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1. OBJECTIVES AND INTRODUCTION

In this introductory chapter, the purpose of the work will be clarified and its approach will be
explained in general, from a theoretical point of view (a more detailed and practical
explanation will be given in Chapter 4).

1.1 OBJECTIVE OF THE WORK

Optical images and SAR images have different strengths and weaknesses. Optical images are
easier to interpret visually, as the human eye is more accustomed to such views, but they are
dependent on solar illumination and weather conditions. SAR images, on the other hand,
actively illuminate the scene with microwaves, so the presence of clouds is no longer a
problem and even scenes captured at night will be visible. The difficulty, however, of SAR
images lies in the more difficult interpretation, due to the presence of a single band in the
case of single polarisation, but above all due to the noises which affect them: since the image
is acquired from the side it is subject to geometric distortion and presents shadows, and
furthermore, the interference between the various backscattering of point elements in the
same pixel causes a "salt and pepper" effect typical of these images, called speckle.

In addition, there are several studies of SAR images that show their goodness of classification
in urban contexts, where there are geometric elements with strong contrasts, such as streets
or buildings, but there is a lack of studies regarding non-urbanised areas, where the contrasts
between ground covers are less clear and classification is consequently more difficult.

The objective of this study is therefore to classify an optical image and a SAR image of the
same non-urbanised area, acquired on different days, in order to compare the results.
Specifically, images of Deception Island acquired one day after the other were analysed: the
optical image on 19.01.2020 and the SAR image on 20.01.2020, and the covers that will be
classified are bare ground/rock, snow/ice and water.

The specific reason for choosing Deception Island as the study area lies in the fact that it is
subject to seismic and volcanological hazards, which are constantly monitored by two
scientific bases located on it: it is therefore a necessity to have maps of the ground cover
which are present in order to produce risk maps, and it would be appropriate to have
techniques capable of providing such maps quickly (the covers are in fact not constant, but
subject to continuous change in the case of snow or temporary lakes).

The work will be structured as follows:

- Chapter 1: this chapter gives a general description of the processes followed and their
theoretical basis;

- Chapter 2: an overview of the study area, Deception Island, is given;



- Chapter 3: the images used for the study are explained in detail: those to be analysed and
the sources used as ground truth;

- Chapter 4: the procedure followed for the processing and classification of the images is
described in detail, as well as the creation of the ground truth and thanks to it the
guantification of the goodness of the classifications;

- Chapter 5: the best results obtained are presented and discussed, that is the classified
images and the associated confusion matrices;

- Chapter 6: the conclusions of the work are drawn.

1.2 STRUCTURE OF THE WORK

In order to classify the optical and the SAR images, the work was carried out on two parallel
lines, and consisted of a first preparation phase, which was different in the two cases, and a
second classification phase, firstly unsupervised and then supervised, also, an index-based
classification was added in the case of the optical image. The goodness of the classifications
was then quantified through the use of confusion matrices, whereby the images produced
were compared with a ground truth, derived from two separate sources: the topographic map
produced in 2005 by the Spanish Land Army and the Pixel QA band of a Landsat image
acquired at a date close to those analyzed. The qualitative and theoretical introduction to the
procedure carried out will now be given, while the process will be described in detail in
chapter 4. To have more details about the images used and their satellites, please refer to
chapter 3.

PREPARATION OF THE IMAGES

Before classifying the images, it is necessary to carry out some preparation operations, firstly
because the downloaded images include areas that will not be studied (Figures 3.2 and 3.6),
and continuing with an excessively large image will only lead to an unnecessary burdening of
operations, secondly because, while the optical image of Level A2 is already ready for
processing, being characterised by a so-called Bottom of Atmosphere reflectance, from which
the effect of the atmosphere has been removed, the SAR image requires a series of operations
aimed at correcting errors typically present in these images, such as speckle and geometric
distortion caused by lateral acquisition.

SAR Image
For the preparation of the SAR image, the preparation operations were:
- cropping of the target area, as mentioned above, because the original image included
a much larger area than the area of interest;
- calibration, in order to normalize the present values; and to do this it uses the ground
area, the illuminated area in the look direction or the tangent of the local angle of
incidence;



- filtering, to reduce the speckle effect, granular noise that causes a "salt and pepper"
effect in SAR images, due to the interference of the waves reflected by many point
scatterers;

- georeferencing and geometric correction of the image, using an appropriate DTM,

- conversion of the band into decibels, to obtain values that are easier to handle.

After these operations, the clipping was also refined with the coastline.

As far as filtering is concerned, four different filters were tested: an initial application of the
Median filter was made to the image, then, as suggested by Lee (Lee et al., 1989), a multiple
application of the Lee filter was carried out, of which the two modified versions present in
SNAP were also tested: Lee Sigma and Refined Lee. These four filters will now be briefly
described.

Median

The Median filter works by moving a scan window that replaces the center pixel with the
median of the pixels in the window. It is effective in reducing point and isolated noise such as
speckle, suppressing or even removing it, and for this reason it is often used as an alternative
to the Mean filter, which instead causes blurring (Kupidura, 2016). Its drawback is that it can
lead to the deletion of small objects or subtle elements; however, this may be the case in an
urban setting, but not in the image studied, where elements of this type were not present.

Lee

Many variations of this filter have been proposed over the years, but the original Lee filter
dates back to 1980 (Lee, 1980). It is considered to be the first model-based speckle removal
filter and it is a local statistics filter that operates linearly and reduces speckle by minimizing
the mean square error of the mean intensity within the scan window.

Lee Sigma

The Lee Sigma filter, devised by Lee in 1983 (Lee, 1983) assumes that the distribution of
reflected signals is Gaussian and calculates the sigma probability, then considers as outliers
the pixels that fall outside the two-sigma interval starting from the central pixel of the scan
window and averages the others and then substitutes the value of the central pixel with this
one.

This filter is able to bring out the parts of the image that have a different contrast, but does
not remove the dark spots.

Refined Lee

The Refined Lee filter was designed by Lee in 1981 (Lee, 1981) to overcome the problem of
noisy edge boundaries produced by the Lee filter. It operates using a 7x7 moving window
that, when it encounters an edge, estimates its orientation using the local gradient: inside the
window there are in fact eight non-square windows for eight different edge orientations. The
algorithm considers the window that best fits the orientation of the edge and with it



calculates the local mean and variance (if no edge is found, the calculations are performed
taking into account the whole area of the 7x7 window).

This filter works particularly well on edges and high contrast areas, but the same cannot be
said if the image is excessively segmented.

Optical Image
For the preparation of the optical image, the operations were:

- cropping of the interested area, as for the SAR image;

- resampling of the bands to make them all have the same cell size and thus be able to

carry out the operations necessary to calculate the indices.

As for the SAR image, the clipping was refined with the coastline.
The indices that were considered were the following: NDWI, MNDW!I, Mu-WIR, NDSI, NDGI,
NDSII. They will now be briefly illustrated, and the bands indicated in brackets in the formulas
refer to the Sentinel 2 satellite, which is the one of interest.

NDWI

The Normalized Difference Water Index (NDWI) is an index used to detect the presence of
water, of which there are at least two versions: one, introduced by Gao in 1996 (Gao, 1996),
which uses the near-infrared band (NIR) and the short-wave infrared band (SWIR) and is
sensitive to changes in the water content of vegetation, useful because it is less sensitive to
atmospheric effects, which instead condition the NDVI (Gao, 1996), an index with a similar
purpose. Its formula is as follows:

NDWL. — NIR (B8) — SWIR (B11)
Gaoc ™ NIR (B8) + SWIR (B11)

The other version, which is the one used in this case, was introduced by McFeeters in 1996
(McFeeters, 1996) and is instead used to detect water bodies, being able to enhance them
while leaving out coverages such as soil and vegetation. Its formula exploits the green and
near-infrared bands and is given below:

o _ Green (B3) — NIR (B8)
McFeeters = < o0 (B3) + NIR (B8)

MNDWI

The Modified Normalized Difference Water Index (MNDWI) was first introduced by Xu in 2006
(Xu, 2006) and replaces the near-infrared band used in McFeeters' NDWI with the mid-
infrared band (MIR), with the advantage of increasing the positive value of water, since it
absorbs more light in the MIR than in the NIR, and having negative values for buildings, soil
and vegetation, which reflect more in the MIR than in the NIR, so as to have a greater contrast
between water and soil, facilitate water extraction and obtain a more accurate classification.



Its formula is as follows:

Green (B3) — MIR (B8A)
MNDWI =
Green (B3) + MIR (B8A)

MuWI-R

The MuWI-R, or Multi-spectral Water Index Revised (MuWI-R), is a reduced version of another
index, the Multi-spectral Water Index Complete (MuWI-C), to which it removes some non-
fundamental terms, making calculation easier. Both indices were developed in 2018 by Wang
et al (Wang et al., 2018) and were specifically designed for Sentinel 2, with the aim of
generating water maps at 10 m resolution, thus having higher classification accuracies. Its
formula consists of a combination of normalized differences, thus ensuring threshold
stability:

Blue (B2) — Green (B3) N Green (B3) — NIR (B8)
* *

Blue (B2) + Green (B3) Green (B3) + NIR (B8)

Green (B3) — SWIR (B12) Green (B3) — SWIR (B11)

* Green (B3) + SWIR (B12) _ Green (B3) + SWIR (B11)

MuWIR = —4

NDSI

The term Normalized Difference Snow Index (NDSII) was first coined by Hall et al. in 1995 (Hall
et al., 2010). Although methods similar to NDSI, which used visible and near-infrared bands
with the intention of mapping snow and separating it from clouds, have been tested since the
mid-1970s. It is an index that takes advantage of the high reflectance of snow and ice in the
visible bands, particularly in the green band, and their strong absorption in the near-infrared
or shortwave areas to map and separate them from clouds, which have high reflectance in
both parts of the spectrum mentioned above. Its formula is as follows:

_ Green (B3) — SWIR (B11)

NDSI =
Green (B3) + SWIR (B11)

NDGI

The Normalized Difference Glacier Index (NDGI) was formulated by Keshri in 2009 (Keshri et
al., 2009), with the intention of separating pure snow and ice from ice mixed with debris. The
bands used are green and red, as the spectral characteristics of the two mentioned categories
are different in these two bands and the two histograms can be easily divided. Its formula is
as follows:

_ Green (B3) — Red (B4)

DGI =
N Green (B3) + Red (B4)




NDSII

Like the NDGI, the Normalized Difference Snow Ice Index (NDSII) was formulated by Keshri et
al. in 2009 (Keshri et al., 2009), and its purpose is to separate snow from ice using the green
and near-infrared bands, as their reflectance is similar in the green but different in the near-
infrared, where the reflectance of the ice decreases. The index formula is as follows:

Green (B3) — NIR (B8)
Green (B3) + NIR (B8)

NDSII =

Once these preparation operations had been carried out, it was possible to proceed with the
classification of the images.

CLASSIFICATION

Classifying an image means grouping its cells into groups, called classes, based on spectral or
texture characteristics. Classification methods are divided into supervised and unsupervised,
whereby in the first case it is the user who selects regions of interest in the various classes to
provide the algorithm with training data on which to base itself in order to group the cells in
the defined classes, while the second is an automatic method that does not require training
data.

The classifiers used were those present in the ArcGIS software and will be briefly illustrated
below: the Iterative Self-Organizing (ISO) cluster classifier for unsupervised classification and
the Maximum Likelihood (ML), Random Trees (RT) and Support Vector Machine (SVM)
classifiers for supervised classification.

ISO cluster

The ISO cluster involves subdividing cells into the number of classes specified at the start in
an automatic and iterative manner using a technique called migrating means, based on the
calculation of the Euclidean distance in feature space (each cell is assigned to the cluster for
which the distance is minimum) and on the recalculation of the cluster mean at each iteration
[4].

Maximum Likelihood

The modern version of the Maximum Likelihood classification method was created by Fisher,
between 1912 and 1922 (Hald, 1999), although rudimentary forms already existed earlier
under different names. The algorithm that operates the Maximum Likelihood Classification
tool in ArcGIS is based on Bayes' decision theorem and on the fact that the sample cells of
each class are normally distributed in multidimensional space. Under these assumptions, each
cell is assigned to the class to which it is most likely to belong based on mean and covariance
[5]. It is one of the most used classifiers in remote sensing and provides very good results

10



when working with unimodal distributions, but has difficulty working with multimodal
distributions since it assumes that the distribution is normal (Liu et al., 2011).

Random Trees

The Random Trees classifier, also known as Random Forests, was first introduced in 2001 by
Breiman (Breiman, 2001) and works with multiple decision trees, each based on a set of
random samples that are independent of those in the other trees (there is thus a possibility
that the same sample is selected from several trees). Each tree assigns a probability of
belonging to a certain class for a certain cell and the final assignment is given by the average
of the various probabilities calculated by each tree. This classifier has gained much fame in
the remote sensing world due to its speed and ability to handle large amounts of data, it is
however very sensitive to sampling design and this should be taken into account in order to
avoid misclassification as much as possible (Belgiu et al., 2016).

Support Vector Machine

The Support Vector Machine classifier was initially developed by Vapnik in 1979 (Vapnik,
1979) and is based on the representation of elements in a feature space, whereby different
classes are located in different regions of the space and the assignment of a cell to one class
rather than another depends on its proximity to it in the said space. The drawback of this
method is that the assumption that different classes are located in completely distinct regions
of feature space is theoretical when in reality point data of different classes may overlap and
this leads to misclassification, in addition to the fact that this classifier is not optimized to
work with data affected by noise and even a small percentage of training samples assigned to
the wrong class can drastically reduce the goodness of its performance. It does, however,
have the advantage that it does not require a large amount of training data and does not
assume any particular distribution for the data representation, which is a good thing since
data acquired by remote sensing usually have unknown distributions (Mountrakis, 2011).

These classifications can also be pixel-based or object-based. The first one bases the
assignment of a pixel to a given class only on its spectral characteristics, without taking into
account how neighboring pixels behave; the second one instead involves grouping
neighboring pixels on the basis of spectral characteristics and textures into structures called
segments, and then using these for classification, taking into account several of their
attributes. For the formation of segments ArcGIS uses the Mean Shift algorithm, conceived in
1975 by Fukunaga (Fukunaga, 1975) to find the modes of a probability density function. In
particular, the command works in such a way that a window is scrolled to calculate the mean
in order to understand which pixels to include in the segment, so that the latter will be the
mean value; continuing to scroll on the image, it will iteratively recalculate the mean so as to
verify that each segment has been formed well [7].
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Once the classification is complete, it is necessary to evaluate its goodness and this is done
by comparing the classified image with a reference one called ground truth and,
guantitatively, by making confusion matrices. These are constructed selecting a series of
control points, independent from those used as training samples in the case of supervised
classification, in which one compares which value is assumed by the pixel in the classified
image and which in the reference one (Stehman, 1997). On the basis of this, it is possible to
quantify the accuracy of the classifications, using measures such as the producer's accuracy,
relative to the errors of omission, for which a class is found to be lacking in points because
the points that should have been classified as belonging to it have been inserted in another,
and the user's accuracy, relative to the errors of commission, for which instead the pixels that
should have belonged to a certain class are classified as belonging to another, which
consequently will include more points than it should have [1].

Another value used to estimate the goodness of the classification is the coefficient of
agreement k, which represents the overall accuracy of the classification.

User's Accuracy, Producer's Accuracy and k move between 0 and 1, where 0 represents very
bad accuracy and 1 represents very good accuracy.
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2. CASE STUDY: DECEPTION ISLAND

This chapter will provide an overview of the study area: Deception Island. In particular, its
geography and geomorphology will be briefly explained, and the meteorology of the period
characterizing the acquisition of the images used will be analysed.

2.1 LOCATION, GEOGRAPHY and TOPOGRAPHY

Deception Island is part of the South Shetland Islands archipelago, located approximately 120
km from the Antarctic Peninsula (Figure 2.1.1), and more precisely it is situated between
latitudes 62°53'30S and 63°01'20 "S and longitudes 60°29'20 "W and 60°45'10 "W. It was
discovered by the explorer Nathaniel Palmer in 1820 (Smellie et al., 2002), who gave it this
name because what at first seemed to be an island, when approaching Neptune's Bellows,
the 500 m strait that allows access to its interior, turns out to be a volcanic caldera [8]. In fact,
the island has a horseshoe shape, produced by the flooding of the caldera of a still active
volcano, whose last eruption dates back to 1970 (Shultz, 1972). This bay is about 6 x 10 km in
size (similar to Krakatoa or Santorini) and is called Port Foster. It is about 190 m deep (Luzén
et al., 2011) and is embraced by mostly gravelly and sandy shores (except near Mount Pond),
which are affected by several small lava deltas, as well as a shell of slag and thin lavas close
to the edge of the caldera (Smellie, 2001). These beaches then give way to steep hills in the
central part of the island (Smellie, 2001). In contrast to this, the outer coast is characterised
by ice cliffs that are 30-70 m high, but can reach 300 m in some places (Smellie, 2001).

The island has a total area of 98.5 km? [11], including the islands under its jurisdiction, of
which 57% is covered by permanent glaciers, mainly affecting Mount Kirkwood and Mount
Pond and reaching as far as the north-eastern part of Kendall Terrace, where the surface layer
consists of ash (Smellie, 2001). The remaining 43% of the island consists of pyroclastic
deposits and sediments, with the exception of a few areas where the rock is exposed (Luzén
et al., 2011), as well as glacial moraines, mostly evident at Baily Head and along the outer
coast between Vapour Col and Entrance Point (Smellie, 2001). In addition, there are many
craters, often filled with lakes.

The diameter of the island is 15 km and its highest peak is 539 m above sea level (Smellie et
al., 2002), reached by Mount Pond, but its base diameter is in reality of 30 km and the island
rises 1400 m above the seabed (Smellie, 1990).
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Figure 2.1.1 Location of Deception Island (source: Smellie et al., 2002)

The island is the most active volcano in the South Shetland Islands, and over the years has
erupted a large quantity of tephra, estimated to have reached as far as the South Pole (Palais
et al., 1989); Moreton (Moreton, 1999) analyzed ash samples in the sediments of the Scotch
and Weddell Seas and found that Deception Island was the unequivocal source; however,
more recent eruptions have been smaller in volume and have occurred near the inner coast
(Figure 2.1.2). Nowadays, evidence of its activity is provided by fumarole emissions (Fumarole
Bay owes its name to this very reason), hydrothermal springs, especially active in Pendulum
Cove and Whalers Bay, seismicity, monitored since 1986 by several teams of researchers from
the Spanish Antarctic Program, as well as uplift of the north floor of Port Foster (Luzén et al.,
2011).
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Figure 2.1.2: Most recent eruptions (source: Geyer et al., 2018). BAD: Argentinian Base
“Decepcidon”; BEGC: Spanish Base “Gabriel de Castilla”; BS: British Base (destroyed); CS:
Chilean Base (destroyed)

The topographic map which was used as a reference for the study is the 2005 map, drawn up
by the Spanish Army Geographical Survey; for more information about it, please refer to
Chapter 3, a simplified one is shown in Figure 2.1.3 for greater clarity, whose source is [11].
The island hosts two scientific stations and is one of the main touristic destinations in
Antarctica.
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Figure 2.1.3: Topographic map (source: [11])
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2.2 GEOLOGY AND GEOMORPHOLOGY

Deception Island is a broad Quaternary-era shield volcano, composed of basaltic andesite and
located along the Bransfield Strait, a 15-20 km wide back-arc basin located between the
Antarctic Peninsula and the South Shetland Islands (Figure 2.2.1) (Smellie, 2001). The cause
of the formation of the Bransfield Trench was the subduction of the Phoenix Plate under the
Antarctic Plate during the Mesozoic-Cenozoic period (Dalziel, 1984); this movement is still
ongoing, although at a very low rate (between 2.5 and 7.5 mm/y over the last 2 million years,
according to Henriet (Henriet et al., 1992)). Although the relative ages of the island's
individual volcanic units are known, there is a lack of information on their absolute ages.
However, an analysis of paleomagnetic data shows that the rocks that have emerged have
normal magnetic polarity, which means they are less than 780000 years old, when the last
magnetic pole reversal occurred (Valencio et al., 1979, Baraldo et al., 2003).

.+ 90OUTH AMERICAN PLATE

ANTARCTIC
PLATE
South Shetland Trench
N K WEDDELL PLATE
{o
A x ¥ 600 km

Figure 2.2.1: Bransfield Strait (source: Geyer et al., 2008)

Over the years, the island has experienced many eruptions, including one that is estimated to
have erupted 60 km? of magma (Geyer et al., 2008) and led to the collapse of the caldera (in
8300 BC, as assessed by Olivia Urcia et al. (Oliva-Urcia et al., 2016)); for this reason, its
eruptions are divided into pre-caldera and post-caldera.

The pre-caldera period began with the emission of tephra from multiple centers, possibly due
to subaqueous fire fountains during shoaling; after which the activity became subaerial
effusive or weakly pyroclastic (Strombolian and Hawaiian), leading to the formation of the
basaltic shield and subsequently resulting in the great eruption that formed the caldera, then
followed by smaller successive collapses (Smellie, 2001).

The post-caldera period comprises the most recent eruptions and is characterized by small-
volume mainly phreatomagmatic eruptions, with varying degrees of explosiveness depending
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on the amount of water interacting with the magma and its source (aquifer, sea, ice melting)
(Geyer et al., 2008), located within the caldera but also along its structural boundaries. The
magmas that the island erupts are sodic, while the erupted rocks have a wide range of
composition, ranging from basalt to dacite, but they are mainly basaltic andesites (Smellie,
2001).

Speaking of the geology of the island, according to a study conducted by Luzdén et al. (Luzén
et al., 2011), the volcano is composed of layers of pyroclastic deposits and loose sediments
that extend to a depth of 400 m, with different degrees of compaction. In particular, two
layers with thicknesses of approximately 100 and 300 m can be differentiated on the basis of
the different propagation velocities of s-waves within them, of which the second one is the
most consolidated. These are deposits resulting from pre- and post-caldera eruptions that
have then been subjected to erosion, sedimentation and snow cycles.

On this basis, the deposits on the island are divided into two main groups: The Port Foster
Group, which comprises pre-caldera deposits, and the Mount Pond Group, which comprises
post-caldera deposits (Smellie et al., 2002). The Port Foster Group includes the Fumarole Bay,
Basaltic Shield and Outer Coast Tuff formations, which are only visible in the outer coast cliffs
and in some parts of the inner wall of the caldera, because they are covered by post-caldera
materials, and consist mainly of mafic rocks formed by submarine Strombolian deposits,
submarine lavas and deposits from currents of pyroclastic density. More specifically, Smellie
(Smellie et al., 2002) states that Fumarole Bay is the result of a predominantly subaqueous
eruptive activity, generated by several centers, the Basaltic Shield is composed of subaerial
effusive and minor pyroclastic material, and the Outer Coast Tuff is the result of a major
eruption immediately preceding, and probably related to, the caldera collapse. Other sources,
such as Marti et al. (Marti et al., 2013), state that the caldera collapse occurred prior to the
deposition of the Outer Coast Tuff, which they classify as a syn-caldera collapse deposit. These
units would therefore testify the progressive evolution from subaqueous to subaerial
volcanism (Oliva-Urcia et al., 2016).

The Mount Pond Group comprises the Baily Head, Pendulum Cove and Stonethrow Ridge
formations and consists of small volume phreatomagmatic eruption deposits, such as
hydrovolcanic tephra, lavas, tuff cones and maar deposits, and deposits from magmatic
eruptions, such as strombolian scoriae and lavas, of basaltic to dacitic composition, erupted
from different centers (Smellie et al., 2002).

Figure 2.2.2 shows a simplified geological map of the island, drawn up by Smellie (Smellie,
2001), for a more complete map please refer to the appendix, where the geological and
geomorphological maps drawn up by Ldpez-Martinez et al. in 2000 are shown.
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Figure 2.2.2: Geologic map (source: Smellie, 2001)
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2.3 METEOROLOGY

The climate of Deception Island is polar maritime, and annual temperatures move in the range
-28 °C +11 °C, with an average of -3 °C, although locally 70 °C can be reached in proximity of
fumaroles and hot springs [10].

For the study of the meteorology, the reference used was the Antarctic Campaign of the
Spanish Land Army (Campafia Antdrtica del Ejército de Tierra, 2019-2020). In particular, the
period 12.01.2020-09.02.2020 was considered, which includes all the dates of the
downloaded images, from the first one of Sentinel 2, on 19.01.2020, to the one of Landsat 8
used as ground truth, on 09.02.2020, and also covers the week before the first image, for a
more complete analysis.

Examining the data provided, it emerges that the temperature was always above 1 °C,
occurring seven times, while on the majority of days (sixteen) the minimum temperature was
2 °C, reaching 3 °C (six days) on the hottest days.

Speaking of the maximum temperatures, in most cases they reached 4 °C (sixteen days),
peaking at 5 °C (eight days) on the hottest days and falling to 2 °C on the two coldest days.
There was no snowfall throughout the period, and the days were always cloudy, often
accompanied by rainfalls and more frequently by sunshine.

DATE Weather conditions Tmin (°C) | T max (°C)
12/01/2020 |Cloudy with light rain during a time slot 3 5
13/01/2020 |Cloudy 3 5
14/01/2020 |Cloudy 3 5
15/01/2020 |Cloudy and partly sunny 2 4
16/01/2020 |Cloudy and partly sunny 1 4
17/01/2020 |Cloudy 1 3
18/01/2020 | Mostly sunny 1 3
19/01/2020 | Partly cloudy and partly sunny 1 3
20/01/2020 | Mostly sunny 1 4
21/01/2020 | Cloudy and partly sunny 2 4
22/01/2020 |Cloudy and partly rainy 2 4
23/01/2020 | Cloudy, with light rain during two time slots 3 5
24/01/2020 | Cloudy and rainy 3 5
25/01/2020 | Cloudy and partly rainy 2 4
26/01/2020 | Cloudy and rainy 2 4
27/01/2020 | Cloudy but mostly rainy 2 5
28/01/2020 | Cloudy but mostly rainy 2 5
29/01/2020 | Cloudy and rainy 2 4
30/01/2020 | Cloudy with light rain during a time slot 2 4
31/01/2020 | Cloudy with light rain during a time slot 2 4
01/02/2020 | Mostly rainy 2 4
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02/02/2020 | Cloudy and rainy 2 4
03/02/2020 | Partly cloudy and partly sunny, with light rain during a time slot |2 4
04/02/2020 | Mostly sunny 1 2
05/02/2020 | Mostly sunny 1 2
06/02/2020 | Cloudy and partly sunny 3 5
07/02/2020 | Partly sunny 2 4
08/02/2020 | Partly sunny 2 4
09/02/2020 | Mostly sunny 2 4
Table 2.3.1: metereological data
Temperatures per date
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Figure 2.3.1: temperatures graph with lines in correspondence with the dates in which the
images used were acquired

To consult the data divided by time slot, reference can be made to the tables provided by the

Diary of Operations of the Spanish Land Army’s Antarctic Campaign (Campafia Antartica del
Ejército de Tierra, 2019-2020), shown in the Appendix.
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3. MATERIAL

The images analyzed for the study belong to the period of the Antarctic summer and were
acquired by the Sentinel 1 and Sentinel 2 satellites of the European Space Agency (ESA), on
the dates of the 19" (optical image) and 20" (SAR image) of January 2020, respectively. The
sources used as ground truth were an image acquired by Landsat 8, a joint NASA/ United
States Geological Survey (USGS) satellite, for snow/ ice and the 2005 topographic map
developed by the Geographic Centre of the Spanish Army for lakes and bare soil/ rock. A brief
description of the 3 mentioned satellites and the topographic map is given below.

The Sentinel images were downloaded from ESA's Copernicus Open Access Hub (formerly
known as Sentinels Scientific Data Hub) [9] and the Landsat images from the USGS Earth
Explorer [23].

A brief description of the three satellites is given below and the used images are also specified
with more detail.

Sentinel 1

Sentinel 1 refers to a mission comprising two satellites, Sentinel 1A and Sentinel 1B, both
launched by the European Space Agency on the 3™ of April 2014 and the 25% of April 2016,
respectively, for the Copernicus initiative, taken jointly with the European Commission (EC).
These are two C-band synthetic aperture radars (5.6 cm wavelength) capable of providing a
ground track repetition of 12 days for the single satellite and 6 for the two. They can provide
single or dual polarization and have four possible acquisition modes, shown in Figure 3.1:
Stripmap (SM), in continuity with the ERS and Envisat missions, Interferometric Wide swath
(IW), which is the default mode for ground-based acquisitions, Extra-Wide swath (EW), used
instead for maritime, glacial and polar areas, and Wave mode (WV), which aims to determine
the direction, wavelength and height of ocean waves.
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Figure 3.1: Sentinel 1 acquisition modes. Source: [12]

In particular, the image used was acquired in IW mode, which consists of a data acquisition
with a swath of 250 km operated by the TOPSAR (Terrain Observation with Progressive Scans
SAR), an instrument that works by moving the acquisition beam cyclically between several
adjacent sub-swaths. This allows to provide large swaths with a reduced scalloping effect and
the result is one image for each sub-swath and one for each polarisation channel, for a total
of three images in single polarisation or six in dual polarisation, which can then be merged
into a single image covering the entire area. To guarantee this possibility, each sub-swath has
a small overlap area of about 2km.

The images acquired are open source and the processing levels provided are the followings:
- Level 0, this is the raw and compressed SAR product, in order to be used it needs to be
decompressed and processed using a SAR processor;

- Level 1, which in turn is divided into two types of products: Single Look Complex (SLC), which
consist of complex samples that preserve phase information and are characterised by the
presence of a single look in each dimension that exploits the full bandwidth of the
transmission signal, and Ground Range Detected (GRD), consisting of SAR data detected,
multi-looked and projected to ground level using a ground ellipsoid model, but which lose
phase information. GRD products can have three different resolutions, depending on the
number of multi-looks performed: Full Resolution (FR), High Resolution (HR) and Medium
Resolution (MR).

- Level 2, which contains three components: the Ocean Swell spectra (OSW), which is a two-
dimensional spectrum of waves on the ocean surface, and includes an estimate of speed and
wind, the Ocean Wind Fields (OWI), which is a grid with estimates of wind speed and direction
at 10 m above the ground, derived from GRD images, and the Surface Radial Velocities (RVL),
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which indicates the difference between the Doppler grid measured in level 2 and the
geometric Doppler calculated in level 1.

For more information on this subject, please refer to [13], the official source from which the
above information was taken.

The image used for the study, shown in Figure 3.2, is the
“S1A_IW_GRDH_1SSH_20200120T081742_20200120T081807_030881_038B41_9A9B”, was
acquired by the Sentinel 1A (S1A) satellite on 20-01-2020 from 08:17:42 to 08:18:07, with an
Interferometric Wide Swath Mode (IW), in a downward direction along orbit 9. The product
is level 1 and Ground Range, Multi-Look, Detected (GRD), high resolution (H) and has single
HH polarisation. This information was retrieved from the metadata of the product and from
the interpretation of its nomenclature with the (ESA, 2016).

Figure 3.2: Original Sentinel 1 image, the study area is circumscribed by the red rectangle

Sentinel 2

Sentinel 2 is the mission comprising the Sentinel 2A and Sentinel 2B satellites, launched by
the European Space Agency on the 23™ of June 2015 and on the 7™ of March 2017,
respectively, for the Copernicus initiative. The two satellites travel on the same polar and sun-
synchronous orbit, with a relative phase difference of 180° the one from the other. The revisit
time that they are able to provide is 10 days at the equator for the single satellite and 5 days
for the two. Each of the two satellites is equipped with a Multi-Spectral Instrument for the
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acquisition of the images which is able to acquire 13 spectral bands, characterized by three
possible spatial resolutions: 10 m (bands B2, B3, B4 and B8), 20 m (bands B5, B6, B7, B8A, B11
and B12) and 60 m (bands B1, B9 and B10), and by the wavelengths reported in Figures 3.3,
3.4 and 3.5 (source: [15]).
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Figure 3.3: Sentinel 2 10 m spatial resolution bands: B2 (490 nm), B3 (560 nm), B4 (665 nm)

and B8 (842 nm). Source: [15]
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Figure 3.4: Sentinel 2 20 m spatial resolution bands: B5 (705 nm), B6 (740 nm), B7 (783 nm),
B8a (865 nm), B11 (1610 nm) and B12 (2190 nm). Source: [15]

NR

Figure 3.5: Sentinel 2 60 m spatial resolution bands: B1 (443 nm), B9 (940 nm) and B10
(1375 nm). Source: [15]
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For the purposes of this study, not all bands were useful and in particular bands 1, 9 and 10
were excluded, because the first two bands both contain measurements that are not in our
interest: the first is related to aerosol monitoring (ESA, 2015) and the second indicates an
absorption value related to the water vapour content in the atmosphere [14]. As for band 10,
it is the one related to cirrus and is already excluded from level 2A products as it does not
contain any information related to surfaces.

Regarding the processing levels of the provided products, there are two levels which are open
to the public: level 1C, which is characterised by Top-of-Atmosphere reflectance values, and
level 2A, which provides Bottom-of-Atmosphere reflectance values.

The official source for the above information is [16].

The image used for the study, shown in Figure 3.6, is the
“S2B_MSIL2A_20200119T131859_N0213_R095_T20EPR_20200119T145349” and  was
acquired by the Sentinel 2B (S2B) satellite with the Multi-Spectral Instrument (MSI) on 19-01-
2020 at 13:18:59 in a downward direction along orbit 95 in tile number 20. The product is
level 2A and was generated on the same date at 14:53:49, and has a cloud coverage of
38.88%. This information was retrieved from the metadata of the product and from the
interpretation of its nomenclature with the Products Specification Document of Sentinel 2
(ESA, 2018).
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Figure 3.6: Sentinel 2 image (RGB combination: B4-B3-B2), the study area is framed with a
red rectangle

Landsat 8

Landsat 8 was launched on the 11" of February 2013 from NASA's Vandenberg Air Force Base
in California and moves in a near-polar orbit, so its temporal resolution is of 16 days. It has
two instruments on board: the Operational Land Imager (OLI), which measures the visible,
near-infrared and short-wave infrared in nine different bands, including one panchromatic
band, and the Thermal Infrared Sensor (TIRS), which measures the temperature of the Earth's
surface in two thermal bands. Speaking of the spatial resolution, shown in Figure 3.8, it is
equal to 30 for all of the bands except for the panchromatic band (band 8), where it is equal
to 15 m, and for the two thermal infrared bands, acquired by the TIRS, where it is equal to
100. Figure 3.7 shows the spectral resolutions of the different bands of Landsat 8 compared
with those of Landsat 7.
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Figure 3.7: Comparison between Landsat 8 and Landsat 7 spectral resolutions. Source: [20]

Bands \A{avelength Resolution
(micrometers) (meters)
Band 1 - Coastal aerosol 0.43-0.45 30
Band 2 - Blue 0.45-0.51 30
Band 3 - Green 0.53-0.59 30
Band 4 - Red 0.64-0.67 30
Band 5 - Near Infrared (NIR) 0.85-0.88 30
Band 6 - SWIR 1 1.57-1.65 30
Band 7 - SWIR 2 2.11-2.29 30
Band 8 - Panchromatic 0.50-0.68 15
Band 9 - Cirrus 1.36-1.38 30
Band 10 - Thermal Infrared (TIRS) 1 10.6-11.19 100
Band 11 - Thermal Infrared (TIRS) 2 11.50-12.51 100

Figure 3.8: Landsat 8 bands spatial and spectral resolution. Source: [22]

Again, there are two processing levels available for public use: one subjected to atmospheric
correction (Level 2) and one not (Level 1).

The data acquired by Landsat are then divided into two collections: Collection 1, which
contains all the Level 1 data acquired from 1972 to the present from Landsat 1-8, and
Collection 2, which is a reprocessing of the Level 1 images that aims to bring improvements
such as greater accuracy in geolocation, and includes the Level 2 products, which provide the
reflectance and surface temperature of the scenes acquired from 1982 to the present.
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The sources from which the above information was drawn were [21] and [24].

For the purposes of the study, the ground truth of the snow was taken from the Pixel Quality
Assessment band of the image “LCO8 L2SR_219104_ 20200209 20201016_02_T2”, acquired
by the Landsat 8 satellite on 09-02-2020 from 13:15:19 to 13:15:51 along orbit 219 referred
to the Worldwide Reference System-2 (WRS-2) Path of the product and orbit 104 referred to
the WRS-2 row of the product. The image processed at level 2 on 16-10-2020 was chosen and
the scene is 20.73% covered by clouds but only 4.65% of it is on dry land. These data were
retrieved from the product metadata and interpreted using the Landsat 8 Collection 2 (C2)
Level 2 Science Product (L2SP) Guide (USGS, 2020). The image is shown in Figure 3.9, while,
in order to see its Pixel QA band, please refer to chapter 4.3 (Figure 4.3.5).

Figure 3.9: Landsat 8 image, the study area is framed with the red rectangle

Topographic map

The topographic map used as reference was produced by the Geographic Centre of the
Spanish Army in collaboration with the University of Cadiz, and the edition used is the second,
made in 2005, shown in Figure 3.10. The map is at a scale of 1:25000 and is based on field
surveys carried out by the Geographic Centre of the Army in the Antarctic summer of 1992-
1993, thus updating the aerial survey carried out in 1986, and on the coastline of an image
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acquired by the QuickBird satellite in 2003. For more information on the other sources that
underlie the map (for example bathymetric data, location of fauna, etc.), please refer to the
map, which is included in the Appendix.

This map was then redrawn with Microstation software by a research group from the
University of Cadiz and it is from these dgn files that the lakes were extracted when preparing
the ground truth, as will be further explained in chapter 4.3.

Furthermore, the contour lines indicated in the map were used by the same university to form
the DTM of the island, which will be used for the geometric correction of the SAR image, as
explained in chapter 4.1.1. Finally, the contour line 0 is the one they used to create the
shapefile of the coastline, which was later used to clip the images.

Softwares used

For an initial processing, such as coarsely cropping the area of interest, or, in the case of the
SAR image, calibrating, georeferencing, applying speckle reduction filters and converting the
bandwidth to decibels, ESA's SNAP software, version 7.0 [17], was used. Then the images
were exported in GeoTIFF format

The work continued with the software ArcGIS, version 10.7 [2], and ArcGIS Pro, version 2.4
[6], where a more precise clip of the contour of the island was applied, thanks to a shapefile
of the coastline, and it was also possible to carry out the different operations between the
bands to generate the necessary indices, as well as the classification and segmentation
operations and all of the steps that they involve. In the specific case of the classification of
the optical image based on the application of subsequent indices, moreover, the limits
capable of dividing their histograms in such a way as to separate the different land covers
were identified using the ENVI software, version 5.1 [18].
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Figure 3.10: Topographic map of 2005. Source: Spanish Army Cartographic Centre.
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4. METHODS

The aim of the study is to compare the classification of a SAR image with that of an optical
image taken in close dates (so the results should be similar); to do this, therefore, the work
was divided into three main phases: preparation of the images, classification, quantification
of the goodness of the classified images (through comparison with a ground truth by means
of confusion matrices).

As far as the preparation phase is concerned, it began for both of the images with the
software SNAP, where they were subjected to a first crop, by selecting a rectangle (with the
coordinates shown in Figure 4.1) that included the area of the island: the original images in
fact included a much larger area and cropping was the first necessary operation, in order not
to overload the next ones.

Pixel Coordinates Geo Coordinates

North latitude bound: -62.957 C
West longitude bound: -60.233
South latitude bound: -62.942 {
East longitude bound: -61.073 °

Figure 4.1: coordinates used to crop the area

At this point, the optical image was ready for the export of each band in GeoTIFF format,
while the SAR image had to firstly undergo the operations of calibration, speckle filtering and
geometric correction and georeferencing, which will be described in more detail in sub-
chapter 4.1.1.

Once the ArcGlIS software was opened, the first thing to be done was to clip the various bands
of the optical image and the SAR image with the shapefile of the island's coastline (Figure 4.2),
obtained from the 2005 topographic map of the island, as explained in Chapter 3.
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Figure 4.2: shapefile of the coastline

The bands of the optical image which had a resolution of less than 10x10 were then resampled
to this resolution and put together with the others into a stack, as will be explained in more
detail in sub-chapter 4.2.1.

At this point, both the optical and SAR images were ready to be subjected to classification,
with the aim of identifying the different ground covers of the island.

The classifications made were both unsupervised and supervised for both, and in addition to
these, a hierarchical classification based on the selection of limits in the histograms of
different indices was also carried out for the optical image. A classification based on limits to
be selected in the histograms was not possible for the SAR image, even after the repeated
application of the Lee, Lee Sigma and Refined Lee filters, which will be discussed later, as
there were no easily divisible distributions. Figure 4.3 shows the histograms of the SAR image
with the different filter applications to demonstrate what has just been said.
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a. Histogram of SAR image with an application of
Median filter

Input Histogram

—7.81 1C.66

b. Histogram of SAR image with three applications

of Lee filter

Input Histogram

—5.96 10.64

c. Histogram of SAR image with three applications

of Lee Sigma filter

Input Histogram

d. Histogram of SAR image with three applications

of Refined Lee filter

Input Histogram

Figure 4.3: Histograms of SAR image with applications of different filters

In order to classify an image in ArcGIS Pro, the tool to use is the Classification Wizard, which

proposes 8 guided steps that will be illustrated below; the individual decisions which were

made will be specified in sub-chapters 4.1 and 4.2.
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Step 1: Configure

Image Classification Wizard ?-AX
Configure

Classification Method

Supervised

Classification Type
Object based

Classification Schema

Output Location

v Optional
Segmented Image
+
Training Samples
+
Reference Dataset
+

In this first step you set which type of classification we want to operate, object based or pixel
based and supervised or unsupervised. You specify which schema you want to use for the
classification, and the options are to use a schema that you have, to generate it from training
samples (in the case of supervised classification) or from a classified image or finally to use
the default schema provided by ArcGIS, based on the USA National Land Cover Database of
2011. The latter is the result of a mapping operation of the 48 southern United States, Hawaii,
Alaska and Puerto Rico by the Multi-Resolution Land Characteristics (MRLC) Consortium,
consisting of federal agencies cooperating to generate land cover information on a national
scale (https://www.mrlc.gov).

Other optional inputs are a segmented image (if an object-based classification is to be
performed), training samples (if a supervised classification is chosen) and a reference dataset,
which is then compared to the classified image to check how good the latter is.
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Step 2: Segmentation

Image Classification Wizard X

Y YoleJlels!
Segmentation

Spectral detail
i 0,00

L

Spatial detail
i

[
41k

Minimurn segrment size in pixels

i 1

Ll

[ ] show Segment Boundaries Only

Preview < Previous

| Next »

In this step, if an object-based classification was chosen and no segmented image was put as
input in Step 1, a segmented image is generated. In this case, this step was not used as the
necessary segmented images had previously been generated using the Segment Mean Shift
command, as will be explained later in sub-chapter 4.1. The function of the various modifiable
parameters, which are the same as those shown in the figure, will therefore be described in
detail in the just mentioned sub-chapter.
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Step 3: Training Samples Manager

Image Classification Wizard Ty IX

20000
Training Samples Manager

B | + .
4 Mew Schema
M rocky soil
M =now/ ice
W water
i wl
‘ Class # Samples Pixels (%)
B rock) soil 40 66,53
M :now/ ice 28 25,74
W water 4 772
< Previous Mext =

This step is only active if a supervised classification is carried out and it is the one regarding
the choice of the training samples to be used, showing the number of samples selected for
each class and the corresponding percentage in area with respect to the total. In addition, if
you have already previously selected training samples, it is here that you can modify them
before starting the classification, for example by selecting new pixels or modifying the classes,
incorporating one with another, adding new ones or subdividing them into subclasses.
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Step 4: Train

Image Classification Wizard TR Xx
L X Jele
Train
Classifier
Random Trees -

Maximum Mumber of Trees
1

Maxirmum Tree Depth
Maximum MNumber of Samples per Class

P
u

¥ Segment Attributes

[ ] Active chromaticity coler
[ | Mean digital number

|:| Standard deviation

[ ] Count of pixels

] Compactness

[ | Rectangularity

< Previous | Run

This step involves selecting a specific classifier if the supervised mode has been selected in
Step 1 (if the unsupervised mode has been selected the choice will be univocal since there is
only one classifier of this type: the ISO cluster), and setting its parameters, as well as the
segment attributes to be taken into account at the time of classification if it is object-based.
The case of the Random Trees classifier is given as an example, but the different options will
be explored in more detail in sub-chapters 4.1 and 4.2. This step generates a preview of how
the classified image will be; it is not saved in the geodatabase and it is used just to check
whether the result obtained is the desired one, otherwise it is possible to change the
parameters to set and the choice of segment attributes. When you are satisfied with your
choices, you can proceed to the next step.
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Step 5: Classify

Image Classification Wizard T+ x

0000
Classify

Output Classified Dataset

Use Classifier From (optional)
| -

Output Classifier Definition File (.ecd) (opticnal)

< Previous

It is now that the classified image is generated; the two optional lines that can be seen in the
image refer in the first case to the choice of which of the various previews previously
generated you want to use (by default the last one which was created is considered), while
the second allows you to save, in addition to the image, an .ecd file, which contains all the
necessary information to operate an ESRI classification.

38



Step 6: Merge classes

Image Classification Wizard 7 ~ ¥ X

992000
Merge Classes

Old Class Mew Class
B rock/ soil M rock) soil
B snow/ ice M snow/ice
W water M water
< Previous Mext =

In this Step, if many classes have been generated in the previous one, it is possible to merge
them (for example, if the vegetation was previously divided into many different classes, here
it is possible to merge them into a single one). This tool was never really useful for this study
as the classes generated were already few and very different the one from the other, so
unmergeable.
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Step 7: Accuracy Assessment

Image Classification Wizard Ty Xx
1 1 1 10
Accuracy Assessment

Mumber of Random Points
Sampling Strategy
Stratified Random -

Output Confusion Matrix

< Previous

If a Reference Dataset had been supplied in Step 1, this dialogue box is activated to generate
the confusion matrix, setting the number of points to be used and the criteria for distributing
them in the space. In this case, this step was actually replaced by the use of individual ArcMap
commands, which will be described in more detail in sub-chapter 4.4, since at the time that
the classified images were produced, ground truth was not yet available.
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Step 8: Reclassify

Image Classification Wizard 70X
920000+ 0
Reclassifier
F
Edit Type

C@ Reclassify an chject
[ Reclassify within a region

Remap Classes

Current Class Ay v
Mew Class M rock/ soil v
Edits Log

Type Use ld Class Mew Class

Final Classified Dataset

< Previous Run

Cata.. Geo.. Sym.. |Ima.. | Ele.. Atiri.. Exp..

This command is used, if small point areas have been misclassified, to assign them to the class
they should belong to. It is possible to draw a polygon (Reclassify within a region), so the area
it encloses will be reclassified, or select a segment (Reclassify an object) to reclassify.

It is a useful operation if there are small errors that can be corrected in this quick way instead
of reclassifying the whole image, however, it has never been used, in order to see the
behavior of the different classifiers and especially because, in the case of the SAR image
classifications, the errors were too many to be corrected in this way.
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4.1 SAR

First of all, the SAR image was subjected to preparation operations, for which the SNAP
software was used. These were in particular: subset, calibration, filtering, georeferencing and
geometric correction and finally the conversion of the band into decibels. The image was then
segmented and classified, firstly in an unsupervised manner and then in a supervised one;
both of them were object-based.

The reason why an object-based classification was chosen instead of a pixel-based one is that
the latter only takes into account the individual characteristics of the pixel in order to assign
it to a certain class, while the former groups neighboring pixels on the basis of their similarity,
and since SAR images are affected by speckle, a pixel-based classification would have been
too affected by this noise, and the final image would have presented a 'salt and pepper' effect,
as Dewi (Dewi et al., 2019) states.

Seeing that in the image resulting from the unsupervised classification there was a strong
noise due to the speckle effect, to overcome the problem, as proposed by Lee (Lee et al.,
1989), the Lee filter was applied multiple times to the original image: this would reduce the
noise and accentuate the peaks in the histogram so as to make segmentation by thresholds
easier. Even though this segmentation was not the one used in this case, the idea was that
applying the Lee filter multiple times would still help in segmenting the image and decrease
the possibility of misclassifying individual segments.

What was done was then to repeat the same process of segmentation and unsupervised
classification with three images to which the Lee filter, the Lee Sigma filter and the Refined
Lee filter had been applied three times respectively. Then the one that gave the best result
was chosen and classified in a supervised manner with the three classifiers available on
ArcGIS: Maximum Likelihood, Random Trees and Support Vector Machine.

The steps followed are illustrated in the flowchart in Figure 4.1.1 and will now be explained
in detail in sub-chapters 4.1.1, 4.1.2,4.1.3 and 4.1.4.

42



Sentinel 1
image
SUBSET

x l ¢ ¢

MEDIAN LEE LEE SIGMA REFINED LEE
FILTER FILTER X3 FILTER X3 FILTER X3
GEOREFERENCING + TERRAIN GEOREFERENCING + TERRAIN GEOREFERENCING + TERRAIN GEOREFERENCING + TERRAIN
CORRECTION CORRECTION CORRECTION CORRECTION

CONVERSION IN dB

CONVERSION IN dB

CONVERSION IN dB CONVERSION IN dB

cup

SEGMENTATION

SEGMENTATION

¢ ¢ UNSUPERVISED UNSUPERVISED UNSUPERVISED
UNSUPERVISED SELECTION OF CLASSIFICATION CLASSIFICATION CLASSIFICATION
CLASSIFICATION TRAINING SAMPLES
CONFUSION i i
MATRIX SELECTION
RANDOM TREES MAXIMUM SUPPORT LEE REFINED LEE
CLASSIFICATION LIKELIHOOD VECTOR OF THE
tnd l CLASSIFICATION MACHINE BEST ONE
CLASSIFICATION
CONFUSION l
MATRIX CONFUSION l
MATRIX CONFUSION SELECTION OF
MATRIX TRAINING SAMPLES
End

End i ¢ l
RANDOM TREES MAXIMUM SUPPORT
CLASSIFICATION LIKELIHOOD VECTOR
L CLASSIFICATION MACHINE

CLASSIFICATION
CONFUSION l l
MATRIX CONFUSION
MATRIX CONFUSION
MATRIX
End L
End
End

Figure 4.1.1: Flowchart of SAR image
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4.1.1 PREPARATION OF THE IMAGE

The SAR image preparation operations prior to segmentation and subsequent classification
were almost completely carried out using the software SNAP, with the exception of the last
clip with the shapefile of the coastline, which instead took place in ArcGIS. They will now be
illustrated, following the chronological order in which they occurred.

SUBSET

The subset operation is necessary because the downloaded image includes an area much
larger than just the island of interest; it must also be done in order to lighten the subsequent
operations.

To do this, the Subset command belonging to SNAP's Raster package was used; it allows you
to enter the geographical or pixel coordinates of the crop you want to make, as well as the
bands you want to take into account during the operation. The coordinates used are shown
in Figure 4.1.1 and the bands considered were both amplitude and intensity. The other two
windows that can be seen in the figure relate to other data included in the folder in which the
image is contained: the metadata and the tie-point grids, images that indicate the trend of
latitude, longitude, incidence and elevation angles and the slant range time. In both the
windows it was set to consider everything.

A preview of the area that will be cropped is indicated with a blue rectangle on the original
image in the command window.

@ [ ] Specify Product Subset

Band Subset  Tie-Point Grid Subset = Metadata Subset

Pixel Coordinates

North latitude bound: -62.957
West longitude bound: -60.233 2
South latitude bound: -62.942 C
East longitude bound: -61.073
Scene step X: 15
Scene step Y: 15
Subset scene width: 3822.0
Subset scene height: 1891.0
i Source scene width: 25223
| Source scene height: 16899
Use Preview Fix full width
Fix full height

Estimated, raw storage size: 13.8M

| - Cancel Help
Figure 4.1.1.1: Subset
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CALIBRATION

In order to normalize the intensity of the pixels it is necessary to calibrate the image; in order
to do this the Calibrate command of the Radar package was used. This command allows you
to choose which of the polarizations to use in case of a multipolarized image, but in this case
there was only one polarization, the HH. It is then possible to choose whether to output a
sigma 0, gamma 0 or beta 0 band, where the difference lies in how the values are normalized:
in the case of sigma 0 they are normalized using the ground area, in the case of gamma 0
using the illuminated area projected in the look direction and instead with beta 0 they are
modulated using the tangent of the local angle of incidence. The choice was sigma 0.

Calibration

w L

File Help

1/0 Parameters

Polarisations: HH

Save as complex output
£2 Output sigma0 band

Output gamma0 band

Output beta0 band

. Run Close
Figure 4.1.1.2: Calibration

FILTER

At this point, in order to reduce the speckle noise characteristic of this type of image, various
filters were used: firstly, all of the filters proposed by SNAP were tried, and the best result
seemed to be given by the Median filter, so it was applied, then, as suggested by Lee (Lee et
al., 1989), we opted for a multiple application of the Lee filter, of which we also tried the two
modified versions present in SNAP: the Lee Sigma and the Refined Lee.

The command to be used to do this is the Single Product Speckle Filter, from the Radar
package (Figure 4.1.1.3), in which it is possible to choose between the available filters to be
applied and then set the filter parameters such as the dimensions of the filtering window,
which has always been set at 3x3, with the exception of the Refined Lee filter, for which it
was not possible to define it, as it always operates with a 7x7 window.

In the case of the Lee Sigma filter, it was also possible to choose the sigma value, which was
set at 0.9.
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r n A 0
@ [ ] Single Product Speckle Filter

File Help

1/O Parameters

Sigma0_HH
Source Bands:
Filter: Median

Filter Size X (odd number): 3

Filter Size Y (odd number): 3

- Close
Figure 4.1.1.3: Single Product Speckle Filter

J

GEOREFERENCING AND GEOMETRIC CORRECTION

For the georeferencing and geometric correction of the image, the Range-Doppler Terrain
Correction command of the Radar package was used, using the DTM obtained from the 2005
topographic map cited in chapter 3 and setting the UTM zone 20 South, WGS84 as the
reference system. As far as the DTM resampling method is concerned, bilinear interpolation
was chosen. In Figure 4.1.1.4 it is possible to see how the various parameters of the command
have been set.
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Source Bands: igma0_HH

|

Digital Elevation Model: External DEM B

External DEM: \Decepcion/UCA_MDT_02m_lslaDecepcion.tif

External DEM No Data Value: 0.0

Apply Earth Gravitational Model
DEM Resampling Method: BILINEAR_INTERPOLATION

&

Image Resampling Method: BILINEAR_INTERPOLATION e
Source GR Pixel Spacings (az x rg): 10.0(m) x 10.0(m)
Pixel Spacing (m): 10.0
Pixel Spacing (deg): 8.983152841195215E-5
Map Projection: UTM Zone 20, South / World Geodetic System 1984

Mask out areas without elevation Output complex data

Output bands for:

Selected source band DEM Latitude & Longitude

Incidence angle from ellipsoid Local incidence angle Projected local incidence angle

Apply radiometric normalization

Save Sigma0 band Use projected local incidence angle from DEM

<>

Save Gamma0 band Use projected local incidence angle from DEM

Save Beta0 band
Auxiliary File (ASAR only): Latest Auxiliary File

Figure 4.1.1.4: Range-Doppler Terrain Correction

CONVERSION OF THE BAND TO DECIBELS

The last operation is to convert the band to dB, which allows us to obtain values that are much
easier to work with, and for this we used the special SNAP Linear to/from dB command (Figure
4.1.1.5). Figures 4.1.1.6 and 4.1.1.7 show the histograms of the band before and after the
conversion, to show how the values change.

_Jlsioma0_e

Add Elevation Band
Band Maths...
Convert Band
Filtered Band...

Linear to/from dB

Export Transect Pixels

Open Image Window
Add Land Cover Band

C #X
i s

Copy

Basic © Paste 8V
Delete (3
Properties

Figure 4.1.1.5: Linear to/ from dB
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Histogram for Sigma0_HH
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Figure 4.1.1.6: Histogram of the band before the conversion to dB
Histogram for Sigma0_HH_db
-27’.5 -25.0 -22’.5 -26.0 -1}.5 -1%.0 -lé.S -10.0 -7‘.5 -5‘.0 -2’.5 0:0 2:5 5:0 7:5 16.0 12’.5

Sigma0_HH_db in intensity_db

Figure 4.1.1.7: Histogram of the band after the conversion to dB

48




EXPORT IN GEOTIFF FORMAT
The last operation carried out in SNAP was to export the band in GeoTIFF format, so that the
segmentation and classification work could be continued in ArcGlIS.

CLIPPING

The preparation of the SAR image concludes with its clipping with the shapefile of the island's
coastline, obtained from the 2005 topographic map, as already indicated above. The
command used in this case was the Clip, which belongs to the Raster section of the Data
Management Tools, shown in Figure 4.1.1.8. It is sufficient to place the image to be clipped
as input, select an area by entering coordinates or insert a shapefile (as in this case) and,
optionally, indicate which No Data value is to be placed on the final image, which has been
set equal to -9999.

| #, clip - O ¥
Input Raster
| 51A_IW_GRDH_155H_20200120T081742_202001 ZDTDEﬂ ]
Output Extent (optional)
|BJ:'-.S_CDESt“r‘IE_high_rES_FID|}ngﬂ_C_|S|EDECEFICiDr1 ﬂ B
Rectangle

Y Maximum |

| B024229,993700 |

¥ Minirnurn ¥ Maximum

£13962,130700 | | §27010,337400 |

' Minirnurm

| 3009293,972100 Clear

Lge Input Features for Clipping Geometry (optional)

Output Raster Dataset
| D \Tesi\Copernicus\Sentinel 1_IslaDeceptionArcGis 'nE.ﬁ.R.gdt| [,'—_1';-

MoData Value (optional)
| 9999 |

Maintain Clipping Extent (optional)

Cancel Environments. .. Show Help ==

Figure 4.1.1.8 Clip
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4.1.2 SEGMENTATION

In order to carry out an object-based classification, it is necessary to segment the image, an
operation that can be done using the Segment Mean Shift command of the Spatial Analyst
tools of ArcGIS. This command requires a raster image as input and allows you to change the
spectral detail, the spatial detail, the minimum segment size in pixels and the bands to be
used to segment the image (Figure 4.1.2.1). In particular, spectral detail indicates how much
importance is given to the spectral differences between cells, and therefore a high spectral
detail means placing pixels with slightly different spectral characteristics in different
segments; while spatial detail indicates how important the proximity between the elements
constituting the image is, so that larger values lead to a more fragmented image while smaller
values lead to a more homogeneous image. Both spatial detail and spectral detail move in a
range from 1 to 20.

#., Segment Mean Shift — O >
Input Raster
| Clip_20200120_Lee3 | &
Qutput Raster Dataset

| 0. YTesi\Copernicus\Sentinel 2_IslaDeceptioniLivello E.ﬁ._inu:lecnl E?‘

Spectral Detail [1..20] {optional)

Spatial Detail [1..20] (optional)

Minimumn Segment Size In Pixels (optional)

Band Indexes (optional)

Cancel Environments... Show Help ==

Figure 4.1.2.1: Segment Mean Shift

In this case, several tests were carried out by changing spatial detail and spectral detail, while
the minimum segment size, which indicates the minimum size we want to give to a segment
in terms of number of pixels, was considered appropriate to be 100 pixels, which corresponds
to an area of 10000 m? (about 0.01% of the area of the island). Figures 4.1.2.2 a., b. and c.
illustrate how the result varies with the variation of spatial detail and spectral detail in the
image with the Median filter.
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Spatial detail: 15 Spatial detail: 12 Spatial detail: 10

Spectral detail: 15 Spectral detail: 12 Spectral detail: 10
Minimum segment size: 100 Minimum segment size: 100 Minimum segment size: 100

Figures 4.1.2.2: Effect of the change of spatial detail and spectral detail on the image with
Median filter

In the end, the most suitable combination for this image turned out to be the one with spatial
detail and spectral detail of 12, being able to segment the image sufficiently but at the same
time to recognize homogeneous parts, such as the orange stripe located in the north, which
is bare soil/ rock. The further reduction of spatial detail and spectral detail led to excessively
large segments, as in the image on the right, within which more than one land cover type was
included (undesired effect). On the contrary, an increase of spatial and spectral detail resulted
in an overly fragmented segmentation, with excessively small segments, whose grouping into
classes would be too difficult.

On the other hand, with regard to the images to which the Lee, Lee Sigma and Refined Lee
filters were applied, the parameters used to obtain an optimal segmentation were different
from those of the image with Median filter: spatial and spectral detail of 15 were chosen for
the images to which the Lee and Lee Sigma filters were applied and spatial and spectral detail
of 9 for the image to which Refined Lee was applied. The behavior was the expected one in
the case of Lee and Lee Sigma images, because when the speckle is reduced, greater spatial
and spectral detail are needed to obtain segments of the same size as those of an image
affected by speckle, which leads to excessive fragmentation, while what was not expected
was the behavior in the case of the Refined Lee image, where it was necessary to even reduce
the spatial and spectral detail compared to those used in the original image.

The results of the three segmentations are shown in Figures 4.1.2.3 a., b. and c.
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a. Lee

Spatial detail: 15
Spectral detail: 15
Minimum segment size: 100

Spatial detail: 15

Spectral detail: 15
Minimum segment size: 100

c. Refined Lee

Spatial detail: 9
Spectral detail: 9
Minimum segment size: 100

Figures 4.1.2.3: Lee, Lee Sigma and Refined Lee images after segmentation

4.1.3 UNSUPERVISED CLASSIFICATION

Having the segmented images, it was possible to proceed with unsupervised object-based
classifications; to do this the Classification Wizard illustrated in Chapter 4 was used.
Referring to the steps indicated in this chapter, in the first step it was indicated that the
classification was the one just mentioned, for the classification scheme the NLCD2011
(National Land Cover Database of 2011) scheme was set and the segmented images created
in sub-section 4.1.2 were inserted, starting with the image to which the Median filter had
been applied and then continuing with the other three. Using this setting, the steps that were
turned on were 4, 5, 6 and 8.

In step 4, that is, the classifier training step, it was possible to set various parameters such as
the number of classes into which the image was to be divided, the attributes of the segments
to be considered in the grouping into classes, and various other parameters such as the
number of iterations to be carried out or the maximum number of merges to be made in each
iteration (Figure 4.1.3.1).
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< Previous | Run

Figure 4.1.3.1 ISO cluster training

What was done was to try out different classifications by changing the number of classes in
which to group the segments and the attributes of the segments to be taken into account
when grouping them into classes, while, regarding the other parameters, those proposed by
default by ArcGIS were set, as shown in Figure 4.1.3.1.

As for the segment attributes, the possible one were [3]:

- active chromaticity color: refers to the RGB color of the segment, calculated on the original
image;

- mean digital number: the average DN of the segment, calculated on the image in pixels;

- standard deviation: the standard deviation of the segment, calculated on the image in pixels;
- count of pixels: the number of pixels that are included in the segment;

- compactness: a number between 0 and 1 that indicates the degree of compactness or
circularity of a segment, where 1 corresponds to a perfect circle;

- rectangularity: a value between 0 and 1 indicating the degree of rectangularity of the
segment, where 1 corresponds to a perfect rectangle.
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First of all, the application of the different attributes was tested, leaving the number of classes
in which to classify the image high, in order to see how they behave, and what was seen for
the image with the Median filter was that:

-the active chromaticity color and the mean digital number led to a classification of the image
influenced by the morphology of the island and the illumination more than by the ground
cover types;

-the standard deviation was the attribute that seemed to be less influenced by morphology
and illumination and was able to vaguely identify the two glaciers present;

-count of pixels and compactness led to an excessive fragmentation of the island, in small and
apparently insignificant areas;

-the rectangularity also presents the problem of excessive fragmentation and in addition it
seems to not recognize the glaciers.

These results are shown in Figure 4.1.3.2.
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Figure 4.1.3.2: effect of the different segment attributes on the image with Median filter

It was stated that the best choice was to use only the standard deviation, as the other
attributes were worsening the result by conditioning the image with radar illumination and
island morphology or by causing fragmentation.

At this point, the number of classes was changed, considering a minimum of two to divide
what was bare ground from what was covered by snow or ice. In fact, placing a higher number
of classes showed that the maximum number in which the classifier could divide them was
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three, and that the third class did not correspond to a new ground cover, water presumably,
but only to noise, due to speckle (Figures 4.1.3.3). The image chosen was therefore the one
consisting of only two classes.

N
01 2 4 6 8
Kilometers
a. 2 classes b. 3 classes

Figures 4.1.3.3: division in 2 and 3 classes using the ISO cluster classifier and standard
deviation as segment attribute

The classification was therefore practically finished: the step following this previous training
one was carried out. It produced and saved the final images, while the two remaining steps
were of no use, Step 6 because, as already mentioned in chapter 4, it serves to unite various
classesinto a single one when many are produced, but this is not the case, and Step 8 because,
although the speckle generates a lot of point noise, which would therefore be correctable
with this tool, there are too many errors to be corrected by hand.

The same process was then repeated for the remaining three images, repeating the search
for the most suitable segment attributes in each case and the optimal number of classes. It
turned out that the number of classes able to give the best result was always three, while, as
far as the segment attributes were concerned, in the case of the image to which the Lee filter
had been applied, the most suitable was the active chromaticity color, in the case of the image
to which the Lee Sigma filter had been applied, the combination of active chromaticity color,
mean digital number and standard deviation was the best choice, and in the case of the image
to which the Refined Lee filter had been applied, the active chromaticity color and the mean
digital number provided the best result.
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The best result was obtained with the image to which the Lee Sigma filter had been applied,
which was able to recognize the entire strip of rock/ soil located in the north of the island and
to approximate the two glaciers, although with little precision. For this reason, it is with it
(and with the image to which the Median filter was applied) that the supervised classifications
will be carried out.

4.1.4 SUPERVISED CLASSIFICATION

To classify the image in a supervised manner, the necessary training samples must be
generated before proceeding with the Classification Wizard in ArcGIS Pro. To do this, three
separate polygonal shapefiles were created for each of the two segmented images (Median
filtered image and Lee Sigma filtered image): snow/ice, water and soil/rock, and the polygons
belonging to them were drawn using the segmented images as a base and the previous day's
optical image as a reference in order to understand which ground cover corresponded to each
zone, as it was impossible to tell by looking at the SAR image alone. In order to draw the
various polygons, care was taken to distribute them more or less homogeneously over the
area of the island, trying to include significant parts and not transitional parts between two
covers, and always being careful that each polygon fell within a single segment and not across
more than one, so as not to distort the results. In addition, an overall area greater than 1%
was sampled for both images. The distribution of the selected areas is shown in Figure4.1.4.1.
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Figures 4.1.4.1: Training samples selected
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At this point, once the shapefiles were ready, they were opened with the Training Sample
Manager of the Image Classification toolbar of ArcMap (Figure 4.1.4.2), here it is possible to
see each class created with its relative size and modify the value and color assigned if desired.
From here the signature file necessary for supervised classification was created.

5| Training Sarmple Manager et
AR EFEX ¥ Ul

D Class Name Value Colar Count

1 rock soil 1 1089

2 snow/ ice 42 [ ] 415

3 water 71 [ ] 126

Figure 4.1.4.2 Training Sample Manager

Having now all the necessary elements, the two images were classified in a supervised
manner using the Classification Wizard of ArcGIS Pro, following the steps already illustrated
in chapter 4.
The classification was set as supervised and object-based (for the reason already explained in
chapter 4.1), the segmented image and the training samples were inserted as input, and the
classification scheme was set as "generate from training samples"”, selecting the training
samples crated before. The steps that were activated in this way were 3, 4, 5, 6 and 8.
Step 3 is related to the Training Samples Manager and is used to modify the classes, adding
new ones or eliminating them; however, since this operation has already been done
previously, it has been left unchanged.
In the next step, the classifier is chosen between the three available for supervised
classification: Maximum Likelihood, Random Trees and Support Vector Machine, and its
parameters are set, as well as the segment attributes to be considered, since the classification
is object based. For each classifier, several attempts were made with regard to the segment
attributes, similarly to what was done for the unsupervised classification (see chapter 4.1.3),
while the parameters set for each were as follows:
- Maximum Likelihood: no parameters could be set;
- Random Trees: three parameters could be changed:
1. The maximum number of trees to be used, which is higher the more accurate the
classification, but also the longer the processing time. This parameter was set equal
to 500, as Belgiu recommends (Belgiu et al., 2016);
2. The maximum depth of a tree, which corresponds to how many branches a tree is
allowed to make, and was set equal to 3 as this is the number of variables involved;
3. The maximum number of samples per class: it was set to consider all the training
samples inserted;
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- Support Vector Machine: the only customizable option was to change the number of
training samples to be considered, and the value 0 was set, which is equivalent to
considering them all.

Several temporary images were generated at this stage, and then the best ones were chosen
to be produced in the next step, where the selection criteria were glacier recognition and
minimization of misclassification caused by radar illumination and island topography.
Furthermore, in several cases, with the Maximum Likelihood and Support Vector Machine
classifiers, it was noted that the water class added a lot of noise to the image rather than
actually recognizing the lakes present, so when this occurred, the classification process was
repeated from the beginning, only considering the snow/ice and rock/soil training samples
and then splitting the image into these two classes. Figure 4.1.4.3 shows an example of what
was said: the image with Median filter classified in two (a.) and three (b.) classes using
Maximum Likelihood classifier, considering Active Chromaticity Color and Standard Deviation
as segment attributes, while to consult all the other cases in which this two-class classification
was made because of the confusion generated by water’s training samples, consult the

appendix.
N rock/ soil
0 1 2 4 6 8 snow/ ice|
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Figure 4.1.4.3: Example of bad classification caused by water training samples
Concerning the two remaining steps, the class merge step was not useful because, as already

explained, the classes into which the image has been divided are few and very different from
each other, so they cannot be merged. Similarly, the last step of reclassification, which is used
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to correct small localized errors, was not carried out because the errors are largely punctual,
but they are many and correcting them one by one would have taken too long.

Repeating the process with the image to which the Lee Sigma filter had been applied, the
results obtained were worse than with the image to which the Median filter had been applied.
The appendix shows a comparison between the various classifications obtained from the
image with the Median filter and the results obtained by considering the same segment
attributes for the image with the Lee Sigma filter.

4.2 OPTICAL

The optical image required fewer operations prior to classification than the SAR image, as the
data from Level 2A are already ready to use, presenting the Bottom-of-Atmosphere
reflectance values, however area cropping and band resampling operations were carried out,
so that the necessary indices could then be calculated with the ArcGIS Raster Calculator. This
initial preparation phase was followed by the three classifications: unsupervised, supervised
and index-based, where the unsupervised and supervised classifications were chosen to be
pixel-based, because these classifications are more immediate than the object-based ones
(used for the SAR image), there was no point noise such as speckle that made it necessary to
also consider texture features, and the main ground covers present (soil/ rock, water,
snow/ice and clouds) were well separated in the characteristics space, as will be seen later
with the index-based classification.

These phases will be described in detail in the respective sub-chapters, similarly to what was
done for the SAR image, while Figure 4.2.1 shows a flowchart illustrating the processes carried
out.
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Figure 4.2.1: Flow chart of optical image

4.2.1 PREPARATION OF THE IMAGE

The operations needed to prepare the Sentinel 2 image were not as many as the ones needed
for the Sentinel 1; they were carried out firstly using SNAP and then with ArcGIS.
The operations performed will now be explained in chronological order.

SUBSET

As for Sentinel 1 image, Sentinel 2 image also includes an area much larger than the one of
interest, so the first operation was to crop it. The command used was Subset, of the Raster
package, and the coordinates entered were the same as in the SAR image, reported in chapter
4.1.1. In this case, however, in the band subset window only one band was selected at a time
and the operation was repeated for each band, because later, in the Export phase, it will not
be possible to export the whole stack together in GeoTIFF format, instead it will be necessary
to export band by band and then reunite them in a stack in ArcGIS. Figure 4.2.1.1 shows how
the band subset window appears.
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| @ (] Specify Product Subset

| Spatial Subset Metadata Subset
B1 Reflectance in band B1
B2 Reflectance in band B2
B3 Reflectance in band B3
B4 Reflectance in band B4
BS Reflectance in band B5
B6 Reflectance in band B6
B7 Reflectance in band B7
B8 Reflectance in band B8
B8A Reflectance in band BSA
BS Reflectance in band B9
B11 Reflectance in band B11
B12 Reflectance in band B12
quality_aot Aerosol Optical Thickness
quality_wvp Water Vapour

| quality_cloud_confidence Cloud Confidence
| quality_snow_confidence Snow Confidence
1

quality_scene_classification Scene classification

view_zenith_mean Viewing incidence zenith angle
view_azimuth_mean Viewing incidence azimuth angle
sun_zenith Solar zenith angle

sun_azimuth Solar azimuth angle
view_zenith_B1 Viewing incidence zenith angle
view_azimuth_B1 Viewing incidence azimuth angle
Select all Select none

| Estimated, raw storage size: 69.0M

- Cancel Help

Figure 4.2.1.1 Band subset

EXPORT
After cropping the bands, we exported them in GeoTIFF format, one by one as mentioned in
the subset explanation.

RESAMPLING

In order to be able to carry out operations between the image bands and be able to calculate
the indices for the hierarchical classification, it was necessary that the bands had cells of the
same size; therefore a resampling was carried out, bringing the lower resolution bands to a
resolution of 10x10. The command to do this is Resample, from the Raster package of the
Data Management Tools, where the band to be resampled is entered as input, the size of the
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cells to be obtained as output (10x10) is imposed together with the interpolation method to
be used to assign the values to the new cells; in particular, there are four available in ArcGlIS:
nearest, bilinear, cubic and majority. Of these, nearest and majority are the most suitable
methods if one is resampling an image of discrete values, since they do not average the values
present, but assign the value of the nearest cell in the case of nearest and the most frequent
value in a 4x4 filtering cell in the case of majority; while for images with continuous values
one uses bilinear, which assigns to the pixel the weighted average over the distances of the
four nearest cells, and cubic, which determines the value to be assigned by performing a cubic
convolution on the 16 nearest cells. The choice was therefore between bilinear and cubic, but
since cubic can give values outside the range of those in the image and requires a long
processing time, bilinear was selected.

#., Resample — O >
Input Raster
| B5_2A.tif - &

QOutput Raster Dataset
| D:'n,Tesi'n,Cu:uperniv:us'ﬁenﬁnel2_IsIaDE|:Epﬁu:un'n,l_ivellu:uz.ﬁ._indet| [,'—_1';-

Output Cell Size (optional)

M=,
X Y
| w| | 10 |
Resampling Technigue (optional)
| BILINEAR v
oK Cancel Environments. .. Show Help ==

Figure 4.2.1.2 Resample

STACK

At this point, all of the bands except for 1, 9, and 10, as they are not of interest for the study,
are grouped into a stack using the Composite Bands command from the Raster section of the
Data Management Tools, where you simply select all the bands you want to stack and they
are then grouped together. The command interface is shown in Figure 4.2.1.3.
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Figure 4.2.1.3 Composite bands

CLIP
Finally, the image was clipped with the shapefile of the island's coastline, in the same way
explained in chapter 4.1.1.

4.2.2 UNSUPERVISED CLASSIFICATION

The first of the classifications performed with the optical image was, as with the SAR one, the
unsupervised one. Again, the Classification Wizard of ArcGIS Pro was used and the
classification was pixel based, as mentioned in chapter 4.2. Bands 1, 9 and 10 of the image
were not used, as they were not of interest for the purposes of the study, as already
mentioned in chapter 3.

Following the thread indicated in chapter 4, in the first screen of the Classification Wizard,
the classification we set to be unsupervised and pixel based; this resulted in the activation of
steps 4, 5, 6 and 8. The NLCD2011 was chosen as the classification scheme, as had already
been done for the SAR image (see chapter 4.1.3). The next step is therefore that of training
the classifier and, as for the SAR image, the parameters proposed as default by ArcGIS were
considered (Figure 4.1.3.1), but the number of classes was changed. In this case, moreover,
obviously the segment attributes to be considered did not appear, since the classification is
pixel based.

By setting the number of classes equal to 4 (water, clouds, snow, rock), it was noticed that
the classification was not really well done and for this reason different number of classes were
tried (Figure 4.2.2.1). In particular, what happened was that with smaller numbers of classes
there was a tendency to assign to the same class elements that in reality belonged to different
ground covers, while with an excessive increase in the number of classes the image was
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confusing and obviously what in reality was a single class was subdivided into more
subclasses, not necessarily in a correct manner, in the sense that a subclass was not
necessarily homogeneous and could include elements coming different ground covers. The
best option seemed to be the division into 7 classes, which did not lead to excessive division
and thus confusion, and at the same time had fairly homogeneous subclasses.

N

A 012 4 6 8
s mmm Kilometers

a. 3 classes b. 4 classes

c. 7 classes

W
el

Figure 4.2.2.1 Comparison of division into different numbers of classes

Once the image with 7 classes was chosen, it was set as the one to be used in the next step
of creating the actual classified image (these were just temporary versions that were not
saved in memory).

It is now time to move on to the next step of class assignments and what it does is, having the
list of generated classes and those of NLCD2011, assign to each of the classes considered the
ground cover to which it corresponds (see Figure 4.2.2). In this case, the covers listed were
not those present in the image, except in the case of water, so the other three of interest to
us (rock, snow and clouds) were added. Figure 4.2.2.3 shows the command for adding a new
class where what you do is assign the class a color and a value, as well as a brief description.
Now having all the necessary classes, we proceeded to assign to each classified class the
corresponding ground cover to which it belongs (those just generated) and in doing so we
combined the 7 classes into 3 final classes (snow, clouds and rock, because water was not
well recognized and belonged to the snow class). At the end of the process of class assignment
just described, the image was complete, as the last step of correcting point errors did not take
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place, even if it would have been possible, because with SAR images it was never used and
therefore comparing manually corrected images with others left in the raw state would not
have been fair.

Image Classification Wizard ? = & x| Image Classification Wizard ?-RX
'YI X Xo ) Add New Class
Assign Classes
Select a class to start drawing shapes x Name
Snow
E‘ + Value
4 NLCD201M 1
I Water Color
Developed -
Barren Alias
Forest
Shrubland Description
Herbaceous

Planted / Cultivated

Wetlands

Old Class Mew Class
Ho
1
2
3
o 2
< Previous H MNext = | ‘ oK | | Cancel

Figure 4.2.2.2. Assign Classes and Figure 4.2.2.3: Add New Class

4.2.3 SUPERVISED CLASSIFICATION

The next classification was supervised and pixel based and was carried out using the
Classification Wizard in ArcGIS. The procedure was very similar to that of the supervised
classification of the SAR image (chapter 4.1.4), with the difference that, since in this case the
classification was object based, it did not require a segmented image.

The first step was to select the necessary training samples for the four macro ground covers
present: rock/ soil, snow/ ice, water and clouds. The procedure for the generation of the
training samples and the signature file was similar to that carried out for the SAR image, so
please refer to chapter 4.1.4 for more details. In this case, however, cloud cover was present,
so four classes were generated instead of three: rock/ soil, water, snow/ ice and clouds. As
with the SAR image, training samples were selected so that they were evenly distributed over
the island, and an area greater than 1% of the island's surface was sampled for reliability. In
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addition, while the difference between snow and rock was evident and it was easy to select
the corresponding training samples, the same cannot be said for the difference between snow
and clouds, so the NDSI index, known to render well the contrast between snow and clouds,
was used to identify the clouds. The lakes were easily recognizable, but reference was made
to the 2005 topographic map to be sure. Figure 4.2.3.1 shows the training samples selected
for the optical image.

A 001 2 4 6 8
Kilometers

Figure 4.2.3.1: training samples selected for the Sentinel 2 image

At this point, it was possible to proceed with the supervised classification, which was carried
out excluding bands 1, 9 and 10, since they were not interesting for the purposes of the study,
as already mentioned in chapter 3. The steps followed are the same as those indicated in the
supervised classification of the SAR image, with the only difference that this classification is
pixel based, therefore when the different classifiers are used, the parameters that can be set
are only those relative to them and there’s no section dedicated to segment attributes, since
in this case there is no segmented image.

In the first step it was set to carry out a supervised pixel based classification and to use the
scheme generated by the training samples, and the generated training samples were inserted
as input. Step 3 of the Training Samples Manager was superfluous in this case, because the
training samples were already ready as they had been prepared previously, and there were
no modifications to be made.
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In the classifier training step, all three supervised classifiers present in ArcGIS were used:
Maximum Likelihood, Random Trees and Support Vector Machine, for which the parameters
set were the followings:
- Maximum Likelihood: there are no parameters to set;
- Random Trees:
1. Maximum number of trees to be used: 500, as suggested by Belgiu (Belgiu et al.,
2016);
Maximum depth of a tree: 4, which is the number of variables involved;
3. Maximum number of samples per class: all selected training samples were
considered;
- Support Vector Machine: the only parameter to be set was the number of training
samples to be taken into account, and here too it was decided not to exclude any.
After this training phase, the final classified images were created. In fact, the two remaining
steps were not useful, that of class merge because the classes present were few and very
different from each other, and that of reclassification because the SAR classified images have
never been corrected, and correcting the optics would make the comparison between the
two unequal.

4.2.4 INDEX CLASSIFICATION

Another method to classify an optical image is to use a series of indices aimed at separating
the different classes of terrain, exploiting the presence of two distinct and easily separable
distributions in the index histogram, as already studied by Keshri (Keshri et al., 2009) and
Shukla (Shukla et al., 2016). In this particular case, the covers present were: water, bare soil/
rock, ice mixed with debris, ice and snow, and in particular the indices taken into
consideration were: NDWI, MNDW!I, MuWIR, NDSI, NDGI, NDSII; for more information on
them please refer to chapter 1.2.

In the case of the first three, it was assessed which of them would best achieve the separation
of the water features present, i.e. the lakes located in the northern and southern part of the
island, near the coast facing Port Foster, the NDSI was used to separate what was snow/ice
cover from what was not, and to extract the clouds that obscured part of the island, the NDGI
to separate what was pure ice and snow from what was mixed with debris and finally the
NDSII to separate ice from snow. The process followed is shown in the flow chart in Figure
4.2.4.1.
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Figure 4.2.4.1 Flow chart of the process
The first step necessary for the purposes of this classification was therefore that of calculating

the different indices to be used, for which the formulas reported in chapter 1.2 were used
and implemented using the Raster Calculator of the Spatial Analyst Tools package, that
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consents to carry out mathematical operations between different rasters, using the rasters of
the individual bands that had been resampled, as explained in chapter 4.2.1. Figure 4.2.4.1
shows as an example the expression used to calculate the NDWI index and the indices
obtained as a result of what has just been explained are shown in the Appendix.
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Figure 4.2.4.2 Calculation of NDWI with Raster Calculator

For each index, the threshold value able to divide its histogram into two distinct distributions,
which would represent different land covers, was searched. To do this, the program ENVI was
used, and in particular its Interactive Stretching function, which allows the visualization of the
histogram of the image, and Density Slice (Figure 4.2.4.3), with which it is possible to color
different intervals of the histogram: in this way it was verified that the threshold value
previously chosen by looking at the histogram was actually able to separate the land cover
classes as desired. In Figure 4.2.4.3 an example of the command Density Slice is shown, in
which the range set will be colored as red in the image; the command also allows you to add
more ranges and color them with different colors.
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Figure 4.2.4.3 Density Slice command on the left and effect produced on MNDWI image on
the right (highlight of red areas)

The values identified for each index are given in Table 4.2.4.1.

Index

NDWI x>=0,175: water x <0,175: other

MNDWI x >=0,254: water X < 0,254: other

MuWI-R x>=1,378: water x < 1,378: other

NDSI x >=0,113: snow and ice, also mixed with debris |x < 0,113: other

NDSI clouds | 0,05 <= x <= 0,6: clouds x < 0,05, x > 0,6: other
NDGI -0,038 <= x <=0,126: pure snow and ice x<-0,038, x> 0,126: other
NDSII x >=0,026: pure snow x < 0,026: other

Table 4.2.4.1: thresholds

Once these threshold values had been found, ArcGIS software was used again, and in
particular the Raster Calculator, to create binary images, i.e. composed only of 0 and 1. This
was done by imposing conditions based on the limits found in ENVI: for example, by imposing
"MuWIR>1.378" in the Raster Calculator, an image was obtained where what is water has a
value of 1 and what is not has a value of 0.

With regard to the limits identified, in some cases the choice was clear from the beginning
while in others more than one value seemed suitable; for example in the case of the NDSI the
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values 0.113 and 0.599 were identified, the former ensures that all the snow cover is
highlighted, including the stripes near the outer perimeter of the island, but also includes
clouds, while the latter omits these details but does not include clouds. The former was the
option chosen because it would also mask out the clouds, thus eliminating these misclassified
areas, and under ideal conditions, in the absence of clouds distorting the result, the former
would be the most suitable boundary.

Figure 4.2.4.4 shows the histogram of the NDSI index with the lines in correspondence of the
identified limits, while Figure 4.2.4.5 shows the effect of the choice of the two different limits
on the selection of land cover.

Input Histogram
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Figure 4.2.4.4: H|stogram of NDSI with lines in correspondence of the identified thresholds
(0,113 e 0,599)
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Figure 4.2.4.5: Comparison of the images generated by selecting the two different limits
mentioned for the NDSI

A similar situation also occurred with the NDSII, whereby a limit of -0.029 selected more areas
of snow but highlighted some clouds, while one of 0.026 left out some strips of snow but
didn’t include clouds. In reality, as can be seen from the images in the appendix, the snow
areas added in the first case were more peripheral, and since this index only classifies snow,
without including ice or debris, it was deemed appropriate to choose the value 0.026, which
considered a more circumscribed and localized coverage, especially in the central part of the
two glaciers. Unfortunately, in this case it is not possible to be very precise using only the
naked eye, as it is impossible to distinguish pure snow from snow mixed with ice, and no other
means are available to help with this.

As far as the identification of the most suitable index for water separation is concerned, it
turned out that none of the three indices were able to identify all the lakes; in the case of the
NDWI and MNDWI, a lake to the north was left out, and in the case of MuWI-R, a lake to the
south. Furthermore, as can be seen from the appendix, in the case of the MuWI-R index, an
area around the snow cover is also classified as water, this could be due to the fact that there
is melting snow at the base of the mountain. The same can be seen in the ESA classification,
in the "quality_scene_classification" band of the image (Figure 4.3.1 in chapter 4.3).

In order to find a solution to this different selection of lakes, we tried to combine the results
of NDWI and MuWI-R, and MNDWI and MuW!I-R, so as to highlight all the lakes, and in order
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to do this, the steps taken were two: a first sum of the two rasters, with which we will obtain
a third that will be composed of three values: 0 for the rock, 1 for the areas classified as water
by one of the two indices and 2 for the areas classified as water by both. The second step was
then to substitute, with the Raster Calculator, the number 2 with the number 1, using the
conditional expression and writing: Con("NDWI_MuWIR" == 2, 1, "NDWI_MuWIR").

In order to choose which case was the best, the five confusion matrices (for NDWI, MNDWI,
MuWI-R, NDWI-MuW!I-R union, MNDWI-MuW!I-R union) were created, using as ground truth
the one generated in the water ground truth generation sub-section of chapter 4.3 (Figure
4.3.7). The process of generating the confusion matrices will be explained in detail in Chapter
4.4 and the confusion matrices are shown in tables 4.2.4.2,4.2.4.3,4.2.4.4,4.2.4.5,4.2.4.6.

MDWI_confmatrix

OBJECTID * ClassValue C0 C 1 Total U _Accuracy Kappa
4 1jc_a 8836 7 G843 0,989285 0
2|C 1 84 o6 140 04 0
3 |Total 5520 63 5583 0 0
4|P_Accuracy 0,991532 | 0 888885 0 0,990885 0
S |Kappa 0 0 0 0| 0547788

Table 4.2.4.2: NDWI confusion matrix

MMDWI_confmatrix

DBJECTID = ClassWalue cCo C 1 Total U Accuracy | Kappa

r 1jc_a G788 10 8798 0,998979 0
2|C 1 143 45 182 0255208 0

3 |Total 5931 59 5550 0 0

4|P_Accuracy 0,985601 | 0830508 0 0,584885 0

5 |Kappa 0 0 0 0| 038488

Table 4.2.4.3: MNDW!I confusion matrix

MuMWIR_confratrix

OBJECTID * ClassValue Co C 1 Total U Accuracy Kappa
r 1jc_0 T 15 5693 05958452 0
2|C 1 245 43 288 0,148308 0
3 |Total 9923 58 §481 ] ]
4|P_Accuracy 0,57531( 0741375 ] 0573551 ]
5 |Kappa 0 0 0 0] 0241215

Table 4.2.4.4: MuWI-R confusion matrix

MDWI_MuWIR_confmatrix

OBJECTID * ClassValue cCao C1 Total U _Accuracy Kappa
4 1JC_0 8635 3 g641 0,9996289 0
2|1 286 o 349 0151862 ]
3 |Total G534 i) §550 0 0
4|P_Accuracy 0,5970203 | 0,945428 0 087007 0
o |Kappa 0 0 0 0] 0254526

Table 4.2.4.5: NDWI + MuWI-R confusion matrix
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PuWIR_MMDWI_confmatrix

OBJECTID = ClassValue cCo C 1] Total U_Accuracy Kappa

k 1JC_0 9522 0 9522 1 0
2|C 1 403 ST 460 0,123813 0

3 |Total 5925 ST ghE2 0 0

4|P_Accuracy 0,9509385 1 0 0,959627 0

S |Kappa ] 0 0 0] 0212501

Table 4.2.4.6: MNDW!I + MuWI-R confusion matrix

In the case of the NDGI, instead of considering values greater than a certain limit, values
within a certain range were selected, in order to exactly delimit the second peak, this way
areas that were not snow and ice but had reflectance values located in the later part of the
histogram were not considered.

Input Histogram

—Q.,00

Figure 4.2.4.6: NDGI histogram. The interval considered is the one inside the two dotted
lines
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Figure 4.2.4.7: Difference between highlighted regions (red) if you consider only the
indicated interval (a.) and those highlighted if we consider the whole part of the histogram
to the right of the limit between the two peaks (b.)

For the identification of the clouds, the same steps were taken as for the other ground covers,
i.e. to use an index (in this case the NDSI) and look for what range of values would separate
the desired class, but then another step was added, in which the areas of the main clouds
were drawn over, in particular the one located in the center of Mount Pond and the strip in
the north-west part of Mount Kirkwood, in order to create a polygonal shapefile that could
then be used as a mask in the generation of the confusion matrices of the optical images,
since the parts covered by clouds are the most prone to misclassification, in order to highlight
a possible improvement in the results by removing this critical part. In order to create the
mask, the ArcGIS editor was used and a new empty polygonal shapefile was generated, then
the main clouds that could be seen in the binary raster just created by imposing the limit
identified with ENVI were manually drawn over. Figure 4.2.4.8 shows the mentioned raster
and the cloud mask.
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Figure 4.2.4.8: Binary image obtained from the NDSI, using the extremes of the indicated

interval, and polygonal cloud mask obtained by drawing the clouds of the image on the left

In order to produce the final image, as far as the index for classifying water is concerned, it
was found that NDWI was the best. In fact, by analyzing the confusion matrices shown in
Figures 4.2.4.2,4.2.4.3,4.2.4.4.,4.2.4.5, 4.2.4.6, it can be seen that it is the index with the
greatest accuracy in separating water, with a k of 0.547. In particular, it can be seen that in
the two cases of combining two indices, i.e. MuWIR + MNDW!I and MuWIR + NDWI, the k was
significantly reduced compared to the use of single NDWI and MNDWI, contrary to what was
expected. The reason for this is that the MuWIR also classified the perimeter part of the two
snow covers as water, probably because it was in the process of melting, while the other
indices, as well as ground truth, only classified the open water bodies as water. Unfortunately,
not for all the indices present a ground truth, able to quantify their goodness, was found: in
particular, no ground truth was found that was able to separate pure snow from pure ice, and
as regards the separation of snow and ice mixed with debris from rock, these are usually
considered in a single class, since the color of snow and ice mixed with debris is no longer
white but brownish, and therefore similar to that of rock. The final images proposed are
therefore two: one that presents the distinction between rock/ soil, snow/ ice and water, thus
using the results provided by NDWI and NDSI, and a complete one, whose classes are: water,
rock, snow and ice mixed with debris, pure ice, pure snow. This is because for the former it is
possible to assess its goodness through the ground truth available, while for the latter it is
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not, but it could still be a starting point for research, especially as regards ground truths
capable of separating snow from ice and snow and ice mixed with debris from rock.

The two rasters to be merged to make the first image are both binary and one has values of
1 for water and 0 for the rest and the other has values of 1 for snow and 0 for the rest, so
before summing them it is necessary to change these values, otherwise the water and snow
classes would be merged. With the Raster Calculator, using the conditional expression given
in formula 4.2.4.1, the value 1 was substituted with the value 2 in the NDSI binary raster, so
that the final image summed from the two rasters will have the rock with a value of 0, the
water with a value of 1 and the snow with a value of 2, analogously to the ground truth (see
chapter 4.3).

Con("NDSI_thr"==1, 2, "NDSI_thr") (4.2.4.1)
Where:

-NDSI_thr is the binary raster obtained by applying the threshold identified with ENVI to the
NDSI raster

-1 is the value of snow, which will be replaced with 2

-2 is the value that will be assigned to the snow

At this point, the raster obtained was summed to the binary raster for water; this resulted in
a raster with 4 values instead of the expected 3, due to the classification of water as snow in
the case of the NDSI index. Using an expression similar to 4.2.4.1, the value 3 was then set to
1, thus including it in the water class. Please refer to the Appendix for the final image
obtained.

The image just described was the first (image 1 in the flow chart), whose goodness can be
verified using the ground truth described in chapter 4.3, while for the second, the results of
the NDGI and NDSII indices were added following a procedure similar to that just described,
again using the Raster Calculator, and the substantial steps were the followings:

-the value 1 was substituted with the value 10 in the binary image of the NDGI;

-this last image was added to the image obtained by summing the NDWI and NDSI results
described above. At this point, it was possible to note the overlapping zones of the areas
selected by the NDGI, which took on values of 10, 11 or 12. This means, on the basis of the
knowledge gained from the previously used indices, that the NDGI classified an area of rock
as snow-ice in the first case, in the second an area of water cover, and the last is the correct
case, in which pure parts of the snow-ice selected previously by the NDSI are classified as
snow-ice;

-on the basis of the considerations made in the previous point, using the conditional function
in the Raster Calculator, the value 10 was replaced with the value 0, 11 with 1 and 12 with 3,
creating the new snow-ice class. The image resulting from this step (image 2 in the flow chart)
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will therefore have value 0 for rock, 1 for water, 2 for snow and ice also mixed with debris, 3
for pure snow and ice;

-an analogous procedure was now followed with the NDSII, whereby the value 1 was
substituted with the value 10 in the binary image relative to the index and this new image
was summed to the one obtained from the previous step;

-the image obtained has, in addition to the values 0, 2 and 3, 10, 11, 12 and 13. This means
that, in the case of 11, the NDSI!I classified as snow watery coverings, selected by the NDWI,
in that of 12 it classified as pure snow what, according to the NDSI, was a mixture of snow,
ice and debris, and in that of 10 the same thing happened but with rock. As for 13, this is the
correct situation, where the index classified as snow cover part of what had been classified
as pure snow and ice by the NDGI.

Based on these considerations, the number 10 was replaced with 0, 11 with 1, 12 with 2 and
13 with 4, thus forming the new class of pure snow. The final image obtained is therefore
composed of the following classes: 0 rock, 1 water, 2 snow and ice mixed with debris, 3 pure
snow and ice, 4 snow cover.

To consult the two final images obtained from this classification, as well as the binary
images generated by applying the limits to the different indices, and their histograms,

please refer to the Appendix.

4.3 PREPARATION OF THE GROUND TRUTH

With regard to the ground truth, it was not possible to use one of the classifications provided
by the space agencies already mentioned because, considering the classification provided by
ESA for the image of 19.01.2020, it was not usable as it was incomplete, and the same applies
to those of the two nearest dates not affected by cloud cover (20.12.2019 and 08.02.2020).
Speaking of the classification provided by the USGS on 09.02.2020 (the closest date usable
and without cloud cover), the bodies of water were not classified, even though they were
present and not covered or disappeared for other reasons (in fact, they are not always
present, but in this case it was possible to identify them in both the 19.01 and 09.02 images),
and the rock was incorrectly classified as water. The solution conceived was therefore to
combine two different sources: the Pixel Quality Assessment band of the 09.02.2020 Landsat
8 image for the snow cover, a dgn of the 2005 topographic map for deriving the lakes, and
the shapefile of the coastline, already applied to clip the analyzed images as explained in
chapter 4, to be used as a base, considering that the rock/ soil will be by exclusion all the
remaining part of the island not covered by snow or water bodies.

For more precise information about the details of the Landsat image and the cartography
which was the source of the dgn and the coastline, please refer to chapter 3.
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Figure 4.3.1: RGB bands combination of the images acquired on the dates 20.12.2019 (a.),
19.01.2020 (b.) and 08.02.2020 (c.) and ESA-supplied classifications of the area of interest
on the same dates

Preparation of the ground truth of snow

First of all, it is necessary to point out that it should be kept in mind that the snow cover is
very variable and, if you do not have an image of the same day at the same time, it will be
different. In particular, analyzing the weather data acquired during the Antarctic campaign of
the Spanish Land Army (Campafia Antartica del Ejército de Tierra, 2019-2020) already
reported in sub-chapter 2.4, it emerges that in the period 19.01.2020-09.02.2020 the
temperature was always above 1 °C, temperature occurring only four times, while the vast
majority of days the minimum temperature was 2 °C, with sporadic maximums of 5 °C (five
days) and lows of 3 °C (three days) on the hottest days. In addition, there was no further
snowfall throughout the period, but the days were roughly divided into half rainy and half
sunny. This led to the melting of some of the snow present, so that the image of 09.02 shows
a more limited snow cover than that of 19.01, as can be seen in Figure 4.3.3.
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Figure 4.3.3: comparison between the Sentinel 2 image of 19.01.2020 (a.) and the Landsat 8
image of 09.02.2020 (b.), the difference in snow cover can be seen

For the preparation of the ground truth of the snow, first of all the Landsat image was opened
in ArcGIS: unlike the Sentinel images that required a first conversion of the bands in GeoTIFF
format using the SNAP software, this one was already provided in the format just mentioned.
It was then cropped using the shapefile of the coastline and bands 1-7 (those contained in the
folder minus the Quality Assessment bands) were merged into a stack, using the commands
already mentioned in Chapter 4 for the Sentinel 2 image.

The band of interest, that of Pixel Quality Assessment, is presented in a different way from
the classifications provided with the Sentinel 2 images: the classes here are in fact not
explained with a descriptive field in the attribute table, but instead only 16-bit numbers are
shown. In particular, each bit or pair of bits is associated with a land cover class, and the value
assigned to it depends on the level of confidence with which the land cover analyzed can be
said to correspond to that land cover class (Figure 4.3.4).
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Bit

Flag Description

Values

Fill

0 for image data
1 for fill data

Dilated Cloud

0 for cloud is not dilated or no cloud
1 for cloud dilation

Cirrus

0 for Cirrus Confidence: no confidence level
set or Low Confidence
1 for high confidence cirrus

Cloud

0 for cloud confidence is not high
1 for high confidence cloud

Cloud Shadow

0 for Cloud Shadow Confidence is not high
1 for high confidence cloud shadow

Snow

0 for Snow/Ice Confidence is not high
1 for high confidence snow cover

Clear

0 if Cloud or Dilated Cloud bits are set
1 if Cloud and Dilated Cloud bits are not set

Water

0 for land or cloud
1 for water

8-9

Cloud Confidence

00 for no confidence level set
01 Low confidence

10 Medium confidence

11 High confidence

10-11

Cloud Shadow Confidence

00 for no confidence level set
01 Low confidence

10 Reserved

11 High confidence

12-13

Snow/Ice Confidence

00 for no confidence level set
01 Low confidence

10 Reserved

11 High confidence

14-15

Cirrus Confidence

00 for no confidence level set
01 Low confidence

10 Reserved

11 High confidence

To decode these values it was necessary to use a Toolbox compatible with ArcGIS and
downloadable from the USGS website ([25]). It comprised two tools: the "Decode QA" and
the "Extract QA Bands", which work in the following way: the first adds a descriptive field to
the attribute table of the Pixel QA band and it fills in interpreting the bits of the band (it is
optionally possible to choose not to select the bits with low confidence, so as to include in
the descriptive field only the classes that are most likely to represent the ground covers),
while the second extracts the various classes of the band individually and forms a new image
for each class. The tool used in this case was Decode QA, so it was sufficient to insert as input

Figure 4.3.4: bit values of the Landsat 8 Pixel QA band (source: USGS)

the Pixel QA band of the image (original, unclipped); the result is shown in Figure 4.3.5.
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I Fill

B Dilated Cloud

B Clear

B Dilated Cloud, Water

B Clear, Water

[ Dilated Cloud, Medium Cloud Confidence

B Clear, Medium Cloud Confidence

B Dilated Cloud, Water, Medium Cloud Confidence

[ Clear, Water, Medium Cloud Confidence

M Cloud, High Cloud Cenfidence

M Dilated Cloud, Cloud Shadow, High Cloud Shadow Confidence

M Cloud Shadow, Clear, High Cloud Shadow Confidence

M Dilated Cloud, Cloud Shadow, Medium Cloud Confidence, High Cloud Shadow Confidence
M Cloud Shadow, Clear, Medium Cloud Confidence, High Cloud Shadow Cenfidence
[ Dilated Cloud, Snow, High Snow/lce Confidence

I Snow, Clear, High Snow/lce Confidence

[ Dilated Cloud, Snow, Medium Cloud Confidence, High Snow/lce Confidence

[ Snow, Clear, Medium Cleud Cenfidence, High Snow/lce Confidence

Figure 4.3.5 Descriptions added by the Decode QA command

The Pixel QA band does not present a completely good classification, the soil is classified as
water and there are also anomalous areas, in the north-west part of the snow cover on the
Mount Kirkwood glacier and in a small area of the snow cover above the Mount Pond glacier,
which, using the visible bands, we can see that are detected as No Data, while in the
automatic classification they are associated to different covers without a true match.
However, the snow cover is detected well and will be extracted and then combined with the
lakes, obtained from another source, as explained later, to form the final ground truth.
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clipped

Figure 4.3.6: Pixel Quality Assessment Band of the Landsat 8 image (a.) and true color
display of the image (b.), where the No Data has been colored red

Since it is evident that in both cases the anomalous zones belong to the snow cover, to
generate the ground truth of the snow, the large yellow zone with a value of 30048 was
considered, incorporating the small anomalous zones, using the Raster Calculator command
of the Spatial Analyst Tools package of ArcGIS Pro. Specifically, the conditional operator was
used, imposing the following expression:
Con("Clip_LCO8_QA_PIXEL", 1, 0, "Value >= 22018")
Where:

- Clip_LCO8 QA PIXEL is the Pixel Quality Assessment band of the image, clipped with

the shapefile of the island's coastline

- 1listhe value to assign to pixels for which the condition is verified

- 0Ois the value to assign to pixels for which the condition is not verified

- Value >= 22018 is the condition set

The condition Value >= 22018 was imposed, with Value being the field of the band indicating
the various values assigned to the different ground covers, since, as can be seen from the
legend in Figure 4.3.6, all the values of the anomalous zones and the snow value were greater
than or equal to this number, while the rock and the clouds had the two lowest assigned
numbers. It was therefore easy to group the snow cover in this way. The raster obtained will
therefore take on values of 1 where snow is present and 0 where rock is present and it is
shown in Figure 4.3.7.
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Figure 4.3.7: ground truth of the snow

Preparation of the ground truth of water

The dgn used to derive the lakes present on the island is composed of various layers, mainly
relating to the delineation of glaciers and lakes present, as well as areas subject to temporary
flooding, watercourses, toponymy and contour lines and geodetic stations. Of these, the
polygonal layer that included the lakes was considered (Figure 4.3.8) and modified with the
ArcGIS editor, selecting and deleting anything that was not of interest, i.e. anything that was
not the lakes. At this point, what was obtained was a shapefile consisting only of the lakes,
which therefore needed to have the shape of the island as a base. For this reason, this
shapefile and the coastline shapefile were merged with the Union command of ArcGIS
Geoprocessing and then the resulting shapefile was converted into a Raster using the Polygon
to Raster command, using the cell center as the assignment type and a cell size 0f10x10, being
that of the Sentinel 2 bands after resampling.
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Figure 4.3.8: dgn from which the lakes were extracted

At this point, in order to evaluate the goodness of the indices used to classify the water in
chapter 4.2.4 and thus choose which one was better, it was necessary to have a ground truth
that had the same values for the corresponding classes; we therefore set 1 as the value for
the water pixels and O for the rest, using the Raster Calculator conditional, in the same way
as we did for the indices and explained in chapter 4.2.4.
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Figure 4.3.9: ground truth of water

Final ground truth

To obtain the global ground truth of the island, the two rasters resulting from the two
processes were merged, as follows. Since both rasters are composed of 1 and 0, summing
them would have meant merging the water class with the snow class (since they do not
overlap and are both equal to 1); therefore, the value 2 was substituted for snow in the first
raster, again using the conditional expression with the Raster Calculator, as in chapter 4.2.4,
and then summed with the water ground truth, again using the Raster Calculator. Analyzing
the summed raster, it was noted that one of the lakes to the north had been classified as
snow in the Landsat image, so its value was not 0 in the raster | generated but 2, and adding
it to the ground truth of the water gave it a value of 3 (Figure 4.3.10). This is evidently an error
on the part of the USGS classification, since consulting the 2005 topographic map and
analyzing the image in real colors it is evident that it is a lake. Therefore, using the Raster
Calculator, with the same conditional function used in chapter 4.2.4, the value 3 was replaced
by the value 1, thus incorporating that lake into the water class. The resulting image is the
final ground truth and is shown in Figure 4.3.11.
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Figures 4.3.10: sum of the two ground truths (a.), the error of the lake in the north (green)
can be seen, and final ground truth (b.)

4.4 REALIZATION OF THE CONFUSION MATRICES

The tools used to measure the goodness of the classifications are the confusion matrices.

In order to create them in ArcGIS it is necessary to carry out a number of steps, which will
now be described. First of all, in order to compare each land cover of a classified image with
its corresponding one belonging to the ground truth, it is necessary for these to have the same
values; the first thing to be done was therefore to change all the values of the classified raster,
random and assigned by the program during the classification phase, and replace them with
the same values of the ground truth, that are: 0 for rock, 1 for water and 2 for snow-ice; to
do this the Raster Calculator of the Spatial Analyst package was used once again, with the
conditional expression, using a formula similar to 4.2.4.1, in several subsequent steps.

At this point, it is necessary to generate ground control points, in which the values of the two
images (classified image and ground truth) will be compared. There’s a proper command to
do this, the Create Accuracy Assessment Points of the Spatial Analyst Tools of ArcGIS (Figure
4.4.1), in which you put as input the classified image, then, from a drop-down list you select
that it is the classified image that you are inserting and not the ground truth, you set the
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number of points that you want to generate (10000 to cover an area equal to 1% of the island)
and the way to distribute them. There are three possible distributions:

- Stratified Random, whereby the distribution of points generated is proportional to the area
of each class;

- Equalized Stratified Random, whereby the points are distributed equally among the classes;
- Random, whereby the points are distributed randomly across the image area.

| #, Create Accuracy Assessment Points — O x

Input raster or feature class data
| Sentinel2_ISOCL_nuovivalori | B

Output Accuracy Assessment Points
| D:\Tesi\Copernicus\sentinel2_IslaDeceptioniLivello 2.-5._in|:||
Target Field (optional)

| CLASSIFIED v|
Mumber of Random Points (optional)
10000 |
Sampling Strategy (optional)
| RANDOM v
K, Cancel Environments... Show Help ==

Figure 4.4.1 Create Accuracy Assessment Points

The third option was chosen, because the areas of the different classes were very different
from each other (for example, the area of the water class was much smaller than those of
rock and snow-ice), so the option Equalized Stratified Random did not make sense, and at the
same time we did not want to create concentrations of points in some areas rather than
others, as would happen with the option Stratified Random, the Random method seemed
therefore the most suitable. The output is a point shapefile of 10000 points in whose attribute
table there are two columns: one relative to the classified image (called Classified) and one
relative to the ground truth (called GrndTruth). Having set as input that the image was the
classified one, the fields filled will be those of the Classified column, while the other will be
filled by "-1"; if instead it had been set that the input image was the ground truth, the opposite
would have happened. Figure 4.4.2 shows an example of the attribute table of the shapefile
generated by the command.
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Table O x

ERAE-Ral-1
MuWIRasspoints X

OBJECTID * SHAPE * Classified GrndTruth A
Paint -1
Point -1
Point -1
Point -1
Point -1
Point -1
Point -1
Point -1
Point -1
Point -1 W

T 1% » E (0 out of 10000 Selected)

MuWIRasspoints

k

[ e e e e o o o o o

CRE=A =Rl =-R R l=r RN E - LU LR ) oy
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Figure 4.4.2 Example of the result of the Create Assessment Points command

The second command to use is Update Accuracy Assessment Points (Figure 4.4.3), from the
same package, in which the inputs to be inserted are instead the ground truth raster and the
shapefile of the points just generated; then you select from a drop-down menu equal to the
first one that in this case it is the ground truth that is being inserted and not the classified
image, and the result will be that the shapefile described above will now have the -1
mentioned replaced by the values assumed by the ground truth in those points.

#,, Update Accuracy Assessment Points — O pd

Input raster or feature dass data

| GROUNDTRUTH_FINALE x| &
Input Accuracy Assessment Points
| Sentinel2_[SOCL_asspoints ﬂ E;-

Qutput Accuracy Assessment Points
| o 'n,Tesi'n,Cu:uperniv:us'Eenﬁnel2_Is|aDEu:Epﬁu:un'n,l.ivell-:uz.ﬁ._ind|

Target Field (optional)
| GROUND_TRUTH - |

Ok Cancel Enwvironments. .. Show Help ==

Figure 4.4.3: Update Accuracy Assessment Points
The last command to use is Compute Confusion Matrix (Figure 4.4.4), which, starting from the

point shapefile and comparing the two fields Classified and GrndTruth, generates the
confusion matrix.
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#, Compute Confusion Matrix — O x

Input Accuracy Assessment Points

| Sentinel2_ISOCL_asspoints_FINALE ~| &
Output Confusion Matrix

| D:'n,Tesi'n,CDperniv:us'\,SenﬁnelZ_IsIaDecepticunH_ivelloz.ﬁ._ind-|

QK Cancel Environments. .. Show Help ==

Figure 4.4.4: Compute Confusion Matrix

For the supervised and unsupervised classifications of the optical image, this process was
repeated twice: the first time following what has just been described, and the second time
using shapefiles clipped with the cloud mask generated in chapter 4.2.4, in order to check
whether by eliminating the most of the part covered by clouds, which is what normally leads
to error, the goodness of the classification was better. In particular, in order to use this
shapefile as a mask, it was merged with that of the coastline using the Union command of
ArcGIS Geoprocessing, shown in Figure 4.4.5, which requires the shapefiles you want to
merge as input and also allows you to optionally select which attributes you want to be
transferred to the merge shapefile (in this case it was imposed to consider all of them,
otherwise it would have been possible to exclude the FID, the numbering field, or to consider
only the FID, neglecting all the other attributes), the minimum distance between the
coordinates ("XY Tolerance", it has not been set) and if you want to eliminate any gaps which
can be present with filling polygons, by not checking the box "Gaps Allowed" (in this case it
has been set to allow the gaps).
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#, Union — O >

Input Features

| M=
Features Ra... +
% , *cdoudmask %
“_”BAS_Coastline_high_res_polygon_C_IslaDec...
£ >

Output Feature Class
| D:\,Tesi'n,l:u:upernicus'ﬁenﬁnel2_IsIaDecepﬁ|:|nH_ivellnz.ﬁ._indec| E,

JoinAttributes (optional)
| ALL v |

XY Tolerance {optional)

| Meters Ed

Gaps Allowed (optional)

Cancel Environments... Show Help ==

Figure 4.4.5: Union

This way a single shapefile was obtained, which was composed of different polygons,
representing the clouds and the complementary part of the island not covered by the clouds.
It was then edited with the Editor, in order to eliminate the polygons of the clouds, and thus
obtaining a shapefile of the surface of the island with holes in correspondence of the clouds,
shown in Figure 4.4.6.
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Figure 4.4.6: Shapefile of the island with holes in correspondence of the clouds

Using this shapefile, the classifications obtained from the optical image and ground truth
were clipped and the operations to create the control points and confusion matrices were
carried out again, following the procedure described above; using this trick, no control points
were be generated in the areas affected by cloud cover, and it is assumed that the confusion
matrices will therefore report better k.
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5. RESULTS AND DISCUSSION

The results obtained from the different classifications operated, i.e. the classified images and
the confusion matrices, both for the SAR image and for the optical one, are illustrated below.
In particular, because in the case of the SAR image several classifications were produced with
different combinations of segment attributes, the visually best one was chosen for each
classifier in the case of the image with the Median filter, and the confusion matrix was
created; instead, for the image with the application of the Lee Sigma filter, the effect of the
classification produced using the same segment attributes was then reported.

In the confusion matrices shown, the columns relate to the ground truth classes, while the
rows relate to the classified image, and the classes will have the following values: 0 rock/ sail,
1 water, 2 snow/ ice, 4 clouds in the case of the optical image classifications and illumination
in the case of the SAR image (the latter is not a type of ground cover, but was left as a third
error class in cases where reducing the number of classes to two would lead to a deterioration
in the quality of the classified image, badly incorporating the effect of illumination). The
column related to class 4 for ground truth will always report only 0, as there were no clouds
or effects due to illumination in it, since it was derived from a topographic map and an optical
image, where this disturbance is not present.

The U_Accuracy column relates to User's Accuracy, while the P_Accuracy column relates to
Producer's Accuracy (see chapter 1.2); on the basis of these measurements and k, the
goodness of the classification will be quantified.

As already mentioned, the original confusion matrices and those generated after the
application of the cloud mask will be available for each classification operated with the optical
image.

To see all of the other images which were produced, please refer to the appendix.
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5.1 SAR

5.1.1 UNSUPERVISED CLASSIFICATION
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Figure 5.1.1.1 Images resulting from ISO cluster classifications
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Sentinell_med_|50CL_confmatrix

ORJECTID * ClassValue cCo cC1 C 2 Total U Accur Ka|
4 1JCc 0 3575 48 344 4367 0,910236 0
2|C_1 0 0 0 0 0 0
3|C 2 3g12 11 1584 S607 0,353843 0
4 | Total TSET i) 2328 95974 0 0
S |P_Accuracy 0523522 0| 0852234 0 0,587453 0
5 |Kappa 0 0 0 0 0| 0248507

Table 5.1.1.1: Confusion matrix of the image with Median filter classified with ISO cluster
classifier

Sentinell_Lee [SOCL_confmatrix

__OBJECTID * ClassValue cCo cA1 C 2 C 4] Total | U Accuracy Ka
3 1]c_o 3308] 45 372 0] 3725 0,388054 0
2[c_1 0 0 0 0 0 0 0
3lc_z 3255 5 1395 0| 4656 0,299825 0
4[C 4 1109 2 482 0] 1583 0 0
5| Total 7672| =52 2250 0] o974 0 0
6|P_Accuracy 0431178 0| 0620444 0 0 0471626 0
7|Kappa 0 0 0 0 0 0] 0,130133
Table 5.1.1.2: Confusion matrix of the image with Lee filter classified with ISO cluster
classifier

Sentinell_LeeSig_|SOCL_confrnatrix

_ OBJECTID= ClassValue cCo cC1 cC 2 C 4] Total U _Accuracy Ka
4 1JC_0 3504 i 313 0 3581 050285 0
2|C 1 0 0 0 0 0 0 0
3|C_2 a7 0 1745 0 4532 0353812 0
4|C_ 4 909 1 242 0 1152 0 0
3 |Total 7800 %] 2300 0 9965 0 0
5|P Accuracy 0,451053 0| 0,752696 0 0 0,526744 0
7 |Kappa 0 0 0 0 0 0| 0196146
Table 5.1.1.3: Confusion matrix of the image with Lee Sigma filter classified with I1SO cluster
classifier
Sentinell_Reflee_ [SOCL_confmatrix
OBJECTID * ClassValue cCo cCA1 C 2 C 4| Total | U Accuracy | Ka
» 1jC_0 3783 45 481 0 4309 027793 0
2|C_1 0 0 0 0 0 0 0
J|C 2 3234 3 1368 0 4525 0300108 0
4|C_4 676 0 352 0 1028 0 0
5| Total 7693 43 Py 0 9962 0 0
5P _Accuracy 0491745 0| 05240944 0 D 0,519072 D
7|Kappa 0 0 0 0 0 0| 014457

Table 5.1.1.4: Confusion matrix of the image with Refined Lee filter classified with ISO
cluster classifier

In the unsupervised classification of the SAR image, water was never detected: when the
classifier was forced to consider three classes instead of two, the third class did not result
from the distinction of water, but from the illumination of the satellite, which is why the row
associated to the class water (1) is full of 0. Column 4 is always empty because there is no
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illumination class in the ground truth. In order to know which segment attributes were
considered in each case, please refer to chapter 4.1.3.

The classification of the image to which the Median filter had been applied produced an image
in which there was a recognition of glaciers, even if approximate, but the rock areas were not
"clean", but affected by several areas erroneously classified as snow-ice. In the case of the
three images to which the Lee, Lee Sigma and Refined Lee filters had been applied, these
localized errors decreased, but the effect of illumination, represented by the yellow class, was
strong.

Of the three, the image in which the point errors were most reduced was Lee Sigma, which in
fact had the highest k, while the image in which their influence was still most present was the
one with the Refined Lee filter applied. However, the lowest k was reported by the image
with the Lee filter applied, although it was only slightly different from that of Refined Lee
(1.5%). The k-values were always very low, for all images, but the highest occurred in the
image with only the Median filter applied. This seems to be due to the fact that in this image
the Producer's Accuracy of the snow-ice class is substantially higher than in all the other
images (23% higher than the images with Lee filter and Refined Lee and 10% higher than the
image with Lee Sigma), while the other Accuracies do not vary much, there’s a maximum
difference of 5% for the User's Accuracy of snow and of 3.3% in that of rock. There is more
variability in the case of the Producer's Accuracy of the rock: the image with Median filter has
an accuracy 9% higher than the Lee filter image, 6% higher than the Lee Sigma filter image
and 3% higher than the Refined Lee filter image.

What essentially happened is that the multiple application of the Lee, Lee Sigma and Refined
Lee filters reduced the speckle effect, and consequently the localized misclassification errors
of the rock/ soil, but also resulted in a loss of accuracy of the delineation of the snow-ice
cover. The contrasts that were maintained and highlighted after the application of the filters
were not those between the different ground covers, but those of morphology and
illumination, with a more or less marked effect depending on the filter; this led to a reduction
in the goodness of classification. The non-detection of water, on the other hand, is supposed
to be due to the small size of this cover compared to the others, so that when a third class
was considered, the (wrong) class attributed to the effect of illumination was larger than that
of water, which was present in small, localized areas as a kind of noise.

The reason for a low Producer's Accuracy for rock is that several parts of it were placed in
the water class instead, its User's Accuracy is high because almost always what was
classified as rock was actually rock. As far as the snow-ice class is concerned, its User's
Accuracy is always very low and this is because it often contains points of rock, while its
Producer's Accuracy is better, although not very high, because several parts of this cover
were able to be identified, although not with precision. The estimation was not good for
either class but what can be said is that the rock was underestimated while the snow-ice
was overestimated. For example, the eastern part of the snow cover of the Pond and
Goddard mountains almost always extends to the coast, whereas in reality it does not; what
does extend to the coast is the glacier below. In fact, comparing Figure 5.1.1 with the
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topographic map (Figure 3.10) it appears that the pattern of what was classified as snow-ice
in the various unsupervised classifications of the SAR image is similar to that of the glaciers
shown on the map rather than to the snow cover present at the time the image was taken.
What may have happened is that the glaciers were recognized and not the debris or snow
cover on them.

5.1.2 SUPERVISED CLASSIFICATION
MAXIMUM LIKELIHOOD

A 0 1 2 4 6 8 I’OCk/ soil
Kilometers

a. Image with Median filter b. Image with Lee Sigma filter

Figure 5.1.2.1 Images with Median (a.) and Lee Sigma (b.) filters, classified with Maximum
Likelihood classifier

Sentinell_Med_ML_2class_color_stdev_compact_confmatrix

CORJECTID * ClassValue ca cC1 C2 Total | U Accur Ka|
3 1JC_0 5433 41 842 6316 0860156 0
2|C_1 0 0 0 0 0 0
3|C 2 2270 13 1372 3657 0373171 0
4 | Total 7r03 56 2214 9573 0 0
S|P _Accuracy 0,70531 0| 0619553 0 0552342 0
6| Kappa 0 0 0 0 0] 025025

Table 5.1.2.1 Confusion matrix of the image with Median filter classified with Maximum
Likelihood classifier
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Sentinell_LeeSig_ML_2class_celor_stdev_compact_confratrix

OBJECTID * ClassValue cCo C 1 cC 2 Total U Accuracy | Kappa

4 1JC_0 6359 42 1772 8203 0, 778861 0
2|C_1 0 0 0 0 0 0

3[C 2 1174 13 SE1 1770 03268249 0

4 |Total 7963 57 2353 G973 0 0

S [P_Accuracy 0844771 0| 0245919 0 0698887 0

5 |Kappa 0 0 0 0 0] 009945

Table 5.1.2.2 Confusion matrix of the image with Lee Sigma filter classified with Maximum
Likelihood classifier

The image chosen as the best in the case of this classifier was the one resulting from the
consideration of the segment attributes Active Chromaticity Color, Standard Deviation and
Compactness and from the use of the rock/ soil and snow/ ice training samples, leaving out
the water ones. The reason for the latter is that the addition of the water samples did not
lead to the recognition of the lakes, instead it caused a major error in the classification (see
appendix). In the original image, the lakes are actually distinguishable because they are darker
than the surrounding rock, so the fact that in the Maximum Likelihood classification these
training samples produced such a large error may mean that the problem lies in the classifier's
grouping algorithm, which is not suitable for classifying this image: in fact, using Random
Trees and the Support Vector Machine, it will be seen that water produced minimal errors of
a completely different magnitude from these ones.

Classification using the Maximum Likelihood classifier produced slightly better results in
terms of k for the image with Median filter, but much worse in the case of the one with Lee
Sigma filter. In the first case, the extension of the rock areas erroneously classified as snow-
ice has been reduced, but not their spatial distribution, as they continue to cover the whole
island; in the second case, instead, there is no more recognition of glaciers nor the influence
of illumination, the image produced is inconsistent with the one analyzed, the only positive
note seems to be the concentration of the areas classified as snow-ice in the part of the island
affected by Mount Pond. The User's and Producer's Accuracy of class 2 in the case of the
image with Lee Sigma filter reflect what has just been said: both are very low because it was
not possible to identify the snow cover present, and the points belonging to the snow class
are not always the real ones: several areas of rock have been classified as snow. As a
consequence of the small extent of snow there is the large extent of rock, which led to higher
User's and Producer's Accuracy for this class. As for the Median filtered image, the Producer's
Accuracy is much higher than that obtained with the unsupervised classification, the reason
for this is that in this case, as mentioned above, the rock areas misclassified as snow-ice have
reduced in areal extent, although not in spatial distribution, so the number of points
belonging to the rock class has increased. What has instead decreased is the Producer's
Accuracy of the snow and the reason of this is that the areas classified as snow have been
greatly reduced and are affected by a pronounced point noise: if we compare this image with
the one classified with I1SO cluster (with the same filter), we can see that the latter presents
much more homogeneous glaciers. The other accuracies remained more or less the same.
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RANDOM TREES

N rock/ soil
A 01 2 4 6 8 water
O m w Kilometers
a. Image with Median filter b. Image with Lee Sigma filter

Figure 5.1.2.2 Images with Median (a.) and Lee Sigma (b.) filters, classified with Random
Trees classifier

Sentinell_Med_RT 3class_color_stdev_confmatrix

ORJECTID * ClassValue ca cC1 C 2 Total U _Accuracy Ka|
r 14C_0 3324 34 926 5486 0,851581 0
2[C_1 25 29 ) 63 0460317 0
3[C_2 2084 5] 1327 3417 0,388352 0
4 [Total 7637 69 2260 9966 0 0
3 [P_Accuracy 0,723321| 0,42025| 0587165 0 0,690347 0
G [Kappa 0 0 0 0 0| 0268795

Table 5.1.2.3 Confusion matrix of the image with Median filter classified with Random Trees
classifier

Sentinell_LeeSig_RT_3class_color_stdev_confmatrix

ORJECTID * ClassValue cCo cC1 C 2 Total U Accur Kal
4 1JCc 0 aTg2 17 1248 TOET 0,81955 0
2|C_1 112 16 28 156 0,102554 0
3|C 2 1775 17 9593 2785 0,356553 0
4 | Total 7549 30 2269 9965 0 0
3 |P_Accuracy 0753301 | 0,32 0437538 0 0675274 0
& |Kappa 0 0 0 0 0| 0188755

Table 5.1.2.4 Confusion matrix of the image with Lee Sigma filter classified with Random
Trees classifier

99



The image chosen in this case was the one resulting from the choice of the segment attributes
Active Chromaticity Color and Standard Deviation and using the training samples of all three
classes, in this case in fact the training samples relative to the water class did not cause an
excessive error. In the case of the image with Median filter, the k that occurred is similar to
the one already obtained for the ISO cluster classification and the Maximum Likelihood one,
while in the case of the image with the Lee Sigma filter, it is similar to that which occurred
with the ISO cluster classification. In the first image, the snow cover in the eastern part of the
island was identified, but not that in the southern part. Once again it is evident the influence
of the speckle, as it leads to punctual errors in the classification of the soil/ rock as snow/ ice;
this effect is reduced in the second image thanks to the multiple application of the Lee Sigma
filter, however it is evident how in this case the illumination of the satellite has led to the
incorrect classification of a part of rock/ soil as snow, in the North-West part of the island. In
the second image too the snow cover on Mount Pond was partly recognized, but not the one
on Mount Kirkwood, only a small area in the south. In both images there was a recognition of
one lake in the south and one in the north, and in the second image the other two in the north
were also recognized: one correctly classified as water and the other incorrectly as snow. In
addition, in the latter a part of the sea that had been included by clipping with the coastline,
located to the east, facing Port Foster, was recognized but classified as snow. This greater
sensitivity to water in the second image, however, also led to more point errors than in the
first image, in fact it can be seen that the User's Accuracy relative to class 1 is much greater
in the first image. The failure to recognize all the lakes has led to low Producer's Accuracy.
The User's and Producer's Accuracy for the rock/ soil were good and the one of the snow was
again quite low, due to the failed delineation of the snow cover, as mentioned above. In the
first image the accuracies were higher because the snow cover on Mount Goddard was
detected, while in the second image it was not. The k obtained in the case of the image with
Median filter was almost the same as the one obtained with Maximum Likelihood classifier,
while the k of the image with Lee Sigma filter was double the one obtained in the case of
Maximum Likelihood classifier.
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SUPPORT VECTOR MACHINE
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6

8
O s Kilometers

rock/ soil

a. Image with Median filter

b. Image with Lee Sigma filter

Figure 5.1.2.3 Images with Median (a.) and Lee Sigma (b.) filters, classified with Support

Vector Machine classifier

Sentinell_Med_5VM_3class_stdev_count_confrmatrix

ORJECTID * ClassValue cCo cC1 C 2 Total U Accur Ka|
3 1jC_0 3547 51 882 6580 0,858207 0
2|C_1 0 0 0 0 0 0
3|C 2 1540 2 1451 3353 0,427845 0
4| Total TSET 53 2333 9973 0 0
3 |P_Accuracy 0744259 0] 0621945 0 071722 0
5 |Kappa 0 0 0 0 0] 031113

Table 5.1.2.5 Confusion matrix of the image with Median filter classified with Support

Vector Machine classifier

Sentinell_LeeSig_SWM_2class_stdev_count_confrnatrix

ORJECTID * ClassValue cCo cC1 C 2 Total U Accur Ka|
r 1C_0 4260 45 7594 102 0,834967 0
2|C_1 0 0 0 0 0 0
3|C_2 3385 1 1489 4375 0,305435 0
4 | Total 7545 49 2283 9977 0 0
3 |P_Accuracy 0557227 0| 0652212 0 0,576225 0
6 |Kappa 0 0 0 0 0| 0148204

Table 5.1.2.6 Confusion matrix of the image with Lee Sigma filter classified with Support

Vector Machine classifier
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The image chosen in this case was the one resulting from the use of the segment attributes
Standard Deviation and Count of Pixels and the consideration of all training samples. In the
case of the image to which Lee Sigma filter was applied, the use of the training samples of
water led to a misclassification, causing all the island to be classified as rock/ soil, and the
same happened using as segment attributes only Standard Deviation, as can be seen from the
appendix. For this reason, we report the image obtained from the consideration of only the
snow/ice and rock/soil training samples, so it is divided into two classes.

In the case of the image with the Median filter applied, the k obtained was the highest, errors
caused by the speckle still occurred but did not prevent the recognition of the two snow-ice
macrozones. The accuracies were quite high for rock/ soil and lower for snow-ice, in line with
previous classifications, while the row in the table relating to class 1 is null because water was
not classified, despite the inclusion of its training samples. This may have occurred because
of the small extent of the watery areas, which were not recognised as a separate class but
were incorporated into another, confused with the rock/soil. The same confusion between
soil and water occurred with the Lee Sigma filter image, where the Kendall Terrace soil strip
was misclassified, causing an overestimation of the snow cover, as opposed to the image
obtained with Maximum Likelihood classifier. This resulted in a lowering of the User's
Accuracy of the snow/ice class and the Producer's Accuracy of the soil class. The row
corresponding to the water class is obviously empty because, as anticipated, the image
resulting from the use of only the training samples of snow and soil is reported.
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5.2 OPTICAL
5.2.1 UNSUPERVISED CLASSIFICATION

Legend
N I rock/ soil
A 01 2 4 6 8 SnOW/ ice
Kilometers clouds
a. Image classified with Iso Cluster b. Image after the application of clouds

classifier mask

Figure 5.2.1.1 Image classified with ISO cluster classifier, with and without subsequent
application of clouds mask

Sentinel?_|SOCL_confmatrix

: ClassValue cCo cCA1 C 2 C 4| Total | U Accuracy | Ka
1|C_0 5706 54 28 0 5788 0,985662 0
2|C 1 0 0 0 0 0 0 0
3|C_2 608 g 1842 0 2458 0, 745085 ]
4|C_ 4 1280 i) 428 0 1713 0 ]
5 |Total 75594| 6B 2258 0 9961 0 0
6|P_Accuracy 0,751383 0| 0801218 0 ] 0757755 ]
7 |Kappa 0 0 ] 0 ] 0] 051547

Table 5.2.1.1 Confusion matrix of the image classified with I1SO cluster classifier

Sentinel2_ISOCL_MASKED _confmatrix

__OBJECTID * ClassValue cCao C1 C2 C 4| Total | U Accuracy Ka
r 1jCc_a 6126| 48 31 0 6205 0,987263 0
2|C 1 0 0 0 0 0 0 0
3|C_2 629 3 1855 0 2487 0745875 0
4|C 4 128 T 137 0 1272 0 0
5 |Total 7883 58 2023 0 9964 0 0
6|P_Accuracy 0777115 0| 0518855 ] 0 0,800584 0
7 |Kappa 0 ] ] ] 0 0| 0564175

Table 5.2.1.2 Confusion matrix after the application of clouds mask
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This classification can be considered relatively good: the two snow-ice covers located on the
glaciers were well delineated, and the clouds were identified, although there may have been
an overestimation (however, it must be considered that the cloud mask was generated by the
user from an index and is therefore not an absolute truth; the clouds may have been over- or
underestimated). However, water was not classified; only two of the lakes present, located in
the northern part of the island, were identified, but one was classified as snow/ ice and the
other as clouds. This can also be seen from the confusion matrix, where the row for class C1
is filled with 0.

The use of the cloud mask results in a slight increase in k and in Producer's Accuracy for class
C2 (by 10%). This was the expected result, since the clouds mainly cover the part related to
snow, and therefore parts of the island affected by snow will be classified as clouds when
covered by them: this leads to a decrease in Producer's Accuracy because the snow class will
lack points that belong to it. By removing these zones with the mask, the accuracy will
automatically increase.

The reason why the water class has not been created in the classified image is due to the fact
that the areas of water have a small extension compared to the rest of the coverage, in
addition, the lakes that have been identified have been classified one as snow and the other
as clouds, this is due to the fact that it’s always the same substance but in different physical
states for the three ground covers. Probably, if the extent of the water had been of the same
order as that of the snow, the two classes would have been divided, but what is supposed to
have happened is that the lakes were incorporated in one case into the snow class and in the
other into the cloud class in the various iterations because of their small area.
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5.2.2 SUPERVISED CLASSIFICATION

MAXIMUM LIKELIHOOD

N

A

0

e s Kilometers

rock/ soil

water
snow/ ice|

1 2 4 6 8

clouds

a. Image classified with Maximum
Likelihood classifier

LS

b. Image after the application of clouds
mask

W

Figure 5.2.2.1 Image classified with Maxi

mum Likelihood classifier, with and without

subsequent application of clouds mask

Sentinel2_ML_confmatrix

OBRJECTID * ClassValue cCo cC1 C2 C 4] Total | U Accur Ka|
4 1jCc_0 S023 4 ] 0 2033 0,558013 0
2[C_1 65 45 1 0 111 0,405405 0
3|C 2 564 2 1570 0 2435 0544459 0
4(C 4 1654 4 696 0 2384 0 0
S |Total 7636 S 2273 0 9964 0 0
6 [P _Accuracy 0,657805| 0818182 0,650717 0 0 0,666153 0
7 [Kappa 0 0 0 0 0 0| 0400785

Table 5.2.2.1 Confusion matrix of the image classified with Maximum Likelihood classifier

SentinelZ_ML_MASKED_confrmatrix

ORJECTID * ClassValue co cC1 cC 2 C 4| Total U Accur Ka|
3 1JC_0 5411 3 4 0 2418 0558708 I
2|C_1 i) 41 1 0 100 0,41 0
3Cc 2 96T G 1708 0 2679 0,636805 0
4|C_4 1481 1 206 0 1778 0 0
3 |Total 7917 31 2007 0 95975 0 0
5 |P_Accuracy 0,683466 | 0,803922| 0,850025 0 0 0,717554 0
7| Kappa 0 0 0 0 0 0] 0451442

Table 5.2.2.2 Confusion matrix after the application of clouds mask
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The k in the Maximum Likelihood classification was quite low and, analyzing the User's
Accuracy and Producer's Accuracy, this seems to be mainly caused by commission errors in
the water class, plus other commission errors in the snow class and omission in the rock and
snow classes. Applying the cloud mask, there is anincrease in Producer's Accuracy of the snow
class while the increases in the others accuracies can be considered almost negligible. This
resulted in a slight increase in k.

Analyzing the image, it can be seen that there has been an overestimation of the cloud cover,
with the presence of various punctual errors in the rock/ soil class which have led to the
lowering of its Producer's Accuracy; the classification of snow/ ice can be considered to be
roughly good and the same can be said for water.

The increase in Producer's Accuracy of the snow/ ice class when applying the cloud mask was
expected, because the removal of the parts covered by clouds that actually belong to snow
reduces the percentage of points falling mistakenly classified as snow. Its User's Accuracy,
however, is not as high and this is due to the fact that the snow cover of the ground truth is
less than that of the analyzed image.

An unexpected result is instead that of the User's Accuracy value of the water class, which is
very low. Comparing the classified images with the ground truth (figure 4.3.10) it can be seen
that in the latter only the lakes present on the island are considered as water, while in the
former several strips adjacent to the coast can be seen as belonging to this class. This is
probably due to the fact that the coastline is not univocal but varies with the tides, and what
has happened is that by clipping the image with the shapefile of the coastline, a small strip of
sea was also included, and that is not present in the ground truth.
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RANDOM TREES

8

Kilometers

rock/ soil

water
snow/ ice|

clouds

a. Image classified with Random Trees
classifier

b. Image after the application of clouds
mask

Figure 5.2.2.2 Image classified with Random Trees classifier, with and without subsequent

application of clouds mask

Sentinel2_RT_confrmatrix

OBJECTID * ClassValue cCo cC1 C2 C 4] Total | U Accur Ka|
r 1)C 0 6126 3 43 0 5172 0,952547 0
2(C 1 4159 61 26 0 506 0,120553 0
3(C 2 653 0 1711 0 2364 0723773 0
4(C 4 443 0 475 0 918 0 0
5 [Total TE41 54 2255 0 9960 0 0
5§ [P _Accuracy 0801728( 0553125| 0 758758 0 0 0,752572 0
T |Kappa 0 0 0 0 0 0| 0560018
Table 5.2.2.3 Confusion matrix of the image classified with Random Trees classifier
SentinelZ_RT_MASEED _confmatrix =
ORJECTID * ClassValue co cC1 C2 C 4| Total U _Accuracy Ka|
k 11C 0 5451 T 37 0 6495 0 993226 0
2|C 1 475 66 23 0 o566 0,116608 0
3(C 2 662 0 1867 0 25259 0, 738235 0
4(C 4 2459 0 126 0 375 0 0
5 (Total Te3r 73 2055 0 9965 0 0
5P Accuracy 0,823147 | 0,80411] 0908515 0 0 0,841345 0
7 |Kappa 0 0 D 0 0 0| 0634983

Table 5.2.2.4 Confusion matrix after the application of clouds mask
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The classification carried out using the Random Trees classifier gave very high User's Accuracy
and Producer's Accuracy values, and the k could therefore have been appreciable, but what
led to its lowering was the overestimation of the water class, as can be seen from the images.
It can be seen that for this reason the User's Accuracy of the water class was very low.

As always, the Producer's Accuracy of the snow class increased when the cloud mask was
applied, by about 15%. Its User's Accuracy was the lowest after that of the water class, and,
as mentioned above, the reason is that the snow cover of the ground truth is smaller than
that of the analyzed image.

The snow and cloud cover estimations were good, as was the rock estimation.

The reason for assigning the contours of the snow cover to the water class can be attributed
to the fact that in these areas the snow present is wetter than in the center, located in higher
areas of the mountain, its partial melting may therefore have led to its assignment to the
water class by the classifier.

SUPPORT VECTOR MACHINE

rock/ soil
water
snow/ ice|

A 012 4 6 8
Kilometers

a. Image classified with Support Vector b. Image after the application of clouds
Machine classifier mask

clouds

Figure 5.2.2.3 Image classified with Support Vector Machine classifier, with and without
subsequent application of clouds mask

108



Sentinel2_SVM_confmatrix

OBJECTID * ClassValue co c 1 C 2 C 4| Total U Accuracy Kappa
k 1jc_o 6128 4 45 0 8177 0552067 0
2|C1 361 47 34 0 442 0,106335 0
3|C_2 751 0 1741 ] 2532 0687599 ]
4|C_4 433 0 385 0 818 0 0
& |Total 7713 51 2205 0 9969 ] 0
8 |P_Accuracy 0,794503 | 0521569 0,789559 0 ] 0, 794052 0
7 |Kappa 0 0 ] 0 ] 0| 0,555354

Table 5.2.2.5 Confusion matrix of the image classified with Support Vector Machine

classifier

Sentinel2_SVM_MASKED _confrmatrix
OBJECTID * ClassValue Co c 1 C2 C 4| Total U Accuracy | Kappa
L4 1]C 0 G425 G 40 0 G475 0,9592856 0
2|C 1 401 ] 24 0 423 0120083 0
3[(C 2 o34 0 1850 0 2603 0,65030& 0
4(C 4 226 0 a7 0 313 0 0
o [Total 7890 54 2010 0 G064 0 0
6 |P_Accuracy 0814825 0506825| 0824875 0 0 0837615 0
7 |Kappa D D D 0 0 0| 052288

Table 5.2.2.6 Confusion matrix after the application of clouds mask

The situation that occurred in this case was very similar to that of Random Trees: there was
an overestimation of the aqueous coverage which led to a very low User's Accuracy for its
class. The other accuracies were on average high, with the lowest being 0.69, relative to the
snow class, as it happened with the other classifications, due to the fact that the snow cover
of the analyzed image is more extensive than the one of ground truth. Again, using the cloud
mask, the Producer's Accuracy of the snow class increases, more precisely by 13.5 %.

In this case, it seems that the overestimation of the water class occurred not only in the
perimeter areas of the snow cover, but also in zones where it was confounded with small
clouds. The reason for this can be attributed to the fact that in the end it is the same substance
in different physical forms, as already explained in chapter 5.2.1: in the unsupervised
classification one lake was classified as snow cover and another as clouds; here the opposite
has happened, so snow and clouds have been classified as water, but it is still the same
problem of confusing these classes.
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5.2.3 INDEX CLASSIFICATION

012 4 6 8

rock/ soil
water
Kilometers

a. Image classified by using NDSI and
NDWI

mask

Figure 5.2.3.1 Image classified with NDSI ed NDWI (a.) and effect of the subsequent
application of clouds mask (b.)

classificataindici_confmatrix

OBJECTID * ClassValue cCo CA1 C 2 Total | U Accuracy | Ka
k 1jc_o 6096 4 11 6111 0997545 0
2|C 1 61 50 T 11e 0423720 0
3|C 2 1457 4 2238 3737 0,558341 0
4 |Total 7654 58 2254 9966 ] 0
5 |P_Accuracy 0, 796446 | 0862065 0552014 0 0,84108 0
6 |Kappa 0 0 0 0 0| 064218

Table 5.2.3.1 Confusion matrix of the image classified with NDSI and NDWI

classificataindici_MASKED _confmatrix

OBJECTID * ClassValue cCo cCA1 C 2 Total | U Accuracy Kal
r il [ 6519 1 18 6538 0997054 0
2|C 1 84 52 13 145 0,348953 0
3|IC_2 1273 4 2008 3283 0811027 0
4 |Total 7876 57 2037 5870 ] 0
5 |P_Accuracy 0,827704| 0913281 | 0,984782 0 0,2360281 0
& |Kappa ] ] 0 0 0| 0683003

Table 5.2.3.2 Confusion matrix after the application of clouds mask

This classification was the one that resulted in the highest k, so the misclassified parts were
minimal: mainly the lake to the north-east which was classified as snow cover and some small
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strips of snow cover were classified as water. The application of the cloud mask did not bring
about an appreciable improvement in this case as with the other classifications, and this is
attributable to the fact that with the use of the indices the influence of clouds was diminished
by using bands that did not detect them. Again, the lowest User's Accuracy occurred for the
water class and the snow class, and this is attributable to the same reasons already
mentioned: the difference between the snow cover of the treated image and that of ground
truth, and the water along the coastline of the treated image, not present in ground truth.
With regard to the lake that has been classified as snow-ice, in reality it is a phenomenon that
has always occurred in all the binary images used to separate the snow cover (snow from ice,
pure snow and ice from that mixed with debris, and that what had snow and ice from that
what was bare ground), used as a step prior to the creation of this image and the other
complete image that is proposed (Figure 5.2.3.2). This is supposed to occur because actually
it is always water but in different forms, so even if an index is designed to divide snow from
other ground covers it is possible to commit error in the presence of water. Another error
that occurred was that of the NDWI's classification of some snow strips as belonging to the
water class; it is assumed that, since they are perimeter strips, they are wet and melting snow,
so their high liquid water content led to their inclusion in this class.

A 01 2 4 6 8
Kilometers

Image classified by using NDSI,
NDWI, NDGI and NDSII

rock/ soil
water
snow, ice, debris]
ice

show

Figure 5.2.3.2 Image classified with NDSI, NDWI, NDGI, NDSII

In the image resulting from the application of the four indices, it can be seen that two new
classes have been added to the previous one, which overlap the snow/ ice class, but cover a
smaller area; this is what was expected (the pure snow and ice will be a part of the total snow/
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ice class, in which the debris is present, and again, the snow will be a part of the snow/ ice
total class). For the newly added classes, however, there is no ground truth and it is therefore
not possible to quantify the goodness of the classification, but a qualitative analysis of the
image produced can be made. The addition of the result of the last index concerning the
separation of snow from ice seems to be affected by the clouds, as it leaves some areas
uncovered in correspondence with the location of these, where the coverings classified by
the two previous indices emerge. Apart from this, the trend seems to be coherent, the areas
gradually left uncovered by these last two indices are mainly those around the perimeter of
the snow covers, which are supposed to be those most mixed with debris, as they are at the
foot of the mountains and more humid, and that present in the part between Mount Pond
and Mount Goddard, this is therefore also an area in depression, in which the snow will
consequently be more humid and mixed with debris as in the perimeter areas of the
mountains. It can be seen that in the image used as ground truth, taken after the one
analyzed, this part has been affected by melting of the snow present, which confirms what
has just been said.
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6. CONCLUSIONS

The k values reached in the confusion matrices of the Sentinel 2 image classifications were
not those desirable with an optical image, and this is due to the fact that a ground truth of
the same date was not available, the consequence of which is a much reduced snow cover in
the ground truth compared to the image analyzed; this has led to a User's Accuracy for this
class never exceeding 75%. This implies that what the algorithm detects as classification
errors, being snow points in the classified image and rock/ soil points in the ground truth, are
in fact only a consequence of reduced snow cover and not a misclassification.

In addition, the image was subject to partial cloud cover, which not only did not allow for a
full comparison of the optical image classifications with SAR ones in the covered areas, but
also led to errorsin the covered areas, lowering the quality of the optical image classifications:
when applying the cloud mask, there has always been an increase in the Producer's Accuracy
of the snow-ice class of 10-15%.

By using SAR images, the cloud problem doesn’t exist, but the classification is strongly
influenced by satellite illumination and island morphology, effects that are amplified when
speckle noise is reduced by using filters. Classifications have never achieved acceptable
results: in the case of the image with a single application of the Median filter, punctual errors
caused by the speckle were very evident in the classified images, it must however be
recognized that the snow cover on the Pond and Goddard Mountains was almost always
recognized; in the case of the image with multiple application of the Lee Sigma filter, the
correct recognition of the ground covers was almost never verified, except in some cases of
detection of part of the snow cover, it seems that the multiple application of a speckle
reduction filter also led to the reduction of the contrasts between the different ground covers,
thus preventing their recognition. In any case, the effect of illumination and the morphology
of the island has always been strong and influential in SAR images.

The k of the classification based on the use of indices was the highest, and this is because it
was possible to avoid the influence of clouds by using certain bands; this is therefore a road
that can be explored in the field of optical classification, if we want to overcome the problem
of cloud cover.

In conclusion:

- single polarimetry SAR backscattering images are not suitable for this type of classification
in an area of this type, where strong contrasts between covers are not present and
geometries are not simple;

- the classifications made with the optical image would have been better had it not been for
the influence of the cloud cover;

- the ground truth used was not optimal due to the different snow cover, and therefore led
to unreal errors when computing the confusion matrices, but the classifications already
provided by NASA and ESA were unusable;
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- the classification based on indices was the best as it seems to have led to a partial
circumvention of the cloud problem, so more studies could be carried out in this field.
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8. APPENDIX
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3.1 GEOLOGIC MAP

The geological map shown was compiled by Smellie and Lépez-Martinez in 2000 and
published by the British Antarctic Survey, together with the geomorphological map shown in
8.2 and an accompanying text, the book 'Geology and Geomorphology of Deception Island'
(Smellie et al., 2002), for the BAS GEOMAP Series project.
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3.2 GEOMORPHOLOGIC MAP

The geomorphological map shown was prepared by Smellie and Lopez-Martinez in 2000 and
published by the British Antarctic Survey, accompanying the geological map shown in 8.1 and
the book 'Geology and Geomorphology of Deception Island' (Smellie et al., 2002), for the BAS
GEOMAP Series project.
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8.3 TOPOGRAPHIC MAP

The topographic map shown is the second edition of a map drawn up by the Centro
Geografico del Ejército Espafiol in collaboration with the Universidad de Cadiz and dates from
2005.
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NOTAS ACLARATORIAS

Los trabajos de campo se efectuaron en el verano austral 1992-93, con 6ptimas condiciones en
cuanto a la escasez de recubrimiento de nieve. Ello favorecio una mejor observacion de los glaciares
y sus limites, asi como de las depresiones lagunares o con encharcamiento temporal

Este mapa representa la topografia de a isla tras las modificaciones provocadas por las Gltimas
erupciones volcanicas, incluidas las de 1967,1969 y 1970.

Algunos glaciares de Ia Isla Decepcion presentan dificultades de identificacion y delimitacion, al estar
total o parcialmente recubiertos por piroclastos.
Por ello, aunque se han hecho numerosas observaciones al respecto sobre el terreno, algunos de
sus limites representados en el mapa son aproximados.

Se ha distinguido entre lagos y depresiones con encharcamiento temporal, en funcion de las
condiciones existentes en las fechas citadas. Logicamente, en otros periodos de observacion pueden
presentarse condiciones distintas a las cartografiadas.

EXPLANATORY NOTES

Conditions for fieldwork were optimal due to scarce snow cover during souther summer 1992-1993.
This permitted a better observation of glaciers and their boundaries, depression ponds and temporary

swamp.

This mep showa the lopograghy of the ikand aler the modicetons osused by ihe et vakoan
eruptions, including those of 1967, 1969 and
Some glaciers of Deception Island are proms rdermfy and delimit because of total or partial cover
by pyrocasts. Although many field observations have been made, some boundaries shown on the
map are approximat

A distinction has been made between lakes and depressions with temporary swamp according fo
conditions existing at the time. Thus, there may be variations from those mapped.

HISTORIAL DEL MAPA

El mapa se ha realizado por restitucion fotogramétrica y por taquimetria clésica en los sectores no cubiertos por las fotografias o que han sufrido cambios con posterioridad a los
vuelos (afio 1986)

La zona costera se ha actualizado en base a una imagen del satéiite QuickBird con fecha de enero de 2003 cedida por el Laboratorio de Astronomia, Geodesia y Cartografia de la
Universidad de Cadiz, obtenida dentro del Proyecto GEODEC (REN2000-0551-C03).

El trabajo de campo para el apoyo fotogramétrico y el levantamiento taquimétrico y restitucién fué realizado por el Centro Geografico del Ejército entre noviembre de 1992 y febrero
de 1993,

La actualizacién, formacién cartogréfica y edicién han sido realizados por el C del Ejercito con la de la Universidad de Cadiz en el afio 2004/2005

Datos batimétricos obtenidos por el Instituto Hidrografico de la Marina y el Instituto Espariol de Oceanografia en las camparias antarticas 1988-89, 1989-90 y 1980-91

Localizacién de la fauna aportada por biélogos del proyecto ANT-91-1264 del Museo Nacional de Ciencias Naturales

Las observaciones geodésicas por medio de receptores GPS y calculos geodésicos han sido realizados por el Centro Geogrfico del Ejército y por el Real Observatorio de la Armada
(ROA) durante las campafias antarticas 1991-2 y 1992-93; completadas con las observaciones realizadas por la Universidad de Cadiz durante las campafias 2001-2002, 2002-2003
y 2003-2004 dentro de los proyectos GEODEC y OBGECON (REN2002-10767-E/ANT)

SHEET HISTORY

The map was made using photogrammetry and surveying in those areas which were not covered by aerial photographs or which had altered since being photographed (year 1986).
Coastal was updated using a QuickBird satellte image dated January 2003 lent by the Astronomy, Geodesy and Cartography Laboratory from University of Cédiz, obtained from
GEODEC (REN2000-0551-C03) project

The fieldwork took place between November 1992 and February 1993.

The updated, cartography and publication were made by the Geographical Center of the Army with the collaboration of the Cédiz University during 2004 and 2005,

Bathymetric data was collected by the Hydrographic Navy Institute and Spanish Oceanographic Institute in Antarctic expeditions of 1988-1989, 19891990 and 1990-1991

The distribution of fauna was plotted by biologists of the ANT-91-1264 project of the Natural Science Museur.

During the Antarctic expeditions of 1991-1992 and 1992-1993 the Geographical Center of the Army and Royal Observatory of the Navy (ROA) made geodetic observations using GPS
receptors and geodesical cakulations, finished with the surveyings of the Cadiz University in the Antarctic expeditions of 2001-2002, 2002-2003 and 2003-2004 of GEODEC and
(BGECON (REN2002-10767-E/ANT) projects.

Imagen Satéite en pseudocolor obtenida por
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3.4 IMAGES USED

The three satellite images used are reported below, in particular, the RGB combinations of
their bands are shown, furthermore, the ground truth produced according to the steps
explained in detail in chapter 4.3 using as sources the Pixel QA band of the Landsat image and
the topographic map of 2005 are also reported.

127



8

Kilometers

a. Sentinel 1 image

. Landsat 8 image
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3.5 SAR

In this section we will first report the effect of applying the different filters on the image, then
the four segmented images used for the classifications and finally the classifications, first
unsupervised and then supervised; in particular, in the case of the supervised ones, we will
report several images that were produced but not discussed in chapter 5 because they were
worse than those chosen and discussed in that chapter.
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8.5.1 EFFECT OF THE FILTERS

A comparison is made between the processed but unfiltered image (therefore still cropped,
calibrated, georeferenced and subjected to geometric correction) and the application of the
different filters used for the study; in particular, in the case of the Lee, Lee Sigma and Refined
Lee filters, the effect of the triple application of each filter is reported.
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a. Image without filters

b. Image with an application of Median filter

c. Image with three applications of Lee filter

13,5432 11,7435 11,4579
-29,6158 -27,3824 -23,2356
d. Image with three applications of Lee Sigma filter e. Image with three applications of Refined Lee filter
N 0o 1 2 4 6 8
B e s Kilometers
13,4942 7,49823
-22,8811 -25,6023
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8.5.2 SEGMENTED IMAGES

The four segmented images that were then used for unsupervised classification are shown,
one for each filtered image.
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a. Segmentation of the image with Median filter
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8.5.3 UNSUPERVISED CLASSIFICATION

The four images obtained from the unsupervised classification of those in 8.4.2 are shown.
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l‘\ 0 1 2 4 6 8
Kilometers

a. Unsupervised classification of the image with Median filter

c. Unsupervised classification of the image with Lee Sigma
filter

d. Unsupervised classification of the image with Refined Lee
filter
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8.5.4 SUPERVISED CLASSIFICATION

The different images obtained with the supervised classification of the image with Median
filter, and produced by changing the segment attributes and the number of classes, are
shown: when the use of the training samples of the water class led to an excessive error in
the classified image the number of classes was reduced from three to two, excluding the
training samples of this last class; subsequently we report the result of applying the same
combinations to the image with Lee Sigma filter.

The images will be divided by classifier: Maximum Likelihood, Random Trees, Support Vector
Machine, and in the cells of the tables the segment attributes used in the specific case will be
indicated.
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MAXIMUM LIKELIHOOD N

A 012 4 6 8 Legend
3 CLASSES, Image with Lee Sigma filter Kilometers snow/ ice [ rock/ soil I water
a. Standard Deviation b. Active Chromaticity Color + Standard Deviation c. Mean Digital Number + Standard Deviation

f. Mean Digital Number + Standard Deviation +
Compactness :

g. Active Chromaticity Color + Standard Deviation
+ Compactness
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MAXIMUM LIKELIHOOD N
A o124 6.8 Legend
2 CLASSES, Image with Median filter Kilometers rock/ soil snow/ ice
a. Standard Deviation b. Active Chromaticity Color + Standard Deviation c. Mean Digital Number + Standard Deviation

f. Mean Digital Number + Standard Deviation +
Compactness

g. Active Chromaticity Color + Standard Deviation
+ Compactness
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MAXIMUM LIKELIHOOD
2 CLASSES, Image with Lee Sigma filter

N
A 012 4 6 8
Kilometers

Legend

rock/ soil snow/ ice|

a. Standard Deviation

b. Active Chromaticity Color + Standard Deviation

c. Mean Digital Number + Standard Deviation
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f. Mean Digital Number + Standard Deviation +
Compactness :

g. Active Chromaticity Color + Standard Deviation
+ Compactness
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RANDOM TREES
3 CLASSES, Image with Median filter

N

A 012

Legend

rock/ soil snow/ ice

8

Kilometers

a. Mean Digital Number + Standard Deviation

b. Active Chromaticity Color + Standard Deviation

C. Active Chromaticity Color + Mean Digital Number +
Standard Deviation

d. Active Chromaticity Color + Standard Deviation +
Rectangularity

e. Active Chromaticity Color + Standard Deviation +
Compactness

h. Active Chromaticity Color + Mean Digital Number +
Standard Deviation + Compactness

i. Active Chromaticity Color + Mean Digital Number +
Standard Deviation + Compactness + Rectangularity
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RANDOM TREES
3 CLASSES, Image with Lee Sigma filter

A 012

4

6

g Legend
Kilometers snow/ ice [l rock/ soil [l water

a. Mean Digital Number + Standard Deviation

b. Active Chromaticity Color + Standard Deviation

C. Active Chromaticity Color + Mean Digital Number +
Standard Deviation

d. Active Chromaticity Color + Standard Deviation +
Rectangularity

e. Active Chromaticity Color + Standard Deviation +
Compactness

f. Active Chromaticity Color + Standard Deviation +
Compactness + Rectangularity

g. Active Chromaticity Color + Mean Digital Number
+ Standard Deviation + Rectangularity

h. Active Chromaticity Color + Mean Digital Number +
Standard Deviation + Compactness

i. Active Chromaticity Color + Mean Digital Number +
Standard Deviation + Compactness + Rectangularity
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SUPPORT VECTOR MACHINE

Image with Median filter

A 012

8 L egend

Kilometers rock/ soil snow/ ice [l water

a. Standard Deviation, 3 classes

b. Standard Deviation + Count of Pixels, 3 classes

c. Active Chromaticity Color + Standard Deviation +
Count of Pixels, 3 classes

d. Active Chromaticity Color + Standard Deviation +
Rectangularity, 3 classes

e. Active Chromaticity Color + Mean Digital Number +
Standard Deviation, 3 classes

f. Active Chromaticity Color + Standard Deviation +
Count of Pixels, 2 classes
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SUPPORT VECTOR MACHINE

Image with Lee Sigma filter

N

A 012

4

6

g Legend
Kilometers snow/ ice [l rock/ soil [l water

a. Standard Deviation, 3 classes

]

b. Standard Deviation + Count of Pixels, 3 classes

|

c. Active Chromaticity Color + Standard Deviation +
Count of Pixels, 3 classes

d. Active Chromaticity Color + Standard Deviation +
Rectangularity, 3 classes

e. Active Chromaticity Color + Mean Digital Number +
Standard Deviation, 3 classes

f. Active Chromaticity Color + Standard Deviation +
Count of Pixels, 2 classes
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3.6 OPTICAL

This section is divided into the three types of classification to which the optical image has
been subjected. In addition, the index-based classification section shows not only the final
classified images, but also the index images, the binary images obtained by applying limits to
each index and the index histograms. The effect of applying the cloud mask is also shown each
time.
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8.6.1 UNSUPERVISED CLASSIFICATION

The image obtained with the unsupervised classification and the effect of applying the cloud
mask are shown.
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8.6.2 SUPERVISED CLASSIFICATION

The images obtained with the three classifiers Maximum Likelihood, Random Trees and
Support Vector Machine and then the application of the cloud mask to them are shown.
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8.6.3 INDEX CLASSIFICATION

As anticipated in 8.5, the images of the indices, their histograms, the binary images obtained
from the application of the limits identified for each and finally the final classified images,
followed by the effect of the application of the cloud mask, are reported in this order.
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BINARY IMAGES
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CLASSIFIED IMAGES

a. Image classified by using NDSI and NDWI

b. Image a. cloud mask application
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