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Abstract

(ITA)

La tesi ha come obiettivo l’analisi di tempi ciclo provenienti da un macchinario per
stampaggio a iniezione di materiale plastico al fine di catturare l’evoluzione tempo-
rale dei dati tramite un semplice processo stocastico, che possa essere utilizzato
per fare previsioni sulla produzione.

I dati ottenuti presentano evidenti change point del valor medio, e un numero
importante di valori che appaiono anomali. Una panoramica riguardante statistiche
robuste ad outliers è stata effettuata per poi applicare un algoritmo per individuare
in maniera robusta le locazioni dei change-point (a questo fine due classi di algoritmi
sono state implementate e messe a confronto).

Il modello finale considera la variabilità indotta da ritardi di misurazione, stiman-
done il contributo sulla variabilità totale con un approccio prima frequentista,
approssimato, e in seguito con un analisi più precisa di tipo bayesiano.

(ENG)

The main objective of the thesis is the analysis of plastic manufacturing cycle times
coming from an injection moulding machine with the aim of developing a stochastic
process which represents the evolution of the data over time and can be useful
when it comes to predictions.

Since anomalies are found and the expected value of the cycle time may change
throughout the data, the thesis presents an overview of robust statistics with the
aim of properly developing a robust change-point model (for this purpose two
classes of change-point algorithms are applied and compared).

The final model, where the impact of measurement delay on the process variability
is taken into account, is built at first with a frequentist approach, based on a
distribution approximation, then with a more precise bayesian approach.
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Chapter 1

Introduction

The thesis is the analysis of a dataset retrieved, with the help of Cluster Reply srl,
from an injection moulding machine from a plastic factory: the measurements are
made using a sensor which detects the timestamps when the machine closes and
opens, as well as the times when the machine turns on and off (the so called on-off
cycles).

The dataset originally consisted in various JSON files, each one of them consists in
a list of timestamps and signal changes.

The signal by which the cycle time is retrieved is “machine_open”, meaning that a
cycle time can be defined as the difference between two machine openings. When the
machine turns on the first “machine_open” signal is interpreted as the beginning
of the first cycle time, for the same reason the last cycle time measured finishes
with the last “machine_open” signal before the machine turns off.

Another useful measure is the “machine_open_counter” signal which increments
every time that “machine_open” goes to 1.

A processed version of the original data is presented and will be the base of all the
data analysis.
N=nrow(pp.tot)
head(pp.tot)

## i time.n time.s count
## 1 1 1590037860 2020-05-21 07:10:59 23190
## 2 1 1590037887 2020-05-21 07:11:26 23191
## 3 1 1590037914 2020-05-21 07:11:53 23192
## 4 1 1590037941 2020-05-21 07:12:20 23193
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## 5 1 1590037967 2020-05-21 07:12:47 23194
## 6 1 1590037994 2020-05-21 07:13:14 23195

The dataset pp.tot consists of four variables:

• Variable "i" is the index of the on-off cycle of the event

• Variable "time.n" is a numeric conversion of the timestamp

• Variable "time.s" is the timestamp in format "AAAA-MM-DD HH:MM:SS,0S"

• Variable "count" is the updated number of the counter when an event occurs

This dataset is expected to be the realization of a counting process, so the first
thing is to check if negative counter anomalies are present.

The following chunk of code will generate a matrix with as many rows as the
counter anomalies that are found and three columns, useful to inspect the anomaly.
#check counter for errors/overflows
count.tot=pp.tot$count
#find anomalies
count.anom<-which(diff(count.tot)<0)+1

#inspect anomalies
t(sapply(count.anom,function(i) count.tot[(i-1):(i+1)]))

## [,1] [,2] [,3]
## [1,] 38955 112 55226
## [2,] 65535 0 1
## [3,] 6292 181 6427

It is easy to see that, out of the three anomalies revealed, the second is an overflow
of a 16-bit counter (in fact 65535 = 216 − 1). This means that, in order to have a
realization of a counting process, the number 216 is added to every counter value
after the overflow anomaly.
pp.tot[count.anom[2]:N,]$count<-pp.tot[count.anom[2]:N,]$count+2^16

The other anomalies have to be inspected a little better
count.tot=pp.tot$count
count.anom<-which(diff(count.tot)<0)+1
alply(count.anom,1,function(i) pp.tot[(i-1):(i+1),])[1:2]

## $`1`
## i time.n time.s count
## 15759 9 1590601653 2020-05-27 19:47:32 38955
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## 15760 10 1591356141 2020-06-05 13:22:20 112
## 15761 10 1591356150 2020-06-05 13:22:29 55226
##
## $`2`
## i time.n time.s count
## 32255 72 1591793084 2020-06-10 14:44:44 71828
## 32256 73 1591796669 2020-06-10 15:44:28 65717
## 32257 73 1591796669 2020-06-10 15:44:29 71963

Both counter anomalies happen at the beginning of an on-off cycle, as testified
by the changing of the variable “i”, these events recorded are not likely to be the
beginning of a cycle time so they will be simply removed from the data.

A plot of the manufacturing process is shown in order to check for further anomalies
pp.tot<-pp.tot[-count.anom,]
pprocess<-split(pp.tot,pp.tot$i)
pprocess<-lapply(pprocess,function(x) x[names(x) !="i"])
plot(pp.tot$time.n,pp.tot$count,xlab="Timestamp (numeric)"
,ylab="Counter",type="o")

1590000000 1591000000 1592000000
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+0
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Figure 1.1: Counter-Timestamp plot
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It can be seen that only positive increments are present, however positive anomalies
have to be inspected yet. Usually positive anomalies are related to missing data
in the manufacturing process, in fact the company noticed that the sensor had
stopped working for some days.
count.tot=pp.tot$count
table(diff(count.tot))

##
## 1 2 3 5 6 7 14 23 51 135 16271
## 64962 24 11 3 1 1 1 1 1 1 1

The difference between counter values in almost the totality of cases is 1, though it
could be seen, also from the previous results, that some data are missing. Next
step is to find where these data are missing.

The most likely place to find missing data is between two on-off cycles,
count.miss<-which(diff(count.tot)>1)+1
list.miss<-lapply(count.miss,function(i) pp.tot[(i-1):(i+1),])
length(list.miss)

## [1] 45

The variable “count.miss” retrieves the position of the event following the missing
data, while the list “list.miss” shows the rows of the dataset immediately before
and after the missing data. It is not practical to inspect the list elements one by
one, instead the change of the variable “i” concurrently with the missing data will
be shown.

First of all there has to be a change in the variable “i” in each of these data chunks.
all(sapply(list.miss,function(l) length(unique(l$i)))==2)

## [1] TRUE

Once this is verified it can be seen that the missing data in each element of “list.miss”
are between the first and the second row, an example is reported below
list.miss[[1]]

## i time.n time.s count
## 7192 1 1590227162 2020-05-23 11:46:02 30381
## 7193 2 1590374338 2020-05-25 04:38:58 30388
## 7194 2 1590374364 2020-05-25 04:39:24 30389

What is expected, as in this case, is a change of the variable “i” from the first to
the second row, meaning that the machine has been turned off, then on and this is
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the cause of the missing data.
all(sapply(list.miss,function(l) diff(l$i)==c(1,0)))

## [1] TRUE

It can be now stated that all missing data are between on-off cycles. This statement
means that a single on-off cycle in the manufacturing process is a counting process.

1.1 Inter-Event Times
The most interesting measures of this manufacturing process are the cycle times,
which are the times between two “machine-open” events or inter-event times,
#list
iet.l<-dlply(pp.tot,"i"
,function(pp) data.frame(i=pp$i[-1]

,iet=diff(pp$time.n)
,t.start=pp$time.s[-nrow(pp)]
,t.end=pp$time.s[-1]
,count.end=pp$count[-1]))

#data frame
iet.tot<-do.call("rbind",iet.l)
n=nrow(iet.tot)
head(iet.tot)

## i iet t.start t.end count.end
## 1.1 1 27.41664 2020-05-21 07:10:59 2020-05-21 07:11:26 23191
## 1.2 1 26.70909 2020-05-21 07:11:26 2020-05-21 07:11:53 23192
## 1.3 1 26.85811 2020-05-21 07:11:53 2020-05-21 07:12:20 23193
## 1.4 1 26.68684 2020-05-21 07:12:20 2020-05-21 07:12:47 23194
## 1.5 1 26.80361 2020-05-21 07:12:47 2020-05-21 07:13:14 23195
## 1.6 1 26.64586 2020-05-21 07:13:14 2020-05-21 07:13:40 23196

The data frame “iet.tot” has 5 variables:

• Variable "i", met before, is the on-off cycle

• Variable "iet" is the inter-event time, which will be object of analysis

• Variables "t.start" and "t.end" are the timestamps of the events related to the
inter-event time

• Variable "count.end" is nothing more than the counter value at "t.end"
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1.2 Descriptive Statistics

Some descriptive statistics are made about the cycle time, in order to better
understand its behaviour. The most trivial ones are mean and variance (expressed
in seconds).
data.frame(mean.iet=mean(iet.tot$iet) ,var.iet=var(iet.tot$iet)
,max.iet=max(iet.tot$iet),min.iet=min(iet.tot$iet))

## mean.iet var.iet max.iet min.iet
## 1 26.60116 17.01496 138.3013 0.2648757

The variability of the process seems high, however it is very unlikely for a production
time to be 100 times lower than its average, this suggests that some anomalies in
this dataset can be present. In this case a boxplot can be useful for a preliminary
anomaly detection.
boxplot(iet.tot$iet,horizontal = TRUE)
abline(v=mean(iet.tot$iet),col="red")

0 20 40 60 80 100 120 140

Figure 1.2: Cycle Time Boxplot
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It can be seen that most of the data are narrowed near and slightly under the mean,
while most of the variability comes from a decent amount of anomalies.

It can be of interest to capture the distribution of the majority of the cycle times
in order to develop a model, for this purpose a kernel density plot of the central
90% of the data is computed.
plot(density(iet.tot$iet[iet.tot$iet<quantile(iet.tot$iet,0.95) &
iet.tot$iet>quantile(iet.tot$iet,0.05)]),main="",

xlab="Inter-Event Time (s)")
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Figure 1.3: Density Plot of trimmed IET

The distribution is multimodal, this excludes some simple models for a manufac-
turing cycle time, like a nice distribution fitting.

Another tool which can be helpful in choosing a model for the cycle times can be
the (robust) autocorrelation plot, which gives some information since most of the
inter-event times are consecutive. The function acfrob, from package robts [1][2]
will be further discussed in Section 2.4
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acfrob(iet.tot$iet,approach="rank")
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Figure 1.4: Spearman’s ACF of the Cycle Times

The plot represents a strong correlation between variables for all lags considered,
which can be the result of non-stationary cycle times. This means that more
detailed analysis of the variables over time should be done.

1.3 Cycle Times over time
Given the results of the auto-correlation plot, it is clear that most descriptive
statistics are not helpful in finding a sensible fit for the data.

The variable “machine_open_counter” plays now a more important role, since it
tells the evolution of the cycle times over time. In order to better understand the
inter-event time behaviour in this process a plot is shown with the counter on the
x axis and the IET on the y axis
plot(iet.tot$count.end,iet.tot$iet,xlab="Counter (end)",ylab="Cycle Time")
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Figure 1.5: Counter - Cycle Time plot

By seeing this plot the leap caused by missing data is evident, what is also evident
is the presence of a wide range of values for the cycle time, this usually denotes
the presenct of outliers.
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Another plot is shown where missing data are not considered.
plot(iet.tot$iet,type="l",ylab="Cycle Time")
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Figure 1.6: Evolution of Cycle Time, not counting missing data

By seeing this plot the first interesting thing about inter-event times comes out:
there are changes in the mean of the cycle time, this is particularly evident between
index 30000 and 40000.
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Now, in order to further inspect the data a plot of the cycle times between 30000
and 40000 is shown, where the vertical red lines represent any cycle time after
which the machine is turned off.
plot(30000:40000,iet.tot$iet[30000:40000],type="l",xlab="Index"
,ylab="Cycle Time")abline(v=which(diff(iet.tot$i)==1)+1,col="red")
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Figure 1.7: Zoomed plot with on-off cycles

This plot tells not only that some changes in mean are present, they also happen
to be in the middle of the manufacturing process, not only when the machine is
turned off then on.

The main results of a preliminary analysis are:

• Some structural breaks in the mean processing time are present and their
positions are not known. A change-point model can explain a good part of
the cycle time variability.

• Some outliers are present in the dataset, this means that most of the traditional
statistical models do not work and there is the need of a robust model in order
to fully explain the processing time variability.
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1.4 Preprocessing
It is clear from the results listed that a change-point model has to be used even for
preprocessing.

The first assumption, which is reasonable when dealing with a manufacturing
process, is that the inter event times are independent. The second assumption is
that the process variance, not considering outliers doesn’t change over time.

Having this in mind the standard deviation can be estimated with a quantile-based
estimator such as MAD, which will be discussed in Chapter 2
s<-iet.tot$iet
sigmah<-mad(diff(s)/sqrt(2))
sigmah

## [1] 0.1110669

In order to prove the fact that a robust change-point model has to be implemented
, the first model will be based on the simple quadratic (L2) loss and a BIC-like
penalty. Being this model sensitive to outliers, the expected result of the fitting
will consist in more segments than expected, some of which are composed of only
one point (which is almost certainly an outlier).

The non-robust model is applied and the number of change-point estimated will
be shown. The function rob_seg.std from package robseg [3] will be discussed
further in Section 4.2
s_<-s/sigmah
cpm.l2<-Rob_seg.std(s_,loss="L2"

,lambda=3*log(n))
cpm.l2$K

## [1] 261
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plot(s,ylim=c(20,60))
lines(cpm.l2$smt*sigmah,col="red")
abline(v=cpm.l2$t.est[-cpm.l2$K],col="blue")
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20
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50

60

Index

s

Figure 1.8: Change-points in L2 model

It is clear that this model doesn’t fit well, since most change-points are actually
caused by the outliers in the data.

The segments caused by outliers have generally length equal to one, it can be seen
how many of them have been found.
sum(diff(c(0,cpm.l2$t.est))==1)

## [1] 142

The necessity of a robust model is proven by the inadequacy of the L2 model, for
this purpose a model which uses a robust statistic is applied now for preprocessing
and discussed later in Chapter 4
cpm.biw.prep<-Rob_seg.std(s_,loss="Outlier"

,lambda=3*log(n) ,lthreshold=3)
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data.frame(n.cp=cpm.biw.prep$K,min.dist=min(diff(cpm.biw.prep$t.est)))

## n.cp min.dist
## 1 28 58

The minimum segment length is sufficiently high to tell that groups of outliers are
not classified as segments.

In order to verify the resistance to outliers of this preprocessing model a plot of
the data is shown.
plot(s,ylim=c(20,60))
lines(cpm.biw.prep$smt*sigmah,col="red")
abline(v=cpm.biw.prep$t.est[-cpm.biw.prep$K],col="blue")

0 10000 20000 30000 40000 50000 60000

20
30

40
50

60

Index

s

Figure 1.9: Change-Points in Robust Model

By looking at the plot, where the blue vertical lines represent change-point locations,
the proposed preprocessing model can be actually useful in order to detect outliers
and to get more information about the distributions of the inliers.
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Once the change-point model is done, the means for each segment are found and
the centered data (per segment mean) are obtained and plotted
smt<-cpm.biw.prep$smt*sigmah
res<-(s-smt)

plot(res,ylim=c(-3*sigmah,3*sigmah))
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Figure 1.10: Centered Data Plot

In an interval of ±3σ there do not seem to be any abrupt changes in variance.
A model with inlier variance independent by the segments can be taken into
consideration.
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Another hypothesis that has to be verified for the centered data is independence
between the cycle times, which requires no autocorrelation. For the purpose a robust
correlogram of the centered data is made. The method used for the autocorrelation
is Spearman’s rho, which will be discussed later in Section 2.4, along with the GK
estimator, which, in this case, gives similar results.
acfrob(res,approach="rank",cor.method="spearman")
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Figure 1.11: Autocorrelation function of centered data

Figure 1.11 shows a significant autocorrelation for lag 1, which breaks the indepen-
dence hypothesis. The consequences of this are:

1. The model of the manufacturing process is not adequate as it assumes inde-
pendence.

2. Due to the negative autocorrelation at lag 1, the estimator of the standard
deviation based on differences σ̂ = MAD

(
∆−√

2

)
overestimates the scale param-

eter.
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3. Most Change-point models assume independence between the data in a seg-
ment, this means that some attention has to be payed when fitting a change-
point model.

A more sensible estimate of the standard deviation can be made by recalling the
previous model and using a robust estimator of the standard deviation on the
variable res
print(sigmah<-scaleTau2(res))

## [1] 0.08965183

1.5 Outlier Analysis
th=4.5*sigmah
iet.tot<-cbind(iet.tot,outl=abs(s-smt)>th)
outl<-which(abs(s-smt)>th)
plot(outl,s[outl],xlab="# items produced"

, ylab="Inter-Event Time")
lines(smt,col="red")
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Figure 1.12: Outliers Plot
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From this plot it is clear that outliers are almost homogeneous in the data (despite
the segments around 40k items are much more regular than the rest).

Now a data frame summarizing any outlier in the dataset will be created.

Variable “pos” is the number of the items produced, which is also the position of
the outlier in the dataset, “value” represents the actual value of the outliers,“mean”
is the mean of the segment in which the outlier is found, “n.seg” is the number of
such segment and dev is the deviation of the outlier from its mean.
outliers<- data.frame(pos=outl,mean=smt[outl])
outliers<-cbind(iet.tot[outl,],outliers,dev=(s-smt)[outl]

,n.seg=sapply(outl,function(x)
sum(x>cpm.biw.prep$t.est))+1)

head(outliers)

## i iet t.start t.end count.end
## 1 1 27.41664 2020-05-21 07:10:59 2020-05-21 07:11:26 23191
## 3068 1 27.40986 2020-05-22 05:55:40 2020-05-22 05:56:07 26258
## 3069 1 25.97131 2020-05-22 05:56:07 2020-05-22 05:56:33 26259
## 3214 1 27.73439 2020-05-22 07:00:39 2020-05-22 07:01:07 26404
## 3215 1 25.79535 2020-05-22 07:01:07 2020-05-22 07:01:33 26405
## 6077 1 95.75740 2020-05-23 03:43:33 2020-05-23 03:45:08 29267
## pos mean dev n.seg
## 1 1 26.69729 0.7193524 1
## 3068 3068 26.69729 0.7125730 1
## 3069 3069 26.69729 -0.7259829 1
## 3214 3214 26.69729 1.0370981 1
## 3215 3215 26.69729 -0.9019459 1
## 6077 6077 25.90339 69.8540147 2

Some peculiar patterns can be noticed by looking at this dataframe:

• There are groups of consecutive outliers.

• Some of the groups are composed by a high outlier followed by a low outlier
for which the sum of the deviations from the mean is around 0.

1.5.1 Consecutive Outlier Analysis
First it has to be known how many groups of consecutive outliers are in the dataset.
In order to detect them a list of these groups is created
out.cons<-list()
temp<-NULL
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for(i in 1:(length(outl)-1)){
temp<-rbind(temp,outliers[i,])
if(diff(outliers$count.end)[i]!=1)
{

temp<-cbind(temp,cumdev=cumsum(temp$dev))
if(nrow(temp)!=1) out.cons[[length(out.cons)+1]]<-temp

temp<-NULL
} }

rows.out<-sapply(out.cons,nrow)
data.frame(n.cons=length(out.cons)
,perc.cons= sum(rows.out)/length(outl)*100

,min.group=min(rows.out),max.group=max(rows.out))

## n.cons perc.cons min.group max.group
## 1 31 40.96386 2 4

The list has 31 distinct groups and covers more than 40% of all outliers. Among
them it is interesting to find the groups of consecutive outliers W that do not
reject the hypothesis

M∑
i

Wi −Mµ = 0

whereM is the cardinality of a single group and ∆i is a non-outlier inter-event time.
Roughly speaking: the deviations within a single group of outliers have to almost
cancel each other. Another condition has to be met: the cumulative deviation
cannot be significantly lower than zero.

A possible explanation can be a gross error in a single measure while the manufac-
turing process is still going under control, as if it was an outlier for the measurement
delay εi. A check must be done in order to verify whether a piece has been actually
produced. The other outliers may be related to the actual manufacturing process
more than to the measurement system.
#estimates of the standard deviation of the sum of i consec residuals
#CAREFUL, BD point is not 50%
sh=sapply(1:max(rows.out)

,function(i) {
w=numeric(n-i)
for(j in 1:(n-i)){

w[j]=sum(res[j:(j+i)])
}
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mad(w)
} )

alpha=0.05

df.consdevs<-data.frame(
mindev=sapply(out.cons,function(x) min(abs(x$cumdev)))
,mindev.h0=sapply(out.cons,function(x)

min(abs(x$cumdev))<qnorm(1-alpha/2)*sh[which.min(abs(x$cumdev))])
,pos.min=sapply(out.cons,function(x) which.min(abs(x$cumdev)))
,n.in.group=rows.out
,prev.dev.pos=sapply(out.cons,function(x) {
pos=which.min(abs(x$cumdev))
ifelse(pos==1,return(F),return(all(x$cumdev[1:(pos-1)]>0)))

}))
head(df.consdevs)

## mindev mindev.h0 pos.min n.in.group prev.dev.pos
## 1 0.01340992 TRUE 2 2 TRUE
## 2 0.13515227 TRUE 2 2 TRUE
## 3 0.17758828 TRUE 2 2 TRUE
## 4 0.11218375 TRUE 2 2 TRUE
## 5 0.05138215 TRUE 2 2 TRUE
## 6 0.10738906 TRUE 2 2 TRUE

Now the groups of measurement outliers are isolated, the next code chunk shows
how many of these groups are present, how many outliers have been detected and
their percentage over all data.
symm<-which(df.consdevs$mindev.h0 & df.consdevs$prev.dev.pos)

list.symm<-lapply(symm
,function(i) out.cons[[i]][1:(df.consdevs$pos[i]),] )

n.out.meas<-sum(sapply(list.symm,nrow)-1)
data.frame(n.groups.meas=length(symm),
n.out.meas=n.out.meas,perc.out.meas=n.out.meas/N*100)

## n.groups.meas n.out.meas perc.out.meas
## 1 15 16 0.0246116

It can happen that, in a group of consecutive outliers, some are symmetric and
some are not. The variable “remaining” collects any non-symmetric outlier in a
group where symmetric ones are present.
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remaining <- lapply(symm
,function(i)
ifelse(df.consdevs$pos[i]<df.consdevs$n.in.group[i],
out.cons[[i]][(df.consdevs$pos[i]+1):(df.consdevs$n.in.group[i]),]
,0))

remaining<-remaining[-which(sapply(remaining,function(x) x==0))]
remaining

## list()

In this case there are no outliers that satisfy this condition.

Now a list containing any non-symmetric outlier is created.
out.nsc.l<-merge.lists(out.cons[-symm]
,remaining[which(sapply(remaining,nrow)>1)])
out.notcons<-outliers[-unique(c(which(diff(outliers$count.end)==1)

,which(diff(outliers$count.end)==1)+1)),]
out.notcons<-cbind(out.notcons,cumdev=out.notcons$dev)
out.list<-merge.lists(out.nsc.l,as.list(split(out.notcons,
seq(nrow(out.notcons)))))

1.5.2 On-off cycle edge outliers
Now the focus is on those (groups of) outliers that appear right after the machine
turns on or right before it turns off. The causes of these anomalies have to be taken
into consideration, however, when it comes to study the in-control process, they
can be discarded since the time-series of the production can be started later or
ended earlier.
edge.end<-!sapply(out.list,function(df)
(df$count.end[nrow(df)]+1) %in% iet.tot$count.end)

edge.start<-!sapply(out.list,function(df)
(df$count.end[1]-1) %in% iet.tot$count.end)

outl.left<-do.call("rbind",out.list[!(edge.end | edge.start)])

This kind of outliers is discarded from the vector pprocess.
ts.out.start = do.call("rbind",out.list[edge.start])$t.start
ts.out.end = do.call("rbind",out.list[edge.end])$t.end

pprocess<-lapply(pprocess,function(df)
df[!(df$time.s %in% c(ts.out.end,ts.out.start)),])
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pprocess<-pprocess[sapply(pprocess,nrow)>1]
pprocess<-lapply(1:length(pprocess),
function(n) cbind(i=n,pprocess[[n]]))
pp.tot<-do.call("rbind",pprocess)

So the inter-event times can be updated.
iet.tot<-iet.tot[-do.call("c",sapply(out.list[(edge.end| edge.start)],
function(x) x$pos)),]
s<-iet.tot$iet

The result is a preprocessed dataset where this type of outliers is removed. Mind
that these outliers can be important in a more accurate outlier analysis, hence in
that case they cannot be discarded. The analysis will be aimed on finding the best
robust segmentation for the preprocessed data and, for this purpose, some robust
statistics and robust change-point models are introduced in the next chapters.
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Chapter 2

Robust Statistics

Real data often contain a main group of points following some distribution F and
some observations that differ very significantly from the main group, following a
distribution ∆, generally with very large variability: these observations are called
outliers. Generally the former distribution is the most interesting one and, in order
to estimate its parameters, some attention has to be payed to outliers since their
presence can drastically affect the results of the most common estimators. In order
to solve this issue some robust estimators are presented in this chapter, along with
some description and measures of efficiency and robustness.

2.1 Breakdown Point as a measure of robustness
In order to find the most suitable estimator given a data set, a quantitative
measure of robustness and resistance to outliers is needed. A simple and useful
measure of robustness can be the minimum percentage of outliers needed to ruin
the performance of an estimator, this is the key concept of the breakdown point,
first introduced by Hampel in 1968 [4].

Definition 2.1.1. Consider a sample X with j elements coming from an "outlier"
distribution ∆(x) and n− j elements coming from a distribution F (x) , let θ̂(X)
be an estimator of a parameter θ, with parameter space Θ. The finite-sample
breakdown point is defined as the maximum ε∗ so that

θ̂(X) ∩ ∂Θ = ∅ ∀∆(x), ∀ j
n
< ε∗

This quantity is generally a function of the sample size n: for example the finite-
sample Breakdown Point of the sample mean estimator is 1

n
, meaning that a single
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observation over n in the sample is sufficient to "ruin" the estimate.

2.1.1 Asymptotic Breakdown Point
Even more interesting is the asymptotic behavior of the breakdown point. By
choosing n → ∞ it can be proven that the breakdown point of the asymptotic
estimator θ̂∞ depends only on the distribution.

Definition 2.1.2. Consider a mixture distribution of ∆(x) with probability ε and
F (x) with probability 1− ε. Let θ̂∞ be the asymptotic estimator of θ, with parameter
space Θ. The (asymptotic) breakdown point is the maximum ε∗ so that

θ̂∞((1− ε)F + ε∆) ∩ ∂Θ = ∅ ∀∆(x),∀ε < ε∗

which is the definition given for example in [5]. From now on, the asymptotic
breakdown point will be referred simply as "breakdown point".

2.2 Measures of Location

2.2.1 M-Estimators
One of the most efficient way to estimate a parameter is by maximizing a given
function of data and parameters, this is the key concept of the robust M-estimators
for the location, first proposed by Huber in 1954 [6] as a generalization of the
Maximum Likelihood Estimators.

Definition 2.2.1. Let X be a set of random variables, let θ be a set of parameters
to be estimated. An M-estimation of θ is the solution of the minimization problem

θ̂ = argmin
θ

(∑
i

ρ(Xi,θ)
)

Where ρ(Xi,θ) : Ω → R denotes a generic function of the random variables and
parameters.

It can be seen that the standard MLE for i.i.d. variables can be obtained by
choosing

ρ(Xi,θ) = − log
(
fX|θ(Xi|θ)

)
where fX|θ(Xi|θ) is the probability density function of X with parameters θ.
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This general definition can be, by choosing appropriate functions, applied success-
fully in robust statistics. The two most important functions used in literature will
be presented.

Robust functions for M-estimators

A popular function for robust estimates is developed by Huber [6] in 1964.

Definition 2.2.2 (Huber’s M-estimator). Let X be a set of random variables, let
µ be a location parameter to be estimated. The Huber function for M-estimation of
the location is defined, for each Xi ∈X as

ρH(Xi, µ) =
(Xi − µ)2 |Xi − µ| ≤ K

2K|Xi − µ| −K2 |Xi − µ| > K

ψH(Xi, µ) =
Xi − µ |Xi − µ| ≤ K

K sgn(Xi − µ) |Xi − µ| > K
(2.1)

Definition 2.2.3. Let X be a set of random variables, let µ be a location parameter
to be estimated. The Tukey’s Bisquare function for M-estimation of the location is
defined, for each Xi ∈X as

ρT (Xi, µ) =

1−
(

1−
(
Xi−µ
K

)2
)3

|Xi − µ| ≤ K

K2 |Xi − µ| > K

ψT (Xi, µ) =

(Xi − µ)
(

1−
(
Xi−µ
K

)2
)2
|Xi − µ| ≤ K

0 |Xi − µ| > K
(2.2)

There is a non-differentiable biweight loss used in [7] which follows

ρB(Xi, µ) =
(Xi − µ)2 |Xi − µ| ≤ K

K2 |Xi − µ| > K
(2.3)

2.2.2 L-Estimators
The main feature of the L-estimators is the use of a linear combination of sample
quantiles in order to derivate a suitable estimation of the location, this approach is
also suitable for highly variable distributions, even with unbounded first or second
moments.
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Sample Median

The simplest L-estimator is the sample median, defined for a sorted (ascending)
sample X as it follows:

X̃ =
Xn+1

2
if n odd

1
2(Xn

2
+Xn

2 +1) if n even

The sample median has the advantage to be easy to calculate once the elements
in a sample are sorted, furthermore it has a breakdown point of 50%, which
makes it resistant in case of heavily contaminated distribution; it however presents
some inefficiency for example under the hypothesis of a normal distribution of the
sample. Let f(x) be the sample’s probability density function,then the asymptotic
distribution of the sample median can be derived from the asymptotic distributions
of the sample quantiles.

X̃∞ ∼ N
(
m,

1
4nf 2(m)

)
(2.4)

where m is the median of the distribution f(x).

Under the assumption of a normal distribution, E[X̃∞] = m = µX , so the sample
median is an unbiased estimator of the mean. Its efficiency, calculated as the
inverse of its asymptotic variance, is lower than the sample mean estimator. Under
normality its variance can be expressed as πσ2

2n , thus, the sample variance has a
relative efficiency of 2

π
≈ 63.7% with respect to the sample mean, which is the Best

Linear Unbiased Estimator.

Trimmed Mean

In presence of a supposedly known percentage α of outliers in the sample it is
possible to use the α-trimmed mean, which is the mean calculated after discarding
the α lowest and the α highest observations.

2.3 Measures of Scale
A dispersion or scale estimator follows the following properties:

Shift invariance: if the sample is shifted by a constant c the dispersion estimator
does not change

θ(X + c) = θ(X) ∀c ∈ R (2.5)
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Scale equivariance: if the sample is multiplied by a constant c the dispersion
estimator will be multiplied by c too

θ(cX) = |c|θ(X) ∀c ∈ R (2.6)

The most common example for a scale estimator is the standard deviation, calculated
as the square root of the sample variance: in fact

√
S2(X + c) =

√
S2(X) = σ̂ and√

S2(cX) =
√
c2S2(X) = |c|

√
S2(X) = |c|σ̂

2.3.1 Median Absolute Deviation
Definition 2.3.1. The median absolute deviation (MAD) of a sample X is defined
as the median of the absolute differences between X and its median.

MAD(X) = med|X −med(X)|

Having in mind the properties of the median it is trivial to verify equations 2.5
and 2.6.

MAD is probably the most used robust dispersion estimator, the two main reasons
why it is so popular are:

• MAD is computationally simple and efficient as it involves the calculation of
two medians, this is an advantage especially for large datasets.

• MAD has a high breakdown point: since it involves only medians its breakdown
point is equal to the median’s one, 50%.

Before applying this estimator to data there are some things to consider.

Theorem 2.3.1. Suppose that a sample X with cardinality |X| = N follows a
normal distribution with mean µ and variance σ2. Then

lim
N→∞

E[MAD(X)] = Φ−1(0.75)σ ≈ 0.675σ

The natural consequence is that MAD is a biased estimator of σ, this bias can be
easily removed by correcting the sample MAD. Throughout the thesis the corrected
MAD will be written as MADc(.).

In R the function mad is already implemented with the bias correction and will be
used throughout the thesis.

Furthermore it is not advised to use the MAD estimator if the distribution of the
sample is suspected to be skewed (other measures like IQR are preferrable in this
case).
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MAD normal efficiency

Efficiency under normality for the MAD can be computed considering first the
distribution of the deviation from the median in a normal distribution.

X −med(X) ∼ N
(

0, πσ
2

2n + σ2
)

(2.7)

Which is a sum of two independent normal RV. For sake of simplicity in notation
πσ2

2n +σ2 will be defined as σ2
d Due to the fact that a normal distribution is symmetric

around its median (and mean) it can be written that

P [|X −med(X)| > a] = 2P [X −med(X) > a] (2.8)

Finding the median of this absolute value is equal to find the quantile m so that

2P [X −med(X) > m] = 2P
[
Z >

m

σd

]
= 1

2

according to the standard normal table m = 0.675σd. By doing the limit for
N → ∞ the result of Theorem 2.3.1 is given. Its asymptotic efficiency can be
calculated by recalling (2.4) and observing that the density of the absolute value of
a normal with mean 0 is the double of a normal, only on positive values. So it can
be written that

lim
N→∞

fAD(m) = 2
σ
√

2π
exp

(
−m

2

2σ2

)
≈
√

2
σ
√
π

exp
(
−0.6752

2

)

It is now possible to write the variance of the MAD

lim
N→∞

V ar[MADc] ≈ (0.675)2πσ
2

8n exp
(
−0.6752

2

)
(2.9)

The efficiency of this estimator is calculated, with normality, to be 37% of the
sample standard deviation. With this in mind, looking for more efficient estimators
can be useful in order to get more accurate values for the dispersion parameter in
a dataset with outliers.
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2.3.2 Efficient alternatives to MAD
Although the MAD brings several advantages it might be useful to introduce
two more efficient estimators that have, as MAD the maximum breakdown point
possible, which is 50%. These estimators are implemented efficiently in the R
package robustbase [8] [9].

Q-Estimator

Rousseeuw and Croux [10] came up with two main alternatives to MAD, the most
used of which is the Q-Estimator, which has 82% of efficiency under normality.

Definition 2.3.2 (Rousseeuw and Croux’s Qn). Given a sample X the robust
scale estimator Qn is defined as

Qn(X) = C {|Xi −Xj|; i < j}(k)

Where

k =
(⌊

n
2

⌋
+ 1

2

)

the notation {.}(k) denotes the k-th order statistic and C is a constant for consis-
tency.

In order to get some idea of its computational time the estimate of the scale
parameter of the vector res defined in is performed
system.time(Qn(res))

## user system elapsed
## 0.08 0.00 0.08

τ-Estimator

The location-scale robust estimator τs is introduced and defined by Yohai and
Zamar [11]. In order to better understand how τs is made two functions are
introduced.

W1(x, c) =
(

1−
(
x

c

)2
)2

1(|x| < c); W2(x, c) = min(x2, c2)

It is interesting to note that the function W1 resembles the Tukey’s Bisquare
mentioned in while W2 resembles the Biweight estimator.
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Definition 2.3.3 (Yohai and Zamar). Given a sampleX with sample size N = |X|
the robust scale estimator τs is defined as

τs(X)2 = MAD(X)2

N

N∑
i=1

W2

(
Xi − µτ (X)
MAD(X) , c2

)

Where µτ is an estimate of the location parameter defined starting from the weights

wi = W1

(
Xi −Med(X)
MAD(X) , c1

)
as µτ =

∑N
i=1wiXi∑N
i=1wi

The constants c1 = 4.5 and c2 = 3 are chosen according to Maronna and Zamar [12]
(section 3), so that they "yield approximately 80% efficient univariate location and
scale for both normal and Cauchy data", which is comparable to the Qn estimator
seen previously.

In order to get some idea of its computational time the same estimate of the scale
parameter as Qn is performed
system.time(scaleTau2(res))

## user system elapsed
## 0 0 0

This suggest the preferrable use of the τs estimator when dealing with large datasets.

2.4 Robust Autocorrelation
The last measure to be presented in some robust alternatives is the correlation,
which further in the thesis is going to be used when calculating the autocorrelation
plot of a time series with outliers.

The standard measure of correlation, by Pearson, uses sample variances which, as
stated before, have a breakpoint of 0%, thus can lead to misleading results even in
presence of a single outlier.

2.4.1 Spearman’s ACF
Spearman [13] proposed a non-parametric alternative to the Pearson’s correlation
coefficient, this makes it possible to define a robust, non-parametric auto-correlation
which will be useful to analyze time series with outliers.
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Definition 2.4.1 (Spearman’s rho). Let Yt be a continuous time-series, let r a be
a function that converts observations in a sample into ranks. If no ties are present

r(Yi) =
∑
j

1{Yj > Yi}

Spearman’s autocorrelation at lag k is defined as the Pearson’s autocorrelation at
lag k performed on ranks

ρs(Yt, k) =
ˆCov[r(Yt), r(Yt−k)]

ˆV ar[r(Yt)]

Where ˆCov is the sample covariance and ˆV ar is the sample variance of the ranks.

If no ties are present (which is likely in samples from a continuous distribution)
there is a fast way to calculate ρs(Yt, k)

1− 6∑N
i=k+1[r(Yi)− r(Yi−k)]

N(N2 − 1)

Which is the formula used by any statistical software.
system.time(acfrob(res,approach="rank",plot=F))

## user system elapsed
## 0.04 0.00 0.12

The rank correlation is easily computable and fast, however its breakdown point is
not trivial and it is well explained by Davies and Gather [14].

2.4.2 GK Estimator
The GK estimator for autocorrelation is based on the covariance estimator by
Gnanadesikan and Kettenring [15] which in 1972 used the identity

Cov(X, Y ) = 1
4 (V ar[X + Y ]− V ar[X − Y ])

to relate a robust covariance function to the calculation of robust variance functions.

Ma and Genton in 2000 [16] revisited this approach in order to build an autocorre-
lation function one lag at a time.
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Definition 2.4.2 (GK autocorrelation). Let Zt be a time series with N = |Zt|. In
order to find its correlation at lag i, let X = {Zj : j > i} and Y = {Zj : j < N − i}.
Let S2

r (.) be a robust estimator of the variance, then the GK autocorrelation is
defined as

ρGK(i) = S2
r (X + Y )− S2

r (X − Y )
S2
r (X + Y ) + S2

r (X − Y )

The breakdown point of this statistic is at most 25%, since an outlier in Zt may
appear twice in both X + Y and X − Y and the maximum breakdown point for an
estimator is, as previously said, 50%.

Now a test on the computational time of this robust autocorrelation is performed.
system.time(acfrob(res,approach="GK",scalefn = scaleTau2,plot=F))

## user system elapsed
## 7.55 0.23 8.04

The computation of this statistic is much more expensive, even when using a fast
estimator like τs. However it is recommended when dealing with a significantly
contaminated dataset (≈ 20% of outliers).
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Chapter 3

A Manufacturing System
Model with Measurement
Delays

This short chapter will focus on a statistical model of negative correlated inter-
event times in a manufacturing process composed by one station, providing an
explanation for the negative correlation that may arise in some situations.

3.1 Model with independent IETs

When dealing with a single station in a manufacturing process, the main hypothesis
that can be made is that, as long as the machine is on there are always raw materials
ready to be processed. This means that the station is modeled as a degenerate
G/GI/1 queue where the idle time for any piece is exactly 0, the service times X
are independent, and the departure process has independent IETs which are equal
to the service times.

The departure process is modeled as a counting process with an increment when
the piece i is produced; when this event occurs the related timestamp is registered.

A set of random variables Y is defined where Yi is the time where the i-th new
piece is produced since the machine has been turned on and begun the actual
production process. The simplest model, where the service times are i.i.d., states
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that

Pi =
∑
i

Xi supp{fX(x)} ⊆ [0,∞) (3.1)

so, by defining Y as the set of the inter-event times

Yi = Pi − Pi−1 = Xi (3.2)

In order to characterize the distribution of Xi some assumptions have to be made
about the type of distribution, then its parameters can be estimated by maximizing
the likelihood function.

Even in presence of change-points and outliers, if equation 3.2 holds it is possible
to obtain a correct estimate of the scale parameter using robust estimators and
some properties of the differences of random variables.

Let Y −t = {Y2−Y1, . . . , YT−YT−1} be the (ordered) vector of consecutive differences
for Yt. Then

Y −i =
µj+1 − µj + ηi+1 − ηi if i ⊆ τ
ηi+1 − ηi otherwise

This means that E[Y −i |i ⊆ τ ] = µj+1 − µj and E[Y −i |i /⊆ τ ] = 0, having that
P [i ⊆ τ ] = n

T
. This also means that V ar[Y −i ] = 2V ar[η] = 2σ2 ∀i.

Since Y −t follows a contaminated distribution it is possible to estimate σ by choosing
Ŝr(Y −t ), a consistent robust estimator of σY −t with breakdown point higher than
1
T

(n+ 2nω).

σ̂ =
Ŝr
(
Y −t

)
√

2
(3.3)

Where nω is the number of outliers present in Yt, since a single outlier in Yi has a
role in observations Y −i and Y −i+1.

Since n and nω are unknown it is recommended to use an estimator with the highest
possible breakdown point (50%), such as MADc. This explains the estimate of the
scale parameter sigmah in Section 1.4, since the elements in Yt were assumed to
be independent.
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3.2 Model with non negligible delays
When dealing with processes with low variability, a negative correlation between the
inter-event times can happen, apparently breaking the hypothesis of independence
for the service times. However, in formulating equation 3.1, a strong hypothesis
has been made: the effect of any measurement error is negligible, so that it can be
set to zero. If a negative correlation is present it is possible that this hypothesis is
not valid, in order to prove it the measurement errors are modeled with a set of
i.i.d. random variables ε with finite mean and variance.

Pi =
∑
i

Xi + εi supp{fX(x)}, supp{fε(e)} ⊆ [0,∞) (3.4)

If this model is correct the inter-event times will be expressed as follows

Yi = Pi − Pi−1 = Xi + εi − εi−1 (3.5)

It can be seen that E[Y ] = E[X] and V ar[∆] = 2V ar[ε] + V ar[X]

Calculating the autocovariance of lag 1 of the inter-event times, supposing X and
ε independent

Cov[Yi, Yi−1] = Cov[Xi + εi − εi−1, Xi−1 + εi−1 − εi−2] = −V ar[εi]

So the autocorrelation at lag 1 becomes

ρ1(Y ) = − V ar[ε]
V ar[Y ] = − V ar[ε]

2V ar[ε] + V ar[X]

It can be of interest to see that the estimate as written in (3.3) is biased.

First it can be observed that, if (3.5) is valid, then, for any i not affected by outliers
or change-points

Y −i = ηi+1 − ηi + εi+1 − 2εi + εi−1

Meaning that V ar[Y −i ] = 2σ2 + 6σ2
ε .
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If Ŝr(Y −t ) is, as mentioned above, a robust, consistent estimator of σY −t , then

E

[
Ŝr

(
Y −√

2

)]
=
√
σ2 + 3σ2

ε /=
√
σ2 + 2σ2

ε (3.6)

Which proves that the estimate is biased, hence not correct.

Note that when V ar[X] � V ar[ε] the model can be simplified to the one in
equation 3.1, regardless of E[ε] which can assume (in theory) any value.

The model can be difficult to deal with, since the fact that measurement delays
are present creates dependence between the observations in the same on-off cycles.
Mind that the fact that in (3.5) there is a dependence only to εi−1 does not make
the variable Yi dependent only on Yi−1: the variable Yi, given that the machine
turns on before Y1 is dependent on Y(1:i). The computation of the likelihood for
this model can be complex, since the calculation of the joint distribution involves
an integration on ε, however the next section presents an approximated case where
the integration can be simplified, then computed numerically.

3.3 Model with Normal Approximations
There are some processes with extremely low variability so that the inter-event
times can be approximated to a distribution with support in R: as an example if
the Xi follow a bell-shaped distribution (i.e. Gamma) with E[X] = 10

√
V ar[X]

the probability for the moment-fitted normal to go below zero is roughly 7.62 ·10−24,
which is totally negligible.

In this section the model, starting from equation 3.4 and from a normal approx-
imation of the variables X and ε is studied. It is important to know that this
approximation does not always apply since, in order to be as close as possible to a
normal the conditions µ� σ and µε � σε have to be respected.

A density plot of the centered data (variable res in section 1.4) is drawn in figure
3.1 which shows a normal-like behaviour. The model can be applied since the mean
never goes below 20 seconds while the standard deviation is in the order of 10−1

seconds.
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Figure 3.1: Density plot of the centered data (no outliers)

Treating these positive distributions as normal has to be done carefully, however
the model based on it has a huge advantage: it is possible to find an efficiently
computable likelihood.

Theorem 3.3.1. Let Y be a set of random variables which can be written as in
equation 3.5 where Xi ∼ N (µi, σ2) and εi ∼ N (µε, σ2

ε). The log-likelihood of Y
assumes the form

`(Y ;θ) = −2N + 1
2 log(2)− N

2 log(πσ2)− N + 1
2 log(σ2

ε)−
1
2

N∑
i=0

log(ai)−
N+1∑
i=0

ci

where
c0 =

N∑
i=1

(Yi − µi)2

2σ2 , ci = − b2
i−1

4ai−1
∀i ∈ {1...N + 1}

and {ai, bi} is a system of successive recursions.

Proof. In order to prove this theorem an expression for the total likelihood function
of Y has to be found.
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By the law of total probability for continuous distributions

f(Y |θ) =
∫

ΩN+1
ε

f(Y |ε,θ)df(ε|θ)

Where Ωε is the support of any ε ∈ ε.

By conditioning on ε, it can be observed that every Yi is independent to each other
and follows

Yi|ε ∼ N (µ+ εi − εi−1, σ
2) (3.7)

So the likelihood function can be expressed as an N+1-dimensional integral

f(Y |θ) = C
∫
RN+1

exp
[
−

N∑
i=1

(ξi − εi + εi−1)2

2σ2 −
N∑
i=0

(εi − µε)2

2σ2
ε

]
dε (3.8)

where ξi = xi − µi an C =
(
(2π)2N+1(σ2)N(σ2

ε)N+1
)− 1

2 .

The first thing to see when writing the probability density function of Y is that
the parameter µε is not identifiable.

It can be in fact observed that, for any value of µε, the substitution ε∗i = εi − µε in
the integral can be done for all i; this results in

1√
(2π)2N+1(σ2)N(σ2

ε)N+1

∫
RN+1

exp
[
−

N∑
i=1

(ξi − ε∗i + ε∗i−1)2

2σ2 −
N∑
i=0

ε∗i
2

2σ2
ε

]
dε∗

This means that any choice of µε leads to the same likelihood function, hence the
parameter is not identifiable.

In order to simplify some calculations, the integral will be solved by putting µε = 0,
the result will be the same for all µε.

Developing the squares, (3.8) will become

C
∫
RN+1

exp
[
−
(

N∑
i=1

ξ2
i

2σ2 +
N∑
i=1

ε2
i

2σ2 +
N−1∑
i=0

ε2
i

2σ2 −
N∑
i=1

εiεi−1

σ2 −
N∑
i=1

ξiεi
σ2 +

+
N∑
i=1

ξiεi−1

σ2 +
N∑
i=0

ε2
i

2σ2
ε

)]
dε
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now the following quantities are defined.

αN = α0 = 1
2σ2 + 1

2σ2
ε

; αi = 1
σ2 + 1

2σ2
ε

∀i ∈ {1 . . . N − 1}

β0 = ξ1

σ2 ; βN = −ξN
σ2

βi = ξi+1 − ξi
σ2 = ∀i ∈ {1 . . . N − 1}

γ = − 1
σ2

c0 =
N∑
i=1

ξ2
i

2σ2

So that the likelihood can be written as

C
∫
RN+1

exp
[
−
(

N∑
i=0

αiε
2
i +

N∑
i=0

βiεi +
N−1∑
i=0

γεiεi+1 + c0

)]
dε

Now every term that involves ε0 is isolated

Ce−c0
∫
RN

exp
[
−
(

N∑
i=1

αiε
2
i +

N∑
i=1

βiεi +
N−1∑
i=1

γεiεi+1

)] ∫ ∞
−∞

I0dε0dε(1:N)

having defined

I0 = exp
{
−
[
a0ε

2
0 + (b0 + γε1)ε0

]}
where a0 = α0 and b0 = β0.

By completing the square the integral can be solved

∫ ∞
−∞

I0dε0 = exp
(

(b0 + γε1)2

4a0

)√
π

a0

so that the likelihood becomes
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C

√
π

a0
e−c0−c1

∫
RN−1

exp
[
−
(

N∑
i=2

αiε
2
i +

N∑
i=2

βiεi +
N−1∑
i=2

γεiεi+1

)] ∫ ∞
−∞

I1dε1dε(2:N)

with
c1 = −b

2
0

4a0
; I1 = exp

{
−
[
a1ε

2
1 + (b1 + γε2)ε1

]}

where
a1 = α1 −

γ2

4a0
; b1 = β1 −

γb0

2a0

By grouping terms and integrating, it is possible to obtain recursive sequences for
ai and bi.

ai = αi −
γ2

4ai−1
(3.9)

bi = βi −
γbi−1

2ai−1
(3.10)

ci = − b2
i−1

4ai−1
(3.11)

The initial conditions are a0 = α0 and b0 = β0 as stated previously.

After N+1 integrations the likelihood becomes

L(θ;Y ) = C

√√√√ πN+1∏N
i=0 ai

exp
(
−

N+1∑
i=0

ci

)

= 1√
2(2N+1)(πσ2)N(σ2

ε)N+1∏N
i=0 ai

exp
(
−

N+1∑
i=0

ci

) (3.12)

Then the log-likelihood can be computed as

`(θ;Y ) = −2N + 1
2 log(2)− N

2 log(πσ2)− N + 1
2 log(σ2

ε)−
1
2

N∑
i=0

log(ai)−
N+1∑
i=0

ci.

(3.13)

The proof is concluded.
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In order to find the ML estimates µ̂ , σ̂2 and σ̂2
ε , the log-likelihood in this form

involves a system of recursive successions instead of an N+1-dimensional integral,
thus it can be easily maximized numerically with functions like nlm (for which it is
advised to log-transform the variances since it is an unconstrained minimizer).

The model, despite its approximations, will be used in the next chapters in order
to select the best change-point model: the approximated likelihood captures the
negative autocorrelation at lag 1 with the introduction of the parameter σ2

ε , making
it a fast and more reliable (with respect to the models that assume independence
between the inter-event times) way to measure how well a change-point model fits
to this type of data.
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Chapter 4

Change-Point Analysis

4.1 Modeling change-points in mean
Given a Time-Series Yt = {Y1, Y2, . . . , YT} a number n of change-points, an ordered
vector of change-point locations τ : τj+1 > τj ∀j ∈ {1, . . . , n − 1} and a set of
n+ 1 probability density functions p = {p1(y), ..., pn+1(y)} are assumed.

Change-point models are a class for which the following condition is respected:

fYi
(y) = pj(y) ⇐⇒ τ cj < i ≤ τ cj+1 (4.1)

Where τ c = {0, τ , T}.

The main objectives, given this class of models are:

1. A correct estimate n̂ of the number of change-points

2. A correct estimate τ̂ of the location of these change-points

3. A correct estimate p̂(y) of the probability density functions.

A frequent hypothesis in change-point models is that the probability densities in
p come from the same class of distributions (i.e. normal, gamma) and the only
difference between them is represented by one or more parameters.

The focus in this chapter will be on optimal detection of change-points in the
expected value of the distribution p(y), so that the model in (4.1) becomes

Yi = µj + ηi ⇐⇒ τ cj < i ≤ τ cj+1 (4.2)
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where µ is a vector of real numbers and η is a set of identically distributed random
variables with mean 0. Various change-point in mean algorithms are applied to
the manufacturing process cycle times and compared in order to determine the
most suitable segmentation for that type of data. The algorithms presented involve
functions and statistics that are resistant to outliers, seen in chapter 2.

4.2 Robust Loss Function Minimization
The change-point problem can be formulated as a minimization of a well-chosen
loss function.

In order to choose a loss function for the whole data it is recommended to define
one for a segment.

The main option is the quadratic loss for a given segment

ξ(Yt, µj, τ cj , τ cj+1) =
τc

j+1∑
i=τc

j +1
(Yi − µj)2 (4.3)

In this case minimizing µj is the equivalent of doing a Maximum Likelihood
Estimation of the mean for each segment, assuming i.i.d. normal distributions.
Dealing exclusively with shift in the mean with constant variance, the minimization
of the sum over all segments of the minimized quadratic losses will be equal to
the MLE of the time series following this model. In order to prevent overfitting a
constant penalty is added for every change-point added to the model.

C(Yt, τ ) =
∑
j

(
min
µj

ξ(Yt, µj, τ cj , τ cj+1) + β
)

(4.4)

The penalty β can be viewed in this case as a model selection criterion, in fact the
most popular choices of it are the ones which relate to some information-based
(AIC or BIC) or some other known model selection criterion.

When dealing with outliers in the data, the quadratic cost as described in (4.3) is
not reliable, as seen in Figure 1.8.

Given a time series Yt with one change-point τ and one outlier Yk, there is a value
of Yk for which, using the quadratic loss minimizing it isn’t possible to find τ .

Suppose that k < τ , if Yk = (T − τ)µ2 − (τ − 1)µ1 then the expected values of the
sample means become
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E[µ̂1] = E[Y (−k)
1:τ ] +E[Yk] = (τ − 1)µ1 + (T − τ)µ2− (τ − 1)µ1 = (T − τ)µ2 = E[µ̂2]

When it comes to the minimization of the loss function, the introduction of a new
change-point is very unlikely if the penalty β is properly chosen. In order to avoid
this type of problems the introduction of new robust estimators is needed.

A general formula for the loss function of a segment can be

ξ(Yt, µj, τ cj , τ cj+1) =
τc

j+1∑
i=τc

j +1
γ(Yi, µj)

The choice for γ(Yi, µj) has to be made so that outliers do not affect the change-
point model. A function that mitigates the presence of extreme values is the Huber
Loss (see Definition 2.2.2) . Huber’s loss is unbounded, therefore it is not resistant
to arbitrarily high or low values in Yt.

The algorithm used to minimize the loss function is the R-FPOP, created by
Fearnhead and Rigaill [7] as a robust version of the Functional Pruning Optimal
Partitioning (FPOP) by Maidstone, Hocking ,Fearnhead, Rigaill [17].

The R-FPOP algorithm is implemented on the R function Rob_seg.std by Rigaill
in the package robseg [3].

A model using Huber loss is applied to the data using the recommended lthreshold.
cpm.hub<-Rob_seg.std(s_,loss="Huber"

,lambda=2*log(n)
,lthreshold=1.345)

cpm.hub$K

## [1] 160

The number of change points is less than what found using a non-robust algorithm.
However there is a huge risk that some segments are formed by only one element.
It can be seen, using the estimated change-point locations how many segments
have length equal to one.
sum(diff(c(0,cpm.hub$t.est))==1)

## [1] 73

This quantity, in a robust model has to be equal to zero.
#plotting the huber loss model
plot(s,ylim=c(20,60))
abline(v=cpm.hub$t.est[-cpm.hub$K],col="blue")
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Figure 4.1: Change Points using Huber’s Loss

The plot in figure 4.1 tells that the Huber loss is not robust enough, as it classifies
some outliers as segments. This behaviour can be explained by the fact that, as
mentioned in section 2.2.1, this loss function is unbounded, therefore it is not
resistant to arbitrarily high or low values in Yt.

In case of extreme values in the time series it is advised to use a bounded function
like the Biweight Loss ρB as in (2.3). The parameter lthreshold for the algorithm
is set to 3 as recommended in [7], meaning that K = 3σ̂.
cpm.biw.bic<-Rob_seg.std(s_,loss="Outlier"

,lambda=2*log(n)
,lthreshold=3)

cpm.biw.bic$K

## [1] 40
plot(s,ylim=c(20,60))
lines(cpm.biw.bic$smt*sigmah,col="red")
abline(v=cpm.biw.bic$t.est[-cpm.biw.bic$K],col="blue")
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Figure 4.2: Change-points using Biweight Loss (penalty: 2log(N) )

The number of change-points is much lower than what found in Huber’s loss and
figure 4.2 shows that (most of) the outliers do not affect the change-point model.
This result can be explained by theorem 2 in [7] which states that the minimum
segment length has a lower bound which is function of the parameters lambda and
lthreshold. In this case

msl =
⌈

2 log(N)
32

⌉
= 3

It can be of interest to compute the length of the shortest segment, given this
model.
data.frame(single.segs=sum(diff(c(0,cpm.biw.bic$t.est))==1),
min.dist=min(diff(cpm.biw.bic$t.est)))

## single.segs min.dist
## 1 0 7

As expected there are no segments of length 1. The smallest segment, which has
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length equal to 7, is very likely to be a group of outliers. The segmentation is
clearly not optimal and there is no information criterion that justifies the choice of
the penalty, hence it has to be improved and the best way to do it is by applying
an efficient algorithm that helps tuning the penalty parameter.

4.2.1 Robust CROPS
Change-point over a Range Of Penalties (CROPS) is an algorithm aimed to
detect all the optimal segmentations within a chosen penalty range [β0, β1] in a
change-point problem solved with loss minimization. The algorithm is created and
developed by Haynes, Eckley and Fearnhead [18] and is based on two key concepts:

• The number of change-points found is a monotonically decreasing function of
the penalty.

• if two different penalties return the same number of change-points, then the
change-point locations have to be the same.

The crops function used in the following code chunk is created by following
Algorithm 2 in [18] using the robust FPOP algorithm with biweight loss, via the
function rob_seg.std, instead of PELT. The input parameters are respectively
the data (in this case scaled by its standard deviation estimate), the minimum and
the maximum of the penalty range and the parameter K of the biweight loss.
crops.biw<-crops(s_,2*log(n),50*log(n),3)
crops.biw<-crops.biw[order(crops.biw$ncp),]
crops.biw<-aggregate(crops.biw,by=list(crops.biw$ncp),FUN = min)[,-1]
crops.biw$beta.log<-crops.biw$beta/log(n)
crops.biw<-cbind(crops.biw,msl=sapply(crops.biw$beta,
function(b) min(diff(c(0,Rob_seg.std(s_,
loss="Outlier",lambda=b,lthreshold=3)$t.est)))))
crops.biw<-crops.biw[crops.biw$msl>=30,]
head(crops.biw)

## ncp beta cost beta.log msl
## 1 14 361.0536 65785.57 32.58651 166
## 2 16 354.3906 65063.46 31.98515 166
## 3 18 342.2343 64368.00 30.88799 58
## 4 19 317.9216 64028.45 28.69368 58
## 5 20 175.1829 63732.16 15.81095 58
## 6 22 165.3832 63381.80 14.92648 58

The resulting data frame has five variables:

• ncp is the number of change-points found
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• beta is the penalty required to find the number of change-points

• beta.log is the penalty divided by the logarithm of n

• cost is the total cost function minimized by the robust FPOP algorithm

• msl is the minimum length of a segment. Penalties for which the value of msl
is less than 30 are discarded

If the data were independent the cost function could be useful in order to detect
the optimal segmentation through a scree plot. Instead the penalties found via the
CROPS algorithm are used to find the approximate log-likelihood given a number
of change-points.
suppressWarnings(
for(i in 1:nrow(crops.biw)){

cpts<-c(0,Rob_seg.std(s_,loss="Outlier"
,lambda=crops.biw$beta[i]
,lthreshold=lth)$t.est)

meds=sapply(1:(crops.biw$ncp[i])
,function(j) median(s[(cpts[j]+1):cpts[j+1]]))

wps<-model.cp.wp(mu=meds
,sigmah^2/2,sigmah^2/2)

cpm.loss.biw.ll[i]=-nlm(mlltot,wps,x=df.ll,cps=cpts[-1])$minimum
})

Now that the approximated log-likelihoods are computed and maximized a scree
plot can be done in order to inspect how this likelihood evolves in the various
models.
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plot(crops.biw$ncp,cpm.loss.biw.ll
,xlab="Number of Changepoints"
,ylab="LogLikelihood")

15 20 25 30

40
00

0
80

00
0

12
00

00
16

00
00

Number of Changepoints

Lo
gL

ik
el

ih
oo

d

Figure 4.3: CROPS scree plot for biweight loss minimization

The scree plot for the chosen range of penalties is shown in Figure 4.3. There is a
huge leap in the likelihood, probably meaning that for the maximum penalty in the
range the model is underfit. Since the penalties in the range that give change-point
models with minimum segment length less than 30 are discarded due to overfitting,
the optimal value can be surely found in the scree plot.

This huge leap makes it difficult to see where the optimal change-point model is
among the penalties chosen by CROPS, so the first two values will be cut from the
plot
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plot(crops.biw$ncp[-(1:2)],cpm.loss.biw.ll[-(1:2)]
,xlab="Number of Changepoints"
,ylab="LogLikelihood")
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Figure 4.4: CROPS zoomed scree plot for biweight loss minimization

A zoom of the scree plot has been made and an "elbow" is not so evident, though
a choice of 28 change-points may represent a good compromise between a high
value of the approximated likelihood and a low risk of finding a segment which
is too short. The penalty to be used is retrieved from the row of the dataframe
crops.biw.
cpm.loss.ll.opt<-cpm.loss.biw.ll[which(crops.biw$ncp==28)]
beta.sel=crops.biw$beta[which(crops.biw$ncp==28)]
cbind(crops.biw[which(crops.biw$ncp==28),-3],logl=cpm.loss.ll.opt)

## ncp beta beta.log msl logl
## 12 28 46.82276 4.225939 58 156868.3

The model is then saved and, in Figure 4.5 plotted along with the estimated
change-point locations (blue vertical lines) and the M-estimate of the mean for
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each segment (red lines).
cpm.loss.biw<-Rob_seg.std(s_,loss="Outlier",lambda=beta.sel,lthreshold=3)
smt=cpm.loss.biw$smt*sigmah
plot(s,ylim=c(25,27),type="l")
lines(smt,col="red")
abline(v=cpm.loss.biw$t.est[-cpm.loss.biw$K],col="blue")
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Figure 4.5: Optimal change-point model based on biweight loss

The model seems reasonable: by looking at the plot the change-points are not too
many, neither too close to each other and the visible changes are detected; also the
presence of outliers seem not to affect at all the model.

4.3 Binary Segmentation
A popular class of change-point algorithms is represented by the binary segmenta-
tion, first introduced by Vostrikova [19].

Given a segment Y with length N its binary segmentation consists in three phases:

1. find a change-point candidate τ̂ among all the points in Y
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2. test if a change-point is actually present in τ̂

3. if a change-point is present in τ̂ perform binary segmentation on Y(1:τ̂−1) and
Y(τ̂ :N)

Ideally phase 1 is performed by using a measure Ai(Y ) which tells, for each point i,
how likely is a structural break at i and the point where this number is maximized
will represent a change-point candidate.

So, at every iteration of the algorithm

τ̂ = argmax
i
Ai(Y )

In this sense, the binary segmentation is a greedy algorithm since, according to
measure Ai(Y ), at every iteration the optimal choice for one possible change-point
is made.

Once this is done, the candidate change-point has to be tested. It is common to do
the hypothesis test using:

H0 : No change-point is present, HA : A change-point in τ̂ is present

and a measure Ai(Y ) so that, under H0, MA = maxiAi(Y ) has a cumulative
distribution FM(x). This will be the case of the two statistics which will be
used in a binary segmentation setting in order to detect changes in mean on the
manufacturing data.

4.3.1 CUSUM statistic
The CUSUM is a statistic initially proposed by Page in 1954 for statistical process
control purposes. Montgomery [20] describes it as a valid alternative to the Stewhart
control chart, more powerful in detecting small (≤ 1.5σ) structural breaks.

Definition 4.3.1. Given a time series Yt and an estimate of the location parameter
µ̂Y the CUSUM statistic for the i-th sample is built as it follows

Ci =
i∑

j=1
(Yj − µ̂Y )

Where µ̂Y = 1
N

∑N
j=1 Yj. The CUSUM statistic has become very popular in

statistical control since it is easy and fast to calculate.

In order to detect a structural break, the CUSUM statistic, given the data has to
be tested. the hypotheses will be:
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H0 : µi = µ ∀i

Meaning that there is no evidence for a change-point in mean, and

HA : ∃τ : µτ /= µτ+1

Meaning that a change-point is present. The point where the absolute value of the
CUSUM statistic is the highest will be considered as the possible change-point:
as example, if a positive change in mean is present the points before it are likely
to be below µ̂, making the CUSUM decrease, whereas after the change-point the
CUSUM will increase, as the points will likely be above µ̂, thus the maximum of
the CUSUM absolute value is likely to be the change-point.

The CUSUM statistic for independent variables has another advantage: under H0
its asymptotic behaviour can be obtained using the so-called Functional Central
Limit Theorem, which has been proven by Donsker [21].

Theorem 4.3.1 (Donsker). Let X = {Xi} be a set of N i.i.d. random variables
so that E[X] = 0 and V ar[X] = 1. Let Si = ∑i

j=1Xi be the set of the cumulative
sums and let W (N)

t = SbNtc√
N

be the partial-sum process rescaled to t ∈ [0,1]. Then

W
(N)
t → W (t) t ∈ [0,1]

is convergent in distribution as N → ∞, where W (t) is the standard brownian
motion.

By Definition 4.3.1, the CUSUM statistic can be rewritten as the difference of two
sums

Ci(Y ) =
i∑

j=1
Yj −

i

N

N∑
j=1

Yj

If Yj are i.i.d. random variables with mean µ and variance σ2, in order to apply
Theorem 4.3.1 it can be observed that

Ci(Y )
σ̂

=
i∑

j=1

(Yj − µ)
σ̂

− i

N

N∑
j=1

(Yj − µ)
σ̂

where σ is a (asymptotically) consistent estimator of the standard deviation, is
composed of two sums of random variables with mean 0 and variance 1.
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Now the process can be rescaled, this means that i = bNtc

CbNtc(Y )
σ̂
√
N

→ W (t)− tW (1) = B(t)[0,1] (4.5)

in distribution as N →∞. The process B(t)[0,1] is called a Brownian Bridge defined
over the interval [0,1].

Under H0 with large samples the variable to be tested follows the same distribution
of max |B(t)[0,1]| which, as proven by Shorack and Wellner [22] follows a Kolmogorov
Distribution

P

[
1√
Nσ̂

max
i
|Ci(Y )| < x

]
= 2π

x

∞∑
j=1

exp
(
−(2j − 1)2π2

8x2

)
(4.6)

Given this result it is possible to test the hypothesis with significance α for a single
change-point.

Robust CUSUM

The presence of extreme outliers may have a negative impact on the CUSUM
statistic: suppose that an observation ω ∈ Y at time tω can be arbitrarily large,
then

∃ω∗ : ω > ω∗ =⇒ argmaxtCt = tω

meaning that, even if a change-point is present in a different location, the CUSUM
statistic will prefer tω.

Also, in case of i.i.d. variables (no structural breaks)

∃ω∗ : ω > ω∗ =⇒ 1√
Nσ̂

max
i
|Ci(Y )| > K1−α ∀α ∈ (0,1)

where K1−α is the 1− α quantile of the Kolmogorov distribution, this means that
a structural break will be detected in presence of a sufficiently large outlier.

It can be stated that even the presence of a single outlier is enough to give inaccurate
results when the CUSUM statistic is used. In order to overcome this issue an
alternative using a biweight-like transformation is presented.
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The main idea is that, as in the loss-minimizing functions, a CUSUM-like measure
on the set Y can be obtained by using the some data transformation φK(Y ) which
has to be particularly robust to extreme outliers.

φK(Y ) =


K Yi > µ̂+K

−K Yi < µ̂−K
Yi − µ̂ otherwise

where µ̂ is the M-estimator of the location parameter using equation 2.3. This
transformation is similar to the Biweight Loss applied in section 4.2 and it can be
seen that, even in presence of an extreme outlier ω at time tω, the robust CUSUM
statistic

Ci (φK(Y ))

treats it as if it were µ̂±K (depending on the value of ω) . Note that, in order to
obtain a sensible CUSUM statistic, K has to be chosen properly, this involves the
use of a robust estimator of the scale parameter as in 2.3.

A binary segmentation algorithm based on robust CUSUM is implemented in the
function binseg.rob.cusum, a slightly modified version of binseg.mean.cusum
from the package changepoint by Killick [23] [24]. The original function from
changepoint has several input parameters: Q is the maximum number of change-
points, after which the algorithm stops; the parameter pen is set at the 95% of the
Kolmogorov cumulative distribution (for which package CPAT [25] is used), this is
equivalent to say that, at every iteration, a test with α = 5% is performed in order
to verify if a change-point is present; the minimum segment length minseglen is
set to 30 in order to avoid the segmentation of groups of outliers.
cpm.bs.cus.95<-binseg.rob.cusum(s,Q=200,
pen=CPAT:::pkolmogorov(0.95),minseglen = 30)
cpm.bs.cus.95$op.cpts

## [1] 112

The number of change-points found is much higher than what found in section 4.2,
hence there is a risk of overfitting. It is necessary, as in the robust loss minimization,
to tune the penalty parameter in order to avoid it and the approximated likelihood
function from Chapter 3 will help.

55



Change-Point Analysis

For each step of the binary segmentation (at which a change-point is added), the
approximated likelihood, given the change-points, is maximized and collected in the
vector cpm.bs.cus.ll with the aim of capturing the evolution of the approximated
likelihood through a scree plot.
plot(0:cpm.bs.cus.95$op.cpts,cpm.bs.cus.ll,
xlab="# of change-points",ylab="log-likelihood")
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Figure 4.6: Evolution of the approximated log-likelihood in binary segmentation
using CUSUM

The scree plot in Figure 4.6 shows an almost step-wise evolution of the approximated
log-likelihood, with over 40 iterations necessary to reach a high value.
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The optimal segmentation can be found once the high value is reached. Since
in figure 4.6, starting from 46 changepoints, the differences in the log-likelihood
cannot be seen, a zoomed plot is presented.
plot(46:cpm.bs.cus.95$op.cpts,cpm.bs.cus.ll[47:length(cpm.bs.cus.ll)],
xlab="# of change-points",ylab="log-likelihood")
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Figure 4.7: Evolution of the approximated log-likelihood in binary segmentation
using CUSUM (zoom)

Figure 4.7 shows how the likelihood grows after the last "step", which is the most
interesting part of the plot since the optimal segmentation will be found there. By
looking at the plot a sort of "elbow" can be found at 66 change-points: this will be
the optimal model.
cpm.cus.ll.opt<-cpm.bs.cus.ll[67]
cbind(65:67,t(cpm.bs.cus.95$cps)[65:67,])

## [,1] [,2] [,3]
## [1,] 65 21492 1.148052
## [2,] 66 21613 1.148052
## [3,] 67 933 1.132076
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The penalty is chosen according to the number of change-points at the elbow, then
the optimal model is plotted in Figure 4.8, with the change-points represented by
the blue vertical lines.
cp.cus.pen<-1.14
cpm.bs.cus<-binseg.rob.cusum(s,adj=F,Q=67,pen=1.14,minseglen = 30)

plot(s,ylim=c(25,27),type="l")
abline(v=cpm.bs.cus$cpts,col="blue")
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Figure 4.8: Optimal change-point model based on binary segmentation using
CUSUM statistic

The application of the binary segmentation using a robust CUSUM statistic shows
actual robustness to outliers along with the fact that the segments are well separated
even though there is some tendency to overfitting.

The CUSUM statistic as it is has a major downside: if an actual structural break
is present towards the extremities of the segment, the estimate of the change-point
through its maximum may be inaccurate, since it can present a non-negligible bias
and a large variance. In order to put this effect into evidence, 104 simulations (for
each change-point) of N = 104 standard normal random variables are performed:
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a single change-point in mean is present in different locations (t.true) and the
difference between the two means is set equal to σ. Sample mean(mean.t) and
sample variance(var.t) of the change-point estimate τ̂ are collected. The value of
bias.t is calculated as the difference between the true value and the sample mean.

t.true mean.t bias.t var.t
5000 5000.048 0.0480 5.3414
7000 6997.956 -2.0436 19.3738
8000 7994.821 -5.1793 97.9985
9000 8978.822 -21.1783 1365.4576
9500 9414.392 -85.6079 20608.5046

Table 4.1: Simulation results for CUSUM statistics

Figure 4.9: Distribution of τ̂ using CUSUM

In particular when τ equals 9000 or 9500 the estimate τ̂ is biased towards the
center of the segment.

The histogram of the estimates τ̂ for τ = 9500 is reported in figure 4.9, a similarity
with a truncated exponential can be noticed.

In order to overcome this issue, especially when the segmentation is not symmetric
(which can be quite common in industrial applications), an adjusted version of the
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CUSUM statistic is presented.

4.3.2 adjusted CUSUM statistic
Definition 4.3.2. Given a time series Yt and an estimate of the location parameter
µ̂Y the adjusted CUSUM statistic C̃i for the i-th sample is defined as it follows

C̃i = Ci(Yt)√
i
N

(
1− i

N

)
where Ci(Yt) is the CUSUM statistic as in Definition 4.3.1

The squared version of this statistic is well documented by Robbins [26]. This
weighted version of the CUSUM can deal better with change-points located at the
extremities of the segment, it can be noted that the weights depend on i and the
minimum weight is at i = N

2 .

The same simulation as in table 4.1 is made for the adjusted CUSUM, in order to
see how biases and variances of the change-point location change when the statistic
is adjusted.

t.true mean.t bias.t var.t
5000 5000.0473 -0.0473 5.3464
6000 6000.0098 -0.0098 5.0510
7000 6999.987 0.0130 4.9313
8000 7999.9994 0.0006 4.8033
9000 8999.9886 0.0114 4.7459
9500 9499.9867 0.0133 5.2302

Table 4.2: Simulation results for CUSUM-adj statistics

The simulations made with the adjusted CUSUM statistics are summed up in table
4.2, the most interesting results is that bias and variance do not significantly change
with the position of the change-point, mind that this result does not hold for the
normal CUSUM.

The histogram of τ̂ obtained using the adjusted CUSUM is reported in figure 4.10,
unlike CUSUM, the estimate of the change-point presents a bell curve centered
around the true change-point value, the range of values is also smaller (which is
expectable due to the much lower variance).
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Figure 4.10: Distribution of τ̂ using adjusted CUSUM

The asymptotic behaviour of the square of the adjusted-CUSUM statistic is well
explained by Robbins [26], who states and proves the following theorem using the
Reflection Principle.

Theorem 4.3.2. Let Y be a set of N i.i.d. random variables, let C̃i(Y ) be its
adjusted CUSUM statistic and let σ̂2 be a consistent estimator of the variance Then
the following convergence in distribution holds:

max
Nl≤i≤Nh

C̃2
i (Y )
Nσ̂2 → max

t∈[l,h]

(
B2(t)
t(1− t)

)
∀{l, h} : 0 < l < h < 1

Where B2(t) denotes the squared brownian bridge over [0,1].

Although the exact asymptotic distribution of maxt∈[l,h]
(
B2(t)
t(1−t)

)
is not known,

Csörgö and Horváth in 1993 [27] came up with an approximation of its tail
probability, also reported in [26], which is particularly useful in order to build a
statistical test for the adjusted CUSUM.

P

[
sup
t∈[l,h]

(
B2(t)
t(1− t)

)
> x

]
→
√
xe−x

2π

[
1 + 3

x
+ log

(
h(1− l)
(1− h)l

)
+O(x−2)

]
(4.7)
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This result is implemented in the function binseg.rob.cusum. If the parameter
adj is set to true the parameter pen becomes the α of the hypothesis test, in which
the values of l and h will be obtained by setting l as the ratio between the total
segment length and the parameter minseglen. h will be set 1− l.

The first model using adjusted CUSUM is applied with α = 5% at each segmenta-
tion.
cpm.bs.adj.95<-binseg.rob.cusum(s,Q=50,pen=0.05,

adj=T,minseglen = 30)

cpt.bs.adj.95<-cpm.bs.adj.95$cpts
cpm.bs.adj.95$op.cpts

## [1] 43

The number of change-points found is much lower than the segmentation using
standard CUSUM. The use of this adjusted CUSUM statistic in change-point
analysis presents an improvement against overfitting.

As made for the previous model, the log-likelihood for all segmentations is maximized
and stored in the variable cpm.bs.adj.ll, in order to draw a scree plot (Figure
4.11) that can be helpful for finding the optimal model.
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The code below draws a plot of the evolution of the approximated log-likelihood
as the segmentation goes on until 50 change-points. The segmentation performed
with penalty α = 5% is highlighted with a black vertical line.
plot(0:50,cpm.bs.adj.ll,xlab="# of change-points",ylab="log-likelihood")
abline(v=cpm.bs.adj.95$op.cpts)
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Figure 4.11: Evolution of the approximated log-likelihood in binary segmentation
using adjusted CUSUM (black vertical line is the segmentation with penalty =5%)

The plot confirms a better resistance to overfitting of the adjusted CUSUM with
respect to the standard CUSUM, since the approximated likelihood takes the last
step once 31 change-points are found. As in the previous model, it can be of interest
to inspect the plot starting from (in this case) 31 change-points.
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A zoomed version of the plot is computed in order to see how the log-likelihood
evolves once a good value is reached.
plot(31:50,cpm.bs.adj.ll[32:length(cpm.bs.adj.ll)],
xlab="# of change-points",ylab="log-likelihood")
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Figure 4.12: Evolution of the approximated log-likelihood in binary segmentation
using adjusted CUSUM (zoom)

By looking at the zoomed plot it is hard to see an elbow, however the choice of 38
plots might be a good compromise between a good value of the likelihood and the
low risk of overfitting.
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Once the choice for the number of change-points is made the penalty can be chosen.
cpm.adj.ll.opt<-cpm.bs.adj.ll[39]
cbind(37:39,t(cpm.bs.adj.95$cps)[37:39,])

## [,1] [,2] [,3]
## [1,] 37 48898 -0.003496199
## [2,] 38 50511 -0.003496199
## [3,] 39 7225 -0.005617719

The optimal model is nw applied and plotted.
cpm.bs.adj<-binseg.rob.cusum(s,adj=T,Q=39,pen=5e-3,minseglen = 30)

plot(s,ylim=c(25,27),type="l")
abline(v=cpm.bs.adj$cpts,col="blue")
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Figure 4.13: Optimal change-point model based on binary segmentation using
adjusted CUSUM statistic

The plot shows that some improvements regarding the overfitting problems are

65



Change-Point Analysis

made with respect to what seen in Figure 4.8, as well as the precision of change-
point detection (as shown before). With these premises the adjusted CUSUM
model might be preferrable to the standard CUSUM.

4.4 Model selection
Three robust models for change-point detection are explained and applied to the
dataset. The following dataframe compares the approximated loglikelihood of the
three models and the number of change-points found.
data.frame(model=c("Loss Function","Standard CUSUM","Adjusted CUSUM"),
loglik=c(cpm.loss.ll.opt,
cpm.bs.ll.opt,
cpm.adj.ll.opt),ncpts=c(28,66,38))

## model loglik ncpts
## 1 Loss Function 156868.3 28
## 2 Standard CUSUM 128245.9 66
## 3 Adjusted CUSUM 127689.9 38

There is no need to use information criteria in order to select the best model,
since the one based on robust loss function minimizing has by far the greatest
approximated likelihood and the lowest number of change-points found, which
means essentially the lowest number of parameters, among the models.

Now that the model is chosen, the maximum approximated likelihood parameter
estimates are presented.
model.approx.par

## $mu
## [1] 26.69734 25.90351 25.95661 25.88772 25.65715 25.62552
## [7] 25.52690 25.81984 25.62431 25.70532 26.40200 25.75512
## [13] 56.96396 45.95599 25.89241 25.92240 44.93625 25.93543
## [19] 26.00642 26.33074 26.29060 25.99285 46.00586 25.97972
## [25] 25.90922 26.08304 25.99866 25.90093
##
## $sigma2
## [1] 0.001263386
##
## $sigma2e
## [1] 0.003066674
##
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## $cpts
## [1] 3728 7190 7592 15744 19870 21613 21713 21800
## [9] 25206 25890 34135 34729 35572 35850 38832 41533
## [17] 41591 45222 47556 48076 52932 59179 59345 62067
## [25] 63002 63239 63508 64776

By looking at the variances it can be observed that σ2
ε is estimated to be larger

than σ2, which is consistent with the fact that the robust autocorrelation at lag 1
(Figure 1.11) is close to 0.5.

Another thing to be noticed is that a group of consecutive means close to each
other is present (as an example means n. 5 and 6), however, due to the low variance
a test hypothesis of means equality may be rejected. Tests or confidence intervals
based on this approximate model have no point to be built, since a more accurate
model will be developed in the next chapter.
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Chapter 5

Bayesian Model with
measurement delays

This chapter will be dedicated to the development of a more accurate model for the
manufacturing process analyzed in the previous chapters. The new model will have
to overcome the normal approximations used in chapter 3, since by definition an
inter-event time in a process cannot be negative, neither a delay in measurement.

5.1 The Hierarchical Model
The construction of the following model assumes that the vector of change-points
τ is known. In chapter 4 the vector τ c = {0, τ , T} is defined starting from it.

The aim is to write the a-posteriori probability as

p(θ, ε|Y ) ∝ p(Y , ε,θ) = p(Y |ε,θ)p(ε|θ)p(θ) (5.1)

Since all elements in X and ε have to be positive, it is possible to model them as
lognormal random variables.

This means that

log(Xi) ∼ N (mj, s
2
j) ⇐⇒ τ cj−1 < i ≤ τ cj

log(ε) ∼ N (mε, s
2
ε)
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Reparametrizations

Note that, even if the change-points in the expected value are present both param-
eters of the lognormal will be affected by it.

This may be an issue, since there is no proof that the variance of the elements in
X changes when a change-point in mean is detected.

This means that a reparametrization of {mj, s
2
j} is necessary, in order to describe

the fact that any change-point in the process is just a change of the mean cycle
time.

From the properties of the log-normal distribution, if Xi belongs to the segment j
then

µj = E[Xi] = exp
(
mj +

s2
j

2

)
and σ2

j = V ar[Xi] = exp(2mj + s2
j)(es

2
j − 1)

by performing a simple inversion it is possible to obtain the parameters of the
lognormal as functions of {µj, σ2

j}

mj(µj, σ2
j ) = 2 log µj −

1
2 log(µ2

j + σ2
j ) s2

j(µj, σ2
j ) = log

(
1 +

σ2
j

µ2
j

)
(5.2)

With the new parametrization and the hypothesis that σ2
j = σ2 for all j, it is

possible to write

log(Yi − εi + εi−1)|ε ∼ N
(
mj(µj, σ2), s2

j(µj, σ2)
)
⇐⇒ τ cj−1 < i ≤ τ cj (5.3)

meaning that Yi|ε follows a log-normal distribution shifted by the quantity εi−εi−1
with two parameters, both depending on the mean(which depends on the segment
where i is found) and the variance, which is the same for all segments.

If X is assumed as a set of independent random variables , then the variables in
Y |ε are independent, it follows that

p(Y |ε,θ) =
∏
i

p(Yi|ε,θ)

69



Bayesian Model with measurement delays

There is, as discussed in the approximated model, an identifiability problem with the
expected value of ε, since only the difference between two consecutive measurement
delays can be observed as part of the process. In order to overcome the problem
the distribution of any εi is set to have a fixed expected value µε. Mind that setting
a fixed value for µε does not mean that there is a belief that E[ε] is equal to that
fixed value.

In this setting the mean of the logarithm becomes a function of the variance of the
logarithm.

mε = log(µε)−
1
2s

2
ε

Since the variables in ε are assumed independent the a posteriori probability
distribution becomes proportional to

p(Y , ε,θ) =
N∏
i=1

p(Yi|ε,θ)
N∏
i=0

p(εi|θ)
Np∏
i=1

p(θi) (5.4)

where θ = {µ, σ2, s2
ε} is the vector of parameters and Np = |θ|.

The priors for the parameters are chosen as non-informative on a positive support:
for σ2 and s2

ε inverse gammas are chosen, whereas the priors for µi ∈ µ are chosen
as lognormals, since in an injection moulding process the order of magnitude of the
cycle time may vary from O(1s) to O(100s) (see i.e. chapter 7 of [28]) .

log(µi) ∼ N (3,4) ∀µi ∈ µ

tX = 1
σ2 ∼ Γ(10−3,10−3)

tε = 1
σ2 ∼ Γ(10−3,10−3)

5.2 Metropolis-Within-Gibbs
The Gibbs sampling cannot be performed due to the fact that the full conditional
distributions cannot be resembled to a known kernel. In this case a variation of
the Gibbs sampling based on the Metropolis algorithm [29] can be applied.
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The algorithm starts with a vector of initial values ϕ(0), one for each variable in
ϕ = {ε,θ}. A candidate for the first parameter ϕ∗1 is chosen by sampling from a
normal distribution with mean ϕ(0)

1 , then an acceptance rate ν is calculated as

ν = p(ϕ∗1|ϕ
(0)
−1)

p(ϕ(0)
1 |ϕ

(0)
−1)

which is the ratio between the full conditional probability functions valued in
the candidate and in the old value. Now a random number from Uniform(0,1) is
sampled, if it is lower than ν, then ϕ(1)

1 = ϕ∗1, else ϕ
(1)
1 = ϕ

(0)
1 .

The procedure is repeated for all parameters, where the acceptance rate is, for a
generic ϕi, calculated as

ν =
p(ϕ∗i |ϕ

(1)
(1:i−1),ϕ

(0)
(i+1:M))

p(ϕ(0)
i |ϕ

(1)
(1:i−1),ϕ

(0)
(i+1:M))

conditioned on the updated parameters. These steps are repeated for all M
parameters, for a sufficient number K of iterations. The result is a Markov chain
by which, if converges, it is possible to extract the a posteriori distributions of the
parameters.

There is no need to calculate the full conditionals every time that a new parameter
is sampled and evaluated: many times these distributions can be set as proportional
to a much simpler probability function.

It can be seen that a change in ε0 changes only two terms of the product

p(ε0|Y , ε(−0),θ) ∝ p(Y1|ε,θ)p(ε0|θ) (5.5)

The same can be said for εN
p(εN |Y , ε(−N),θ) ∝ p(YN |ε,θ)p(ε0|θ) (5.6)

While a generic εi in the middle of the process changes three terms, since it affects
cycle times i and i+ 1

p(εi|Y , ε(−i),θ) ∝ p(Yi|ε,θ)p(Yi+1|ε,θ)p(εi|θ) ∀i ∈ 1 . . . N − 1 (5.7)

It can be also observed that a change in µj affects only the cycle times belonging
to segment j, as well as its prior.

p(µj|Y , ε,θ r µj) ∝ p(µj)
τc

j∏
i=τc

j +1
p(Yi|ε,θ) (5.8)
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5.3 Application and Results
Before fitting the model to the data some considerations on both the data and the
model have to be made:

• Outliers are treated as missing data: the imputation (substitution of the
outliers with "normal" data) is made so that the approximated likelihood seen
in 3.3 is maximized. This imputation is done in order to avoid outliers to
influence the a-posteriori distribution

• Different sets of initial values are proposed in input, in order to check if the
Markov chain converges always to the same distribution.

• The proposal standard deviations are chosen by inspection, so that the accep-
tance rate is sufficiently close to the value 0.234 proposed by Roberts Gelman
and Gilks [30]. In this case all εi ∈ ε have equal proposal distribution and for
any µi ∈ µ the proposal standard deviation is proportional to the square root
of the respective segment length. Another parameter that has to be set is µε
which is arbitrarily chosen to be equal to 1.

• At each iteration the logarithm of the posteriori is computed. This has two
main advantages: a loss of significance is less likely, since numbers near zero
in the posteriori map to negative values in the log-posteriori, and products
are avoided, since the log-posteriori is the sum of several log-probabilities.

• Equations (5.5)-(5.8) are used, where possible, in the application of the
algorithm, since they are clearly less expensive than (5.4): these optimizations
cut the execution time from several hours to roughly 25 minutes for 104

iterations. The optimized C++ code for the algorithm is available in Appendix
A.1.3.

• A burn in of 2000 is set and other 20000 values are sampled in order to make
the distributions of the parameters as accurate as possible.

In a MCMC algorithm the first thing to check is whether the Markov chain converges
to a unique stationary distribution. Convergence will be shown by plotting the
evolution of 3 parameters (a mean, a variance and an ε), given two different initial
conditions.
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Figure 5.1: Evolution of parameter tε
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Figure 5.2: Evolution of parameter ε104
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Figure 5.3: Evolution of parameter µ1

Figures 5.1 5.2 and 5.3 show the evolutions of the Markov chains: the two paths
(one drawn in black, the other in red) always converge to the same stationary
distribution.

Once convergence is assessed, with 2000 samples that represent a sufficient burn-in
period, the acceptance rates (saved in acc1.csv) are checked in order to be sure
that they stay in an acceptable range. Since the acceptance rates are ≈ 65000 only
the minimum and the maximum value are shown.
acc<-as.numeric(read.table("acc1.csv",header = T)[,1])/1.2e4
c(min(acc),max(acc))

## [1] 0.2220833 0.3803333

The minimum value is sufficiently near 0.234 and the maximum value is below 40%:
these values are totally acceptable.

5.3.1 Parameter Posteriori Distributions

In this bayesian setting it is possible to retrieve the a-posteriori distribution for the
parameters, some of them are plotted in order to get a clearer view of the model.
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MCMC Distributions of the Means

The aim is now to inspect the a-posteriori distributions of the means.

The first thing to inspect is how variable they are. The 28 distributions are
not expected to have the same variance, since they are means of segments of
different lengths. The variability of the mean is expected to be decreasing as the
segment length grows, thus the distributions of the means of the longest (n.11) and
the shortest (n. 17) segment are plotted. The black vertical line represents the
approximate maximum likelihood estimates of the parameter.
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Figure 5.4: Mean of segment 11 MCMC distribution
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Figure 5.5: Mean of segment 17 MCMC distribution
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As expected the MCMC distribution of the mean of the shortest segment has a
range of more than 0.03s, while the longest segment’s mean’s range is roughly
10 times less; these two plots also show that, at least for these two means, the
maximum likelihood estimates fall in the range of the a-posteriori distributions.

Since the bayesian model has distributions as outputs, it is possible to look for
statistically equal means.

First a plot of the distances between the (sorted) means is shown in order to see
if some difference between the ML means are comparable to the ranges of the
distributions. The minimum of these difference is shown below.
mus=data.frame(seg=1:28,length=diff(c(0,cpts)),mu=model.approx.par$mu)
min(diff(mus[order(mus$mu),]$mu))

## [1] 0.001209955
plot(diff(mus[order(mus$mu),]$mu),log="y",xaxt='n', ann=FALSE)

1e
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1

Figure 5.6: Distances between sorted ML means

The means with the smallest distance (roughly 10−3) are µ6 and µ9.
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In order to see how similar these distributions are, a density plot of the distribution
of µ9 is shown in black, while µ6 is shown in red. The vertical lines, as seen above,
show the maximum approximated likelihood estimate of the means.
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Figure 5.7: Posterior densities of the two means with lowest distance

The two distributions overlap for a good interval, so these two means might be
equal according to their a-posteriori distributions.

By observing Figure 5.6 it is possible to see two groups of means distanced by less
than 10−2. The first group considered is formed by 5 means, which are plotted
in increasing order (according to their ML estimates) in black, along with the
immediately greater mean (in red) in order to see if some overlaps are present.
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Figure 5.8: Compared densities of low-distanced means (first group)

By looking at the plots the only evidence of a significant overlapping in this group
is between the distributions µ28 and µ2.
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The second group of low-distanced means is now considered. The plots follow the
same logic as in Figure 5.8.
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Figure 5.9: Compared densities of low-distanced means (second group)

It can be seen that in this group no significant overlaps are present. As the distances
grow it becomes unlikely to observe two overlapping a-posteriori distribution.
Even if the distances between the means may appear insignificant, they can’t be
considered equal with the exceptions of two pairs.

It can be also interesting to notice that the approximated maximum likelihood
estimates are at the peak of all the 11 a-posteriori distribution of the means.
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MCMC Distributions of Measurement Delays

The considered hierarchical model computes the distributions of every realization
of the random variable ε, which represents the impact of measurement delay.

The realization number 104 is plotted, as an example, in order to see how precisely
the measurement delays are estimated in the model.
plot(density(exp(out1$loge10k[(burn+1):K])),main="",xlab="Epsilon (#10000)")
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Figure 5.10: MCMC Distribution of the realization #10000 of Epsilon

The distribution of this realization of ε has mean 1, which is the mean value
arbitrarily decided when the model has been defined. There are some realizations
of ε that differ from the mean, like the one plotted below.
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Figure 5.11: MCMC Distribution of the realization #34814 of Epsilon

The realization ε38414 represents a below-average measurement delay in the process.

MCMC Distributions of the Variances

The model gives the distributions of two variances: σ2, related to the actual process
X, and σ2

ε , related to the measurement delays ε.

The bayesian distribution of σ2 is plotted and compared to its approximate maxi-
mum likelihood estimate (black vertical line).
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Figure 5.12: Variance of X MCMC distribution

It can be seen that the vertical line is almost at the peak of the plotted distribution,
meaning that the bayesian model and the approximate frequentist model give
similar estimates of σ2.
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The same cannot be said for σ2
ε : the maximum likelihood estimate of the parameter

under the approximate model is recalled.
model.approx.par$sigma2e

## [1] 0.003066674

The a-posteriori distribution of the parameter is now plotted.
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Figure 5.13: Variance of epsilon MCMC distribution

The minimum value of the sampled a-posteriori is greater than the approximate
frequentist estimate, hence one of these estimates may not be accurate.

In order to better inspect the accuracy of the estimates, it can be interesting to see
how the estimates perform in relation to the total variance.
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The variance of Y according to the bayesian model is plotted, the red vertical line
is the sample variance of the centered imputated series, while the black vertical line
represents the variance calculated as function of the maximum likelihood estimates
σ̂2 + 2σ̂2

ε

0.0076 0.0077 0.0078 0.0079

0
20

00
40

00
60

00

Total Variance

D
en

si
ty

Figure 5.14: Total variance MCMC distribution

The black vertical line falls in the range of the a-posteriori distribution, while no
black line is seen.

The variances from the approximated model and the sample variance are shown
below
data.frame(var_ml=model.approx.par$sigma2+2*model.approx.par$sigma2e,

var_sample=var(data.c))

## var_ml var_sample
## 1 0.007396734 0.007700001

The approximated model estimate of the variance goes below the range of the
bayesian distribution, meaning that it is very likely that the model, as described
in 3.3, underestimates the parameter σ2

ε , while the bayesian model gives a more
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accurate estimate.

Another measure to be taken into account is the lag-1 autocorrelation, in order to
see how well the model captures the impact of the measurement delay.

The distribution of the lag-1 AC is plotted below, the red vertical line represents
the sample autocorrelation for the centered,imputated data, while the black vertical
line represent the autocorrelation as function of the variances calculated by the
approximate maximum likelihood estimation.
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Figure 5.15: Lag-1 Autocorrelation MCMC distribution

The ML estimation of the lag-1 autocorrelation falls in the right tail of the dis-
tribution, which is expectable since the parameter σ2

ε is underestimated in that
model.

The sample lag-1 autocorrelation, which is recalled below, falls out of the range of
the distribution.
data.frame(ac1_ml=-model.approx.par$sigma2e/

(2*model.approx.par$sigma2e+model.approx.par$sigma2)
,ac1_sample=acf(data.c,plot=F)$acf[2])
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## ac1_ml ac1_sample
## 1 -0.4145984 -0.4538356

The lag-1 autocorrelation is overestimated by both models, nevertheless the bayesian
model seems again to be more accurate, as it represent an improvement with respect
to the frequentist approach. The bayesian model is also more widely applicable,
since it does not rely on normal approximation, which in some cases cannot be
done.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions
The data analysis done in this thesis for the cycle times shows that a mean value
change-point model robust to extreme outliers is needed in order to better detect
anomalies in the manufacturing process. The cycle time measured may present
values that are several times higher or lower than expected and it is strongly
recommended to check, if actually produced, the corresponded products; some
anomalies "balance" each other, meaning that an anomaly in the measurement
system cannot be excluded as a cause.

Once the outliers are detected and possibly removed, a negative autocorrelation
at lag 1 is detected, since the actual variability of cycle times resulted to be lower
than the variability induced by the measurement system.

Two models have been developed in order to capture the impact of the variability
of the measurement system: the approximated frequentist one is to prefer when
the aim is to have a fast implementation at expenses of some precision, while the
Bayesian one, despite it is slower computationally, makes no approximation and
gives more encouraging results.

The lag-1 autocorrelation is not captured perfectly by both models, a possible
reason for this can be that in each segment the mean value may not be perfectly
constant due to various reasons. The extremely low variability in the process and
the fact that the model assumes a constant value of µ for each segment may cause
the parameter σ2 to be inflated.
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6.2 Future Work
The model gives good qualitative results in capturing the change-points and
the variance induced by the measurement error, though a possible (and more
computationally expensive) improvement could be to consider, instead of segments
with constant means, some very small trends or fluctuations within each interval,
this can be useful in order to better capture the autocorrelation of the cycle times.

Although the dataset is not small, some other improvements to the model that
require more data are presented. Since most of the mean values are in a limited
range (25 to 27 seconds), a way to improve it could be a clustering of the segments.
The starting point would be the model in (4.2), with the hypothesis that µj is a
random variable with a cumulative distribution FMh

(x) dependent on a cluster Mh.

Two possible hierarchical clusterings of the segments are shown, the former using
the Dynamic Time Warp distance for time series [31], implemented in the package
TSdist [32], and the latter using the euclidean distance for the means found using
the frequentist model.
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Figure 6.1: Hierarchical Clustering of the segments using Dynamic Time Warp
distance
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Figure 6.1 shows that most segments have small distances between them. A red
horizontal line that splits the segments into four clusters is drawn. If the model is
accurate then a clustering on the means will give similar results: a dendrogram
using the euclidean distance between the means is plotted in figure 6.2.
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Figure 6.2: Hierarchical Clustering of the segments using Euclidean distance
between ML means

The plot shows that, choosing a suitable threshold (represented again by a red
horizontal line), it is possible to obtain the same clusters as in the previous setting,
meaning that a clustering made by only considering distances in the segment means
should not lose much accuracy.

However a more detailed analysis requires more segments (hence more data) since
a clustering on 28 points is heavily inaccurate due to small sample size.

Once the clustering is done, another improvement may be the construction of a
more complex model: the clusters can be interpreted as states of a hidden Markov
chain ΓM where a transition is made at each change-point.

The behaviour of the cluster would be represented by the equation
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P [µj+1 ∈Mk|µj ∈Mh] = ΓM(h, k)

having that
µj ∈Mh ⇐⇒ P [µj ≤ x] = FMh

(x)

A further improvement can be to suppose, for each cluster, a segment length
distribution.

P [τj+1 − τj|µj ∈Mh] = p
(τ)
Mh

(x)

The implementation of the model requires a huge amount of data from the manufac-
turing process, especially in order to get some accurate estimates of the transition
probabilities in ΓM .

The improvements shown above require, besides more data, a huge computational
time, since another level would be added to the hierarchical model.
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Appendix A

Functions

A.1 List of C++ functions
The functions coded below are written in C++ language and implemented in
R using the package Rcpp. Information and manuals on Rcpp are available on
[33][34][35].

A.1.1 Log-Likelihood Algorithm
The following function computes the approximate log-likelihood as described in
section 3.3. The maximization of the log-likelihood can be made with functions
such as nlm.

1 #inc lude <Rcpp . h>
2 us ing namespace Rcpp ;
3 double l l _ i e t _ l ( L i s t l , double s2 , double s2e ) {
4 double r e s =0;
5

6 f o r ( i n t h=0;h<l . s i z e ( ) ; h++){
7 DataFrame df=l [ h ] ;
8 NumericVector de l t a=df [ " i e t " ] ;
9 NumericVector mu=df [ "mu" ] ;

10

11 i n t n=de l t a . s i z e ( ) ;
12 i n t i ;
13 i f (mu. s i z e ( ) !=n)
14 stop ( " Error : data and means have d i f f e r e n t l eng th s " ) ;
15 NumericVector x i=de l ta −mu;
16 double a l0n =0.5∗(1/ s2+1/s2e ) ;
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17 double a l i =1/s2 +0.5/ s2e ;
18 double gamma=−1/s2 ;
19

20 NumericVector beta (n+1) ;
21 NumericVector a (n+1) ;
22 NumericVector b(n+1) ;
23 NumericVector c (n+2) ;
24 a [0 ]= al0n ;
25 beta [0 ]= x i [ 0 ] / s2 ;
26 b [0 ]= beta [ 0 ] ;
27 c [0 ]=sum(pow( xi , 2 ) ) /(2∗ s2 ) ;
28 f o r ( i =1; i<n ; i++){
29 a [ i ]= a l i −pow(gamma, 2 ) /(4∗ a [ i −1]) ;
30 beta [ i ]=( x i [ i ]− x i [ i −1]) / s2 ;
31 }
32 a [ n]= al0n−pow(gamma, 2 ) /(4∗ a [ n−1]) ;
33

34 beta [ n]=−( x i [ n−1]) / s2 ;
35

36

37 f o r ( i =1; i<=n ; i++)
38 {
39

40 b [ i ]= beta [ i ]−gamma∗b [ i −1]/(2∗ a [ i −1]) ;
41 c [ i ]=−pow(b [ i −1] ,2) /(4∗ a [ i −1]) ;
42 }
43

44 c [ n+1]=−pow(b [ n ] , 2 ) /(4∗ a [ n ] ) ;
45

46

47 r e s +=−0.5∗n∗ log ( s2 ) −0.5∗(n+1)∗ log ( s2e ) −0.5∗sum( log ( a ) )−
sum( c ) ;

48

49 }
50 re turn ( r e s ) ;
51 }
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A.1.2 Adjusted CUSUM algorithm
The following function computes the adjusted CUSUM statistic as described in
[26].

1 #inc lude <Rcpp . h>
2 us ing namespace Rcpp ;
3 NumericVector cusum_adj ( NumericVector x ) {
4 i n t N=x . s i z e ( ) ;
5 NumericVector cus (N) ;
6 NumericVector k (N) ;
7 double theta=mean( x ) ;
8 double sigma2=var ( x ) ;
9 i n t i ;

10 cus [0 ]= x [0] − theta ;
11 f o r ( i =1; i<N; i++){
12 cus [ i ]= cus [ i −1]+(x [ i ]− theta ) ;
13 k [ i −1]= i ∗(N−i ) /(pow(N, 2 ) ) ;
14 }
15 k [N−1]=1;
16

17 NumericVector r e s = pow( cus , 2 ) /(k∗ sigma2∗N) ;
18 re turn ( r e s ) ;
19

20 }

A.1.3 MCMC algorithm for Bayesian Model
The code shown below is an implementation of the Metropolis within Gibbs algo-
rithm to the hierarchical model presented in Chapter 5. The function posteriori
is called only when means and variances are evaluated in order to speed up the
execution of the code.

1 #inc lude <Rcpp . h>
2 us ing namespace Rcpp ;
3

4 double p o s t e r i o r i ( NumericVector d , NumericVector x , In tege rVector ooc ,
In tege rVector ooc_e , NumericVector cp , i n t ind ) {

5 i n t ncp=cp . s i z e ( ) ;
6 i n t e ind ;
7 i n t j =0;
8 i n t i ;
9 i n t ntot=x . s i z e ( ) ;

10 i n t ne=ntot−ncp −2;
11 i n t ndata=d . s i z e ( ) ;
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12 i n t s t a r t ;
13 i n t end ;
14

15 i f ( ndata+max( ooc ) !=ne ) stop ( " Error : Cannot formulate an a P o s t e r i o r i .
Vectors not compatible " ) ;

16

17 NumericVector mx( ncp ) ;
18 NumericVector mln ( ncp ) ;
19 NumericVector sd ln ( ncp ) ;
20 double tx=x [ ntot −2] ;
21 double te=x [ ntot −1] ;
22 double x_i ;
23 double mlne=−0.5/ sq r t ( te ) ;
24 double sd lne=1/ sq r t ( te ) ;
25 double r e s =0;
26

27 i f ( ind<ne+ncp ) {
28 i f ( x [ ind ]<=0) return R_NegInf ;
29 r e s=r e s+R : : dnorm( log ( x [ ind ] ) , 3 , 2 , t rue ) ;
30 i f ( ind==ne ) s t a r t =0;
31 e l s e s t a r t=cp [ ind−ne −1] ;
32 end=cp [ ind−ne ] ;
33 f o r ( i=s t a r t ; i<end ; i++){
34 e ind=ooc [ i ] ;
35 x_i=d [ i ]−exp ( x [ i+eind ] )+exp ( x [ i+eind −1]) ;
36 i f ( x_i<=0) re turn R_NegInf ;
37 r e s=r e s+R : : dnorm( log ( x_i ) ,2∗ l og ( x [ ind ] ) −0.5∗ log (pow( x [ ind ] , 2 ) +1/

tx ) , s q r t ( l og (1+1/(pow( x [ ind ] , 2 ) ∗ tx ) ) ) , t rue ) ;
38 }
39 }
40 e l s e
41 {
42 f o r ( i =0; i<ncp ; i++){
43 mx[ i ]=x [ ne+i ] ;
44 i f (mx[ i ]<=0) re turn R_NegInf ;
45 r e s=r e s+R : : dnorm( log (mx[ i ] ) , 3 , 2 , t rue ) ;
46 mln [ i ]=2∗ log (mx[ i ] ) −0.5∗ log (pow(mx[ i ] , 2 ) +1/tx ) ;
47 sd ln [ i ]= sq r t ( l og (1+1/(pow(mx[ i ] , 2 ) ∗ tx ) ) ) ;
48 }
49 f o r ( i =0; i<ne ; i++){
50 i f ( i<ndata ) {
51 i f ( i==cp [ j ] ) j=j +1;
52 e ind=ooc [ i ] ;
53 x_i=d [ i ]−exp ( x [ i+eind ] )+exp ( x [ i+eind −1]) ;
54 i f ( x_i<=0) re turn R_NegInf ;
55 r e s=r e s+R : : dnorm( log ( x_i ) , mln [ j ] , sd ln [ j ] , t rue ) ;
56 }
57 r e s=r e s+R : : dnorm( x [ i ] , mlne , sdlne , t rue ) ;
58
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59 }
60

61

62 r e s=r e s+R : : dgamma( tx , 1 e −4,1e4 , t rue )+R : : dgamma( te , 1 e −4,1e4 , t rue ) ;
63 }
64

65 re turn r e s ;
66 }
67

68 // ' @export
69 // [ [ Rcpp : : export ] ]
70 L i s t mwg_cp( i n t K, i n t burnin , NumericVector d , In tege rVector ooc ,

NumericVector cp , NumericVector i n i t s , NumericVector propsd ) {
71 i n t ntot=i n i t s . s i z e ( ) ;
72 NumericMatrix chain (K, ntot ) ;
73 In tege rVector accepted ( ntot ) ;
74 double cand_post ;
75 double old_post ;
76 double log_acc_rat io ;
77 double o ldpar ;
78 double x_i ;
79 double x_old ;
80 NumericVector old_vec ( ntot ) ;
81 i n t e ind ;
82 i n t seg ;
83 double mlne ;
84 double sd lne ;
85 i n t ndata=ooc . s i z e ( ) ;
86 i f ( ndata !=d . s i z e ( ) ) stop ( " Error : data and oocs l eng th s d i f f e r " ) ;
87 i n t n_oo=ooc [ ndata −1] ;
88 i n t ne=ndata+n_oo ;
89

90 i n t oo=1;
91 In tege rVector ooc_e ( ne ) ;
92 f o r ( i n t i =0; i<ndata ; i++){
93 i f ( ooc [ i ] != oo )
94 {ooc_e [ i+oo−1]=oo ; }
95 oo=ooc [ i ] ;
96 ooc_e [ i+oo−1]=oo ;
97 }
98 ooc_e [ ne−1]=n_oo ;
99

100

101 f o r ( i n t k=0;k<ntot ; k++){ chain (0 , k )=i n i t s [ k ] ; }
102

103 f o r ( i n t j =1; j<K; j++){
104 chain ( j ,_)=chain ( j −1,_) ;
105 seg =0;
106 f o r ( i n t i =0; i<ntot ; i++){
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107 o ldpar=chain ( j , i ) ;
108 chain ( j , i )=oldpar+R : : rnorm (0 , propsd [ i ] ) ;
109

110 i f ( i<ne ) {
111 mlne=−0.5/ sq r t ( chain ( j , ntot −1) ) ;
112 sd lne=1/ sq r t ( chain ( j , ntot −1) ) ;
113 e ind=ooc_e [ i ] ;
114 i f ( i−eind==cp [ seg ] ) seg=seg +1;
115

116 cand_post=0;
117 old_post =0;
118 i f ( i==0 | | ooc_e [ i −1]!=ooc_e [ i ] ) {
119 x_i=d [ i−eind+1]−exp ( chain ( j , i +1) )+exp ( chain ( j , i ) ) ;
120 x_old=d [ i−eind+1]−exp ( chain ( j , i +1) )+exp ( o ldpar ) ;
121 i f ( x_i<=0 | | x_old<=0)
122 { i f ( x_i<=0) cand_post=R_NegInf ;
123 i f ( x_old<=0) old_post=R_NegInf ;
124 }
125 e l s e {
126 i f ( i−eind+1==cp [ seg ] )
127 {cand_post=cand_post+R : : dnorm( log ( x_i ) ,2∗ l og ( chain ( j , ne+

seg +1) ) −0.5∗ log (pow( chain ( j , ne+seg +1) ,2 )+1/chain ( j , ntot −2) ) , s q r t (
l og (1+1/(pow( chain ( j , ne+seg +1) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;

128 old_post=old_post+R : : dnorm( log ( x_old ) ,2∗ l og ( chain ( j , ne+
seg +1) ) −0.5∗ log (pow( chain ( j , ne+seg +1) ,2 )+1/chain ( j , ntot −2) ) , s q r t (
l og (1+1/(pow( chain ( j , ne+seg +1) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;

129 }
130 e l s e {
131 cand_post=cand_post+R : : dnorm( log ( x_i ) ,2∗ l og ( chain ( j , ne+

seg ) ) −0.5∗ log (pow( chain ( j , ne+seg ) ,2 )+1/chain ( j , ntot −2) ) , s q r t ( l og
(1+1/(pow( chain ( j , ne+seg ) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;

132 old_post=old_post+R : : dnorm( log ( x_old ) ,2∗ l og ( chain ( j , ne+
seg ) ) −0.5∗ log (pow( chain ( j , ne+seg ) ,2 )+1/chain ( j , ntot −2) ) , s q r t ( l og
(1+1/(pow( chain ( j , ne+seg ) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;

133 }
134 }
135 }
136 e l s e i f ( i==ne−1 | | ooc_e [ i +1]!=ooc_e [ i ] ) {
137 x_i=d [ i−eind ]−exp ( chain ( j , i ) )+exp ( chain ( j , i −1) ) ;
138 x_old=d [ i−eind ]−exp ( o ldpar )+exp ( chain ( j , i −1) ) ;
139 i f ( x_i<=0 | | x_old<=0)
140 { i f ( x_i<=0) cand_post=R_NegInf ;
141 i f ( x_old<=0) old_post=R_NegInf ;
142 }
143 e l s e {cand_post=cand_post+R : : dnorm( log ( x_i ) ,2∗ l og ( chain ( j

, ne+seg ) ) −0.5∗ log (pow( chain ( j , ne+seg ) ,2 )+1/chain ( j , ntot −2) ) , s q r t (
l og (1+1/(pow( chain ( j , ne+seg ) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;
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144 old_post=old_post+R : : dnorm( log ( x_old ) ,2∗ l og ( chain ( j , ne+
seg ) ) −0.5∗ log (pow( chain ( j , ne+seg ) ,2 )+1/chain ( j , ntot −2) ) , s q r t ( l og
(1+1/(pow( chain ( j , ne+seg ) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;

145 }
146 }
147 e l s e {
148 x_i=d [ i−eind ]−exp ( chain ( j , i ) )+exp ( chain ( j , i −1) ) ;
149 x_old=d [ i−eind ]−exp ( o ldpar )+exp ( chain ( j , i −1) ) ;
150 i f ( x_i<=0 | | x_old<=0)
151 { i f ( x_i<=0) cand_post=R_NegInf ;
152 i f ( x_old<=0) old_post=R_NegInf ;
153 }
154 e l s e {
155 cand_post=cand_post+R : : dnorm( log ( x_i ) ,2∗ l og ( chain ( j , ne+

seg ) ) −0.5∗ log (pow( chain ( j , ne+seg ) ,2 )+1/chain ( j , ntot −2) ) , s q r t ( l og
(1+1/(pow( chain ( j , ne+seg ) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;

156 old_post=old_post+R : : dnorm( log ( x_old ) ,2∗ l og ( chain ( j , ne+
seg ) ) −0.5∗ log (pow( chain ( j , ne+seg ) ,2 )+1/chain ( j , ntot −2) ) , s q r t ( l og
(1+1/(pow( chain ( j , ne+seg ) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;

157

158 x_i=d [ i−eind+1]−exp ( chain ( j , i +1) )+exp ( chain ( j , i ) ) ;
159 x_old=d [ i−eind+1]−exp ( chain ( j , i +1) )+exp ( o ldpar ) ;
160 i f ( x_i<=0 | | x_old<=0)
161 { i f ( x_i<=0) cand_post=R_NegInf ;
162 i f ( x_old<=0) old_post=R_NegInf ;
163 }
164 e l s e {
165 i f ( i−eind+1==cp [ seg ] )
166 {cand_post=cand_post+R : : dnorm( log ( x_i ) ,2∗ l og ( chain ( j , ne+

seg +1) ) −0.5∗ log (pow( chain ( j , ne+seg +1) ,2 )+1/chain ( j , ntot −2) ) , s q r t (
l og (1+1/(pow( chain ( j , ne+seg +1) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;

167 old_post=old_post+R : : dnorm( log ( x_old ) ,2∗ l og ( chain ( j , ne+
seg +1) ) −0.5∗ log (pow( chain ( j , ne+seg +1) ,2 )+1/chain ( j , ntot −2) ) , s q r t (
l og (1+1/(pow( chain ( j , ne+seg +1) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;

168

169 }
170 e l s e {
171 cand_post=cand_post+R : : dnorm( log ( x_i ) ,2∗ l og ( chain ( j , ne+seg )

) −0.5∗ log (pow( chain ( j , ne+seg ) ,2 )+1/chain ( j , ntot −2) ) , s q r t ( l og (1+1/(
pow( chain ( j , ne+seg ) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;

172 old_post=old_post+R : : dnorm( log ( x_old ) ,2∗ l og ( chain ( j , ne+
seg ) ) −0.5∗ log (pow( chain ( j , ne+seg ) ,2 )+1/chain ( j , ntot −2) ) , s q r t ( l og
(1+1/(pow( chain ( j , ne+seg ) ,2 ) ∗ chain ( j , ntot −2) ) ) ) , t rue ) ;

173

174 }
175

176 }
177 }
178 }
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179 cand_post=cand_post+R : : dnorm( chain ( j , i ) , mlne , sdlne , t rue ) ;
180 old_post=old_post+R : : dnorm( oldpar , mlne , sdlne , t rue ) ;
181 }
182

183 e l s e {cand_post=p o s t e r i o r i (d , chain ( j ,_) , ooc , ooc_e , cp , i ) ;
184 old_vec=chain ( j ,_) ;
185 old_vec [ i ]= oldpar ;
186 old_post=p o s t e r i o r i (d , old_vec , ooc , ooc_e , cp , i ) ;
187 }
188

189

190 log_acc_rat io=cand_post−old_post ;
191

192 i f ( log_acc_ratio>log (R : : r u n i f ( 0 , 1 ) ) ) {
193 i f ( j>burnin ) accepted [ i ]++;
194 }
195 e l s e {
196 chain ( j , i )=oldpar ;
197 }
198 }
199 }
200 re turn L i s t : : c r e a t e ( chain , accepted ) ;
201 }

A.2 List of R functions

A.2.1 Robust CUSUM algorithm
This function includes several robust CUSUM statistics. It is called by the function
binseg.rob.cusum.

1 rob_Cusum <− func t i on (X, k=1.5 , s0=mad(X) , adj=FALSE, e s t=" trimmed " ,
t r =0.1 ,mw=10, r . t o l=1e−3){

2 i f ( e s t==" trimmed " )
3 {K=k∗ s0
4 theta=mean(X, trim=tr ) }
5 e l s e
6 i f ( e s t==" median " )
7 {K=k∗ s0
8 theta=median (X) }
9 e l s e

10 i f ( e s t==" huberm " )
11 {K=k∗ s0
12 theta=hubermean (X,K) }
13 e l s e
14 i f ( e s t==" auto " )
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15 {
16 K=k∗ s0
17 mw=medMW(X, n=mw)
18 Y=sapply (X, func t i on ( x ) min (max(x , min (mw)−K) ,max(mw)+K) )
19 re turn (cumsum(Y−mean(Y) ) )
20 }
21 e l s e
22 i f ( e s t=="M" ) {
23 s . o ld=m. old=−I n f
24 s . new=mad(X)
25 m. new=median (X)
26 whi le ( abs ( s . old−s . new)>r . t o l ∗ s . new | abs (m. old−m. new)>r . t o l

∗m. new) {
27 s . o ld=s . new
28 m. old=m. new
29 Y=sapply (X, func t i on ( x ) min (max(x , min (m. o ld )−k∗ s . o ld ) ,max(m.

o ld )+k∗ s . o ld ) )
30 s . new=sq r t ( var (Y) )
31 m. new=mean(Y)
32 }
33 K=k∗ s . new
34 theta=m. new
35 s0=s . new
36 }
37 e l s e stop ( " Estimator Unknown" )
38

39

40 i f ( adj ) re turn ( l i s t (CUSUM=cusum_adj ( sapply (X, func t i on ( x ) min (max(x ,
theta−K) , theta+K) ) ) ,mu=theta , sigma=s0 ) )

41 e l s e re turn ( l i s t (CUSUM=cumsum( sapply (X, func t i on ( x ) min (max(x−
theta ,−K) ,K) ) ) ,mu=theta , sigma=s0 ) )

42 }
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A.2.2 Negative Likelihood Function
The following function is fed to the non-linear minimizer nlm. Since nlm does not
put bounds to parameters, the variances have to be transformed with an invertible
function f so that

f(σ2) : (0,+∞)→ R

The vector parvec contains the transformed parameters. Every time this code
is applied in the thesis the transformation of the variances will be done using
f(x) = log(x).

1 ml l to t<−func t i on (x , cps , parvec ) {
2

3 par<−model . cp . np ( parvec )
4 means=par$mu
5 s2=par$ sigma2
6 s2e=par$ sigma2e
7

8 cps . d i f f=d i f f ( c (0 , cps ) )
9 ms<−rep ( means , cps . d i f f )

10

11 i s o u t=which ( x$ out l )
12

13 i f ( l ength ( i s o u t ) >0)
14 {
15 x$ i<−x$ i+cumsum( x$ out l )
16 x<−x[− isout , ]
17 ms<−ms[− i s o u t ]
18 }
19 df . in<−data . frame ( i e t=x$ i e t , i=x$ i ,mu=ms)
20 l i s t . in<−s p l i t ( df . in , df . in $ i )
21

22 − l l_i e t_l ( l i s t . in , s2 , s2e )
23

24 #}) )
25 }
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