adnan Ibraheem. “Hand Gesture Recogni-
tion: a literature review”. In: International journal of Artificial Intelligence
Applications (July 2012). doi: 10.5121/ijaia.2012.3412.

[51] Munir Oudah et al. “Hand Gesture Recognition Based on Computer Vision:
A review of Techniques”. In: Journal of Imaging (July 2020). doi: 10.3390/
jimaging6080073.

[52] Peide Zhu et al. “Control with Gestures: A Hand Gesture Recognition System
Using Off-the-Shelf Smartwatch”. In: IEEE 2018 4th International Conference
on Big Data Computing and Communications (2018). doi: 10.1109/BIGCOM.
2018.00018.

[53] Khanh Nguyen Trong et al. “Recognizing Hand Gestures for Controlling Home
Appliances with Mobile Sensors”. In: IEEE Conference Paper (Sept. 2019).
doi: 10.1109/KSE.2019.8919419.

[54] Biao MA et al. “A Robot Control System Based on Gesture Recognition Using
Kinect”. In: Telkomnika (May 2013).

[55] Siddharth S. Rautaray and Anupam Agrawal. “Interaction with Virtual Game
through Hand Gesture Recognition”. In: IEEE (2011).

88

https://doi.org/10.1109/BIOCAS.2017.8325152
https://doi.org/10.1109/BIOCAS.2017.8325152
https://doi.org/10.1109/ICECS46596.2019.8964944
https://doi.org/10.1109/ICECS46596.2019.8964944
https://doi.org/10.5121/ijaia.2012.3412
https://doi.org/10.3390/jimaging6080073
https://doi.org/10.3390/jimaging6080073
https://doi.org/10.1109/BIGCOM.2018.00018
https://doi.org/10.1109/BIGCOM.2018.00018
https://doi.org/10.1109/KSE.2019.8919419


BIBLIOGRAPHY

[56] Ming Jin Cheok et al. “A review of hand gesture and sign language recognition
techniques”. In: Springer-Verlag GmbH Germany (Aug. 2017). doi: 10.1007/
s13042-017-0705-5.

[57] Juan P. Wachs et al. “A Gesture-based Tool for Sterile Broesing of Radiology
Images”. In: Journal of the American Medical Informatics Association (June
2018). doi: 10.1197/jamia.M241.

[58] Mohidul Alam Laskar et al. “Stereo Vision-based Hand Gesture Recognition
under eD Environment”. In: ScienceDirect (2015). doi: 0.1016/j.procs.
2015.08.053.

[59] Nicolò Bargellesi et al. “A Random Forest-based Approach for Hand Ges-
ture Recognition with Wireless Wearable Motion Capture Sensors”. In: IFAC
PapersOnLine (2019). doi: 10.1016/j.ifacol.2019.09.129.

[60] Tushar Chouhan et al. “Smart Glove with Gesture Recognition Ability For
The Hearing And Speech Impaired”. In: IEEE (Sept. 2014). doi: 978- 1-
4799-4097-4/14.

[61] Simone Benatti et al. “A Versatile Embedded Platform for EMG ACquisition
and Gesture Recognition”. In: IEEE (Oct. 2015). doi: 10.1109/TBCAS.2015.
2476555.

[62] Weidong Geng et al. “Gesture recognition by istantaneous surface EMG im-
ages”. In: Nature Scientific Report (Nov. 2016). doi: 10.1038/srep36571.

[63] gForcePro EMG Armband. url: https : / / www . teachpe . com / anatomy -
physiology/types-of-muscle.

[64] Paolo Visconti et al. “Technical Features and Functionalities of Myo Armband:
An overview on Related Literature and Advanced Applications of Myoelec-
tric Armbands Mainly Focused on Arm Prostheses”. In: International journal
smart sensing and intelligent systemst (Feb. 2018). doi: 10.21307/ijssis-
2018-005.

[65] Ulysse Coté-Allard et al. “A Low-Cost, Wireless, 3-D-Printed Custom Arm-
band for sEMG Hand Gesture Recognition”. In: Sensors (June 2019). doi:
10.3390/s19122811.

[66] Ali Moin et al. “A wearable biosensing system with in-sensor adaptive machine
learning for hand gesture recognition”. In: Nature electronics (Oct. 2020). doi:
10.1038/s41928-020-00510-8.

[67] A. Melaku, Dinesh Kumar, and A. Bradley. “Influence of inter-electrode dis-
tance on EMG”. In: vol. 2. Feb. 2001, 1082–1085 vol.2. isbn: 0-7803-7211-5.
doi: 10.1109/IEMBS.2001.1020377.

89

https://doi.org/10.1007/s13042-017-0705-5
https://doi.org/10.1007/s13042-017-0705-5
https://doi.org/10.1197/jamia.M241
https://doi.org/0.1016/j.procs.2015.08.053
https://doi.org/0.1016/j.procs.2015.08.053
https://doi.org/10.1016/j.ifacol.2019.09.129
https://doi.org/978-1-4799-4097-4/14
https://doi.org/978-1-4799-4097-4/14
https://doi.org/10.1109/TBCAS.2015.2476555
https://doi.org/10.1109/TBCAS.2015.2476555
https://doi.org/10.1038/srep36571
https://www.teachpe.com/anatomy-physiology/types-of-muscle
https://www.teachpe.com/anatomy-physiology/types-of-muscle
https://doi.org/10.21307/ijssis-2018-005
https://doi.org/10.21307/ijssis-2018-005
https://doi.org/10.3390/s19122811
https://doi.org/10.1038/s41928-020-00510-8
https://doi.org/10.1109/IEMBS.2001.1020377

	Abstract
	List of Figures
	List of Tables
	Introduction
	Fundamentals of Muscular system
	The Skeletal Muscle 
	Forearm muscles

	ElectroMyoGraphy (EMG)
	Surface ElectroMyoGraphy (sEMG)
	sEMG features extraction

	The Average Threshold Crossing (ATC) technique
	Machine Learning Classification Algorithms
	K-means
	Gaussian Mixture Modelling (GMM)
	Random Forest (RF)
	Support Vector Machine (SVM)
	Naive Bayes (NB)
	Neural Network (NN)


	State of the art
	ATC application in sEMG detection
	Gesture recognition
	EMG Armband for hand gesture recognition
	gForce-Pro EMG Armband by Oymotion
	Myo Armband by Thalmic Lab
	3DC Armband
	Wearable biosensing system for sEMG


	Acquisition System
	Printed Circuit Board (PCB)
	Protection Circuit and Impedance Decoupling
	Differential High Pass Filter
	Instrumentation Amplifier
	Second order multiple feedback low pass active filter
	Adjustable Gain
	Second order Sallen-key low pass active filter
	Driven Right Leg (DRL) circuit
	Voltage Comparator

	Data Acquisition
	Signal-to-Noise Ratio (SNR)
	Different Dry Electrodes


	PCB Evaluation
	PCB without DRL vs PCB with DRL
	Gesture Recognition
	Movement performed
	ATC extraction

	Improved PCB
	EMG signal


	Armband Design
	3DC model
	MYO model

	MYO Box Acquisition
	Upper Limbs
	Wrist Extension
	Forearm flexion

	Lower Limbs
	Leg extension
	Leg flexion

	Towards an armband

	Conclusion and Future works
	Bibliography

