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Abstract

The development of personalized rehabilitation strategies for patients with
hemiparesis is fundamental to achieve the most effective outcome from the
treatments. Clinicians are fully aware of the fact that the patients’ respon-
siveness to an intervention is extremely subjective and that the need to quan-
titatively track their motor-gains is evident. Wearable sensing technology can
meet this demand through cost-effective and flexible solutions, enabling ac-
curate assessments of movement quality and motor impairment.
The approach proposed in this thesis relies on machine learning-based algo-
rithms to estimate clinical scores through the analysis of wearable accelerom-
eters data collected during the performance of Activities of Daily Living
(ADLs).
The purpose of the study is to build predictive models able to mimic the
evaluation criteria currently used by clinicians, in order to define the recov-
ery trajectory of Stroke survivors and Traumatic Brain Injury patients.
Among the numerous assessment scales developed in the past years, in this
project the upper limb Fugl-Meyer assessment (FMA) scale is used to quan-
tify the severity of motor impairments, and the Functional Ability Scale
(FAS) is used to evaluate the quality of movement.
3-axial accelerometers data are preprocessed with Digital Signal Processing
(DSP) methods, such as segmentation and filtering, and subsequently an-
alyzed with the aim of extracting informative features capable of defining
movements properties of the study participants. Through a feature selection
process, only the relevant characteristics are kept with the intention of dis-
carding noisy and redundant data. The estimation of the clinical scores is
done training and validating a regressive model using a Random Forest al-
gorithm. Finally, the regression equation, relating the actual scores provided
by the clinician and the predicted scores, is derived. In order to assess the
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accuracy of the algorithms, two regression problems evaluation metrics are
computed: the root-mean-square error (RMSE) and the coefficient of deter-
mination (R2).
The results show that this approach is effective and that it is possible to
estimate patients’ rehabilitation outcomes in terms of both the movement
quality and the motor impairment with a good level of accuracy and consid-
ering ADL tasks. The model performance are in line with the standards as
R2 of 0.83 and 0.78 are reached for FAS and FMA, respectively. This is solely
achieved through the analysis of wearable accelerometers data, whereas pre-
liminary analyses show that slightly better results can be obtained adding
clinical and demographic information about patients. These findings pave
the way for further studies that will presumably focus on reducing the num-
ber of sensors needed for the motor assessment and on moving the recordings
from a clinical setting towards a home-based scenario.
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Chapter 1

Introduction

1.1 General Context

Together with the life expectancy increase, also the disability prevalence
recorded an increment. It is expected that in the next years the demand for
rehabilitation interventions will keep growing. Acquired brain injury (ABI),
which includes stroke and traumatic brain injury (TBI), contributes a lot to
the problem and it is often associated with severe disability such as upper-
limb motor impairment.
The correlated loss in terms of independence and quality of life causes a sig-
nificant societal burden that has to be resized with a view of facing a more
critical situation soon.
Understanding if a rehabilitation program is having success with a specific
patient is key, but increasing the number of neurological examinations is eco-
nomically not viable. These assessments are time-consuming and it is really
hard to schedule multiple clinical evaluations [1]. Thus, outcome measures
are usually collected only at baseline and at the end of the treatment. It
would be much better if the motor gains were estimated with a higher tem-
poral frequency in parallel with the course of the rehabilitation program.
Although there is a plethora of treatment strategies to manage motor impair-
ments and activity limitations caused by ABI, most are only supported by
limited evidence pointing to the need for studies of improved methodological
quality in this area [2].
The tailoring of medical treatment to the individual characteristics of each
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Introduction

patient is fundamental to address the problem of the high variability, noticed
across different subjects, in response to an intervention. This is called "preci-
sion medicine" and, currently, it is a major topic in the field of rehabilitation.
Wearable sensing technology has great potential in this context since it en-
ables the collection of quantitative data in a flexible and cost-effective manner
and with minimal supervision by clinical personnel, creating new opportuni-
ties for autonomous and remote monitoring outside the clinics.

1.2 Previous Studies

During the last 10 years, multiple methods to extract clinical information
from wearable sensing devices, such as accelerometers, have been success-
fully proposed. Using the assessment scales, accurate estimates of upper-limb
impairments from data collected during the performance of functional mo-
tor tasks have been reached [3]. Previous studies have shown that wearable
sensing technology is suitable to monitor clinical outcomes [4] and that clin-
ical scales, such as the Functional Ability Scale (FAS) and the Fugl-Meyer
assessment (FMA) scale, fit the purpose of quantifying motor quality and
impairment [5].

In most of the studies, data were collected during the performance of stan-
dardized tasks that have been considered to be able to sufficiently describe
relevant movement substructures. FAS scores have been precisely predicted
processing, with machine learning algorithms, the data recorded during the
performance of 15 motor tasks that involved reaching and manipulating ob-
jects [3].
Later, the Wolf Motor Function Test, in particular, gained a lot of attention
since, among the proposed tasks, some enable the analysis of upper extrem-
ity gross arm movements and fine motor control. The test is composed of
17 items progressing from proximal to distal and from least to most complex
upper-limb movements and each item is used to assess speed and movement
quality [6]. Clinicians consider those kinds of gestures really informative re-
garding the severity of the patients’ disabilities, which is why they widely
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evaluate their subjects’ dexterity, strength and upper extremity function us-
ing WMFT timed functional tasks.
Using an approach based on WMFT tasks and machine learning algorithms,
the derived clinical scores estimations are satisfying for both FAS and FMA
[1], but this procedure requires patients’ supervision and a clinical setting,
which lead to costs, especially in terms of time.

1.3 Outline of the study
Tracking the outcomes of a specific rehabilitation treatment involves assess-
ing improvements in patients’ independence and in their ability to take care
of themselves. These factors are key in the evaluation of a recovery program
as they summarize if the quality of life of the subject is getting better.
Reduction in the time and effort spent performing real daily tasks could
result in more time and energy to engage in life roles, despite a continued
need for assistance [7]. Moreover, in order to reduce healthcare costs in gen-
eral, not considering the independence of the patient without tasks that are
enough descriptive to assess it, certainly leads to an inaccurate evaluation of
the rehabilitation outcomes. Activity of Daily Living (ADL) disabilities, in
fact, are often associated with higher rates of healthcare utilization, includ-
ing hospitalization that, in turn, is associated with worsening ADL disability
and nursing home placement [8].
The purpose of this thesis project is to extend the analysis carried out in the
previous studies, concerning the estimation of clinical outcomes for rehabili-
tation, to Activity of Daily Living tasks. Compared to WMFTs, ADLs should
lead to a more concrete estimation of the patient’s independence and of his
ability to perform self-care tasks. Moreover, in comparison with WMFT,
ADLs tasks are less constrained as they are not standardized; this leads to
a higher variability among signals recorded during the performance of the
same tasks: each subject has, in fact, his manner to carry out a specific task.
Leaving freedom of performing the tasks as the subjects would do on their
own, certainly affects the results in terms of performance, but, on the other
side, the estimations are more descriptive and realistic about the condition
of the patients as they are evaluated on their way of accomplishing ADLs
tasks.
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Chapter 2

Motor Assessment in
patients with Acquired
Brain Injury

2.1 Overview
Acquired Brain Injury (ABI) is an umbrella term that includes different
pathologies which share the presence of severe disabilities and the need for
rehabilitation interventions. It encompasses various causes, such as vascular
(e.g. stroke) and traumatic (e.g. Traumatic Brain Injury) [9].

2.2 ABI Epidemiology

2.2.1 Stroke

Stroke is a common cause of disability that is currently ranked as the fifth
leading cause of death in the United States and it is estimated that it will
be the fourth most common cause of disability in western countries by 2030
[10, 11].
Strokes can be distinguished between ischaemic (occlusion of a blood vessel),
which constitute 80-85% of the cases, and hemorrhagic (rupture of a blood
vessel). Moreover, even if the rate of recurrence reduced until the mid-2000s,
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it has not changed over the last decade; the risk of recurrence 7 days post-
stroke is 2% while, at 5 years, the risk of recurrence or death is 36% for
small-vessel occlusion strokes and 27% for other ischemic causes [12].
In the last few years, nearly 3-4% of the healthcare costs in the Western coun-
tries can be attributable to stroke and, on average, the total lifetime expense
per stroke patient is estimated around $140,000 in the United States [13]. In
order to cut a part of these costs and to help stroke survivors to reduce their
disabilities, rehabilitation becomes a critical aspect of the continuum of care.
Thus, designing a comprehensive rehabilitation program results essential. In
particular, stroke rehabilitation is a process that aims to prevent deteriora-
tion of functions, to recover, if possible, some of them, and to achieve the
highest level of independence within the limits of the persistent stroke im-
pairments [14]. Providing treatment and training to stroke survivors, many
regain and relearn skills of everyday living, obtaining greater independence
and improving functional capacity.

2.2.2 Traumatic Brain Injury

Traumatic brain injury (TBI) constitutes a major health and socioeconomic
problem. According to the US Centers for Disease Control and Prevention
(CDC), it is caused by a bump, blow, or jolt to the head or a penetrating
head injury that disrupts the normal function of the brain [15]. It has been
recently defined as: ‘An alteration in brain function, or other evidence of
brain pathology, caused by an external force’ [16, 17].
The direct cost of TBI in 2000, which includes death, treatment for both
hospitalized and non-hospitalized patients, was estimated to be around 9
billion US dollars [15]. In addition, it is the most common cause of disabilities
in people under 35 years old [18], as it is often associated with car accidents.
The long-term outcome varies according to the severity of the pathology and
so the mortality of TBI: it is around 2.5% for moderate and nearly 33% for
severe. Furthermore, around 1.7 million people in the USA currently suffer
TBI and live with disabilities caused by it.
In this case too, the rehabilitation program is of great importance as it can
help the patient to achieve the maximum degree of independence within limits
imposed by their residual physical, functional and cognitive impairments.
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2.3 Precision Medicine
Among a broad range of scientific areas in which precision medicine can be
applied, it attained great success in the design of the rehabilitation programs
in which the response of the patients is affected by high variance among sub-
jects with the same pathology. It is the typical clinical scenario of stroke
survivors and TBI patients’ rehabilitation management.
In this situation the term evolves into a more suitable one, "precise rehabili-
tation": data-driven decisions are usually taken according to the information
extracted from various sensing technologies, such as wearable sensors data.
Evaluating the evolution of the patient’s clinical scores over time, it is possible
to understand the subject’s response to a specific rehabilitation intervention.
Furthermore, the more frequent the recordings are, the more precise and
dynamic are the adjustments that the clinicians may apply to the patient’s
rehabilitation program.
Through the modern concept of precision medicine, the patient’s heterogene-
ity is taken as advantage, using data-driven methods, to improve intervention
with the purpose of providing the most suitable treatment to the right pa-
tient at the right time. In 2015, with president Barack Obama announcement
about Precision Medicine Initiative, it became a priority of the United States
[19].
A core concept related to the precision medicine is the "Dynamic treatment
regime": decision making is defined as a sequence of decision rules, one per
time interval, that characterize how the intervention will be tailored accord-
ing to the response of the patient to the treatment he has been subjected up
to that moment[20]. The decision timestamps depend a lot on the specific
patient’s features and they can be scheduled at the beginning of the treat-
ment or time by time taking into account the patient’s outcomes.
Being able to analyze big medical data is core if we want to progress in preci-
sion rehabilitation and machine learning (ML) and artificial intelligence (AI)
can hugely help out.
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2.3.1 Medical Big Data

During the recent decades, the fast increase in the production volume of
digital data together with the development of new computational methods
enabled the scientific community to use these large data sets, known as big
data, for innovative purposes. Also the healthcare field has benefited from
this technology, albeit with some delays compared to other disciplines. This
can be explained as the consequence of several factors, such as the poor man-
agement of insights from research, the poor usage of the available evidence,
the poor capture of care experience, and the difficulty in accessing medical
data as they have to be treated differently from other fields [21]. Moreover,
the cost in the production of clinical data may result much higher than in
other contexts: clinicians are often involved, the medical instrumentation
may be expensive, and the situation in which the data are collected may be
not reproducible.
Among the different healthcare areas in which the use of big data may result
in awesome outcomes, the potential value has been concretely expressed in:

• Precision medicine ([22], [23]) and precision rehabilitation ([24], [25])

• Analysis of medical images using computer vision methods in order to
support clinicians’ decision making ([26], [27], [28])

• Tailoring diagnostic, treatment decisions and telemedicine using mobile
health technologies ([29], [30])

• Population health analysis ([31], [32])

2.3.2 Big Data Analysis

Data collection alone cannot result in anything useful: big data have to be
processed in order to extract new insights. Machine learning (ML) and ar-
tificial intelligence (AI) algorithms emerge as the enabling technologies that
make the analysis of these large data sets fruitful.
The types of learning used by computers are formally divided into 2 typolo-
gies [33]:
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• Supervised Learning: it concentrates on classification, which consists of
choosing among subgroups to best describe a new instance of data, on
prediction, which involves estimating an unknown parameter, and, as in
this thesis, on regression problems, i.e. the estimation of a continuous
outcome variable. The core idea is that the computer learns how to map
an input to an output based on example input-output pairs.

• Unsupervised Learning: as opposed to the previous case, the goal is to
find recurring patterns or groupings within the data. Here the labels of
the observations are unknown and the algorithm will use the information
contained in the data to find hidden structures and organize the dataset
into subgroups (also known as clusters in this field).

In this thesis, machine learning-based algorithms are used to handle a super-
vised regression problem. The observations in the data set, patients’ data,
are labeled with the clinical scores of the standardized clinical assessment
scales, which are continuous variables. The purpose, in fact, is to predict the
patients’ clinical scores after they have received a treatment to understand
if it has been successful.

2.4 Clinical Assessment Scales

The need for determining in a quantitative way the limitations in function
of patients with disabilities led to the development of standardized clinical
scales. Through their use, in rehabilitation, the assessment of the level of
independence and the ability to perform basic daily living functions of im-
paired patients has been achieved [34].
In this study 2 clinical scales have been used and they will be described in
the following: the Functional Ability Scale (FAS) and the Fugl-Meyer As-
sessment (FMA) scale.
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2.4.1 Functional Ability Scale (FAS)

FAS is a 6-point standardized scale, from 0 to 5, used to visually rate the
performance of upper extremity (UE) functional tasks in terms of movement
quality. Typically, the scores of the single items are summed to obtain a
total score. For instance, the Wolf Motor Function Test (WMFT) consists
of a battery of 15 motor tasks, thus the total score is rated out of 75 points
[35].
The following table 2.1 shows the rating criteria for evaluating the quality of
the performed items.

Table 2.1: The Functional Ability Scale (FAS) [35].
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2.4.2 Fugl-Meyer Assessment (FMA) scale

The Fugl-Meyer assessment is a measure used to grade the impairment of a
patient during the performance of motor tasks. Specifically, it was developed
as an evaluative measure of recovery from hemiplegic stroke [36]. Hemipare-
sis is the most diffused disabling deficit among stroke survivors and, in fact,
it affects 70% to 80% of the patients; moreover, it is often the one that needs
a rehabilitation intervention the most. The purpose of its development in
1975 was to compensate for the lack of a clinical scale that considered “the
neuromuscular capacity per se” [37], that standardized the patients’ posture,
and that took into account patient’s compensatory mechanisms.
Conventionally, the impairment is defined as any loss or abnormality in psy-
chological, physiological, or anatomical structure or function [38].
The FMA is a 3-point ordinal scale and the maximum attainable motor per-
formance score for the upper extremity section is 66 points.
As in the previous case, the following table 2.2 shows the evaluation criteria
of the concerned scale.

Rating Description

0 Detail is not performed
1 Detail is performed partially
2 Detail is performed completely

Table 2.2: Fugl-Meyer Assessment (FMA) scale.
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Table 2.3: FMA scale items [36].
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2.5 Wearable Technology in Rehabilitation

Wearable technology includes a plethora of devices that share the main fea-
ture of being worn or attached to a body segment. This technology is trying
to satisfy different needs that presented at the beginning of the current mil-
lennium, such as the needs for taking care of an increasing number of patients
with chronic diseases, for giving care to people in areas in which the access
to providers is limited, and for maximizing the independence of an increasing
number of subjects with severe disabilities. Wearable technology can help to
satisfy these needs with cost-effective applications in diagnostic and moni-
toring. Home-based patients, for instance, can be remotely and continuously
monitored in order to assist them at their place, extending the reach of the
experts to rural areas. Wearable technology, as presented in this thesis, can
be one of the enabling technologies for precision medicine and, in particular,
for assessing the effectiveness of rehabilitation in ABI patients.
Among the multitude of wearable devices, in this thesis only inertial sensors
will be considered, as they are the ones used in the project.
Accelerometers have been widely implemented due to their compact size,
their low-power requirement, low cost, non-intrusiveness and capacity to pro-
vide reliable data concerning the motion of people [39]. In particular, Micro
Electro Mechanical System (MEMS) sensors, when implemented in micro-
electronic circuits, can be used to measure the acceleration. In capacitive-
based MEMS accelerometers, the acceleration is calculated by measuring the
change in capacitance due to a moving plate or sensing element [40]. Thanks
to their high sensitivity and resolution, in respect of piezoresistive accelerom-
eters, these devices are widely used in many commercial applications.
Inertial Measurement Units (IMUs), that are the electronic devices mainly
used to measure velocity, orientation, and gravitational force, usually in-
clude both accelerometers, gyroscopes and sometimes magnetometers [41]; it
is worth pointing out that, in this thesis, only the IMU accelerometers are
used, since also the device energy consumption has to be considered when
there is the will to perform long recordings without worrying about charg-
ing; in home-based scenarios, having a more energetically efficient device, at
the expenses of extremely precise measurements, is a common choice since
the high performance of combining different sensors would not be exploited
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in this application, while reducing the risk of interrupting the recordings is
preferred [42].
Typically, the latest devices of this kind adopt wireless communication, mak-
ing their wearing and placement extremely easy even for subjects with low
motor deficits.
Accelerometers, such as those used in this thesis, provide one separated data
time series for each axis Ax, Ay, Az; the magnitude of a 3-axial accelerometer
can be calculated as follows: Am =

√︂
Ax + Ay + Az.

During the last decade, several results have been reached using accelerom-
eters to estimate outcomes of upper limb rehabilitation programs, usually
through clinical assessment scales. In 2010 [43], body-worn accelerometers
data, recorded during the performance of a set of functional motor tasks,
were used to estimate movement quality, in terms of FAS, through a ma-
chine learning-based algorithm; remarkable performance were achieved, in
fact the predictions were extremely accurate and the model was nearly not
affected by bias at all, but only stroke survivors were enrolled. In 2011 [5],
wearable sensor data collected during the performance of items belonging
to WMFT were used to assess motor impairments, estimating FMA clinical
scores. Those predictions had a mean error of 4.74 points out of 66 of the
total FMA score, which showed that the track was right, but results had to
be improved. Also here, the subjects that were enrolled in the study were
stroke survivors, but subsequent studies manifested the will to include other
pathologies that share the fact of causing upper limb motor deficits, not fo-
cusing only on stroke, but extending also to subjects affected, for example,
by traumatic brain injury. In 2020 [44], it was possible to assess movement
quality through FAS even adding patients with TBI to the dataset; data were
recorded during the performance of 15 standardized tasks from the WMFT.
During the same year [1], a dataset, composed of stroke survivors and TBI
patients, was used to accurately estimate both movement quality and motor
impairment; wearable accelerometers were placed on the patients with the
purpose of recording their movements during the performance of 8 standard-
ized tasks from WMFT. FMA predictions were marked by a high coefficient
of determination R2 = 0.86 and a RMSE = 3.99 points, while for FAS pre-
dictions RMSE = 0.38 points, coefficient of determination R2 = 0.79 were
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reached. These numbers that describe the performance of the method pro-
posed by [1], are used as a standard metric, in order to evaluate the goodness
of the model proposed in this thesis.
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Chapter 3

Materials and Methods

3.1 Data Collection

3.1.1 Study Partecipants
Subjects have been recruited in order to obtain a heterogeneous sample for
a prospective longitudinal study: the group has been followed over time and
new data have been collected.
The inclusion criteria were:

• Unilateral stroke, both ischaemic and hemorrhagic

• Focal Traumatic Brain Injury (includes scalp injury, skull fracture, and
surface contusions, generally caused by contact)

• 18-80 years old at the recruitment

• Involved in an upper-limb rehabilitation program, both inpatients and
outpatients

• Moderate-severe upper-limb impairment evaluated through the upper
extremity total FMA score

Spaulding Rehabilitation Hospital Institutional Review Board (IRB) reviewed
and approved the study procedures, which have been executed according to
relevant guidelines and regulations. Furthermore, signed informed consent
has been asked to each study participant or to his legally authorized dele-
gate.
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The study participants have been called for 2 recording visits: one at the
beginning of the treatment (baseline) and one at the end of the treatment
(discharge).

3.1.2 Wearable Accelerometers placement
During the recordings, the considered subjects have been equipped with
body-worn 3-axial accelerometers (Shimmer3 by Shimmer Sensing, Dublin).
The units were placed, as shown in the figure 3.1:

• Chest, sternum height

• Upper arm, mid-biceps, frontal

• Wrist, above radius and cubitus styloid, dorsal

• Index and thumb, dorsal part of the distal phalange

Figure 3.1: Wearable Shimmer3 sensors placement.
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In the table below 3.1 the specifications of the used IMUs are reported to-
gether with a picture of the device 3.2; the integred accelerometers are well
known to be ultra-compact, ultra-low power and able to provide highly ac-
curate and scientifically reliable raw data.

Shimmer3 Accelerometers

Range ±2g, ±4g, ±8g, ±16g

Sensitivity 1671 LSB/g at ± 2g

Numeric Resolution 14 − bit

Typical Operating Current ≤ 162µA

RMS Noise 0.6mg at ± 2g

Sampling frequency 51.2Hz

Table 3.1: Shimmer3 accelerometers specifications: STMicro LSM303AGR
are the wide range MEMS accelerometers used in this thesis.

Figure 3.2: Shimmer3 IMU used in this thesis.
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3.1.3 Activity of Daily Living (ADL) Tasks

During the data collection process, a research therapist guided the subject
through a battery of tasks that belong to the macro group of Activity of
Daily Living tasks. Each task has been repeated multiple times, tracking the
beginning and the end of each trial with capacitive sensors.
ADL tasks aim to describe as much as possible the level of the subject’s
independence, thus they are not isolated movements that can be implemented
during different actions, but complete activities that require the coordination
of different movement patterns.

ADL TASKS ORGANIZATION
TASK N° NAME TRIALS

1 open bottle 3
2 brush hair 6
3 put on/take off pen cap 3
4 unfold towel 3
5 ironing 6
6 lift box 3
7 erase board 2
8 open door 6

Table 3.2: Activity of Daily Living tasks.
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3.2 Estimation Process Pipeline

As described in the figure below 3.3, patients’ accelerometers data undergo
different processing steps before being translated into the clinical scores:

• Signal Processing: accelerometers signals are processed with different
operations in order to improve the performance of further steps.

• Feature Extraction: with the aim of reducing the amount of data that
will be processed, but maintaining the information of the original dataset,
some variables are extracted from the processed accelerometers signals.

• Estimation Algorithm: after reducing the dimensionality of the variables
through feature selection, giving as input some observations with their
corresponding clinical score, the computer learns how to predict the
unknowns clinical scores of new data.

FAS are firstly estimated from the accelerometers data and, then, considering
the correlation between the two clinical scores, they are given as a further
input to the FMA estimation algorithm, in order to improve the performance.

Figure 3.3: Algorithm pipeline.
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3.3 Data Processing
The signal of each axis of each accelerometer is individually processed in
order to keep only its relevant sections and to improve its quality. Multiple
actions compose this step, starting from the filtering of the accelerometers
time series, passing through the signal segmentation and finishing with the
x-axis inversion.

3.3.1 Time series Filtering
The acceleration time series of each sensor and of each axis has been high
pass filtered using a 6th order Butterworth filter with the cutoff frequency
at 0.5Hz. This was done in order to generate a gravity-free condition, to
lose the orientation of the sensors that may vary among the subjects, to
limit the impact of postural adjustments, and to attenuate the low-frequency
integration drift: inertial systems, in fact, suffer from small errors in the
measurement of acceleration, that, integrating, will result into progressively
larger errors in velocity.

Figure 3.4: Example of right wrist high pass filtering with cutoff frequency
of 0.5Hz; same subject of 3.5 performing the 3rd task.
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3.3.2 Segmentation in Trials

During the recordings, using capacitive sensors, the beginning and the end of
the tasks trials have been tracked. Thanks to this expedient, accelerometers
time series have been automatically segmented in order to keep only the signal
delimited by the couple of the reference markers. Moreover, considering that
the subjects are hemiparetic, only the data related to the sensors of the
affected side are taken into account, while the others are discarded.
As shown in the figure 3.5, the beginning of a certain task has been marked
with a long press of the capacitive sensor, while the trials are graphically
identified as the signal portions between its spikes.

Figure 3.5: Example of 3-axial accelerometer signal segmentation: 21 aged
subject with Traumatic Brain Injury and RIGHT affected side (also the dom-
inant one).
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3.3.3 X-axis inversion

Furthermore, to make the reference frame consistent, the x-axis of the sen-
sors, positioned on the right upper arm and right wrist, has been inverted.
In the figure 3.6 an example of this processing step is shown.

Figure 3.6: Example of right upper arm and right wrist X-axis inversion:
same subject of 3.5 performing 1st trial of the 3rd task.
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3.3.4 Removal of healthy side trials

Considering there is the will to keep only the data related to the affected side
of the patient, it is needed to remove the trials performed with the healthy
side. Tasks 2, 5, 7 and 8, which are brushing hair, ironing, erasing a board
and opening a door, in fact, can be performed using only one limb. However,
during the recordings, these tasks were firstly performed using the affected
side and then with the healthy one.
As it is noticeable looking at the plots below, focusing only on the signal
related to the affected side, it would be incorrect to include in the dataset
the trials performed with the other limb since the contained information
would be harmful.

Figure 3.7: Example of removal of healthy side trials, in the blue rectangle,
in a TBL subject with right affected side for task 2 (brushing hair); in the
red rectangle the correct trials are shown as a comparison.
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Figure 3.8: Example of removal of healthy side trials, in the blue rectangle,
in a TBL subject with right affected side for task 7 (erasing a board); in the
red rectangle the correct trials are shown as a comparison.

Figure 3.9: Example of removal of healthy side trials, in the blue rectangle,
in a Stroke survivor with left affected side for task 2 (brushing hair); in the
red rectangle the correct trials are shown as a comparison.
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3.4 Feature Extraction
The step that follows the signal processing aims at reducing the data volume
and capturing the main characteristics of raw signals from the accelerometers
time series. For this scope, the features to extract from raw accelerometers
data were chosen based on multiple previous work that showed correlation
with clinical measures of functional capability ( [1], [43], [45], [46], [47]).
To name a few, the use of mean and energy measures of acceleration has
been shown to result in accurate recognition of certain postures and activities
[48]. Then, the entropy of the signal is calculated since it may support the
discrimination of activities with similar energy values [48].
In respect to the typical features belonging to the time and frequency domain,
which are usually implemented in this kind of problem, further ones are
added. In particular, Dynamic Time Warp (DTW) [49] is a well-known
technique used to find the alignment between two time-series, warping them
in a nonlinear fashion to match each other; its robustness against variation in
speed or style in performing action [50] justifies the high computational cost
that its calculation requires: remembering that ADLs are not standardized
tasks and, so, that the way of accomplishing them is variable among different
patients, DTW turns out to perfectly fit this problem.
Moreover, features measuring the correlation of acceleration between axes or
sensors can improve recognition of activities involving movements of multiple
body parts [48], [51]. Thus, correlation is calculated between each axis of each
accelerometer and between all pairwise combinations of axes and sensors.
The total number of extracted features is 366 and all of them have been
normalized to have zero mean and unity variance. In the following table 3.3
all the engineered features are listed, grouping them by field.
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Feature Macrogroup Description

Mean Arithmetic
Geometric
Harmonic
Interquantile
1st-3rd quartiles

Spread RMS
(dynamic energy) Interquantile range

Absolute deviation

Power spectrum Dominant frequency
Ratio tot energy and secondary peak
Ratio energy at dominant frequency

and secondary peak energy
Energy of secondary peak
Energy at dominant frequency

Smoothness Distance to filtered signal

Entropy Signal entropy
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Feature Macrogroup Description

Kurtosis Kurtosis

Speed max
RMS
Mean

Skewness Skewness

Dinamic Time Warp Distance between filtered and actual signal
(DTW)

Autocovariance Range of autocovariance

Magnitude Range magnitude acceleration
(LPF@ 8Hz) Range magnitude speed

Range magnitude displacement
Max (speed, acceleration and displacement)
RMS mean and standard deviation
Entropy of acceleration
Max frequency of magnitude

Magnitude derivative Max, standard deviation
Interquantile range, range
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Feature Macrogroup Description

Jerk Jerk normalized by velocity
RMS
Max frequency jerk magnitude

Correlation Between all sensors and all channels
Between all sensors magnitudes

Table 3.3: Data features extracted from wearable sensors time series.
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3.5 Feature Selection
“A good feature subset is one that contains features highly correlated with
(predictive of) the class, yet uncorrelated with (not predictive of) each other.”[52]

At first glance, having more features, that have been previously extracted
to better describe the original signal, should intuitively result in more dis-
criminating power. However, experience showed that, most of the times, the
antecedent statement is not true: some features may poorly contribute to
the predicting model or even harmfully in some cases, worsening the per-
formance. The purpose of the feature selection process is to find the most
descriptive subset of features among all the extracted ones. With this, the
dimensionality of the dataset is reduced, the computational cost also benefits
a lot. Different approaches for feature selection have been evaluated in terms
of computational time saving and estimation performance:

• Correlation-based Feature Selection (CFS)

• ReliefF with Davies–Bouldin Index

• Minimum Redundancy Maximum Relevance (MRMR)

• Feature selection using Neighborhood Component Analysis (NCA)

CFS is preferred to the other methods since its execution is computationally
light and since it is the most selective: the subsets include 10-15 features
only, giving the possibility to make clinical intuitions interpreting which fea-
tures are predictive of which task. Moreover, it enables to reach the best
performance in terms of high accuracy and low estimation error.
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3.5.1 Correlation-based Feature Selection (CFS)

Rational

Finding a subset of features that will be used to predict an outside variable,
it is desirable that the members, which have been selected to constitute this
group, will have low inter-correlations. Thus, choosing a subset of variables,
with the aim of predicting another one, it is likely to select predictors that
capture different aspects of the outside variable, while avoiding keeping re-
dundant information between them.
Evaluating several composites, the correlation between the subset in analysis
and the outside variable can be expressed as follows:

MS = krlf√︂
k + k(k − 1)rff

(3.1)

• MS : merit, correlation between the subset and the outside variable

• k: number of the features in the subset

• rlf : mean feature-label correlation

• rff : average feature-feature intercorrelation

This equation, that results to describe the Pearson’s correlation coefficient,
shows that the correlation between the subset of features and the variable to
predict depends on the number of the chosen variables and the magnitude
of the inter-correlations among them, together with the magnitude of the
correlations between the subset members and the outside variable [52].
3.1 is implemented in the feature selection process as a heuristic measure of
the “merit” of feature subsets.
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A Correlation-based Feature Selector

CFS belongs to the group of filter type feature selection algorithms and,
using a correlation-based heuristic evaluation function, it ranks predictors
subsets. Going into detail, a feature is accepted in the subset according to
the extent to which it predicts the label in areas of the instance space not
already covered by other features.
Analyzing 3.1, the numerator can be interpreted as an index of how predic-
tive of the label is the subset of features in analysis, while the denominator
represents the grade of redundancy among those features.
In this way, 3.1 is used to rank a subset of features that is under analysis,
but it is interesting to understand how its members have been chosen: con-
sidering a high dimensional dataset, in fact, it would be particularly heavy to
compute all the possible combinations of the features and so it is fundamen-
tal to understand how the subsets to be evaluated are searched and which
are the starting point and the stopping criterion.
The CFS implemented in this thesis performs a greedy forward heuristic
search (Greedy Stepwise) through the space of attributes subsets: it starts
with no attributes in the subset, then it greedily adds one feature at a time,
and it stops when the addition of any remaining attributes does not result
in a higher evaluation of the merit function (3.1).
In practice, the feature selection algorithm calculates the correlation matrix
of the features (K features dimensionality leads to K × K matrix) and the
vector of the correlation between each feature and the label. The search
starts with an empty set of features, intuitively evaluated with zero merit,
then the feature with the highest correlation with the label is added and the
merit of the new subset is evaluated. The following step consists in trying
which one of the other features results to be the best together with the ones
in the expanding subset (in this case composed of only one attribute, as it
was the first iteration); this is achieved by evaluating the merits of all the
possible subsets defined by the addition of a new feature: attributes which
are low correlated with the ones already present in the subset but highly
correlated with the label will be preferred. Until the addition of a new fea-
ture to the subset leads to an increase in the merit of the subset, the process
continues, but the first time it does not, it ends and the best subset found
is given as the output. The stopping criterion can be modified specifying a
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threshold in the increment of the merit below which the improvement is not
considered to be enough to add a new feature.
Correlation-based Feature Selector assumes that, given the label, the at-
tributes are conditionally independent but it can perform well even if this
assumption is moderately violated, while when strong feature interactions
occur, it may fail to select all the relevant features [52].
In the following figure 3.10 it is schematically shown how the feature selection
is usually integrated into a machine learning problem pipeline.
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Figure 3.10: The role of the CFS in a typical Machine Learning approach.
Figure adapted from [52].
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3.6 Clinical Scores Estimation

Once only some of the features have been selected and so the dimensionality
of the data has been reduced, it is possible to dive into the forecasting sec-
tion of the pipeline. Here, using a machine learning algorithm, data can be
translated into the clinical scores of our interest.
The estimation algorithm can be broken down into 2 steps:

• Single task predictions: data related to each ADL task is analyzed sep-
arately trying to estimate the clinical score of each task.

• Aggregating predictions: the single task predictions are combined in
order to make a final estimation of the total clinical score that takes
into account the results of all, or some, of the previous predictions.

Random forest, an ensemble of decision trees, is chosen to be used as the
predicting algorithm [53].

Figure 3.11: Clinical scores estimations pipeline.
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3.6.1 Random Forest

Decision Trees

"A decision tree is a classifier expressed as a recursive partition of the in-
stance space" [54]. It is composed of nodes: the first one is called "root" and
has no incoming edges, while all the other nodes have only one incoming
edge. If a node has outgoing edges, it is called internal, while all the other
nodes without outgoing edges are called leaves, or terminal/decision nodes.
In a decision tree, the role of each internal node is to split the feature space
into two or more sub-spaces: in case of numeric features, decision trees can
be geometrically interpreted as a collection of hyperplanes.
The tree complexity, which is inversely proportional to its comprehensibil-
ity, is commonly measured considering the total number of nodes or leaves,
the tree depth and the number of features used. It can be controlled by
the stopping criteria or pruning: while the first approaches resulted to be
crude methods of terminating the growth, tending to degrade the tree’s per-
formance, an alternative one is to allow the tree to grow and then prune it
back to an optimum size.
When evaluating which algorithm would be the most suitable for a machine
learning problem, it is a good practice to think to its advantages and disad-
vantages; concerning to Decision Trees,the most important ones are reported
in the following comparison chart 3.4:

Advantages Disadvantages

Self-explanatory Perform poorly if there are many
Convertible to a set of rules relevant attributes
Handling datasets with errors Over-sensitivity to the training set,
Handling missing values to irrelevant attributes and to noise

Table 3.4: Decision trees characteristics.
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Random Forest

A random forest is an ensemble machine learning method suitable for both
classification and regression that constructs a multitude of decision trees.
Typically, in a random forest with ktrees decision trees, these are the steps of
the algorithm [53]:

1. ktrees bootstrap samples are taken from the dataset

2. for each of them, an unpruned tree is grown using only mfeats randomly
sampled predictors

3. the best split is chosen among those sampled features

4. new data are predicted aggregating the predictions made from the ktrees

trees in the forest:

• classification problems: majority vote

• regression problems: average of the predictions

In order to evaluate the performance of a random forest it is possible, firstly,
at each bootstrap iteration, to predict data, that haven’t been sampled, us-
ing a tree grown on that sample, and then, to aggregate these predictions.
These predictions made on data not used to grow the tree the estimation is
made from, are called "out-of-bag" (OOB) predictions. If enough trees have
been grown, the OOB estimate of error rate results to be accurate [53].

Random forest is an evolution of decision trees and so it brings several bene-
fits, but at the expense of complexity, thus a loss in terms of interpretability.
In particular, two of the most remarkable advantages are its robustness to
overfitting and its ability to handle small, and even incomplete, datasets.
These qualities have been at the heart of the algorithm choice for this thesis,
and random forest turned out to be a suitable option.
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Feature Importance

Having an interpretable model is just as important as having an accurate
one. Understanding the importance and the impact of each feature in the
training process of the predictive model allows us to intuitively link the most
relevant characteristics of the raw data to the estimated outcomes.
Basically, feature importance is used to assign a score to the input features
based on how useful they are in predicting the target and so, how important
their role is. Typically, the features are ranked by importance and analysis
based on the impact that they have on the label predictions can be carried
out.
Among different ways to evaluate the feature importance, in this thesis a
permutation-based approach is used. The feature importance is calculated
by analyzing how much changing the value of the variable may impact on the
prediction, in particular how random re-shuffling of each predictor influences
model performance. For the sake of completeness, it is necessary to specify
that by randomly varying the predictor, its distribution is preserved. The
consequences of the variables shuffling are evaluated in terms of the decrease
in the model performance: varying the predictors breaks the relationship
between them and the label, thus a drop in the model score is recorded. Since
this process is not computationally light, built-in algorithms usually give the
possibility to the user to choose how many permutations or repetitions have
to be performed to assess the feature importance.
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3.6.2 Cross-validation
Estimating the algorithm performance is key in order to assess its reliability,
its generalizability and its confidence in using it. Moreover, avoiding overfit-
ting is fundamental too.
Cross-validation is a method that allows achieving both of these goals at the
same time.
It is well known that ten-folds, a special case of k-folds, one of the most used
cross-validation technique that could be suitable for this project, is prone to
overfitting. Thus, in this thesis a different approach has been implemented:
leave-one-subject-out (LOO). It is particularly efficient when the number of
observations either in the dataset or for a class value (or in a range, for re-
gression) is small [55], and this is our case.
LOO has been implemented for the clinical scores estimation as follows: an-
alyzing each task separately and, for each of these tasks, iterating through
the subjects, the random forest model is trained with all the subjects but the
one whom the prediction is made on. The excluded data compose, in fact,
the test set, that is used to test the performance of the random forest model
without data it has been trained with.
As shown in the figure 3.12, LOO cross-validation, together with the ran-
dom sampling, of both features and observations, used in growing the trees,
should ensure the robustness of the algorithm to the overfitting.

Figure 3.12: To avoid overfitting, at a given iteration, the data of one subject
are excluded, while during the training of the random forest model, only some
of the available observations and features are used to grow a specific tree.
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Results

4.1 Patients’ Clinical Data Analysis

Number of patients 37

Gender 26M 11F

Diseases 16 Stroke 21 TBI

Age 42.61 ± 18.98

Chronicity 253.95 ± 451.87

Days between assessments 36.16 ± 23.65

Table 4.1: Patients’ clinical and demographic data.

Analyzing the subjects’ clinical data, which are resumed in the table 4.1, it
is possible to say that the sample is heterogeneous according to all the vari-
ables. The main difference, in terms of clinical variables, between the stroke
survivors and the patients with traumatic brain injury, is the age: TBI, in
fact, can be one of the many dramatic consequences of brutal car accidents,
which unfortunately are common among youngsters with little driving expe-
rience. This age difference is appreciable in the following plot 4.1 on the left.
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Figure 4.1: On the left it is shown the distribution of the patients’ age; on
the right the distribution of the days that passed between the two recordings
among the patients .

From the right plot of the figure above 4.1, it is possible to see that the time
intervals between the recordings are shorter compared to the ones of the
Stroke subjects. Moreover, looking at the plots 4.2 and 4.3, it is reasonable
to affirm that, on average, the treatments were successful. The scores related
to the movement quality and to the motor impairment, in fact, are higher at
the end of the treatments than at the beginning. This applies to both the
diseases, but for TBI patients the outcomes turn out to be slightly better.
Furthermore, remembering from the right plot of the figure 4.1 that the time
elapsed between the recordings for TBI patients is less than the one elapsed
in the Stroke case, it can be said that, on average, better improvements in
less time are reached for patients with TBI; this may be due either to the
significant age difference between the subjects of the two pathologies, appre-
ciable in the left plot of the figure 4.1, or to different recovery time among
the two diseases.

50



4.1 – Patients’ Clinical Data Analysis

Figure 4.2: On the left are shown the mean FAS scores of single tasks for
stroke survivors before and after the treatment, while on the right for patients
with Traumatic Brain Lesion.

Figure 4.3: On the left are shown the mean FMA scores for stroke survivors
before and after the treatment, while on the right for patients with Traumatic
Brain Lesion.
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4.2 FAS Scores Estimation

In order to estimate the FAS scores, a multiclass classification approach is
adopted. It consists of assigning instances to one class, choosing among many.
Even though the FAS is a 6 points scale, in the analyzed dataset there are
not any examples of 0 scores, thus the problem is reduced to 5 classes.
Looking at the figure 4.4, where is shown the distribution of the FAS scores for
each task, it can be noticed that the dataset is highly unbalanced. The target
variable, in fact, has not approximately the same number of observations
among all the classes, indeed for some of them there are only a few instances.
Typically, in machine learning problems, this is an issue that has to be faced
in order to avoid affecting the performance of the algorithms. Moreover, a
model trained on an unbalanced dataset often has poor results in terms of
generalization, prompting it to be biased towards the classes that have the
most observations.

Figure 4.4: FAS scores distribution for each task. In the dataset are included
both the pathologies and the recordings.
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4.2.1 Dealing with an Imbalanced Dataset
Two different strategies have been compared and implemented to mitigate
this problem:

• Dataset rebalancing using Adaptive Synthetic Sampling (ADASYN)
[56]:
as many other synthetic oversampling techniques, after having identified
the majority class, which is the one with more observations, new data
are synthesized taking as example the instances of the other classes and
adding some variance to them. These synthetic data are labeled accord-
ing to the examples from which they were generated. In order to obtain
a balanced dataset, in which all the classes have approximately the same
number of examples, the number of the synthesized instances depends
on the degree of imbalance, defined as d = Mmin/Mmaj, where Mmin

and Mmaj are respectively the number of observations for the minority
and for the majority class. ADASYN can be seen as an extension of
the Synthetic Minority Oversampling Technique (SMOTE [57]): as its
distinctive feature, it allows, in fact, to generate more observations in
the vicinity of the boundary between the classes, where the prediction
is usually inaccurate, than in the interior of the minority class.
Furthermore, keeping in mind the will to avoid overfitting using Leave
One Out (LOO) cross-validation, synthetic data are generated at each
LOO iteration so that new data do not contain any information about
the excluded observations.

• Cost-sensitive learning [58]:
the concept behind this approach is that, for imbalanced classification
problems, misclassifying an example that belongs to a minority class is
worse than incorrectly predicting one from the majority class. According
to that, the first has to be more penalized than the second. Tradition-
ally, machine learning algorithms are trained on a dataset and solve an
optimization problem where they explicitly seek to minimize the error of
the model. Defined the "cost" as a penalty associated with an incorrect
prediction, the goal of cost-sensitive learning, instead, is to minimize the
cost of a model on the training dataset, where it is assumed that differ-
ent types of prediction errors have a different and known associated cost.
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The costs related to each kind of misclassification error are declared in
the cost matrix. It is a matrix with the same elements disposition of a
confusion matrix and in this case it is a 5 × 5. Specifically, considering
the difference in terms of scores distributions, each task has a different
dataset and so its own cost matrix, which is designed with the purpose
of stressing the importance of minority classes examples.

In the figures 4.5 and 4.6 it is visible how the problem of dealing with an
imbalanced dataset is managed using the first approach, thus rebalancing it
with ADASYN method. It is necessary to clarify that a dataset with new
synthetic observations has not the same informative power of a dataset with
the same number of observations but in which all of them are real: beyond
a little variance, the information contained in the synthetic data points is
redundant.

Figure 4.5: Example, for task 1, of the effects on the dataset of rebalancing
it using ADASYN.
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Figure 4.6: Example, for task 1, of FAS data cloud after rebalancing with
ADASYN; the visualization is obtained using a dimensionality reduction al-
gorithm, t-Distributed Stochatic Neighbor Embedding [59], and each point
is colored according to the respective FAS score: for original data points the
circles are filled while for synthetic data points only the edge is colored.
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Comparing the confusion matrices obtained with the two approaches previ-
ously described, looking at the figure 4.7, the high imbalance problem catches
the eye since it is easy to see that there are many more observations belong-
ing to higher FAS scores. These confusion matrices derive from the sum of
the ones obtained from the 8 single tasks predictions and hence they can
be used to make a global comparison between the two methods. Evaluating
the performance metrics for the two approaches, the cost-sensitive classifi-
cation turns out to have slightly better results, but the imbalanced dataset
evidently affects the sensitivity which is low in both the models. Focusing on
the accuracy, it may be affirmed that the performance is poor, but, looking
carefully, most of the misclassification errors are in the adjacent classes.

Figure 4.7: Comparison between rebalancing the dataset through ADASYN
and using a Cost-sensitive classification; here are shown the confusion matri-
ces obtained with the two techniques and the associated performance metrics.
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A better way to notice that most of the missclassification errors are in the
adjacent classes, which in this context is an appreciable behavior, is provided
with the figure 4.8. In the related plot, it is possible to notice that around
95% of the observations are classified with an error of 1 point of the FAS. As
it was anticipated previously, this is a good behavior when the classification
problem can be also interpreted as an ordinal classification problem, which
is this case. Since the Function Ability Scale grades the movement quality
in a crescent order, the labels are sorted from 1 to 5. Hence, for instance,
misclassifying an observation whose label is 4, predicting a score of 3, in
this context, cannot be considered as wrong as predicting 1. The cumulative
distribution function, for this kind of problems, is really explanatory about
the concept just explained. Even here the cost-sensitive approach seems to
work slightly better.

Figure 4.8: Comparison between rebalancing the dataset through ADASYN
and using a Cost-sensitive classification; here are plotted the Cumulative
Distribution Functions of the misclassification errors for both the approaches.
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Before jumping to the conclusions regarding this comparison between the two
approaches to deal with an imbalanced dataset, it is useful to analyze the
Receiver Operating Characteristic plot, better known as ROC. In the ROC
space it is plotted the true positive rate (TPR), also known as Sensitivity,
against the false positive rate (FPR), also known as 1 − Specificity. These
two evaluation metrics derive from the confusion matrices obtained with the
two different approaches. In this way, since each model is defined by its
confusion matrix and the correspondent performance metrics, the 2 models
are represented in the ROC space as 2 points. Looking at the figure 4.9, also
in this case the cost-sensitive approach performs better with higher sensitivity
and lower false-positive rate. However, it should be pointed out, as in the
previous comparisons of these 2 approaches, that the differences in terms of
performance are really thin.

Figure 4.9: Comparison between rebalancing the dataset through ADASYN
and using a Cost-sentitive classification; here are plotted in the ROC space
the points related to the two approaches.
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Conclusions about comparison

Finally, arriving to the conclusions about this comparison between these two
methods to handle an imbalanced dataset, it is possible to say that the cost-
sensitive option performs slightly better in every aspect. The problem of
implementing this method is that it is dataset dependent: with a view to
expand the dataset with more observations from new subjects, this method
may fail since the cost-matrices are designed to make the most of low FAS
scores instances, since there are few of them; thinking of enriching the dataset
with low FAS observations, of which it is most lacking, in order to build a
less imbalanced one, using this cost-sensitive classification would turn out to
be useless or even harmful. It may be a good implementation if there were
to be no further studies to improve the model and if no more data could be
collected. Hence, if no more data could be added to the dataset, the cost-
sensitive approach would be the best one, but considering there is the will to
make this model as scalable as possible, this loss in terms of generalization
cannot be counterbalanced by the small improvements in respect to the other
option.
According to all of this, the chosen approach consists of rebalancing the
dataset using ADASYN since it provides a good generalization and it would
help the model to perform better even if the dataset had a different imbalance.
Hereinafter, all the implementations and results related to the FAS scores
estimation algorithm are obtained after having rebalanced the dataset with
ADASYN.
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4.2.2 FAS scores estimation Results
The proposed model, analyzing individually each task, gets as input the
wearable accelerometers data, extracts the features, selects a subset among
them, and then, with a dimensionally reduced dataset, it performs the FAS
scores predictions through a random forest. As mentioned before, all the pre-
dictions are made according to Leave One Out cross-validation: the random
forest for multiclassification is trained excluding one subject at each itera-
tion. Finally, these single task predictions are added together into a final one
representing the total FAS score and the regression equation, relating the
actual total score provided by the clinician and the total predicted score, is
derived.
The number of implemented weak learners, which in random forests are de-
cision trees, is chosen according to the strategy proposed by Oshiro [60].
Hence, considering that:

• sometimes, increasing the number of decision trees in a random forest
leads only to an increment in the computational cost without significant
improvements in the performance

• typically, the evaluation metrics converge asymptotically with the in-
creasing of the number of decision trees

after having followed the steps proposed in his paper, 100 decision trees
are evaluated as the right choice since, as the number of trees increased, no
further improvements could be reached. Adding up the single task predictions
and considering that the highest FAS score is 5, the total FAS score is defined
as a percentage of the maximum score achievable with the tasks as:

FÂST OT =
∑︁n

i=1 FÂSST,i

5n
× 100 (4.1)

where FÂSST,i is the i-th FAS score single task prediction and n is the number
of tasks.
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Figure 4.10: FAS total score predictions: the regression equation between
the actual and the predicted total FAS scores is plotted together with the
patients data points; each point represents one single patient, in red if he is
a stroke survivor or in blue if he is affected by TBI; each subject’s point is
obtained as the average of his trials.
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In the previous figure 4.10 the regression line between the actual and the pre-
dicted scores is plotted together with the patients’ data points. For a better
understanding of the model and of the obtained results, one should bear in
mind that the purpose is to estimate the clinical outcome of a patient specific
rehabilitation program; with this, the predictions are made on the recordings
at the end of the treatment. Thus, remembering from the figure 4.2 that on
average the treatments were successful for both the diseases, it was likely
that the the data points in the figure 4.10 are shifted towards higher scores.
R2, the coefficient of determination, is used as the main evaluation metric:
generally, it provides a measure of how well the observed outcomes are repli-
cated by the model, based on the proportion of total variation of outcomes
explained by the model, or, in an easier way, it gives information about the
goodness of fit of the model; in this context, it concretely represents how far
the predicted scores are from the actual ones.
Focusing on the patients’ data points in the figure 4.10, the model seems to
be not affected by bias. The presence of bias in the model can be better
analyzed by plotting the error for each trial of each patient as is done in the
figure 4.11: evaluating the plotted points, it can be said that all of them are
included in an error range of ±20% of the maximum total FAS score. To
better comprehend the clinical aspect of the achieved performance, this error
range corresponds to an error range of ±8 grades of the FAS scale over the
sum of 8 tasks scores. This can be also interpreted as if, in the worst case,
at most, an error of 1 grade for each task is committed.
Comparing these results with the ones reached in the previous studies, us-
ing a mixed dataset, that included both stroke survivors and patients af-
fected by TBI, built with data recorded during the performance of standard-
ized WMFT tasks, it was possible to achieve a coefficient of determination
R2 = 0.79, while in this thesis, with the same patients but using ADL tasks,
is presented a coefficient of determination R2 = 0.83. The single task predic-
tions of FAS scores and the total FAS score predictions, as has been antici-
pated, are used as a further input, besides accelerometers data, for the FMA
estimation algorithm in order to improve those estimates.
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Figure 4.11: Bias analysis of % of maximum FAS score predictions: on the
x-axis the percentage of the maximum FAS, while on the y-axis the subjects’
estimation error, defined as e = predicted − actual; each point represents
one single subject, in red if the patient is a Stroke survivor or in blue if he is
affected by TBI.
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4.3 FMA Scores Estimation
In order to provide a global view of the FMA scores estimation algorithm
before going into detail, here is given a quick introductory description of its
key steps and features that make it up.
The estimation of FMA scores is treated as a regression problem: the label,
in fact, is continuous in a range from 21 to 66, when both the baseline and
the end-of-treatment recordings are included. After extracting the features
from the wearable accelerometers data, in order to perform dimensionality
reduction, a subset that includes the most relevant ones is selected using
a Correlation-based Feature Selector (CFS). The predictions are performed
training and testing a modified random forest, which was called "Balanced
Random Forest" by Adans-Dester [1].
Firstly, the estimates of FMA scores from each task are obtained individually,
and then, they are combined to make a final prediction. The previous single
tasks FAS score estimates are added as additional features to improve single
tasks FMA predictions, while the total FAS prediction is used for the same
purpose during their aggregation procedure. Moreover, to avoid overfitting,
also in this case, LOO cross-validation is used and, as in the FAS estimation
algorithm, it is necessary to handle an imbalanced dataset.
It was also sought the best subset of tasks, among all the possible combi-
nations, since it was not known if all of them were descriptive and useful in
predicting the FMA scores. Evaluating the performance of both single tasks
and subsets of tasks, it turned out that only some of the tasks are capable
of assessing the motor impairment and only a few subsets can be used to
reach good performance in estimating FMA scores. In particular, the opti-
mal subset proposed here is made up of 4 tasks, [1 3 4 6], which specifically
are opening a bottle, putting on and taking of a pen cap, unfolding a towel
and lifting a box.
Investigating the feature importance, calculated during the random forest
training, it is possible to make some intuitions regarding the singular vari-
ables. The analysis of the algorithm performance is done evaluating the
coefficient of determination R2, the bias and, the root mean square errors
RMSE obtained for each subject and for different intervals of the whole
FMA range. To better understand how this algorithm actually works, a
schematic pipeline is provided in the following figure 4.12.
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Figure 4.12: FMA score prediction algorithm pipeline. k, m, n ∈ [1,8]; each
task is analyzed separately taking as inputs the accelerometers data and the
FAS predictions of the related task, and giving as output the FMA single
task predictions; after the latter are calculated for all the considered tasks,
they are combined together with the FAS total score predictions to make the
final FMA prediction.
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4.3.1 Handling Imbalanced Dataset
As in the case of FAS score predictions, also the dataset for FMA estimation
is imbalanced and the consequences of using it are the same as discussed in
the previous section. In order to handle this issue as best as possible, different
oversampling and undersampling techniques were tried, still, the one that led
to the best performance confirmed to be, also in this case, ADASYN. The big
difference between how ADASYN is implemented in this situation compared
to the previous one, lies in the fact that this is a regression problem, while
the other is a multiclass classification and this leads to several variations in
the procedure. The fundamental concept of this ADASYN implementation
is based on reinterpreting a regression problem as a classification one; the
key steps are listed here:

• The whole FMA range [21,66] is divided into smaller intervals of around
4-5 FMA points; according to the corresponding intervals, the observa-
tions are assigned to those new classes.

• Considering that, in order to find the examples needed to generate new
observations, the ADASYN algorithm performs a neighbor search, in
each FMA interval a minimum number of observations must be guaran-
teed. If one of these clusters has less than 7 instances, this is the chosen
number, the classes are rebuilt and the observation reassigned according
to larger intervals until all the clusters have at least 7 observations.

• After identifying the majority class, each other class is individually pro-
cessed in order to generate as many examples as needed for rebalancing
the dataset.

• In order to assign to each synthetic observation an FMA score within
the boundaries of its interval, the affinities between each new point and
all the original data points are calculated; for this purpose, the euclidean
distance is used as the similarity measure. The FMA score of a synthetic
point is thus assigned as the one from the closest example among the
original observations of the same cluster.

In the following figure 4.13 are shown the results of this ADASYN imple-
mentation for a regression problem. At the end of the procedure the dataset
is rebalanced and ready for further uses.
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Figure 4.13: Results of rebalancing the FMA dataset with an adaptation
of ADASYN algorithm that made it suitable for regression problem; the
represented dataset is made up of data belonging to the optimal subset of 4
tasks with both baseline and end-of-treatment recordings.

Reducing up to 3 the dimensionality of the new dataset, that is now composed
by the original and the synthetic data, it is possible to visualize in a 3D space
the data cloud of both real and generated points. t-Distributed Stochastic
Neighbor Embedding (t-SNE) is used for reducing the dimensionality in order
to generate the following figures (4.14,4.15,4.16,4.17) related to the 4 tasks
of the optimal subset.
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Figure 4.14: FMA data cloud for task 1.

Figure 4.15: FMA data cloud for task 3.
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Figure 4.16: FMA data cloud for task 4.

Figure 4.17: FMA data cloud for task 6.
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4.3.2 Balanced Random Forest
The FMA score predictions are made training and testing Balanced Random
Forests of the same type of the one described in [1]. The same approach
used in the FAS scores estimation algorithm is applied here when deciding
the number of decision trees for building the RF; also this case, the chosen
number of weak learners is 100. The RFs utilized to generate the FMA score
predictions for each of the 4 ADL tasks are trained using even more bal-
anced datasets: observations that are used to generate the decision trees are
randomly sampled picking up the same number of examples among intervals
in the whole FMA range; moreover, preserving the nature of the RF, also
the data features are randomly selected during this process. This further
balancing of the training set in the course of the generation of the RF is ob-
tained with the addition of a feature that labels the observation based on the
correspondent FMA score at the baseline. Remembering that the purpose of
making the estimates is to evaluate the clinical outcome of a patient’s specific
rehabilitation program, it is reasonable to keep track of the starting point,
but, in order to avoid overfitting and to retain the model generalization, the
information regarding the FMA score at the beginning of the rehabilitation
intervention is provided by way of range. More to the point, the FMA range
is divided into 5 classes as it is described in the table below 4.2:

Class FMA range

1 FMA ≤ 30

2 30 < FMA ≤ 38

3 38 < FMA ≤ 47

4 47 < FMA ≤ 56

5 FMA > 56

Table 4.2: FMA classes for Balanced Random Forest.
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4.3.3 Adding FAS estimates
In order to improve the FMA predictions, the FAS estimates are added to
the FMA dataset as a further feature.
Specifically:

1. single task FAS estimates, after being unity-based normalized, are added
to the correspondent single task FMA dataset;

2. FAS total score predictions are added to the 4 single task FMA estimates
when aggregating them to make a final prediction:

FM̂AF AS = FÂST OT

100 × FMAmaxUE

• FM̂AF AS: FMA scores derived rescaling the FAS total score esti-
mates

• FÂST OT : FAS total score estimates expressed as a percentage of the
maximum achievable FAS score for 8 tasks

• FMAmaxUE: FMA maximum achievable score for upper-extremity
section, corresponding to 66.

The rescaling of the FAS total score estimates towards the FMA range can be
justified by the partial correlation that exists among the two clinical scales;
this can be observed in the figure 4.18 which shows how FMA scores can be
grossly estimated using a linear regression between the obtained FM̂AF AS

and the actual FMA scores.
In the figure 4.19 are shown the results of the FMA estimation algorithm
obtained without enhancing the predictions with the addition of the FAS
score estimates, neither single task nor total score ones; this plot is provided
in order to keep track of the performance improvement resulting from the
use of FÂS. During the balanced RFs training, it is possible to calculate
the permutation-based features importance among the ones that are selected
by the Correlation-based Feature Selector (CFS) in order to assess whether
adding the single task FAS estimates is impacting on the FMA predictions.
Going more into detail, looking at the figures 4.20, 4.21, 4.22 and 4.23, it
can be viewed that, for the tasks 1, 3 and 6, the single task FAS estimates
are present in the subset of selected features and that they turn out to have
a decent importance among them.
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Figure 4.18: FMA scores are inaccurately predicted using the FM̂AF AS as
evidence of the correlation between the FAS and FMA scale.
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Figure 4.19: FMA prediction obtained using a model trained without FÂS.
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Figure 4.20: Feature Importance for task 1 FMA scores estimation.

Figure 4.21: Feature Importance for task 3 FMA scores estimation.
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Figure 4.22: Feature Importance for task 4 FMA scores estimation.

Figure 4.23: Feature Importance for task 6 FMA scores estimation.
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4.3.4 FMA scores estimation Results
The results here presented are obtained processing a dataset made up of
features extracted from wearable accelerometers data and of FAS estimates
belonging to an optimal subset of tasks [1 3 4 6]. Both stroke survivors’ and
TBI patients’ data are included and the recordings were made during the
performance of Activities of Daily Living tasks. The FMA score predictions
are generated using this dataset to train and validate a balanced random
forest with 100 trees. Finally, the regression line between the predicted and
the actual FMA scores is derived.
When aggregating the single task FMA predictions and the FM̂AF AS, they
are averaged and the resulting estimates are given as the final outputs.
In the figure 4.24 are shown the aggregated predictions of subjects’ FMA
scores; the impact of the FÂS addition is visible comparing this figure with
the previous 4.19: the improvement in the coefficient of determination R2 is
significant since it grew by 8.3%.
Two kinds of error are calculated to evaluate the performance of the model:

• Estimation error defined as e = predicted − actual: it keeps track of the
sign which is needed in order to evaluate the under/overestimation;

• Root Mean Square Error (RMSE) defined as
√︃∑︁ntrials

i=1
F M̂Ai−F MAi

ntrials
: it is

used to quantify the error that affects each subject.
Already from 4.24 the underestimation of the highest FMA scores can be no-
ticed together with the little overestimation of the lowest FMA scores; this
behavior suggests the presence of a little bias that is more appreciable in the
figure 4.25. The estimation errors for all the FMA score predictions of the
subjects graphically range between ±10 FMA grades, while analyzing each
subject RMSE in the figure 4.26 a more quantitative understanding of the
estimations can be obtained: despite a couple of subjects in which the RMSE
reaches values around 10 FMA grades, for many other patients the predic-
tions are really accurate. Overall, the mean RMSE is quite low, permitting
to make precise FMA score estimation with, on average, a displacement of 5
FMA grades from the actual FMA score provided by clinicians. Moreover,
looking at the figure 4.27, dividing the whole FMA range into intervals of 5-6
grades, it is possible to see that there are no consistent differences in terms
of error among these intervals.
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Figure 4.24: FMA predictions of subjects’ scores; the regression line, in green,
is derived relating the predicted FMA scores to the actual ones; in red are
plotted the FMA estimates for stroke survivors, while in blue for TBI pa-
tients; the confidence interval is graphically shown with dashed lines.
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Figure 4.25: Bias analysis for FMA predictions: the estimation errors of
FMA scores predictions of trials are plotted against the actual FMA scores;
the range of Minimum Detectable Change (MDC) is plotted with dashed
lines. The model behaves without any consistently difference towards the
stroke survivors and the TBI patients.
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Figure 4.26: Subjects’ RMSE analysis for FMA predictions: the RMSEs of
each patient, calculated among their respective trials, are here shown; the
patients are sorted in order of increasing actual FMA score. An overall RMSE
of 5 FMA grades is here reported.
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Figure 4.27: Analysis of FMA intervals RMSE for FMA predictions: the
whole FMA interval of end-of-treatment recordings [25,66] is divided into
intervals of 5-6 FMA points; this plot shows that no substantial difference
exists in the algorithm ability to predict FMA scores that belong to different
FMA scale portions.
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4.4 Adding Clinical Features
This section briefly discusses, taking it one step further, how adding features
based on clinical data of the patients may positively impact the previous
model performance. For the sake of clarity, beyond the addition of these pa-
tients’ clinical information no other changes are made to the model proposed
in the last section.
In particular, the clinical features that were harvested are here described
with a quick explanation of the grounds on which the decision to include
them is taken:

• Age: it is reasonable to think that the response of a patient to a reha-
bilitation program may depend on his age and that, at the same stage
of the disease, a younger patient should recover faster compared to an
elder subject;

• Chronicity: it indicates how long the patient has been suffering from the
disease; it gives gross information regarding the evolution of the disease
and what stage the patient has reached;

• Days between assessments: it is a way of tracking how much time elapsed
between the baseline and the discharge; moreover it is a way of quanti-
fying how much time the rehabilitation program lasted;

To be more accurate, the features just described are added to the FMA scores
estimation algorithm for single tasks; thus, in summary, the inputs for this
algorithm are the wearable accelerometers data, the FAS estimates for single
tasks and the clinical features in question.
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4.4.1 Clinical Features Importance
Evaluating the permutation-based feature importance during the training of
the balanced RFs, analyzing one task at a time, it is possible to understand,
firstly, which clinical features are selected by the CFS and, then, which are
predictive in a quantitative way. The information regarding the importance
of the clinical features, that can be extracted from the figures 4.28, 4.29, 4.30
and 4.31, are summarized in the table below 4.3. Analyzing it, it is possible
to say that:

• Age: even if it was considered to be relevant, the statistics show that it
is selected in 1/4 tasks and with low importance;

• Chronicity: it is selected in 2/4 tasks and it has moderate importance;

• Days between assessments (DBA): it is selected in all the tasks and it
has high importance.

While DBA turns out to be one of the most relevant features for all the
tasks, the chronicity has a decent contribution in only 2 tasks and the age is
overwhelmed by the other features. These statistics should not lead to the
conclusion that the age clinical feature is not correlated with the label but
rather that the extracted features are more predictive of it.

TASK AGE CHRONICITY DBA

1 ✚✚❩❩ ✚✚❩❩ 0.6

3 ✚✚❩❩ 0.3 0.7

4 0.2 ✚✚❩❩ 0.7

6 ✚✚❩❩ 0.4 0.9

Table 4.3: Stats of permutation-based importance of clinical features; "days
between assessments" is here abbreviated as "DBA"; a crossed box means
that the clinical feature was not selected by the CFS for that task.
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Figure 4.28: Feature Importance for task 1 (clinical features added).

Figure 4.29: Feature Importance for task 3 (clinical features added).
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Figure 4.30: Feature Importance for task 4 (clinical features added).

Figure 4.31: Feature Importance for task 6 (clinical features added).
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4.4.2 Improvement in performance
From the figure 4.32 it is possible to assess that, thanks to the addition of
the clinical features, and in particular of DBA and chronicity, the coefficient
of determination R2 slightly increased from 0.78 to 0.81. Moreover, while
the estimation error increased for patients whose FMA scores are near the
minimum, for the other subjects it decreased.
In the figure 4.33, comparing it with the previous 4.25, it is possible to see
that there is still some bias, but from a FMA score of 40 on up, it reduces.
This behavior is confirmed looking at the figure 4.34 where the subjects’
RMSE are plotted: the overall error reduces from 5 to 4.34, but for lower
FMA scores it increases. Plotting the RMSE among FMA intervals, as in the
figure 4.35, it becomes clear that adding clinical features improves globally
the FMA scores predictions at the expense of the low FMA scores estimates.
Furthermore, when adding clinical features, no different behavior is noticed
between the predictions of stroke survivors and patients affected by TBI.
This justifies one more time the decision to include in the same dataset pa-
tients that suffer from different diseases when their data don’t show evidence
of distinctions.
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Figure 4.32: FMA predictions of subjects’ scores; the regression line, in green,
is derived relating the predicted FMA scores to the actual ones; in red are
plotted the FMA estimates for stroke survivors, while in blue for TBI pa-
tients; the confidence interval is graphically shown with dashed lines.
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Figure 4.33: Bias analysis for FMA predictions: the estimation errors of FMA
scores predictions of subjects are plotted against the actual FMA scores; the
range of Minimum Detectable Change (MDC) is plotted with dashed lines.
The model behaves without any consistently difference towards the stroke
survivors and the TBI patients.
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Figure 4.34: Subjects’ RMSE analysis for FMA predictions: the RMSEs of
each patient, calculated among their respective trials, are here shown; the
patients are sorted in order of increasing actual FMA score. An overall RMSE
of 4.34 FMA grades is here reported.
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Figure 4.35: Analysis of FMA intervals RMSE for FMA predictions: the
whole FMA interval of end-of-treatment recordings [25,66] is divided into
intervals of 5-6 FMA points; this plot shows that no substantial difference
exists in the algorithm ability to predict FMA scores that belong to different
FMA scale portions.
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Chapter 5

Conclusion

5.1 Conclusions

The work presented in this thesis demonstrates that data recorded with wear-
able accelerometers, during the performance of Activities of Daily Living
tasks, can be used to assess the movement quality and motor impairment,
through FAS and FMA respectively, in stroke survivors and patients suffer-
ing from traumatic brain injury.
Specifically, movement quality can be accurately estimated with a coefficient
of determination R2 of 0.83 and adding these predictions to the algorithm
used for estimating the motor impairment a performance improvement of
8.3%, in terms of accuracy, is recorded in the latter. In this way, motor im-
pairment can be assessed with R2 of 0.78 and with a global RMSE of 5 over
the sample.
In order to provide reliable evaluations of the model, leave-one-out cross-
validation technique is used, since it is known to be suitable to assess the
generalizability.
It has to be mentioned that the proposed model reached these performance
despite the small sample size and the nonuniform distribution of the avail-
able clinical scores; the implemented Random Forest handles well this small
dataset and is robust to overfitting. With a larger dataset, that includes
observations all along the clinical scores scale, it would be possible to reach
a quasi-uniform distribution of the estimation error; this would lead to a
consistent decrease in the bias and to more accurate predictions.
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Considering that these results are obtained using only wearable accelerom-
eters data, going one step further, it is shown that adding features based
on patients’ clinical data has a positive impact on the proposed model, en-
hancing its performance. In particular, the time that elapsed between the
recordings at baseline and discharge, and the disease chronicity, turned out
to be predictive of the rehabilitation outcome.
Enriching the dataset with these clinical features, the model performance
increased, reaching R2 of 0.81 and reducing the global RMSE down to 4.34.
Moreover, this work confirms, once again, that clinical rehabilitation out-
comes of stroke survivors and patients affected by traumatic brain injury
can be evaluated applying the same approach for both of them.
In order to better understand the importance of this thesis achievements and
to contextualize them within the rehabilitation research, it is worth pointing
out that, in the previous studies, standardized tasks belonging to the WMFT
were used. On the contrary, in this work, patients performed the less con-
strained ADL tasks; since these tasks are not standardized, the subjects had
more freedom in their movements, focusing mainly on reaching the goal re-
quired by the tasks. From the point of view of achieving high performance
in terms of accuracy and error, the approach based on the analysis of data
derived from ADL tasks is disadvantaged, since the variability of the signal
across the subjects is much higher in respect of the standardized tasks one.
On the other hand, the clinical scores predictions obtained in this way are
more descriptive and realistic about the condition of the patients since they
are evaluated on their way of accomplishing self-care tasks.
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5.2 Future Work
Wearable technologies, as shown in this work, provide a cost-effective solution
for tracking the clinical outcomes of rehabilitation programs; this suggests
that, in the near future, their usage for this purpose will be widely diffused.
Moreover, not far from today, it should be possible to move the recordings
from a clinical setting, towards a home-based context. This would drastically
reduce patients’ and clinicians’ burden, since, performing ADLs, the record-
ings do not require the presence of qualified staff, thus they could be done
autonomously by the subjects at their home. More on this, an interactive
platform could help the patients following them during the data collection
and it could automatically upload the data to the laboratory where the anal-
ysis will be performed.
This approach would enable frequent recordings during extended rehabilita-
tion interventions, leading to the possibility of fitting a precise motor recovery
trajectory, useful for clinical decision making. The mentioned curve may be
helpful in evaluating the response of a patient to an intervention, facilitating
the clinicians, if necessary, to adjust and fit the treatment to him, as estab-
lished by the precision rehabilitation principles.
In order to improve the model performance in predicting the clinical scores,
it would be useful to include more subjects, especially with lower clinical rat-
ings, trying to cover as much as possible all the scales range. One of the key
focuses when feeding this dataset with new observations should be to strive
to build it as little imbalanced as possible. Moreover, collecting more clinical
information concerning, for instance, the total duration of the rehabilitation
sessions between two recordings, or regarding the total recovery time among
these sessions, may positively impact the model.
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