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Abstract

Reduced Order Modelling (ROM) found widespread application in nu-
merical modelling at both industrial and academic level; its popularity is due
primarily to the capability of those algorithms to retrieve the fundamental
dynamics of a differential problem by reduction of the dimensionality of the
parametric manifold that characterises the solution. In Computational Fluid
Dynamics these methods are of particular importance since the parametric
dependence of the models that are treated numerically is embedded in the
engineering design process itself (e.g. shape optimisation). There is a par-
ticular class of problems however that pose a challenge to the effectiveness
of ROM over the full-order simulations and those are the hyperbolic partial
differential equations; there is in fact a sort of contradiction when it comes
to time-dependent, parametric, transport equation and that is while at full
order these models are easily handled, at least in CFD, with accurate, stable
and robust methods, the low-rank representation is not straight-forward and
difficult to retrieve with desired accuracy. Many efforts have been devised
to overcome the difficulties brought by these models in the construction of
the low dimensional manifold and in particular one was proposed in 2018
by Reiss et. al. called the sPOD (shifted Proper Orthogonal Decomposi-
tion) which features great scalability. In this work we devised a statistical
learning framework that extends the sPOD to non-linear hyperbolic PDEs;
we approached the problem of detecting the correct transformation of the
full-order solution in a non-intrusive, data-driven fashion by implementing a
neural network architecture within the ROM itself thereby generalising the
procedure of shifting to the initial condition to any sort of transport fields
and in particular to non-linear ones that are the solution of the Navier-Stokes
equations. Once built and tested against simple, 2−dimensional linear test
cases of hyperbolic models, the resulting algorithm, called NNsPOD (Neural
Network shifted Proper Orthogonal Decomposition) has been applied to a
particularly challenging non-linear problem in CFD, the multiphase prob-
lem, in which a passive scalar field (the phase volume fraction) is transported
across the computational grid by a field that is itself a solution of the in-
compressible Navier-Stokes. The results proved that NNsPOD reaches the
goal of generalisation of ROM by shifted proper orthogonal decomposition
for non-linear hyperbolic PDEs.
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1 Introduction to hyperbolic problems and Re-

duced Order Methods

We shall start the present thesis with a brief introduction of the mathematical tools
used in both modelling the problems and building the computational algorithm.
Furthermore a review of the main achievements and developments encompassed
by Reduced Order Methods, with emphasis to problems in computational fluid dy-
namics, is presented so that it motivates the adoption of the techniques that follow.
In the final part of the chapter an overview of the most recent works, methodolo-
gies and state-of-the-art for transport-dominated partial differential equations is
presented to provide a general overview of the state of the art of reduced order
modelling in hyperbolic problems.

1.1 Hyperbolic transport-dominated differential problems

In order to introduce a consistent mathematical framework and unambiguos no-
tation that is used in modelling using hyperbolic equations and to provide a sub-
stantial motivation to its derivation, let us start by considering the generic partial
differential problem

F (x, ϕ(x);Dα) = 0 , x ∈ Ω , (1)

where Ω ⊆ Rd+1 is an open subset, F ∈ C1 is, in general, a non-linear map and
α = (α0, ..., αd) ⊆ Nd induces the multi-index notation of an |α|-th order partial
derivative

Dα :=
∂|α|

∂ α1
x1 . . . ∂ αd

xd

, |α| :=
d∑
j=1

αj .

We say that ϕ(x) is a classical solution (or equivalently a strong solution) of
(1) if ϕ ∈ C|α|(Ω) and the identity in (1) is pointwise satisfied in Ω. In the
following, as in most cases in continuum mechanics, we would consider space Q
as the cartesian product between subset Ω of a d−dimensional euclidean vector
space Rd (d = 1, 2, 3 number of spatial dimension of the domain of the problem)
and the finite subset [0, t) ⊆ R representing the time domain of a non-stationary
problem. By considering a finite subset N ⊂ Nd, then if we rewrite (1) as

L(x, ϕ(x);Dα) =
∑
α∈N

aα(x)Dαϕ = f , (2)

with L : V 7→ V a linear differential operator and f a given scalar map in Ω, the
obtained relationship is a linear Partial Differential Equation (PDE). We consider
the principal part of (2) as the restricted sum on highest order derivative terms.
If the principal part in (2) is linear but the coefficients of lower order derivatives
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depend on ϕ and its derivatives, then we would have a semilinear PDE; if the
principal part of (2) is also non-linear but its coefficients only depend on lower
order derivatives of ϕ then the PDE is quasilinear.
The model of interest of the present thesis derives from the more general advection-
diffusion-reaction equation describing the unsteady transfer of physical prop-
erty ϕ(x, t) due to a combination the diffusive and transport operators

∂tϕ+∇ · (ν(x, t)∇ϕ) +∇ · (ϕb(x, t)) + σ(x, t)ϕ = f(x, t) , ∂t :=
∂

∂t
. (3)

Two important remarks are necessary here:

• the diffusive term is uniquely identified by the diffusivity function ν :
Ω × V 7→ R. The diffusion of property ϕ(x, t) in Ω is a phenomena that
arises from pure molecular-scale interactions. One simplifying assumption is
that of isotropicity, i.e. ν(x, t) = ν, which leads to

∇ · (ν∇ϕ) = ν∆(ϕ) ;

• the advective term (often referred to as convection or transport with
equivalent interchangeable meanings) is the kinetic part of the model which
can be thought of as if property ϕ(x, t) of the fluid is being transferred in Ω
by a transport field b : Ω 7→ Rd. Under the assumption of a divergence-free
vector field, i.e. ∇ · b = 0, the term is reduced to

∇ · (ϕb) = b · ∇(ϕ) .

The reactive term models chemical reactions within ϕ and as such is neglected;
also we would consider sink/sources-free domains only (i.e. f = 0 is uniformly null
throughout Ω) thereby reducing (3) to

∂t ϕ+∇ · (ν(x, t)∇ϕ) +∇ · (ϕb(x, t)) = 0 .

Finally, upon defining the (global) Peclet number of the PDE as

Peg :=
||b||∞
||ν||∞

,

where ν, b ∈ L∞(Ω), we would arrive to describe a transport-dominated phe-
nomena one s.t. Peg >> 1, i.e. for which the diffusive term is negligible. What
we are left with is the advection equation which is an first-order hyperbolic
partial differential equation

∂t ϕ+∇ · (ϕb) = 0 . (4)
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Relation (5) has the form of a continuity equation in which the purely trans-
ported quantity ϕ(x, t) is conserved in Ω; as a matter of fact by putting ϕ = ρ(x, t)
(where ρ represents the mass density of a given specie) one easily recovers the law
of conservation of the mass, which within the Eulerian perspective of fluid dynam-
ics, it is compactly written as the substantial derivative Dt ρ (x, t) = 0.
We emphasize that, in general, a non-linearity feature may arise in (4) due to the
dyadic structure of the advective operator while linearity is just the specific case in
which the transport velocity b does not depend explicitly on ϕ. This non-linearity
stands at the hearth of different difficulties in handling transport phenomena in nu-
merical approximation schemes in different areas other than mathematical physics.
For the sake of completeness we report the explicit dyadic structures of a non-
linear, hyperbolic transport equation when the solution is the velocity (vector)
field itself

∂tu +∇ · (u⊗ u) = ∂tu + u(∇ · u) + u · (∇⊗ u) = ∂tu + u(∇ · u) ,

where the dyadic product reduces to a matrix multiplication in cartesian coordi-
nates. For ease of use later in the thesis we shall write the explicit, quasilinear form
of (4) in d = 2 (the d = 1 case can easily be retrieved from the bi-dimensional)

∂t ϕ+∇ · F(ϕ) = ∂t ϕ+ ∂x(Fx(ϕ)) + ∂y(Fy(ϕ)) = 0 . (5)

We make the final observation that F : V 7→ R2 is a non-linear map interpreted
as the flux that transports the passive scalar field ϕ; it in turns represents a
conserved quantity, i.e. one that its volume integration yields to a constant time
variation. As such non-linear models of the form (5) are henceforth referred to as
a conservation laws.

1.2 Principles of Reduced Order Modelling

Despite many different numerical approximation schemes have been devised for
partial differential problems, they all share an underlying routine that is to perform
a domain discretisation T : Ω 7→ Ωh so that the strong form in (1) is restricted to
a finite set of points; usually this formulation exploits the simplified form of the
variational formulation of the problem.

Theorem 1 Let (1) be a generic PDE s.t. F ∈ C1(Ω) , ∀ϕ ∈ C|α|(Ω) and D(Ω) :={
v ∈ C∞(Ω) s.t. v(x = 0∀x ∈ ∂Ω , v(x 6= 0))

}
be the space of test functions with

compact support on Ω, then if ϕ(x, t) is a solution of (1) it is also a solution of
the weak formulation

ˆ
Ω

F (x, ϕ(x);Dα) v(x)dx = 0 . (6)
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The weak form in (6) allows us, upon integrating by parts, to move certain deriva-
tives from ϕ to test functions v which may or may not be infinitely regular; this
enables a relaxation of the conditions that ϕ(x, t) has to satisfy in order to be a
solution of (1). The regularity of the functional subspace for the discrete formu-
lation of the variational problem and the techniques for the construction of Ωh

are the discriminant that characterise one numerical method from the others; in
particular the Finite Volume method (FV) differs substantially from the other two
major schemes of Finite Differences (FD) and Finite Elements (FE) methods and
is particularly efficient for the discretisation of conservation laws (5) as they pre-
serve the conservation of the physical quantities of interests for each discretisation
element.
More rigorously the geometric setting of the FV method specifies its fundamental
element (the volume or cell) starting from a node (which we will later refer to
as the centroid of the volume) and identifies the interfaces of the cell that stems
from it. Also, given the fact that the conservation law of interest must hold, in the
FV method, for each cell of the domain, it is easy to see that this discretisation
generates local discontinuities on the numerical solution at the interface between
two adjacent cells. This particular feature characterises the FV algorithm as a
discontinuous Galerkin method (as opposed to e.g. the FE method which en-
forces global continuity on the value of the solution along one shared geometrical
entity between two contiguous elements of Ωh).
In the following we shall provide a very brief derivation of the FV method so that
it motivates the introduction of techniques of reduced order; a more detailed ex-
planation of the discretisation of the method will follow in Chapter 2. Being
a space-time dependent PDE we must devise a discretisation for both space and
time. Usually on performs the spatial semi-discretisation of Q = Ω × (0, T ]
however this is not strictly necessary and other methods do exist. Upon having
identified in Ω a collection of nodes xj we thus define a tessellation Ωh =

⋃N
j=1 Ωj

where we associate each cell to a node in such a way that each cell is a convex,
non-overlapping polygonal. One example is the Voronoi tessellation

Ωj = {x ∈ Ω s.t. d(x,xj) < d(x,xk) , ∀j 6= k)} .

Then form (6) of (5) is restricted to each cell and thereby approximated; in the
context of FV schemes, we exploit any divergence term by converting their volume
integral into a flux over the boundary according to Gauss’ theorem.
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Given that Ωj is a convex polygonal we have ∂Ωj
=
⋃
`k∈∂Ωj

`k meaning that
we can further split the flux over ∂Ωj as a sum of fluxes over each edge `k

0 = ∂t

ˆ
Ωj

ϕdx +
∑

`k∈∂Ωj

ˆ
`k

F(ϕ) · ndγ ≈ ∂tϕ(xj) +
∑
`k

Fjk , j = 1, ..., N , (7)

Fjk = Fjk(ϕ) =
(F(ϕ(xk))− F(ϕ(xi))) · njk

d(xj,xk)
, xk s.t. ∂Ωk ∩ ∂Ωj = `k .

Model (7) is a system of first-order ODEs in time; to obtain a system of algebraic
relations (which we need in order to convert the variational problem in a numerical
algorithm to be ”fed” to a computer) a time semi-discretisation is needed which
we will not discuss in detail being outside the scope of the thesis. For the sake
of completeness we mention the possibility of using single-step time advancing
algorithms s.a. the implicit and explicit Euler first-order accurate methods and
the Crank-Nicolson second-order accurate methods or k-step Runge-Kutta; we
refer to [21] for a more detailed digression on those algorithms. Following the time
semi-discretisation we finally obtain a linear system of algebraic equations of N
discretisations in space and M discretisations in time

ϕ(xj, tn+1) = ϕ(xj, tn)− (tn+1 − tn)
∑
`k

Fjk(tn) , j = 1, ..., N, n = 1, ...,M , (8)

of which details about the construction and manipulation of the coefficient matrices
will be provided in later chapters. We refer to (8) as the full order computational
model for (5). So far we implied that the target solving function ϕ(x, t) is only
time-dependent; in many applications however ϕ can also depend on a finite set
of parameters µ ∈ P ⊆ Rp, where P is a p-dimensional parameter space. Models
of this form are referred to parametric (or parametrised) partial differen-
tial equations. They occur often in engineering where for instance one seeks an
optimization for those parameters in P thus making the implementation of a full
order model s.a. (8) computationally intractable as several FV-based full-order
simulations are needed for efficiently describe the behaviour of the system as a
function of those parameters µ of interest.
The need of lowering the complexity of those models arose in this context and the
set of techniques developed to achieve such objective became collectively known
as Reduced Order Modelling (ROM) or Model Order Reduction (MOR).
Different strategies have been developed during the years, especially in fluid dy-
namics and its applications ([18]) however here we will only focus in introducing
and later derive the Proper Orthogonal Decomposition with Galerkin pro-
jection (POD-Galerkin) which is a reduced basis technique enforcing a relation
of orthonormality among its basis generators, which we will address later in this
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chapter.
Although widely successful in specific tasks in computational fluid dynamics and
dynamic systems there exist other algorithms s.a. the Greedy-Reduced basis
which have historically been deployed in parametric parabolic and elliptic PDEs
([6, 38, 32]); on the other hand POD-based reductions are more traditionally found
in both linear and non-linear, non-parametric, unsteady problems s.a. conserva-
tion laws of form (5) ([42, 34, 2]). This separation is not rigorous and reduc-
tions of parametric and time dependent partial differential problems have been
approached with both methods, e.g. parametrised linear evolution equations ([8]),
non-parametric ([12]) and parametrised ([39, 33]) incompressible Navier-Stokes,
time-dependent viscous Burgers equations ([24]), Bussinesq equations ([16]) and
non-turbulent ([3]) and turbulent ([14]) parametrized fluid flows. In what follows
we shall therefore discuss and contextualize the method of interest of this thesis,
that is the POD-Galerkin algorithm, for a generic non-linear transport-dominated
problem. A more rigorous derivation and intuition behind the formalism of POD
will be the topic of the late part of Chapter 2 while here we refer to [19, 31] for
a more detailed introduction on different aspects of POD modelling fluid flow and
to [27, 9] for a general overview on Greedy-RBs.
Suppose that ϕh(µ, t) = (ϕ̃1(µ, t), . . . , ϕ̃N(µ, t)) represents a discrete solution of
(8) over a given centroidal tessellation (whose meaning will be specified in 2.1)
and let’s define manifold M = {ϕh(µ, t) ∈ RN s.t. µ ∈ P}.
The fundamental ansatz of the POD-Galerkin method is that there exists a low-
rank representation of M in which the dynamics of ϕh(µ, t) in P is well rep-
resented. Such R−dimensional subspace would be spanned by its generators
φj , j = 1, ..., R << N and thus the representation of ϕh(µ, t) in such basis would
be a linear combination of those generators, often referred to as superposition

ϕh(µ, t) ≈
R∑
j=1

qj φj , (φj,φk) = δjk ∀j, k = 1, ..., R . (9)

To find this representation one generates some realizations of ϕh in the parameter
space, called snapshots, effectively discretising P in a low-dimensional Ph. The
sampling of P can be achieved e.g. via greedy algorithms ([18]) or with some
known distribution. For each realization in Ph we numerically solve the time-
dependent ODEs thereby collecting a whole set of simulations whose cardinality
will be indicated with M for convenience

ϕh(µ, t) , µ ∈ P −→ ϕh(µj, t) , µj ∈ (µ1, ...,µQ) ≡ Ph ,

∀µj ∈ Ph , ϕh(µj, t) −→ ϕh(µj, tk) = ϕs , s = 1, ...,M .

The snapshots are then collected in a so-called snapshot matrix X ∈ RN×M and
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then one decomposes X by means of eigendecomposition or Singular Value De-
composition (SVD). We notice that the columns of X span the manifold M

B(M) = range(X) .

The SVD of X generates a set of M left singular vectors (we make the reasonable
assumption that min{M,N} = M meaning that we collect a number of snapshots
that is lower than the dimensionality of the full-order model) that are associated
to the singular values stored along the N ×M diagonal matrix Σ

X = VΣU , V = (φ1, . . . ,φM) ∈ RN×M .

We then extract from V a subset of R < M of those vectors, which are the
generators of the column space of V, which will form the basis of a reduced space to
Galerkin project ϕh(µ, t) onto. The sought modes φj of (9) exactly coincide with
these extracted vectors, which we reiterate, are the left singular vectors associated
to the R largest singular values of X

Ṽ ∈ RN×R , B(V) = range(Ṽ) s.t. span(B(V)) ≈ span(B(M)) .

Intuition and derivation behind this result, as well as insights on what exactly
means to Galerkin-project the solution on the reduced basis in a optimization for-
mulation of the problem will be provided in 2.4.2 as we build and develop our
mathematical and computational model for the case problem. In practice, the
minimum number of modes R to be retained to obtain a good low-rank represen-
tation of the solution manifold can be conveniently deduced by the rate of decay
of the singular values of X itself and, in general, has to be such that the over-
all physics of the problem is as close as possible to the one represented by the
full-order simulation; this is particularly true in advection problems in which the
additional effort of adopting ROM techniques is justified, as we will describe in
later chapters, only if the number of modes corresponds with the number of con-
vective transport phenomena.
We conclude by highlighting how and where, in the setting of the numerical sim-
ulation and its data pipeline, critical improvements in numerical performances
(intended as retained accuracy of the full order vs its computational cost) are pro-
duced by the generic POD-Galerkin MOR.
In the context of ROM, it is frequent to encounter in literature that the simula-
tion workflow is divided into a online and offline phase. For a full order model
there is no difference between the two as the numerical setup ran for a particular
set of parameters is inconsistent with other configurations of µ and thus multiple
simulations are required, all ran at full order. A ROM on the other hand, aims
at restricting the full order simulation at only few instances of µ, enough in fact
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to be able to extract the sufficient modes to retain most of the energy of the data
describing the full model. This basis extraction is what eventually generates the
terms φj of (9) and, since it has to be ran only once (or at most a few times), it
is referred to as the offline phase. If a new instance µ is presented one uses the
reduced model by projecting the solution onto V, using the modes’ basis extracted
earlier, and calculates the needed coefficients qj in (9) to obtain a physical solu-
tion from the simulation, thus avoiding the full setup carried over from the FV
discretisation. This is the what is referred to as the online phase and ideally, espe-
cially in the applications where ROM find successful implementation, it should be
as less computationally expensive as to be run in few hours where the full-order
simulation would have needed some days to be completed.

1.3 State-of-the-art in reducing advection problems

Traditional mode-based order reductions such as the POD-Galerkin and RBs de-
scribed above have have been provided, during the years, with sufficient additional
theoretical and practical results s.a. rigorous a posteriori error bounds ([38, 6]) and
optimal sampling strategies in P to make them a reliable and fast computational
tool for many problems in CFD. In particular both parametrized linear ([8]) and
non-linear elliptic and parabolic PDEs ([32, 7, 24]) have been successfully reduced
by mode-based reduction methods with significant margin of improvement in terms
of retained accuracy vs number of modes extracted. There is a class of differential
problems however, specifically transport-dominated ones modelled by hyperbolic,
linear and non-linear PDEs as the subject of this thesis, for which those approaches
do not produce a subspace of low enough rank to accurately approximate manifold
M; as we concluded in the previous section, the fulfilment of this requirement is
crucial for an efficient online phase of ROM methods. It is important, both from
a mathematical and industrial point of view, that whichever numerical algorithm
is devised, it is robust enough that fairly simple changes allow it to scale up to
cover numerous problems in that field.
The reason behind this lack of scalability is that, while solutions of elliptic and
parabolic problems are smooth w.r.t. their input space P, this is no longer the case
for hyperbolic conservation laws in (8). In them a steep-gradient of the dominant
advective term or discontinuities of the analytical solution in Ω, often comparable
to those in P, are the cause for which standard-POD and RBs are not able to
identify the relevant dynamics through a small number of modes. This character-
istics is particularly relevant in computational fluid dynamics and it is treated at
full-order by a model known as Riemann problem. It can easily be observed
already for simplified 1−dimensional linear hyperbolic conservation laws (e.g. the
inviscid Burgers’ equation) in which, depending on the initial conditions, the wave-
like solution presents intersecting characteristic curves that originates unphysical
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results; those observations will be rigorously derived and discussed in 3.2.
At reduced-order on the other hand, various numerical schemes have been devised
to handle such discontinuities starting as early as 2004 in [1] where a so-called
method of freezing is introduced for (8) where Ω has to be invariant w.r.t. a Lie
Group transformation. This approach was further developed for parametrized evo-
lution problems in [26] and, shortly afterwards, a numerical interpolation method
was proposed in [41] for detecting the smooth components of the approximated, dis-
continuous, shock-wave solution of a 1−dimensional non-linear advection. Other
similar works were proposed in [10, 5, 20, 37, 23, 29]. Despite their success in
successfully identifying low-rank structures of the dynamics of the transported
discontinuities, those works were limited to single transports, i.e. problems (8)
in which the transported quantities were advected by a single, known transport
velocity. This problem was addressed in the consequential work [36] with the for-
mulation of the so-called shifted proper orthogonal decomposition (sPOD) and its
application in combustion modelling [17]. At the present moment, despite being
the state of the art in reducing parametrized multiple-transport phenomena ([35]),
sPOD-based reductions still have to rely on the knowledge of the transported ve-
locities, at least for fairly complex models, or to relatively simple non-linear cases.
A detailed digression on the analytical assumptions of the method of sPOD and
the motivation for introducing machine learning techniques to overcome the afore-
mentioned limitations in scalability will be the subject of Chapter 3 of this thesis.
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2 Interpolation schemes and numerical

diffusivity

In paragraph 1.2 we used the numerical forms (7) and (8) of a transport-dominated
conservation law as the starting point for the reduced order model to be introduced,
however very little description on the actual discretisation process was presented.
It is the purpose of the following chapter to derive a more detailed and rigorous
framework for the finite volume method, specifically one that allows to visual-
ize very clearly where its limitations arise when approximating problems with
dominant transport numerically. We will first derive the model purely mathemat-
ically so that the main features of the discretisation-interpolation phase will be
exposed. Next we will provide a set of results regarding the numerical simulations
of the problem at hand performed with the use of the open-source C++ library
OpenFOAM [28] so to validate the analytical argument. In the last part a para-
metric formulation of the same test case will be introduced and results of reduced
order modelling simulations by means of a POD algorithm of the open-source
ITHACA-FV [11] library will be provided to show the limitations of traditional
reduction/decomposition techniques in the context of transport equations.

2.1 Numerical discretisation

What follows does not reflect a full and comprehensive overview of the finite volume
method as the ones treated in academic courses in scientific computing and engi-
neering. The main objective of this paragraph is to introduce the core principles of
the numerical schemes that are used to discretise a differential formulation (PDE)
of some particular problems in mathematics, i.e. conservation laws (5), into a set
of linear algebraic equations (LAE) which can be manipulated and easily solved
by a modern CPU using the iterative algorithms of linear algebra. Subjects like
error estimation, boundary conditions and grid convergence will be mentioned but
not treated in-depth; for a much detailed derivation we refer to [30] and [22].
Let’s consider the unsteady advective-diffusive model with time-independent source

∂t ϕ+∇ · (ϕb)− ν∆(ϕ) = f(x) . (10)

We choose this model instead of (5) as it is our goal to show how, in the frame-
work of FV methods, each term of a PDE is integrated differently according to
its differential operator; as such (10) is ideal as it features both diffusive and ad-
vective operators (laplacian and divergence respectively) and it also retains much
of the generality of the original problem formulated in (3) which is of uttermost
importance in CFD and it will also be our aim towards the end of this thesis to
approach more complex structures modelled in a similar fashion.
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Quantity ϕ(x, t) is a passive scalar field meaning that it quantifies a pointwise
quantity transported through the domain (which we assume to be a 2−dimensional
square Ω = [0, L]× [0, L]) without reacting with the molecular flux. Figure 1 de-
picts the geometric reference for the problem at hand as well as its discretisation
in 9 cell-centered orthogonal volumes forming a so-called collocated grid.
As mentioned in 1.2, equation (10) is discretised over each cell-element of the do-
main, meaning that one collocates the problem over each centroid xj of the grid
and looks for the weak solution in terms of contributions from its neighborough.

Figure 1: The domain Ω, in which (10) is integrated, homogeneously divided into
9 square cells with side length h and centroids xj. Notice that for cell of centroid
x5 we have ∂C5 =

⋃
k e5,k where k = 2, 4, 6, 8.

For the sake of simplicity we will show the full numerical process of converting
(10) into an LAE only for the central cell on the grid (whose centroid is x5) as the
process is equivalent for the rest of the grid with only some modifications required
for boundary cells. The weak form of (10) is given below where transformations of
surface flux integrals as well as the splitting operation of the total flux as sum of
each neighbours’ contributions over the shared edges (faces) are implied (see 1.2)
alongside Leibniz rule of integration for the transient term

∂t

ˆ
C5

ϕdx +
∑
e

( ˆ
e

(ϕb) · dSe +

ˆ
e

(ν∇(ϕ)) · dSe
)

=

ˆ
C5

f(x)dx , (11)
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where dSe is the surface vector pointing outward from edge e of the reference cell.
Here index e runs on the edges of C5 that are shared with its four neighboroughs
C2, C4, C6, C8, therefore

e = e5,k , k = 2, 4, 6, 8 .

As mentioned above, each term of (11) is treated differently based on which differ-
ential operator is involved; in the following we describe the process for the three
main types of interest i.e. the convective, diffusive and volume integrals, leav-
ing out of the treatment the transient term whose numerical approximation is
straight-forward and already mentioned in 1.2.

2.1.1 Convective terms

To approximate the surface integral let’s consider one single term of the summation
over e as the rest follows the exact same derivation. Assuming a transport velocity
that is constant in time and uniform in space (b(x, t) = b), and since the original
discretisation is cell-centered, we only know the value of the field variables b, ϕ
at the centroid x5. However what we want to evaluate here is the (numerical)
flux of ϕ across one edge, say e5,6. In the original (differential) formulation, this
scalar flux (ϕb) ·dSe5,6 varies pointwise within C5 therefore we must find a way to
approximate its value on e5,6 as a function of the value of the flux at the centroid
x5. In order to implement that we use a generic Gaussian quadrature with n− 1
nodes; one quadrature formula used extensively in FV codes (including the ones
adopted in OpenFOAM) is the mid-point rule (n = 2, see Figure 2) however higher
orders can also be considered. By using this technique we are able to derive a semi-
explicit expression for the numerical flux across e5,6; we cannot solve it just yet
however as the equation still specifies the value of the flux at the center of the
shared face between C5 and C6 rather one of their the centroids

ˆ
e5,6

(ϕb) · dSe5,6 =
n∑
k=1

wk(ϕ(x
(0)
5 )b) · dSe5,6 + 0(h3

e5,6
) ≈ he5,6(ϕ(x

(0)
5 )b) · dSe5,6 .

We still require a numerical approximation to implicitly derive a formula for the
evaluation of the face-centered flux w.r.t. its cell-centered values. So far we treated
the numerical discretisation of the differential term which reformulates the
continuous operator into a discretised algebraic form; the next fundamental step,
one that we didn’t address in 1.2, is the numerical interpolation scheme and it
is of paramount importance in FV codes as it directly controls both accuracy and
stability of the algorithm. From a mathematical standpoint, the interpolation is
carried out by performing a Taylor expansion of the scalar multivariable function
and truncate it at the desired order of accuracy; in practice many different schemes
have been devised for the interpolation of convective and diffusive fluxes which in
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FV codes are often referred to as linear (or central difference) scheme, upwind,
linear upwind (or SOU), minmod TVD etc... They differ by their reference for
setting the face value of the flux according to the direction or gradient of flux
from one cell and its neighborough and their order of accuracy; a visual intuition
is displayed in Figure 3. While pretty much all the codes for FV follow the same
choice of numerical discretisation of the flux integral, many choices are available
for the actual interpolation of the cell-centered value of the fluxes as it highly
affects the convergence of the entire algorithm.

Figure 2: Flux J(x) = ϕ(x)b is a scalar-valued function that varies continuously
in C5; assuming that we know the explicit analytical form of such flux along
a particular edge s.a. e5,6 we can use its value on some specific nodes of the
edge to numerically integrate the sought quantity. Gaussian quadratures are some
particular formulas used to evaluate definite integrals where the nodes are the roots
of some orthogonal polynomial family. In most of FVMs, and in particular CFD,
simpler formulas, based on equispaced nodes, are adopted to improve stability
and retaining low computational cost; they are known as Newton-Cotes formulas.
We depict above the mid-point rule (blue), that uses the mid-point of the edge
for a constant interpolation, and the trapezoidal rule (red) which deploys a linear
interpolation across the endpoints of the edge.

We will show how different choices of interpolation schemes help to provide
increased accuracy and stability in paragraph 2.3 while here we will just show how
the interpolation process eventually generates sparse linear systems of equations.
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Figure 3: Visual representation on how different numerical scheme of interpolation
approximate the face-centre value of a flux scalar function w.r.t. the values of
its owner and neighborough cell’s centroids: from top to bottom we have the
central difference scheme, the upwind scheme and the linear upwind scheme (also
known as Second Order Upwind scheme, SOU). The analytical expression of the
interpolations are listed in Table 1.

For this sake let us start by considering a very simple upwind scheme with a
flux that is crossing e5,6 by leaving cell C5 into C6.
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Under this setting the face-centered value of the interpolating flux is assumed
to be equal to that in the cell-centroid x5 i.e.

he5,6(ϕ(x
(0)
5 )b) · dSe5,6 ≈ he5,6(ϕ(x5)b) · dSe5,6 . (12)

We notice that, under the assumption in which b(x, t) = b and with orthogonal,
non-skew mesh, equation (12) can be rewritten asˆ

e5,6

(bu) · dSe5,6 ≈ c 5,6ϕ5 , ϕ5 := ϕ(x5) ,

where in the scalar coefficient c 5,6 := he5,6b · dSe5,6 we included all the terms that
do not depend explicitly on the unknown function ϕ.

Scheme ϕ
(
x

(0)
5

)
, ||b||2 > 0 ϕ

(
x

(0)
5

)
, ||b||2 < 0 Accuracy

Upwind ϕ5 ϕ6 First order
SOU ϕ5 +∇(ϕ5) · dSe5,6 ϕ6 +∇(ϕ6) · dSe5,6 Second order

Central diff. ϕ6
||x(0)

5 −x5||2
||x6−x6||2 − ϕ5

(
1− ||x

(0)
5 −x5||2
||x6−x6||2

)
Same Second order

Table 1: With reference to Figure 3 the above table shows how the face-center
value of the scalar field is interpolated in each numerical scheme and according to
the velocity (flux) direction.

To compute the value of the convective (numerical) flux in C5 we have to
consider each single contribution from its neighboroughs and thus the same process
is repeated for the remaining edges e2, e4, e8. This leads to the sought LAE that
approximates the convective term of (11)∑

e

ˆ
e

(ϕb) · dSe ≈ c 5,6 ϕ5 +
∑
j

c 5,jϕj .

We can then apply the same technique for the other 8 cells on the grid to obtain
a linear system of 9 algebraic equations which can be written in a compact formˆ

∂Ω

(ϕb) · dS ≈
ˆ
∂Ωh

(ϕhb) · dS ≈ Cϕh , (13)

C =



× × 0 × 0 0 0 0 0
× × × 0 × 0 0 0 0
0 × × 0 0 × 0 0 0
× 0 0 × × 0 × 0 0
0 × 0 × × × 0 × 0
0 0 × 0 × × 0 0 ×
0 0 0 × 0 0 × × 0
0 0 0 0 × 0 × × ×
0 0 0 0 0 × 0 × ×


ϕh =



ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8

ϕ9
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Matrix C contains the scalar coefficients derived from the discretisation and later
interpolation of the edge fluxes on each cell of the grid and the summation is
expanded to also include the 0 contributions of non-neighboring cells. It’s trivial
to see that the multiplicative coefficients of the flux contribution for cell Cj are
stored along the j-th column of C.
Furthermore we notice that already with a very small number of volumes (i.e.
9) the system shows a highly sparse configuration with the number of non-zero
off-diagonal elements in the lower-triangular part of the C (or upper-triangular
equivalently) being equal to the number of internal faces in the mesh. The actual
shape of C depends on both the structure of the problem itself as well as the
adopted interpolation scheme. For instance if we consider the absurd case in
which for each cell of the grid we have outward fluxes only, then each term of the
summation of the discretised LAE would only include the value of the unknown
function at the cell centroid itself with the multiplicative coefficient of the reference
edge. This arrangement leads to the j-th column of C to have only 0 entries except
for the j-th row, meaning that C would be a diagonal matrix. On the contrary
if each cell has inward fluxes only then we would have only off-diagonal non-zero
entries.
Also if we would have chosen a different interpolation scheme, e.g. TVD which
is third-order, we would have contributions from both the cell centroid and the
neighboring cells centroids at each iteration, regardless of the direction of the
actual fluxes across the various faces.

2.1.2 Diffusive terms

Same principles of the convective terms hold valid for the discretisation and in-
terpolation of diffusive terms with the additional adjustment of considering an
appropriate numerical approximation of the passive scalar gradient; in particular
this term requires careful considerations and corrections when dealing with non-
orthogonal and/or skew meshes (which we will not address) as this time is the
actual gradient of the unknown variable to be evaluated at the face-center and
not u itself. Furthermore, since the diffusive term features the laplacian operator,
which is second order, we require for the interpolation to have an higher degree
of accuracy at the cost of less stability. As we will see in the following paragraph,
the discretisation of these terms causes very little instability issues in the prop-
agation of error signals thus most of the time they are handled with a central
difference scheme. Following what we did for the convective term, here we show
the full derivation of the LAE for the laplacian integral. The cell flux integral is
integrated using the mid-point formula; here the diffusivity is considered constant
in time and uniform in space (ν(x, t) = ν) just like the velocity in the convec-
tive term. Then we perform a central difference interpolation and discretise the
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gradient of the passive scalar to obtain

ν

ˆ
e5,6

∇(ϕ) · dSe5,6 ≈ ν∇ϕ(x
(0)
5 ) · dSe5,6 ≈ ν(ϕ6 − ϕ5)

||dSe5,6 ||2
||x6 − x5||2

= d5,6(ϕ6 − ϕ5) .

The discretisation of the gradient is straight-forward and can be easily deducted
from a Taylor expansion of u centered in x5 in an interval that includes its neigh-
boring centroid x6. Following the same pattern of the convective term we write the
flux in C5 as a sum on all the contributions from its neighboring cells and include
the 0 terms of non-neighboring cells as well thereby obtaining the following LAE

ν

ˆ
∂Ω

∇ϕ · dS ≈ Dϕh , (14)

where matrix D, just like C, is sparse. Further corrections have to be included for
non-orthogonal meshes but they will not be addressed as it is outside the scope of
the present thesis to provide full coverage on the topic and refer to [22] instead.

2.1.3 Volume terms

Volume integrals are straight-forward to be approximated numerically and also
relatively simple to be implemented when compared to diffusive and convective
terms. Here we consider the forcing function (source) f to be constant in time but
not uniform in Ω. By performing a Taylor expansion of the source term with the
cell centroid as the centre of expansion and truncating to second order derivatives
we get

ˆ
C5

f(x)dx ≈
ˆ
C5

(
f(x5) +∇(f(x5)) · (x− x5)

)
dx =

=

ˆ
C5

f(x5)dx +∇(f(x5))

ˆ
C5

(x− x5)dx = f(x5)VC5 ,

where, in the present case of 2-dimensional, orthogonal, square-cells grid the vol-
ume of C5 will be VC5 = h2

5. These source terms are constant (i.e. they do not
depend explicitly on the passive scalar field variable u) and as such they are not
added to the entries of the coefficient matrices C,D. Instead we consider each cell
on the grid as a component of a 9-dimensional (source) vector thereby getting

ˆ
Ω

f(x)dx ≈ f . (15)
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2.2 Iterative methods for LAE

Now that we discretised and interpolated the original formulation (10) we can
assemble the LAE to be solved numerically by a CPU. We substitute (13), (14)
and (15) into (11) to obtain

0 = ∂t ϕ+∇ · (ϕb)− ν∆(ϕ)− f(x) ≈ (C + D)ϕh − f =

= Mϕh − f = r 6= 0 .

Matrix M := C + D is sparse and likely with dominant diagonal; vector r is the
residual of the differential problem that arose from the discretisation and inter-
polation processes. Given the structure of the LAE and also its dimensionality
(meshes of real industrial applications in CFD can go up to millions of cell vol-
umes), iterative algorithms have to be preferred to derive the full-order solution
ϕh. Common choices in CFD codes are the (conjugated) gradient descent and
Gauss-Seidel methods; tolerance for the convergence of the algorithm is usually
set in the interval (10−6, 10−9). In the sequel a Bi-Conjugate Gradient method
with no pre-conditioner (PBiCG) will be used to solve the LAE of the numerical
simulations while the tolerance is implied to be 10−9 unless otherwise specified.

2.3 Numerical diffusivity in transport-dominated equations

We now present the results of a series of simulations conducted on a simple 2-
dimensional test case of a transient, passive scalar field ϕ(x, t) modelled by (10)
in absence of source-like terms (i.e. f(x) = 0). In order to solve the problem
numerically however, we must first specify both the initial and boundary conditions
for the field variable (here velocity is constant and uniform and thus considered as
a parameter of the problem)

∂t ϕ+∇ · (ϕb)− ν∆(ϕ) = 0 ,

ϕ(x, t) = 0 ∀x ∈ ∂Ω ,

ϕ(x, 0) = 10 ∀x ∈ Γ ,

ϕ(x, 0) = 0 ∀x ∈ Ω ∩ Γ .

(16)

The hyperbolic differential problem above paired with initial and boundary con-
ditions is henceforth referred to as an Initial Boundary Value Problem (IBVP).
The implementation and performance of the simulations are carried out with the
open-source C++ library for CFD and partial differential problems OpenFOAM.
In it high-level programming can be easily adopted for simple cases s.a. this one
where the user is only required to set the geometry of the problem, the parame-
ters for the mesh and the choice for the numerical scheme and linear solver to be
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adopted. At this stage we will consider a simple 2m wide, 15m long rectangular
corridor in which the initial condition for the field variable u (which at this stage
can easily be represented by density) is set to 0 on the entire domain except for
a small square region where is uniformly equal to 10. We specify homogeneous

Figure 4: The domain Ω of the computational model, its boundary ∂Ω and the
initialized region Γ for the initial condition of ϕ(x, t) displayed using open-source
scientific visualization platform ParaView.

Neumann boundary conditions on the inlet and the outlet of the domain (i.e. the
edges of the domain perpendicular to the direction of transport of u) as well as on
its top and bottom fictitious walls. Both the initial conditions of u and geometry
of the grid on its domain Ω are reported in Figure 4. The set of simulations is
divided in two batches: the first one deploys the same high-order interpolation
scheme for both operators to show the rise of the phenomenon of artificially in-
duced diffusivity with increasingly dominant transport over diffusion; in the second
batch transport-dominated flow is fixed and different techniques are put in place to
improve the stability of the computations over time and reduce oscillations in the
error propagation while at the same time retaining as much accuracy as possible.
All the simulations are run with 10 seconds of transient flow and with the same
initial and boundary conditions specified in (16) except for the very first one where
the transport is set to 0 to evaluate pure diffusion. Furthermore, each simulation
features the same type of collocate, orthogonal, homogeneous mesh with the ex-
ception of the fourth case where we run a refined mesh to increase the stability at
smaller time-steps as explained later.
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Batch 1
Simulation ν b N. cells Convective term Diffusive term Courant

Sim 1 10−2 (0, 0) 350 Central diff. Central diff. 0
Sim 2 10−2 (0.5, 0) 350 Central diff. Central diff. 0.583
Sim 3 0 (0.5, 0) 350 Central diff. Central diff. 0.583

Batch 2
Simulation ν b N. cells Convective term Diffusive term Courant

Sim 4 10−2 (0.5, 0) 500 Upwind Central diff. 0.167
Sim 5 10−5 (0.5, 0) 350 SOU Central diff. 0.583
Sim 6 10−5 (0.5, 0) 350 QUICK Central diff. 0.583

Table 2: Setting of the simulations of the two different batches: third and fourth
column list the adopted numerical scheme for the face-value interpolation of di-
vergence and laplacian operators respectively (see Table 1). Note that since the
velocity field b is constant and homogeneous then Courant’s number will stay the
same throughout the entire run of each individual simulation

The settings for each individual simulation as well as the various choices for
the numerical schemes are listed in Table 2. In Figure 5 the results for the first
batch of simulations are depicted: in it the field solution is evaluated over the
domain using a color map. In Figure 6 instead, we report different plots of the
initial value of residual r of the LAE computed at each time-step alongside the
number of iterations performed by the linear solver until the desired accuracy of
(ε = 10−9) is reached.
We can immediately draw some qualitative conclusions from both figures. Firstly
we notice that, despite the diffusivity ν was kept constant in both Sim 1 and
Sim 2, the latter shows more diffusion than the former. The difference between
the two simulations is the presence of the numerical diffusivity induced by the
interpolation scheme adopted of the (discretised) convective term on the faces of
the cells.
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(a) Field ϕ(x, t) at t = 1
′′

(b) Field ϕ(x, t) at t = 5
′′

Figure 5: Sim 1, Sim 2 and Sim 3 (top to bottom) visual results of scalar passive
field u solved at different time-steps.

Looking at Table 2 in fact we notice that for all three simulations we used a
central difference interpolation scheme for both the Laplacian and the divergence
operators but while this had no effect in Sim 1 where we set the transport velocity
to 0, in Sim 2 we can already notice some minor contribution on the physical
diffusivity.
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Figure 6: Plot of the residual of the LAE and number of iterations per time-step
performed by the PBiCG algorithm (left to right) to reach the desired tolerance
for the three simulations sorted top to bottom as reported in Figure 5.

To highlight this phenomenon, in Sim 3 we set the actual diffusivity ν = 0 so
that we could evaluate the extent of this numerical error and as expected, although
the signal does look more localized w.r.t. Sim 2, its diffusion in Ω is still not 0.
Perhaps more problematic is that we can detect some disturbance of the signal
(travelling wave-like numerical instability) propagating in the opposite direction
of the velocity field.
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This can already be noticed in Figure 5(a) corresponding to a small packet
of darker blue lines located downstream the core travelling signal. We can make
it more evident, as in Figure 7, by rescaling the color map to a much narrower
numerical interval, one that includes negative values for ϕ(x, t) as well.

Figure 7: Plot of the passive scalar field in the three simulations of batch 1 (see
Figure 5) at t = 3.3

′′
with colormap rescaled to highlight the propagating error

pulses.

There are thus two major problems to address in transport-dominated prob-
lems: one (the numerical diffusivity) produces fictitious phenomena but it can still
be considered as a physical feature of the problem while the other (travelling dis-
turbance or dispersion error), is clearly nonphysical; both issues are related to
the accuracy order of the interpolation scheme adopted for the divergence operator
but the latter is also related to its stability.
Let’s approach the issue of dispersion first as this, as shown, gives rise to seri-
ous undesired transported oscillations in the opposite direction of the flow. The
obvious way we can fix this misbehaviour of the solution is to lower the order of
truncation of the central difference scheme to a piecewise constant interpolation.
The reason for this adjustment is that, while the former provides high-order ap-
proximations for elliptic operators, for which indeed each neighboring centroid is
equally affected by the field value in a certain reference node xj, in presence of hy-
perbolic terms it always fails to replicate the same bounded-error approximation.
This phenomena is better visualized if we think of it in physical terms.



24

Let’s consider for a moment a 1-dimensional domain (e.g. an infinitely thin sheet,
rod with 0 diameter etc...) where cell volumes in the FVM are intervals [xj, xj+1]
and we take xj to be our reference cell centroid. If we have a certain numerical
value ϕ(xj) = ϕj then diffusion will set one identical scaled value (dictated by the
diffusivity ν) on both neighboring centroids i.e. ϕ(xj−1) = ϕ(xj+1) = ν ϕj. The
same will happen of course for ϕ(xj−2) and ϕ(xj+2) and so on if we keep changing
the reference centroid of our calculation. This symmetry in the behaviour of the
solution is an intrinsic feature of the diffusive operator ∆ := ∂2

x which is itself sym-
metric. On the contrary in hyperbolic problems, regardless if linear or non-linear,
the presence of the convective term (i.e. the divergence of the solution ϕ), which
is not symmetric, makes the solution on downstream centroids, e.g. xj−1, to differ
quite substantially from the upstream ones.
Again thinking of it in physical terms, if the transport field b points westward
from xj−1 to xj+1, and in xj the scalar variable has a certain fixed value ϕj,
it makes sense to assume that, at the next time step, the solution perturbation
would have moved from xj to xj+1 while xj−1 would remain completely unaffected
by it. Clearly the direction of the velocity field (or more precisely the flux of the
transported quantity ϕ) has to have an influence on the numerical scheme when
interpolating face values of the cell neighboring centroids: however the central
difference scheme fails to recognize such flux as it assigns a face-centre value that
results from linear interpolation of xj−1 and xj, regardless of the direction of the
moving perturbation. This example greatly exemplifies the emergence of oscilla-
tory, dispersion (wave-like) errors in Sim 3, as depicted in Figure 7, that at each
time step are propagated upstream, against the actual flux direction of ϕ. As a
result we conclude that this second order accurate scheme has great advantages for
diffusive problems but it cannot be used for the discretisation of transport terms
as it does not account for the asymmetric feature of the divergence operator.
In the first simulation of the second batch Sim 4 we therefore substitute the cen-
tral difference with the upwind scheme for the convective term; the results are
then compared with those of Sim 3 and displayed in Figure 8(a). In both the
remaining simulations of the second batch, and as reported in Table 2, we set the
value of the parameters to be fixed at ν = 10−5 (to resemble the diffusivity of liquid
water) and b = (0.5, 0). With these setting we have our Peclet’s number of the
order of 105 which does satisfy the condition for a transport-dominated hyperbolic
problem.
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(a) Central difference scheme vs Upwind scheme

(b) Upwind scheme vs SOU

(c) Upwind scheme vs QUICK

Figure 8: Comparison of the field solution ϕ between different simulations: (a)
Sim 4 (bottom) and Sim 3 (top); (b) Sim 5 (bottom) and Sim 4 (top); (c) Sim
6 (bottom) and Sim 4 (top).

Furthermore, since in Sim 4 we used a lower order scheme, for that simulation
only we deployed a finer mesh so that accuracy is retained as much as possible;
at the same time we decreased the interval between time-steps (thereby increas-
ing the time of computation) in such a way that Courant’s number, defined as
C0 = δt

δx
||b||2, is kept at reasonably low values. Notice that for a homogeneous,

orthogonal, collocated mesh s.a. the one used in both batches, C0 is constant and
uniform across Ω (notice that δx has the same meaning that h had in paragraph
2.1). In Sim 5 and Sim 6 we restore to the previous mesh configuration and
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time-step while deploying more sophisticated (higher-order, bounded) schemes for
the divergence operator and compare the results with Sim 4 in Figure 8(b) and
Figure 8(c) respectively. In particular in Sim 5 we make use of the Second Or-
der Upwind scheme (SOU) while in Sim 6 we deploy the Quadratic Upstream
Interpolation for Convective Kinematics which uses a quadratic polynomial biased
towards the upstream direction as the function interpolating the neighboring cells’
centroids.
We immediately assess how the use of a lower-order scheme in Sim 4 successfully
got rid of the oscillations; however, despite having used a finer mesh and a smaller
time-step, the upwind scheme still showed more numerical diffusivity than the
central difference scheme. To improve the accuracy several higher-order methods
have been developed during the years. The SOU algorithm implemented in Sim
5, which is second order accurate just like the central differencing method, takes
in the information of the gradient of ϕ across the faces to adjust the computation
on the field variable at the face centre. This correction does significantly reduce
the numerical diffusivity at the cost of reintroducing the previous oscillations (al-
though of smaller values and more localized compared to those induced by the
central difference scheme). A further improvement is provided by the QUICK in-
terpolation adopted in Sim 6; it shows a much more accurate solution (being a
third order truncation method) while at the same time reducing the oscillation of
one order of magnitude w.r.t. those observed in the SOU scheme.

2.4 Model reduction of 1−dimensional passive scalar field

In the previous paragraphs we saw how problematic can be to achieve sufficiently
accurate and stable simulations in hyperbolic problems already at full-order level
and with very simple geometric and parametric dependence. In 1.3 we mentioned
different works where this issue was addressed at reduced-order levels as well; in
this last paragraph of the chapter we shall validate those aforementioned efforts and
observe clearly how a traditional ROM algorithm, specifically the POD-Galerkin
method, fails to successfully encode the essential dynamics of conservation laws in
the expected amount of basis modes. This would provide us with the proper back-
ground and motivation for searching and implementing data-driven techniques as
an alternative methodology for Model Order Reduction of hyperbolic problems in
fluid dynamics, which we will introduce in Chapter 3.
Before implementing the reduction algorithm however we shall revise the theoret-
ical aspects and mathematical structures at play. In 1.2 we concluded that the
modes φj of the reduced basis of M, which reconstruct the approximated full-order
solution through superposition (9), coincide with the largest left singular vectors
of the N ×M design matrix X where we collected the M realizations (snapshots)
of the full-order solution in the parameter space. We then added that intuition
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behind those results and a reformulation of the Galerkin projection part of the
algorithm in terms of an optimization problem (or equivalently its variational for-
mulation) will be later provided.
In the following we thus briefly review those concepts in a different, more rigorous
approach so that we motivate the analytical and numerical tools that follow.

2.4.1 Parameter variational formulation of POD-Galerkin

We start by considering ϕh(µ) ∈ RN as the numerical solution of a discretised
full-order model s.a. the LAE derived in 2.2; vector µ is a list of parameters of
the hyperbolic problem e.g. µ = (D,b) for the previous case analysed throughout
2.3. Let’s suppose our problem is steady (i.e. ∂t ϕ = 0) and that we found the
numerical value of ϕh for a particular fluid flow with a fixed velocity field and
diffusivity. If we now want to change those parameters we should, in theory,
reconstruct the whole discretised problem and solve the associated LAE. While
this solution would surely provide the most accurate solution is also unfeasible
in many industrial applications in terms of computational cost s.a. uncertainty
quantification and parameters optimization. The ansatz of POD-based reduction
models is that, while the local behaviour of the fluid flow might change with
a different choice of parameters, perhaps some global structures are conserved
because they are characteristic with that particular form of the PDE. For example
it’s trivial to see that if we instead choose a new value for the velocity field to be
−b in a transport equation (i.e. equal in intensity and opposite direction, then
we can easily predict that the full-order solution ϕh would now propagate in the
opposite direction w.r.t. the one derived earlier. Similarly if we choose a new value
for the diffusivity to be 2D instead we can expect that ϕh will diffuse twice as fast
as it did in the previous full-order simulation.
Extracting the modes of a differential model means exactly to derive those global
dynamics of the fluid that are very little affected by the changes in the parameters
space and project the full-order solution onto the subspace that is spanned by
those modes.

It makes sense thus to assume, at least initially, that these global structures
exist and that we can therefore express our full-order solution in this reduced
basis as we did in (9). We can then encode our parametrisation in the LAE
system noticing that, since our parameters are embedded in the solution itself,
upon which the differential operators act, the discretisation process will produce

M(µ)uh = f .

Of course, once we solve the above system we would have the explicit dependence of
the full-order solution on the parameter (ϕh = ϕh(µ)) but at this stage, where the
solution is implicit, the dependence on µ is exclusively contained in the coefficients
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matrix. When we perform a number M of realizations in the parameter space we
previously mentioned that we are essentially computing ϕh across the range of M
different values for vector µ and we can see now that as µ changes, the coefficient
matrix changes accordingly. The problem of reduction therefore now reformulates
into a problem of extracting the main features of the dynamics of the problem
and filter out the unnecessary noise. We can now consider the design matrix of
snapshots

X = (ϕh(µ1), . . . ,ϕh(µM)) ,

and consider the subspace V ⊂ M defined by the generic orthogonal projection
of the full order solutions ϕh. Let V be an orthogonal matrix associated to V

(we remind once again that B(V) = range(V)) then we can define the orthogonal
projection of a generic ϕh onto V as

V 3 ϕ̃h := ΠV(ϕh) = VVTϕh , ∀ϕh ∈M .

Of the infinitely many subspaces (and thus orthogonal projections), we look for the
one that minimizes the projection residual of the reconstructed solution and, pos-
sibly, in the smallest number of dimensions. This observation leads us to formulate
the following minimization problem

V = argmin
V

{ M∑
j=1

||ϕh(µj)−VVTϕh(µj)||22
}

= argmax
V

{ M∑
j=1

||VVTϕh(µj)||22
}

=

= argmax
V

{
||VTX||2

}
= argmax

V

{
tr(VTXXTV)

}
= argmax

V

{
tr(VTSV)

}
.

from which we conclude that V is the matrix of column eigenvectors of S :=
XXT ∈ RN×N . An important result was to observe that S and ST share the same
non-zero eigenvalues; this was important for practical reasons since ST ∈ RM×M

and M << N . The same result, it can be shown, is achieved by performing the
SVD of X where one thus takes the left singular vectors of the latter instead of
the eigenvectors of the square matrices S or ST .
Regardless of the decomposition strategy adopted, once V is computed one ex-
tracts its first R columns (modes) which will become the basis vectors of the
sought subspace V. Let Ṽ = (φ1, . . . ,φR) ∈ RN×R be the matrix where we store
such generators, now we can express the full-order solution in the new basis via a
simple inverse transformation and write ϕh ≈ Ṽq, where q = (q1, . . . , qR) contains
a list of dynamical coefficients usually referred to reduced coordinates. It is the
objective of the Galerkin projection to find those coordinates.
In order to do that we now fall back to our original LAE for the j-th realization in
the parameter space and write (we drop the subscript index dependence for ease
of reading)

0 ≈M(µ)ϕh − f ≈M(µ)Ṽq− f = r(q) .
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We now observe that, since Galerkin projection enforces a relation of orthogonality
of r(q) onto V then we can project the whole linear system onto V to obtain

0 = ṼT r(q) = ṼT (M(µ)Ṽq− f) ⇒ M̃q = b̃ , (17)

which is a reduced-order LAE with M̃ = ṼTM(µ)Ṽ ∈ RR×R. Relation (17) is
what eventually makes the POD-Galerkin so successful in improving the efficiency
of CFD numerical simulations. In fact, once the new reduced basis has been ex-
tracted and stored in Ṽ during the offline phase, this process, which is in practice
the most expensive in the simulation workflow, does not have to be performed
again as the POD already identified the most relevant features of the data it has
been presented with. To reconstruct a physical solution for a different parameter
input µ then one discretises the problem again to compute M(µ) and then, in-
stead of solving the associated high order LAE, which we remark that for several
applications in aerospace, naval and biomedical engineering is made of millions of
DOFs, one computes the much smaller (17) to derive the coefficients q of the new
basis. At that point the full-order solution is reconstructed with a simple linear
combination as in (9).
Furthermore one can achieve an even higher efficiency if the so-called affine de-
composition can be performed. In it we hypothesize that the functional depen-
dence of the coefficient matrix of the LAE on µ is s.t.

M(µ) ≈
M∑
j=1

L(µj)Mj ,

where L is some (generally linear) transformation of the parameter vector. If
the hypothesis hold valid then in the online phase, instead of computing the whole
M(µ) again for each new instance of µ, one simply uses the pre-computed matrices
Mj of the offline phase to reconstruct the new coefficient matrix thus further
enhancing the reduction in computational cost of the former phase.
Additional comments have to be made with regards on which number of modes
to extract to obtain an accurate enough projecting subspace for the reduced-order
solution. A general discussion regarding this topic is difficult to derive as it really
varies for each case individually depending on the PDE at hand; it is this number
of modes to be retained for the offline phase that eventually makes the adoption
of POD techniques successful and, as previously mentioned, hyperbolic non-linear
problems are a class that poses difficult challenges for these reduction algorithms.
That is, even though they might successfully reduce them, they fail in doing so
for a sufficiently low-rank subspace that justifies the implementation of a reduced
order modelling. Additional details will be provided in 2.4.3.
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2.4.2 Method of characteristics

Since the model of interest of the entirety of the present chapter and those that
follow are transport-dominated problems we really should at least provide some
reference to the analytical solutions that have been found for some of those hy-
perbolic systems. The reason for this is that, in most cases, simplified transport
equations s.a. the inviscid Burgers’ equation are solved through an analytical
process that closely resembles the algorithm implemented by Reiss et al. in [36].
Such technique, known as the method of characteristics (curves) will thus
hereby briefly introduced for a linear hyperbolic 1-dimensional transient problem
modelled by (5) where Fx(u) = bϕ(x, t). This form of a conservation law is al-
most equivalent to the model that we approximated and solved at full-order in the
previous paragraph; in fact, despite the latter being of a 2-dimensional geometry,
the velocity field b was such that no perturbation of the field propagated in its
orthogonal direction. As such we could consider that problem as one with an axial
symmetry and thus easily reducible (in its physics) to a 1-dimensional case s.a.
the present one. Here b is constant in time and uniform in the spatial domain for
x ∈ (−∞,+∞). As IC we consider a similar signal as introduced in the IVBP
(16) with the only difference that we now require such function to be at least
differentiable everywhere in the physical domain of the problem

ϕ(x, 0) = ϕ0(x) ∈ C1(x) ,

The method of characteristics has a dual interpretation: one purely analytical
and another with an elegant geometrical intuition behind; let’s consider a para-
metric surface S =

{
(x, t, z) s.t. z = ϕ(x, t)

}
as the support of solution ϕ(x, t) in

a closed subset of R3. If we rewrite the hyperbolic problem as

0 = ∂t ϕ+ b∂x ϕ = (b, 1, 0) · (∂x ϕ, ∂t ϕ, 0) = F ·N ,

then we notice that the differential equation naturally induces the pointwise normal
vector N to its solution’s support and an orthogonal vector field F which lies in
the tangent plane of S. Given this orthogonality relation we can conclude that
every curve that follows this tangent vector field on S will be parallel to each other
in an euclidean geometrical sense.
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With this observation then we might hope that, if we’re able to somehow find
this family of curves, the solution support S can be reconstructed as a union of
those curves (see Figure 9) for reference.

Figure 9: A step-by-step construction of the characteristic curves for the support
of a circular parabolic solution ϕ(x, t) = −x2 − t2.

Geometrically speaking we’re looking for a family of parametric curves γ(s, τ) =
γ(s) where τ uniquely identifies one specific curve whereas s is the only parameter
that varies along each curve. If we want γ to be tangent to F at each point in the
tangent plane of S then it’s easy to see that we must impose that γ

′
(s) = F which
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gives rise to the following systems of ODEs
dx
ds

= b ,
dt
ds

= 1 ,
dϕ
ds

= 0 .

(18)

The same result is achieved by computing the derivative of solution ϕ(x(s), t(s))
w.r.t. s using the chain-rule and imposing the equality with the original hyperbolic
differential equation. We notice that in (18) we essentially reduced a PDE to a
system of ODEs, which can be easily solved using the separation of variables in
this case. The general solution of (17) will be

x(s) = bs+ c1 ,

t(s) = s+ c2 ,

ϕ(s) = c3 |.

We can easily find the values of constants c1, c2 by observing that we performed a
parametrisation with s, τ s.t.

x(0, τ) = τ = c1 , t(0, τ) = 0 = c2 .

Let’s now project those curves (x(s), t(s)) onto the x−t plane, effectively removing
the s explicit dependence and we obtain{

x(s) = bs+ τ

t(s) = s
=⇒ x(t) = bt+ τ . (19)

With (18) we uniquely identify a family of linear curves on the x − t plane, each
associated to a certain value of τ , along which the solution ϕ is constant; we
recognize that we’re almost done since if we are able to compute constant c3 then
all is left to do is to consider a transport of ϕ along those lines, as depicted in
Figure 10. To do that we simply parametrize the IC like so

t(s) = 0 ⇒ s = 0 ⇒ x(0) = τ ⇒ ϕ0(x) = ϕ0(τ) ,

and immediately derive the value of c3 as ϕ(x(s = 0)) = ϕ0(τ) = c3, which we
map back in the original coordinate (x, t) using (18) to get

ϕ(x, t) = ϕ0(x− bt) . (20)
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Figure 10: The reconstructed analytical solution of the single transport equation.
We can see that the initial (gaussian) pulse, corresponding to the IC ϕ0(x), gets
transported along the curves x(t) = bt−τ (in red) with constant velocity and thus
its position at each t > 0 can be traced back to the original configuration with a
simple time-shift as described in (19).

Despite its relatively simple formulation, equation (19) is fundamental for the
numerical treatment of transport-dominated phenomena as it implies that, in gen-
eral, transport equations are solved by a solution ϕ(x, t) which, at any given time-
step of the algorithm, has to coincide with the IC of the problem shifted in time by
an amount that it’s proportional with the transport velocity b and with no distor-
tion. This is equivalent to say that, as shown in Figure 10, the pulse propagates
in time along the characteristic curves x(t) = bt − τ where τ ∈ R. As we will
see in Chapter 3, the recognition of this seemingly inconsequential result lays
at the foundation of the most modern endeavours that successfully reduced the
computational order of linear, hyperbolic conservation laws.

2.4.3 Numerical results

We will consider the same 1-dimensional advection equation with uniform and
constant coefficients discussed analytically in 2.4.2; we make the remark that this
PDE closely resembles those simulated in 2.3 at full order with dominant trans-
port, especially Sim 5 and Sim 6.
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The PDE is not parametrized but it is transient and thus the POD-Galerkin
method would look for the dynamical modes that better describe the time evolution
of the full order solution ϕh = ϕh(t). The snapshots in matrix X are realizations of
the solution at advancing time-steps i.e. ϕh(tn) , n ∈ N0. The mathematical tools
that are used to perform a POD of a numerical model in OpenFOAM are imple-
mented in the C++ library ITHACA-FV, developed and maintained by mathLab
research group in applied mathematics ([40, 39]) at the International School for
Advanced Studies (SISSA) in Trieste, Italy.
The numerical setup for the simulation provides that 500 snapshots are collected
between t = 0 and t = 5 seconds with δt = 0.01 seconds in between; considering
that with the refined grid of 500 cells used in Sim 4 and displayed in Figure 4 we
had achieved numerical stability, this would lead us to a stable full-order model
and a square snapshot matrix, which is ideal.

Figure 11: The eigenvalues decay of the associated modes of the design matrix of
the full order simulation in [0, 5] (right) and their associated cumulative value (left)
quantifying the amount of energy retained by an increasing number of reduced
basis modes.
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The full-order discretisation of the differential operators is performed using the
same schemes defined in Sim 6 and the simulation is solved algebraically using a
PBiCG with no pre-conditioner. The modes extraction is then performed through
eigedecomposition of the design matrix XTX which is a 500×500 square matrix. In
Figure 11 we report the decay of the eigenvalues associated to the decomposition of
the design matrix. Most of the energy of the full order model is retained by the first
few modes extracted by the POD as confirmed by their cumulative eigenvalue being
0.996 by the tenth mode; since the main purpose of a ROM-based algorithm is to
minimize the number of dimensions for a ROM, with a fixed amount of accuracy
to be retained, we might be tempted to state that we successfully achieved the
desired result. Towards the end of 2.4.1 however we mentioned that the number
of modes to be retained is problem-specific and usually depends on a trade-off
between accuracy and efficiency; we will now provide a general rule for a first
evaluation of the performance of a certain POD setup and which will show us that
the performances depicted in Figure 11 are significantly poor in terms of efficiency.
Let’s consider for a moment a POD by SVD rather than by eigendecomposition
(as already mentioned in 2.4.1 the two strategies lead to the same result despite
operating on different matrices) and let Ṽ be the reduced basis matrix with R < M
being the number of extracted modes

X = VΣU , Ṽ ∈ RN×R .

Using Galerkin projection, and upon defining an appropriate matrix norm, we can
construct a (relative) projection error that quantifies the amount of accuracy
lost in reducing the full order model with a number R of modes

e(R) =
||X− ṼT ṼX||

||X||
=

√√√√∑M
j=R+1 σ

2
j∑M

j=1 σ
2
j

. (21)

Quantity e in equation (21) can be taught of as the relative energy retained by
the reduced model w.r.t. its full order counterpart. We can clearly see how such
quantity depends on R; as a general rule of thumb the reduced order model should
retain 90% of the energy of the system, therefore we can write the optimal number
of modes as

R∗ = argmin
R
{e(R) ≤ 0.1} .

The above result is equivalent in looking for the minimum number of eigenvectors
from the eigendecomposition of XTX s.t. their cumulative eigenvalue is at least 0.9.
This explains why it is desirable that the eigenvalue decay is as inverse exponential
as possible; slower decays implies that more modes are necessary for the low-rank
subspace to accurately reconstruct the original manifold. This scenario is exactly
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what happens in our attempt at reducing the problem. As a matter of fact we
might expect the model to be dominated by just one feature, i.e. the east-ward
transported flux which can easily be depicted using only one mode. However,
looking at Figure 11 we can clearly see that the decay rate of the eigenvalues is
not fast enough to allow us to extract one mode only as it barely retains 62% of
the full order energy. We are therefore forced to use more modes than necessary
in order to accurately describe the hyperbolicity of the problem at hand.

Figure 12: The first 8 extracted modes of the reduced basis for the full order
simulation of the 1D advection equation. They are sorted according to their
eigenvalues with the top-left having the largest eigenvalue (as depicted in Figure
11) and the bottom-right having the smallest one of the subset.

As a matter of fact we can plot those modes onto the geometrical domain as
in Figure 12 where we report the first 8 extracted from V. From it, it’s obvious
the fact that at least the first three modes are required as the first one cannot
accurately describe the physical transport. With this last observation we success-
fully illustrated that standard basis reduction algorithms, that do not account for
the hyperbolicity of transport-dominated differential operators, fail to effectively
derive a low-rank representation of the solution manifold of the IBVP problem.
One first step towards the solution of this issue can be sought by considering the
analytical features of the PDE and it will be the core subject addressed in the
following chapter.
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3 The shifted-POD as numerical-based

characteristics method

In Chapter 1, while reviewing the state-of-the-art of model order reduction of ad-
vective problems, we stated and referenced how the case of hyperbolic differential
equations with dominant transport always posed a particularly challenging test
for POD-based algorithms. In 2.4.3 we validated such statement showing that
indeed, already for a simplified, 1-dimensional, non-parametric advective model,
the standard POD method failed in isolating the essential dynamics of the problem
in the expected number of modes. We also listed in 1.3 what previous efforts have
produced, in terms of numerical schemes, to address and eventually overcome such
obstacle.
Of the various methods already referenced, one in particular achieved a high-degree
of efficient applicability in terms of scope of differential models it successfully re-
duces in different CFD contexts. The work of Reiss et al. [36] in 2018 devised
such algorithm in approaching the reduction of transport phenomena by exploit-
ing both some numerical methodologies introduced in earlier papers and also the
analytical features of the hyperbolic problem itself. The so-called shifted-POD
algorithm (or sPOD as we will henceforth refer to) will thus be the main subject
of the following paragraphs.
We shall start this initial part with a brief review of the content of the afore-
mentioned work thereby introducing and motivating the methodologies that were
adopted; in the final part we will implement a shifting algorithm based on those
methodologies with the goal of highlighting its improvements w.r.t. traditional
POD followed by a brief discussion on its limitations.
This workflow would provide us with the necessary link between the background
built in Chapter 2, in which we derived a quasi self-contained theory of POD-
based reduction of transport dominated full-order models with finite volume dis-
cretisation, and Chapter 4, where the deployment of machine learning techniques,
and in particular deep neural networks architectures, will be introduced to over-
come the aforementioned limitations of those more intrusive techniques.
As inter-transition between paragraphs, in the central part of the present chapter
we formalize the model used in 2.3 and 2.4.3 as one instance of the more general
and well-known IBVP in scientific computing and PDEs theory, the Riemann
problem, previously mentioned in 1.3. With it we will be able to build a theoret-
ical framework that formally justifies the need for less intrusive techniques for the
reduction of transport models whenever there is presence of non-linear hyperbolic
operators, or discontinuous ICs or both.
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3.1 sPOD-based reduction of multiple transported scalar
fields

The following content heavily relies on mathematical derivations and results as
presented in [36], therefore any reference to it is implied unless otherwise speci-
fied. Also, since the sPOD was introduced for specifically addressing the need of
an efficient reduction of transport-dominated problems here, and for the rest of
the chapter, we will also imply to those everytime we refer to a PDE.
Arguably the most important mathematical feature of any ROM algorithm, besides
its substantial advantages in industrial applications, is the ability of highlighting
the essential dynamics of a parametric differential model. More intuitively we
can think of the goal of a well-structured ROM as to identify what the dominant
dependencies of the model are and extract them so to have a low-dimensional en-
coding of the overall behaviour of the model filtering out the non-descriptive minor
details, often referred to as noise in different other fields s.a. data-analysis.
In this context sPOD can be thought of as an extension of POD in which the
snapshots are manipulated to account for the dominant transport of the PDE.
Specifically, by assessing that traditional POD fails to capture the essential dy-
namics of a transported quantity, one retrieves back to the original assumptions
made when building the models and looks for any improvement that can be im-
plemented.
As we already mentioned in 1.2 and 2.4.1, the fundamental ansatz of POD-based
reduction is the superposition of modes in (9) where the time-dependent coeffi-
cients, that are the reduced coordinates, are found in the online phase thanks to
the Galerkin projection. Let’s now assume a IBVP of the form (16) with an overly
stretched gradient i.e. one where the initial scalar field is a strongly localised pulse
that evolves according to a process of pure transport. Clearly a decomposition
of the form (9), in order to be efficient and mathematically consistent with the
reduction itself, has to be strongly linked to a time-evolution of a transported,
localised, steep signal and as such the first mode has to retain almost the totality
of the energy of the system. What we conclude however is that, being modes φj
the low-rank approximation of a spatial distribution of some scalar field, structure
(9) will not feature a strong time-dependency as expected since the signal would
simply ”move” across the null values of the field with no clear parametric depen-
dency encoded in the process.
We can think of decomposition (9) of this advection equation as a moving packet of
Dirac’s delta functions, each one putting the mass at the point of the grid uniquely
identified by the timestep considered; the modes will simply reflect this feature and
identify the different regions of Ω that, at different time-steps, presented non-null
values of the scalar field, as depicted e.g. in Figure 12.
Ideally, if we can somehow embed the parametrization within the modes, then
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we can expect to derive a reduced-order model in which the transport is fully
represented. Since the modes are the result of a SVD (or equivalently eigendecom-
position) of the snapshot matrix X then, in order to achieve the desired result, we
must collect those snapshots in such a way to make them time-dependent. With
this is mind it is only natural to consider the method of characteristics as a can-
didate to implement such feature. As introduced in 2.4.2, the time-dependency
of the transport can be clearly evaluated by the fact that the (analytical) solution
is formed by shifting the unperturbed initial signal ϕ0(x) along the characteristic
curves x(t, τ) of the PDE (see Figure 10).
As a matter of fact, this intuition was already exploited in different works, most no-
tably [1] and [26], where the so-called method of freezing introduces a time-shift
of the collected snapshots to balance out the dominant transport phenomena in
the PDE. The time shift of the solution precisely coincides with (20) whenever the
scalar field is transported by one, distinct velocity field b(x, t), i.e. there is a sin-
gular transported quantity. More precisely, let’s consider (9) as a POD-based
reduction and X = (ϕh(t1), . . . ,ϕh(tM)) a snapshot matrix s.a.

ϕh(tj) ≈
R∑
`=1

q`(tj)φ` ⇒ ϕh(xk, tj) := ϕk,j ≈
R∑
`=1

q`(tj)φk,` ,

where φk,` = φ`(xk) is the k-th (scalar) component of the `-th mode. If we now
introduce a time-shift operator Tb : C1(Ω) 7→ C1(Ω) s.t. Tb f(x, t) = f(x − bt, t),
then we are able to encode the analytical solution (16) in the collected snapshots
by simply letting Tb to operate on the decomposition itself i.e.

ϕk,j ≈ Tb

R∑
`=1

q`(tj)φk,` =
R∑
`=1

q`(tj)Tbφk,` =
R∑
`=1

q`(tj)φk−btj ,` . (22)

It is clear from (22) that with Tb acting on the the entirety of X, each column
(i.e. snapshot) will be shifted backward in space by an amount that is (linearly)
dependent on the time-step at which the snapshot was collected. This is exactly
what we wanted as we now have encoded a clear time-dependency in X so that an
SVD would find its best low-rank approximation (w.r.t. a L2 norm).
Attention must be paid when implementing (22) since, depending on the velocity
field value, the time-shift of the numerical solution might bring the snapshot in a
non-centroid point of the grid; for instance if we assume a 1-dimensional domain
Ω = (0, L] and a homogeneous grid of N equispaced centroids with xj+1 − xj =
h , ∀j = 1, . . . , N and a velocity field that is uniform and constant, then we are
either constrained to sample the snapshots at a given time-step, specifically

xs := xk − btj ⇒ xs − xk = btj = jh , j = 1, . . . , N ⇐⇒ tj = j
h

b
,
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so that each time-shift brings the snapshot exactly on a grid point where there
is already a centroid in place, or we must apply some interpolation scheme for
the values of the unknown function w.r.t. its closest centroid neighboroughs (see
2.1.1). In both cases we must make sure that C0 stays within a certain threshold
and also that the overall stability is maintained, which might pose a limit for the
achievable accuracy in some applications.
While the method of freezing via time-shifts (22) does solve the problem addressed
in 2.4.3, it can only be applied to singular transport; clearly if the initial pulse
splits in opposite direction during its time evolution, one single time-shift does not
suffice in capturing the distinct transports. This is true in general for any type of
multiple transported quantities, i.e. transport-dominated PDEs in which it
is possible to identify multiple transports (e.g. wave equation).
The sPOD algorithm embarks the aforementioned time-shifting strategy but ex-
tends its scope to the latter case; in general in these sort of problems the IC has
the following form

ϕ(x, 0) =
S∑
s=1

ϕs(x,b) , b = b(x, t) ,

where S ∈ N is the number of (initial) transported pulses and ϕj(x,b) ∈ C1(Ω).
We will therefore have a revised form of (22), called multiframe decomposition, in
which the time-shift is combined with a transport separation procedure

ϕk,j ≈
S∑
s=1

T
(s)
b

R∑
`=1

q
(s)
` (tj)φ

(s)
k,` =

S∑
s=1

R∑
`=1

q
(s)
` (tj)φ

(s)
k−btj ,` , (23)

in order to identify the best low-rank approximation of each transported IC pulses.
The method used to separate and isolate each (transport) velocity in its frame of
reference is based on a näıve approach, meaning that the actual decomposition
in the modes is performed, independently, for each one of the transported pulses
ϕs(x,b). This procedure translates in an iterative decomposition in which the
outer loop runs on the different velocities of the ICs (i.e. index s = 1, . . . , S) while
the inner loop performs the SVDs of the snapshot matrices X(s) thereby extracting,
for each transport, the essential dynamics associated on each advected pulse. At
that point one seeks for an optimization of the reconstructed snapshots minimizing
the residual w.r.t. X(s) in the least square sense; once the residual drops below
a user-defined threshold the decomposition is complete and the extracted modes
should, individually, identify the dominant transports of each single IC’s pulses.
We refer to the pseudocode reported in [36] and to [4] for the implementation of
the above algorithm.
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While successful in isolating the dominant advections of simplified multiple trans-
ports s.a. the 1-dimensional linear acoustic wave, the method also showed substan-
tial improvements w.r.t. the traditional version of the POD (in terms of number of
modes retained w.r.t. a given reconstruction error) also in more complex problems
s.a. 2-dimensional incompressible Navier-Stokes transporting vortex pairs as ICs
as well as pulsed detonation combusters in [35].
In the present thesis we will not consider multiple transports therefore we will
retain (22) as our sPOD reference; in this formulation, despite knowing the actual
transport velocity field, we can still formulate a variational alternative of it where
one samples candidates velocities for the reconstructed solution field and looks
for those values that maximize the SVD or eigenvalues decay (a more detailed
description will be provided in Chapter 4).
The construction of the (discrete) shift operator in (22) is the focal point of the
sPOD algorithm; in particular, while implementing a ROM method for e.g. an
advection equation, one must first sample the parameter space in order to collect
the snapshots of full-order solution at different time-frames and later defines a
function that takes as input the individual ϕh and shifts each single component of
it onto a new centroid of the mesh according to the value of the transport velocity
field. The new, shifted full-order solutions are then collected in a new snapshot
matrix which will now have the IC’s frame of reference. By performing the SVD
onto this new matrix one derives the necessary modes of the reduced basis that
optimizes the eigenvalue decay which is exactly what we are after.
This approach, which we will describe in detail in 3.3, provides the desired re-
sults in a number of cases for the advection equation which makes it robust and
general enough to be applied to a wide variety of application; one constraint is
that we cannot use the extracted basis to perform a Galerkin projection for a new
realization of the parameter vector µ on which the velocity field might depend on.

3.2 Riemann problem: discontinuities along the
characteristic curves

One model in which the sPOD might underperform is the case of a strongly lo-
calised signal. In order to discuss those limitations we must first introduce some
analytical notions regarding the discontinuities that may be formed along the char-
acteristic curves of the advection equation. In 2.4.2 we derived such analytical
method in order to solve a 1-dimensional advection equation with constant and
uniform velocity field b(x, t) = b. The obvious extension would be the case in
which the advected flux either presents a field-dependency or features a non-linear
dependency on the solution itself.
In the following we shall investigate exactly what are the limitations of the method
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of characteristics, upon which the sPOD is build, for a generic hyperbolic problem
and how this affects the low-rank representation of the model. In 2.4.2, when in-
troducing the technique, we derived a system of ODEs whose integration leads us to
linear characteristic curves along which the initial condition ϕ0(x) gets transported
without undergoing any deformation. While we didn’t specify the functional de-
pendence of such IC on x we did implied that it must be at least continuous and
differentiable everywhere and that its firs-order (partial) space derivative has to
be continuous in x. The next logical steps to evaluate are the case of non-uniform
velocity fields, which may potentially features a non-linear dependence on x or
even some non-regularities such to make the integration of (18) non-trivial, and
the case of strongly localised (i.e. non-differentiable everywhere) or even discon-
tinuous initial pulses. To this purpose let’s consider the following generic IBVP:

given F a non-linear map, find ϕ ∈ C1(R, [0,+∞)) s.t.
∂t ϕ+ ∂x(F (ϕ)) = 0 ,

ϕ(x, 0) = ϕ0(x) =

{
ϕ− , x < a ,

ϕ+ , x > a ,

(24)

where ϕ0(x) is a piecewise constant function with a discontinuity of the first kind
(i.e. jump like) in x = a.

The IBVP in (24) is known as Riemann’s problem and it evaluates how ini-
tial discontinuous signals evolve along the characteristic curves of the PDE; we
immediately notice that this is a more general formulation of the model we used
in the simulations in 2.3 where F = b ϕ, ϕ− = 0 and ϕ+ = 10. In that particular
instance of Riemann’s problem we already know that the general solution has the
form of a spatial shift of the IC as in (20); however, being the IC a non-continuous
and not everywhere differentiable functions, we cannot reconstruct an analytical
solution in the strong sense. Furthermore, since the IC is parametrized by a then
we must also expect that the characteristic curves will be themselves parametrized
by a since along such values the discontinuity in ϕ shall be preserved.
Let’s address these issues keeping a generic approach, i.e. preserving a non ex-
plicit field dependence of the flux F = F (ϕ, x, t). First we must provide an integral
(weak) formulation such to relax the requirements of ϕ to fulfill in order to be a
solution of the IBVP; for that we resort to Theorem 1 and obtain

ˆ +∞

−∞

ˆ +∞

0

(
ϕ∂tv + bϕ ∂xv

)
dxdt+

ˆ +∞

−∞
ϕ0(x)v(x, 0)dx = 0 ,

where v ∈ C∞(R, [0,+∞)) is a test function with compact support. We are now
satisfied with a solution that is neither differentiable everywhere nor continuous,
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however we still don’t know how the discontinuities evolve in time (i.e. along
the characteristics of the PDE). In the linear case, where F (ϕ) = b(x, t)ϕ, the
ODEs have the form (18); the ability to derive the integral curves stems from the
regularity of field b(x, t) in space. In 2.3, where we assumed a constant and uniform
transport field, we derived characteristic curves that were linear and parallel to
each other.
In a more complex instance of the problem we have a non-linear map F (ϕ, x, t)
that models the flux of the transported scalar quantity; using the chain rule we
write

∂t ϕ+ ∂ϕF ∂x ϕ = ∂t ϕ+ F
′
(ϕ)∂x ϕ = 0 ,

and the associated system of ODEs will be
dx
ds

= f(ϕ) ,
dt
ds

= 1 ,
dϕ
ds

= 0 ,

where f(ϕ) := F
′
(ϕ). By imposing the ICs of the IBVP

x(0, τ) = τ , t(0, τ) = 0 , ϕ(0, τ) = ϕ0(τ) ,

and by noticing that we can parametrise the third equality with a

ϕ(0, τ) = ϕ0(a, τ) =

{
ϕ− , τ < a ,

ϕ+ , τ > a ,

then the integral solution (characteristic curves) will be

x(t) = f(ϕ0(a, τ)) t+ τ . (25)

Let’s define ξ(t) as the curve that stems from (25) in correspondence of the dis-
continuity of the IC, i.e. at τ = a; what we want to investigate is a relationship
between curve ξ(t) and the weak solution ϕ. As a matter of fact (25) still denotes
a family of curves as it did in (19), however, due to the presence of the discon-
tinuity in ϕ0(x), which induced a further parametrisation in a that was absent
prior to the formulation of Riemann’s problem, those curves may not necessarily
be parallel to each other. In (25) we can clearly see that for τ < a we would have
x(t) = f(ϕ−) t + τ while across the discontinuity, i.e. for τ > a, we would have
x(t) = f(ϕ+) t + τ . It is easy to see that, according to the dependence of f on
the IC, we might end up with intersecting characteristic curves beyond some time
step t

′
> 0; some examples are reported in Figure 13 to illustrate the generation

of the overlapping multivalued solution for different instances of the flux map.
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(a) (b)

(c) (d)

Figure 13: Characteristic curves for the same IC with ϕ− = π
2
, ϕ+ = 0 and

discontinuity at a = 0 for different values of the non-linear flux. Specifically:

(a) F (ϕ) = ϕ2

2
(Burgers eq.) ⇒ f(ϕ) = ϕ ⇒ x(t) =

{
π
2
t+ τ , τ < 0 ,

τ , τ > 0 ;

(b) F (ϕ) = sin(ϕ) ⇒ f(ϕ) = cos(ϕ) ⇒ x(t) =

{
t+ τ , τ < 0 ,

τ , τ > 0 ;

(c) F (ϕ) = −e−ϕ ⇒ f(ϕ) = e−ϕ ⇒ x(t) =

{
0.2 t+ τ , τ < 0 ,

t+ τ , τ > 0 ;

(d) F (ϕ) = ϕ2 t ⇒ f(ϕ) = 2ϕ t ⇒ x(t) =

{
π t2 + τ , τ < 0 ,

τ , τ > 0 .
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This situation is not ideal as, beyond that intersection time instant, the char-
acteristics are ”asking” our solution to satisfy multiple contemporary values; this
directly translates in various points of the IC pulse to have a non-unique evolution
curve and particularly so in correspondence of the discontinuity. We therefore
need to resort to a weak formulation of the problem that satisfies some particular
conditions on the discontinuity in x = a.

Theorem 2 Let (24) be a Riemann problem and ξ(t) the characteristic curve along
which ϕ is discontinuous, then if ϕ0(x) is smooth everywhere but x = a and

ξ
′
(t) =

d

dt
ξ(t) =

F (ϕ−)− F (ϕ+)

ϕ− − ϕ+
,

then ϕ is a weak solution for (24).

The condition imposed by Theorem 2 is often written as the so-called Rankine-
Hugoniot jump condition [F (ϕ)] = σ [ϕ], where operator [g] := g−−g+ denotes
the jump difference across the discontinuity curve and σ := ξ

′
(t) is the propagation

speed of such curve.
It is clear that, for the general non-linear case in (25), we have that f(ϕ0(x)) is the
speed of the IC pulse; we can immediately conclude that, for a Riemann problem
to have a physically consistent solution, the speed propagation of the discontinuity
σ has to be bounded between the speeds of propagation of different values of the
IC, i.e. ϕ is a weak and physically admissible solution for (24) if and only if
f(ϕ−) > σ > f(ϕ+). This constraint is known as the entropy condition; a curve
of discontinuity ξ(t) that satisfies both the Rankine-Hugoniot and the entropy
condition is called a shock curve for the weak solution ϕ.

Theorem 3 Let (24) be a Riemann problem s.t. ϕ− > ϕ+, then if F is a uniformly
convex flux, there exist a unique admissible weak solution for (24) and its curve of
discontinuity is a shock curve with propagation speed σ.

Looking back to our test case in 2.3 we realize that the results in Theorem 3
greatly affect both the numerical stability and accuracy of a discretised algorithm;
according to the interpolation scheme at play it is clear to see that in fact the
numerical flux does incur in subsequent discontinuities across the face of each cell
(e.g. the upwind scheme, see Figure 3 for reference) meaning that if we do not take
care of the Rankine-Hugoniot and entropy condition we will experience undesired
effects in reconstructing our solution.
Although this is generally true for hyperbolic problems, those instabilities where
mitigated by the fact that the Riemann problem addressed at full-order by the
model in 2.3 was linear and furthermore with uniform and constant flux across
the domain. This meant that the instabilities of the discontinuities were in fact
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propagating along linear and, more importantly, parallel curves resulting in lo-
calised and bounded travelling discontinuities. At reduced-order however, these
phenomena do have an impact in isolating the descriptive low-rank structures.
We remark that sPOD can be interpreted as a (intrusive) numerical-based method
of characteristic in which the amount of space-shift for a given snapshot of the
full-order solution is uniquely identified by the the value of the transport field and
thus on the numerical flux F (ϕ(x, t),x, t); the shift then follows backward the
characteristic curves from t

′
to t = 0 to reconstruct the IC. It is clear that if the

Riemann problem we are trying to reduce with sPOD does not satisfy Theorem
3 and t

′
is a time instant equal or greater to the point where the characteristic

curves intersect then we might not be able to retrieve our snapshot back to the its
IC’s value.
This restriction, alongside the fact that Galerkin projection cannot be directly
performed on the basis extracted from the shifted snapshot matrix, does highlight
the need for a less intrusive, data-driven technique that does not depend explicitly
on the method of characteristic and yet is capable of performing a transformation
that does maximize the eigenvalue decay.

3.3 Shift construction on non-linear transport field

The integration of the shift operation within a POD algorithm will hereby be
discussed; from a computational standpoint, the workflow of the method demands
an intermediate step between the collection of full-order solution during the offline
phase and the extraction of reduced basis prior the Galerkin projection during the
online phase. This intermediate step accounts for 2 sequential operations to be
performed on the individual snapshots in a pre-processing fashion, specifically:

• computation of the actual shift quantity δ = (δx, δy) = b t at each timestep
and at each cell value of the snapshot;

• interpolation of the value of the shifted snapshot from the new point of the
mesh to its closest centroids’ values.

A schematic overview of the process is reported in Figure 14. While this point-
wise and instantaneous evaluation does perform the desired shift in space at the
cost of additional computations during the offline phase, we might also encounter
particular situations in which the transport field presents non-trivially integrable
irregularities. In this present work we will only focus on address the first instance
with a batch of three simulations of increasingly complex velocity field in which
we will also introduce a 2-dimensional computational model that will be adopted
as test case for bench-marking the performances of our data-driven technique in
Chapter 4.
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The second case of irregular transport field can be overcome by introducing nu-
merical integration of the characteristic ODEs using Newton-Cotes quadrature
formulae however such techniques are not within the scope of this thesis.

Figure 14: A visual workflow of the operative procedures of the sPOD algorithm
implementation within the full ROM’s pipeline of a hyperbolic PDE.

3.3.1 Shifted linear gaussian pulse in 2D

Let’s define Ω as a 2-dimensional square of length L = 4m that will be our com-
putational domain over which we would discretise the following model

∂t ϕ+ b(x, t) · ∇(ϕ) = 0 ,

ϕ(x, t) = 0 , ∀x ∈ ∂Ω ,

ϕ(x, 0) = e−
1
2
xTx , ∀x ∈ Γ ,

ϕ(x, 0) = 0 , ∀x ∈ Ω \ (Ω ∩ Γ) ,

(26)

which is depicted in Figure 15.
Following the same setup of Chapter 2 we create a batch of 3 different simulations
for the same model by specifying different transport velocity fields as reported in
the table below.

Batch 3
Simulation Velocity field

Sim 7 b(x, t) = (0.8,−0.8)
Sim 8 b(x, t) = (t2,−2 t)
Sim 9 b(x, t) = (y

4
,−x)

Table 3: Settings of the different velocity fields for the full-order simulations of
Batch 3 where we validate the effectiveness of the sPOD method.
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The full-order simulations are performed in the time interval t ∈ [0, 2.5] using
OpenFOAM; the shift operations are implemented within the ITHACA-FV frame-
work as two separate methods; one that evaluates the pointwise shift amount δ
of the snapshot collected at each time-step, which is tn+1 − tn = 0.001 , ∀n, and
another that performs the function’s cell centroid interpolation following the shift.
Each snapshot is successfully mapped in a stationary frame of reference by the
shift, which coincides with the gaussian IC.

Figure 15: The 2-dimensional square computational space domain Ω used in the 3
simulations of Batch 3 with a gaussian-like pulse in the top left corner initialised
as the solution field’s IC in the sub-domain Γ ⊂ Ω as specified in (26).

The canonical SVD is thus performed on the shifted snapshot matrix and the
extracted modes are arranged in the low-rank manifold basis. The results of the
full-order simulations, alongside their time-dependent space shifts, are depicted
in Figure 16 alongside the first extracted mode following the aforementioned pre-
processing.
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Figure 16: Visual representation of the offline simulations of Batch 3 arranged left
to right from Sim 7 to Sim 9: on the first row we have the 100-th snapshot of the
full-order solutions; on the second row there is the corresponding time-dependent
spatial shift which, we can see, it is exactly the IC mapped back with very little
loss in accuracy during the interpolation phase; lastly on the third row we have the
first mode extracted from the SVD on the shifted snapshot matrix which closely
matches the IC with some variance across the three cases in terms of the amount
numerically-induced diffusion.
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Moreover we are interested in quantify the improvement in performance; as
per (26) one quick estimation that avoids the actual Galerkin projection of a new
instance in the parameter space onto the reduced basis Ṽ is the evaluation of
the cumulative eigenvalue (which we also used in Figure 11 for the ROM at hand
before (traditional POD) and after the pre-processing shift (sPOD). Those are
represented in Figure 17.

Figure 17: Plot of the cumulative eigenvalue for the simulations of Batch 3 follow-
ing the same left-to-right arrangement of Figure 16: on the first row the cumulative
eigenvalue is plotted for a POD (i.e. SVD) performed before the pre-processing
shift; on the second row we have a plot of the same value for the POD performed
on the respective shifted snapshot matrix instead. We can see a substantial im-
provement of amount of energy retained by the first mode in the shifted frame
of reference, compared to the non-shifted case, across the entirety of the batch
with Sim 8 (uniform but unsteady transport field) showing the largest increase in
performance.

It is clear from the results collected so far that indeed the sPOD does represent
an efficient and more importantly robust algorithm for the reduction of hyperbolic
problems in CFD. Aside from specific cases s.a. those discussed previously in 3.2,
the overall purpose of identifying the dominant dynamics of a transport phenomena
almost solely depends on the regularity of the characteristic ODEs and, at a more
practical level, the capability of implementing a shift-detecting algorithm that
recognizes the correct amount δ to build a map that generalizes well-enough for
every collected snapshot in the matrix X, as the one depicted in Figure 14.
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So far we primarily focused on the limitations of sPOD with respect to the
models it can efficiently apply to, however those alone do not justify the adoption
of less-intrusive data-driven techniques as candidates for the ROM of hyperbolic
problems. As a matter of fact we only discussed the time-backward mapping of
the sPOD algorithm without addressing the crucial necessity of being able to per-
form a Galerkin projection on this shifted basis in order to generalise the model,
through its dominant dynamics, for a new instance of the parameter µ during the
online phase.
As we will introduce and develop the proposed machine learning method in the fol-
lowing chapter, much emphasis will be provided on the aforementioned limitation
and how the data-driven approach overcomes such difficulty.
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4 The NNsPOD algorithm for automatic shift-

detection

We have finally provided the necessary background and motivation for discussing
the ideas and implementation strategies that led to the development of this new
statistical learning framework for the reduction of hyperbolic PDEs in CFD.
The Neural Network shifted-POD (henceforth referred to as NNsPOD) method,
as all the recent data-driven algorithms in general and deep-learning models in
particular, takes advantage of the fact that virtually no prior knowledge on the
time-evolution and/or parametric dependence of the differential model is needed
both when collecting the snapshots during the offline phase and while generalising
the solution field during the online phase.
In the first part we bridge the discussion that ended Chapter 3 regarding the
limitations on the Galerkin projection for the traditional sPOD method and how
the present model avoids them; this will be followed by a detailed derivation of
the NNsPOD algorithm and how its framework naturally links with that of ROM-
based CFD; finally we will conclude with the intermediate step for the method,
that of the validation of the performances on a test case, before its implementation
for a complex differential model of 2-dimensional multiphase flow, which will be
discussed in Chapter 5 of the present thesis.

4.1 Forward mapping and the case for Galerkin projection

We concluded Chapter 3 by stating how fundamental it is for a sPOD-based
method the shift-detection itself; the algorithm poses challenges both on the math-
ematical and on the practical side (implementation of the code); while we focused
heavily on the former case in the previous chapter, regarding how different ir-
regularities and/or discontinuities might in fact inhibit the ability for an efficient
decay of the modes associated to the dominant dynamics of the reduced system
of equations, we will be now addressing the more practical side.
Let us start with discussing the process of shift-detection itself; while it is suffi-
ciently simple to implement algorithms like the one in 3.3, they must always, for
any functional dependence of the transport field on space, time and the parame-
ter space, be applied in a pointwise fashion. More specifically the space-shift of
ϕh(x, t) has to be computed for each cell of a given snapshot individually and such
transformation will also differ for any other snapshot; we recall in fact that the
hyperbolicity of the divergence in transport models naturally induces asymmetry
in the model as opposed to diffusion process. This means that the intermediate
shift-detection during the offline phase has to be performed for each centroid of the
grid in order to assemble the map to the IC of the system and the same process
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has to be performed in the same fashion for every snapshot in X; it is easy to
see how, for fairly complex 2−dimensional models with a number of DOFs in the
order of 106 already implies a significant cost in terms of computational resources
and computing time during the offline phase.
Perhaps more important is the lack of dependence of the shift on the parameter
space; while the backward mapping, which we empirically proved with the simu-
lation of Batch 3, is always possible with any functional form for the transport
operator, the same cannot be said for the forward mapping process when one tries
to reconstruct the characteristic ODEs, starting from the reduced basis, during
the online case. We start by assuming that the transport field has a non-negligible
parametric and/or time-dependence b = b(µ, t). Regardless on how we implement
the shift-detection algorithm we assume that the solution subspace for ϕ is smooth
enough to allow us to retrieve the IC from any point along the characteristic curve,
which is the underlying methodology of the sPOD.
Once the backward mapping is completed, in X(s) we would have a set of snap-
shots representing ϕh in the stationary frame of reference of the IC, that is each
snapshot followed its characteristic ODE backward in time to overlap the initial
pulse at t = 0. Let us now perform the SVD on X(s) and extract the basis for
the reduced manifold; such manifold is no longer the one we started from when
collecting the snapshots in X, i.e. prior to the application of the shift map. If we
now wish to derive a time evolution from the reduced equations for a new instance
of µ, one for which the transport field b(µ) is substantially different from the one
used during the offline phase, it is clear that we have no information encoded in the
reduced basis on how the system will evolve and that is because the new manifold
is no longer linked with the parameter space of the original PDEs because of the
application of the shift operator that, in general, differs pointwise for each centroid
on the grid of the full-order model.
The reduced equations alone will not suffice in determining the new characteris-
tic curves for a new functional dependence of the transport field and this makes
the Galerkin projection unfeasible for the online phase of non-uniform, and in
particular non-linear, hyperbolic differential models.

4.2 Development and methodologies of the NNsPOD

The argument outlined in the previous section motivates the needs for the in-
troduction of non-intrusive techniques for the backward map, one that does not
quantifies the shift quantity δ based on the pointwise value of the transport field
and that generalizes to all the snapshots in X regardless of the their (numerical)
diffusion.
As we mentioned in many occasions throughout the previous chapters, the applica-
bility and efficiency of an sPOD-based algorithm stems from the shift detection
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procedure; while the shift map constructed in [36] and [4] takes the form of a
discrete operator acting pointwise on the full-order solution ϕh, in the present
thesis we approach the problem in a more general fashion. We assume that no
information regarding the functional dependence of b is known a-priori and we
seek to derive a backward map that still traces back to an arbitrary snapshot in X

which we call the reference configuration. It might seem trivial to choose the
IC as reference configuration however, as explained further below in the present
chapter, given the general framework in which the NNsPOD was thought of, we
will not restrict ourselves in considering the IC alone for reasons that will become
apparent during the derivation of the algorithm itself.
This framework is naturally implemented in a statistical learning technique where
one samples the solution space (which in this case is the one associated to the back-
ward map onto the IC) in order to detect the optimal shift associated to a given
snapshot matrix. In particular, a neural network architecture satisfies two impor-
tant necessities; firstly, being a physics unconstrained algorithm the construction
of the reduced equations are mathematically consistent with the hyperbolicity of
the PDEs it treats; secondly, since the low-dimensional manifold is reconstructed
from a basis that is extracted from a collection of transformed solutions it gen-
eralises the the parametric dynamics of the system in consideration without any
knowledge of the physics that models the hyperbolic PDE.
This no prior-knowledge approach presents two major advantages w.r.t. the
more intrusive shift transformation posed by sPOD-based methodologies of [36]:

• the NNsPOD can be applied to any hyperbolic model with no restriction
on the discontinuities and irregularities of the characteristic ODEs making
it a suitable candidate for the reduction of highly non-linear CFD models.
In particular we might expect that the algorithm generalizes well-enough to
those system of PDEs that do not provide an explicit functional form for the
transport field but its rather a solution of the more general Navier-Stokes
equations;

• by deriving a backward mapping as a set of weights and biases of the neural
net the NNsPOD overcomes the limitations of generalisation posed by the
stationary frame of reference during the shift-detection phase of the intrusive
technique. This is due to the fact that the data-driven approach completely
disregards the functional form of transport field itself but rather it samples
the solution manifold of the shift based solely on the value of the field ϕh(x, t)
given its space and time coordinates (x, t).

In the following we will implement an algorithm for the NNsPOD method-
ology that performs the shift-detection automatically for an arbitrary snapshot
in X and with no-prior knowledge on the physics of the model; we will later apply
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this algorithm to a 2−dimensional test case of hyperbolic PDE thereby proving
the second of the above claims. With regards to the first claim, in Chapter 5 of
the present thesis we will apply, as anticipated, the same methodology derived in
the following paragraphs to a multiphase problem which uses the iterate solution
of Navier-Stokes equations as the velocity field for passive scalar quantities that
evolve according to a hyperbolic transport PDE.

4.2.1 The statistical learning formulation of the variational problem

The stated goal of NNsPOD is to implement the same backward map of the
sPOD but with a shift that does not necessarily quantifies the amount δ following
the characteristic ODEs of the hyperbolic full-order model. Formally stated sPOD
seeks the map

T δ : M 7→M(s) ,

through a manually-implemented shift-detection δ and where M is the solution
manifold for ϕh while M(s) is the manifold of the mapped snapshots in the sta-
tionary frame of reference of the IC.
Conversely NNsPOD looks for the more general automorphism

T : M 7→M ,

where the shift-detection is embedded in T itself and does not depend on δ and
thus on the transport field b. In order to encode the shift-detection in the map
itself we must construct T in such a way that it automatically identifies the sought
quantity for each snapshot in X; this operation must also ignore the physics of the
problem in order to successfully generalise in the online phase.
We therefore conclude that we must convert the variational form of the traditional
ROM, on which the sPOD is built upon, into a statistical learning framework; this
procedure therefore consists in deriving a consistent statistical learning for-
mulation associated to the variational problem. This new formulation requires
two settings in particular. First and foremost the snapshots are interpreted as
data-points, represented by matrix X := XT ∈ RNh×Ns where Nh and Ns are the
dimensionality and cardinality of the training set M which is itself a (finite and
discrete) subspace of the solution manifold M. Secondly we must define how the
(neural) net will sample the loss ”hypersurface” in order to achieve the desired
result; this is specified by adopting a semi-supervised learning approach. In
particular, to each data-point in M there is not a specific label attached to it but
rather one unique label is assigned to each and every sample; since our goal is
to realize T s.t. it maps every snapshot to an arbitrary reference configuration
and here we are not interested in considering the specific case of the formation
and propagation of discontinuities of the solution, it is only natural to set as our
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label the snapshot corresponding to the IC itself. It is important to clarify this
aspect as it is one of the features of NNsPOD that can be exploited in order to
built more refined and faster data-driven algorithms in ROM. We said that the
choice of the reference configuration is arbitrary and that at this stage, we reiter-
ate, we are not yet interested in evaluating NNsPOD on irregular transports; in
this particular case it is easy to see that choosing the IC as reference configuration
makes, intuitively, no difference on the performances of NNsPOD w.r.t. automatic
shift-detection as each column vector in the snapshot matrix will feature the same
shape with the centroids at which the fields takes the same values being the only
difference among the various snapshots. This arbitrariness is a gift of the hyper-
bolicity of the model equation in the specific case it is linear and, given the general
approach NNsPOD is built upon, it takes full advantage of it.
For this reason in the following we will refer to the label in more general terms as
the reference configuration of the full-order solution ϕh which does not nec-
essarily have to coincide with the IC of the problem. The setting is completed
by choosing one particular metric for computing the loss function between the
neural net output associated to a datapoint in M and the reference configuration.
While there is substantial space for testing and experimenting with this choice,
in the development of the present thesis we constrained in using the more tradi-
tional mean−L2 and mean−L1 norms. One important remark is that by adopting
this choice one useful interpretation naturally arises by considering the statisti-
cal learning formulation; as a matter of fact, if we consider for the variational
problem a non-linear advection with characteristic curves of the form displayed
in Figure 13(d) then the statistical learning formulation seeks for a map that lin-
earizes those curves from a given snapshot to the reference configuration. We thus
conclude that the process of automatic shift-detection can be interpreted as one
of linear regression in the context of optimisation for the statistical learning
formulation.

4.2.2 Architecture of NNsPOD: ShiftNet

Let us now analyze the problem of automatic shift-detection. To do that let us
consider, for the sake of simplicity, a simple 1−dimensional equivalent of problem
(26) i.e. an initial gaussian pulse that evolves according to a uniform and constant
transport field. To implement the NNsPOD we want a neural net architecture that
is capable of reproducing the reference configuration given an input tuple (x, t),
i.e. for a given cell centroid of the grid and a given snapshot. If we now assume
that the full-order simulation is stable enough to collect snapshots that are not
numerically diffusive then we know that the reference configuration and any given
datapoint in M only differ for the centroids x at which a certain value of ϕh is
associated. For instance, the peak of the gaussian pulse will be located, e.g. at
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x = 0 for the reference configuration ϕh(x, t0) while, for a uniform and constant
transport field b = 1m

s
, it will be located at x = 1 for a datapoint corresponding to

the snapshot collected 1 second after the reference configuration ϕh(x, t = t0 + 1).
As such we implement a neural network with an input layer with 2 neurons, one
that takes in the value for the spatial coordinate x and one for the time coordinate
t; in the output layer we would have a single neuron which will hold a new value
of x, in particular the shifted coordinate x̃ at which the datapoint has to be
reconstructed. This model, which constitutes half of the NNsPOD algorithm, will
be called ShiftNet. Formally stated the shift-detection neural network will output
the shifted snapshot according to the map T previously introduced

ϕ̃h(x) = ϕh(x, tk) ◦T(x, tk) = ϕh(x̃, t0) . (27)

We remark that the actual architecture of the neural network, i.e. the number of
hidden layers and the number of neurons per layer is nor important for the purposes
of the methodology and future studies might experiment with those as well as with
the activation functions for the various layers. For this specific 1−dimensional
gaussian pulse we used a deep net whose layout is depicted in Figure 18.

Figure 18: Visual representation of ShiftNet, the neural net model for the shift-
detection part of the NNsPOD algorithm, for the 1−dimensional linear advected
gaussian pulse.
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4.2.3 Architecture of NNsPOD: InterpNet

The shift-detection neural net alone does not suffice in implementing the framework
necessary for the statistical learning formulation that we derived in the previous
paragraph; we still lack a formal way to link the shifted coordinate x, i.e. the
backward mapping itself, to the reconstruction of the solution field ϕh over each
centroid of the grid. We must also consider what we previously addressed in
the implementation of the sPOD, i.e. the fact that a given shift might map the
datapoint to a coordinate on the grid where there is no centroid and thus the value
of ϕh is not known explicitly. To overcome both issues the solution is to adopt an
interpolation neural network which is capable of continuously associate a value of
field ϕh to any given x, i.e. including those that do not coincide with a centroid
of the grid.
Once fully trained this neural network is not only capable of constructing a value of
the solution field continuously across the computational domain but, depending on
how the training is performed, it will also allow for the mapping to be performed
also for highly diffusive fields, i.e. those for which the advected snapshots vary
consistently in shape at any given time. Therefore InterpNet, the name of the
neural network implemented for those purposes, represents a critically essential
component for the successful implementation of NNsPOD as it achieves in a single
model both advantages of wide applicability to highly non-linear models (which we
will discuss in Chapter 5) and generalisation for new instances of the parameter
µ for the Galerkin projection.
The input layer will thus feature one neuron which will hold the value of the
shifted coordinate x̃ as outputted by ShiftNet and the output layer will also
feature one neuron that holds the value of the (reconstructed) field associated
to the shifted coordinate x̃. The resulting overall architecture of NNsPOD is
thus a discontinuous cascaded neural net in which the former ShiftNet acts
as automatic shift-detector and the latter InterpNet receives the output of the
former as input and reconstructs the solution field ϕ̃h(x) as defined in relation (27);
the layout of NNsPOD is depicted in Figure 19 for the 1−dimensional uniformly
advected gaussian pulse that we discussed so far.
One last but yet fundamental step for NNsPOD to achieve the desired results is
the training phase itself; as a matter of fact the training set M only provides the
samples for ShiftNet since, as mentioned above, the role of InterpNet is to build
the mapping that associates any given coordinate to the field value corresponding
to the IC (we can think of InterpNet as the model ”learning” the shape of the
reference configuration). As such the training set for InterpNet solely consists of
the reference configuration and the training itself precedes that of ShiftNet. The
now fully trained InterpNet will be able to reconstruct the reference configuration
field values whenever the correct coordinates (i.e. the backward mapped x̃) are
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detected and outputted by ShiftNet.

Figure 19: The architecture of NNsPOD for the 1−dimensional advection equation
showing the discontinuous cascaded structure and interaction between ShiftNet
and InterpNet.

To recap, the training stage for NNsPOD is comprised by a separate training
phase for InterpNet alone and another for ShiftNet which will then use the fully
trained InterpNet to compute the loss function between the reference configuration
and the generic reconstructed shifted snapshot in M. Lastly we emphasize the
simple scalability of the NNsPOD architecture to higher dimensional problems; by
treating the hidden layers as a black box and a an area of empirical investigation
of further studies, the addition of n ∈ N spatial dimensions to the model will result
in the addition of the same number of neurons in the input and output layer of
ShiftNet as well as the input layer of InterpNet.
For the sake of completeness, and in order to ease the reference of the quantities
involved in the training phase of NNsPOD we also hereby report the explicit form
of the loss functions defined for ShiftNet, in e.g. L∞−norm

J(x, Ns) =
1

Ns

Ns∑
j=1

∣∣ϕ̃h(x)−ϕref

∣∣ ,
where the reconstruction of ϕ̃h(x) is provided by InterpNet, starting from x̃, whose
training minimises the same loss function.
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4.3 Shift-detection and reduction of 2−dimensional linear
advected fields

Here we test the derived NNsPOD algorithm against a benchmark 2−dimensional
case. It is not our goal at this stage to verify the ability of NNsPOD to overcome
the difficulty in automatic shift-detection and reduction of highly non-linear fields;
that will be addressed in full detail in Chapter 5 in which we will apply our
methodologies to a multiphase problem which, by the very nature of the problem
itself, is modelled by non-linear advection given as a solution of the Navier-Stokes
equations.
Consequently here we are merely focused in proving that the NNsPOD is indeed
capable of automatically deriving a backward map already for a fairly complex
problem of an hyperbolic equation modelling the transport in more than one di-
mension. To compare our results with that of the traditional sPOD we therefore
select the same setting of Sim 7 of Batch 3 which we reduced in 3.3.1 using
the aforementioned shifted alteration of the standard POD algorithm following
the procedure introduced by [36]. Using the same gaussian pulse as IC and an
uniform and constant velocity field b(x, t) = (0.8,−0.8) (listed in Table 3) we
collect the exact same full-order snapshots only this time the pre-processing will
not comprise the pointwise, manually computed shift transformation of the sPOD
but rather we will convert to the statistical learning formulation by taking the
training set form of the snapshot matrix X = XT and applying the NNsPOD al-
gorithm to it. Different stages of the training phase of the two neural networks of
NNsPOD are reported in Figure 20. As we can see the NNsPOD algorithm is ca-
pable of automatically reproducing the same backward map that we constructed
manually for the sPOD in 3.3.1 for the exact same test case. With this result
we achieved the goal of automatic shift-detection for a 2−dimensional benchmark
model with linear uniform velocity field thereby validating the ability of NNsPOD
of reproducing the exact same results of the sPOD method without the limitations
of parametric-dependence of the shift in the backward transformation as described
in 4.1.
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Figure 20: The training phase of NNsPOD with the number of epochs increasing
from top to bottom: on the left hand-side we have the output of InterpNet and on
the right the shift-detection of ShiftNet is reported. Both graphs are depicted as
contour plot.
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5 Reduction of a 2−dimensional multiphase non-

linear field

As anticipated we will conclude the thesis by proving the fundamental property for
NNsPOD of being applicable to non-linear advected field, i.e. a passive scalar field
transported by non-uniform and non-constant parametric fluxes. The transport
in multiphase flows of two different fluid phases is chosen as full-order numerical
experiment that will be used to represent the generalisation of the 2−dimensional
linear case in 4.3. The reason motivating this choice is the mathematical model
of the multiphase flow itself; in it the (incompressible) Navier-Stokes momentum
balance equation is coupled with an advection equation of the same type we treated
in 16 with ν = 0. The coupling stems from the velocity field which is common for
both equations and, at a numerical level, is derived as a solution of the Navier-
Stokes equation and then inputted in the advection equation. Intuitively, being
Navier-Stokes a non-linear PDE, the solution field will feature non-uniformity and
non-linearity, except of course for very trivial cases which we are not interested
in. If NNsPOD will be able to reduce this problem with the desired accuracy we
would have demonstrated numerically the no-prior knowledge feature that we
stated in the previous chapter.
In the first part we will explain the full-order solver using for the solution of the
multiphase flow, the Volume of Fluid (VoF) method; in the second part we will
then apply NNsPOD to its reduction and display the obtained numerical results.
The last part of this last chapter will discuss some conclusions regarding the whole
project with a brief digression of the direction of possible future studies in the field.

5.1 The VoF solver for full-order multiphase simulations

We will outline the algorithm used for the solution of the full-order simulation and
collection of datapoints for the training set of NNsPOD at later stage; this phase,
together with the training of NNsPOD and the extraction of low-dimensional man-
ifold basis,constitues the offline fraction of the overall ROM for non-linear hyper-
bolic PDEs therefore we must describe how the setting of the numerical experiment
is prepared and executed. Although the mathematics of the solver its surely worth
to be detailed, it is somehow outside the scope of the thesis; as such we will briefly
discuss its major components and procedures in order allow for a clear and con-
sistent comprehension for the reader of what follows in terms of ROM. We will
thus omit the details regarding the implementation and instead refer to [22] for
the in-depth numerical analysis and physics on which the VoF is based.
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5.1.1 Coupled system of equations

We must first describe and motivate the mathematical modelling that underlies
the physics of the multiphase flow; in fact any numerical solver will be based on the
same set of equations with different performances depending on certain parameters
and BCs. The problem feature a domain Ω in which two different fluids occupy a
certain initial fraction of the volume of the domain which is the actual IC of the
strong formulation. The time-evolution of those fluids will be described by the
unsteady Navier-Stokes equations{

∂t(ρU) +∇ · (ρU⊗U) = −∇p+∇ · τ + F ,

∂t(ρ) +∇ · (ρU) = 0 ,
(28)

in which the first models the conservation of momentum for the fluid and the second
is a form of continuity equation as explained in (5). We notice that the left-hand
side of the momentum equation models the convective phenomena associated to
the intensive acceleration part of Newton’s second law whereas the right-hand side
to the forces acting on the system (both internally due to viscous stresses and
externally). For the sake of simplicity we we will assume incompressible regimes
and absent external forces for which (28) becomes{

∂tU + (U · ∇)U = −∇(w) + ν∆(U) , w := p
ρ
,

∇ ·U = 0 ,
(29)

which is known as incompressible Navier-Stokes. This system of PDEs is
coupled in the pressure (p(x, t)) and velocity field (U(x, t)) while the parametric
dependence on µ is implied. As it stands right now however, (29) describes a
singular specie of fluid characterized by density ρ and viscosity ν whereas our
purpose is to describe the interaction of two distinct phases of fluids in Ω.
One assumption that will help us in modelling the multiphase flow is the immiscible
fluids for the two phases; this assumption, together with the incompressible fluids
allows us to describe the properties of the whole flow as averaged across the two
phases. Under this setting we can express e.g. the density field α as{

αρ1 + (1− α)ρ2 = α ,

α1VΩ + α2VΩ = VΩ ⇒ α1 + α2 = 1 ⇒ α := α1 = 1− α2 ,
(30)

where α1 is the fraction of volume of Ω occupied by the fluid phase of density ρ1

and α2 will be the one occupied by the phase of density ρ2. Intuitively enough
the last equation in (30) represents constitutive relation that acts as constrain on
the physics of the flow, by modelling the immiscibility itself; this is achieved by
assuming that the if it holds in all of Ω then it must also hold for each infinitesimal
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portion of the domain as well. This gives us a natural bridge in implementing this
setting in a numerical simulation where the infinitesimal portion of Ω is represented
by the generic cell of the discretisation Ωh. We can combine the two equations
above in a single constraint equation for the density field of the Navier-Stokes
system of (29) that is

αρ1 + (1− α)ρ2 = α , α ∈ [0, 1] ∀x ∈ Ω . (31)

Equation (31) can be included in (29) to model the bounded passive scalar field
α constrained by a spacific value of density that parametrises the Navier-Stokes
equation; however this would not model any type of physics for the field α itself as
this term does not yet constitute an unknown function for the PDEs. As a matter
of fact as it stands right now the only contribution of (31) to (29) is to compute a
constant value for the density field ρ which corresponds to the one assigned by the
IC for α. The missing piece is an equation that describes the transport of α and
that is achieved by building an advection equation for such field that is constrained
by the boundedness of α. We thus write{

αρ1 + (1− α)ρ2 = α , α ∈ [0, 1] ∀x ∈ Ω ,

∂t(α) +∇ · (Uα) = 0 .
(32)

The (constrained) system (32) is coupled with (29) in that the velocity field U(x, t)
would be the same that solves the incompressible Navier-Stokes system. Despite
the two systems are coupled together they are usually found in the literature as
two separate systems of PDEs and that because the numerical techniques used to
solve the model treat them separately as we will discuss in the following.

5.1.2 The PIMPLE loop and the decoupling of Navier-Stokes equa-
tions

The focus will now shift solely on how to solve (29) as a standalone system i.e.
independently on the actual modelling of the physics; this approach assures that
the solution fields p(x, t) and U(x, t) provided by (29) will not be constrained by
a particular model (e.g. the volume fraction constrain of (31)) and thus retain the
most general scope of validity.
Three algorithms are particularly known in CFD for the solution of incompressible
Navier-Stokes equations: the Pressure-Implicit with Splitting Operators or
PISO algorithm used to solve unsteady flows; the Semi-Implicit Method for
Pressure Linked Equations or SIMPLE algorithm based on the same prin-
ciples of PISO but with a simplified correction loop making it more performing
with quasi-steady diffusive problems which are typical in transfer heat transfer
models; and the finally the PIMPLE algorithm which combines the features of
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both PISO’s and SIMPLE’s loops thereby providing better stability especially for
highly transient and numerically diffusive fields.
Let us briefly explain the loops for the PIMPLE algorithm since it will be the
solver we adopted for the iterative solution of the unsteady incompressible Navier-
Stokes As it is written in (29) the system cannot be solved by conventional Finite
Volume approximations because we have a coupling between pressure and velocity
in the momentum equation while the second equation of the system, the continuity
equation only provides information regarding the latter of the fields, specifically
its pointwise solenoidal behaviour. Therefore, in order to make the system more
suitable to an iterative solver one must reinterpret the momentum equation for
the velocity field not as an additional degree of freedom of the system but rather
as a constraint for the first equation.
More rigorously if we are able to somehow have information regarding the pressure
field and thus being able to solve the momentum equation independently from the
rest of the system then we can check whether or solution field U is in fact pointwise
solenoidal using the momentum equation as a condition that the solution itself has
to specify in order to obey to the physics modelled by the Navier-Stokes system.
One intuitive way to achieve this result is to randomly assign a test value to the
pressure field at a given iteration i.e. p(x, tk) = p̄(x, tk); then we can plug this test
value into the momentum equation and solve for the velocity field deriving for it
a test solution U(x, t) = Ū(x, t). This test solution then is checked against the
continuity equation which will most likely not be satisfied

∇ · Ū(x, tk) = R(x) 6= 0 .

We can use then this information about the residual R(x) to update our test
pressure field to make the overall solution to converge to the desired value. This
random assignment of the pressure field, being totally arbitrary however, not only
is not rigorous but also does not provide us with a consistent and precise tool on
how to use the residual information to update the pressure field.
For this reason PIMPLE, as well as PISO and SIMPLE on which the former two are
based, derives a so called pressure-correction equation (known as Poisson’s
equation for pressure) from the momentum equation which allows for a more
precise and physics consistent estimation for the pressure field. Such relation is
derived by calculating the divergence of the momentum equation during which we
apply the continuity identity ∇ ·U = 0 to make it consistent with the physics of
the problem. The resulting identity, in which we omitted some trivial algebraic
steps, is shown below

0 = ∇ · (∂tU + (U · ∇)U +
1

ρ
∇(p)− ν∆(U)) =

= ∆(p)−∇ · ((U · ∇)U) ⇒ ∆(p) = ∇ · ((U · ∇)U) .
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The Poisson pressure identity can be substituted to the continuity equation in
(29) since it satisfies the solenoidal characteristic for the velocity field; the result-
ing decoupled system now features a pressure-correction equation that can be
discretised and solved independently within the FV scheme discussed throughout
Chapter 2{

∂tU + (U · ∇)U = −1
ρ
∇(p) + ν∆(U)

∆(p) = ∇ · ((U · ∇)U)

FV−→

{
MU

(n)
h = −∇p(n) ,

∆(p(m)) = FU
(n)
h .

The first LAE in the discretised system above is known as the momentum pre-
dictor while the second as the pressure corrector; indices n,m ∈ N0 represents
the solution step of an iterative solver for each of the linear systems e.g. the Gauss-
Seidel or SOR method.
In the PIMPLE loop the momentum predictor algebraic operator is decomposed
by separating its diagonal part (D) from the off-diagonal elements (H) with the
former acting on the nth step of the iterative solver and the latter multiplying the
previous (n− 1)th step

−∇p(n) = MU
(n)
h = (D + H)U

(n)
h ≈ DU

(n)
h + HU

(n−1)
h = DU

(n)
h + H ,

from which we derive an explicit prediction for the field solution of interest called
intermediate velocity field

U
(n)
h = D−1H−∇p(n) .

By inserting this intermediate value of the solution into the second LAE of the
discretised system, matrix H = MU

(n−1)
h will naturally become the residual for

the pressure corrector. In it the divergence-free condition is enforced by solving
iteratevely the second LAE which will no output a pressure field corrected to
reproduce a velocity field that satisfies its pointwise solenoidal constraint with an
arbitrary (usually user-defined) accuracy.
From a practical standpoint this is implemented in two separate loops nested
within the single timestep of the solver of the unsteady Navier-Stokes equations
(hence the reason for different iterative index n and m for the two LAE) with the
momentum predictor one preceding the pressure corrector.
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5.1.3 Eulerian multiphase modelling

Now we will address system (32) and how its interaction within the PIMPLE loop is
implemented in practice. Firstly we specify that the VoF method is one of a larger
set of solvers used to model the so-called continuous-continuous phase inter-
action in which two fluids two immiscible (and isothermal) fluids interact with
each other under the constrain that at each point of the domain they form a dis-
crete and sharp interface between the two phases. More generally continuous-
continuous phase interaction algorithms are part of the so-called Eulerian mul-
tiphase models that also include the counterpart dispersed-discontinuous
phase interaction modelling dispersed particles (solid phases), droplets (liq-
uid phases) or bubbles (gaseous phases) within a larger continuous fluid phase.
While the former models phenomena like sprays, vapours, sediment transports and
dissolution of different species, in order to achieve the desired 2−dimensional mul-
tiphase transport of a passive scalar quantity we will need from our solver to track
instantaneous changes on the free-surface between phases; this fluid-fluid inter-
face interaction is well described by the sharp interface of continuous-continuous
phase interactions solvers of which VoF is part.
Since, as we showed in the previous subparagraph, the velocity field is found as
a solution of the standalone incompressible unsteady Navier-Stokes equations in
(29), we conclude the the PIMPLE loop acts independently as a first stage of each
iteration of the overall VoF transient solver. Once the pressure-corrected velocity
field satisfies the PIMPLE-defined residual or it reached the maximum number
of iterations, it is passed onto (32) in order to be solved numerically as we did
for (16) in 2.3 and using the discretisation and interpolation schemes derived in
2.1 that minimise the numerically induced diffusivity of the hyperbolicity of the
transport equation. As it turns out however, the traditional schemes of 2.1 are not
sufficiently bounded and/or accurate for a stable and convergent solution field αh
and that is due to the convective term ∇· (Uα) being highly diffusive in proximity
of the free-surface cells of the computational domain. This numerical phenomena
of excessive smearing of the free-surface, which introduces a thin layer along
the interface in which the cell values of the passive scalar field are α ∈ (0, 1) (i.e.
with intermediate values that do not uniquely identify either one phase not the
other), is mitigated by two tweaking in the modelling and numerical analysis of
(32):

• on the modelling side we introduce an artificial (or numerical) compres-
sion term to the advection equation of α which one builds ad-hoc to take
null values everywhere in Ωh except the cells where α ∈ (0, 1). This term,
which is ∇· (α(1−α)Ur), with Ur := Cα||U|| ∇α||∇α|| modelling a (relative) ve-
locity field acting along the normal direction to the interface itself, is added
to the advection equation in (31) and, being a convective term, it will be
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discretised using the same scheme of the transport term itself{
αρ1 + (1− α)ρ2 = α , α ∈ [0, 1] ∀x ∈ Ω ,

∂t(α) +∇ · (α(U + (1− α)Ur)) = 0 .
(33)

The magnitude of this interface compression numerical correction is con-
trolled directly by setting the coefficient Cα and it is usually user-defined for
a variety of codes in CFD and particularly-so for OpenFOAM. We remark
that a value of Cα = 1 implies that ||Ur|| = ||U||;

• on the practical side two discretisation schemes became the most widespread
for the convective terms in (33) which are the compressive interface cap-
turing (known as CICSAM) and the Piecewise-Linear Interface Con-
struction (PLIC) schemes. We refere to [CICSAAM] and [PLIC] for
a detailed description of the aforementioned schemes. The actual routine
for the solution of (33) however follows what is known as the Multidimen-
sional Limiter for Explicit Solution (or MULES) compression schemes;
this technique outputs a transport corrected flux as a weighted average of
high and low order discretisation schemes for the convective term in (33). By
denoting FUW as the (low-order) flux associated to the field α obtained by
solving (33) with Cα = 0 ⇒ Ur = 0 (i.e. no numerical compression) and
using the upwind differencing scheme outlined in Table 1, the MULES
routine routine outputs a corrected flux field computed as

F (c)(α,x) = FUW + θ∗F corr .

While θ∗ is a user-defined weighting factor, the high-order correction term
is defined as F corr := FUW + FCD where FCD is the flux associated to α
this time as a solution of (33) that includes the interface compression term
(i.e. Cα > 0) and using a central differencing scheme also outline in Table
1. As a result F (c) will feature both advantages of a bounded and stable
low-order differencing scheme s.a. the upwind differencing and an higher
accuracy provided by the central differencing with θ∗ controlling directly
which of the two terms has a major contribution in the final solution field.

5.1.4 The overall VoF solution loop

The single timestep iteration of the solver is now obtained by merging together
the MULES algorithm for sharp interface compression and the calculation of the
pressure-corrected transport field provided by the PIMPLE loop. Starting from the
IC for passive scalar field one considers the generic iteration k = 0, 1, .... Therefore
at timestep tk one first applies the MULES correction and computes α

(k)
h from the
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compression-modified transport equation in (33); the second step in the inner loop
is to apply the constraint equation for the density field in (33); such field is then
inserted in the momentum equation for the Navier-Stokes system in (29) and then
the PIMPLE loop computes U(k) according to the pressure corrections obtained
by a separated nested inner loop. The following iteration k + 1 will start by
computing the α

(k+1)
h with the MULES algorithm using the velocity field obtained

at the previous timestep, i.e. U(k) and the process repeats for each timestep
tk , k = 0, 1, ....

5.2 Full-order and reduced-order multiphase field solutions

We will now bring everything together and perform the numerical test of inter-
est. The full-order simulation collects snapshots of the solution field αh using the
VoF method just discussed while at reduced order the NNsPOD algorithm will
be deployed to detect the optimal backward mapping to the IC and extract the
low-dimensional reduced basis to Galerkin project the equations during the on-
line phase. The test is a 2−dimensional subsonic transport of 2 immiscible and
isothermal fluids, specifically water and air; the modelling equations are completed
by well-defined BCs and ICs to form together a consistent IBVP. As already did
for the test cases in the previous chapters we will study the time evolution of
an initial gaussian pulse of the water phase that gets transported without distor-
tion by a non-uniform and non-constant velocity field given as a solution of the
Navier-Stokes equation. Homogeneous Neumann BCs are set along the border of
the domain for both α and U while, for the sake of simplicity, we assign an initial
uniform velocity field as IC. The overall IBVP is the following

∂tU + (U · ∇)U = −∇(w) + ν∆(U) ,

∇ ·U = 0 ,

∂n(U) = 0 , ∀x ∈ ∂Ω ,

U(x, 0) = (1, 0) ,

αρ1 + (1− α)ρ2 = α , α ∈ [0, 1] ∀x ∈ Ω ,

∂t(α) +∇ · (α(U + (1− α)Ur)) = 0 ,

∇α = 0 , ∀x ∈ ∂Ω ,

α(x, 0) = 1 , ∀x = (x, y) ∈ Ω s.t. y < e−
x2

2 ,

(34)

whose initial configuration can be visualised at the top of Figure 21.
For the full-order simulation we constructed a rectangular domain with a relatively
coarse grid of 2·104 cells (200 along the x−direction and 100 along the y−direction);
in OpenFOAM the tuning of the VoF solver is accessible through coefficients Cα
and θ∗, as explained in the previous paragraph, which we both set to 1. The
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high-order discretisation scheme chosen for the convective terms in the transport
equation for α in (34) is the QUICK scheme already deployed in the simulations
of Batch 2 in Chapter 2.

Figure 21: The passive scalar solution field αh for (34) as collected at timesteps
corresponding, from top to bottom, to the IC, the 25th, 50th and 100th snapshots.
From then we can (qualitatively) appreciate how the interface between the two
phases stays compact across the various timesteps and also how there is very little
numerical diffusivity in the domain with not great refinement in the grid; both
results are due to the great stability and accuracy of the MULES algorithm.

The snapshot collection of the full-order solution was performed every 0.1 sec-
onds of simulated time for a time interval of t ∈ [0, 10] thus resulting in the training
set matrix X = XT ∈ RNs×Nh with Ns = 100 (excluding the IC that, acting as
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reference configuration for both InterpNet and ShiftNet, will not be included in
M) and Nh = 2 · 104 representing the number of features (or the dimensionality)
of the training set in the statistical learning formulation of (34).
The NNsPOD algorithm has been tested several instances in order to optimize
both the hyperparameters as well as other features of the neural network archi-
tecture s.a. number of hidden layers, activation functions, loss metric, optimizer
algorithm and , most importantly, the learning rate η for both InterpNet and Shift-
Net. Those implementation details are outlined in Table 4; different stages of the
training of InterpNet and ShiftNet are depicted in Figure 22. Some important re-
marks are necessary regarding the loss decay and convergence as well as the ability
of exploring the loss-function hypersurface and the local minima problem encoun-
tered during the experiments however those will be discussed in the concluding
part of the present thesis in 5.3.

NNsPOD settings
InterpNet ShiftNet

Loss metric mean−L2 mean−L1

Optimizer Adam(β ∈ [0.9, 1.0]) Adam(β ∈ [0.75, 0.9])
Structure(∗) (layers×neurons) 4× 40 5× 25

Activation function (σ) Sigmoid ReLU
Learning rate (η) 5 · 10−4 1 · 10−4

Training decay(∗∗) (2.5 · 10−1 → 0.9 · 10−5) (4.9 · 103 → 3 · 102)

Table 4: The choice of the parameters and architecture for NNsPOD fine-tuned
for the training of the multiphase full-order snapshots collected from the solution
of (34). (∗) The numbers refers to the hidden layers thus excluding the input
and output layers which remain unchanged w.r.t. what described in 4.2.2 and
4.2.3. (∗∗) The numbers refer to the values of the loss function of the two neural
networks at the beginning and at the end of the training stage; absolute values
are used in-lieu of relative ones since their magnitude gives a qualitative insight
on the shape of the loss function itself.

Instead we derive here the more quantitative results regarding the main goal
of NNsPOD in the first place and that is the improvement in extracting a reduced
basis for non-linear advected fields. As we can see from the bottom pictures of
Figure 22 ShiftNet is indeed capable of automatically detecting the shift transfor-
mation to the IC and thus a new shifted matrix is collected and passed onto the
ITHACA-FV class that implements the SVD and the computes the modes decay.
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Figure 22: Different stages of the training phase of NNsPOD with the number
of epochs increasing from top to bottom : the left column shows the output of
InterpNet as a contour plot while on the right the output of ShiftNet is plotted as
a surface.



73

As expected the decay of the singular modes of the shifted snapshots, as out-
putted by the NNsPOD method, is more steep than the same problem but with
traditional POD on the full-order solutions, which is exactly the same result that
we would have obtained with the pointwise manual shift implemented with the
sPOD algorithm in Chapter 3.
In particular we observed that standard POD, while performing relatively well
by retaining approximately 91 percent of the energy of the system with the first
mode, was outperformed by the NNsPOD with a relatively small margin on the
first extracted mode by losing to it approximately 2 percent of the energy but with
significant gains on the modes following the first one. The cumulative values of
the modes gets to 98 percent of the energy to the fifth mode in the POD while the
NNsPOD-reduced basis obtains that result already at the second extracted mode.

5.3 Conclusions, comments and future works

As we conclude the present thesis, some references on the more practical com-
putational aspects and methodological processes involved are reported with the
aim of providing some guidelines for the development of algorithms that further
enhance the effectiveness of machine learning in reduced order modelling of hyper-
bolic problems in general.
First we shall give a brief overview of the empiricism behind the choices that were
made for the adoption of NNsPOD in the first place. We recall that the seemingly
paradoxical difficulty in deriving a low rank representation of hyperbolic prob-
lems that are (relatively) simple to solve at full-order was successfully overcome
by adopting the same philosophy at reduced order. By implementing a method
that pre-processes the snapshots in a way that is consistent with the physics and
mathematical character of the problem (i.e. using the method of characteristics)
the sPOD proved to identify the dominant dynamics of 1−dimensional and simple
2−dimensional transport dominated problems.
Despite the simplicity at the core of this idea, its scalability is, at least theoret-
ically, unlimited and the algorithm devised in the present thesis is one proof of
this fact; NNsPOD started with the same considerations made in [36] but tried
to overcome some of the issues that undermined its generalisation to non-linear
subspaces by approaching the problem from a non-intrusive standpoint. We ar-
gue, and the numerical results obtained in the development of it, as reported in
the present thesis, are a strong support of our argument, that the approach taken
by NNsPOD not only generalises well in the context of non-linear hyperbolic dif-
ferential equations but its formulation naturally bridges with that of model order
reduction as it does not account for uniform nor constant transport fields.
To highlight those aspects we review briefly the methodologies implemented by
NNsPOD; starting from the focal point of sPOD, that of shift computation, the



74

algorithm developed searches for a transformation that does not depend explicitly
on the velocity field and thus, in principles, scales well w.r.t. to those models
that features non-linear transports. The way such transformation is build is by
adopting a statistical learning framework that identifies, among any possible ma-
nipulation of the snapshot matrix X, that which achieves the stated purpose of
backward mapping while remaining in the solution manifold itself.
This later aspect is critical for motivating the approach taken by NNsPOD as
opposed to more traditional shift-detection, alongside of course that, being inde-
pendent on the transport field, no-prior knowledge of the latter is necessary in
order to build the low-rank subspace of the model which can be, in principle, non-
linear. As a matter of fact remaining within the solution manifold is essential for
the forward mapping to be possible for a new instance of the parameter in P which
constitutes the online phase, i.e. the Galerkin projection of any POD-based reduc-
tion. On the more practical side, the necessity of splitting the data-flow between
an interpolation and a shift detection net does not affect the possibility of forward
mapping as long as the cascade of information between those two, as depicted in
Figure 19, is respected.
We must indicate that this structural choice in the design of the algorithm does not
represents the only one available. Although the adoption of two separate networks
to learn the shape of the reference configuration and to detect the shift proved
to be highly flexible and adaptable for a variety of reasons, the end result is that
of building an automorphism in M through an automatic procedure. One may
thus think of an alternative algorithm, still based on a neural network architec-
ture, that not only provides the backward map but the explicit form of its inverse
as well. As a matter of fact, in order to build a data-driven reduction algorithm
based on shift pre-processing that is consistent with the Galerkin projection, one
can simply starts from the backward map itself (which is the direct transforma-
tion provided by an architecture like the one of NNsPOD) and it requests for it
the further constraint of being invertible. This idea was considered during the
development of NNsPOD however we moved in favor of InterpNet instead with the
reason being that its adoption allows for the application of NNsPOD in reducing
non-linear fields that, at least in principle, present a chaotic diffusion across the
collected snapshots, e.g. the one treated in Chapter 5. The main difference be-
tween our formulation of NNsPOD and that based on inverting the transformation
is that the one we derived uses traditional neural network architectures while the
former alternatives requires an invertible net which unnecessarily complicates the
algorithm. We thus choose to split the architecture and the results did prove to
be satisfactory however we encourage any future work to consider the invertible
net as an alternative worth exploring; an example of intervible neural network
architecture is reported in [13].
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We must now address the topic of model complexity and degree of non-linearity
against which we tested NNsPOD. Our goal was to start from a 2−dimensional
model with linear transport and validate whether or not a machine learning algo-
rithm can match the same results of sPOD by only feeding the desired end-result
(i.e. that of a shift transformation to a reference configuration) and no other physi-
cal nor mathematical information. We then moved onto a decisively more complex
2−dimensional model in which not only the transport field is non-linear but its
also unknown explicitly as it is provided as a (numerical) solution of the incom-
pressible Navier-Stokes equation. We stated and motivated that, in principle, the
adoption of InterpNet allows for the applicability of NNsPOD to any problem of
this type in which the snapshots in X are no longer identical in shape but vary
significantly. While we stand by this claim, as proved by the results obtained in
Chapter 5, we must also declare that the practical advantages of NNsPOD, as
in reality any machine learning model, are strongly limited by the complexity and
regularity of the hypersurface in which we search for the global minima of the
loss function. In particular the specific multiphase model reduced in Chpater
5, although relatively simple when compared to a more realistic sharp interface
between gas and liquid (as it often occurs in e.g. naval engineering), it already
proved to be a challenging case for NNsPOD to train onto. While we argue that
it is very unlikely that the net overfits the training set, it conversely requires very
careful hyperparameter fine-tuning to avoid underfitting. It was in fact not rare for
NNsPOD to ”fall” in relatively poor quality local minima and the process becomes
more evident with later stages of the learning phase during the descend across the
hypersurface. While we tried to limit ourselves to the most traditional and com-
putationally simple neural net and optimization algorithms, it is very unlikely that
more complex non-linear models would be reduced with standard techniques. The
mathematical formulation of fine-tuning of a neural network is not a matter of in-
vestigation of the present thesis as we followed a more empirical approach in order
to validate the framework we intended to build, however we would also suggest
more careful and accurate study of the impact of parameters like the choice for the
activation function in different layers, batch normalisation, dropouts and learning
rates; we also encourage the exploration of convolutional architectures as well
as the adoption of autoencoders for dimensionality reduction. W.r.t. the opti-
misation algorithm adopted, we indicate works like [25, 15] for the implementation
of particle-based gradient descents.
Finally we also mention the fact that our purpose was to extend the philosophy of
shift-based pre-processing in the offline phase of a ROM to the case of non-linear
subspaces where the transport field is not necessarily known; we observed, during
the training stage of NNsPOD, that ShiftNet samples very different regions of the
subspace and in several instances it converged to the desired results following paths
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that are not necessarily straight-forward from an analytical point of view. With
this accomplishment our focus was to validate such sampling strategy for fairly
complex models, s.a. the non-linear multiphase model, but we did not emphasises
this latter aspect; we therefore encourage the experimentation of machine-learning
based reduction of hyperbolic equation in 3D models which, for the specific case
of NNsPOD, simply requires an additional neuron in ShiftNet’s input and output
layer and one additional neuron in InterpNet’s input layer.
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