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ABSTRACT

Osteoporosis affects a huge number of people and its prevalence is expected to
increase. The gold standard for its diagnosis, the Bone Mineral Density (BMD)-based
T-score, has not proven accurate enough for its prediction: the need to find new
methods able to improve fracture risk estimation is therefore urgent. In this context,
aiming to improve hip fracture risk detection, Computed Tomography (CT)-based
Finite Element (FE) models have been shown to predict femoral fracture risk more
accurately thanT-score. In the development of CT-based FE analyses, the calibration
of the CT images, fundamental to extract local BMD values related to the Hounsfield
Units (HU) values, is commonly based on the availability of a calibration phantom:
however, it is not always possible to have phantoms available in the clinical practice.
When that happens, phantom-less calibration represents the only viable option. The
aim of this thesis was to implement an alternative phantom-less calibration of CT
images to extract local BMD values from HU in absence of a calibration phantom. CT
images of the proximal femurs for a cohort of 28 post-menopausal women were
examined, aiming to build CT-based 3D patient-specific models for hip fracture risk
estimation. Since the CT images came without the calibration phantom, a phantom-
less calibration procedure selected from the literature was followed to calibrate them
so that local material properties could be assigned to the FE models. Peaks of air, fat
and muscle tissue were extracted from histograms of the HU in a region of interest
for each patient. These peaks were linearly fitted to reference BMD values of the
corresponding tissues in order to extract a patient-specific calibration of the images.
Thus, HU-BMD calibration functions could be identified; subsequently, these
calibration functions were employed to assign material properties to the FE models.
Boundary conditions reproducing sideways fall conditions were eventually applied
and static simulations performed. Tensile and compressive principal strains were
extracted for the models and a Risk Factor (RF) calculated for each mesh element as

the ratio between principal strains and corresponding thresholds. Furthermore, a



Risk Factor Index, (RFI), the highest superficial RF value, and the Femoral Strength
(FS), the load at which fracture was estimated to occur, were extracted for each
patient. The obtained outcomes were comparedwith those obtained from analogous
models where the equivalent local densities were obtained with a literature-based
non-patient-specific calibration. The corresponding element-specific principal strains
and RF values were compared and relative errors computed. As far as principal
strains and RF are concerned, the mean relative error considering the patient-specific
average errors values were between 25 and 26%, while the maximum value among
the average ones for each patient were between 31% and 34%. The fracture risk
indicators (RFI and FS) turned out to be significantly correlated (p<0.05), but a greater
number of patients resulted to be at high fracture risk according to the phantom-less
and patient-specifically calibrated models. Unfortunately, the lack of follow-up
information did not allow the validation of the obtained results, but in the future

further studies will allow the evaluation of the power of the proposed methodology.



CHAPTER 1

INTRODUCTION

1.1 Pathophysiology of Osteoporosis

Osteoporosis, that means “porous bone”, has been defined as a skeletal disorder
characterized by compromised bone strength, predisposing a person to an increased
risk for fracture. It is the most common bone disease in humans, representing a major

public health problem [1].

Figure 1.1: healthy bone (on left) vs osteoporosis bone (right)

Bone is a dynamic tissue that is continuously removed and replaced in order to ensure
adaptation of the skeleton to weight-bearing, repair micro-damages that result from
mechanical stresses and allow for mobilization of calcium from the skeleton in order
to maintain serum calcium homeostasis. Bone remodeling is initiated by the
development and activation of osteoclasts, the bone-resorbing cell, which then release

growth factors capable to activate osteoblasts, the bone-forming cell.

The activities of bone removal and deposition are coupled within each bone
multicellular unit [2]. Some factors, as menopause and advancing age cause an
imbalance between resorption and formation rates, where the resorption becomes

higher than absorption, thereby increasing the risk of fracture due to bone loss.
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Figure 1.2: stages of osteoporosis

Osteoporosis can be classified into two main groups by considering the factors

affecting bone metabolism:

e Primary osteoporosis, that is further classified into Type I, associated to
menopause and oestrogen deficiency, and Type II osteoporosis, which affects
both men and women older than 70 years[3].

e Secondary osteoporosis, that might ensue a number of disorders, such as

endocrine, hematopoietic or renal diseases, and medications.

Due to the cohort included in this thesis, made up of post-menopausal women,

primary osteoporosis will be the main focus of the work.

This pathology affects an enormous number of people, of both sexes and all races, and
its prevalence will increase as the population ages. It is a silent disease until fractures
occur, which causes important secondary health problems and even death. It was
estimated that the number of patients worldwide with osteoporotic hip fractures is
more than 200 million [1]. Fractures and their complications are the relevant clinical
sequelae of osteoporosis. A recent fracture at any major skeletal site, such as vertebrae
(spine), proximal femur (hip), distal forearm (wrist), or shoulder in an adult older than
50 years with or without trauma, should suggest that the diagnosis of osteoporosis
needs further urgent assessment involving diagnosis and treatment. Fractures may

cause chronic pain, disability and death.
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Figure 1.3: On left: Annual comparative incidences of osteoporosis-related fractures, new strokes, heart attacks,
and invasive breast cancer in women in the United States between 2004 and 2006[1]. On right: Subdivision of

osteoporotic fractures

Hip fractures are cracks or breaks in the top of the thigh bone (femur) close to the hip
joint. They are usually caused by a fall or an injury to the side of the hip, but may
occasionally be caused by a health condition. In 1990, the number of hip fracture
worldwide was estimated to be 1.66 million [4], comprising around 1.19 million in
women and 463000 in men. In the UK around 79000 individuals suffer hip fractures
each year, with a cost in 2010 estimated at £3.5 billion projected to rise £5.5 billion per
year by 2025 [4].
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Figure 1.5: Number of men and women at high fracture risk in 2040 relative to 2010, by world region [4]



An osteoporotic fracture describes a fracture event arising from trauma that in a
healthy individual would not give rise to fracture. The most common fractures defined
in this way are those at the hip, spine, and forearm, but many other fractures after the
age of 50 years are related at least in part to low BMD and should be regarded as
osteoporotic. These include fractures of the homer, ribs, tibia, pelvis and other femoral
fractures. Hip fractures is the most serious osteoporotic fracture, in fact the mortality
burden of hip fracture is significant, with a rate of approximately 8% in men and 3%
in women aged above 50 years and hospitalized following fracture. In the USA,
approximately 31000 annual deaths occur within 6 months of hip fracture[4].
According to the National Health and Nutrition Examination Survey III, conducted
from 2005 to 2010, over 10.2 million adults had osteoporosis and more than 43.4 million

adults had low bone mass in the USA.

Subcapital neck fracture Transcervical neck fracture Intertrochanteric fracture

Subtrochanteric fracture Fracture of the greater trochanter Fracture of the lesser trochanter

Figure 1.4: example of hip fractures

-6-



With the aging of the population, this number will only become larger increasing both
the rate of osteoporosis diagnoses and the risk of fracture [2]. The economic burden of
osteoporosis-related fracture is significant, costing approximately $17.9 and £4 billion
per annum in the USA and UK respectively, when in the Table 1.1 are summarized
fracture impact across the European Union [4]. Clinically, hip fractures represent the
most serious osteoporotic connected occurrence, because of both related costs and

outcomes [5].

Hip Spine Wrist
Lifetime risk in women (%) 23 29 21
Lifetime risk in men (%) 11 14 5
Cases/year 620000 810000 574000
Hospitalization (%) 100 2-10 5
Relative survival 0.83 0.82 1.00

Costs: All sites combined ~ €37 billion

Table 1.1: impact of osteoporosis-related fractures across Europe

The risk of hip fracture depends on two events:

e the proximal femoral structural strength, that is the minimum force on the
femoral head that could to break the proximal femur, also known as hip bone
strength or hip fracture load;

o the probability of encountering a situation in which the force applied to the

proximal femur exceeds the proximal femoral structural strength [6].

The strength of the proximal femur depends strongly on the three-dimensional (3-D)
geometry of the bone and the 3-D distribution of the material properties within the

bone as well as the direction and location of the applied force.



1.2 Diagnosis of Osteoporosis

The osteoporosis is analysed with densitometry techniques, in particular the gold
standard for osteoporosis screening is dual energy x-ray absorptiometry (DEXA)
according to World Health Organization (WHO)[7]. This technique uses x-rays
physical principles which yields a 2D-areal bone mineral density (aBMD). However,
the representative aBMD cannot be a perfect stand-alone measure of bone strength
because it neglects the 3D bone structure. An alternative non-invasive screening
process is Quantitative Computed Tomography (QCT) which uses a calibration
phantom to evaluate the bone mineral content of a given bone by comparison and
yields volume-based BMD (vBMD) results from CT images or a true physical density

of mass per volume.
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Figure 1.6: example of DEXA (on top) and qCT (on bottom)

In contrast to aBMDs, voxelwise volumetric BMDs can provide a spatial BMD
distribution in 3D, thereby eliminating the sources of errors in estimating bone

strength. DEXA and QCT fundamental principle is the variable absorption of X-rays



by different body components. Measuring the attenuation of X-rays with high- and
low-energy photons, the bone can be distinguished from soft tissues and the
mineralized bone mass eventually assessed neglecting surrounding soft tissues
attenuation effect. The attenuation is expressed in Hounsfield Unit (HU). The
measurement of attenuation with DEXA does not allow the determination of the
volume in which the mineral bone is distributed. In fact, this projective technique is
based on the two-dimensional representation of the bone structure examined.
Therefore, different anatomical regions are represented as on a frontal plane with the
result of obtaining an integrated measurement that includes the cancellous bone, the
compact bone and any other calcified formations of the soft parts, included in the path

of the radiant beam, in the poster-anterior projection.

The information derived from bone densitometry techniques are as follows:
- measurement of the thickness of the cortical bone (mm);

- measurement of the volume of the studied area (cm?);

- measure of bone mass (g);

- measurement of the bone mineral content (Bone Mineral Content-BMC expressed in

g/ cm);

- measurement of bone mineral density in an area (Bone Mineral Density-BMD

expressed in g / cm?);

- measurement of bone mineral density in a given volume (BMD expressed in mg /

cm®). The measurement of a bone volume (mg / cm®) is obtained only with qCT.

The World Health Organization established the criteria of a densitometry analysis
with reference to the values obtained using a DEXA equipment in lumbar and femoral

scans. However, these criteria have also been widely applied to the results from other



types of scans allowed by DEXA technology such as total body and ultra-distal radio
and by other methods that use X-rays such as QCT.

The criteria proposed by the WHO arose from the analysis of a huge database made
up of groups of individuals of different ages, sexes and races. Bone densities, estimated
by DEXA, is given to patients as a T-score or a Z-score and the adopted criterion from
WHO classifies individuals on the basis of the T-score (Table 2). The T-score represents
the standard deviation (SD) of the patient-specific BMD, compared with young

standard population of the same sex.

Category T-score
Normal T-score > 1
Osteopenia -2.5 <T-score< -1
Osteoporosis T-score <-2.5
Severe osteoporosis T-score < -2.5 with fractures

Table 1.2: classification of osteoporosis

The T-score therefore represents the difference between the bone mass of the patient
examined and the average bone mass of the reference youth population and is
expressed in terms of standard deviation from the youth population. If the examined
subject is compared with the bone mass of the reference population of the same age,
the Z-score is obtained. This parameter is recommended in the evaluation of subjects
over 80 years of age. BMD has been shown to be a strongest risk factor for fractures
and for this reason the T-score is considered for the diagnosis of osteoporosis.
Therefore, osteoporotic clinical diagnosis is based on BMD, but the important clinical
significance of the pathology is to know what causes the fracture and treatments have
to the decrease the risk of it. Because the majority of the patients suffering from low-
trauma fractures are not classified as osteoporotic according to T-score [3], there are
other thresholds for pharmacological intervention. Some of other clinical risk factors
that are able to support the risk of fracture prediction are: age, low BMI, the presence

of prior fractures, smoking, use of glucocorticoids and alcohol intake [4]. Important
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risk factors, associated to clinical risk, are geometry and distribution of bone mass that
influence the bone strength. Moreover, there are recently new tools that are obtained
by DEXA and are based on T-score, such as Hip Structural Analysis (HSA) and
Trabecular Bone Score (TBS). TBS gives more information about the trabecular
microarchitecture quality analysing the pixel intensity variations, while HSA is a
technique that uses the properties of dual energy x-ray absorptiometry images to
derive geometric parameters for the hip that are associated with bone strength [8].
Bone strength depends on two parameters: bone quality (bone architecture) and bone

quantity (bone mineral density).

1.3 Finite Element Analysis of CT images

In addition to DEXA, other methods have been proposed that identify individuals at
high risk of fracture including those that characterize volumetric bone density, in
particular recent studies uses the finite element analysis of CT images [9]-[12]. CT
images finite element analysis (CT - FEA), that incorporates information about
architecture and bone density distribution, provides non-invasive estimates of bone
strength and Finite element (FE) models have shown to be promising as a tool for
fracture risk prediction [13]. In particular, the combination of FE and CT appears
promising to identify patients at high risk of fracture [5]. Computed Tomography (CT)
scans can be used to segment patient-specific bone geometries that serve as input for
the FE models. Basically, this numerical technique subdivides a structure into many
smaller parts (finite elements) that represent the complex material heterogeneity and
3-D bone geometry as a mathematical model. Force or displacement is then
mathematically applied to represent a specific loading condition. When the model is
analysed, stress and strain throughout the structure are computed and used in
conjunction with material failure criteria to estimate the strength of the proximal femur

under the particular loading condition.

Some retrospective studies have demonstrated that FE-based femoral strength is

predicted as measured ex vivo with excellent accuracy [13]-[16] and is a better

_11_



predictor of fracture risk than the aBMD [9]. Actually, there are different modelling
approaches about the FE studies of proximal femur fracture. The FE models are
obtained from CT images, where the bone is segmented from the CT scan data and
converted into voxel-based FE models. The segmentation of images can be manual,
semi-automatics [17] or can be done developing automatic algorithms [18], [19]. After
the segmentation the models are meshed and then material properties are assigned to
the mesh elements by converting vBMD or equivalent CT density using empirically
derived relationships. To map material properties from CT images into FE models the
first step is to employ the calibration to obtain local bone mineral density from HU
values (that will be explained in the next subchapter). With the HU-local bone mineral
density calibration the material properties are assigned to mesh elements using
density-elasticity relationships specified for the considered anatomical district to
estimate Young modulus. The relationship between densities and elastic modulus for
cortical and trabecular bone are given by experimental and validated methods[20].
There are different approaches of density-mechanical property relationship in
literature that are related to physical methods adopted: some studies are based on ash
density[21]-[24], other studies employed apparent density [25][26], others utilize a
combination of this both densities [27]-[29] and recent studies are utilizing tissue
density [20]. Subsequently at the material assignment, boundary conditions are
applied to the models miming some loading conditions to predict the strengths and
the failure loads of FE model. Different loading conditions are evaluated in previous
studies about hip fractures: axial loads that mimics the hip joint reaction in
physiological stances [13], [14], [30], [31], forces that simulate sideways fall [32]-[34]
or both configurations [35]. To estimate bone stiffness reaction forces and
displacement data are used, while the failure load is estimated from the selected failure
criteria. Having an optimal accuracy about strain prediction is fundamental to analyse
bone properties and eventually to estimate fracture risk fractures. About accuracy is
important to use appropriate mathematical laws for the anatomical region treated and

to follow the protocol scanner settings [20]. Most importantly, the various effects of
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scanning protocol have been further investigated and the correlation between the HU
and BMD values is dependent on X-ray tube peak voltage (kVp) of the scans, on the
CT scanning region and if are present also on the contrast medium [36]. So, is

fundamental to follow the same scanner settings to have good model accuracy.

1.4 Phantom and phantom-less calibration using CT scans

CT is a non-invasive technique that uses the attenuation of x-rays with matter in order
to obtain detailed images on internal organs. This phenomenon follows Lambert-
Beer’s exponential law: I = [e™*, where x is the thickness of the object investigated
and u is the attenuation coefficient. Each pixel in the detected image is assigned a
numerical value (CT number) corresponding to the average attenuation coefficient of
the corresponding voxel. These CT numbers are shown on an arbitrary unit scale, that

is called Hounsfield unit, with a linear transformation according to the formula:

CT Number (HU) = 1000 » -x"Fwater_

Hwater—Hair

where 1,4t and g, are relatively the attenuation coefficient of water and air.

The diagnostic capability of CT scan in metabolic bone disease depends on the
accuracy of measurement of the bone mineral contained within the organ body
investigated. Accuracy is influenced by the attenuation coefficients and the model
assumed for bone composition. Proper calibration of the scan is required to correct for
variations in scanner settings and attenuation, any related beam-hardening, and
patient-specific characteristics such as body size, all of which can alter the attenuation
characteristics [37]. Most scanners incorporate some filters to correct these artefacts
due to improve image quality [38]. The measurement of voxelwise BMD is critical to
conduct a reliable finite element analysis because the elastic moduli of each finite

element need to be derived through the BMD-modulus relationship.

Hounsfield units (HU) in the CT scan can be converted to bone mineral densities

(BMD) that are used to model element-specific bone material properties. The most
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widely used method for calibrating CT scans, converting HU to BMD, utilizes an
external calibration phantom. Currently, these conversions to BMD are usually done
with either solid or liquid phantom that contain certain known concentrations of for
example calcium hydroxyapatite (CaCOs or CaHA) or hydrogen dipotassium
phosphate (K2HPOs or KHP). The type of phantom provides the density-elasticity law
due to the different physical properties, it is fundamental for the accuracy of FEM

development.

Figure 1.7: phantom calibration

Usually, the patient is scanned with face upward and lying on a phantom. The need
for a phantom adds expense and increases the logistical burden of clinical imaging. To
improve the phantom technique have been developed methods without a calibration
phantom for calibrating CT scans, specifically three approaches are mostly followed:
some studies uses calibration factors [39], where firstly the calibration functions are
obtained from a separate scan of a calibration phantom offline, the factor (called GCF)
is obtained with the ratio of the BMD derived from the calibration offline divided by
the respective HU numbers. The phantom-less BMD values are calculated multiplying
the GCF with HU values; another phantom-less option is to use patient-specific
internal calibration methods, which are based on HU of specific tissues, such as fat and
muscle tissue or external air and either aortic blood or visceral fat; finally, another
approach is to use CT numbers (HU) directly [40][41] where there are specific software

that automatically detect the relevant FE models factors. Studies comparing phantom
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calibration with phantom-less calibrations showed that they yielded comparable
results [42], however phantom-less approaches show some limitations. The first
approach is CT scanner and protocol specific, but for other scans is not specific and is
not precise enough for finite element analyses. The limitation of the second approach
is the poor repeatability, presumably due to the challenges of choosing the region of
muscle in a repeatable fashion as well as consistently separating out the pure tissue
components [43]. In addition, the assumption of specific densities for internal tissues
could influence the measurement of CT numbers, due to the possible presence of
pathologies. Finally, the third approach could be the more affordable in clinical
practice, but needs significant amounts of patient case studies [44] to be applied in

FEA.

1.5 Purpose of the thesis

Osteoporosis is an increase disease in our society, as evidenced by the rising numbers
of cases and the economic outlay for treatments. Hip fractures are among the most
serious complications of osteoporosis, with devasting aftermaths the quality of life,
morbidity and mortality, as well as economically on healthcare systems. The accuracy
of the prognostic standard of bone densitometry, based on T-score, is too low to
diagnostic the pathology and to adopt therapeutic treatments. In this context, aiming
to improve hip fracture detection, CT-based FE models, able to combine patient-
specific geometry and material properties, have been shown to achieve optimal
accuracy on the prediction of femoral fracture risk more accurately than the actual gold
standard. Phantom-based calibration is the gold standard in the development of CT-
FEA in order to calibrate CT images (HU) for extracting local BMD values, but is not
always possible to have phantoms available together with the CT images in clinical
practice. The goal of the present study is to propose an alternative strategy to calibrate
images in absence of calibration phantoms. Specifically, the target is to determine a
correlation between the HU obtained from computed tomography scans and local

bone mineral density, implementing a phantom-less calibration and developing a

_15_



structural model technique that predicts proximal femoral strength with a finite
element analyses. The choice to apply the phantom-less calibration depends on the
impossibility of using a calibration phantom and phantom-less tool represent the only
viable option when the phantoms are not available. Therefore, it was not possible to
follow the standard procedure and the phantom-less CT scan calibration was derived
following previous studies in the literature. In this thesis, CT images of the proximal
femurs for a cohort of 28 post-menopausal woman were assessed, with the aim to build
CT-based three dimensional patient-specific models for hip fracture risk estimation. In
order to calibrate them, to assign local material properties to the FE models, calibration
equations are obtained applying a pseudo-calibration. Then these are employed to
patient scans to calculate local BMD from HU values. In particular, the performance
of this method are compared with analogous models obtained with a different method
to calibrate CT images and BMD that is not patient-specific. The relation between HU
and BMD gives the material properties that are the input for FE analyses. These
analyses are done in order to further asses the correlation between material density,
the HU value and mechanical strength. In detail, boundary conditions reproducing a
sideways fall were performed on patient-specific models of the proximal femur and
static simulations were executed. The purpose of the simulations with a post-
processing phase is to predict surface strains on the proximal femur and to obtain
indicators that could estimate hip fractures. The effects of calibration on the estimation
of fractures are evaluated comparing the principal strains and fracture loads obtained
from FE models. This study stems from the growing need to try new tools that could
be useful in clinical practice as support to the T-score based-criteria. Although it was
not possible to validate the obtained results, because the analysis could not be done
retrospectively, the methodologies applied on our cohort show important differences
about the influence of calibration and the ambition is to extend them at a cohorts with

follow-up information.
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CHAPTER 2

MATERIAL AND METHODS

2.1 CT scans

In the present thesis twenty-eight post-menopausal female subjects have been taken
and studied (after they had signed an informed consent). This patients, between 55
and 81 years of age, were treated in San Luigi Gonzaga Hospital in Orbassano, in
province of Turin, Italy. From the Hospital database only patients with available
clinical data and CT scans were chosen. The CT scanner is Brilliance 64, manufactured
by Philips and the scans available have not been prescribed for osteoporosis diagnosis
purposes. For this reason, only the proximal portion of the femur is included in the
images and only people with femur clearly visible in the CT scans are included in this
study. Moreover, between the patients have been excluded patients suffering by
cancer, due to the possible presence of bone metastasis, which would affected bone
strength, probably due to unrealistically strong material properties in the FE model
because of the high degree of mineralization in blastic lesions [42]. CT images of
patients were obtained with this settings: 120 kVp, 220 or variable mA, the slices

thickness was 2 mm and the pixel width was 0.6857 mm.

151.2500 @ _ 176.0000

Figure 2.1: example of CT images from Mimics Medical 19.0
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2.2 FE model construction: segmentation, FE mesh and boundary
condition

Using the software Mimics Medical 19.0 it was possible to build the three-dimensional
subject-specific geometric models of the proximal femur, with a semi-automatic
segmentation. One femur in each patient was segmented to extract the three-
dimensional bone morphology. The proximal femur is aligned, following a reference
configuration, in according to its anatomical reference system, defined on neck and

shaft axes. The 3D models were cut 2.5 cm below the midpoint of the lesser trochanter.

Figure 2.2: an example of FE mesh (left) and an example of FE model femur from Mimics Medical 19.0

The models have been meshed with ten-nodes tetrahedral elements (C3D10 Abaqus
elements) with edge dimensions of 1.2 mm. This value was obtained doing a sensitivity
analysis on FE mesh elements dimensions in order to obtain sufficiently accurate

results [3].

To incorporate material heterogeneity, at each element in the model was assigned a
unique elastic modulus that is determined with a density-elasticity relationship [27]

(Equation 1), which has been shown to yield accurate strain predictions [30], [45], [46]:
E = 15010 * pZ,3, if Papp < 0.28 g/cm?

E = 6850 * pgy), if Papp > 0.28 g/cm?
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where E is the Young’s modulus, expressed in MPa, and p,,,, is the apparent density,
computed from CT-derived HU values, in g/cm?. Specifically, the grey values
associated with each element of the volumetric mesh are used to assign local density
and elastic modulus values. Due to the impossibility to properly calibrate the available
CT images, a pseudo-calibration was performed, aiming to estimate the linear relation
between HU and apparent density (p,,,) needed to calculate the relative Young's

modulus values.

Load
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Figure 2.3: boundary conditions applicated to do the mesh dimensions sensitivity analysis [3]

The method adopted in this study for calculating the apparent density followed a
previous study present in the literature [43] where calibration of CT images was
performed to extract the local BMD values from the images HU both with a phantom
and a phantom-less patient-specific procedure. The phantom-less calibration is based
on internal patient tissues as calibration reference. To refer to this method we call it
Method PS. With the available images, which as anticipated before, were obtained for
other purposes than this thesis, it was not possible to take the same regions and using
the same dimensions to create the volume of interest of the method in the literature

[43]. The method mentioned considers a volume with an height of 27 mm, hence we
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selected a volume with the same height starting from the last slice available in the

images, as reported in Figure 2.4.

Figure 2.4: example of how is selected the volume of interest from images

To select the volume of interest, as upper limit the lesser trochanter was chosen, but
for some patients it was not possible to select a volume with the height settled due to
CT images available. The patient with a different volume height are: patient 4 (8 mm),

patient 10 (10 mm), patient 21 (14 mm) and patient 24 (18 mm).

So, for each patient a volume of interest (VOI) was created (Figure 2.4). From the VO],
histograms (Figure 2.5) of the HU values distribution were obtained. To determine the
exact peak of HUs for each tissue, the mode of the HU around the histogram peak
(£ 50) HU was calculated, in this way the method was least susceptible to outliers.
Due to the impossibility of following and carrying out all the steps, the same BMD
values of the method treated in the literature [43] were used: —840 mg/cm? for air,
—80 mg/cm?3 for fat and 30 mg/cm3 for muscle. These values were obtained with the
phantom calibration of the HU peaks of air, fat and muscle of a random subgroup of
10 patient scanned in the study [43] with a Philips scanner, they are also averaged and
rounded. The mode of histogram peaks are linearly fitted to the reference BMD values

for each patient in order to obtain the air-fat-muscle calibration function.
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Figure 2.5: example of histogram

Calculating the mode of every peaks +50 HU and fitting them to the reference BMD
values, we obtained a calibration function for each patient (Table 2.1). The equation of

calibration is (Equation 2): BMD = a x HU + b [mg/cm?®] (Figure 2.6).
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Figure 2.6: all calibration functions for Method PS
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o
o

2 0.812 -7.271

3 I N N
4 0.839 1.214

5 I N A
6 0.819 0.054

S O O L
8 0.812 -7.199

9 L S
10 0.809 -11.243
N N B
12 0.833 -4.456

R O G A
14 0.822 1.034

S N S
16 0.833 -2.856

© = ]
18 0.842 -3.048

E O A
20 0.817 -2.528
S R
22 0.814 -6.572
» [
24 0.848 11.102
S N
26 0.830 -7.358
© [
28 0.815 -5.440

Table 2.1: coefficient of calibration function for each patient — Method PS

The calibrated density (converted in g/cm?) of each voxel in the elements was used to
compute the ash density (pqsn, g/cm?) from this linear relationship [47]:
Pasn = 0.8772 x BMD + 0.0789 (Equation 3)



and ash density was then used to obtain the apparent density [20] (pgpp, g/cm?):

Papp = 1.58 * pgep + 0.00011 (Equation 4)
The apparent densities are used, as reported previously, in the equations of the elastic-
modulus to compute mechanical properties for each voxel [27]. The relationships

reported are specific to the our anatomic site evaluated, that is the femur.
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Figure 2.10: example of relation BMD-pg,,;, considering the vector of central HU (Patient 28) - Method PS

In this study, as anticipated in the previous chapter, two different methods are
analysed, specifically two different ways of calculating the apparent density.
Specifically, the Method PS is compared with a method that is not patient-specific and
that follows a different previous study [3]. To refer to this method we call it Method
nPS.

In Method nPS, a relationship treated in Ruess et al. (2012) [21] to applicate a linear
conversion between HU values and an equivalent mineral density is used:
Peqgm = 1073(0.793) * HU [g/cm?] (Equation 5)
From all patients CT images were selected:
e the average highest HU value found in the cortical bone, that is 1200 HU;
e the average lowest HU value of trabecular bone found, that is -140 HU.
These HU values were converted firstly in the equivalent mineral density using

Equation 5.
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Figure 2.7: relationship Ppqm — HU in Method nPS

Then, the equivalent mineral density was converted in ash density [21]:

Pash = 1.22 % pogm + 0.0523 [g/cm?3] (Equation 6)
Using Equation 3 apparent density (g/cm®) was obtained. The average highest HU
value found in the cortical bone (1200 HU) and the average lowest HU value of
trabecular bone (-140 HU) were fitted with the corresponding apparent densities
values (rounded), obtaining the following calibration function:

Papp = 0.0015 x (HU) 4+ 0.2090[g/cm?] (Equation 7)
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Figure 2.8: calibration function for Method nPS
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In this way, patients have the same calibration function. The Equation 7 is used to
obtain the relationship between elastic modulus (MPa) and apparent density (Equation
1).

With apparent density-elastic moduli relationship the next step is to allocate the HU-
based inhomogeneous material properties at the elements of femur models. To achieve
this, the elements of each model were divided into discrete bin based on their
associated HU values. To choose the number of HU groups for the assignment of
heterogeneous material properties in order obtain accurate results an additional
sensitivity analysis was conducted. The analysis was carried out in this way: the
highest tensile and the lowest compressive principal strains were computed with
different ranges of HU, each ranges contain a different number of discrete bins,
specifically, the percentage errors of each range outcomes were computed with respect
to the output obtained with the largest number of bins, as reported in Figure 13 [3]. It
was chosen a range with 40 different intervals, which is a good compromise for

computation and error (< 5%).
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Figure 2.9: sensitivity analysis for the number of HU bins [3]

After the analysis for the dimensions of the mesh elements were assigned the
heterogeneous HU-based material properties. To group the HU values in 40 intervals,

were calculated the minimum and maximum values of all the HUs patients femoral
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models considered. From the minimum value to maximum value were obtained 41
extremes (of the intervals), from each interval was calculated an average HU value. In
this way there is a vector that contains 40 central HU values where each HU interval
represented a material group.

So, an average HU value for each mesh element was first identified and then the total
elements HU span was divided into a discrete number of intervals, in order to assign
each element to a specific interval on the basis of its own HU value. For each interval,
the central HU values through were converted in the correspondent apparent density
values with the various mathematical relationship reported and Young’s modulus (E)
were assigned at each patient femur model. In this way, heterogeneous material
properties were mapped into FE models . In order to simulate a fall on the side,
following previous studies [30], [32], [34], [48]-[51], the following boundary conditions
were applied: load was applied on the greater trochanter, head nodes were restrained
along the impact load direction and the distal nodes connected to a hinge. The
proximal femur has a linear-elastic behaviour up to fracture, for physiological strain-

rates, so was assumed an elastic bone mechanical response [52].
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Figure 2.11: example of relation E-pgy,,, considering the vector of central HU (Patient 28) - Method PS
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Figure 2.12: Relation E-pg,,,, considering the vector of central HU - Method nPS

The FE simulations were performed using this software: Abaqus (v13, Simulia,

Dassault Systemes, Rhode Island, U.S.).

2.3 FE analysis

The aim of the simulation is to reproduce a sideways fall condition, the most frequent
cause of a femur fracture in the elderly person [53]. For the proximal femurs the neutral
configuration was investigated: the reference configuration was obtained by aligning
the femurs with respect to the anatomical reference system defined by the axes of the
neck and shaft.
Following some validated studies [30], [32], [34], [51], to reproduce this condition of
fall were applied these boundary conditions:
e the impact load was applied on the trochanter as a distributed force in x
direction;
e the head nodes were bounded to the ground by means of spring elements with
a 1000 N/mm stiffness along both the load and in-plane orthogonal directions,

to have a static displacement;
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e the distal nodes of the proximal femur were connected through link elements

to a reference node positioned 0.1 mm distally.

Figure 2.13: scheme of boundary conditions applied for the sideways fall [3]

The choice to use spring elements for the head nodes, depends on acetabular cartilage
effect considered [54]. Head nodes usually are bounded, but in this study the use of
elastic elements was consistent with the experimental studies in which the cartilage of
the head was assumed [33], [50].

While, the choice of how to connect the distal nodes of the models was made to have

all translational degrees of freedom fixed [30], [32], [51].

2.4 Post-processing

The finite element analyses strain results were post-processed using a maximum
principal strain failure criteria that is largely followed in many studies of fracture
prediction that are verified and validated [9], [13], [15], [30], [55], [56]. The principal
strains are the variables of interest and the limits values until the strain failure are at
1.04% for the compressive strains and at 0.74% for tensile strains [57]. For each mesh
elements, the ratios of the compressive strains (¢;) and of the tensile strains (&3) divided

by the corresponding elastic strain limit were calculated. The principal strains were
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extracted at the centroid; following a validated procedure [15], [30] a Risk Factor (RF)

was calculated at each mesh element in this way:

gmax

RF =

€lim
Where ¢,,,,, = max (|&,], €3)
Emax: 15 the selected predominant tensile or compressive principal strain;
€im: Tepresents the compressive or tensile limit value [53]:
® &m in tension=00074;
®  &im in compression=0.0104.
During sideways falls proximal femur fractures initiate and propagate from the
external cortex [15], [30], [48], for that reason only superficial elements were
concerned. The FE-estimated failure load was determined scaling the load until one
node (failed node) reached RF=1 and the beginning of fracture is considered when the
number of contiguous elements in the superolateral cortex with a RF greater than one
exceeded the 0.3% of the total surface elements, this percentage corresponds
approximately at 40 contiguous mesh elements [30]. Specifically, the elements are
recognized contiguous when the distance between their centroids was lower than 1.5
mm.
Two different fracture risk predictors from RF were calculated: the Femoral Strength
(FS) and the Risk Factor Index (RFI). These predictors were computed with the femur
in the neutral orientation.
The FS, is the minimum force that causes the beginning of bone fracture. This indicator
was estimated applying an impact load that follow a ramp function with 100 increment
steps, where at the last increment the impact load is of 20000 N, for each load-step the
RF was extracted for the cortex elements.
Instead, the RFI indicators is the highest RF found in the bone external cortex with a
patient-specific impact load applied with a mass-spring-dumper system. Hence , this

indicator depends on mass and height of patients.
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To define subject-specific values of the load applied at the trochanter was
implemented, on Simulink (MATLAB r2018b), an equivalent one degree-of-freedom
mass-spring-damper dynamic system as reported in Figure 2.14. The impact force onto

the greater trochanter is the key factor for predicting fracture risk [58].

ZA

Figure 2.14: mass-spring-damper system [58]

In the dynamic system, the mass value was assigned specifically to each patient and it
moves in the vertical direction with velocity (V) prior to impact; the spring (K) and
damper (C) represents the effects of the soft tissue and were taken constant in
according to previous studies [58]-[60] about trochanteric tissues.

The values adopted in the present study for the spring and damper are selected from

experimental studies [58], [60], [61] on the cadavers of elderly individuals (65 + 85

years), specifically the value of stiffness assumed is of 30 %N , while the value of
. . Ns

damping is of 300 —.

Using a one degree-of-freedom impact model, this force is determined by the impact

velocity of the hip [62]. To determine impact velocity and effective mass, three

different paradigms of increasing complexity were used in literature [62]:

1) a falling point mass or a rigid bar pivoting at its base;
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2) two-link models considering of the leg as segment and a torso;
3) three-link models including a knee.

The total mechanical energy of each model before falling was equated to the total
mechanical energy just prior to impact in order to estimate the hip impact velocity.

In the present study the body was simplistically adopted as a two-link model [62]: it
consists of two slender bars where legs and trunk are considered as two uniform
slender bars connected with a frictionless hinge located at the hip, where the bars were
chosen to be equal in length, but not in mass.

The impact velocity just before the impact resulted in 2.72 vh [62].

Where h is the total body height in meters.
The average impact velocity was calculated and its value is of 3.39 m/s, with a standard

deviation of 0.084 m/s.

This result was achieved employing energy conservation and this two configuration:
"vertical Jack-knife" fall, where the trunk is vertical just prior to impact, and its variation
the "45 degrees Jack-knife", that assumes that the trunk angle (defined as the angle
between the trunk and the vertical) is 45 degrees just before impact occurs. From the
dynamic load output obtained by Simulink, the value of the first peak was identified

as the impact load to be applied on greater trochanter surface for the RFI extraction.

Figure 2.15: (A) vertical Jack-knife model: the trunk is vertical at Impact.
(B) 45-degree Jack- knife model: the trunk is at 45 degrees to the vertical [62].
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Three different risk levels were defined according to the obtained RF values:

e Low:1<RF<2

e Medium: 2 < RF < 3

e High: RF >3
The principal strains and the RF values derived with the two methods were compared
in order to verify the prediction of the tools treated. Specifically, firstly errors about
strains and RF at the last load-step of the ramp impact load were computed with
respect to the output obtained with the variables of Method PS and successfully the
outcomes of the two analogous models with different calibration methods were

compared in order to evaluate the prediction of fracture risks.
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CHAPTER 3

RESULTS and DISCUSSION

3.1 Relative errors evaluation for element-principal strains and RF

values

In order to compare the outcomes obtained from the two methods, the element-specific
principal strains and RF values were compared and relative errors computed. In the
following figures are reported: the comparison between the RF values of both methods
for each patient (Figure 3.1), the histograms of subjects with the relative errors about
RF (Figure 3.2) and 28 patient-specific models with the errors distribution on the

geometry (Figure 3.3 and Figure 3.4).
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Figure 3.1: Comparison between RF of Methods PS (y-axis) and RF of Methods nPS (x-axis)
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As far as principal strains are concerned, the mean relative error considering the
patient-specific averages ones is of 25.13% for the compressive principal strain, 24.01%
for the tensile one, while the maximum value among the averages ones for each patient

was of 33.03% for compressive principal strain and of 31.55% for the tensile one.
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Figure 3.2.1: Histograms of the relative errors from Patient 1 to Patient 14: relative errors (x-axis) and relative
frequency (y-axis)
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Figure 3.2.2: Histograms of the relative errors from Patient 15 to Patient 28: relative errors (x-axis) and relative

frequency (y-axis)

For the RF the relative errors are settled at 25.28% considering the mean value and

33.24% considering the maximum of the mean values. Also the maximum relative

errors were calculated for each patient, but the corresponding values even exceeded
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100%, although the fracture risk indicators turned out to be correlated, as reported in

the following subchapter.

Error distribution
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Figure 3.3: Errors distribution on the geometry of models for the 28 patients — Posterior view
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Error distribution

05

0.388889

0.277778

0.166667

0.0555556
-0.0555556
-0.166667
-0.277778
-0.388889
-0.5

Figure 3.4: Errors distribution on the geometry of models for the 28 patients — Anterior view
Basically, the mean relative error considering the patient-specific average errors values
are between 25% and 26%, as highlighted from the histograms (Figure 3.2) and from
the “yellow” areas on the geometry that are the most common (Figures 3.3 and 3.4).
The errors have an homogeneous distribution: the greater errors are shown at the great

trochanter and at lateral femur zone, the lesser errors are at the mean errors are
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distributed on the neck and shaft femoral. Finally, there are only three subjects (Patient

8, Patient 16 and Patient 20) with a lower error distribution.

3.2 Evaluation of RFI and FS indicators

The of the two methods were compared and turned out to be significantly correlated.
The RFI and FS indicators obtained with Method nPS have a greater correlation (R =
0.82 and p < 0.0001) (Figure 3.6) than the same indicators of the Method PS (R = 0.59
and p < 0.0001) (Figure 3.5).
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Figure 3.5: Comparison between RFI and FS values for the 28 patients - Methods PS

14r

12

RFI - nPS

0
2} g8 o°

0 L L L L L L L 1
500 1000 1500 2000 2500 3000 3500 4000 4500
FS - nPS(N)

Figure 3.6: Comparison between RFI and FS values for the 28 patients — Methods nPS
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The indicators are correlated, although the RFI values were obtained with a patient-
specific impact load that is depending on patients mass and height values. To analyze
the two different methods the same indicators were compared, as shown in Figure 3.7
and Figure 3.8. The RFI values show a correlation with R = 0.43 and p < 0.02, while

FS values turned out to be more correlated: R = 0.93 and p < 0.00001.
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Figure 3.7: Comparison between RFI and FS values for the 28 patients - Methods PS
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Figure 3.8: Comparison between RFI and FS values for the 28 patients — Methods nPS

In the Figure 3.9 the predictability of RFI and FS for both methods are matched with

the T-score values for all patients. The figure ranges highlighted represents the three
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standard T-score-based criteria to classifies non-osteoporotic and osteoporotic
patients. Specifically, osteoporotic patients has a T —score < —2.5, osteopenic
patients has a T — score included between —2.5 and —1, while healthy subjects have a

T — score > —1.
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Figure 3.9: Comparison RFI and FS values with T-score of the patients for all method
About the correlation with the T-score, the indicators of Methods PS reported: R = 0.51
and p < 0.0001 for the RFI and R = 0.74 and p < 0.000001 for the FS. Instead, for
Method nPS the RFI indicator presents R = 0.65 and p < 0.00001, while the FS
indicator has R = 0.78 and p < 0.00001. Hence, with the Method nPS there is a greater
correlation with T-score. Furthermore, despite FS and RFI were both significantly
correlated to T-score, a greater number of patients resulted to be at higher risk of
fracture according to the Method PS. In Figure 3.10 and Figure 3.11 the prediction
abilities of the same variable between the methods treated are compared for each
patient to better observe the classification of the tools. There are eight osteoporotic

subjects and twenty non-osteoporotic subjects in total.
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RFI vs T-score: Method PS
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Figure 3.10: Comparison of RFI indicators for both methods with T-score, each patient is represented by a number
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FS vs T-score: Method PS
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Figure 3.11: Comparison of FS indicators for both methods with T-score, each patient is represented by a number
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From the comparison, similarities and differences of classification were highlighted.
The RFI indicators: about osteoporotic subjects, both indicators of the two tools
classifies Patient 2 and Patient 28 at high risk, while Method PS identifies also Patient 10
that appear to be at higher risk of fracture; relative to osteopenic subjects, both
indicators considers Patient 17 at high risk, but the indicator of Method PS locates also
Patient 4, Patient 18, Patient 22 and Patient 23 that appear to be at high risk of fracture;
the indicators does not classifies patients with risks about healthy subjects. However,
in addition at the larger number of patients classified at a potential fracture level, the
RFI-PS shows a better visible stratification of subjects than RFI-nPS. The FS indicators:
referring to osteoporotic subjects, both FS identifies all eight osteoporotic patients at
high risk of fracture; while for osteopenic subjects, the FS variable of Method PS
classifies three more subjects that could have a fracture than Method nPS: Patient 12,
Patient 21 and Patient 24, while Patient 1, Patient 4, Patient 5, Patient 9, Patient 17, Patient
18, Patient 22 and Patient 23 were considered at high risk from both FS; finally, as
healthy subject, Patient 16 is shown for both FS indicators with a high risk of fracture

but Method PS identifies also Patient § that appear to be at the same risk level.

In summary, from Method PS, the RFI and FS indicators show one more osteoporotic
patients and four more non osteoporotic patients who would appear to be at higher
risk respect to Method nPS. The results of correlation had anticipated the differences
between RFI indicators and FS indicators. In particular, the RFI of Method PS shows a
better visible classification (as shown in Figure 3.10), in fact, while in the classification
of the RFI — nPS the subjects are placed very close to each other, with RFI — PS there is
a better differentiation. The RFI indicators appear to be more susceptible to the
different assignment of material properties. With the patient-specific calibration, the
HU-BMD conversion includes the effects of patient-specific physical factors on the HU
values [36].These factors could explain the difference about classification and the
better RFI — PS distinction than the RFI - nPS. On the other hand, also the FS indicators

show differences about classification but the distribution on the graphs is more
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homogeneous. To explain the differences of the two indicators it should be
remembered how they were defined: the RFI is the highest RF value found with a one
degree of freedom mass-spring-damper system, hence depends on the greatest
principal strain; while, the FS is the maximum load with which a ramp function
generates the fracture, the beginning of the fracture depends on a number of
contiguous elements that exceeded the 0.3% of the total external cortex with an RF >1.
For FS predictors, in Figure 3.12 the load-steps where the fractures occurred were
compared: all the fractures with Method PS appear at lower impact loads than the
Method nPS. Moreover, the subjects classified as osteoporotic by the T-score are all
identified with a high risk of fracture from the FS indicators, but these results are better
highlighted with FS — PS due to lower FS values that identifies the patients, while the
RFI does not identifies all osteoporotic patients at high risk. Unfortunately, the lack of
follow-up information did not allow the validation of the obtained results, but in the
future the same comparison will be applied to retrospective cohorts with follow-up

information included to fully assed the power of the proposed methodology.

Comparison of fracture load-steps
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Figure 3.12: Comparison between Method PS and Method nPS of the load-steps when fractures occurred

_44_



Anyway, the impossibility to apply the gold standard at the calibration and with the
employing of the pseudo-calibration, surely error sources have been introduced,
included within the FE models, that influenced the materials assignment and the
estimation of strains. Although the good results of this study, another purpose is to

develop and to follow each step of the gold standard based on CT-FEA.

Finally, in the following figures (Figure 3.13 and Figure 3.14) the superficial
distribution of the RF values are shown for the 28 models at the timestep which the
fractures occurred for Method PS. As can be seen from the images, the highest RF
values are concentrated behind the greater trochanter, but this is the area where the
loads have been applied, in fact, for this reason this site was not considered for the
definition of RFI and FS predictors. Other important areas of failure are highlighted
on the femoral necks. In all figures, the cell-centered variables are interpolated at the
nodes and the RF values under the 90" percentile are discarded. The considered
percentile of the RF values from Method PS (0.55) is greater than the value of the other
approach evaluated (0.41). As can be expected from the values of the 90" percentiles,
the “yellow” areas of the models of Method nPS are greater than the same respective
areas of the models of Method PS, but this last reports a greater “red” and “black” areas,
as can be seen on the femur models of Patient 1, Patient 4, Patient 9, Patient 11, Patient
19, Patient 24 and Patient 26. In addition, in Figure 3.13 and Figure 3.14 the failed arear

are highlighted with arrows.
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Figure 3.13: Superficial RF distribution for the 28 patient-specific models for Method PS. The failed areas are

highlighted with arrows (Posterior view)
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Figure 3.14: Superficial RF distribution for the 28 patient-specific models for Method PS. The failed areas are

highlighted with arrows. (Anterior view)
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CHAPTER 4

CONCLUSIONS

The low sensitivity of the T-score about the prediction of hip fractures caused by
osteoporosis has led to the development of CT images Finite Element Analysis. The
aim of the present thesis work is to propose an alternative method to a common
problem that occurs in the case of CT-FEA: the absence of a calibration phantom.
Hence, a patient-specific phantom-less strategy was implemented following a study
presented in the literature. For each patient, a calibration function to convert HU
values to local bone mineral density based on air, fat and muscle as calibration
references was obtained and applying appropriate physic relationships the material
properties were mapped into models. After simulating a sideways fall the principal
strains on the superficial elements of the models were extracted and two different
predictors were evaluated with a post-processing phase. To evaluate the performance
of this methodology the outcomes were compared with analogous models obtained
with a different calibration method that is not patient specific. Important differences
about the principal strains on the surface were shown comparing the outcomes and
computing the relative errors. Moreover, the predictors of the two methods were
compared with the T-scores reporting the differences regarding the classification of
patients who appear to be at a higher risk of fracture, where the patient-specific
method reported a visible better classification. Specifically, with the method patient-
specific a greater number of evaluated subjects appear to be at higher risk of fracture.
Furthermore, the RFIs have been shown to be more susceptible at material assignment,
in fact, these predictors have been shown greater differences about classification than
the FS predictors between the two strategies. Hence, the present study found that the
patient-specific calibration improves qualitatively the classification of subjects with a
risk of hip fracture. However, this thesis can be defined as an exploratory study, due

to the lack of follow-up information did not allow the validation of the results
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obtained. In fact, the next step will be to apply the same methodologies to a
retrospective cohort with follow-up information available to fully evaluate the

potential of the proposed strategy.
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