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1. OBJECTIVES AND INTRODUCTION 
 
In this introductory chapter, the purpose of the work will be clarified and its approach will be 
explained in general, from a theoretical point of view (a more detailed and practical 
explanation will be given in Chapter 4). 
 

1.1 OBJECTIVE OF THE WORK 
 
Optical images and SAR images have different strengths and weaknesses. Optical images are 
easier to interpret visually, as the human eye is more accustomed to such views, but they are 
dependent on solar illumination and weather conditions. SAR images, on the other hand, 
actively illuminate the scene with microwaves, so the presence of clouds is no longer a 
problem and even scenes captured at night will be visible. The difficulty, however, of SAR 
images lies in the more difficult interpretation, due to the presence of a single band in the 
case of single polarisation, but above all due to the noises which affect them: since the image 
is acquired from the side it is subject to geometric distortion and presents shadows, and 
furthermore, the interference between the various backscattering of point elements in the 
same pixel causes a "salt and pepper" effect typical of these images, called speckle.  
In addition, there are several studies of SAR images that show their goodness of classification 
in urban contexts, where there are geometric elements with strong contrasts, such as streets 
or buildings, but there is a lack of studies regarding non-urbanised areas, where the contrasts 
between ground covers are less clear and classification is consequently more difficult. 
The objective of this study is therefore to classify an optical image and a SAR image of the 
same non-urbanised area, acquired on different days, in order to compare the results. 
Specifically, images of Deception Island acquired one day after the other were analysed: the 
optical image on 19.01.2020 and the SAR image on 20.01.2020, and the covers that will be 
classified are bare ground/rock, snow/ice and water. 
The specific reason for choosing Deception Island as the study area lies in the fact that it is 
subject to seismic and volcanological hazards, which are constantly monitored by two 
scientific bases located on it: it is therefore a necessity to have maps of the ground cover 
which are present in order to produce risk maps, and it would be appropriate to have 
techniques capable of providing such maps quickly (the covers are in fact not constant, but 
subject to continuous change in the case of snow or temporary lakes). 
 
The work will be structured as follows: 
- Chapter 1: this chapter gives a general description of the processes followed and their 
theoretical basis; 
- Chapter 2: an overview of the study area, Deception Island, is given; 
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- Chapter 3: the images used for the study are explained in detail: those to be analysed and 
the sources used as ground truth; 
- Chapter 4: the procedure followed for the processing and classification of the images is 
described in detail, as well as the creation of the ground truth and thanks to it the 
quantification of the goodness of the classifications; 
- Chapter 5: the best results obtained are presented and discussed, that is the classified 
images and the associated confusion matrices; 
- Chapter 6: the conclusions of the work are drawn. 
  

1.2 STRUCTURE OF THE WORK 

 
In order to classify the optical and the SAR images, the work was carried out on two parallel 
lines, and consisted of a first preparation phase, which was different in the two cases, and a 
second classification phase, firstly unsupervised and then supervised, also, an index-based 
classification was added in the case of the optical image. The goodness of the classifications 
was then quantified through the use of confusion matrices, whereby the images produced 
were compared with a ground truth, derived from two separate sources: the topographic map 
produced in 2005 by the Spanish Land Army and the Pixel QA band of a Landsat image 
acquired at a date close to those analyzed. The qualitative and theoretical introduction to the 
procedure carried out will now be given, while the process will be described in detail in 
chapter 4. To have more details about the images used and their satellites, please refer to 
chapter 3. 
 
PREPARATION OF THE IMAGES 

Before classifying the images, it is necessary to carry out some preparation operations, firstly 
because the downloaded images include areas that will not be studied (Figures 3.2 and 3.6), 
and continuing with an excessively large image will only lead to an unnecessary burdening of 
operations, secondly because, while the optical image of Level A2 is already ready for 
processing, being characterised by a so-called Bottom of Atmosphere reflectance, from which 
the effect of the atmosphere has been removed, the SAR image requires a series of operations 
aimed at correcting errors typically present in these images, such as speckle and geometric 
distortion caused by lateral acquisition. 
 
SAR Image 

For the preparation of the SAR image, the preparation operations were: 
- cropping of the target area, as mentioned above, because the original image included 

a much larger area than the area of interest; 
- calibration, in order to normalize the present values; and to do this it uses the ground 

area, the illuminated area in the look direction or the tangent of the local angle of 
incidence; 
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- filtering, to reduce the speckle effect, granular noise that causes a "salt and pepper" 
effect in SAR images, due to the interference of the waves reflected by many point 
scatterers;  

- georeferencing and geometric correction of the image, using an appropriate DTM, 
- conversion of the band into decibels, to obtain values that are easier to handle. 

After these operations, the clipping was also refined with the coastline. 
As far as filtering is concerned, four different filters were tested: an initial application of the 
Median filter was made to the image, then, as suggested by Lee (Lee et al., 1989), a multiple 
application of the Lee filter was carried out, of which the two modified versions present in 
SNAP were also tested: Lee Sigma and Refined Lee. These four filters will now be briefly 
described. 
 
Median 

The Median filter works by moving a scan window that replaces the center pixel with the 
median of the pixels in the window. It is effective in reducing point and isolated noise such as 
speckle, suppressing or even removing it, and for this reason it is often used as an alternative 
to the Mean filter, which instead causes blurring (Kupidura, 2016). Its drawback is that it can 
lead to the deletion of small objects or subtle elements; however, this may be the case in an 
urban setting, but not in the image studied, where elements of this type were not present. 
 
Lee 

Many variations of this filter have been proposed over the years, but the original Lee filter 
dates back to 1980 (Lee, 1980). It is considered to be the first model-based speckle removal 
filter and it is a local statistics filter that operates linearly and reduces speckle by minimizing 
the mean square error of the mean intensity within the scan window. 
 
Lee Sigma 

The Lee Sigma filter, devised by Lee in 1983 (Lee, 1983) assumes that the distribution of 
reflected signals is Gaussian and calculates the sigma probability, then considers as outliers 
the pixels that fall outside the two-sigma interval starting from the central pixel of the scan 
window and averages the others and then substitutes the value of the central pixel with this 
one. 
This filter is able to bring out the parts of the image that have a different contrast, but does 
not remove the dark spots. 
 
Refined Lee 

The Refined Lee filter was designed by Lee in 1981 (Lee, 1981) to overcome the problem of 
noisy edge boundaries produced by the Lee filter. It operates using a 7x7 moving window 
that, when it encounters an edge, estimates its orientation using the local gradient: inside the 
window there are in fact eight non-square windows for eight different edge orientations. The 
algorithm considers the window that best fits the orientation of the edge and with it 
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calculates the local mean and variance (if no edge is found, the calculations are performed 
taking into account the whole area of the 7x7 window). 
This filter works particularly well on edges and high contrast areas, but the same cannot be 
said if the image is excessively segmented. 
 
Optical Image 

For the preparation of the optical image, the operations were: 
- cropping of the interested area, as for the SAR image; 
- resampling of the bands to make them all have the same cell size and thus be able to 

carry out the operations necessary to calculate the indices.  
As for the SAR image, the clipping was refined with the coastline. 
The indices that were considered were the following: NDWI, MNDWI, Mu-WIR, NDSI, NDGI, 
NDSII. They will now be briefly illustrated, and the bands indicated in brackets in the formulas 
refer to the Sentinel 2 satellite, which is the one of interest. 
 
NDWI 

The Normalized Difference Water Index (NDWI) is an index used to detect the presence of 
water, of which there are at least two versions: one, introduced by Gao in 1996 (Gao, 1996), 
which uses the near-infrared band (NIR) and the short-wave infrared band (SWIR) and is 
sensitive to changes in the water content of vegetation, useful because it is less sensitive to 
atmospheric effects, which instead condition the NDVI (Gao, 1996), an index with a similar 
purpose. Its formula is as follows: 
 

!"#$!"# =
!$&	()8) − -#$&	()11)
!$&	()8) + -#$&	()11) 

 
The other version, which is the one used in this case, was introduced by McFeeters in 1996 
(McFeeters, 1996) and is instead used to detect water bodies, being able to enhance them 
while leaving out coverages such as soil and vegetation. Its formula exploits the green and 
near-infrared bands and is given below: 
 

!"#$$%&''(')* =
01223	()3) − !$&	()8)
01223	()3) + !$&	()8) 

 
MNDWI 

The Modified Normalized Difference Water Index (MNDWI) was first introduced by Xu in 2006 
(Xu, 2006) and replaces the near-infrared band used in McFeeters' NDWI with the mid-
infrared band (MIR), with the advantage of increasing the positive value of water, since it 
absorbs more light in the MIR than in the NIR, and having negative values for buildings, soil 
and vegetation, which reflect more in the MIR than in the NIR, so as to have a greater contrast 
between water and soil, facilitate water extraction and obtain a more accurate classification.  
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Its formula is as follows: 
 

5!"#$ = 01223	()3) − 5$&	()86)
01223	()3) + 5$&	()86) 

 
MuWI-R 

The MuWI-R, or Multi-spectral Water Index Revised (MuWI-R), is a reduced version of another 
index, the Multi-spectral Water Index Complete (MuWI-C), to which it removes some non-
fundamental terms, making calculation easier. Both indices were developed in 2018 by Wang 
et al (Wang et al., 2018) and were specifically designed for Sentinel 2, with the aim of 
generating water maps at 10 m resolution, thus having higher classification accuracies. Its 
formula consists of a combination of normalized differences, thus ensuring threshold 
stability: 
 

57#$& = −4 ∗ ):72	()2) − 01223	()3)):72	()2) + 01223	()3) + 2 ∗
01223	()3) − !$&	()8)
01223	()3) + !$&	()8) + 2

∗ 01223	()3) − -#$&	()12)01223	()3) + -#$&	()12) −
01223	()3) − -#$&	()11)
01223	()3) + -#$&	()11) 

 
NDSI 

The term Normalized Difference Snow Index (NDSII) was first coined by Hall et al. in 1995 (Hall 
et al., 2010). Although methods similar to NDSI, which used visible and near-infrared bands 
with the intention of mapping snow and separating it from clouds, have been tested since the 
mid-1970s. It is an index that takes advantage of the high reflectance of snow and ice in the 
visible bands, particularly in the green band, and their strong absorption in the near-infrared 
or shortwave areas to map and separate them from clouds, which have high reflectance in 
both parts of the spectrum mentioned above. Its formula is as follows: 
 

!"-$ = 01223	()3) − -#$&	()11)
01223	()3) + -#$&	()11) 

 
NDGI 

The Normalized Difference Glacier Index (NDGI) was formulated by Keshri in 2009 (Keshri et 
al., 2009), with the intention of separating pure snow and ice from ice mixed with debris. The 
bands used are green and red, as the spectral characteristics of the two mentioned categories 
are different in these two bands and the two histograms can be easily divided. Its formula is 
as follows:  
 

!"0$ = 01223	()3) − &2<	()4)
01223	()3) + &2<	()4) 
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NDSII 

Like the NDGI, the Normalized Difference Snow Ice Index (NDSII) was formulated by Keshri et 
al. in 2009 (Keshri et al., 2009), and its purpose is to separate snow from ice using the green 
and near-infrared bands, as their reflectance is similar in the green but different in the near-
infrared, where the reflectance of the ice decreases. The index formula is as follows: 
  

!"-$$ = 01223	()3) − !$&	()8)
01223	()3) + !$&	()8) 

 
Once these preparation operations had been carried out, it was possible to proceed with the 
classification of the images. 
 
CLASSIFICATION 

Classifying an image means grouping its cells into groups, called classes, based on spectral or 
texture characteristics. Classification methods are divided into supervised and unsupervised, 
whereby in the first case it is the user who selects regions of interest in the various classes to 
provide the algorithm with training data on which to base itself in order to group the cells in 
the defined classes, while the second is an automatic method that does not require training 
data. 
The classifiers used were those present in the ArcGIS software and will be briefly illustrated 
below: the Iterative Self-Organizing (ISO) cluster classifier for unsupervised classification and 
the Maximum Likelihood (ML), Random Trees (RT) and Support Vector Machine (SVM) 
classifiers for supervised classification. 
 
ISO cluster 

The ISO cluster involves subdividing cells into the number of classes specified at the start in 
an automatic and iterative manner using a technique called migrating means, based on the 
calculation of the Euclidean distance in feature space (each cell is assigned to the cluster for 
which the distance is minimum) and on the recalculation of the cluster mean at each iteration 
[4]. 
 

Maximum Likelihood 

The modern version of the Maximum Likelihood classification method was created by Fisher, 
between 1912 and 1922 (Hald, 1999), although rudimentary forms already existed earlier 
under different names. The algorithm that operates the Maximum Likelihood Classification 
tool in ArcGIS is based on Bayes' decision theorem and on the fact that the sample cells of 
each class are normally distributed in multidimensional space. Under these assumptions, each 
cell is assigned to the class to which it is most likely to belong based on mean and covariance 
[5]. It is one of the most used classifiers in remote sensing and provides very good results 
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when working with unimodal distributions, but has difficulty working with multimodal 
distributions since it assumes that the distribution is normal (Liu et al., 2011). 
 
Random Trees 

The Random Trees classifier, also known as Random Forests, was first introduced in 2001 by 
Breiman (Breiman, 2001) and works with multiple decision trees, each based on a set of 
random samples that are independent of those in the other trees (there is thus a possibility 
that the same sample is selected from several trees). Each tree assigns a probability of 
belonging to a certain class for a certain cell and the final assignment is given by the average 
of the various probabilities calculated by each tree. This classifier has gained much fame in 
the remote sensing world due to its speed and ability to handle large amounts of data, it is 
however very sensitive to sampling design and this should be taken into account in order to 
avoid misclassification as much as possible (Belgiu et al., 2016). 
 
Support Vector Machine 

The Support Vector Machine classifier was initially developed by Vapnik in 1979 (Vapnik, 
1979) and is based on the representation of elements in a feature space, whereby different 
classes are located in different regions of the space and the assignment of a cell to one class 
rather than another depends on its proximity to it in the said space. The drawback of this 
method is that the assumption that different classes are located in completely distinct regions 
of feature space is theoretical when in reality point data of different classes may overlap and 
this leads to misclassification, in addition to the fact that this classifier is not optimized to 
work with data affected by noise and even a small percentage of training samples assigned to 
the wrong class can drastically reduce the goodness of its performance. It does, however, 
have the advantage that it does not require a large amount of training data and does not 
assume any particular distribution for the data representation, which is a good thing since 
data acquired by remote sensing usually have unknown distributions (Mountrakis, 2011).  
 
These classifications can also be pixel-based or object-based. The first one bases the 
assignment of a pixel to a given class only on its spectral characteristics, without taking into 
account how neighboring pixels behave; the second one instead involves grouping 
neighboring pixels on the basis of spectral characteristics and textures into structures called 
segments, and then using these for classification, taking into account several of their 
attributes. For the formation of segments ArcGIS uses the Mean Shift algorithm, conceived in 
1975 by Fukunaga (Fukunaga, 1975) to find the modes of a probability density function. In 
particular, the command works in such a way that a window is scrolled to calculate the mean 
in order to understand which pixels to include in the segment, so that the latter will be the 
mean value; continuing to scroll on the image, it will iteratively recalculate the mean so as to 
verify that each segment has been formed well [7]. 
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Once the classification is complete, it is necessary to evaluate its goodness and this is done 
by comparing the classified image with a reference one called ground truth and, 
quantitatively, by making confusion matrices. These are constructed selecting a series of 
control points, independent from those used as training samples in the case of supervised 
classification, in which one compares which value is assumed by the pixel in the classified 
image and which in the reference one (Stehman, 1997). On the basis of this, it is possible to 
quantify the accuracy of the classifications, using measures such as the producer's accuracy, 
relative to the errors of omission, for which a class is found to be lacking in points because 
the points that should have been classified as belonging to it have been inserted in another, 
and the user's accuracy, relative to the errors of commission, for which instead the pixels that 
should have belonged to a certain class are classified as belonging to another, which 
consequently will include more points than it should have [1].  
Another value used to estimate the goodness of the classification is the coefficient of 
agreement k, which represents the overall accuracy of the classification. 
User's Accuracy, Producer's Accuracy and k move between 0 and 1, where 0 represents very 
bad accuracy and 1 represents very good accuracy. 
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2. CASE STUDY: DECEPTION ISLAND 
 
This chapter will provide an overview of the study area: Deception Island. In particular, its 
geography and geomorphology will be briefly explained, and the meteorology of the period 
characterizing the acquisition of the images used will be analysed. 
 

2.1 LOCATION, GEOGRAPHY and TOPOGRAPHY 

 
Deception Island is part of the South Shetland Islands archipelago, located approximately 120 
km from the Antarctic Peninsula (Figure 2.1.1), and more precisely it is situated between 
latitudes 62°53'30S and 63°01'20 "S and longitudes 60°29'20 "W and 60°45'10 "W. It was 
discovered by the explorer Nathaniel Palmer in 1820 (Smellie et al., 2002), who gave it this 
name because what at first seemed to be an island, when approaching Neptune's Bellows, 
the 500 m strait that allows access to its interior, turns out to be a volcanic caldera [8]. In fact, 
the island has a horseshoe shape, produced by the flooding of the caldera of a still active 
volcano, whose last eruption dates back to 1970 (Shultz, 1972). This bay is about 6 x 10 km in 
size (similar to Krakatoa or Santorini) and is called Port Foster. It is about 190 m deep (Luzón 
et al., 2011) and is embraced by mostly gravelly and sandy shores (except near Mount Pond), 
which are affected by several small lava deltas, as well as a shell of slag and thin lavas close 
to the edge of the caldera (Smellie, 2001). These beaches then give way to steep hills in the 
central part of the island (Smellie, 2001). In contrast to this, the outer coast is characterised 
by ice cliffs that are 30-70 m high, but can reach 300 m in some places (Smellie, 2001). 
The island has a total area of 98.5 km2 [11], including the islands under its jurisdiction, of 
which 57% is covered by permanent glaciers, mainly affecting Mount Kirkwood and Mount 
Pond and reaching as far as the north-eastern part of Kendall Terrace, where the surface layer 
consists of ash (Smellie, 2001). The remaining 43% of the island consists of pyroclastic 
deposits and sediments, with the exception of a few areas where the rock is exposed (Luzón 
et al., 2011), as well as glacial moraines, mostly evident at Baily Head and along the outer 
coast between Vapour Col and Entrance Point (Smellie, 2001). In addition, there are many 
craters, often filled with lakes.  
The diameter of the island is 15 km and its highest peak is 539 m above sea level (Smellie et 
al., 2002), reached by Mount Pond, but its base diameter is in reality of 30 km and the island 
rises 1400 m above the seabed (Smellie, 1990). 
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Figure 2.1.1 Location of Deception Island (source: Smellie et al., 2002) 

 
The island is the most active volcano in the South Shetland Islands, and over the years has 
erupted a large quantity of tephra, estimated to have reached as far as the South Pole (Palais 
et al., 1989); Moreton (Moreton, 1999) analyzed ash samples in the sediments of the Scotch 
and Weddell Seas and found that Deception Island was the unequivocal source; however, 
more recent eruptions have been smaller in volume and have occurred near the inner coast 
(Figure 2.1.2). Nowadays, evidence of its activity is provided by fumarole emissions (Fumarole 
Bay owes its name to this very reason), hydrothermal springs, especially active in Pendulum 
Cove and Whalers Bay, seismicity, monitored since 1986 by several teams of researchers from 
the Spanish Antarctic Program, as well as uplift of the north floor of Port Foster (Luzón et al., 
2011). 
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Figure 2.1.2: Most recent eruptions (source: Geyer et al., 2018). BAD: Argentinian Base 
“Decepción”; BEGC: Spanish Base “Gabriel de Castilla”; BS: British Base (destroyed); CS: 

Chilean Base (destroyed) 
 
The topographic map which was used as a reference for the study is the 2005 map, drawn up 
by the Spanish Army Geographical Survey; for more information about it, please refer to 
Chapter 3, a simplified one is shown in Figure 2.1.3 for greater clarity, whose source is [11]. 
The island hosts two scientific stations and is one of the main touristic destinations in 
Antarctica. 
 

 
Figure 2.1.3: Topographic map (source: [11]) 
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2.2 GEOLOGY AND GEOMORPHOLOGY 

 
Deception Island is a broad Quaternary-era shield volcano, composed of basaltic andesite and 
located along the Bransfield Strait, a 15-20 km wide back-arc basin located between the 
Antarctic Peninsula and the South Shetland Islands (Figure 2.2.1) (Smellie, 2001). The cause 
of the formation of the Bransfield Trench was the subduction of the Phoenix Plate under the 
Antarctic Plate during the Mesozoic-Cenozoic period (Dalziel, 1984); this movement is still 
ongoing, although at a very low rate (between 2.5 and 7.5 mm/y over the last 2 million years, 
according to Henriet (Henriet et al., 1992)). Although the relative ages of the island's 
individual volcanic units are known, there is a lack of information on their absolute ages. 
However, an analysis of paleomagnetic data shows that the rocks that have emerged have 
normal magnetic polarity, which means they are less than 780000 years old, when the last 
magnetic pole reversal occurred (Valencio et al., 1979, Baraldo et al., 2003). 
 

 
Figure 2.2.1: Bransfield Strait (source: Geyer et al., 2008) 

 
Over the years, the island has experienced many eruptions, including one that is estimated to 
have erupted 60 km3 of magma (Geyer et al., 2008) and led to the collapse of the caldera (in 
8300 BC, as assessed by Olivia Urcia et al. (Oliva-Urcia et al., 2016)); for this reason, its 
eruptions are divided into pre-caldera and post-caldera.  
The pre-caldera period began with the emission of tephra from multiple centers, possibly due 
to subaqueous fire fountains during shoaling; after which the activity became subaerial 
effusive or weakly pyroclastic (Strombolian and Hawaiian), leading to the formation of the 
basaltic shield and subsequently resulting in the great eruption that formed the caldera, then 
followed by smaller successive collapses (Smellie, 2001). 
The post-caldera period comprises the most recent eruptions and is characterized by small-
volume mainly phreatomagmatic eruptions, with varying degrees of explosiveness depending 
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on the amount of water interacting with the magma and its source (aquifer, sea, ice melting) 
(Geyer et al., 2008), located within the caldera but also along its structural boundaries. The 
magmas that the island erupts are sodic, while the erupted rocks have a wide range of 
composition, ranging from basalt to dacite, but they are mainly basaltic andesites (Smellie, 
2001). 
Speaking of the geology of the island, according to a study conducted by Luzón et al. (Luzón 
et al., 2011), the volcano is composed of layers of pyroclastic deposits and loose sediments 
that extend to a depth of 400 m, with different degrees of compaction. In particular, two 
layers with thicknesses of approximately 100 and 300 m can be differentiated on the basis of 
the different propagation velocities of s-waves within them, of which the second one is the 
most consolidated. These are deposits resulting from pre- and post-caldera eruptions that 
have then been subjected to erosion, sedimentation and snow cycles. 
On this basis, the deposits on the island are divided into two main groups: The Port Foster 
Group, which comprises pre-caldera deposits, and the Mount Pond Group, which comprises 
post-caldera deposits (Smellie et al., 2002). The Port Foster Group includes the Fumarole Bay, 
Basaltic Shield and Outer Coast Tuff formations, which are only visible in the outer coast cliffs 
and in some parts of the inner wall of the caldera, because they are covered by post-caldera 
materials, and consist mainly of mafic rocks formed by submarine Strombolian deposits, 
submarine lavas and deposits from currents of pyroclastic density. More specifically, Smellie 
(Smellie et al., 2002) states that Fumarole Bay is the result of a predominantly subaqueous 
eruptive activity, generated by several centers, the Basaltic Shield is composed of subaerial 
effusive and minor pyroclastic material, and the Outer Coast Tuff is the result of a major 
eruption immediately preceding, and probably related to, the caldera collapse. Other sources, 
such as Martí et al. (Martí et al., 2013), state that the caldera collapse occurred prior to the 
deposition of the Outer Coast Tuff, which they classify as a syn-caldera collapse deposit. These 
units would therefore testify the progressive evolution from subaqueous to subaerial 
volcanism (Oliva-Urcia et al., 2016). 
The Mount Pond Group comprises the Baily Head, Pendulum Cove and Stonethrow Ridge 
formations and consists of small volume phreatomagmatic eruption deposits, such as 
hydrovolcanic tephra, lavas, tuff cones and maar deposits, and deposits from magmatic 
eruptions, such as strombolian scoriae and lavas, of basaltic to dacitic composition, erupted 
from different centers (Smellie et al., 2002). 
Figure 2.2.2 shows a simplified geological map of the island, drawn up by Smellie (Smellie, 
2001), for a more complete map please refer to the appendix, where the geological and 
geomorphological maps drawn up by López-Martínez et al. in 2000 are shown. 
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Figure 2.2.2: Geologic map (source: Smellie, 2001) 
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2.3 METEOROLOGY 
 
The climate of Deception Island is polar maritime, and annual temperatures move in the range 
-28 °C +11 °C, with an average of -3 °C, although locally 70 °C can be reached in proximity of 
fumaroles and hot springs [10].  
For the study of the meteorology, the reference used was the Antarctic Campaign of the 
Spanish Land Army (Campaña Antártica del Ejército de Tierra, 2019-2020). In particular, the 
period 12.01.2020-09.02.2020 was considered, which includes all the dates of the 
downloaded images, from the first one of Sentinel 2, on 19.01.2020, to the one of Landsat 8 
used as ground truth, on 09.02.2020, and also covers the week before the first image, for a 
more complete analysis. 
Examining the data provided, it emerges that the temperature was always above 1 °C, 
occurring seven times, while on the majority of days (sixteen) the minimum temperature was 
2 °C, reaching 3 °C (six days) on the hottest days. 
Speaking of the maximum temperatures, in most cases they reached 4 °C (sixteen days), 
peaking at 5 °C (eight days) on the hottest days and falling to 2 °C on the two coldest days. 
There was no snowfall throughout the period, and the days were always cloudy, often 
accompanied by rainfalls and more frequently by sunshine. 
 
DATE Weather conditions T min (°C) T max (°C) 
12/01/2020 Cloudy with light rain during a time slot 3 5 
13/01/2020 Cloudy 3 5 
14/01/2020 Cloudy 3 5 
15/01/2020 Cloudy and partly sunny  2 4 
16/01/2020 Cloudy and partly sunny  1 4 
17/01/2020 Cloudy 1 3 
18/01/2020 Mostly sunny 1 3 
19/01/2020 Partly cloudy and partly sunny 1 3 
20/01/2020 Mostly sunny 1 4 
21/01/2020 Cloudy and partly sunny  2 4 
22/01/2020 Cloudy and partly rainy 2 4 
23/01/2020 Cloudy, with light rain during two time slots 3 5 
24/01/2020 Cloudy and rainy 3 5 
25/01/2020 Cloudy and partly rainy 2 4 
26/01/2020 Cloudy and rainy 2 4 
27/01/2020 Cloudy but mostly rainy 2 5 
28/01/2020 Cloudy but mostly rainy 2 5 
29/01/2020 Cloudy and rainy 2 4 
30/01/2020 Cloudy with light rain during a time slot 2 4 
31/01/2020 Cloudy with light rain during a time slot 2 4 
01/02/2020 Mostly rainy 2 4 
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02/02/2020 Cloudy and rainy 2 4 
03/02/2020 Partly cloudy and partly sunny, with light rain during a time slot 2 4 
04/02/2020 Mostly sunny 1 2 
05/02/2020 Mostly sunny 1 2 
06/02/2020 Cloudy and partly sunny  3 5 
07/02/2020 Partly sunny 2 4 
08/02/2020 Partly sunny 2 4 
09/02/2020 Mostly sunny 2 4 

Table 2.3.1: metereological data 
 

 
Figure 2.3.1: temperatures graph with lines in correspondence with the dates in which the 

images used were acquired 
 
To consult the data divided by time slot, reference can be made to the tables provided by the 
Diary of Operations of the Spanish Land Army’s Antarctic Campaign (Campaña Antártica del 
Ejército de Tierra, 2019-2020), shown in the Appendix. 
 
 
 
 

 
  



 21 

3. MATERIAL 
 
The images analyzed for the study belong to the period of the Antarctic summer and were 
acquired by the Sentinel 1 and Sentinel 2 satellites of the European Space Agency (ESA), on 
the dates of the 19th (optical image) and 20th (SAR image) of January 2020, respectively. The 
sources used as ground truth were an image acquired by Landsat 8, a joint NASA/ United 
States Geological Survey (USGS) satellite, for snow/ ice and the 2005 topographic map 
developed by the Geographic Centre of the Spanish Army for lakes and bare soil/ rock. A brief 
description of the 3 mentioned satellites and the topographic map is given below. 
The Sentinel images were downloaded from ESA's Copernicus Open Access Hub (formerly 
known as Sentinels Scientific Data Hub) [9] and the Landsat images from the USGS Earth 
Explorer [23]. 
A brief description of the three satellites is given below and the used images are also specified 
with more detail. 
 
Sentinel 1 

Sentinel 1 refers to a mission comprising two satellites, Sentinel 1A and Sentinel 1B, both 
launched by the European Space Agency on the 3rd of April 2014 and the 25th of April 2016, 
respectively, for the Copernicus initiative, taken jointly with the European Commission (EC). 
These are two C-band synthetic aperture radars (5.6 cm wavelength) capable of providing a 
ground track repetition of 12 days for the single satellite and 6 for the two. They can provide 
single or dual polarization and have four possible acquisition modes, shown in Figure 3.1: 
Stripmap (SM), in continuity with the ERS and Envisat missions, Interferometric Wide swath 
(IW), which is the default mode for ground-based acquisitions, Extra-Wide swath (EW), used 
instead for maritime, glacial and polar areas, and Wave mode (WV), which aims to determine 
the direction, wavelength and height of ocean waves. 
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Figure 3.1: Sentinel 1 acquisition modes. Source: [12] 

 
In particular, the image used was acquired in IW mode, which consists of a data acquisition 
with a swath of 250 km operated by the TOPSAR (Terrain Observation with Progressive Scans 
SAR), an instrument that works by moving the acquisition beam cyclically between several 
adjacent sub-swaths. This allows to provide large swaths with a reduced scalloping effect and 
the result is one image for each sub-swath and one for each polarisation channel, for a total 
of three images in single polarisation or six in dual polarisation, which can then be merged 
into a single image covering the entire area. To guarantee this possibility, each sub-swath has 
a small overlap area of about 2km. 
 
The images acquired are open source and the processing levels provided are the followings:  
- Level 0, this is the raw and compressed SAR product, in order to be used it needs to be 
decompressed and processed using a SAR processor;  
- Level 1, which in turn is divided into two types of products: Single Look Complex (SLC), which 
consist of complex samples that preserve phase information and are characterised by the 
presence of a single look in each dimension that exploits the full bandwidth of the 
transmission signal, and Ground Range Detected (GRD), consisting of SAR data detected, 
multi-looked and projected to ground level using a ground ellipsoid model, but which lose 
phase information. GRD products can have three different resolutions, depending on the 
number of multi-looks performed: Full Resolution (FR), High Resolution (HR) and Medium 
Resolution (MR). 
- Level 2, which contains three components: the Ocean Swell spectra (OSW), which is a two-
dimensional spectrum of waves on the ocean surface, and includes an estimate of speed and 
wind, the Ocean Wind Fields (OWI), which is a grid with estimates of wind speed and direction 
at 10 m above the ground, derived from GRD images, and the Surface Radial Velocities (RVL), 
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which indicates the difference between the Doppler grid measured in level 2 and the 
geometric Doppler calculated in level 1. 
 
For more information on this subject, please refer to [13], the official source from which the 
above information was taken. 
 
The image used for the study, shown in Figure 3.2, is the 
“S1A_IW_GRDH_1SSH_20200120T081742_20200120T081807_030881_038B41_9A9B”, was 
acquired by the Sentinel 1A (S1A) satellite on 20-01-2020 from 08:17:42 to 08:18:07, with an 
Interferometric Wide Swath Mode (IW), in a downward direction along orbit 9. The product 
is level 1 and Ground Range, Multi-Look, Detected (GRD), high resolution (H) and has single 
HH polarisation. This information was retrieved from the metadata of the product and from 
the interpretation of its nomenclature with the (ESA, 2016). 
 

 
Figure 3.2: Original Sentinel 1 image, the study area is circumscribed by the red rectangle 

 
Sentinel 2 

Sentinel 2 is the mission comprising the Sentinel 2A and Sentinel 2B satellites, launched by 
the European Space Agency on the 23rd of June 2015 and on the 7th of March 2017, 
respectively, for the Copernicus initiative. The two satellites travel on the same polar and sun-
synchronous orbit, with a relative phase difference of 180° the one from the other. The revisit 
time that they are able to provide is 10 days at the equator for the single satellite and 5 days 
for the two. Each of the two satellites is equipped with a Multi-Spectral Instrument for the 
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acquisition of the images which is able to acquire 13 spectral bands, characterized by three 
possible spatial resolutions: 10 m (bands B2, B3, B4 and B8), 20 m (bands B5, B6, B7, B8A, B11 
and B12) and 60 m (bands B1, B9 and B10), and by the wavelengths reported in Figures 3.3, 
3.4 and 3.5 (source: [15]). 
 

 
Figure 3.3: Sentinel 2 10 m spatial resolution bands: B2 (490 nm), B3 (560 nm), B4 (665 nm) 

and B8 (842 nm). Source: [15] 
 

 
Figure 3.4: Sentinel 2 20 m spatial resolution bands: B5 (705 nm), B6 (740 nm), B7 (783 nm), 

B8a (865 nm), B11 (1610 nm) and B12 (2190 nm). Source: [15] 
 

 
Figure 3.5: Sentinel 2 60 m spatial resolution bands: B1 (443 nm), B9 (940 nm) and B10 

(1375 nm). Source: [15] 
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For the purposes of this study, not all bands were useful and in particular bands 1, 9 and 10 
were excluded, because the first two bands both contain measurements that are not in our 
interest: the first is related to aerosol monitoring (ESA, 2015) and the second indicates an 
absorption value related to the water vapour content in the atmosphere [14]. As for band 10, 
it is the one related to cirrus and is already excluded from level 2A products as it does not 
contain any information related to surfaces. 
 
Regarding the processing levels of the provided products, there are two levels which are open 
to the public: level 1C, which is characterised by Top-of-Atmosphere reflectance values, and 
level 2A, which provides Bottom-of-Atmosphere reflectance values. 
 
The official source for the above information is [16]. 
 
The image used for the study, shown in Figure 3.6, is the 
“S2B_MSIL2A_20200119T131859_N0213_R095_T20EPR_20200119T145349” and was 
acquired by the Sentinel 2B (S2B) satellite with the Multi-Spectral Instrument (MSI) on 19-01-
2020 at 13:18:59 in a downward direction along orbit 95 in tile number 20. The product is 
level 2A and was generated on the same date at 14:53:49, and has a cloud coverage of 
38.88%. This information was retrieved from the metadata of the product and from the 
interpretation of its nomenclature with the Products Specification Document of Sentinel 2 
(ESA, 2018). 
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Figure 3.6: Sentinel 2 image (RGB combination: B4-B3-B2), the study area is framed with a 

red rectangle 
 

Landsat 8 

Landsat 8 was launched on the 11th of February 2013 from NASA's Vandenberg Air Force Base 
in California and moves in a near-polar orbit, so its temporal resolution is of 16 days. It has 
two instruments on board: the Operational Land Imager (OLI), which measures the visible, 
near-infrared and short-wave infrared in nine different bands, including one panchromatic 
band, and the Thermal Infrared Sensor (TIRS), which measures the temperature of the Earth's 
surface in two thermal bands. Speaking of the spatial resolution, shown in Figure 3.8, it is 
equal to 30 for all of the bands except for the panchromatic band (band 8), where it is equal 
to 15 m, and for the two thermal infrared bands, acquired by the TIRS, where it is equal to 
100. Figure 3.7 shows the spectral resolutions of the different bands of Landsat 8 compared 
with those of Landsat 7. 
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Figure 3.7: Comparison between Landsat 8 and Landsat 7 spectral resolutions. Source: [20] 

 

 
Figure 3.8: Landsat 8 bands spatial and spectral resolution. Source: [22] 

 
Again, there are two processing levels available for public use: one subjected to atmospheric 
correction (Level 2) and one not (Level 1). 
The data acquired by Landsat are then divided into two collections: Collection 1, which 
contains all the Level 1 data acquired from 1972 to the present from Landsat 1-8, and 
Collection 2, which is a reprocessing of the Level 1 images that aims to bring improvements 
such as greater accuracy in geolocation, and includes the Level 2 products, which provide the 
reflectance and surface temperature of the scenes acquired from 1982 to the present. 
 



 28 

The sources from which the above information was drawn were [21] and [24]. 
 
For the purposes of the study, the ground truth of the snow was taken from the Pixel Quality 
Assessment band of the image “LC08_L2SR_219104_20200209_20201016_02_T2”, acquired 
by the Landsat 8 satellite on 09-02-2020 from 13:15:19 to 13:15:51 along orbit 219 referred 
to the Worldwide Reference System-2 (WRS-2) Path of the product and orbit 104 referred to 
the WRS-2 row of the product. The image processed at level 2 on 16-10-2020 was chosen and 
the scene is 20.73% covered by clouds but only 4.65% of it is on dry land. These data were 
retrieved from the product metadata and interpreted using the Landsat 8 Collection 2 (C2) 
Level 2 Science Product (L2SP) Guide (USGS, 2020). The image is shown in Figure 3.9, while, 
in order to see its Pixel QA band, please refer to chapter 4.3 (Figure 4.3.5). 
 

 
Figure 3.9: Landsat 8 image, the study area is framed with the red rectangle 

 
Topographic map  

The topographic map used as reference was produced by the Geographic Centre of the 
Spanish Army in collaboration with the University of Cádiz, and the edition used is the second, 
made in 2005, shown in Figure 3.10. The map is at a scale of 1:25000 and is based on field 
surveys carried out by the Geographic Centre of the Army in the Antarctic summer of 1992-
1993, thus updating the aerial survey carried out in 1986, and on the coastline of an image 
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acquired by the QuickBird satellite in 2003. For more information on the other sources that 
underlie the map (for example bathymetric data, location of fauna, etc.), please refer to the 
map, which is included in the Appendix. 
This map was then redrawn with Microstation software by a research group from the 
University of Cádiz and it is from these dgn files that the lakes were extracted when preparing 
the ground truth, as will be further explained in chapter 4.3. 
Furthermore, the contour lines indicated in the map were used by the same university to form 
the DTM of the island, which will be used for the geometric correction of the SAR image, as 
explained in chapter 4.1.1. Finally, the contour line 0 is the one they used to create the 
shapefile of the coastline, which was later used to clip the images. 
 
Softwares used 

For an initial processing, such as coarsely cropping the area of interest, or, in the case of the 
SAR image, calibrating, georeferencing, applying speckle reduction filters and converting the 
bandwidth to decibels, ESA's SNAP software, version 7.0 [17], was used. Then the images 
were exported in GeoTIFF format  
The work continued with the software ArcGIS, version 10.7 [2], and ArcGIS Pro, version 2.4 
[6], where a more precise clip of the contour of the island was applied, thanks to a shapefile 
of the coastline, and it was also possible to carry out the different operations between the 
bands to generate the necessary indices, as well as the classification and segmentation 
operations and all of the steps that they involve. In the specific case of the classification of 
the optical image based on the application of subsequent indices, moreover, the limits 
capable of dividing their histograms in such a way as to separate the different land covers 
were identified using the ENVI software, version 5.1 [18]. 
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Figure 3.10: Topographic map of 2005. Source: Spanish Army Cartographic Centre. 
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4. METHODS 
 
The aim of the study is to compare the classification of a SAR image with that of an optical 
image taken in close dates (so the results should be similar); to do this, therefore, the work 
was divided into three main phases: preparation of the images, classification, quantification 
of the goodness of the classified images (through comparison with a ground truth by means 
of confusion matrices). 
As far as the preparation phase is concerned, it began for both of the images with the 
software SNAP, where they were subjected to a first crop, by selecting a rectangle (with the 
coordinates shown in Figure 4.1) that included the area of the island: the original images in 
fact included a much larger area and cropping was the first necessary operation, in order not 
to overload the next ones. 
 

 
Figure 4.1: coordinates used to crop the area 

 
At this point, the optical image was ready for the export of each band in GeoTIFF format, 
while the SAR image had to firstly undergo the operations of calibration, speckle filtering and 
geometric correction and georeferencing, which will be described in more detail in sub-
chapter 4.1.1. 
Once the ArcGIS software was opened, the first thing to be done was to clip the various bands 
of the optical image and the SAR image with the shapefile of the island's coastline (Figure 4.2), 
obtained from the 2005 topographic map of the island, as explained in Chapter 3. 
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Figure 4.2: shapefile of the coastline 

 
The bands of the optical image which had a resolution of less than 10x10 were then resampled 
to this resolution and put together with the others into a stack, as will be explained in more 
detail in sub-chapter 4.2.1. 
At this point, both the optical and SAR images were ready to be subjected to classification, 
with the aim of identifying the different ground covers of the island. 
 
The classifications made were both unsupervised and supervised for both, and in addition to 
these, a hierarchical classification based on the selection of limits in the histograms of 
different indices was also carried out for the optical image. A classification based on limits to 
be selected in the histograms was not possible for the SAR image, even after the repeated 
application of the Lee, Lee Sigma and Refined Lee filters, which will be discussed later, as 
there were no easily divisible distributions. Figure 4.3 shows the histograms of the SAR image 
with the different filter applications to demonstrate what has just been said. 
 
 
 
 
 
 

¯ 0 2 4 6 81
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a. Histogram of SAR image with an application of 
Median filter 

 

b. Histogram of SAR image with three applications 
of Lee filter 

 
c. Histogram of SAR image with three applications 

of Lee Sigma filter 

 

d. Histogram of SAR image with three applications 
of Refined Lee filter 

 
Figure 4.3: Histograms of SAR image with applications of different filters 

 
In order to classify an image in ArcGIS Pro, the tool to use is the Classification Wizard, which 
proposes 8 guided steps that will be illustrated below; the individual decisions which were 
made will be specified in sub-chapters 4.1 and 4.2. 
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Step 1: Configure 

 
 
In this first step you set which type of classification we want to operate, object based or pixel 
based and supervised or unsupervised. You specify which schema you want to use for the 
classification, and the options are to use a schema that you have, to generate it from training 
samples (in the case of supervised classification) or from a classified image or finally to use 
the default schema provided by ArcGIS, based on the USA National Land Cover Database of 
2011. The latter is the result of a mapping operation of the 48 southern United States, Hawaii, 
Alaska and Puerto Rico by the Multi-Resolution Land Characteristics (MRLC) Consortium, 
consisting of federal agencies cooperating to generate land cover information on a national 
scale (https://www.mrlc.gov).  
Other optional inputs are a segmented image (if an object-based classification is to be 
performed), training samples (if a supervised classification is chosen) and a reference dataset, 
which is then compared to the classified image to check how good the latter is. 
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Step 2: Segmentation  

 

 
 
In this step, if an object-based classification was chosen and no segmented image was put as  
input in Step 1, a segmented image is generated. In this case, this step was not used as the 
necessary segmented images had previously been generated using the Segment Mean Shift 
command, as will be explained later in sub-chapter 4.1. The function of the various modifiable 
parameters, which are the same as those shown in the figure, will therefore be described in 
detail in the just mentioned sub-chapter. 
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Step 3: Training Samples Manager 

 

 
 
This step is only active if a supervised classification is carried out and it is the one regarding 
the choice of the training samples to be used, showing the number of samples selected for 
each class and the corresponding percentage in area with respect to the total. In addition, if 
you have already previously selected training samples, it is here that you can modify them 
before starting the classification, for example by selecting new pixels or modifying the classes, 
incorporating one with another, adding new ones or subdividing them into subclasses. 
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Step 4: Train 

 

 
 
This step involves selecting a specific classifier if the supervised mode has been selected in 
Step 1 (if the unsupervised mode has been selected the choice will be univocal since there is 
only one classifier of this type: the ISO cluster), and setting its parameters, as well as the 
segment attributes to be taken into account at the time of classification if it is object-based. 
The case of the Random Trees classifier is given as an example, but the different options will 
be explored in more detail in sub-chapters 4.1 and 4.2. This step generates a preview of how 
the classified image will be; it is not saved in the geodatabase and it is used just to check 
whether the result obtained is the desired one, otherwise it is possible to change the 
parameters to set and the choice of segment attributes. When you are satisfied with your 
choices, you can proceed to the next step. 
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Step 5: Classify 

 

 
 
It is now that the classified image is generated; the two optional lines that can be seen in the 
image refer in the first case to the choice of which of the various previews previously 
generated you want to use (by default the last one which was created is considered), while 
the second allows you to save, in addition to the image, an .ecd file, which contains all the 
necessary information to operate an ESRI classification. 
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Step 6: Merge classes 

 

 
 
In this Step, if many classes have been generated in the previous one, it is possible to merge 
them (for example, if the vegetation was previously divided into many different classes, here 
it is possible to merge them into a single one). This tool was never really useful for this study 
as the classes generated were already few and very different the one from the other, so 
unmergeable. 
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Step 7: Accuracy Assessment 

 

 
 
If a Reference Dataset had been supplied in Step 1, this dialogue box is activated to generate 
the confusion matrix, setting the number of points to be used and the criteria for distributing 
them in the space. In this case, this step was actually replaced by the use of individual ArcMap 
commands, which will be described in more detail in sub-chapter 4.4, since at the time that 
the classified images were produced, ground truth was not yet available. 
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Step 8: Reclassify 

 

 
 
This command is used, if small point areas have been misclassified, to assign them to the class 
they should belong to. It is possible to draw a polygon (Reclassify within a region), so the area 
it encloses will be reclassified, or select a segment (Reclassify an object) to reclassify. 
It is a useful operation if there are small errors that can be corrected in this quick way instead 
of reclassifying the whole image, however, it has never been used, in order to see the 
behavior of the different classifiers and especially because, in the case of the SAR image 
classifications, the errors were too many to be corrected in this way. 
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4.1 SAR 
 
First of all, the SAR image was subjected to preparation operations, for which the SNAP 
software was used. These were in particular: subset, calibration, filtering, georeferencing and 
geometric correction and finally the conversion of the band into decibels. The image was then 
segmented and classified, firstly in an unsupervised manner and then in a supervised one; 
both of them were object-based. 
The reason why an object-based classification was chosen instead of a pixel-based one is that 
the latter only takes into account the individual characteristics of the pixel in order to assign 
it to a certain class, while the former groups neighboring pixels on the basis of their similarity, 
and since SAR images are affected by speckle, a pixel-based classification would have been 
too affected by this noise, and the final image would have presented a 'salt and pepper' effect, 
as Dewi (Dewi et al., 2019) states. 
Seeing that in the image resulting from the unsupervised classification there was a strong 
noise due to the speckle effect, to overcome the problem, as proposed by Lee (Lee et al., 
1989), the Lee filter was applied multiple times to the original image: this would reduce the 
noise and accentuate the peaks in the histogram so as to make segmentation by thresholds 
easier. Even though this segmentation was not the one used in this case, the idea was that 
applying the Lee filter multiple times would still help in segmenting the image and decrease 
the possibility of misclassifying individual segments.  
What was done was then to repeat the same process of segmentation and unsupervised 
classification with three images to which the Lee filter, the Lee Sigma filter and the Refined 
Lee filter had been applied three times respectively. Then the one that gave the best result 
was chosen and classified in a supervised manner with the three classifiers available on 
ArcGIS: Maximum Likelihood, Random Trees and Support Vector Machine.  
The steps followed are illustrated in the flowchart in Figure 4.1.1 and will now be explained 
in detail in sub-chapters 4.1.1, 4.1.2, 4.1.3 and 4.1.4. 
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Figure 4.1.1: Flowchart of SAR image 
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4.1.1 PREPARATION OF THE IMAGE 

 
The SAR image preparation operations prior to segmentation and subsequent classification 
were almost completely carried out using the software SNAP, with the exception of the last 
clip with the shapefile of the coastline, which instead took place in ArcGIS. They will now be 
illustrated, following the chronological order in which they occurred. 
 
SUBSET 

The subset operation is necessary because the downloaded image includes an area much 
larger than just the island of interest; it must also be done in order to lighten the subsequent 
operations. 
To do this, the Subset command belonging to SNAP's Raster package was used; it allows you 
to enter the geographical or pixel coordinates of the crop you want to make, as well as the 
bands you want to take into account during the operation. The coordinates used are shown 
in Figure 4.1.1 and the bands considered were both amplitude and intensity. The other two 
windows that can be seen in the figure relate to other data included in the folder in which the 
image is contained: the metadata and the tie-point grids, images that indicate the trend of 
latitude, longitude, incidence and elevation angles and the slant range time. In both the 
windows it was set to consider everything. 
A preview of the area that will be cropped is indicated with a blue rectangle on the original 
image in the command window. 
 

 
Figure 4.1.1.1: Subset 
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CALIBRATION 

In order to normalize the intensity of the pixels it is necessary to calibrate the image; in order 
to do this the Calibrate command of the Radar package was used. This command allows you 
to choose which of the polarizations to use in case of a multipolarized image, but in this case 
there was only one polarization, the HH. It is then possible to choose whether to output a 
sigma 0, gamma 0 or beta 0 band, where the difference lies in how the values are normalized: 
in the case of sigma 0 they are normalized using the ground area, in the case of gamma 0 
using the illuminated area projected in the look direction and instead with beta 0 they are 
modulated using the tangent of the local angle of incidence. The choice was sigma 0. 
 

 
Figure 4.1.1.2: Calibration 

 
FILTER 

At this point, in order to reduce the speckle noise characteristic of this type of image, various 
filters were used: firstly, all of the filters proposed by SNAP were tried, and the best result 
seemed to be given by the Median filter, so it was applied, then, as suggested by Lee (Lee et 
al., 1989), we opted for a multiple application of the Lee filter, of which we also tried the two 
modified versions present in SNAP: the Lee Sigma and the Refined Lee.  
The command to be used to do this is the Single Product Speckle Filter, from the Radar 
package (Figure 4.1.1.3), in which it is possible to choose between the available filters to be 
applied and then set the filter parameters such as the dimensions of the filtering window, 
which has always been set at 3x3, with the exception of the Refined Lee filter, for which it 
was not possible to define it, as it always operates with a 7x7 window. 
In the case of the Lee Sigma filter, it was also possible to choose the sigma value, which was 
set at 0.9. 
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Figure 4.1.1.3: Single Product Speckle Filter 

 
GEOREFERENCING AND GEOMETRIC CORRECTION 

For the georeferencing and geometric correction of the image, the Range-Doppler Terrain 
Correction command of the Radar package was used, using the DTM obtained from the 2005 
topographic map cited in chapter 3 and setting the UTM zone 20 South, WGS84 as the 
reference system. As far as the DTM resampling method is concerned, bilinear interpolation 
was chosen. In Figure 4.1.1.4 it is possible to see how the various parameters of the command 
have been set. 
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Figure 4.1.1.4: Range-Doppler Terrain Correction 

 
CONVERSION OF THE BAND TO DECIBELS 

The last operation is to convert the band to dB, which allows us to obtain values that are much 
easier to work with, and for this we used the special SNAP Linear to/from dB command (Figure 
4.1.1.5). Figures 4.1.1.6 and 4.1.1.7 show the histograms of the band before and after the 
conversion, to show how the values change. 
 

 
Figure 4.1.1.5: Linear to/ from dB 
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Figure 4.1.1.6: Histogram of the band before the conversion to dB 

 

Figure 4.1.1.7: Histogram of the band after the conversion to dB 
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EXPORT IN GEOTIFF FORMAT 

The last operation carried out in SNAP was to export the band in GeoTIFF format, so that the 
segmentation and classification work could be continued in ArcGIS. 
 
CLIPPING  

The preparation of the SAR image concludes with its clipping with the shapefile of the island's 
coastline, obtained from the 2005 topographic map, as already indicated above. The 
command used in this case was the Clip, which belongs to the Raster section of the Data 
Management Tools, shown in Figure 4.1.1.8. It is sufficient to place the image to be clipped 
as input, select an area by entering coordinates or insert a shapefile (as in this case) and, 
optionally, indicate which No Data value is to be placed on the final image, which has been 
set equal to -9999. 
 

 
Figure 4.1.1.8 Clip 
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4.1.2 SEGMENTATION 

 
In order to carry out an object-based classification, it is necessary to segment the image, an 
operation that can be done using the Segment Mean Shift command of the Spatial Analyst 
tools of ArcGIS. This command requires a raster image as input and allows you to change the 
spectral detail, the spatial detail, the minimum segment size in pixels and the bands to be 
used to segment the image (Figure 4.1.2.1). In particular, spectral detail indicates how much 
importance is given to the spectral differences between cells, and therefore a high spectral 
detail means placing pixels with slightly different spectral characteristics in different 
segments; while spatial detail indicates how important the proximity between the elements 
constituting the image is, so that larger values lead to a more fragmented image while smaller 
values lead to a more homogeneous image. Both spatial detail and spectral detail move in a 
range from 1 to 20. 
 

 
Figure 4.1.2.1: Segment Mean Shift 

 
In this case, several tests were carried out by changing spatial detail and spectral detail, while 
the minimum segment size, which indicates the minimum size we want to give to a segment 
in terms of number of pixels, was considered appropriate to be 100 pixels, which corresponds 
to an area of 10000 m2 (about 0.01% of the area of the island). Figures 4.1.2.2 a., b. and c. 
illustrate how the result varies with the variation of spatial detail and spectral detail in the 
image with the Median filter. 
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Figures 4.1.2.2: Effect of the change of spatial detail and spectral detail on the image with 
Median filter 

 
In the end, the most suitable combination for this image turned out to be the one with spatial 
detail and spectral detail of 12, being able to segment the image sufficiently but at the same 
time to recognize homogeneous parts, such as the orange stripe located in the north, which 
is bare soil/ rock. The further reduction of spatial detail and spectral detail led to excessively 
large segments, as in the image on the right, within which more than one land cover type was 
included (undesired effect). On the contrary, an increase of spatial and spectral detail resulted 
in an overly fragmented segmentation, with excessively small segments, whose grouping into 
classes would be too difficult. 
On the other hand, with regard to the images to which the Lee, Lee Sigma and Refined Lee 
filters were applied, the parameters used to obtain an optimal segmentation were different 
from those of the image with Median filter: spatial and spectral detail of 15 were chosen for 
the images to which the Lee and Lee Sigma filters were applied and spatial and spectral detail 
of 9 for the image to which Refined Lee was applied. The behavior was the expected one in 
the case of Lee and Lee Sigma images, because when the speckle is reduced, greater spatial 
and spectral detail are needed to obtain segments of the same size as those of an image 
affected by speckle, which leads to excessive fragmentation, while what was not expected 
was the behavior in the case of the Refined Lee image, where it was necessary to even reduce 
the spatial and spectral detail compared to those used in the original image.  
The results of the three segmentations are shown in Figures 4.1.2.3 a., b. and c. 

¯ 0 2 4 6 81
Kilometers

a. b. c.

Minimum segment size: 100 Minimum segment size: 100 Minimum segment size: 100
Spectral detail: 15 Spectral detail: 12 Spectral detail: 10
Spatial detail: 15 Spatial detail: 12 Spatial detail: 10
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Figures 4.1.2.3: Lee, Lee Sigma and Refined Lee images after segmentation 

 

4.1.3 UNSUPERVISED CLASSIFICATION 

 
Having the segmented images, it was possible to proceed with unsupervised object-based 
classifications; to do this the Classification Wizard illustrated in Chapter 4 was used. 
Referring to the steps indicated in this chapter, in the first step it was indicated that the 
classification was the one just mentioned, for the classification scheme the NLCD2011 
(National Land Cover Database of 2011) scheme was set and the segmented images created 
in sub-section 4.1.2 were inserted, starting with the image to which the Median filter had 
been applied and then continuing with the other three. Using this setting, the steps that were 
turned on were 4, 5, 6 and 8. 
In step 4, that is, the classifier training step, it was possible to set various parameters such as 
the number of classes into which the image was to be divided, the attributes of the segments 
to be considered in the grouping into classes, and various other parameters such as the 
number of iterations to be carried out or the maximum number of merges to be made in each 
iteration (Figure 4.1.3.1).  
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Minimum segment size: 100 Minimum segment size: 100 Minimum segment size: 100
Spectral detail: 15 Spectral detail: 15 Spectral detail: 9
Spatial detail: 15 Spatial detail: 15 Spatial detail: 9
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Figure 4.1.3.1 ISO cluster training 

 
What was done was to try out different classifications by changing the number of classes in 
which to group the segments and the attributes of the segments to be taken into account 
when grouping them into classes, while, regarding the other parameters, those proposed by 
default by ArcGIS were set, as shown in Figure 4.1.3.1. 
As for the segment attributes, the possible one were [3]: 
- active chromaticity color: refers to the RGB color of the segment, calculated on the original 
image; 
- mean digital number: the average DN of the segment, calculated on the image in pixels; 
- standard deviation: the standard deviation of the segment, calculated on the image in pixels; 
- count of pixels: the number of pixels that are included in the segment; 
- compactness: a number between 0 and 1 that indicates the degree of compactness or 
circularity of a segment, where 1 corresponds to a perfect circle; 
- rectangularity: a value between 0 and 1 indicating the degree of rectangularity of the 
segment, where 1 corresponds to a perfect rectangle. 
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First of all, the application of the different attributes was tested, leaving the number of classes 
in which to classify the image high, in order to see how they behave, and what was seen for 
the image with the Median filter was that: 
-the active chromaticity color and the mean digital number led to a classification of the image 
influenced by the morphology of the island and the illumination more than by the ground 
cover types; 
-the standard deviation was the attribute that seemed to be less influenced by morphology 
and illumination and was able to vaguely identify the two glaciers present; 
-count of pixels and compactness led to an excessive fragmentation of the island, in small and 
apparently insignificant areas; 
-the rectangularity also presents the problem of excessive fragmentation and in addition it 
seems to not recognize the glaciers. 
These results are shown in Figure 4.1.3.2. 
 

 
Figure 4.1.3.2: effect of the different segment attributes on the image with Median filter 

 
It was stated that the best choice was to use only the standard deviation, as the other 
attributes were worsening the result by conditioning the image with radar illumination and 
island morphology or by causing fragmentation. 
At this point, the number of classes was changed, considering a minimum of two to divide 
what was bare ground from what was covered by snow or ice. In fact, placing a higher number 
of classes showed that the maximum number in which the classifier could divide them was 
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a. Active Chromaticity Color b. Mean Digital Number c. Standard Deviation

d. Count of Pixels e. Compactness f. Rectangularity
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three, and that the third class did not correspond to a new ground cover, water presumably, 
but only to noise, due to speckle (Figures 4.1.3.3). The image chosen was therefore the one 
consisting of only two classes. 
 

Figures 4.1.3.3: division in 2 and 3 classes using the ISO cluster classifier and standard 
deviation as segment attribute 

 
The classification was therefore practically finished: the step following this previous training 
one was carried out. It produced and saved the final images, while the two remaining steps 
were of no use, Step 6 because, as already mentioned in chapter 4, it serves to unite various 
classes into a single one when many are produced, but this is not the case, and Step 8 because, 
although the speckle generates a lot of point noise, which would therefore be correctable 
with this tool, there are too many errors to be corrected by hand. 
The same process was then repeated for the remaining three images, repeating the search 
for the most suitable segment attributes in each case and the optimal number of classes. It 
turned out that the number of classes able to give the best result was always three, while, as 
far as the segment attributes were concerned, in the case of the image to which the Lee filter 
had been applied, the most suitable was the active chromaticity color, in the case of the image 
to which the Lee Sigma filter had been applied, the combination of active chromaticity color, 
mean digital number and standard deviation was the best choice, and in the case of the image 
to which the Refined Lee filter had been applied, the active chromaticity color and the mean 
digital number provided the best result. 

a. 2 classes b. 3 classes
¯ 0 2 4 6 81
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The best result was obtained with the image to which the Lee Sigma filter had been applied, 
which was able to recognize the entire strip of rock/ soil located in the north of the island and 
to approximate the two glaciers, although with little precision. For this reason, it is with it 
(and with the image to which the Median filter was applied) that the supervised classifications 
will be carried out. 
 

4.1.4 SUPERVISED CLASSIFICATION 

 
To classify the image in a supervised manner, the necessary training samples must be 
generated before proceeding with the Classification Wizard in ArcGIS Pro. To do this, three 
separate polygonal shapefiles were created for each of the two segmented images (Median 
filtered image and Lee Sigma filtered image): snow/ice, water and soil/rock, and the polygons 
belonging to them were drawn using the segmented images as a base and the previous day's 
optical image as a reference in order to understand which ground cover corresponded to each 
zone, as it was impossible to tell by looking at the SAR image alone. In order to draw the 
various polygons, care was taken to distribute them more or less homogeneously over the 
area of the island, trying to include significant parts and not transitional parts between two 
covers, and always being careful that each polygon fell within a single segment and not across 
more than one, so as not to distort the results. In addition, an overall area greater than 1% 
was sampled for both images. The distribution of the selected areas is shown in Figure4.1.4.1.

 
Figures 4.1.4.1: Training samples selected 

a. Image with Lee Sigma filter b. Image with Median filter
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At this point, once the shapefiles were ready, they were opened with the Training Sample 
Manager of the Image Classification toolbar of ArcMap (Figure 4.1.4.2), here it is possible to 
see each class created with its relative size and modify the value and color assigned if desired. 
From here the signature file necessary for supervised classification was created. 
 

 
Figure 4.1.4.2 Training Sample Manager 

 
Having now all the necessary elements, the two images were classified in a supervised 
manner using the Classification Wizard of ArcGIS Pro, following the steps already illustrated 
in chapter 4. 
The classification was set as supervised and object-based (for the reason already explained in 
chapter 4.1), the segmented image and the training samples were inserted as input, and the 
classification scheme was set as "generate from training samples", selecting the training 
samples crated before. The steps that were activated in this way were 3, 4, 5, 6 and 8.  
Step 3 is related to the Training Samples Manager and is used to modify the classes, adding 
new ones or eliminating them; however, since this operation has already been done 
previously, it has been left unchanged. 
In the next step, the classifier is chosen between the three available for supervised 
classification: Maximum Likelihood, Random Trees and Support Vector Machine, and its 
parameters are set, as well as the segment attributes to be considered, since the classification 
is object based. For each classifier, several attempts were made with regard to the segment 
attributes, similarly to what was done for the unsupervised classification (see chapter 4.1.3), 
while the parameters set for each were as follows: 

- Maximum Likelihood: no parameters could be set; 
- Random Trees: three parameters could be changed: 
1. The maximum number of trees to be used, which is higher the more accurate the 

classification, but also the longer the processing time. This parameter was set equal 
to 500, as Belgiu recommends (Belgiu et al., 2016); 

2. The maximum depth of a tree, which corresponds to how many branches a tree is 
allowed to make, and was set equal to 3 as this is the number of variables involved; 

3. The maximum number of samples per class: it was set to consider all the training 
samples inserted; 
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- Support Vector Machine: the only customizable option was to change the number of 
training samples to be considered, and the value 0 was set, which is equivalent to 
considering them all. 

 
Several temporary images were generated at this stage, and then the best ones were chosen 
to be produced in the next step, where the selection criteria were glacier recognition and 
minimization of misclassification caused by radar illumination and island topography. 
Furthermore, in several cases, with the Maximum Likelihood and Support Vector Machine 
classifiers, it was noted that the water class added a lot of noise to the image rather than 
actually recognizing the lakes present, so when this occurred, the classification process was 
repeated from the beginning, only considering the snow/ice and rock/soil training samples 
and then splitting the image into these two classes. Figure 4.1.4.3 shows an example of what 
was said: the image with Median filter classified in two (a.) and three (b.) classes using 
Maximum Likelihood classifier, considering Active Chromaticity Color and Standard Deviation 
as segment attributes, while to consult all the other cases in which this two-class classification 
was made because of the confusion generated by water’s training samples, consult the 
appendix. 

Figure 4.1.4.3: Example of bad classification caused by water training samples 
 
Concerning the two remaining steps, the class merge step was not useful because, as already 
explained, the classes into which the image has been divided are few and very different from 
each other, so they cannot be merged. Similarly, the last step of reclassification, which is used 
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to correct small localized errors, was not carried out because the errors are largely punctual, 
but they are many and correcting them one by one would have taken too long. 
Repeating the process with the image to which the Lee Sigma filter had been applied, the 
results obtained were worse than with the image to which the Median filter had been applied. 
The appendix shows a comparison between the various classifications obtained from the 
image with the Median filter and the results obtained by considering the same segment 
attributes for the image with the Lee Sigma filter. 

 
4.2 OPTICAL 
 
The optical image required fewer operations prior to classification than the SAR image, as the 
data from Level 2A are already ready to use, presenting the Bottom-of-Atmosphere 
reflectance values, however area cropping and band resampling operations were carried out, 
so that the necessary indices could then be calculated with the ArcGIS Raster Calculator. This 
initial preparation phase was followed by the three classifications: unsupervised, supervised 
and index-based, where the unsupervised and supervised classifications were chosen to be 
pixel-based, because these classifications are more immediate than the object-based ones 
(used for the SAR image), there was no point noise such as speckle that made it necessary to 
also consider texture features, and the main ground covers present (soil/ rock, water, 
snow/ice and clouds) were well separated in the characteristics space, as will be seen later 
with the index-based classification. 
These phases will be described in detail in the respective sub-chapters, similarly to what was 
done for the SAR image, while Figure 4.2.1 shows a flowchart illustrating the processes carried 
out. 
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Figure 4.2.1: Flow chart of optical image 

 
4.2.1 PREPARATION OF THE IMAGE 

 
The operations needed to prepare the Sentinel 2 image were not as many as the ones needed 
for the Sentinel 1; they were carried out firstly using SNAP and then with ArcGIS. 
The operations performed will now be explained in chronological order. 
 
SUBSET 

As for Sentinel 1 image, Sentinel 2 image also includes an area much larger than the one of 
interest, so the first operation was to crop it. The command used was Subset, of the Raster 
package, and the coordinates entered were the same as in the SAR image, reported in chapter 
4.1.1. In this case, however, in the band subset window only one band was selected at a time 
and the operation was repeated for each band, because later, in the Export phase, it will not 
be possible to export the whole stack together in GeoTIFF format, instead it will be necessary 
to export band by band and then reunite them in a stack in ArcGIS. Figure 4.2.1.1 shows how 
the band subset window appears. 
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Figure 4.2.1.1 Band subset 

 
EXPORT  

After cropping the bands, we exported them in GeoTIFF format, one by one as mentioned in 
the subset explanation. 
 
RESAMPLING 

In order to be able to carry out operations between the image bands and be able to calculate 
the indices for the hierarchical classification, it was necessary that the bands had cells of the 
same size; therefore a resampling was carried out, bringing the lower resolution bands to a 
resolution of 10x10. The command to do this is Resample, from the Raster package of the 
Data Management Tools, where the band to be resampled is entered as input, the size of the 
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cells to be obtained as output (10x10) is imposed together with the interpolation method to 
be used to assign the values to the new cells; in particular, there are four available in ArcGIS: 
nearest, bilinear, cubic and majority. Of these, nearest and majority are the most suitable 
methods if one is resampling an image of discrete values, since they do not average the values 
present, but assign the value of the nearest cell in the case of nearest and the most frequent 
value in a 4x4 filtering cell in the case of majority; while for images with continuous values 
one uses bilinear, which assigns to the pixel the weighted average over the distances of the 
four nearest cells, and cubic, which determines the value to be assigned by performing a cubic 
convolution on the 16 nearest cells. The choice was therefore between bilinear and cubic, but 
since cubic can give values outside the range of those in the image and requires a long 
processing time, bilinear was selected. 
 

 
Figure 4.2.1.2 Resample 

 

STACK 

At this point, all of the bands except for 1, 9, and 10, as they are not of interest for the study, 
are grouped into a stack using the Composite Bands command from the Raster section of the 
Data Management Tools, where you simply select all the bands you want to stack and they 
are then grouped together. The command interface is shown in Figure 4.2.1.3. 
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Figure 4.2.1.3 Composite bands 

 
CLIP 

Finally, the image was clipped with the shapefile of the island's coastline, in the same way 
explained in chapter 4.1.1. 

 

4.2.2 UNSUPERVISED CLASSIFICATION 

 
The first of the classifications performed with the optical image was, as with the SAR one, the 
unsupervised one. Again, the Classification Wizard of ArcGIS Pro was used and the 
classification was pixel based, as mentioned in chapter 4.2. Bands 1, 9 and 10 of the image 
were not used, as they were not of interest for the purposes of the study, as already 
mentioned in chapter 3. 
Following the thread indicated in chapter 4, in the first screen of the Classification Wizard, 
the classification we set to be unsupervised and pixel based; this resulted in the activation of 
steps 4, 5, 6 and 8. The NLCD2011 was chosen as the classification scheme, as had already 
been done for the SAR image (see chapter 4.1.3). The next step is therefore that of training 
the classifier and, as for the SAR image, the parameters proposed as default by ArcGIS were 
considered (Figure 4.1.3.1), but the number of classes was changed. In this case, moreover, 
obviously the segment attributes to be considered did not appear, since the classification is 
pixel based.  
By setting the number of classes equal to 4 (water, clouds, snow, rock), it was noticed that 
the classification was not really well done and for this reason different number of classes were 
tried (Figure 4.2.2.1). In particular, what happened was that with smaller numbers of classes 
there was a tendency to assign to the same class elements that in reality belonged to different 
ground covers, while with an excessive increase in the number of classes the image was 
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confusing and obviously what in reality was a single class was subdivided into more 
subclasses, not necessarily in a correct manner, in the sense that a subclass was not 
necessarily homogeneous and could include elements coming different ground covers. The 
best option seemed to be the division into 7 classes, which did not lead to excessive division 
and thus confusion, and at the same time had fairly homogeneous subclasses. 
 

 
Figure 4.2.2.1 Comparison of division into different numbers of classes 

 
Once the image with 7 classes was chosen, it was set as the one to be used in the next step 
of creating the actual classified image (these were just temporary versions that were not 
saved in memory). 
It is now time to move on to the next step of class assignments and what it does is, having the 
list of generated classes and those of NLCD2011, assign to each of the classes considered the 
ground cover to which it corresponds (see Figure 4.2.2). In this case, the covers listed were 
not those present in the image, except in the case of water, so the other three of interest to 
us (rock, snow and clouds) were added. Figure 4.2.2.3 shows the command for adding a new 
class where what you do is assign the class a color and a value, as well as a brief description. 
Now having all the necessary classes, we proceeded to assign to each classified class the 
corresponding ground cover to which it belongs (those just generated) and in doing so we 
combined the 7 classes into 3 final classes (snow, clouds and rock, because water was not 
well recognized and belonged to the snow class). At the end of the process of class assignment 
just described, the image was complete, as the last step of correcting point errors did not take 
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place, even if it would have been possible, because with SAR images it was never used and 
therefore comparing manually corrected images with others left in the raw state would not 
have been fair. 
 

 
Figure 4.2.2.2. Assign Classes and Figure 4.2.2.3: Add New Class 

 
4.2.3 SUPERVISED CLASSIFICATION 

 
The next classification was supervised and pixel based and was carried out using the 
Classification Wizard in ArcGIS. The procedure was very similar to that of the supervised 
classification of the SAR image (chapter 4.1.4), with the difference that, since in this case the 
classification was object based, it did not require a segmented image. 
The first step was to select the necessary training samples for the four macro ground covers 
present: rock/ soil, snow/ ice, water and clouds. The procedure for the generation of the 
training samples and the signature file was similar to that carried out for the SAR image, so 
please refer to chapter 4.1.4 for more details. In this case, however, cloud cover was present, 
so four classes were generated instead of three: rock/ soil, water, snow/ ice and clouds. As 
with the SAR image, training samples were selected so that they were evenly distributed over 
the island, and an area greater than 1% of the island's surface was sampled for reliability. In 
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addition, while the difference between snow and rock was evident and it was easy to select 
the corresponding training samples, the same cannot be said for the difference between snow 
and clouds, so the NDSI index, known to render well the contrast between snow and clouds, 
was used to identify the clouds. The lakes were easily recognizable, but reference was made 
to the 2005 topographic map to be sure. Figure 4.2.3.1 shows the training samples selected 
for the optical image. 
 

 
Figure 4.2.3.1: training samples selected for the Sentinel 2 image 

 
At this point, it was possible to proceed with the supervised classification, which was carried 
out excluding bands 1, 9 and 10, since they were not interesting for the purposes of the study, 
as already mentioned in chapter 3. The steps followed are the same as those indicated in the 
supervised classification of the SAR image, with the only difference that this classification is 
pixel based, therefore when the different classifiers are used, the parameters that can be set 
are only those relative to them and there’s no section dedicated to segment attributes, since 
in this case there is no segmented image. 
In the first step it was set to carry out a supervised pixel based classification and to use the 
scheme generated by the training samples, and the generated training samples were inserted 
as input. Step 3 of the Training Samples Manager was superfluous in this case, because the 
training samples were already ready as they had been prepared previously, and there were 
no modifications to be made.  
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In the classifier training step, all three supervised classifiers present in ArcGIS were used: 
Maximum Likelihood, Random Trees and Support Vector Machine, for which the parameters 
set were the followings: 

- Maximum Likelihood: there are no parameters to set; 
- Random Trees:  

1. Maximum number of trees to be used: 500, as suggested by Belgiu (Belgiu et al., 
2016); 

2. Maximum depth of a tree: 4, which is the number of variables involved; 
3. Maximum number of samples per class: all selected training samples were 

considered; 
- Support Vector Machine: the only parameter to be set was the number of training 

samples to be taken into account, and here too it was decided not to exclude any. 
After this training phase, the final classified images were created. In fact, the two remaining 
steps were not useful, that of class merge because the classes present were few and very 
different from each other, and that of reclassification because the SAR classified images have 
never been corrected, and correcting the optics would make the comparison between the 
two unequal.  

 
4.2.4 INDEX CLASSIFICATION 

 
Another method to classify an optical image is to use a series of indices aimed at separating 
the different classes of terrain, exploiting the presence of two distinct and easily separable 
distributions in the index histogram, as already studied by Keshri (Keshri et al., 2009) and 
Shukla (Shukla et al., 2016). In this particular case, the covers present were: water, bare soil/ 
rock, ice mixed with debris, ice and snow, and in particular the indices taken into 
consideration were: NDWI, MNDWI, MuWIR, NDSI, NDGI, NDSII; for more information on 
them please refer to chapter 1.2. 
In the case of the first three, it was assessed which of them would best achieve the separation 
of the water features present, i.e. the lakes located in the northern and southern part of the 
island, near the coast facing Port Foster, the NDSI was used to separate what was snow/ice 
cover from what was not, and to extract the clouds that obscured part of the island, the NDGI 
to separate what was pure ice and snow from what was mixed with debris and finally the 
NDSII to separate ice from snow. The process followed is shown in the flow chart in Figure 
4.2.4.1. 
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Figure 4.2.4.1 Flow chart of the process 

 
The first step necessary for the purposes of this classification was therefore that of calculating 
the different indices to be used, for which the formulas reported in chapter 1.2 were used 
and implemented using the Raster Calculator of the Spatial Analyst Tools package, that 
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consents to carry out mathematical operations between different rasters, using the rasters of 
the individual bands that had been resampled, as explained in chapter 4.2.1. Figure 4.2.4.1 
shows as an example the expression used to calculate the NDWI index and the indices 
obtained as a result of what has just been explained are shown in the Appendix. 
 

 
Figure 4.2.4.2 Calculation of NDWI with Raster Calculator 

 
For each index, the threshold value able to divide its histogram into two distinct distributions, 
which would represent different land covers, was searched. To do this, the program ENVI was 
used, and in particular its Interactive Stretching function, which allows the visualization of the 
histogram of the image, and Density Slice (Figure 4.2.4.3), with which it is possible to color 
different intervals of the histogram: in this way it was verified that the threshold value 
previously chosen by looking at the histogram was actually able to separate the land cover 
classes as desired. In Figure 4.2.4.3 an example of the command Density Slice is shown, in 
which the range set will be colored as red in the image; the command also allows you to add 
more ranges and color them with different colors. 
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Figure 4.2.4.3 Density Slice command on the left and effect produced on MNDWI image on 

the right (highlight of red areas) 
 

The values identified for each index are given in Table 4.2.4.1.  
 
Index   

NDWI x >= 0,175: water x < 0,175: other 
MNDWI x >= 0,254: water x < 0,254: other 
MuWI-R x >= 1,378: water x < 1,378: other 
NDSI x >= 0,113: snow and ice, also mixed with debris x < 0,113: other 

NDSI clouds 0,05 <= x <= 0,6: clouds x < 0,05, x > 0,6: other 
NDGI -0,038 <= x <= 0,126: pure snow and ice x < -0,038, x > 0,126: other 
NDSII x >= 0,026: pure snow x < 0,026: other 

Table 4.2.4.1: thresholds 
 
Once these threshold values had been found, ArcGIS software was used again, and in 
particular the Raster Calculator, to create binary images, i.e. composed only of 0 and 1. This 
was done by imposing conditions based on the limits found in ENVI: for example, by imposing 
"MuWIR>1.378" in the Raster Calculator, an image was obtained where what is water has a 
value of 1 and what is not has a value of 0. 
With regard to the limits identified, in some cases the choice was clear from the beginning 
while in others more than one value seemed suitable; for example in the case of the NDSI the 
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values 0.113 and 0.599 were identified, the former ensures that all the snow cover is 
highlighted, including the stripes near the outer perimeter of the island, but also includes 
clouds, while the latter omits these details but does not include clouds. The former was the 
option chosen because it would also mask out the clouds, thus eliminating these misclassified 
areas, and under ideal conditions, in the absence of clouds distorting the result, the former 
would be the most suitable boundary. 
Figure 4.2.4.4 shows the histogram of the NDSI index with the lines in correspondence of the 
identified limits, while Figure 4.2.4.5 shows the effect of the choice of the two different limits 
on the selection of land cover. 
 

 
Figure 4.2.4.4: Histogram of NDSI with lines in correspondence of the identified thresholds 

(0,113 e 0,599) 
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Figure 4.2.4.5: Comparison of the images generated by selecting the two different limits 
mentioned for the NDSI 

 
A similar situation also occurred with the NDSII, whereby a limit of -0.029 selected more areas 
of snow but highlighted some clouds, while one of 0.026 left out some strips of snow but 
didn’t include clouds. In reality, as can be seen from the images in the appendix, the snow 
areas added in the first case were more peripheral, and since this index only classifies snow, 
without including ice or debris, it was deemed appropriate to choose the value 0.026, which 
considered a more circumscribed and localized coverage, especially in the central part of the 
two glaciers. Unfortunately, in this case it is not possible to be very precise using only the 
naked eye, as it is impossible to distinguish pure snow from snow mixed with ice, and no other 
means are available to help with this.  
 
As far as the identification of the most suitable index for water separation is concerned, it 
turned out that none of the three indices were able to identify all the lakes; in the case of the 
NDWI and MNDWI, a lake to the north was left out, and in the case of MuWI-R, a lake to the 
south. Furthermore, as can be seen from the appendix, in the case of the MuWI-R index, an 
area around the snow cover is also classified as water, this could be due to the fact that there 
is melting snow at the base of the mountain. The same can be seen in the ESA classification, 
in the "quality_scene_classification" band of the image (Figure 4.3.1 in chapter 4.3). 
In order to find a solution to this different selection of lakes, we tried to combine the results 
of NDWI and MuWI-R, and MNDWI and MuWI-R, so as to highlight all the lakes, and in order 

a. NDSI with 0,113 threshold b. NDSI with 0,599 threshold
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to do this, the steps taken were two: a first sum of the two rasters, with which we will obtain 
a third that will be composed of three values: 0 for the rock, 1 for the areas classified as water 
by one of the two indices and 2 for the areas classified as water by both. The second step was 
then to substitute, with the Raster Calculator, the number 2 with the number 1, using the 
conditional expression and writing: Con("NDWI_MuWIR" == 2, 1, "NDWI_MuWIR"). 
In order to choose which case was the best, the five confusion matrices (for NDWI, MNDWI, 
MuWI-R, NDWI-MuWI-R union, MNDWI-MuWI-R union) were created, using as ground truth 
the one generated in the water ground truth generation sub-section of chapter 4.3 (Figure 
4.3.7). The process of generating the confusion matrices will be explained in detail in Chapter 
4.4 and the confusion matrices are shown in tables 4.2.4.2, 4.2.4.3, 4.2.4.4, 4.2.4.5, 4.2.4.6. 
 

 
Table 4.2.4.2: NDWI confusion matrix 

 

 
Table 4.2.4.3: MNDWI confusion matrix 

 

 
Table 4.2.4.4: MuWI-R confusion matrix 

 

 
Table 4.2.4.5: NDWI + MuWI-R confusion matrix 
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Table 4.2.4.6: MNDWI + MuWI-R confusion matrix 

 
In the case of the NDGI, instead of considering values greater than a certain limit, values 
within a certain range were selected, in order to exactly delimit the second peak, this way 
areas that were not snow and ice but had reflectance values located in the later part of the 
histogram were not considered. 
 

 
 

Figure 4.2.4.6: NDGI histogram. The interval considered is the one inside the two dotted 
lines 
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Figure 4.2.4.7: Difference between highlighted regions (red) if you consider only the 
indicated interval (a.) and those highlighted if we consider the whole part of the histogram 

to the right of the limit between the two peaks (b.) 
 

For the identification of the clouds, the same steps were taken as for the other ground covers, 
i.e. to use an index (in this case the NDSI) and look for what range of values would separate 
the desired class, but then another step was added, in which the areas of the main clouds 
were drawn over, in particular the one located in the center of Mount Pond and the strip in 
the north-west part of Mount Kirkwood, in order to create a polygonal shapefile that could 
then be used as a mask in the generation of the confusion matrices of the optical images, 
since the parts covered by clouds are the most prone to misclassification, in order to highlight 
a possible improvement in the results by removing this critical part. In order to create the 
mask, the ArcGIS editor was used and a new empty polygonal shapefile was generated, then 
the main clouds that could be seen in the binary raster just created by imposing the limit 
identified with ENVI were manually drawn over. Figure 4.2.4.8 shows the mentioned raster 
and the cloud mask. 

a. b.
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Figure 4.2.4.8: Binary image obtained from the NDSI, using the extremes of the indicated 
interval, and polygonal cloud mask obtained by drawing the clouds of the image on the left 

 
In order to produce the final image, as far as the index for classifying water is concerned, it 
was found that NDWI was the best. In fact, by analyzing the confusion matrices shown in 
Figures 4.2.4.2, 4.2.4.3, 4.2.4.4., 4.2.4.5, 4.2.4.6, it can be seen that it is the index with the 
greatest accuracy in separating water, with a k of 0.547. In particular, it can be seen that in 
the two cases of combining two indices, i.e. MuWIR + MNDWI and MuWIR + NDWI, the k was 
significantly reduced compared to the use of single NDWI and MNDWI, contrary to what was 
expected. The reason for this is that the MuWIR also classified the perimeter part of the two 
snow covers as water, probably because it was in the process of melting, while the other 
indices, as well as ground truth, only classified the open water bodies as water. Unfortunately, 
not for all the indices present a ground truth, able to quantify their goodness, was found: in 
particular, no ground truth was found that was able to separate pure snow from pure ice, and 
as regards the separation of snow and ice mixed with debris from rock, these are usually 
considered in a single class, since the color of snow and ice mixed with debris is no longer 
white but brownish, and therefore similar to that of rock. The final images proposed are 
therefore two: one that presents the distinction between rock/ soil, snow/ ice and water, thus 
using the results provided by NDWI and NDSI, and a complete one, whose classes are: water, 
rock, snow and ice mixed with debris, pure ice, pure snow. This is because for the former it is 
possible to assess its goodness through the ground truth available, while for the latter it is 

a. 0,05 <= NDSI <= 0,6 b. cloud mask
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not, but it could still be a starting point for research, especially as regards ground truths 
capable of separating snow from ice and snow and ice mixed with debris from rock.  
 
The two rasters to be merged to make the first image are both binary and one has values of 
1 for water and 0 for the rest and the other has values of 1 for snow and 0 for the rest, so 
before summing them it is necessary to change these values, otherwise the water and snow 
classes would be merged. With the Raster Calculator, using the conditional expression given 
in formula 4.2.4.1, the value 1 was substituted with the value 2 in the NDSI binary raster, so 
that the final image summed from the two rasters will have the rock with a value of 0, the 
water with a value of 1 and the snow with a value of 2, analogously to the ground truth (see 
chapter 4.3). 
 
Con("NDSI_thr"==1, 2, "NDSI_thr")                                                                                        (4.2.4.1) 
Where: 
-NDSI_thr is the binary raster obtained by applying the threshold identified with ENVI to the 
NDSI raster 
-1 is the value of snow, which will be replaced with 2 
-2 is the value that will be assigned to the snow 
 
At this point, the raster obtained was summed to the binary raster for water; this resulted in 
a raster with 4 values instead of the expected 3, due to the classification of water as snow in 
the case of the NDSI index. Using an expression similar to 4.2.4.1, the value 3 was then set to 
1, thus including it in the water class. Please refer to the Appendix for the final image 
obtained. 
 
The image just described was the first (image 1 in the flow chart), whose goodness can be 
verified using the ground truth described in chapter 4.3, while for the second, the results of 
the NDGI and NDSII indices were added following a procedure similar to that just described, 
again using the Raster Calculator, and the substantial steps were the followings: 
-the value 1 was substituted with the value 10 in the binary image of the NDGI; 
-this last image was added to the image obtained by summing the NDWI and NDSI results 
described above. At this point, it was possible to note the overlapping zones of the areas 
selected by the NDGI, which took on values of 10, 11 or 12. This means, on the basis of the 
knowledge gained from the previously used indices, that the NDGI classified an area of rock 
as snow-ice in the first case, in the second an area of water cover, and the last is the correct 
case, in which pure parts of the snow-ice selected previously by the NDSI are classified as 
snow-ice; 
-on the basis of the considerations made in the previous point, using the conditional function 
in the Raster Calculator, the value 10 was replaced with the value 0, 11 with 1 and 12 with 3, 
creating the new snow-ice class. The image resulting from this step (image 2 in the flow chart)  
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will therefore have value 0 for rock, 1 for water, 2 for snow and ice also mixed with debris, 3 
for pure snow and ice; 
-an analogous procedure was now followed with the NDSII, whereby the value 1 was 
substituted with the value 10 in the binary image relative to the index and this new image 
was summed to the one obtained from the previous step; 
-the image obtained has, in addition to the values 0, 2 and 3, 10, 11, 12 and 13. This means 
that, in the case of 11, the NDSII classified as snow watery coverings, selected by the NDWI, 
in that of 12 it classified as pure snow what, according to the NDSI, was a mixture of snow, 
ice and debris, and in that of 10 the same thing happened but with rock. As for 13, this is the 
correct situation, where the index classified as snow cover part of what had been classified 
as pure snow and ice by the NDGI.  
Based on these considerations, the number 10 was replaced with 0, 11 with 1, 12 with 2 and 
13 with 4, thus forming the new class of pure snow. The final image obtained is therefore 
composed of the following classes: 0 rock, 1 water, 2 snow and ice mixed with debris, 3 pure 
snow and ice, 4 snow cover. 
To consult the two final images obtained from this classification, as well as the binary 
images generated by applying the limits to the different indices, and their histograms, 
please refer to the Appendix. 

 
4.3 PREPARATION OF THE GROUND TRUTH 
 
With regard to the ground truth, it was not possible to use one of the classifications provided 
by the space agencies already mentioned because, considering the classification provided by 
ESA for the image of 19.01.2020, it was not usable as it was incomplete, and the same applies 
to those of the two nearest dates not affected by cloud cover (20.12.2019 and 08.02.2020). 
Speaking of the classification provided by the USGS on 09.02.2020 (the closest date usable 
and without cloud cover), the bodies of water were not classified, even though they were 
present and not covered or disappeared for other reasons (in fact, they are not always 
present, but in this case it was possible to identify them in both the 19.01 and 09.02 images), 
and the rock was incorrectly classified as water. The solution conceived was therefore to 
combine two different sources: the Pixel Quality Assessment band of the 09.02.2020 Landsat 
8 image for the snow cover, a dgn of the 2005 topographic map for deriving the lakes, and 
the shapefile of the coastline, already applied to clip the analyzed images as explained in 
chapter 4, to be used as a base, considering that the rock/ soil will be by exclusion all the 
remaining part of the island not covered by snow or water bodies.  
For more precise information about the details of the Landsat image and the cartography 
which was the source of the dgn and the coastline, please refer to chapter 3. 
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Figure 4.3.1: RGB bands combination of the images acquired on the dates 20.12.2019 (a.), 
19.01.2020 (b.) and 08.02.2020 (c.) and ESA-supplied classifications of the area of interest 

on the same dates 
 

Preparation of the ground truth of snow 

First of all, it is necessary to point out that it should be kept in mind that the snow cover is 
very variable and, if you do not have an image of the same day at the same time, it will be 
different. In particular, analyzing the weather data acquired during the Antarctic campaign of 
the Spanish Land Army (Campaña Antártica del Ejército de Tierra, 2019-2020) already 
reported in sub-chapter 2.4, it emerges that in the period 19.01.2020-09.02.2020 the 
temperature was always above 1 °C, temperature occurring only four times, while the vast 
majority of days the minimum temperature was 2 °C, with sporadic maximums of 5 °C (five 
days) and lows of 3 °C (three days) on the hottest days. In addition, there was no further 
snowfall throughout the period, but the days were roughly divided into half rainy and half 
sunny. This led to the melting of some of the snow present, so that the image of 09.02 shows 
a more limited snow cover than that of 19.01, as can be seen in Figure 4.3.3. 
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Figure 4.3.3: comparison between the Sentinel 2 image of 19.01.2020 (a.) and the Landsat 8 
image of 09.02.2020 (b.), the difference in snow cover can be seen 

 
For the preparation of the ground truth of the snow, first of all the Landsat image was opened 
in ArcGIS: unlike the Sentinel images that required a first conversion of the bands in GeoTIFF 
format using the SNAP software, this one was already provided in the format just mentioned. 
It was then cropped using the shapefile of the coastline and bands 1-7 (those contained in the 
folder minus the Quality Assessment bands) were merged into a stack, using the commands 
already mentioned in Chapter 4 for the Sentinel 2 image.  
The band of interest, that of Pixel Quality Assessment, is presented in a different way from 
the classifications provided with the Sentinel 2 images: the classes here are in fact not 
explained with a descriptive field in the attribute table, but instead only 16-bit numbers are 
shown. In particular, each bit or pair of bits is associated with a land cover class, and the value 
assigned to it depends on the level of confidence with which the land cover analyzed can be 
said to correspond to that land cover class (Figure 4.3.4). 
 

a. Sentinel 2, 19.01.2020 b. Landsat 8, 09.02.2020
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Figure 4.3.4: bit values of the Landsat 8 Pixel QA band (source: USGS) 

 
To decode these values it was necessary to use a Toolbox compatible with ArcGIS and 
downloadable from the USGS website ([25]). It comprised two tools: the "Decode QA" and 
the "Extract QA Bands", which work in the following way: the first adds a descriptive field to 
the attribute table of the Pixel QA band and it fills in interpreting the bits of the band (it is 
optionally possible to choose not to select the bits with low confidence, so as to include in 
the descriptive field only the classes that are most likely to represent the ground covers), 
while the second extracts the various classes of the band individually and forms a new image 
for each class. The tool used in this case was Decode QA, so it was sufficient to insert as input 
the Pixel QA band of the image (original, unclipped); the result is shown in Figure 4.3.5. 
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Figure 4.3.5 Descriptions added by the Decode QA command 

 
The Pixel QA band does not present a completely good classification, the soil  is classified as 
water and there are also anomalous areas, in the north-west part of the snow cover on the 
Mount Kirkwood glacier and in a small area of the snow cover above the Mount Pond glacier, 
which, using the visible bands, we can see that are detected as No Data, while in the 
automatic classification they are associated to different covers without a true match. 
However, the snow cover is detected well and will be extracted and then combined with the 
lakes, obtained from another source, as explained later, to form the final ground truth. 
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Figure 4.3.6: Pixel Quality Assessment Band of the Landsat 8 image (a.) and true color 

display of the image (b.), where the No Data has been colored red 
 

Since it is evident that in both cases the anomalous zones belong to the snow cover, to 
generate the ground truth of the snow, the large yellow zone with a value of 30048 was 
considered, incorporating the small anomalous zones, using the Raster Calculator command 
of the Spatial Analyst Tools package of ArcGIS Pro. Specifically, the conditional operator was 
used, imposing the following expression: 
Con("Clip_LC08_QA_PIXEL", 1, 0, "Value >= 22018") 
Where: 

- Clip_LC08_QA_PIXEL is the Pixel Quality Assessment band of the image, clipped with 
the shapefile of the island's coastline 

- 1 is the value to assign to pixels for which the condition is verified 
- 0 is the value to assign to pixels for which the condition is not verified 
- Value >= 22018 is the condition set 

The condition Value >= 22018 was imposed, with Value being the field of the band indicating 
the various values assigned to the different ground covers, since, as can be seen from the 
legend in Figure 4.3.6, all the values of the anomalous zones and the snow value were greater 
than or equal to this number, while the rock and the clouds had the two lowest assigned 
numbers. It was therefore easy to group the snow cover in this way. The raster obtained will 
therefore take on values of 1 where snow is present and 0 where rock is present and it is 
shown in Figure 4.3.7. 

a. Pixel QA band of Landsat 8 image, b. RGB combination of Landsat 8 image,
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Figure 4.3.7: ground truth of the snow 

 
Preparation of the ground truth of water 

The dgn used to derive the lakes present on the island is composed of various layers, mainly 
relating to the delineation of glaciers and lakes present, as well as areas subject to temporary 
flooding, watercourses, toponymy and contour lines and geodetic stations. Of these, the 
polygonal layer that included the lakes was considered (Figure 4.3.8) and modified with the 
ArcGIS editor, selecting and deleting anything that was not of interest, i.e. anything that was 
not the lakes. At this point, what was obtained was a shapefile consisting only of the lakes, 
which therefore needed to have the shape of the island as a base. For this reason, this 
shapefile and the coastline shapefile were merged with the Union command of ArcGIS 
Geoprocessing and then the resulting shapefile was converted into a Raster using the Polygon 
to Raster command, using the cell center as the assignment type and a cell size of10x10, being 
that of the Sentinel 2 bands after resampling. 
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Figure 4.3.8: dgn from which the lakes were extracted 

 
At this point, in order to evaluate the goodness of the indices used to classify the water in 
chapter 4.2.4 and thus choose which one was better, it was necessary to have a ground truth 
that had the same values for the corresponding classes; we therefore set 1 as the value for 
the water pixels and 0 for the rest, using the Raster Calculator conditional, in the same way 
as we did for the indices and explained in chapter 4.2.4. 



 86 

 
Figure 4.3.9: ground truth of water 

 
Final ground truth 

To obtain the global ground truth of the island, the two rasters resulting from the two 
processes were merged, as follows. Since both rasters are composed of 1 and 0, summing 
them would have meant merging the water class with the snow class (since they do not 
overlap and are both equal to 1); therefore, the value 2 was substituted for snow in the first 
raster, again using the conditional expression with the Raster Calculator, as in chapter 4.2.4, 
and then summed with the water ground truth, again using the Raster Calculator. Analyzing 
the summed raster, it was noted that one of the lakes to the north had been classified as 
snow in the Landsat image, so its value was not 0 in the raster I generated but 2, and adding 
it to the ground truth of the water gave it a value of 3 (Figure 4.3.10). This is evidently an error 
on the part of the USGS classification, since consulting the 2005 topographic map and 
analyzing the image in real colors it is evident that it is a lake. Therefore, using the Raster 
Calculator, with the same conditional function used in chapter 4.2.4, the value 3 was replaced 
by the value 1, thus incorporating that lake into the water class. The resulting image is the 
final ground truth and is shown in Figure 4.3.11. 
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Figures 4.3.10: sum of the two ground truths (a.), the error of the lake in the north (green) 

can be seen, and final ground truth (b.) 

 
4.4 REALIZATION OF THE CONFUSION MATRICES 
 
The tools used to measure the goodness of the classifications are the confusion matrices. 
In order to create them in ArcGIS it is necessary to carry out a number of steps, which will 
now be described. First of all, in order to compare each land cover of a classified image with 
its corresponding one belonging to the ground truth, it is necessary for these to have the same 
values; the first thing to be done was therefore to change all the values of the classified raster, 
random and assigned by the program during the classification phase, and replace them with 
the same values of the ground truth, that are: 0 for rock, 1 for water and 2 for snow-ice; to 
do this the Raster Calculator of the Spatial Analyst package was used once again, with the 
conditional expression, using a formula similar to 4.2.4.1, in several subsequent steps. 
At this point, it is necessary to generate ground control points, in which the values of the two 
images (classified image and ground truth) will be compared. There’s a proper command to 
do this, the Create Accuracy Assessment Points of the Spatial Analyst Tools of ArcGIS (Figure 
4.4.1), in which you put as input the classified image, then, from a drop-down list you select 
that it is the classified image that you are inserting and not the ground truth, you set the 
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number of points that you want to generate (10000 to cover an area equal to 1% of the island) 
and the way to distribute them. There are three possible distributions: 
- Stratified Random, whereby the distribution of points generated is proportional to the area 
of each class; 
- Equalized Stratified Random, whereby the points are distributed equally among the classes; 
- Random, whereby the points are distributed randomly across the image area. 
 

 
Figure 4.4.1 Create Accuracy Assessment Points 

 
The third option was chosen, because the areas of the different classes were very different 
from each other (for example, the area of the water class was much smaller than those of 
rock and snow-ice), so the option Equalized Stratified Random did not make sense, and at the 
same time we did not want to create concentrations of points in some areas rather than 
others, as would happen with the option Stratified Random, the Random method seemed 
therefore the most suitable. The output is a point shapefile of 10000 points in whose attribute 
table there are two columns: one relative to the classified image (called Classified) and one 
relative to the ground truth (called GrndTruth). Having set as input that the image was the 
classified one, the fields filled will be those of the Classified column, while the other will be 
filled by "-1"; if instead it had been set that the input image was the ground truth, the opposite 
would have happened. Figure 4.4.2 shows an example of the attribute table of the shapefile 
generated by the command. 
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Figure 4.4.2 Example of the result of the Create Assessment Points command 

 
The second command to use is Update Accuracy Assessment Points (Figure 4.4.3), from the 
same package, in which the inputs to be inserted are instead the ground truth raster and the 
shapefile of the points just generated; then you select from a drop-down menu equal to the 
first one that in this case it is the ground truth that is being inserted and not the classified 
image, and the result will be that the shapefile described above will now have the -1 
mentioned replaced by the values assumed by the ground truth in those points. 
 

 
Figure 4.4.3: Update Accuracy Assessment Points 

 
The last command to use is Compute Confusion Matrix (Figure 4.4.4), which, starting from the 
point shapefile and comparing the two fields Classified and GrndTruth, generates the 
confusion matrix. 
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Figure 4.4.4: Compute Confusion Matrix 

 
For the supervised and unsupervised classifications of the optical image, this process was 
repeated twice: the first time following what has just been described, and the second time 
using shapefiles clipped with the cloud mask generated in chapter 4.2.4, in order to check 
whether by eliminating the most of the part covered by clouds, which is what normally leads 
to error, the goodness of the classification was better. In particular, in order to use this 
shapefile as a mask, it was merged with that of the coastline using the Union command of 
ArcGIS Geoprocessing, shown in Figure 4.4.5, which requires the shapefiles you want to 
merge as input and also allows you to optionally select which attributes you want to be 
transferred to the merge shapefile (in this case it was imposed to consider all of them, 
otherwise it would have been possible to exclude the FID, the numbering field, or to consider 
only the FID, neglecting all the other attributes), the minimum distance between the 
coordinates ("XY Tolerance", it has not been set) and if you want to eliminate any gaps which 
can be present with filling polygons, by not checking the box "Gaps Allowed" (in this case it 
has been set to allow the gaps). 
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Figure 4.4.5: Union 

 
This way a single shapefile was obtained, which was composed of different polygons, 
representing the clouds and the complementary part of the island not covered by the clouds. 
It was then edited with the Editor, in order to eliminate the polygons of the clouds, and thus 
obtaining a shapefile of the surface of the island with holes in correspondence of the clouds, 
shown in Figure 4.4.6. 
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Figure 4.4.6: Shapefile of the island with holes in correspondence of the clouds 

 
Using this shapefile, the classifications obtained from the optical image and ground truth 
were clipped and the operations to create the control points and confusion matrices were 
carried out again, following the procedure described above; using this trick, no control points 
were be generated in the areas affected by cloud cover, and it is assumed that the confusion 
matrices will therefore report better k. 
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5. RESULTS AND DISCUSSION 
 
The results obtained from the different classifications operated, i.e. the classified images and 
the confusion matrices, both for the SAR image and for the optical one, are illustrated below. 
In particular, because in the case of the SAR image several classifications were produced with 
different combinations of segment attributes, the visually best one was chosen for each 
classifier in the case of the image with the Median filter, and the confusion matrix was 
created; instead, for the image with the application of the Lee Sigma filter, the effect of the 
classification produced using the same segment attributes was then reported.  
In the confusion matrices shown, the columns relate to the ground truth classes, while the 
rows relate to the classified image, and the classes will have the following values: 0 rock/ soil, 
1 water, 2 snow/ ice, 4 clouds in the case of the optical image classifications and illumination 
in the case of the SAR image (the latter is not a type of ground cover, but was left as a third 
error class in cases where reducing the number of classes to two would lead to a deterioration 
in the quality of the classified image, badly incorporating the effect of illumination). The 
column related to class 4 for ground truth will always report only 0, as there were no clouds 
or effects due to illumination in it, since it was derived from a topographic map and an optical 
image, where this disturbance is not present.  
The U_Accuracy column relates to User's Accuracy, while the P_Accuracy column relates to 
Producer's Accuracy (see chapter 1.2); on the basis of these measurements and k, the 
goodness of the classification will be quantified. 
As already mentioned, the original confusion matrices and those generated after the 
application of the cloud mask will be available for each classification operated with the optical 
image. 
To see all of the other images which were produced, please refer to the appendix. 
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5.1 SAR 
5.1.1 UNSUPERVISED CLASSIFICATION 

 
Figure 5.1.1.1 Images resulting from ISO cluster classifications 

 

a. Image with the application of
Median filter

b. Image with the application of Lee
filter

c. Image with the application of Lee
Sigma filter

d. Image with the application of
Refined Lee filter

Legend
rock/ soil
snow/ ice
illumination¯ 0 2 4 6 81

Kilometers
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Table 5.1.1.1: Confusion matrix of the image with Median filter classified with ISO cluster 

classifier 
 

 
Table 5.1.1.2: Confusion matrix of the image with Lee filter classified with ISO cluster 

classifier 
 

 
Table 5.1.1.3: Confusion matrix of the image with Lee Sigma filter classified with ISO cluster 

classifier 
 

 
Table 5.1.1.4: Confusion matrix of the image with Refined Lee filter classified with ISO 

cluster classifier 
 
In the unsupervised classification of the SAR image, water was never detected: when the 
classifier was forced to consider three classes instead of two, the third class did not result 
from the distinction of water, but from the illumination of the satellite, which is why the row 
associated to the class water (1) is full of 0. Column 4 is always empty because there is no 
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illumination class in the ground truth. In order to know which segment attributes were 
considered in each case, please refer to chapter 4.1.3. 
The classification of the image to which the Median filter had been applied produced an image 
in which there was a recognition of glaciers, even if approximate, but the rock areas were not 
"clean", but affected by several areas erroneously classified as snow-ice. In the case of the 
three images to which the Lee, Lee Sigma and Refined Lee filters had been applied, these 
localized errors decreased, but the effect of illumination, represented by the yellow class, was 
strong.  
Of the three, the image in which the point errors were most reduced was Lee Sigma, which in 
fact had the highest k, while the image in which their influence was still most present was the 
one with the Refined Lee filter applied. However, the lowest k was reported by the image 
with the Lee filter applied, although it was only slightly different from that of Refined Lee 
(1.5%). The k-values were always very low, for all images, but the highest occurred in the 
image with only the Median filter applied. This seems to be due to the fact that in this image 
the Producer's Accuracy of the snow-ice class is substantially higher than in all the other 
images (23% higher than the images with Lee filter and Refined Lee and 10% higher than the 
image with Lee Sigma), while the other Accuracies do not vary much, there’s a maximum 
difference of 5% for the User's Accuracy of snow and of 3.3% in that of rock. There is more 
variability in the case of the Producer's Accuracy of the rock: the image with Median filter has 
an accuracy 9% higher than the Lee filter image, 6% higher than the Lee Sigma filter image 
and 3% higher than the Refined Lee filter image. 
What essentially happened is that the multiple application of the Lee, Lee Sigma and Refined 
Lee filters reduced the speckle effect, and consequently the localized misclassification errors 
of the rock/ soil, but also resulted in a loss of accuracy of the delineation of the snow-ice 
cover. The contrasts that were maintained and highlighted after the application of the filters 
were not those between the different ground covers, but those of morphology and 
illumination, with a more or less marked effect depending on the filter; this led to a reduction 
in the goodness of classification. The non-detection of water, on the other hand, is supposed 
to be due to the small size of this cover compared to the others, so that when a third class 
was considered, the (wrong) class attributed to the effect of illumination was larger than that 
of water, which was present in small, localized areas as a kind of noise. 
The reason for a low Producer's Accuracy for rock is that several parts of it were placed in 
the water class instead, its User's Accuracy is high because almost always what was 
classified as rock was actually rock. As far as the snow-ice class is concerned, its User's 
Accuracy is always very low and this is because it often contains points of rock, while its 
Producer's Accuracy is better, although not very high, because several parts of this cover 
were able to be identified, although not with precision. The estimation was not good for 
either class but what can be said is that the rock was underestimated while the snow-ice 
was overestimated. For example, the eastern part of the snow cover of the Pond and 
Goddard mountains almost always extends to the coast, whereas in reality it does not; what 
does extend to the coast is the glacier below. In fact, comparing Figure 5.1.1 with the 
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topographic map (Figure 3.10) it appears that the pattern of what was classified as snow-ice 
in the various unsupervised classifications of the SAR image is similar to that of the glaciers 
shown on the map rather than to the snow cover present at the time the image was taken. 
What may have happened is that the glaciers were recognized and not the debris or snow 
cover on them. 

 
5.1.2 SUPERVISED CLASSIFICATION 
MAXIMUM LIKELIHOOD 

 
Figure 5.1.2.1 Images with Median (a.) and Lee Sigma (b.) filters, classified with Maximum 

Likelihood classifier 
 

 
Table 5.1.2.1 Confusion matrix of the image with Median filter classified with Maximum 

Likelihood classifier 
 

a. Image with Median filter b. Image with Lee Sigma filter
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Table 5.1.2.2 Confusion matrix of the image with Lee Sigma filter classified with Maximum 

Likelihood classifier 
 

The image chosen as the best in the case of this classifier was the one resulting from the 
consideration of the segment attributes Active Chromaticity Color, Standard Deviation and 
Compactness and from the use of the rock/ soil and snow/ ice training samples, leaving out 
the water ones. The reason for the latter is that the addition of the water samples did not 
lead to the recognition of the lakes, instead it caused a major error in the classification (see 
appendix). In the original image, the lakes are actually distinguishable because they are darker 
than the surrounding rock, so the fact that in the Maximum Likelihood classification these 
training samples produced such a large error may mean that the problem lies in the classifier's 
grouping algorithm, which is not suitable for classifying this image: in fact, using Random 
Trees and the Support Vector Machine, it will be seen that water produced minimal errors of 
a completely different magnitude from these ones. 
Classification using the Maximum Likelihood classifier produced slightly better results in 
terms of k for the image with Median filter, but much worse in the case of the one with Lee 
Sigma filter. In the first case, the extension of the rock areas erroneously classified as snow-
ice has been reduced, but not their spatial distribution, as they continue to cover the whole 
island; in the second case, instead, there is no more recognition of glaciers nor the influence 
of illumination, the image produced is inconsistent with the one analyzed, the only positive 
note seems to be the concentration of the areas classified as snow-ice in the part of the island 
affected by Mount Pond. The User's and Producer's Accuracy of class 2 in the case of the 
image with Lee Sigma filter reflect what has just been said: both are very low because it was 
not possible to identify the snow cover present, and the points belonging to the snow class 
are not always the real ones: several areas of rock have been classified as snow. As a 
consequence of the small extent of snow there is the large extent of rock, which led to higher 
User's and Producer's Accuracy for this class. As for the Median filtered image, the Producer's 
Accuracy is much higher than that obtained with the unsupervised classification, the reason 
for this is that in this case, as mentioned above, the rock areas misclassified as snow-ice have 
reduced in areal extent, although not in spatial distribution, so the number of points 
belonging to the rock class has increased. What has instead decreased is the Producer's 
Accuracy of the snow and the reason of this is that the areas classified as snow have been 
greatly reduced and are affected by a pronounced point noise: if we compare this image with 
the one classified with ISO cluster (with the same filter), we can see that the latter presents 
much more homogeneous glaciers. The other accuracies remained more or less the same. 
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RANDOM TREES 

 
Figure 5.1.2.2 Images with Median (a.) and Lee Sigma (b.) filters, classified with Random 

Trees classifier 
 

 
Table 5.1.2.3 Confusion matrix of the image with Median filter classified with Random Trees 

classifier 
 

 
Table 5.1.2.4 Confusion matrix of the image with Lee Sigma filter classified with Random 

Trees classifier 
 

a. Image with Median filter b. Image with Lee Sigma filter
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The image chosen in this case was the one resulting from the choice of the segment attributes 
Active Chromaticity Color and Standard Deviation and using the training samples of all three 
classes, in this case in fact the training samples relative to the water class did not cause an 
excessive error. In the case of the image with Median filter, the k that occurred is similar to 
the one already obtained for the ISO cluster classification and the Maximum Likelihood one, 
while in the case of the image with the Lee Sigma filter, it is similar to that which occurred 
with the ISO cluster classification. In the first image, the snow cover in the eastern part of the 
island was identified, but not that in the southern part. Once again it is evident the influence 
of the speckle, as it leads to punctual errors in the classification of the soil/ rock as snow/ ice; 
this effect is reduced in the second image thanks to the multiple application of the Lee Sigma 
filter, however it is evident how in this case the illumination of the satellite has led to the 
incorrect classification of a part of rock/ soil as snow, in the North-West part of the island. In 
the second image too the snow cover on Mount Pond was partly recognized, but not the one 
on Mount Kirkwood, only a small area in the south. In both images there was a recognition of 
one lake in the south and one in the north, and in the second image the other two in the north 
were also recognized: one correctly classified as water and the other incorrectly as snow. In 
addition, in the latter a part of the sea that had been included by clipping with the coastline, 
located to the east, facing Port Foster, was recognized but classified as snow. This greater 
sensitivity to water in the second image, however, also led to more point errors than in the 
first image, in fact it can be seen that the User's Accuracy relative to class 1 is much greater 
in the first image. The failure to recognize all the lakes has led to low Producer's Accuracy. 
The User's and Producer's Accuracy for the rock/ soil were good and the one of the snow was 
again quite low, due to the failed delineation of the snow cover, as mentioned above. In the 
first image the accuracies were higher because the snow cover on Mount Goddard was 
detected, while in the second image it was not. The k obtained in the case of the image with 
Median filter was almost the same as the one obtained with Maximum Likelihood classifier, 
while the k of the image with Lee Sigma filter was double the one obtained in the case of 
Maximum Likelihood classifier. 
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SUPPORT VECTOR MACHINE 

 
Figure 5.1.2.3 Images with Median (a.) and Lee Sigma (b.) filters, classified with Support 

Vector Machine classifier 
 

 
Table 5.1.2.5 Confusion matrix of the image with Median filter classified with Support 

Vector Machine classifier 
 

 
Table 5.1.2.6 Confusion matrix of the image with Lee Sigma filter classified with Support 

Vector Machine classifier 
 

a. Image with Median filter b. Image with Lee Sigma filter
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The image chosen in this case was the one resulting from the use of the segment attributes 
Standard Deviation and Count of Pixels and the consideration of all training samples. In the 
case of the image to which Lee Sigma filter was applied, the use of the training samples of 
water led to a misclassification, causing all the island to be classified as rock/ soil, and the 
same happened using as segment attributes only Standard Deviation, as can be seen from the 
appendix. For this reason, we report the image obtained from the consideration of only the 
snow/ice and rock/soil training samples, so it is divided into two classes.  
In the case of the image with the Median filter applied, the k obtained was the highest,  errors 
caused by the speckle still occurred but did not prevent the recognition of the two snow-ice 
macrozones. The accuracies were quite high for rock/ soil and lower for snow-ice, in line with 
previous classifications, while the row in the table relating to class 1 is null because water was 
not classified, despite the inclusion of its training samples. This may have occurred because 
of the small extent of the watery areas, which were not recognised as a separate class but 
were incorporated into another, confused with the rock/soil. The same confusion between 
soil and water occurred with the Lee Sigma filter image, where the Kendall Terrace soil strip 
was misclassified, causing an overestimation of the snow cover, as opposed to the image 
obtained with Maximum Likelihood classifier. This resulted in a lowering of the User's 
Accuracy of the snow/ice class and the Producer's Accuracy of the soil class. The row 
corresponding to the water class is obviously empty because, as anticipated, the image 
resulting from the use of only the training samples of snow and soil is reported. 
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5.2 OPTICAL 
5.2.1 UNSUPERVISED CLASSIFICATION 

 
Figure 5.2.1.1 Image classified with ISO cluster classifier, with and without subsequent 

application of clouds mask 
 

 
Table 5.2.1.1 Confusion matrix of the image classified with ISO cluster classifier 

 

 
Table 5.2.1.2 Confusion matrix after the application of clouds mask 

a. Image classified with Iso Cluster b. Image after the application of clouds
mask
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This classification can be considered relatively good: the two snow-ice covers located on the 
glaciers were well delineated, and the clouds were identified, although there may have been 
an overestimation (however, it must be considered that the cloud mask was generated by the 
user from an index and is therefore not an absolute truth; the clouds may have been over- or 
underestimated). However, water was not classified; only two of the lakes present, located in 
the northern part of the island, were identified, but one was classified as snow/ ice and the 
other as clouds. This can also be seen from the confusion matrix, where the row for class C1 
is filled with 0. 
The use of the cloud mask results in a slight increase in k and in Producer's Accuracy for class 
C2 (by 10%). This was the expected result, since the clouds mainly cover the part related to 
snow, and therefore parts of the island affected by snow will be classified as clouds when 
covered by them: this leads to a decrease in Producer's Accuracy because the snow class will 
lack points that belong to it. By removing these zones with the mask, the accuracy will 
automatically increase. 
The reason why the water class has not been created in the classified image is due to the fact 
that the areas of water have a small extension compared to the rest of the coverage, in 
addition, the lakes that have been identified have been classified one as snow and the other 
as clouds, this is due to the fact that it’s always the same substance but in different physical 
states for the three ground covers. Probably, if the extent of the water had been of the same 
order as that of the snow, the two classes would have been divided, but what is supposed to 
have happened is that the lakes were incorporated in one case into the snow class and in the 
other into the cloud class in the various iterations because of their small area. 
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5.2.2 SUPERVISED CLASSIFICATION 
MAXIMUM LIKELIHOOD 

 
Figure 5.2.2.1 Image classified with Maximum Likelihood classifier, with and without 

subsequent application of clouds mask 
 

 
Table 5.2.2.1 Confusion matrix of the image classified with Maximum Likelihood classifier 

 

 
Table 5.2.2.2 Confusion matrix after the application of clouds mask 

 

a. Image classified with Maximum b. Image after the application of clouds
mask
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The k in the Maximum Likelihood classification was quite low and, analyzing the User's 
Accuracy and Producer's Accuracy, this seems to be mainly caused by commission errors in 
the water class, plus other commission errors in the snow class and omission in the rock and 
snow classes. Applying the cloud mask, there is an increase in Producer's Accuracy of the snow 
class while the increases in the others accuracies can be considered almost negligible. This 
resulted in a slight increase in k.  
Analyzing the image, it can be seen that there has been an overestimation of the cloud cover, 
with the presence of various punctual errors in the rock/ soil class which have led to the 
lowering of its Producer's Accuracy; the classification of snow/ ice can be considered to be 
roughly good and the same can be said for water. 
The increase in Producer's Accuracy of the snow/ ice class when applying the cloud mask was 
expected, because the removal of the parts covered by clouds that actually belong to snow 
reduces the percentage of points falling mistakenly classified as snow. Its User's Accuracy, 
however, is not as high and this is due to the fact that the snow cover of the ground truth is 
less than that of the analyzed image. 
An unexpected result is instead that of the User's Accuracy value of the water class, which is 
very low. Comparing the classified images with the ground truth (figure 4.3.10) it can be seen 
that in the latter only the lakes present on the island are considered as water, while in the 
former several strips adjacent to the coast can be seen as belonging to this class. This is 
probably due to the fact that the coastline is not univocal but varies with the tides, and what 
has happened is that by clipping the image with the shapefile of the coastline, a small strip of 
sea was also included, and that is not present in the ground truth. 
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RANDOM TREES 

 
Figure 5.2.2.2 Image classified with Random Trees classifier, with and without subsequent 

application of clouds mask 
 

 
Table 5.2.2.3 Confusion matrix of the image classified with Random Trees classifier 

 

 
Table 5.2.2.4 Confusion matrix after the application of clouds mask 

 

a. Image classified with Random Trees b. Image after the application of clouds
mask
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The classification carried out using the Random Trees classifier gave very high User's Accuracy 
and Producer's Accuracy values, and the k could therefore have been appreciable, but what 
led to its lowering was the overestimation of the water class, as can be seen from the images. 
It can be seen that for this reason the User's Accuracy of the water class was very low. 
As always, the Producer's Accuracy of the snow class increased when the cloud mask was 
applied, by about 15%. Its User's Accuracy was the lowest after that of the water class, and, 
as mentioned above, the reason is that the snow cover of the ground truth is smaller than 
that of the analyzed image. 
The snow and cloud cover estimations were good, as was the rock estimation. 
The reason for assigning the contours of the snow cover to the water class can be attributed 
to the fact that in these areas the snow present is wetter than in the center, located in higher 
areas of the mountain, its partial melting may therefore have led to its assignment to the 
water class by the classifier. 
 
SUPPORT VECTOR MACHINE 

 
Figure 5.2.2.3 Image classified with Support Vector Machine classifier, with and without 

subsequent application of clouds mask 
 

a. Image classified with Support Vector b. Image after the application of clouds
mask
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Table 5.2.2.5 Confusion matrix of the image classified with Support Vector Machine 

classifier  
 

 
Table 5.2.2.6 Confusion matrix after the application of clouds mask 

 
The situation that occurred in this case was very similar to that of Random Trees: there was 
an overestimation of the aqueous coverage which led to a very low User's Accuracy for its 
class. The other accuracies were on average high, with the lowest being 0.69, relative to the 
snow class, as it happened with the other classifications, due to the fact that the snow cover 
of the analyzed image is more extensive than the one of ground truth. Again, using the cloud 
mask, the Producer's Accuracy of the snow class increases, more precisely by 13.5 %.  
In this case, it seems that the overestimation of the water class occurred not only in the 
perimeter areas of the snow cover, but also in zones where it was confounded with small 
clouds. The reason for this can be attributed to the fact that in the end it is the same substance 
in different physical forms, as already explained in chapter 5.2.1: in the unsupervised 
classification one lake was classified as snow cover and another as clouds; here the opposite 
has happened, so snow and clouds have been classified as water, but it is still the same 
problem of confusing these classes. 
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5.2.3 INDEX CLASSIFICATION 

 
Figure 5.2.3.1 Image classified with NDSI ed NDWI (a.) and effect of the subsequent 

application of clouds mask (b.) 
 

 
Table 5.2.3.1 Confusion matrix of the image classified with NDSI and NDWI 

 

 
Table 5.2.3.2 Confusion matrix after the application of clouds mask 

 
This classification was the one that resulted in the highest k, so the misclassified parts were 
minimal: mainly the lake to the north-east which was classified as snow cover and some small 

a. Image classified by using NDSI and b. Image after the application of clouds
mask
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strips of snow cover were classified as water. The application of the cloud mask did not bring 
about an appreciable improvement in this case as with the other classifications, and this is 
attributable to the fact that with the use of the indices the influence of clouds was diminished 
by using bands that did not detect them. Again, the lowest User's Accuracy occurred for the 
water class and the snow class, and this is attributable to the same reasons already 
mentioned: the difference between the snow cover of the treated image and that of ground 
truth, and the water along the coastline of the treated image, not present in ground truth. 
With regard to the lake that has been classified as snow-ice, in reality it is a phenomenon that 
has always occurred in all the binary images used to separate the snow cover (snow from ice, 
pure snow and ice from that mixed with debris, and that what had snow and ice from that 
what was bare ground), used as a step prior to the creation of this image and the other 
complete image that is proposed (Figure 5.2.3.2). This is supposed to occur because actually 
it is always water but in different forms, so even if an index is designed to divide snow from 
other ground covers it is possible to commit error in the presence of water. Another error 
that occurred was that of the NDWI's classification of some snow strips as belonging to the 
water class; it is assumed that, since they are perimeter strips, they are wet and melting snow, 
so their high liquid water content led to their inclusion in this class. 

 
Figure 5.2.3.2 Image classified with NDSI, NDWI, NDGI, NDSII 

 
In the image resulting from the application of the four indices, it can be seen that two new 
classes have been added to the previous one, which overlap the snow/ ice class, but cover a 
smaller area; this is what was expected (the pure snow and ice will be a part of the total snow/ 
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ice class, in which the debris is present, and again, the snow will be a part of the snow/ ice 
total class). For the newly added classes, however, there is no ground truth and it is therefore 
not possible to quantify the goodness of the classification, but a qualitative analysis of the 
image produced can be made. The addition of the result of the last index concerning the 
separation of snow from ice seems to be affected by the clouds, as it leaves some areas 
uncovered in correspondence with the location of these, where the coverings classified by 
the two previous indices emerge. Apart from this, the trend seems to be coherent, the areas 
gradually left uncovered by these last two indices are mainly those around the perimeter of 
the snow covers, which are supposed to be those most mixed with debris, as they are at the 
foot of the mountains and more humid, and that present in the part between Mount Pond 
and Mount Goddard, this is therefore also an area in depression, in which the snow will 
consequently be more humid and mixed with debris as in the perimeter areas of the 
mountains. It can be seen that in the image used as ground truth, taken after the one 
analyzed, this part has been affected by melting of the snow present, which confirms what 
has just been said. 
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6. CONCLUSIONS 
 
The k values reached in the confusion matrices of the Sentinel 2 image classifications were 
not those desirable with an optical image, and this is due to the fact that a ground truth of 
the same date was not available, the consequence of which is a much reduced snow cover in 
the ground truth compared to the image analyzed; this has led to a User's Accuracy for this 
class never exceeding 75%. This implies that what the algorithm detects as classification 
errors, being snow points in the classified image and rock/ soil points in the ground truth, are 
in fact only a consequence of reduced snow cover and not a misclassification. 
In addition, the image was subject to partial cloud cover, which not only did not allow for a 
full comparison of the optical image classifications with SAR ones in the covered areas, but 
also led to errors in the covered areas, lowering the quality of the optical image classifications: 
when applying the cloud mask, there has always been an increase in the Producer's Accuracy 
of the snow-ice class of 10-15%.  
By using SAR images, the cloud problem doesn’t exist, but the classification is strongly 
influenced by satellite illumination and island morphology, effects that are amplified when 
speckle noise is reduced by using filters. Classifications have never achieved acceptable 
results: in the case of the image with a single application of the Median filter, punctual errors 
caused by the speckle were very evident in the classified images, it must however be 
recognized that the snow cover on the Pond and Goddard Mountains was almost always 
recognized; in the case of the image with multiple application of the Lee Sigma filter, the 
correct recognition of the ground covers was almost never verified, except in some cases of 
detection of part of the snow cover, it seems that the multiple application of a speckle 
reduction filter also led to the reduction of the contrasts between the different ground covers, 
thus preventing their recognition. In any case, the effect of illumination and the morphology 
of the island has always been strong and influential in SAR images. 
The k of the classification based on the use of indices was the highest, and this is because it 
was possible to avoid the influence of clouds by using certain bands; this is therefore a road 
that can be explored in the field of optical classification, if we want to overcome the problem 
of cloud cover. 
In conclusion: 
- single polarimetry SAR backscattering images are not suitable for this type of classification 
in an area of this type, where strong contrasts between covers are not present and 
geometries are not simple;  
- the classifications made with the optical image would have been better had it not been for 
the influence of the cloud cover; 
- the ground truth used was not optimal due to the different snow cover, and therefore led 
to unreal errors when computing the confusion matrices, but the classifications already 
provided by NASA and ESA were unusable; 
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- the classification based on indices was the best as it seems to have led to a partial 
circumvention of the cloud problem, so more studies could be carried out in this field. 
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8. APPENDIX 
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8.1 GEOLOGIC MAP 
 
The geological map shown was compiled by Smellie and López-Martínez in 2000 and 
published by the British Antarctic Survey, together with the geomorphological map shown in 
8.2 and an accompanying text, the book 'Geology and Geomorphology of Deception Island' 
(Smellie et al., 2002), for the BAS GEOMAP Series project. 
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8.2 GEOMORPHOLOGIC MAP 
 
The geomorphological map shown was prepared by Smellie and López-Martínez in 2000 and 
published by the British Antarctic Survey, accompanying the geological map shown in 8.1 and 
the book 'Geology and Geomorphology of Deception Island' (Smellie et al., 2002), for the BAS 
GEOMAP Series project. 
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8.3 TOPOGRAPHIC MAP 
 
The topographic map shown is the second edition of a map drawn up by the Centro 

Geográfico del Ejército Español in collaboration with the Universidad de Cádiz and dates from 

2005.
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8.4 IMAGES USED 
 
The three satellite images used are reported below, in particular, the RGB combinations of 

their bands are shown, furthermore, the ground truth produced according to the steps 

explained in detail in chapter 4.3 using as sources the Pixel QA band of the Landsat image and 

the topographic map of 2005 are also reported.  



a. Sentinel 1 image b. Sentinel 2 image

c. Landsat 8 image d. Ground truth
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8.5 SAR 
 
In this section we will first report the effect of applying the different filters on the image, then 

the four segmented images used for the classifications and finally the classifications, first 

unsupervised and then supervised; in particular, in the case of the supervised ones, we will 

report several images that were produced but not discussed in chapter 5 because they were 

worse than those chosen and discussed in that chapter. 
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8.5.1 EFFECT OF THE FILTERS 

 
A comparison is made between the processed but unfiltered image (therefore still cropped, 

calibrated, georeferenced and subjected to geometric correction) and the application of the 

different filters used for the study; in particular, in the case of the Lee, Lee Sigma and Refined 

Lee filters, the effect of the triple application of each filter is reported. 

 



a. Image without filters b. Image with an application of Median filter c. Image with three applications of Lee filter

d. Image with three applications of Lee Sigma filter e. Image with three applications of Refined Lee filter
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8.5.2 SEGMENTED IMAGES 

 
The four segmented images that were then used for unsupervised classification are shown, 
one for each filtered image.



a. Segmentation of the image with Median filter b. Segmentation of the image with Lee filter

c. Segmentation of the image with Lee Sigma filter d. Segmentation of the image with Refined Lee filter

¯ 0 2 4 6 81
Kilometers

133



 134 

8.5.3 UNSUPERVISED CLASSIFICATION 

 
The four images obtained from the unsupervised classification of those in 8.4.2 are shown.



a. Unsupervised classification of the image with Median filter b. Unsupervised classification of the image with Lee filter

c. Unsupervised classification of the image with Lee Sigma d. Unsupervised classification of the image with Refined Lee
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8.5.4 SUPERVISED CLASSIFICATION 

 
The different images obtained with the supervised classification of the image with Median 
filter, and produced by changing the segment attributes and the number of classes, are 
shown: when the use of the training samples of the water class led to an excessive error in 
the classified image the number of classes was reduced from three to two, excluding the 
training samples of this last class; subsequently we report the result of applying the same 
combinations to the image with Lee Sigma filter. 
The images will be divided by classifier: Maximum Likelihood, Random Trees, Support Vector 
Machine, and in the cells of the tables the segment attributes used in the specific case will be 
indicated.



MAXIMUM LIKELIHOOD
3 CLASSES, Image with Median filter ¯
a. Standard Deviation

d. Standard Deviation + Compactness

g. Active Chromaticity Color + Standard Deviation
+ Compactness

c. Mean Digital Number + Standard Deviation

f. Mean Digital Number + Standard Deviation +

i. All of the attributes

Compactness

h. Active Chromaticity Color + Mean Digital Number + Standard Deviation + Compactness

e. Standard Deviation + Rectangularity

b. Active Chromaticity Color + Standard Deviation

0 2 4 6 81
Kilometers

Legend
rock/ soil snow/ ice water
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MAXIMUM LIKELIHOOD
3 CLASSES, Image with Lee Sigma filter ¯
a. Standard Deviation

d. Standard Deviation + Compactness

g. Active Chromaticity Color + Standard Deviation
+ Compactness

c. Mean Digital Number + Standard Deviation

f. Mean Digital Number + Standard Deviation +

i. All of the attributes

Compactness

h. Active Chromaticity Color + Mean Digital Number + Standard Deviation + Compactness

e. Standard Deviation + Rectangularity

b. Active Chromaticity Color + Standard Deviation

0 2 4 6 81
Kilometers

Legend
snow/ ice rock/ soil water
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MAXIMUM LIKELIHOOD
2 CLASSES, Image with Median filter ¯
a. Standard Deviation

d. Standard Deviation + Compactness

g. Active Chromaticity Color + Standard Deviation
+ Compactness

c. Mean Digital Number + Standard Deviation

f. Mean Digital Number + Standard Deviation +

i. All of the attributes

Compactness

h. Active Chromaticity Color + Mean Digital Number + Standard Deviation + Compactness

e. Standard Deviation + Rectangularity

b. Active Chromaticity Color + Standard Deviation

0 2 4 6 81
Kilometers

Legend
rock/ soil snow/ ice
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MAXIMUM LIKELIHOOD
2 CLASSES, Image with Lee Sigma filter ¯
a. Standard Deviation

d. Standard Deviation + Compactness

g. Active Chromaticity Color + Standard Deviation
+ Compactness

c. Mean Digital Number + Standard Deviation

f. Mean Digital Number + Standard Deviation +

i. All of the attributes

Compactness

h. Active Chromaticity Color + Mean Digital Number + Standard Deviation + Compactness

e. Standard Deviation + Rectangularity

b. Active Chromaticity Color + Standard Deviation
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Kilometers

Legend
rock/ soil snow/ ice
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RANDOM TREES
3 CLASSES, Image with Median filter ¯
a. Mean Digital Number + Standard Deviation

d. Active Chromaticity Color + Standard Deviation +

g. Active Chromaticity Color + Mean Digital Number
+ Standard Deviation + Rectangularity

c. Active Chromaticity Color + Mean Digital Number +

f. Active Chromaticity Color + Standard Deviation +

i. Active Chromaticity Color + Mean Digital Number +

Compactness + Rectangularity

h. Active Chromaticity Color + Mean Digital Number +

e. Active Chromaticity Color + Standard Deviation +

b. Active Chromaticity Color + Standard Deviation

0 2 4 6 81
Kilometers

Legend
rock/ soil snow/ ice water

Rectangularity Compactness

Standard Deviation + Compactness

Standard Deviation

Standard Deviation + Compactness + Rectangularity
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RANDOM TREES
3 CLASSES, Image with Lee Sigma filter ¯
a. Mean Digital Number + Standard Deviation

d. Active Chromaticity Color + Standard Deviation +

g. Active Chromaticity Color + Mean Digital Number
+ Standard Deviation + Rectangularity

c. Active Chromaticity Color + Mean Digital Number +

f. Active Chromaticity Color + Standard Deviation +

i. Active Chromaticity Color + Mean Digital Number +

Compactness + Rectangularity

h. Active Chromaticity Color + Mean Digital Number +

e. Active Chromaticity Color + Standard Deviation +

b. Active Chromaticity Color + Standard Deviation

0 2 4 6 81
Kilometers

Legend
snow/ ice rock/ soil water

Rectangularity Compactness

Standard Deviation + Compactness

Standard Deviation

Standard Deviation + Compactness + Rectangularity
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SUPPORT VECTOR MACHINE
Image with Median filter ¯
a. Standard Deviation, 3 classes

d. Active Chromaticity Color + Standard Deviation +

g. Standard Deviation, 2 classes

c. Active Chromaticity Color + Standard Deviation +

f. Active Chromaticity Color + Standard Deviation +
Count of Pixels, 2 classes

h. Standard Deviation + Count of Pixels, 2 classes

e. Active Chromaticity Color + Mean Digital Number +

b. Standard Deviation + Count of Pixels, 3 classes
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Kilometers
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rock/ soil snow/ ice water
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SUPPORT VECTOR MACHINE
Image with Lee Sigma filter ¯
a. Standard Deviation, 3 classes

d. Active Chromaticity Color + Standard Deviation +

g. Standard Deviation, 2 classes

c. Active Chromaticity Color + Standard Deviation +

f. Active Chromaticity Color + Standard Deviation +
Count of Pixels, 2 classes

h. Standard Deviation + Count of Pixels, 2 classes

e. Active Chromaticity Color + Mean Digital Number +

b. Standard Deviation + Count of Pixels, 3 classes

0 2 4 6 81
Kilometers

Legend
snow/ ice rock/ soil water
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8.6 OPTICAL 
 
This section is divided into the three types of classification to which the optical image has 
been subjected. In addition, the index-based classification section shows not only the final 
classified images, but also the index images, the binary images obtained by applying limits to 
each index and the index histograms. The effect of applying the cloud mask is also shown each 
time.
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8.6.1 UNSUPERVISED CLASSIFICATION 

 
The image obtained with the unsupervised classification and the effect of applying the cloud 
mask are shown. 
  



a. Classified image

b. Application of cloud mask
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8.6.2 SUPERVISED CLASSIFICATION 

 
The images obtained with the three classifiers Maximum Likelihood, Random Trees and 
Support Vector Machine and then the application of the cloud mask to them are shown. 



a. Maximum Likelihood b. Random Trees c. Support Vector Machine

d. Maximum Likelihood + Cloud mask e. Random Trees + Cloud mask
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8.6.3 INDEX CLASSIFICATION 

 
As anticipated in 8.5, the images of the indices, their histograms, the binary images obtained 
from the application of the limits identified for each and finally the final classified images, 
followed by the effect of the application of the cloud mask, are reported in this order.



a. NDWI b. MNDWI c. MuWI-R

d. NDGI e. NDSI
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HISTOGRAMS

a. NDWI 

 

b. MNDWI 

 

c. MuWI-R 

 
d. NDGI 

 

e. NDSI 

 

f. NDSII 
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a. Image classified by using NDSI and NDWI b. Image a. cloud mask application

c. Image classified by using NDSI, NDWI, NDSII and NDGI
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