

POLITECNICO DI TORINO

Master of Science in Automotive Engineering

Master Thesis

Deep learning solution for the performance
analysis of hybrid powertrains

Supervisors

 Daniela Anna Misul
 Claudio Maino
 Alessandro Falai
 Alessandro Di Mauro

Candidate

Simone Quaranta

March 2021

3

Abstract

Over the past years, the engine emission regulation has become of crucial importance and the
development of Hybrid Electric Vehicles (HEV) is one of the best solutions in the market.
Besides the emissions reduction, this class of vehicles has to satisfy important performances
constraints.
For this reason, the aim of this project is to develop a new algorithm capable of classifying the
admissibility of hybrid electric vehicle layouts, which means to check if the performance index
of each layout is lower than a predefined threshold. This algorithm exploits Deep Neural
Network (DNNs), an artificial neural network (ANN) with multiple layers between the input
and output layers. There are different types of neural networks, but they always consist of the
same elements: neurons, synapses, weights, biases, and functions, used to replicate the human
brains’ behaviour. This structure enables the algorithm to train and learn by itself.
This admissibility classifier has been inserted into an existing pipeline, creating a new one
composed of three different consecutive nets: a feasibility classifier, an admissibility classifier
and a regressor of CO2. Each layout passes through this pipeline to verify if it satisfies the
constraints of emissions (feasibility) and performance (admissibility) and, then, to predict its
CO2 emissions.
For this project, Spyder Anaconda has been used: it is an open-source cross-platform integrated
development environment (IDE) for scientific programming in the Python language and
libraries as Keras and Tensorflow.

4

Contents

1 Introduction ... 7

1.1 State-of-the-art of hybrid electric vehicle .. 7

1.2 Thesis overview.. 9

2 Dataset analysis ... 11

2.1 Dataset description .. 11

2.2 Cycles... 12

2.3 Dataset manipulation .. 15

3 Deep Neural Network Theory .. 19

3.1 State-of-the-art... 19

3.2 Model representation ... 21

3.3 Forward propagation .. 23

3.4 Backward propagation .. 24

3.5 Loss function .. 25

3.6 Starting parameters and Hyperparameter .. 26

3.6.1 Number of epochs .. 27

3.6.2 Learning rate ... 27

3.6.3 Number of input nodes and hidden layers ... 28

3.6.4 Dropout .. 28

3.6.5 L2 regularization ... 30

3.7 Search of Hyperparameter .. 30

3.8 K-Fold Cross Validation ... 31

3.9 Explainable Artificial Intelligence ... 32

4 Deep Neural Network Model ... 35

4.1 Technical tools ... 35

4.2 Pipeline description ... 36

4.2.1 Performance evaluation ... 37

4.3 Hyperparameter search space ... 38

4.4 Optimization tools for model ... 39

4.4.1 Dropout .. 39

4.4.2 Early Stopping ... 40

4.4.3 Batch Normalization .. 40

4.5 Representation methods ... 41

4.5.1 Confusion matrix .. 41

4.5.2 Learning curves ... 42

4.6 Permutation Feature Importance .. 45

5

5 Results .. 47

5.1 New admissibility classifier in the pipeline ... 47

5.1.1 Analysis on P4 .. 47

5.1.2 Analysis on P2 .. 50

5.1.3 Comparison between P2 and P4 .. 53

5.2 Pipeline analysis with the new P2 dataset ... 55

5.2.1 Feasibility classifier + regressor pipeline ... 55

5.2.2 Feasibility classifier + admissible classifier + regressor pipeline 57

5.3 Permutation Feature Importance results .. 62

Conclusions ... 65

Bibliography ... 66

Index of figures
Figure 1.1 - Electric transmission of series HEV - principal scheme .. 7
Figure 1.2 - Classification based on e-machine position ... 8

Figure 1.3 - Working modes and power flows of parallel HEV .. 8
Figure 2.1 - WHVC vehicle speed profile .. 12
Figure 2.2 - Neural network performance with respect to the amount of data 13

Figure 2.3 - ETC vehicle speed profile .. 13
Figure 2.4 - HDUDDS vehicle speed profile ... 14

Figure 2.5 - Creep, transient and cruise HHDDTS vehicle speed profile 14
Figure 2.6 - CSC vehicle speed profile .. 15

Figure 2.7 - Gradient descent path without (left) and with (right) data normalization 16
Figure 3.1 - Structure of artificial intelligence ... 19

Figure 3.2 - Performance of machine learning models depends on the amount of data 19
Figure 3.3 - Different types of deep learning ... 20
Figure 3.4 - Brain neuron structure .. 21

Figure 3.5 - Artificial neuron structure .. 21
Figure 3.6 - Simplify deep neural network structure ... 22

Figure 3.7 - Sigmoid (left) and Relu (right) function ... 22
Figure 3.8 - Forward propagation scheme ... 23
Figure 3.9 - Cost function minima ... 24

Figure 3.10 - Forward and backward propagation ... 25
Figure 3.11 - Example of Binary Cross Entropy .. 26

Figure 3.12 - RMSE representation .. 26

Figure 3.13 - Steps of gradient descent .. 27

Figure 3.14 - Fitting problem in classification ... 28
Figure 3.15 - Fittting problem in regression .. 29
Figure 3.16 - Dropout strategy ... 29
Figure 3.17 - Hyperparameters tuning schemes ... 30
Figure 3.18 - k-fold Cross Validation scheme ... 31

Figure 4.1 - Spyder logo ... 35
Figure 4.2 - Main Python libraries logo ... 36
Figure 4.3 - R2 graphical representation .. 38
Figure 4.4 - Dropout technique application to all layers .. 39

file:///D:/Documenti/Politecnico/Tesi/Tesi_Quaranta_Simone.docx%23_Toc67412671

6

Figure 4.5 - Early stopping technique .. 40

Figure 4.6 - Confusion matrix scheme ... 41

Figure 4.7 - Underfiting in learning curves .. 43
Figure 4.8 - Overfitting in learning curves ... 43
Figure 4.9 - Good fit in learning curves ... 44
Figure 4.10 - Learning problem (left) and generalization problem (right) in learning curves . 44
Figure 4.11 - Permutation feature importances of admissibility classifier 46

Figure 5.1 - Feasibility and admissibility classifier performances (P4) 47
Figure 5.2 - Regressor with & without admissibility classifier (P4) .. 48
Figure 5.3 - Cross-entropy vs Epochs - Feasibility classifier – without Dropout (Sim I) 49
Figure 5.4 - Cross-entropy vs Epochs - Feasibility classifier – with Dropout 49
Figure 5.5 - Feasibility and admissibility classifier performances – Fixed parameters (P2) ... 51

Figure 5.6 - Regressor with & without admissibility classifier – Fixed parameters (P2) 51
Figure 5.7 - Cross-entropy vs Epochs - Overfitting (P2) ... 52

Figure 5.8 - Comparison between different iterations .. 52

Figure 5.9 - Cross-entropy vs Epochs - 35 iterations ... 53
Figure 5.10 - Cross-entropy vs Epochs - with Dropout (P2) ... 53
Figure 5.11 - Comparison between P2 and P4 admissibility classifier performance 54
Figure 5.12 - EM1SpRatio feature in P3 dataset (left) and P4 dataset (right) 54

Figure 5.13 - FDsSpRatio feature in P4 dataset ... 55
Figure 5.14 - Feasibility classifier performance - New P2 dataset .. 56

Figure 5.15 - Regressor performance - New P2 dataset ... 56
Figure 5.16 - Classifiers performances - New P2 dataset .. 57
Figure 5.17 - Regressor performance - with admissibility classifier - New P2 dataset 57

Figure 5.18 - Feasibility classifier learning curves .. 58
Figure 5.19 - Admissibility classifier learning curves ... 58

Figure 5.20 - Cross-entropy vs Epochs - Feasibility classifier - sim 2 (left) & 5 (right) 59

Figure 5.21 - MCC vs Epochs - Feasibility classifier - sim 2 (left) & 5 (right) 60

Figure 5.22 - Cross-entropy vs Epochs - Admissibility classifier - sim 2 (left) & 5 (right) 60
Figure 5.23 - MCC vs Epochs - Admissibility classifier - sim 2 (left) & 5 (right) 60

Figure 5.24 - Regressor performance with different parameter combinations 61
Figure 5.25 - Permutation Feature Importance for feasibility classifier 62

Figure 5.26 - Permutation Feature Importance for admissibility classifier 62

Index of tables
Table 2.1 - Extract of P2 dataset .. 11

Table 2.2 - Extract of P4 dataset .. 12
Table 2.3 - Extract of new P2 dataset ... 15
Table 4.1 - Hyperparameter search space of admissibility and feasibility classifier 38

Table 4.2 - Hyperparameter search space of regressor .. 39
Table 5.1 - Regressor with and without admissibility classifier .. 48
Table 5.2 - Fixed hyperparameters ... 50
Table 5.3 - Restricted hyperparameter search space .. 59

Table 5.4 - Pipeline simulations - Dropout as hyperparameter & restricted search space 59

Introduction

7

1 Introduction

1.1 State-of-the-art of hybrid electric vehicle
Over the last years, the environmental problem grows more and more, and transport sector is
considered one of the most responsible of this. The increasing need to make the road greener
than before leads companies and market to search for new types of powertrain. Between those
studied, the most developed are for sure the electric ones. Electric vehicles can be classified as
follows: Battery Electric Vehicles (BEV), Hybrid Electric Vehicles (HEV) and Full Cell
Electric Vehicles (FCEV) [1].
Starting from BEV, they are composed of a battery, that is the only energy source, an inverted
that transforms DC current in AC current for the AC electric motor, and, then, a mechanical
transmission. This solution can be very convenient for what concern the well-to-wheel
emissions (WTW), but only if the production of electricity to recharge the battery is totally
renewable. In fact, the emissions produced by the vehicle during its life (Tank-to-Wheel, TTW)
are closed to zero. This kind of vehicles can be used only for urban cars since the driving range
is small, even with batteries with great dimension.
Another category is FCEV; it is a device able to directly convert chemical energy into electricity
without combustion neither moving parts, through the electrochemical combination between
hydrogen and oxygen, producing water, electricity and heat. The fundamental difference
between the Fuel Cell and the battery is that the battery has the reactants always inside (i.e. the
weight of a fully charged battery is the same of a fully discharged one), while the FC use
reactants coming from the external (not inside the stack): that means that they continue to run
as far as they are fueled with hydrogen and oxygen (from ambient air). This technology has a
good potential, but is not yet mature.
The last category presented is HEV, a powertrain composed of an internal combustion engine
and one or more electric machines. This technology is the most valuable nowadays because
unites the advantages of both BEV and ICE vehicles. In fact, the TTW emissions are lower than
a normal ICE due to the presence of the electric machine and, moreover, the driving range is
higher than a pure BEV because of the presence of fuel tank as additional power supplier. There
is a classification inside HEV following the number of traction systems. Series HEV has only
one powertrain with an electric machine as torque actuator. The hybridization is realized at the
energy source level with an electric link (realized or directly or through a power converter)
connecting one electric source (typically, but not necessarily, a battery pack) to an electric
generation system based on an ICE mechanically coupled to an e-machine mainly or solely
used as generator.

Figure 1.1 - Electric transmission of series HEV - principal scheme

Introduction

8

On the other hand, parallel HEV has two traction systems: the one of ICE and the one of e-
machine. In particular, depending on the position of e-machine, the parallel architecture is
divided in: P1, e-machine connected to the ICE; P2, e-machine positioned between ICE and
transmission; P3, e-machine positioned between transmission and differential unit; P4, e-
machine position on secondary axle, with ICE one primary one. These architectures are the
most widespread in the market and the ones analysed in this project, with special attention for
what concern P2 and P4.

Figure 1.2 - Classification based on e-machine position

It also deserves a quote the HEV complex architectures that unite parallel and series HEV.
The main advantage of parallel architecture is the large amount of different power flows that
can be utilize considering the vehicle’s working conditions, as Figure 1.3 shows.

Figure 1.3 - Working modes and power flows of parallel HEV

In order to choose the correct power demand of each component to ensure the best performance,
both in efficiency and in emissions, different types of control strategies exist. In literature they
are divided in: Global optimization methods, Instantaneous optimization methods and Heuristic
methods. This topic has already been developed by the project from which this work is born,
so there is no need to repeat the deepen. Anyway, is important to briefly describe the main
features of Global optimization methods since it is a starting point also for this project. The aim
of this category of methods is to find the optimal strategy by minimizing an objective function
over a given vehicle mission, guaranteeing, at the same time, the constraints on the vehicle state
variables (e.g. final level of the state of change of the battery). The most widespread technique

Introduction

9

in this category, especially in hybrid vehicles, is Dynamic Programming, described as a
deterministic multi-stage decision-making process, which involves a dynamic system, an
objective function and control/state grids [2]. The connection between the techniques described
and this project will be clearer in the following chapters.

1.2 Thesis overview
This project was born as a continuation of previous works. The broader idea, as mentioned
above, is to create a tool capable of calculating the CO2 emissions of hybrid vehicles, in order
to integrate and help a pre-existing tool based on Dynamic Programming techniques. The first
network created previously was the regression one, capable of calculating CO2 starting from a
dataset composed of only feasible layouts. Subsequently, the need to filter the layouts contained
in the datasets, deleting those not capable of completing the considered cycle, led to the design
of a new classification network upstream of the previous one, a feasibility classifier. Now, a
further filtering of the datasets is important, the one related to the performance of the layouts.
Even in a historical moment in which the quantity of emissions is the main parameter monitored
for a vehicle, the performance of the engines remains crucial for the achievement of some tasks.
For this reason, the study of the performance index of the layouts contained in the datasets, and
a consequent classification of it, is fundamental. The purpose of this project is therefore to
create a new classifier, an admissibility classifier, which will be inserted between the feasibility
classifier and the regressor. In this way, the dataset that is given in input to the regressor contains
only layouts feasible and admissible.
This project is divided into several sections. The first concerns the description of the datasets
used, the second and third explain the theory and method of the tools used. Finally, the results
and reflections are presented.
Obviously, some results presented will also concern the first classifier and the regressor, and
not only the admissibility classifier, as the study was carried out by also checking the stability
of the entire pipeline.

Introduction

10

Dataset analysis

11

2 Dataset analysis

2.1 Dataset description
As explain in the introduction, the aim of this project is to produce a tool able to simulate what
a pre-existing Dynamic programming algorithm predicts, that is CO2 emissions of different
architectures of hybrid electric vehicles. This tool works with deep learning neural network
based on dynamic programming features. To perform this task, the model has to be trained on
data contained in a dataset directly generated by the same DP algorithm.
These datasets are simulated for different hybrid vehicle architectures, those presented
previously, P2, P3 and P4. They are divided in two main areas, the first includes the features of
the layouts considered, the second the aspects that the tool has to predict, so the CO2 emissions
and the performance indexes.

Table 2.1 - Extract of P2 dataset

Table 2.1 shows a part of the dataset of P2. It is important to notice that some values of CO2
emissions are equal to ‘10000’, meaning that the layout considered is not feasible, so it can’t

complete the cycle. In the same way, the values of performance index equal to ‘-1000’ mean

that the layout is not admissible, so it can’t reach the threshold. Considering the Dynamic
Programming algorithm from which the dataset is born, a layout is considered admissible if it
satisfies some constraints:
• Maintain a pure thermal mode until the end of available fuel, with a maximum speed of 85 km/h

with no slope of the road.
• It must sustain for 5 minutes the max speed (85 km/h).
• It must maintain the power split mode for 2 minutes with both a slope of 7.2% and a speed

of 60 km/h, and a slope of 14% and a speed of 30 km/h.
• It must maintain the pure thermal mode for 2 minutes with a slope of 14% and a speed of

30 km/h.
• It must take 12.5 seconds to accelerate from 0 km/h to 50 and 28.5 to accelerate from 0

km/h to 80 km/h.
Now it is important to understand the meanings of the features presented in the dataset:

• EngDispl: it represents the engine map to be used.
• PEratio: ratio between electric machine power and the maximum power that can be store in

the battery.
• EM1Power: specify the power of electric machine.

EngDispl [l] PEratio EM1Power [kW] EM1SpRatio [-] FDpSpRatio [-] CrateDis_max [-] CrateChar_max [-] Co2ttw Performance Index [-]

3,0472 8,447266 75,26367 4,294921875 3,158203125 8,63671875 8,49609375 348,1211 -1000

2,794 8,417969 76,66016 4,13671875 3,11328125 8,4609375 10,4296875 348,236 -1000

2,5869 8,31543 82,2998 4,938476563 3,213867188 7,681640625 8,021484375 350,6695 -1000

2,5407 7,802734 75,04883 4,095703125 3,896484375 11,47265625 9,17578125 338,9066 24,91666667

2,4724 7,324219 78,37891 4,66796875 3,95703125 6,3984375 7,9921875 10000 25,16666667

2,6613 5,634766 71,82617 4,232421875 3,970703125 9,01171875 7,37109375 337,6185 26,91666667

2,7799 7,22168 70,26855 4,469726563 3,870117188 7,494140625 10,45898438 10000 27,83333333

2,5608 6,171875 84,60938 4,984375 3,984375 11,90625 10,78125 339,0809 27,83333333

2,5387 9,057617 86,16699 4,243164063 3,002929688 9,603515625 7,130859375 337,3678 28,66666667

Dataset analysis

12

• EM1SpRatio: speed ratio between ICE and e-machine.
• FDfSpRatio: speed ratio of the final drive.
• CrateDis_max: maximum discharge of the battery.
• CrateChar_max: maximum charge of the battery.
On the other hand, considering a part of the dataset of P4 (Table 2.2), it is possible to underline
the presence of a different feature, FDsSpRatio (speed ratio of the final drive, that is the
secondary axle) instead of EM1SpRatio. This is because the architectures P2 and P3 have the
electric machine coupled with the ICE that act only on the primary shaft, that is also the final
drive, while P4 architecture has the e-machine couple with the ICE only through the road,
meaning that there is a mechanical decoupled between them. For this reason, the e-machine
acts on the secondary shaft.

Table 2.2 - Extract of P4 dataset

The two complete datasets are composed of 1500 layouts and are simulated on the same cycle,
World Harmonized Vehicle Cycle (WHVC). During the project, a new wider P2 dataset was
presented and used to perform some analysis. It is composed of 7500 layouts, a combination of
five different datasets performed on different cycles. A deeper explanation of typology of cycles
considered is presented in the next chapter.

2.2 Cycles
At the beginning of the project, as previously mentioned, datasets utilized are simulated only
on WHVC. Figure 2.1 shows the vehicle speed profile.

Figure 2.1 - WHVC vehicle speed profile

EngDispl [l] PEratio EMsPower [kW] FDpSpRatio [-] FDsSpRatio [-] CrateDis_max [-] CrateChar_max [-] Co2ttw Performance Index [-]

2,6158 5,073242 106,0303 4,142578125 14,79882813 8,759765625 9,287109375 377,1168 32,33333333

3,9209 5,063477 113,208 4,576171875 10,47460938 7,998046875 8,033203125 389,4292 41,83333333

2,9027 5,927734 122,5098 4,94140625 11,62890625 10,72265625 11,42578125 388,5565 34,08333333

2,4762 5,498047 112,5488 4,05078125 15,33203125 6,92578125 9,41015625 378,1617 -1000

4,7029 5,200195 123,4619 4,787109375 12,98242188 6,802734375 10,82226563 405,8382 45,25

3,7813 5,15625 117,9688 4,4375 15,8125 10,6875 8,8125 385,3703 44,08333333

3,3826 5,629883 124,0479 3,052734375 10,12304688 9,380859375 9,556640625 368,7308 41,25

2,9611 5,19043 113,6475 3,126953125 13,53320313 8,431640625 7,271484375 368,6318 -1000

2,5016 5,664063 119,7266 3,703125 13,046875 8,859375 6,796875 373,4135 -1000

Dataset analysis

13

This cycle is a chassis dynamometer test. It lasts 1800 seconds and is divided into three
segments:

• The first 900 seconds represent an urban driving with a low average speed (21.3 km/h) and
a maximum speed of 66.2 km/h.

• The second segments, 481 seconds long, represents a rural driving and, for this reason, both
average and maximum speed increases.

• The last 419 seconds are defined as highway driving. In this section speeds are high, with
an average of 76.7 km/h and a maximum of 87.8 km/h, and starts, stops and idling are
absent.

As widely explained during the introduction, it is clear from literature that deep learning neural
network increases its performance with the increase of dataset dimension. Obviously, some
project can have access to huge group of data, composed of hundreds of thousands or more of
them, but this is not the case.

Figure 2.2 - Neural network performance with respect to the amount of data

One of the aims of this project is to increase dimension of the pre-existing dataset in order to
improve the performance of the model. Even if the order of magnitude is not comparable with
the example mentioned before, a new P2 dataset is been created joining different datasets
simulated in different cycles.
A new cycle considered is European Transient Cycle (ETC). It has been introduced for emission
certification of heavy-duty diesel engines in Europe starting in the year 2000. As in WHVC,
this cycle lasts 1800 seconds and is divided in three segments. The duration of each part is 600s.

• Part one represents city driving with a maximum speed of 50 km/h, frequent starts, stops,
and idling.

• Part two is rural driving starting with a steep acceleration segment. The average speed is
about 72 km/h

• Part three is motorway driving with average speed of about 88 km/h.

Figure 2.3 - ETC vehicle speed profile

Dataset analysis

14

The next cycle presented is Heavy-Duty Urban Dynamometer Driving Schedule (HDUDDS).
It is developed for chassis dynamometer testing too. As it can be seen in Figure 2.4 from the
vehicle speed profile, its duration is lower than the previous cycles, 1040 seconds.

Figure 2.4 - HDUDDS vehicle speed profile

The last two cycles the datasets are simulated on are both chassis dynamometer tests. They are
Heavy Heavy-Duty Diesel Truck Schedule (HHDDTS) and City Suburban Heavy Vehicle
Cycle & Route (CSC). The first is divided in four speed time modes: idle, creep, transient and
cruise (high speed). Figure 2.5 shows them, except for the first.

Figure 2.5 - Creep, transient and cruise HHDDTS vehicle speed profile

CSC is also available in route, where the vehicle speed is a function of travelled distance, rather
than time.

Dataset analysis

15

Figure 2.6 - CSC vehicle speed profile

For each of these cycles, a dataset is created and, then, they are joined. The aim of this operation,
a part from the increment of the amount of data available, is to add a new feature to the other
explained in the previous chapter, a feature that can describe on which cycle the considered
layout is performed. An arbitrary value from 1 to 5 is assign to each cycle in the following way:

• WHVC – 1
• ETC – 2
• HDUDDS – 3
• CSC – 4
• HHDDT – 5

Table 2.3 - Extract of new P2 dataset

This can lead to an improve of performances of the model, with particular attention to those of
the feasibility classifier since there is a connection between features of layouts and cycles.

2.3 Dataset manipulation
After the analysis of the structure of the available datasets and their features, now it is the
moment to talk about the procedure that the tool created in this project perform in order to reach
the best result in the shortest time. As previously presented, the tool is a deep neural network
pipeline composed of two classifiers and a regressor. The dataset is given to the first classifier,
the feasibility one, and after a first filtration, passes through the new classifier of admissibility
and the regressor. The model created has to be trained, validated and, then, tested in order to
act as a neural network, i.e. like a human brain, able to learn on its own the pattern present
between features. Even if these concepts have been widely presented in the next chapter about
the neural network theory, it is important to make a reference here because the dataset is divided
in three parts: training set, validation set and test set. The first action made by the algorithm is
to create test set and training-validation set. Thanks to the analysis carried out by the project

EngDispl [l] PEratio EM1Power [kW] EM1SpRatio [-] FDpSpRatio [-] CrateDis_max [-] CrateChar_max [-] Cycles Co2ttw Performance Index [-]

2,402 8,764648438 108,7256 4,989257813 3,741210938 10,89257813 11,56054688 1 337,294 -1000

2,4031 20,0390625 95,4102 5,21484375 3,037109375 9,76171875 8,12109375 1 10000 -1000

2,404 7,509765625 119,9512 4,857421875 3,345703125 9,76171875 8,12109375 1 337,4958 -1000

2,4063 29,921875 65,4297 4,6484375 3,65234375 8,0859375 10,0546875 1 10000 -1000

2,406 6,254882813 89,92676 4,151367188 3,895507813 8,630859375 10,30664063 1 335,5179 -1000

2,408 9,98046875 86,97266 4,57421875 3,55078125 8,0859375 10,0546875 1 10000 -1000

2,4094 19,9609375 82,7148 4,06640625 4,501953125 11,84765625 11,80078125 1 10000 -1000

2,4101 6,245117188 123,9795 4,430664063 3,190429688 9,228515625 7,505859375 1 335,8821 -1000

Dataset analysis

16

from which this arises, it is possible to know that the best split is 90% for training-validation
set (first datasets: 1350 layouts, second dataset: 6750 layouts) and 10% for test set (first
datasets:150 layouts, second dataset: 750 layouts). Downstream of this split, the following is
between validation and training set. It depends on the number of folds considered in k-fold
cross-validation. Leaving aside the description of cross-validation for a moment, which will be
addressed later, thanks again to the previous project the author wants to keep the same number
of folds, i.e. 8. This second split leads to a training set composed of 7/8 of training-validation
set and a validation set of 1/8 of it.
After the creation of these smaller datasets, it is important to perform another manipulation of
them, normalization of data. This action is fundamental for two main reasons:

• First of all, observing the extracts of the datasets in the previous chapter, it is clear how the
features original values are different one with respect to the other. One aim of normalization
is to ensure that the magnitude of these values is more or less the same. This leads to a
quicker optimization of the parameter of the model and therefore to higher speed of
learning. As it is possible to understand from the sequel chapter, gradient descend depend
on:

𝜕𝐿

𝜕𝑤𝑖
= 𝑥𝑖 ∗ (𝑎 − 𝑦)

Where xi is value of the ith features. From this is possible to underline the dependency of
the learning speed on the magnitude of features values.

Figure 2.7 - Gradient descent path without (left) and with (right) data normalization

In Figure 2.7 is represented a very simple model with only two features. In this project case,
the number of features is eight, but the visual concept is the same. Thanks to the
normalization, each feature gradient has the same emphasis [3].

• The second goal of normalization is to ensure that the values are approximately in the range
of “-1” and “+1” to makes learning more flexible having both positive and negative values

ready for the next layer of the net [4].
This normalization can be performed in two ways. The first is:

𝑣𝑎𝑙𝑢𝑒𝑛𝑜𝑟𝑚 =
𝑣𝑎𝑙𝑢𝑒 − min

𝑚𝑎𝑥 −𝑚𝑖𝑛

Dataset analysis

17

Where min and max are the minimum and maximum values, respectively, of the considerer
feature; the second is:

𝑣𝑎𝑙𝑢𝑒𝑛𝑜𝑟𝑚 =
𝑣𝑎𝑙𝑢𝑒 − mean

𝑠𝑡𝑑

Where mean and std are the mean and the standard deviation of the considered feature.
In this project, in which the admissible classifier is developed, the second normalization method
is performed to ensure a continuity with the feasibility classifier created in the previous project.
For what concern the regressor, done before classifier, the normalization applied is of the first
type.

Dataset analysis

18

Deep Neural Network Theory

19

3 Deep Neural Network Theory

3.1 State-of-the-art
In recent years, one of the new technologies that are spreading more in companies is deep
learning. As mentioned earlier, deep learning is a sub-category of machine learning, part of the
broader branch of artificial intelligence. The goal of deep learning models is to get as close as
possible to what is the functionality and structure of the human brain by mimicking the
functioning of a neuron and creating functions that operate in the same way.

Figure 3.1 - Structure of artificial intelligence

The development of deep learning has had several stages since its inception. These deep
learning structures, with clear reference to deep neural networks, being the central topic of this
project, require very high computation times and this has slowed their diffusion for a long time.
The modern development of ever more powerful computers has partially solved this problem,
allowing it to spread.
The strong point of these algorithms is their ability to learn the patterns present within the
dataset on their own, in order to subsequently make predictions. It goes without saying,
therefore, that the more data there are, the larger the datasets are and the more these neural
networks are strengthened, increasing their performances.

Figure 3.2 - Performance of machine learning models depends on the amount of data

Deep Neural Network Theory

20

Figure 3.2 proves what one of the leading deep learning experts, Geoffrey Hinton, said:

“Deep Learning is an algorithm which has no theoretical limitations of what it can learn;
the more data you give and the more computational time you provide, the better it is”

The first example of this technology is found in 1958 with Perceptron, an algorithm created to
classify a group of people into men and women. After making the model learn the main
characteristics of the two classes considered, it was able to correctly classify figures that he had
never seen. A few years later, Perceptron was questioned, pointing out its limitations, and deep
learning research was stopped. Thanks to the writing of the backpropagation algorithm by
Jeoffrey Hinton in 1985, he attracted interest in this field again, leading to the creation in 1998
of a convolution neural network by Yan LeCun. From now on, development is rapid. In 2006,
Jeoffrey Hinton himself coined the term ‘Deep’ Learning for the first time to explain the new
algorithms that allow the computer to "see" and distinguish objects and text in images and
videos. In 2012 another step forward is made by the AlexNet architecture, which wins the
ImageNet contest, with an error of about 10% less than the runner-up. Since this transition,
these technologies are improving exponentially, also supported by the ever-increasing power
of modern computers [5].
A deep learning algorithm can be of two types: supervised and unsupervised learning. In the
first case, a dataset is provided to the algorithm, which, having the results available, learns the
patterns present and then replicates them at the end of the training. Two categories belong to
this class of deep learning: classification, where the algorithm provides as output a discrete
value capable of categorizing, recognizing and distinguishing a set of data, and regression, in
which the algorithm provides a value of continuous output. It is these two types of deep learning
that characterize this project.
Also briefly describing unsupervised learning, in this case a dataset of results is not provided
to the model, which must therefore discover the relationships and patterns that exist between
the data. Clustering and anomaly detection belong to this category.

Figure 3.3 - Different types of deep learning

Deep Neural Network Theory

21

3.2 Model representation
As explained above, the goal of deep learning, and especially of deep neural networks, is to
mimic the behaviour of the human brain as much as possible. This is formed by neurons,
consisting of three parts: the nucleus, the dendrites, which are used to pick up the input signals,
and the axon, the part that stores the output signal of the neuron itself.

Figure 3.4 - Brain neuron structure

If now a structure of an artificial neuron is considered, Figure 3.5, similarities are clear. In the
place of the dendrites there are nodes, in the place of the nucleus there is what is called the
activation unit/function, while in the place of the axon there is an output.

Figure 3.5 - Artificial neuron structure

Where x are the input nodes, w are the weights of the model, i.e. the parameters that characterize
the model. Then there the activation function that gives the output. For what concern x0, it is
called bias unit and is always equal to 1.
What represents Figure 3.5 is a simply scheme of one single neuron, but deep neural networks
are composed of different layers with a lot of nodes each, Figure 3.6 shows. The first layer is
called input layer, the last one is the output layer. In between these two layers there are one or
more hidden layers, it depends on the complexity of the model. The number of nodes for each

Deep Neural Network Theory

22

layer is also not fixed. These are two of what are called hyperparameters, which will be
explained in more detail in the next sections.

Figure 3.6 - Simplify deep neural network structure

The activation function is used to provide the output for each node, starting from the input data.
This function, also called transfer function, maps the output values of the network between -1
and +1 or between 0 and +1 depending on the type of function considered. It is divided into two
main categories: linear and non-linear. In deep learning models, such as the one used in this
project, nonlinear functions are used. There are several types of these, but the description of
these is not the purpose of this work. Only two types were used in the model definition: the
Sigmoid function and the REctified Linear Unit (Relu) function.

Figure 3.7 - Sigmoid (left) and Relu (right) function

Where:

𝑧 = 𝑥 ∗ 𝑤

is the product between inputs and weights.
The Sigmoid function (Figure 3.7 on the left) exists between 0 and 1. It is particularly used for
problem of binary classification, like the one of the admissible classifier designed in this

Deep Neural Network Theory

23

project, because values of z lower than 0 are classified as 0 and values greater than 0 as 1.
However, this outputs technique can lead neural network to stuck.
For this reason, Relu function is the most used. F(z) is 0 for z lower than 0 and is equal to z for
z higher than 0. The advantage of this function compared with Sigmoid is that is more
computationally efficient because has to just pick up max(0,z) and not does all the calculation
that Sigmoid does.
In this project, in the admissibility classifier, a Relu activation function is used for the input and
hidden layers, while a Sigmoid function for the output layer. This procedure is the same used
by the feasibility classifier present upstream, in order to ensure continuity in the pipeline [6].

3.3 Forward propagation
The first step to train a model is represented by forward propagation. In fact, it is the process
responsible of the first calculation of the output. For each node, the input data enter, pass
through the activation function, and exit as output, ready to become input for the next layer.
This process is divided in two steps: preactivation step, that gives an output called a, and
activation step, that gives n output h as output.

Figure 3.8 - Forward propagation scheme

As it is possible to see in Figure 3.8, the preactivation step is represented by a11 and a12. This
step is characterized by the sum of the products between inputs x and weights w:

𝑎11 = 𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤2

𝑎12 = 𝑥1 ∗ 𝑤3 + 𝑥2 ∗ 𝑤4

After these computations, the values of a are passed to the activation functions of the layer
considered, in the activation step:

ℎ11 = 𝑔(𝑎11)

ℎ12 = 𝑔(𝑎12)

Deep Neural Network Theory

24

Where g represents the activation function. These values of h are now ready to become the input
values for the next layer, as x values for this, until the end of the network structure, when the
final output is obtained [7].
Writing the passages above in a more general way:

𝑎𝑗
𝑙 = 𝑔(∑𝑤𝑗𝑘

𝑙 ∗ 𝑎𝑘
𝑙−1)

𝑘

Where j refers to input neuron, k to output neuron and l is the layer considered.

3.4 Backward propagation
The heart of training process is represented by backward propagation, or backpropagation.
Demonstrated for the first time by Jeoffrey Hinton in 1985, its goal is to find a combination of
weights and biases to minimize the cost function, as in gradient descent principal.

A cost function J is a measure of difference between what is predicted by the model �̂� and the
true value y owned in dataset.

𝐽 =
1

2𝑛
∑(𝑦�̂�−𝑦𝑖)

2

𝑛

𝑖=1

Where m is the number of values considered. This is only a general example of cost function;
in the next chapter the ones used in this project are presented.
The direction to take in order to minimize the cost function, that is what kind of parameter
combination consider, is given calculating the gradient of it:

𝜕

𝜕𝑊𝑖,𝑗
𝑙 𝐽(𝑊)

Where W represents the parameter combination. This partial derivative measures the sensitivity
of J to changes in weights. Considering that the derivative corresponds to the slope of the
tangent of cost function, the bigger the derivative, the steeper the tangent, the higher the distance
to the minimum of the function.

Figure 3.9 - Cost function minima

Deep Neural Network Theory

25

Figure 3.10 - Forward and backward propagation

Thank to Figure 3.10 it is possible to resume what the training process is. It starts with a forward
propagation, in which a prediction, and therefore an output, is found. Then the backpropagation
starts, in which, calculating gradient of cost function for each layer, a weight updated is
performed to minimize the cost function and to reach the best approximation of the model to
data utilized.

3.5 Loss function
As mentioned above, the loss function measures the difference between the predicted output
value and the true value. This means that it provides a measure of how well the model fits the
data, and the smaller the result, the better the model. There are many loss functions that you
can use, but describing them all is not the purpose of this project. Designing the admissibility
classifier, the loss function used is the Binary Cross Entropy, the same in the feasibility
classifier, while the one used in the regressor is Root Mean Squared Error (RMSE).
Binary Cross Entropy is one of the most used loss functions for what concern binary
classification. It is calculated as:

𝐽 = −
1

𝑁
∗∑𝑦𝑖 ∗ 𝑙𝑜𝑔𝑦�̂� + (1 + 𝑦𝑖) ∗ log(1 − 𝑦�̂�)

𝑁

𝑖=1

Deep Neural Network Theory

26

Figure 3.11 - Example of Binary Cross Entropy

Talking about the one of regressor, it is defined as:

𝑅𝑀𝑆𝐸 = √
∑ (𝑦�̂�−𝑦𝑖)2
𝑁
𝑖=1

𝑁

Where symbols have the meaning explained previously. This function is the most utilized for
what concern regression and measures how concentrated the data is around the best fit line [8].

Figure 3.12 - RMSE representation

3.6 Starting parameters and Hyperparameter
In the previous chapters the algorithms used for network training was explained. The main goal
was to minimize the cost function in such a way that it fit in the best possible way the data set
owned. To do this, the fundamental step is to recalibrate the weights, i.e. to find the best
combination of weights, or parameters, that would allow the cost function to reach its minimum.
These parameters, or Hyperparameters, are selected within a previously chosen space of
hyperparameters through an optimization strategy. Later, in this chapter, we will introduce the
hyperparameters used by the network in its training and the optimization strategy. In addition,
in addition to the combination of selected hyperparameters, the algorithm uses fixed
parameters, set by the author, such as the number of training epochs, the iterations or the number
of folds using k-fold cross validation.

Deep Neural Network Theory

27

3.6.1 Number of epochs
This parameter is usually used as hyperparameter to optimize. In this project is fixed
since the beginning. In the last chapter, the results of the pipeline with two different
number of epochs have been analysed.
The number of epochs represents how many times learning algorithm passes through
the training dataset. The higher this number, the better the model fits data. For this
reason, it usually assumes high values, hundreds or thousands; a possible way to set it
is monitor when the error is close to zero and, before the increase of it, stop the rise of
epochs. In this way it is avoid the problem of overfitting.
Other concepts connected to epoch are the batch size and iterations. When a dataset is
very large, it can be a problem to feed a model with all the sample together; for this
reason, they are divided in batches and the algorithm passes through them before the
update of the other parameters. A batch can be composed of one, more than one or all
the samples contained in the dataset. Under these conditions, the learning algorithm is
called stochastic gradient descent, mini-batch or batch, respectively.

3.6.2 Learning rate
This hyperparameter is one of the most important. It regularizes the rate of learning of
the model helping gradient descent in backpropagation. As it is explained before, during
backpropagation an updating of weights is performed in order to reach the minimum of
loss function; learning rate gives the importance of this updating. The formula of this
process is presented below:

𝑤𝑖
′ = 𝑤𝑖 − 𝛼

𝛿𝐿

𝛿𝑤𝑖

Where α is learning rate that gives to the algorithm the dimension of the step toward
the minimization, 𝑤𝑖

′ is the updated weight.

Figure 3.13 - Steps of gradient descent

Figure 3.13 demonstrates two important aspects of the previous equation. Looking at
the graph on the right, if the considered point has a negative slope, thanks to ‘-‘, 𝑤𝑖

′ will

Deep Neural Network Theory

28

increase while if it has a positive slope, its value will decrease, converging in any case
to the minimum.
The second aspect concerns the size of the steps depending on the learning rate. The
smaller the alpha, the more steps the model takes to get to the minimum, risking to run
into problems like 'Vanishing Gradient'. Conversely, if the learning rate is too large, it
converges quickly but can risk to skip the minimum.

3.6.3 Number of input nodes and hidden layers
These hyperparameters are closely related to the architecture of the neural network.
Their value depends on the complexity of the model you want to design. If the model is
complex, the number of neurons per layer and hidden layers must be increased,
however, to the detriment of the calculation speed, which obviously increases [9].
Thanks to the number of the nodes of the input layer, decided by the algorithm as
hyperparameter, the quantity of nodes of each layer can be found halving the number of
the previous one.

3.6.4 Dropout
In this project, a new hyperparameter is inserted in the two classifiers, the dropout.
As explained above, the higher the number of hidden layers and neurons, the more the
model is able to learn the patterns that are present between the samples. However, if the
dataset considered is limited, as happens in this project, an architecture of the model
that is too complex can lead to overfitting problems.
A model can run into two types of problems, overfitting or underfitting. The most
common is undoubtedly the first. When a model fits the training data too well it is called
overfitting. This can lead to generalization problems and difficulties in predicting data
unknown to the model.
On the other hand, underfitting is the opposite problem, that is when the model does not
even fit the training data in the right way. This phenomenon is less common and can be
solved simply by upgrading the model or by increasing the training time.
The ideal situation, in which the data is modelled in an optimal way, is called good fit.

Figure 3.14 - Fitting problem in classification

Deep Neural Network Theory

29

Figure 3.15 - Fittting problem in regression

To solve this issue, dropout is a very important technique. It is based on the deactivation
of some neurons within the layers during the training phase, and their subsequent
reactivations during the testing phase.

Figure 3.16 - Dropout strategy

This deactivation occurs in a probabilistic way. The value the author applies as a dropout
means the probability that each neuron will be deactivated. This operation weakens the
model, so as to eliminate rigid patterns linked only to the data used, increasing its ability
to generalize other unknown datasets and its robustness of predictions [10]. Obviously,
the probability of temporarily deactivating a neuron must not be too high in order not to
risk weakening the model too much during the training phase and having strange
behaviours in the network, such as a better performance, in the early epochs, of the
testing set compared to the training set. A more detailed analysis of this situation has
been provided in the chapter on results. A fairly substantial part of the work of this
thesis, in fact, is related to the optimization of the right dropout value applied to the
admissibility classifier.

Deep Neural Network Theory

30

3.6.5 L2 regularization
Another importance regularization to solve and prevent overfitting problem is L2
Regularization, also considering in the admissibility classifier as an hyperparameter.
This regularization works adding a corrective term to the cost function, that becomes:

𝐶𝑜𝑠𝑡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑟𝑟𝑜𝑟(𝑦, �̂�) + 𝜆∑𝜔𝑖
2

𝑁

𝑖=1

Where λ is the regulation factor, the hyperparameter. This technique prevents overfitting
because introduces a parameter that is independent of the model and data of the training,
increasing the generalize ability of the model [11].

3.7 Search of Hyperparameter
After a brief explanation of the hyperparameters used in this project, it is essential to introduce
what is called hyperparameter tuning. The type of hyperparameter search affects not only the
performance of the model, but also the computational time of the entire algorithm process.
There are several research techniques, but their presentation is beyond the scope of this work.
In the previous project, the two techniques perhaps most used, the grid search and the random
search, were tested and compared, arriving at the conclusion of the greater effectiveness of the
second one. For this reason, the author starts from these results to go on to design the
admissibility classification network.
To perform hyperparameters tuning, the definition of a search space is needed, where it is
possible to select each of them. This space is multi-dimensional, where each hyperparameter
defines its own space of values.
As mentioned, the technique used for the admissible classifier designed in this project is random
search. It is shown in literature that random search, in addition to having all the advantages of
grid search, such as ease of implementation or conceptual simplicity, is much more efficient in
the case of large search spaces [12]. In these conditions, in fact, the grid search has a too high
implementation time due to all the trials that are carried out with the hyperparameter
combinations that form the grid. In random search, the search space is divided in subspaces,
and within these, the random combinations of hyperparameters are distributed more evenly,
facilitating the search for the optimal one.

Figure 3.17 - Hyperparameters tuning schemes

Deep Neural Network Theory

31

In this project, thanks to the research of the previous thesis, the technique is composed of a first
random search in the complete search space to find the most promising combinations. Then a
new, finer, random search into the search space sectors to find the best between the best.

3.8 K-Fold Cross Validation
Cross-validation is a procedure that, dividing and resampling the training-validation dataset,
evaluates the model. The dataset is divided in k equal group, or folds, in order to find the best
split between training set and validation set.
This procedure works as follow:

• The dataset is sampled randomly and divided in k-folds.
• The model is fitted with a dataset composed of k-1 folds, the new training dataset, and

then validate on the remaining fold.
• The performances of the model with this configuration are computed.
• The following step is to change the composition of datasets, as Figure 3.18 shows, and

repeat the procedure computing the other performances. The mechanism is to take as
validation set the second fold, then the third until the last one, in order to try all the
possible configuration.

• When all the combinations of different datasets are tested, performance results are
compared and the best one is taken, obtaining the final division between training set and
validation set.

Figure 3.18 - k-fold Cross Validation scheme

An important value to decide is the one concerning the number of k folds in which the
considered dataset is divided. In fact, a wrong k can lead to an high variance of the performance
computing at the end of each step, making the measure unreliable and not comparable, or to an
high bias, meaning that the model is overestimate. Each fold has to be composed of a good
number of samples, high enough to be statistically representative [13].

Deep Neural Network Theory

32

3.9 Explainable Artificial Intelligence
In recent years, artificial intelligence, and in particular deep learning, have been gaining more
and more importance in companies. This continuous development is due to higher performance
of these techniques which, however, are accompanied by ever greater complexity. Precisely
this topic turns out to be the most delicate. If the decisions made by an algorithm strongly affect
people’s lives, the reason why it makes certain decisions must be clear and understandable. The
emergence of increasingly complex systems, including DNN, has led to an increase in what is
called the opacity of algorithms, making them block-boxes. The increase in model
performances, which now exceed even those of human, is spreading them more and more.
However, this diffusion is hampered precisely by this distrust, on the part of users, of algorithms
that they are unable to understand and explain. In fact, interpretability has several advantages,
including that of ensuring the impartiality and causality of the choices, as well as the robustness
of the model itself.
From this first introduction, it is easy to understand what is the compromise to be met: the
increase in the performance of a model corresponds to the increase in its complexity.
Consequently, performance and transparency are inversely proportional.
Now it is important to clarify the meaning of some keywords of this topic, so as not to confuse
the terminology. The main concept in XAI is that of understandability, which also gives rise to
transparency and interpretability. This represents the level a man can reach in understanding a
decision made by a model without needs of explaining its structure with explainable techniques.
On the other hand, transparency represent the feature of a model has to be understandable by
itself.
In the literature, XAI is defined as:

“Given an audience, an explainable Artificial Intelligence is one that produces details or
reasons to make its functioning clear or easy to understand.” [14]

The main reasons that are causing the overbearing development of this technique are essentially
two: the first is to apply these models also in the company, and not just in research. They must
be explainable and understandable in the best way to ensure that people can trust them.
Secondly, understanding the mechanisms behind the reasoning of an artificial intelligence
makes possible their improvements in the future.
In the literature a distinction is made between models that can be interpreted already from their
design and models that, on the other hand, are explained by means of external techniques. This
classification is then made between transparent models and post-hoc explainability:
❖ Transparent models are divided into three levels depending on interpretability degree:

➢ Simulatability: the ability of a model to be simulated. A model is interpretable if it can
be easily presented through text and graphics.

➢ Decomposability: the ability to explain each part of the model (parameters, inputs,
outputs). Each part of the model must be understood by a person without the use of
external means.

➢ Algorithmic transparency: the ability of the model’s user to understand the used process
to produce each output from the input data. The model must be fully walkable and
analysable to enter this level of transparency.

A model is considered transparent if it is understandable in itself. The models that fall into
this category are different, some are presented below:

Deep Neural Network Theory

33

➢ Linear/Logistic regression
This model has a direct dependence between real and predicted variables, making the
model rigid, and therefore transparent. However, to fall within the degree of
decomposability and simulatability, the model must be limited in magnitude.

➢ Decision tree
Also this model can fit into all levels of transparency, depending on its size, having a
hierarchical decision-making structure. As the size of the model grows, it moves from
simulatability to algorithmic transparency level.

➢ k-nearest neighbour
This model deals with classification by predicting the class of a test sample according
to the similarity and proximity between the various K examples taken into
consideration. This process is similar to that used by people, and for this reason it also
falls within the levels of transparency.

➢ Ruled-based learning
This category includes all the models that generate rules to characterize the input data.
Clearly, the rules generated must be understandable and interpretable. By increasing
the number of these and their specificity, the performance of the model increases, but at
the same time also its complexity. We are again faced with the compromise presented
earlier.

➢ Bayesian models
This model can be seen as a probabilistic directed acyclic graphical model in which
connections represent dependencies between sets of variables. Also this model falls
under all levels of transparency only in certain circumstances.

❖ Post-hoc explainability: when the models are not transparent by design, post processing
techniques are used that make the models interpretable. These techniques are classified
according to the user’s intention, the method used and the type of dataset owned:
➢ Model-agnostic techniques: these techniques can be applied in a similar way to all

models. The main ones are: explanation by simplification, visual explanation techniques
and feature relevance explanation.

➢ Post-hoc explainability: on the contrary these techniques can be applied only to some
models: shallow ML models and deep learning models. Referring to these latest models,
the continuous development of DNN in search of ever greater performances, has led this
type of models to be among the least transparent used. To study them, numerous
techniques are used; among these, features relevance methods are among the most used
to help the explanation and simplification of networks. This last technique has been
presented in more detail in the next chapter and in one related to the results.

It is important to underline the various relevant results that must be taken into account every
time an XAI model is created:

• The explanations must be limited (constrictive) meaning that they must explain why one
decision is made rather than another.

• Causal connections are more important than probabilistic ones.
• The explanations are selective, meaning that it is sufficient to focus only on the main

causes of decision [14].

Deep Neural Network Theory

34

Deep Neural Network Model

35

4 Deep Neural Network Model

After a brief description and theoretical introduction of deep neural networks made in the
previous chapter, the model of which the design was made is now presented in more detail, with
some algorithms and functions used.

4.1 Technical tools
All the pipeline, composed of three different networks, is written using Python language.

“Python is an interpreted, object-oriented, high-level programming language with
dynamic semantics.” [15]

To write neural network using this language, an editing environment is needed. There are a lot
of these to be used; in this project Spyder is used:

“Spyder, the Scientific Python Development Environment, is a free
integrated development environment (IDE) that is included with
Anaconda. It includes editing, interactive testing, debugging, and
introspection features.” [16]

In python it is important to use what are called libraries, packages
containing functions already written, very useful to speed up algorithm
writing time and to optimize it. These functions are divided into
libraries according to their field of use. Those used in writing the
pipeline, and in particular the admissibility classifier, that is the topic
of this project, are the following:

❖ NumPy: it is one of the most utilized packages. This library provides mathematical,

logical and other functions using multidimensional array objects, called ndarray, focal
point of this package.

❖ Pandas: another very important and used library is Pandas. It is written for data
manipulation and analysis. It works with dataframe objects, providing all the functions
needed to do operations between them. In this project, considering the continuous
manipulation of datasets, it is fundamental and widely used.

❖ Matplotlib: considering the need to plot and graphically represent the results of the
pipeline, this library is needed. It is a graphical extension of Numpy package.

❖ SciPy: this library is used in particular at the beginning of each net, when the search
space for hyperparameter is created. In this package is used to solve the most common
issue related to scientific computation, like for example a logarithmic distribution
between to constraint values.

❖ Scikit-Learn: this library contains all the algorithms to process the data, make
predictions on them, split dataset in train-test datasets and to compute performance
index of networks like accuracy, cross-entropy or Matthews Correlation Coefficient.

Figure 4.1 - Spyder logo

Deep Neural Network Model

36

❖ Tensorflow: it is a python low-level library for fast numerical computing. It was created
by Google and it is used to create Deep Neural Network models. The version used is
compatible only with the version 3 of Spyder, therefore this is the version used, even if
the most recent one is the 4th.

❖ Keras: this is the last library presented. It is an high-level package that works as a
wrapper of low-level libraries, like tensorflow.

Figure 4.2 - Main Python libraries logo

4.2 Pipeline description
This chapter shows all the main steps that take place throughout the entire pipeline. As
previously mentioned, this project starts from a pipeline composed of a feasibility classifier
positioned in the first place with the task of filtering the layouts of the dataset to supply them
successively to the CO2 regressor positioned downstream of it. This is the starting point of this
work, which is developed with the first objective of introducing a new filter between the two
pre-existing networks, an admissibility classifier.

The code has been developed so that there is an ON / OFF button on the admissibility classifier,
in order to allow the user to decide whether to have a pipeline with or without it every time the
program is launched
The first step in the complete pipeline is the acquisition of the datasets by the feasibility
classifier. The reworking and manipulation of data is also connected to this action, with the
normalization and division of the dataset into training, validation and test set. This favors the
training and validation of the model, which is subsequently tested on the testing set. At this

Feasibility
Classifier

Admissibility
Classifier

Regressor

Deep Neural Network Model

37

point the dataset is prepared for the next step of the second classifier, filtering the 37nfeasible
layouts. The new dataset is then composed of:

• Layouts of the training-validation set that have a true value of CO2 different from
10000, the number that shows the unfeasibility of a layout.

• Layouts of test set predicted feasible by the model, without what are called false positive
(they are explained more widely in the next chapters).

Layouts that do not meet these conditions are discarded, while the two layout groups are merged
to form the new dataset supplied as input to the admissibility classifier.
Moving on to the next network, the admissibility classifier, the actions performed are repeated
in the same way as the previous one. The dataset layouts are again mixed and divided into
training, validation and test set. After training, validation and testing of the model, the second
filtering is carried out, considering as admissible the layouts that satisfy the following
conditions:

• Layouts of the training-validation set that have a true value of performance index
different from ‘-1000’, the number that shows the not admissibility of a layout.

• Layouts of test set predicted admissible by the model, without false positive.
Then, the two filtered datasets, the training-validation set and the test set, are passed to the
regressor without any further shuffle or division.
Finally, from the training and testing of the regression model, the real value CO2 predictions
are calculated.

4.2.1 Performance evaluation
After explaining how the entire pipeline works, it is necessary to present how the results
of each network are calculated. In fact, to define the ability of a network to accurately
predict data and learn existing patterns in the right way, performance and error indices
are calculated. The former must be as high as possible, while the latter, of course, as
low as possible.
Furthermore, depending on the type of network, these change. In the classifiers, the
MCC and accuracy performance indices are calculated, while the cross entropy is the
loss function. The former will be presented later, while cross entropy has already been
explained in the previous chapter.
Speaking instead of the regressor, the performance index considered is the coefficient
of Determination R2, while the loss function, as already analysed, is the RMSE.
R2 is defined as the difference between a model defined by the simple average of the
values of the dataset labels that have to be predicted and the model implemented with
the neural network. The higher this difference, the more accurate the model. In
mathematical terms, this difference is:

𝑅2 =
𝑆𝑆𝐸𝑀 − 𝑆𝑆𝐸𝑅

𝑆𝑆𝐸𝑀
= 1 −

𝑆𝑆𝐸𝑅

𝑆𝑆𝐸𝑀

Where SSEM is the Sum of Squared Errors by Mean line and SSER is the Sum of
Squared Errors by Regression.

Deep Neural Network Model

38

Figure 4.3 - R2 graphical representation

4.3 Hyperparameter search space
As explained previously, the search for the hyperparameters in each of the networks is carried
out starting from a multidimensional search space, in which each hyperparameter corresponds
to a dimension. In particular, considering six hyperparameter, the search space has 6
dimensions.
In the previous project, the values assumed on average by each hyperparameter were defined
after a literature search. Furthermore, this research has shown that some of these have a greater
sensitivity to non-linear logarithmic distributions, such as the learning rate or the L2
regularization coefficient. For what concern the possible batch size values, these have been
defined with a discrete power distribution of 2. The same principles have been used to initially
define the hyperparameter space of the admissibility classifier.
The admissible classifier search space considered for the first analysis is shown below in Table
4.1.

Table 4.1 - Hyperparameter search space of admissibility and feasibility classifier

Hyperparameter

Hidden layers 1 - 6
Neuron first 30 - 200

Batch size 16 - 512
Learning rate 0.0001 – 0.9

L2 regularization 0.0001 – 0.1
Dropout 0 – 0.3

Dropout is considered as hyperparameter only in a second moment during this project, but is
already shown in search space.
Search spaces of feasibility classifier and regressor classifier are considered the same of
previous projects. The first one is the same of the one in Table 4.1, while the second is the
following:

Deep Neural Network Model

39

Table 4.2 - Hyperparameter search space of regressor

Hyperparameter

Hidden layers 1 - 6
Neuron first 10 - 80

Batch size 8 - 64
Learning rate 0.0005 – 0.5

Weight initialization Glorot uniform,
Glorot normale,

Random uniform,
Random normal,
Truncated normal

Dropout 0 – 0.5

4.4 Optimization tools for model
The model used in this project for the design of the admissibility classifier makes use of several
optimization techniques, aimed at preventing future problems. In particular, there is the
application of technique to each layer, such as dropout or batch normalization. Furthermore,
another technique to prevent overfitting, in addition to that of dropout, is that of inserting what
is called Early Stopping.

4.4.1 Dropout
This topic has been extensively explained in the previous chapter and has been analysed
again when the results of comparisons between models with different percentage of
dropout are presented. However, in this section we want to show where these dropout
are applied within the model.
In the previous project, dropout was present only in the regressor, as it was not necessary
to add it in the classifier as it was not subject to overfitting. With the introduction of a
new classifier in the pipeline, however, the trend of model overfitting has grown,
necessitating the introduction of dropouts. To ensure a continuity of technique between
networks, the dropout is applied to all the layers, both input and hidden, with the
exception of the output one.

Figure 4.4 - Dropout technique application to all layers

Deep Neural Network Model

40

4.4.2 Early Stopping
When the topic of the number of epochs is presented, a possible problem analysed has
been the one relating to the choice of the right number of them, to avoid overfitting (too
many training epochs) or underfit (too few training epochs). This problem can be solved
introducing early stopping.
This function monitors a performance indicator, chosen by the author, to check if it
improves. When it stops, the early stopping stops the training, avoiding the overfitting
and stopping the model in the epoch in which the best performance is reached.

Figure 4.5 - Early stopping technique

However, the loss function can have a plateau, or increase slightly and then decrease
again, causing a problem in the model, which is stopped when it is still learning. To
avoid this, a kind of delay is inserted, a number of epochs in which it is allowed to
accept not to see improvements, called patience.
This method is only applied to regressor, even if could be a good improvement for
classifiers point of view in the next developments, to avoid overfitting and to speed up
the computational time of the model.

4.4.3 Batch Normalization
Batch normalization technique was introduced by the author of the previous project,
who performed an accurate study on this topic. This is not the aim of this work, but,
since the model used for the new admissible classifier utilizes this optimization function,
a brief explanation is needed.
Bath normalization is a technique used mainly for very complex deep neural networks.
During the learning process, especially during backpropagation, the weights of one layer
are updated based on the assumption that in the meantime the weights of the other layers
do not change. However, this does not happen, because they are continuously updated
as those of the previous layers change, leading to a slowdown in the process due to the
attempt to coordinate all these changes. The main effect of this function is precisely to
help this coordination, with the final result of speeding up and stabilizing the learning
of the network.
This optimization is applied to hidden layers and output layer in both the two classifiers,
while in the regressor is also applied to input layer.

Deep Neural Network Model

41

4.5 Representation methods
One of the fundamental aspects of a neural network algorithm is to represent the results
obtained, both to present them and to analyse its functioning, being, as mentioned above, mostly
black box. The most used representations are those concerning the learning curves, in addition
to the confusion matrices, which are also used to calculate different results. Then there are
graphs related to explainable machine learning, with the aim of making the reasoning of the
network more transparent. These have been presented in the next chapter.

4.5.1 Confusion matrix
After data acquisition, pre-processing, training and testing, it is important to find the
results that certificate the accuracy and the effectiveness of the model. The better they
are, the better the performance of the model, that this the aim of each neural network
work. To compute some of the most important performance values a confusion matrix
is needed.
It is only used for classification performance measurements and is a table composed of
all the possible combinations of predicted and actual values of the classes considered
in the classifier. In the case of this project, a binary classification is used in both the two
classifiers, therefore the table is composed of four different combination: two for
predicted values (positive 1 and negative 0) and two for actual values (positive 1 and
negative 0), as it is shown in Figure 4.6.

Figure 4.6 - Confusion matrix scheme

Figure 4.6 shows four different terms: True Positive (TP), False Positive (FP), False
Negative (FN) and True Negative (TN). The term True Positive means that the model
has predicted positive and the actual value is positive. In the False Positive, on the other
hand, the model predicts a positive sample that is actual negative; this is defined as a
type 1 error. There is an error, this time of type 2, also in the False Negative, in which
the model predicts a negative sample, but the actual value is positive. The last
combination is that of True Negative, that is, the model correctly predicts that the sample
is negative.

Deep Neural Network Model

42

Thanks to this table performance indexes are calculated, like accuracy, recall,
F1_score, precision and Matthews Correlation Coefficient (MCC). Although the
computation of all these results, the author takes into account especially two of them:
accuracy and MCC, that have been analysed in results chapter. For this reason, below
only these two are explained.

• Accuracy
Accuracy is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙

That means how many samples are predicted correctly out of all the four classes.

• Matthews Correlation Coefficient
MCC is defined as:

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)

This coefficient can be used only in binary classification problem.

Although accuracy is used more than MCC, the latter has some advantages in certain
situations. For example, in the situation in which the dataset is unbalanced, i.e. the
number of samples contained in one class is much greater than those contained in
another, accuracy can no longer be considered a reliable measure as it overestimates the
abilities of the classifier. On the contrary, MCC is not affected by the number of samples
contained in the classes. [17]

4.5.2 Learning curves
These curves usually represent the improvement of the model along the epochs of
training, therefore on the x-axis the number of epochs is shown, while on y-axis the
learning improvements. These improvements can show by loss function, and so the
smaller the better, like the cross-entropy or by performance index, like MCC or
accuracy, in which the higher the better.
The improvement of the model in this plot can be evaluated on two different curves: the
one found from training set or the one from validation set. The first gives the idea of
how well the model is learning, while the second how well it generalizes the data. In
this project these two curves have been represented together in the same plot.
Another important reason why learning curves are studied is to diagnose the behaviour
of the model, in order to understand if this is subject to problems such as overfitting or
underfitting. During the elaboration of the results of the pipeline, this aspect helped a
lot the author of the project to understand which path was the right one, how to act to
optimize the model.

Deep Neural Network Model

43

If, for example, the training loss, at the end of the epochs of training, shows a continuous
decrease of the value, this means that the model can still improve and that that number
of epochs is too low. From this it can be understood that there is an underfit problem.

Figure 4.7 - Underfiting in learning curves

On the contrary, if the two curves of validation and training loss diverge with increasing
epochs, with that of validation which, after reaching the minimum, starts to grow again,
while that of training continues to decrease, a problem of overfitting is present.

Figure 4.8 - Overfitting in learning curves

The trend of the curves that must be sought, i.e. a good fit the model on the data, is
therefore represented by Figure 4.9

Deep Neural Network Model

44

Figure 4.9 - Good fit in learning curves

Thanks to learning curves it is possible to understand also if the split of the training and
validation set is correct. In fact, if training set has too few samples compared to
validation set, the learning of the model can be insufficient. On the other hand, if
validation set has too few samples, the model can’t generalize in the desired way. These

two problems are shown in Figure 4.10. [18]

Figure 4.10 - Learning problem (left) and generalization problem (right) in learning curves

Deep Neural Network Model

45

4.6 Permutation Feature Importance
In the previous chapter, a brief introduction to the topic concerning Explainable Artificial
Intelligence has been presented, with an analysis of the various techniques that are used to make
deep learning algorithms more transparent and understandable. Making an algorithm like the
one used in this project completely explainable is almost impossible due to the huge number of
variables, neurons, layers and functions used to write the algorithm and the model.
There are some techniques, however, that can provide some very useful information to increase
understanding of the model, such as feature importance, which falls into the post-hoc
explainability category. In particular, permutation feature importance has been analysed.
It is an inspection technique, applied to a trained model, which calculates the decrease in
performance of the model when a feature is shuffled randomly a number k of times. it can be
used both the training and testing datasets, depending on what kind of information it is needed:
how much the model predictions depend on each feature or how much the model performance
with unknown datasets depends on each feature, respectively. In this case the training set is
used.
The algorithm that is used to compute the importance is the following:

• A reference score s is computed. In this case Matthews Correlation Coefficient is
considered.

• Then, for each feature j:

o For each iteration k in K total iterations:

▪ The j feature column in dataset is permutated.

▪ The new score sk,j is computed.

o Finally, permutation feature importance ij is found:

𝑖𝑗 = 𝑠 − 1/𝐾∑𝑠𝑘,𝑗

𝐾

𝑘=1

There are several reasons why the author decided to implement a permutation feature
importance algorithm instead of the classic feature importance. The first, more practical, is due
to a greater compatibility between the pre-existing code and this algorithm. The model of the
feasibility classifier developed in the previous project, and therefore also of the admissibility
classifier, uses functions from the Python Scikit Learn library, the same used by the permutation
feature importance. Therefore, the adoption of this technique has been inevitable.
The second reason is, instead, conceptual. The permutation feature importance uses, as
mentioned above, a model trained once. Contrarily to what happens in the classic feature
importance technique, where the model is trained every time a feature importance is calculated.
This difference obviously leads to a higher computation time.
Furthermore, the feature importance procedure performs the calculation of the score by
completely eliminating one feature at a time, not just permutating their values. This mechanism
causes the model to be trained on a different reduced dataset each time, altering the results [19].
If a graphical representation of the results is needed, a possible solution is the one represented
in Figure 4.11.

Deep Neural Network Model

46

Figure 4.11 - Permutation feature importances of admissibility classifier

The plot shows an example of permutation feature importance of the admissibility classifier. It
is clear that the taller is the blue column, the more important is the correspondent feature. This
is explained by the formula above; in fact, shuffling the column of a feature, if it is very
important for the predictions of the model, the score will decrease consistently. Otherwise, if
the score remains more or less the same, the difference between the two term of the formula
will be small, as will the importance of the feature.
From the chapter concerning the description of the datasets characteristics it is known how the
number of features is eight, since the feature linked to the type of cycle on which the considered
layout is simulated has been added to the seven already present. However, if the number of
features represented in the Figure 4.11 is counted, it is possible to see that the number is 7, the
'cycle' feature is missing. This is because only the features that meet the following condition
are plotted:

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠 − 2 ∗ 𝑠𝑡𝑑 > 0

Where std is the standard deviation of the measure, since the multiple scores computed have a
variation. Standard deviation is represented by the vertical black segment on th top of the blue
column of the plot.
Furthermore, if the sum of the value of these importances is calculated and analyzed, it could
be seen that this is not equal to one. This is because the ordinate axis does not represent a
percentage, but the absolute decrement of the reference score due to the permutation of the
considered feature.

Results

47

5 Results

This chapter, relating to the presentation of the results and the procedure that led to them, is
divided into three main parts.
Initially the project developed with the design of the admissibility classifier and its subsequent
integration into the pre-existing pipeline, using the P2 and P4 datasets of the old project. The
first part therefore is about the analysis of the new classifier and the changes that this insertion
has caused within the entire pipeline.
In the second part, however, the focus is shifted to the introduction of a new P2 dataset expanded
compared to before, analysing the changes made to the network.
The third and last section is an in-depth analysis of the permutation feature importance, in which
the most important features for the two classifiers will be evaluated.

5.1 New admissibility classifier in the pipeline
5.1.1 Analysis on P4

Starting from the feasibility classifier, the admissibility classifier was created. As
already explained, it has been inserted into the pipeline with the possibility of
considering it or not through an ON / OFF button.
Furthermore, for all the analyses in this section, the P2 and P4 datasets already used in
the previous project were used, therefore containing 1500 layouts simulated on the
WHVC cycle.
The first study presented is the one concerning the P4 architecture. The Figure 5.1
compares the performance of the two classifiers, namely the Accuracy and the Matthews
Correlation Coefficient.

Figure 5.1 - Feasibility and admissibility classifier performances (P4)

92,50%

84,26%

97,58%

89,29%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Accuracy MCC

Feasibility Classifier

Admissible classifier

Results

48

As can be seen from a very first analysis, the performance of the admissibility classifier
is good, even better than that of the first classifier. This may be due precisely to the
action of the latter, which by carrying out a first filter on unfeasible layouts, makes
easier the second classification.
However, it must be borne in mind that most of the results shown are the result of an
average of results deriving from some simulations, usually between four and seven.
Such a low number, essentially due to a fairly high simulation time, means that that the
measurements are subject to sometimes high standard deviations, thus not leading to
relevant behaviours and trends.
After verifying the stability of the new network, the attention is extended to the entire
pipeline, and a comparison is made between the performance of the regressor with and
without the insertion of the second classifier. On the left of Figure 5.2 is shown the
percentage value of the R2 index, while on the right the value of the considered loss
function, RMSE.

Figure 5.2 - Regressor with & without admissibility classifier (P4)

The graphs show how the regressor positioned at the end of the pipeline has
improvements with the addition of the admissibility filter. In fact, R2, the less
significant value between the two for the reasons seen in the previous chapters, increases
by 3%, while the RMSE has a decrease, therefore an improvement of 25%.
However, looking at the results of each simulation and their standard deviation in Table
5.1, it can be seen that there is no clear improvement in the network.

Table 5.1 - Regressor with and without admissibility classifier

 With admissibility Without admissibility

 Loss Testing R Testing Loss Testing R Testing

Simulazione I 1,46 0,98 2,57 0,93

Simulazione II 2,30 0,94 2,18 0,94

Simulazione III 1,10 0,99 2,37 0,92

Simulazione IV 2,32 0,95 1,86 0,95

Average 1,80 0,97 2,25 0,94

Std 0,61 0,02 0,30 0,01

Results

49

This uncertainty is essentially due to two main reasons. The first is the limited number
of simulations; the second, on the other hand, has a high percentage of network
randomness. This in fact depends on the choice of hyperparameters that occurs from a
random search. Also, the seed is not locked. The meaning of seed is the following: any
random number using a random number generator. A seed is used to generate the
sequence of numbers, usually linked to the current time in milliseconds, so that each
time this generator is different, always making the sequence of numbers created
different. If you want, on the contrary, to make these sequences more similar, you can
set a specific number to the generator, seed [20]. To solve as much as possible the
problem of randomness, in the analysis done on P2 architecture the seed has been fixed
and a fixed set of hyperparameter has been chosen, as it has been explained below.
Analysing also the learning curves of the three networks, it can be seen that the cross-
entropy graph of the feasibility classifier, Figure 5.3 , presents a tendency to overfitting,
since the mean validation and training curves diverge as the epochs increase.

Figure 5.3 - Cross-entropy vs Epochs - Feasibility classifier – without Dropout (Sim I)

As seen above, a possible solution to this problem may be to add a dropout layer to the
classifier model, since it is absent until now, obtaining an improvement, as shown in
Figure 5.4.

Figure 5.4 - Cross-entropy vs Epochs - Feasibility classifier – with Dropout

Results

50

5.1.2 Analysis on P2
The same analysis previously carried out for the P4 hybrid vehicle architectures is now
carried out for the P2 architectures. Also in this case, in the first simulations the
unlocked seed was kept, with not very convincing results and, above all, not very
comparable, especially in terms of standard deviation value. For this reason, it was
decided to carry out a series of simulations with seeds locked at 7 and with a fixed
combination of hyperparameters of the three networks, defined by evaluating those
chosen in the best simulations. The Table 5.2 shows the values.

Table 5.2 - Fixed hyperparameters

FEASIBILITY CLASSIFIER

Hidden layers 1
Neuron first 76

Batch size 40
Learning rate 0.00147

L2 regularization 0.0213
ADMISSIBILITY CLASSIFIER

Hidden layers 3
Neuron first 134

Batch size 21
Learning rate 0.00215

L2 regularization 0.00206
REGRESSOR

Hidden layers 4
Neuron first 44

Batch size 52
Learning rate 0.008324326

Weight initialization Glorot uniform
Dropout 0

The first results shown in Figure 5.5 concern the performance of the two classifiers. In
this case the standard deviations are small, as the black vertical segment show, and this
demonstrates the greater stability of the results under these conditions. Furthermore, it
can be noted that the average values of the seven simulations carried out are higher now,
considering P2 architectures, compared to before in which P4 architectures were
considered.

Results

51

Figure 5.5 - Feasibility and admissibility classifier performances – Fixed parameters (P2)

Turning, instead, to the regressor (Figure 5.6), the important result is that the
improvement of RMSE with the introduction of the new classifier is of the same order
of magnitude found previously, about 28%. This underlines again and more strongly the
positivity of introducing an admissibility filter in the pipeline.

Figure 5.6 - Regressor with & without admissibility classifier – Fixed parameters (P2)

Blocking the seed helped the author to obtain more comparable results and to confirm
the improvement of the pipeline. This process is usually used to isolate the causes
resulting from a single change. However, the high randomness of the network is a
fundamental aspect in the generalization capacity of the model. For this reason, the seed
and hyperparameter search has been unlocked from now on.
Studying the learning curves again, it can be seen from Figure 5.7, in which the cross-
entropy of one of the simulations is represented, how there is a tendency towards
overfitting also with regard to this P2 architecture.

96,76%
92,55%

97,20%
90,72%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Accuracy MCC

Feasibility Classifier

Admissible classifier

Results

52

Figure 5.7 - Cross-entropy vs Epochs - Overfitting (P2)

To solve this problem, a different strategy with respect to P4 architecture is adopted. A
study on the number of iterations adopted by the model is made, taking into
consideration three values: 10, 20, 35 iterations. As explained above, the number of
iterations corresponds to how many batches needed to complete an epoch. By increasing
this number, model training should be more accurate.
However, evaluating the Figure 5.8, it is clear that there is no real tendency of
improvement

Figure 5.8 - Comparison between different iterations

On the other hand, overfitting improves slightly when simulations with 35 iterations are
considered, but if the zoom present in Figure 5.9 is evaluated, there is still divergence.

Results

53

Figure 5.9 - Cross-entropy vs Epochs - 35 iterations

Furthermore, the significant increase in simulation time with iterations means that this
parameter change is not entirely beneficial.
For these reasons the author has decided to set the iterations to 10, keeping a good
simulation time, and insert dropout layers to improve overfitting. A simulation example
is shown in

Figure 5.10 - Cross-entropy vs Epochs - with Dropout (P2)

5.1.3 Comparison between P2 and P4
This comparison was already faced in the previous project regarding the feasbility
classifier. In this section we will study the performance differences of the admissibility
classifier between the P2 and P4 architectures.
As can be seen in Figure 5.11, the performances of P2, with the same model, are better,
especially for what concern the Matthews Correlation Coefficient. Obviously, there are
some different parameters, being random, but the structure of the model and the fixed
parameters are the same.

Results

54

Figure 5.11 - Comparison between P2 and P4 admissibility classifier performance

This difference may be the result of a structural difference between the two
architectures. If the design features of the layouts of P2, and also P3, is analysed, a
parameter called “EM1SpRatio” (the speed-coupling device transmission ratio) is
found. In this case, the electric motor is connected to the transmission system which
exerts power only on the front axle. If, on the other hand, we consider P4, we find
"FDsSpRatio" (transmission ratio at the secondary axle differential), which describes
the connection of the electric motor on the rear axle. This decoupling of the two motors
means that there are two transmission ratios and, therefore, more losses, compared to a
single one, as happens in P2 and P3. This is a more physical explanation.
Studying the dataset, and in particular the connection between performance index value
and the two features presented above, the graphs in Figure 5.12 and are created.

Figure 5.12 - EM1SpRatio feature in P3 dataset (left) and P4 dataset (right)

Results

55

Figure 5.13 - FDsSpRatio feature in P4 dataset

As also for feasibility, also in admissibility there is a greater characterization of the
dataset by "EM1SpRatio", which therefore helps the model in the classification. This
can be the reason that causes higher performance of P2 classifier compare to P4 one.

5.2 Pipeline analysis with the new P2 dataset
This new section analyses the performance of the new classifier and the complete pipeline with
the introduction of a new dataset. This, as fully explained, is a dataset expanded by five times
compared to the previous one, in fact it contains 7500 layouts. To create it, five datasets
containing 1500 layouts each similar each on a different cycle were merged. This made it
possible to insert a new feature, the one of the cycle types.
Initially a pipeline that takes into consideration only the feasibility classifier is presented, and
subsequently, the admissibility is inserted.

5.2.1 Feasibility classifier + regressor pipeline
As shown in the Figure 5.14, the performance of the feasibility classifier slightly
increases, especially the MCC value. The interesting aspect to underline is the decrease
in the standard deviation value, represented by the vertical segments. As for all graphs,
in fact, the averages of several simulations are represented, in this case five. This
demonstrates how expanding the dataset also increases the stability of the results,
making them more reliable and comparable.

Results

56

Figure 5.14 - Feasibility classifier performance - New P2 dataset

Conversely, comparing the regressor results shows a fairly large difference between the
old dataset and the new one. Accuracy, in fact, grows a lot, but so does error, RMSE.
However, it must be emphasized that the error remains more than acceptable, being 3.8
g/km on values of the order of magnitude of 300/400 g/km.
In any case, it is important to analyse the reason for these marked changes. These are
probably due to the technique of calculating the two variables R2 and RMSE. As
explained above, in fact, R2 depends on the difference between the mean of the values
and the function of the model. Obviously, the more values there are, the more accurate
the average will be and will approach the model function, increasing the R2.
Conversely, the RMSE depends on the distance of each value of the function curve. It
is clear that increasing the number of values the number of distances considered
increases, as well as the RMSE value.

Figure 5.15 - Regressor performance - New P2 dataset

95,84%
90,37%

97,39% 94,04%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Accuracy MCC

Feasibility classifier

OLD DATASET

NEW DATASET

Results

57

5.2.2 Feasibility classifier + admissible classifier + regressor pipeline

By inserting the new classifier now, the following results are obtained. Regarding the
performance of the classifiers, as seen in Figure 5.16, there are no particular differences
between the results derived from the two dataset, considering the slight variability of
each simulation. All the results show very high performance of the classifiers.

Figure 5.16 - Classifiers performances - New P2 dataset

Speaking instead of the regressor, Figure 5.17, the trends are the same as previously
found in the case with only one classifier.

Figure 5.17 - Regressor performance - with admissibility classifier - New P2 dataset

Results

58

The model used to obtain all the results related to the new dataset contains the dropout
layers deriving from the overfitting study carried out previously. Applied to the new
dataset, however, it leads to behavioural problems of the learning curves, as can be seen
in Figure 5.18 and Figure 5.19.

Figure 5.18 - Feasibility classifier learning curves

Figure 5.19 - Admissibility classifier learning curves

It can be observed that the train set curve is lower than the validation one in the MCC
graphs and higher in the cross-entropy ones. This behaviour denotes better learning of
the validation set than the training set, which shouldn't happen since the training curves
should be the best in terms of performances.
This problem could be caused by too high a dropout rate. As previously explained, in
fact, the dropout value indicates the probability that a node of the training set is turned
off. If this probability is too high, there is a risk of weakening the training set too much,
causing a problem like the one shown in the figure.
To limit this effect, the strategy adopted is to insert the dropout as a hyperparameter also
in the two classifiers, letting the model choose the best value among the following ones
directly through hyperparameter tuning: [0, 0.1, 0.2, 0.3].
In addition, to help the model in the classification, a deepening on the range of
hyperparameters chosen by the algorithm in the best simulations is performed, obtaining
a narrowing of the search space as follows in Table 5.3.

Results

59

Table 5.3 - Restricted hyperparameter search space

FEASIBILITY CLASSIFIER

Hidden layers 2 – 4
Neuron first 30 – 140

Batch size 32 – 256
Learning rate 0.0001 – 0.005

L2 regularization 0.0001 – 0.1
Dropout 0 – 0.3

ADMISSIBILITY CLASSIFIER
Hidden layers 1 – 3

Neuron first 100 – 200
Batch size 32 – 128

Learning rate 0.0001 – 0.01
L2 regularization 0.0001 – 0.001

Dropout 0 – 0.3

Table 5.4 shows the results of the simulations carried out with the dropout inserted as a
hyperparameter and the search space restricted; the column of the dropout values is also
inserted, to monitor it. There are some important considerations to make.

Table 5.4 - Pipeline simulations - Dropout as hyperparameter & restricted search space

For the first, it is necessary to observe the learning curves of the next figures, in which
simulation 2 and 5 are taken as reference.

Figure 5.20 - Cross-entropy vs Epochs - Feasibility classifier - sim 2 (left) & 5 (right)

Accuracy MCC Dropout Accuracy MCC Dropout Loss Testing R Testing

Simulation 1 96,27% 91,45% 0,0 99,60% 98,72% 0,2 2,06 99,70%

Simulation 2 97,07% 93,40% 0,2 99,80% 99,35% 0,1 5,22 97,60%

Simulation 3 97,07% 93,33% 0,1 99,80% 99,35% 0,1 2,92 99,36%

Simulation 4 95,33% 89,36% 0,0 99,40% 98,06% 0,2 1,75 99,77%

Simulation 5 96,40% 91,85% 0,0 99,40% 98,06% 0,1 1,96 99,60%

Average 96,43% 91,88% 0,06 99,60% 98,71% 0,14 2,78 99,21%

Std 0,01 0,02 0,09 0,00 0,01 0,05 1,43 0,01

FEASIBILITY CLASSIFIER ADMISSIBILITY CLASSIFIER REGRESSOR

Results

60

Figure 5.21 - MCC vs Epochs - Feasibility classifier - sim 2 (left) & 5 (right)

Figure 5.22 - Cross-entropy vs Epochs - Admissibility classifier - sim 2 (left) & 5 (right)

Figure 5.23 - MCC vs Epochs - Admissibility classifier - sim 2 (left) & 5 (right)

The previous graphs represent simulation 2 (on the left) and 5 (on the right) of Table
5.4. In the first the code has chosen a higher feasibility classifier dropout, that is 0.2,
while in the second it is equal to 0.1. In the model with higher dropout, we can observe
the problem of having the training set with worse performances compared to the

Results

61

validation set, already found previously with higher dropout. However, this model has
no tendency to overfitting.
Moving on to the simulation with a lower dropout, however, we see a more suitable
behaviour of the train and validation curves, closer to the desired and expected ones.
Unlike the previous model, however, looking at both Figure 5.20 on the left and Figure
5.21 on the left, there is a slight tendency to overfitting. This behaviour had already
been found in previous studies, when the dropout layer was introduced to eliminate it.
Both Figure 5.21 and Figure 5.23, where MCC are represented, show a consistent
improvement with respect to those with greater dropout.
Observing the graphs of the other simulations, it can be seen that there is a very positive
trend regarding the behaviour of the train and validation curves as the dropout
percentage decreases, while there is not a well-defined trend if overfitting is considered.
For this reason, according to the author, a good solution could be to use a low dropout
value as the hyperparameter chosen by the code, as has already been set, and insert an
early stopping in the classifiers, as also happens in the regressor, so that model training
is stopped in case of overfitting. Furthermore, this element could speed up the
simulations since the model takes, most of the time, a few epochs to reach the minimum.
The second consideration regarding this analysis is that, observing the average values
of the five simulations, there is a significant decrease in the RMSE of the regressor,
"Loss Testing", compared to the previous values (Figure 5.24), despite having a non-
negligible standard deviation.

Figure 5.24 - Regressor performance with different parameter combinations

Results

62

5.3 Permutation Feature Importance results
Permutation feature importance is, as explained above, a technique for increasing the
transparency of the neural network model. In this case it was implemented for the two
classifiers.

Figure 5.25 - Permutation Feature Importance for feasibility classifier

As can be seen in the Figure 5.25, this technique is used for the model that refers to the new P2
dataset, as there is the "Cycle" feature in the list, which indicates on which cycle the considered
layout is simulated. It is noted how the most important features regarding the feasibility
classification are the "PEratio", the "EM1Power" and the "EngDispl", with a good importance
also of "Cycle" and "CrateDis_max". This last good dependence of the classifier performance
on the new "Cycle" feature certifies the effectiveness of this method. The type of cycle, in fact,
certainly affects the amount of CO2 that a layout can emit.

Figure 5.26 - Permutation Feature Importance for admissibility classifier

Results

63

On the contrary, if Figure 5.26 is taken into consideration, it can be seen that this feature is not
even represented, due to the presence of a constraint that ‘filters’ the less important features.

This result is totally reliable, as the type of simulation cycle does not affect the performance of
a vehicle. This depends on the characteristics of the engine, and, in fact, the displacement of
the engine is considered of extraordinary importance, as well as the final drive speed ratio.
Observing both graphs, it can be seen that the two classifiers depend on different features, as
expected, as they refer to different objectives. This is important to consider if a future task is to
explore this topic further. One of its developments could be to introduce what is called relative
feature importance, in which the features that are not considered important are eliminated in
the continuation of the pipeline. From this brief explanation it is clear how the dependence of
the two classifiers on different features is a delicate situation. If, in fact, a feature not important
for the first classifier, were to be important for the second network, its elimination could lead
to a serious deterioration of the performance of the second network.
Particular attention must therefore be paid to this aspect.

Results

64

Conclusions

65

Conclusions

To sum up, this project started from a pre-existing pipeline, created to support and integrate a
Dynamic Programming algorithm aimed at calculating CO2 emissions of hybrid vehicles of
different architectures, P2, P3 and P4.
In particular, the task of this project was to add another classification network, an admissibility
classifier, within a pipeline already composed of a feasibility classifier and a CO2 regressor.
The project focused especially on P2 architecture layouts, with the introduction of a new,
expanded dataset of this type.
The focus of the work was to verify if the introduction of this new classifier was good for the
entire pipeline, and if the model improved, as is widely explained in the literature, with a higher
number of layouts.
As shown in the results chapter, all of these analyses led to very positive results, with high
performances of all the nets.
In parallel, an in-depth research was also performed on XAI, with a particular focus on a post-
hoc explainability technique, the permutation feature importance.
Possible future developments could concern various aspects. Firstly, further analysis on the
influence of the dropout percentage adopted by classifiers could be indispensable for its correct
use.
Furthermore, as mentioned previously, more thorough studies on the XAI, and on relative
feature importance, could improve and optimize the model, eliminating superfluous features
and strengthening the most important ones.

Conclusions

66

Bibliography

[1] Roberto Finesso, Ezio Spessa, Mattia Venditti (2014), Layout design and energetic
 analysis of a complex diesel parallel hybrid electric vehicle.
[2] Roberto Finesso (n.d), Optimization of the control strategy of HEVs.
[3] Jeremy Jordan (2016), Normalizing your data (specifically, input and batch
 normalization), from https://www.jeremyjordan.me/.
[4] Timo Stöttner (2019), Why Data should be Normalized before Training a Neural
 Network, from https://towardsdatascience.com/.
[5] Md Zahangir Alom et al. (n.d.), The History Began from AlexNet: A
 Comprehensive Survey on Deep Learning Approaches.
[6] Sagar Sharma (2017), Activation functions in Neural Network, from
 https://towardsdatascience.com/.
[7] Vikashraj Luhaniwal (2019), Forward propagation in neural network – Simplified math
 and code version, from https://towardsdatascience.com/.
[8] Mohammed Zeeshan Mulla, Cost, Activation, Loss Function|| Neural Network|| Deep
 Learning. What are these?, from https://towardsdatascience.com/.
[9] Valentina Alto (2019), Neural Networks: parameters, hyperparameters and
 optimization strategies, from https://towardsdatascience.com/.
[10] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan
 Salakhutdinov (2014), Dropout: A Simple Way to Prevent Neural Networks from
 Overfitting.
[11] Raimi Karim (2018), Intuition on L1 and L2 Regularization, from
 https://towardsdatascience.com/.
[12] James Bergstra, Yoshua Bengio (2012), Random Search for Hyper-Parameter
 Optimization.
[13] Jason Brownlee (2018), A Gentle Introduction to k-fold Cross-Validation, from
 https://machinelearningmastery.com/.
[14] Alejandro Barredo Arrieta et al. (2019), Explainable Artificial Intelligence (XAI):
 Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI.
[15] What is Python? Executive Summary, from https://www.python.org/.
[16] Spyder, from https://docs.anaconda.com/.
[17] Davide Chicco & Giuseppe Jurman (2020), The advantages of the Matthews
 correlation coefficient (MCC) over F1 score and accuracy in binary classification
 evaluation, from https://rdcu.be/cg4EP.
[18] Jason Brownlee (2019), How to use Learning Curves to Diagnose Machine Learning
 Model Performance, from https://machinelearningmastery.com/.
[19] Christoph Molnar (2021), Interpretable Machine Learning - A Guide for Making Black
 Box Models Explainable.
[20] Jason Brownlee (2019), How to Get Reproducible Results with Keras, from
 https://machinelearningmastery.com/.

https://www.jeremyjordan.me/
https://towardsdatascience.com/
https://towardsdatascience.com/
https://towardsdatascience.com/
https://towardsdatascience.com/
https://towardsdatascience.com/
https://towardsdatascience.com/
https://machinelearningmastery.com/
https://www.python.org/
https://docs.anaconda.com/
https://rdcu.be/cg4EP
https://machinelearningmastery.com/
https://machinelearningmastery.com/

