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Chapter 1

Introduction

In today’s world, inventory management is an increasingly important issue.
To increase competitiveness, companies need to minimize production costs,
among others. There are many things to take into consideration: on the one
hand it is important that the customers’ demand is met, on the other hand,
to do this, sometimes you risk incurring huge inventory costs. Answering
questions like when and how much to produce is the purpose of inventory
management. In the field of operations research, the Lot Sizing Problem
(LSP) is introduced by Wagner and Whitin [1958]. It aims to satisfy the
demand of clients while minimizing setup and inventory holding costs. In
this model the time is discretized in periods, whose duration, depending
on the need, can vary from a few hours to several weeks. The reason for
considering setup costs is that starting production in a given period may
involve costs due to the ignition of the machine, the transport of material
or other. These costs are paid each time a production starts, whatever the
number of units produced. Obviously, the real cost that a company has to
bear should also take into account the quantity produced. In models where
demand is considered to be known and has to be met, however, these costs
can be considered fixed, since we know the exact quantity to be produced
from the beginning. In most studies, a unit inventory cost or holding cost is
charged to carry one unit into stock from one period to another. Inventory
costs model the cost of renting space, rather than the loss of value of goods
or other.

The aim of this dissertation is to propose efficient tools and investigate
different optimization methods to solve the LSP in different variants. In
Chapter 2 the discussion focuses on the Deterministic Capacitated Lot Sizing
Problem (CLSP) on multiple items. As proved in Bitran and Yanasse [1981]
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the CLSP is NP-Hard if at least two items are considered. In our thesis work
we compare the exact implementation of the model, which corresponds to
a Mixed-Integer Linear Programming problem, with a Lagrangian heuristic
that will be better described in the next chapter. In Chapter 3 we deal with
the Stochastic Capacitated Lot Sizing Problem (SCLSP) but we will limit
ourselves to the case of a single item. As you can imagine, in a stochastic
environment things become more complex. Even just satisfying the demand,
a constraint in the deterministic model, is no longer possible. For this sec-
ond part of the discussion we will focus on Dynamic Programming(DP) and
Reinforcement Learning(RL) models to deal with the problem. As for the
first part, the different algorithms proposed are compared and the strengths
of each is underlined.

In this thesis the mathematical and programming aspects will go hand in
hand. The validation of the proposed solutions is in fact carried out through
a Python code, freely accessible on request.

3



Chapter 2

Deterministic problem

In this chapter the CLSP is deepened and several solutions proposals are
implemented. Depending on the parameters in play, the best ones will be
identified and used to solve the problem. In Section 2.1 we present the math-
ematical model of the problem and its possible variants. This model can be
implemented without too many difficulties on a commercial optimization
solver. Our implementation, based on Gurobi Optimizer, is used as a bench-
mark to assess the quality of the solutions we find with heuristics methods.
In Section 2.2 there are theoretical references to Lagrange multipliers and
Lagrangian relaxation methods. The treatment is rather general and unre-
lated to the problem under consideration, but being a widely used method
we thought it might be useful to give an overview. Finally, the relaxed model
is built and examined in the following sections. In Section 2.3 we solve the
model on the single item and without capacity constraint. Two different
algorithms are proposed for solving the problem: the first, exact and deter-
ministic is based on the well-known Wagner-Whitin(WW) algorithm, while
the second, stochastic and approximate, is based on the Cross Entropy(CE)
method. Finally in Section 2.4 we deal with the capacitated problem on
multi item. The blocks exposed in the previous sections are put together to
solve the CLSP by a Lagrangian relaxation procedure. The update of the
multipliers and the stop conditions are investigated in detail. With Section
2.5 we conclude the chapter, showing all the results obtained with the dif-
ferent methods and the different choices of parameters. By helping us with
graphs and tables we analyze in which situations it is better to use the pro-
cedure implemented by us and when the solver of Gurobi out performs our
results.
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2.1 Model

To make this work readable even for less experienced readers, before in-
troducing the model, we give some basic information. In mathematics and
computer science, an optimization problem is the problem of finding the
best solution among all feasible solutions. In the simplest case, it consists
of maximizing or minimizing a real function by systematically choosing in-
put values from a set, named feasible set. Mathematically, given a function
f : A → R from a set A to real number, we seek an element x0 ∈ A such that
f(x0) ≤ f(x) ∀x ∈ A (if minimizing), or such that f(x0) ≥ f(x) ∀x ∈ A (if
maximizing). Function f is called objective function, while A, the feasibile
set, is often specified by a set of constraints, equalities or inequalities that
its members have to satisfy.

Optimization models can be divided according to the nature of the vari-
ables, continuous or discrete and depending on the type of objective function
and constraints. We can roughly say that a problem is linear when both its
objective function and all its constraints are expressed by a linear relation;
otherwise we will say that the problem is not linear. Moreover we can say
that a problem is continuous if all its variables are continuous, that is if they
assume real values. Continuous Linear programming problems can be solved
efficiently using, for example, the simplex algorithms or the interior point
methods. For an introduction to mathematical optimization, linear problems
and simplex algorithm we recommend to see Dantzig [1965]. Interior point
methods, however, are a wide class of algorithms that solve both linear and
nonlinear convex optimization problems. Their use in linear programming
problems can be seen in Marsten et al. [1992], while a detailed treatment
can be found in Roos et al. [2005].

The CLSP can be expressed via a Mixed Integer Linear Programming
(MILP) model. It is an optimization problem in which some of the variables
are constrained to be integers and in which the objective function and the
constraints (other than the integer constraints) are linear. The introduc-
tion of some integer variables (or binaries, as in our case), make the model
extremely difficult to solve. In the paper of Bitran and Yanasse [1981] the
authors study the computational complexity of CLSP under the assumptions
of particular cost structures. Collateral evidence also shows that if two or
more items are considered the CLSP is a nondetermistic polynomial-time
hard (NP-Hard) problem. In our dissertation we consider a much more diffi-
cult version of the problem in which also setup times are considered. In this
case, also test whether or not a feasible solution exists is an NP-Complete
problem (see Trigeiro et al. [1989] for further informations). To deepen the
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topic of computational complexity the reader can see Du and Ko [2011], while
for a list of NP-Complete problem (s)he can refers to Garey and Johnson
[1990].

In our problem we want to minimize the sum of inventory costs and setup
costs regarding I items, over a finite time horizon discretized into T intervals.
For each item the unit cost of setup fi and the unit cost of inventory hi are
known. A setup time r′i and a unit production time ri are also present. The
demand dit for product i in the time period t has to be met. The problem is
capacitated, that is we have a capacity limit, which can be seen, for example,
as the number of working hours available. The number of hours available is
an aggregate value and part of the goal of our work is to divide it between
the production times of the items. The capacity in general may depend on
the time interval in which we are and is referred to as Rt. The variable of
the model are of three type: xit, δit, Iit are the produced quantity, the setup
and the inventory level, respectively, for product i in time t.

Given this notation, a natural model for the CLSP problem is

min

I∑
i=1

T∑
t=1

(fiδit + hiIit), (2.1)

s.t. Iit = Ii,t−1 + xit − dit , i = 1, . . . , I, t = 1, . . . , T, (2.2)
I∑
i=1

(rixit + r′iδit) ≤ Rt , t = 1, . . . , T, (2.3)

xit ≤Mitδit , i = 1, . . . , I, t = 1, . . . , T, (2.4)
Ii0 = 0 , i = 1, . . . , I,

xit, Iit ≥ 0 , i = 1, . . . , I, t = 1, . . . , T,

δit ∈ {0, 1} , i = 1, . . . , I, t = 1, . . . , T.

Our goal is minimize the objective function (2.1) in which the sum of
setup and holding cost is considered. Constraint (2.2) represents the evolu-
tion of the inventory. For each item separately, the inventory evolves in a
natural way: the inventory level at time instant t is equal to the sum of its
level at time instant t−1 and the produced quantity in period t, to which the
demand occurred in period t must be subtracted. Note the use of the two
terms period (or interval) and instant. Inventory is observed in the instant
of time t, while production and demand occur during the time period t, which
joins the time instants t and t+ 1. Finally the new inventory is observed at
instant t + 1. According to this notation we will have T time intervals and
T + 1 time instants. We also note that as the model is made, the demand
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that occurred in the period t can be satisfied by using the production of the
same period. This means that the lead time is equal to zero, i.e., the prod-
uct is delivered immediately to customers. Constraint (2.3) represents the
capacity constraint. In each time period the time spent in make the setup
and produce products cannot exceed the number of available capacity Rt.
The constraint (2.4) is a bigM constraint used to relate variables xit and δit:
if for a given item in a given time period the production is strictly positive,
the correspondent setup variable must be set to 1. From an optimization
point of view is important make the big M values, Mit, as small as possible,
remembering however that Mit has to be an upper bound on xit. In fact the
constraint must be active when δit = 0 and it should not have effect when
δit = 1. This consideration leads us to think that the M value should be
as large as possible. On the other hand, however, the larger the value, the
more difficult the problem becomes. The reason is that the software solves
the problem by relaxing the binary setup variables to continuous values and
solving the resulting LP problem. If the big-M value is too large, weak linear
programming relaxations are obtained, and this results in a poorly pruned
branch and bound tree (Camm et al. [1990], Klotz and Newman [2013]). It
is therefore important to find the minimum value of Mit so the constraint
does not affect the production when the setup has been made. Of course, it
wouldn’t make sense to produce more than demand from here to the end of
the time horizon, so it is possible to write

xit ≤

(
T∑
τ=t

diτ

)
δit , (2.5)

i.e., M =
∑T

τ=t diτ . The remaining constraints give us some conditions on
the domain of the variables. The number of units produced and the inventory
on hand have to be positive, while the setup variables have to be binary.
Surely someone might have something to say about the feasible region of
the production and inventory variables. If we exclude the uncapacitated
case, where it is easy to see that if the demand takes integer values then the
optimal solution will have integer values of production and inventory also,
in general we cannot exclude that in the optimal solution there are some
fractional variables. So strictly speaking it is not correct to consider these
variables as continuous, since it is not possible to produce, for example,
a light bulb and a half. Imposing that the variables are integer would,
however, makes the model unnecessarily slower as it is possible to see from
comparisons of the resolution times of the model with continuous (MILP)
or integer(ILP) variables in Table 2.1. Anyway, besides the difficulty, the
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MILP Time (s) ILP Time (s)
I = 100, T = 30 1.15 2.21
I = 300, T = 30 7.93 11.22
I = 500, T = 30 9.65 17.99
I = 1000, T = 30 28.48 38.30

Table 2.1: Time comparison in solving MILP and ILP model. Average results on 10
instances.

model with integer variables is not treated because normally CLSP is used
in reference to companies with high production levels and producing 1000
pieces instead of 1001 might not be such a major problem.

Sometimes, as in Brandimarte [2006], CLSP is implemented using plant
location formulation. As we mentioned earlier, in a MILP problem, in the
presence of a constraint like x ≤ Mδ, we would like to find the smallest
possible value for M . A classic plant location model is a model whose ob-
jective is to decide whether or not to build some factories to serve a number
of retailers. In addition to the decision on the plants construction, we must
also decide how much each plant have to produce to serve every retailer.
The CLSP can be seen from a plant location model perspective if we think
that production should be transported in time, rather than in space. To do
this, we disaggregate the production variable xit into other variables yitp,
denoting the amount of item i produced during time period t in order to
meet demand in the current or in a future time period p ( t ≤ p). In this
view the setup variable represent the opening of a plant while the variable
xit would represent the amount produced in the factory t and that must be
divided between retailers to meet the demand, i.e., xit =

∑
t≤p yitp. The

setup cost during a time period corresponds to the fixed cost of opening a
plant, and transportation instead of inventory costs incur. This result in the
following model
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min
I∑
i=1

T∑
t=1

fiδit +
∑
p≥t

(p− t)hiyitp

 , (2.6)

I∑
i=1

∑
p≥t

riyitp + r′iδit

 ≤ Rt, t = 1, . . . , T, (2.7)

∑
t≤p

yitp = dip, i = 1, . . . , I, p = 1, . . . , T,(2.8)

yitp ≤ dipδit, i = 1, . . . , I, t = 1, . . . , T, p = t, . . . , T,(2.9)
yitp ≥ 0, i = 1, . . . , I, t = 1, . . . , T, p = t, . . . , T,

δit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T.

With this formulation we can also get rid of the inventory variables. We can
understand the inventory level immediately from the disaggregated variables:
in objective function (2.6) we use the fact that the amount yitp remains in
stock for p− t periods to compute the holding costs. Constraint (2.7) takes
the role of constraint (2.3) limiting the working hours used. Constraint (2.8)
tell us that the demand for item i in time period p have to be satisfied using
the quantity produced in the current or in past time periods. The big M
coefficient in (2.9) has a smaller value of M , in fact with this formulation we
can simply say that the quantity produced at time period t to met demand
in time period p must be less or equal to the demand in time period p.

The main drawback of this model, which surely is evident to a careful
reader, is the need to use many more variables and many more constraints
than before. In fact, compared to 3IT + I variables and 5IT + I + T con-
straints of the first model, the 1

2IT
2 + IT variables and IT 2 + 3

2IT + T
constraints of the second, are of larger order of magnitude. In general, when
T increases, on the one hand the plant location formulation has an increas-
ingly more convenient big M constraint than the classic formulation, on the
other it has an increasing number of variables and constraints. In our exper-
iments the number of time periods considered is about 30, while the number
of products is in the order of thousands. In this case the first model has
about 90000 variables and 151000, constraints, while the second has 480000
and 945000 respectively. The high number of constraints of the plant loca-
tion formulation means that the model, although very fast in being solved,
is slow to build. Moreover, in recent years optimization software, such as
Gurobi, have made great strides forward, and are now able to work with the
original model without having performance problems in solving the prob-
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Normal formulation time (s) Strong formulation time (s)
Build Solve Total Build Solve Total

I = 100, T = 30 0.42 1.46 1.88 5.01 0.69 5, 70
I = 300, T = 30 1.33 4.74 6.07 15.47 2.40 17, 87
I = 500, T = 30 2.25 9.13 11.38 26.01 3.07 29.08
I = 1000, T = 30 4.54 19.77 24.32 51.56 6.94 58.51

Table 2.2: Time comparison for the two different formulations of the CLSP.

lem. In Table 2.2 a time comparison between the original model and the one
based on the plant location formulation is made. As we can see, despite the
resolution time of the second model is much lower than that of the first, if we
consider the overall time to build and solve the model, the first is preferable.
Precisely for this reason, for all the subsequent treatment, we always use the
classical formulation.

2.2 Lagrangian Relaxation

In this section our intention is to give a narrow, but rather general treatment
of the Lagrangian relaxation method and then see how to apply it to our
problem. In order to have a general treatment, let’s imagine that we consider
the problem

min f(x), (2.10)
s.t. hi(x) ≤ 0, i = 1, . . . ,m,

x ∈ S ⊆ Rn,

where f is a scalar function and x is a vector. Lagrangian relaxation is a
procedure that involves building a lower bound of the objective function and
trying to improve it until it is arbitrarily close to a feasible solution. Suppose
that the problem is difficult to solve and that in particular the difficulty is
in meeting the inequality constraints hi(x) ≤ 0 and not in making x belongs
to S. The idea that applies, classic in the field of optimization, is to pretend
that there are no constraints, but to penalize in some way the fact that you
are not meeting them. The most obvious way to act is therefore to insert
each constraint in the objective function and penalize with a coefficient when
it is exceeded. So we can introduce the Lagrangian function

L(x,µ) = f(x) + µTh(x), (2.11)
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where µ is the m-vector of Lagrangian multipliers and h is the m-vector
of constraints. Obviously, although minimizing the Lagrangian function is
not the same, it is somewhat related to the initial problem. The Lagrangian
function, however, depends on two variables. If we fix the value of µ and
minimize it respect to the variable x, what we get is a function called dual
function.

w(µ) = min L(x,µ), (2.12)
s.t. x ∈ S.

Theorem 2.1. If x∗ is an optimal value for the Problem (2.10) and w(µ)
is the related dual function then

w(µ) ≤ f(x∗), ∀µ ≥ 0.

Proof. The following inequalities hold

f(x∗) =

min f(x),

s.t. hi(x) ≤ 0, i = 1, . . . ,m,

x ∈ S.


≥

min f(x),

s.t. µihi(x) ≤ 0, i = 1, . . . ,m,

x ∈ S.



≥


min f(x) +

∑
i

µihi(x),

s.t. µihi(x) ≤ 0, i = 1, . . . ,m,

x ∈ S.


≥

min f(x) +
∑
i

µihi(x),

s.t. x ∈ S.


= w(µ).

The first inequality is due to the fact that when multiplying the function hi
for the scalar µi we expand the feasible region, in fact if µi > 0 the constraint
does not change, while if µi = 0 the constraint is automatically satisfied. If
the region of feasibility is larger, the minimum of the new problem is smaller
or at most equal to the minimum of the old problem. The second inequality
is due to the fact that we are adding a non positive quantity to the objective
function, so it decreases. At the end we remove the constraint, expanding
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much more the feasible space. The last problem is, by definition, the dual
function, and so we prove the theorem.

So, the idea is to define a second problem, called dual problem with the
objective of pushing the dual value up. In fact thanks to the theorem, we
are sure that it will never exceed the optimal value of the primal problem.
Then we want to solve the following dual problem

max w(µ),

s.t. µ ≥ 0.

It would be a great result if we could say that the maximum of the dual
problem was equal to the minimum of the primal problem, i.e., if

f(x∗) = w(µ∗)

but this is not true in general. If not, we can anyway maximize the dual
function and find a good lower bound for the primal problem.

From a computation point of view often to maximize the dual objective
function an iterative procedure is used. Obviously this approach make sense
if and only if we are able to solve the problem (2.12) much more easily than
the original problem (2.10).

Lagrangian procedure

1: Chose an initial vector µ(0),
2: k = 0,
3: repeat
4: solve the problem (2.12) for a given µ(k),
5: find new multipliers µ(k+1),
6: k = k + 1,
7: until some termination condition holds.

In general, also if we are able to minimize in a proper way, such a method
could suffer from the problem of local maximum, but this is not the case, in
fact the following applies

Theorem 2.2. What ever the data S, f,h in Problem (2.10), the dual func-
tion w(µ) is concave (but not necessarily differentiable).

Proof. It is enough to notiche that L(x,µ) is an affine function of µ. Then
the dual function is the pointwise infimum of a family of affine functions.
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But the pointwise infimum of concave functions is concave (see Niculescu
and Persson [2004] or Borwein and Lewis [2010] for further information), so
w(µ) is concave.

Thanks to this theorem the problem of local maximum does not arise and
one can be sure, if the procedure converges, to converge at the maximum of
the dual function. The critical point in the procedure is how to update the
multipliers, while normally the choice of their initial values does not affect
the final result significantly: multipliers are usually initialized all equal to
zero or randomly chosen. To update them, the basic idea on which most
of methods are based, is that when the solution found does not respect a
constraint, the associated multiplier is increased to further penalize capacity
utilization, while when the solution respects a constraint, multipliers shall
be kept constant or decreased to try to make the solution less conservative.
The literature is plenty of methods to update multipliers. Here we propose
two classes, the subgradient methods and the bundle methods. For a com-
prehensive treatment of Lagrangian relaxation reader can see Lemaréchal
[2013], while in Boyd et al. [2003] subgradient methods are thrash out.

Subgradient Method

Definition 2.1. Let f be a function and x a point in its domain D. The
subgradient of f at x is any vector g that satisfies the inequality

f(y) ≥ f(x) + gT (y − x) ∀y ∈ D.

Equivalently is possible to define the supergradient of f at x, that is any
vector g that satisfies the inequality

f(y) ≤ f(x) + gT (y − x) ∀y ∈ D.

The subgradient extends the gradient for non-differentiable functions.
The subgradient method is an iterative procedure for minimizing a non dif-
ferentiable convex function φ. At each iteration the subgradient in the cur-
rent point is computed and a new point is found according with the direction
of the subgradient. The simple updating rule performed is

y(k+1) = y(k) − αkg(k),

where g(k) is a subgradient of function φ in point y(k). If, as in our case, we
wish to maximize a concave function, instead, we can use the supergradient.
The update becomes

y(k+1) = y(k) + αkg
(k),
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where g(k) is a supergradient of function φ in point y(k). In the case of the
function w(µ) the supergradient is easy to find, in fact the following theorem
holds.

Theorem 2.3. Let x∗ be an optimal solution of Problem (2.12) for a mul-
tiplier vector µ̂. Then h(x∗) is a supergradient of the dual function at µ̂.

Proof. Let µ ≥ 0 be any vector of multipliers and consider the quantity
L(x∗,µ). x∗ was optimal for µ̂ but in general it isn’t optimal for µ. So it
follows that

w(µ) =

(
min L(x,µ),

s.t. x ∈ S.

)
≤ L(x∗,µ)

= f(x∗) + µTh(x∗)

= f(x∗) + µTh(x∗) + µ̂Th(x∗)− µ̂Th(x∗)

= f(x∗) + µ̂Th(x∗) + hT (x∗)(µ− µ̂)

= w(µ̂) + hT (x∗)(µ− µ̂)

Then for any vector µ

w(µ) ≤ w(µ̂) + hT (x∗)(µ− µ̂),

i.e., h(x∗) is a subgradient of the dual function w(µ) at µ̂.

So at iteration k we can use the update formula

µ(k+1) = µ(k) + αkh(x∗), (2.13)

To avoid confusion, also if we have to maximize the dual function and so we
use the supergradient, we talk about the subgradient method.

One of the most challenging problem in using this algorithm is decide
which value of step lengths αk to use. One of the most popular policies is
the square summable but not summable step size, i.e.,

∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞.

Following this rule a possible choice could be αk = a
b+k , a > 0, b ≥ 0.

Different policies can be found in Boyd et al. [2003]. An interesting choice
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is the one used in Süral et al. [2009] where the step length size is calculated
according to the primal and dual functions with the following formula:

αk = α
f(x̄)− w(µ(k))

||g||
, (2.14)

where x̄ is the best current feasible solution and w(µ(k)) is the current ob-
jective value of the relaxed problem, i.e., it is a lower bound for the optimal
value. The idea is that when the gap between the lower bound and the upper
bound is very small, it means that we are close to the optimal, so the step
size becomes smaller so as to not get too far from the current solution. At
the same time, if µ(k) is a point where the gradient has a large norm, we
would like to move slowly, because the objective function changes quickly,
whereas if µ(k) is a point where the gradient has a small norm, means that
the objective function is almost flat and it is possible to use a larger step
length. Note that to use this rule, we need to have a feasible primal solution
x̄. If this is not available, we could use an infeasible solution, but of course
we would no longer be sure that f(x̄) is an upper bound for the optimal
value f(x∗). In this case the step length would be underestimated.

In this work we do not discuss the convergence of the procedure, but in
the literature there are several results in this regard ( Boyd et al. [2003]). If
f is regular enough and square summable but not summable step size are
chosen, the algorithm is guaranteed to converge to the optimal value µ∗.

In this sense, for the termination of the procedure, a reasonable condition
could be

|w(µ(k+1))− w(µ(k))|
|w(µ(k))|

≤ ε.

With this formula, we stop the algorithm when the percentage change in the
dual function falls below a tolerance ε. If the convergence to the optimal
value is not guaranteed, the stopping criterion may be replaced by

||µ(k+1) − µ(k)||
||µ(k)||

≤ ε.

A different convergence criterion that can be used is the following:

|w(µ(k+1))− f(x̄)|
|w(µ(k+1))|

≤ ε.

This condition is stronger, but if it holds, it guaranteed a bound in term of
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f . In fact, if we are able to say that f(x∗) = w(µ∗) it is possible to write

ε ≥ |w(µ(k+1))− f(x̄)|
|w(µ(k+1))|

=
|w(µ(k+1))− w(µ∗) + f(x∗)− f(x̄)|

|w(µ(k+1))|

=
|w(µ(k+1))− w(µ∗)|
|w(µ(k+1))|

+
|f(x∗)− f(x̄)|
|w(µ(k+1))|

≥ |w(µ(k+1))− w(µ∗)|
|w(µ∗)|

+
|f(x∗)− f(x̄)|
|f(x∗)|

,

then
|f(x∗)− f(x̄)|
|w(x∗)|

≤ ε.

If the strong duality does not holds, i.e. if w(µ∗) < f(x∗), similar reasoning
can be made.

Bundle Methods

There are numerous approach for maximizing non smooth concave func-
tions. Here we propose an example of bundle methods. These methods are
also based on the concept of subgradient: subgradient directions from past
iterations are collected in a bundle and from them, performing an easy op-
timization problem, a new direction is obtained. To explain the method we
require the definition of ε - subdifferential

∂εL(µ) ≡ {g ∈ Rn|L(µ̄) ≤ L(µ) + 〈g, µ̄− µ〉+ ε ∀µ̄ ∈ Rn} . (2.15)

Element in ∂εL(µ) are called ε - subgradients, while the ε - directional deriva-
tive along the direction d at µ is defined as

L′ε(µ,d) ≡ sup
t>0

L(µ+ td)− L(µ)− ε
t

.

As is possible to see in Zhao and Luh [2003] the directional derivative can
be rewrite as

L′ε(µ,d) = inf
g∈∂εL(µ)

g′d,

so if a direction d such that L′ε(µ,d) > 0 is found, this means that the dual
cost can be increased by at least ε. Therefore, it is desirable to select a search
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direction d∗ such that the directional derivative is maximized:

d∗ = arg

{
max
||d||=1

L′ε(µ,d)

}
= arg

{
max
||d||=1

inf
g∈∂εL(µ)

g′d

}
= arg

{
inf

g∈∂εL(µ)
max
||d||=1

g′d

}
= arg

{
inf

g∈∂εL(µ)
||g||

}
Therefore, this d∗ is the ε - subgradient with the smallest norm. Generally
the ε - subgradient is hard to obtain and the idea is to approximate it through
a sequence of subgradients. At every iteration the subgradient is accumulate
in a bundle B = {g1, . . . , gb} and to approximate ∂εL(µ) the convex hull of
bundle’s elements is used

Pb =

{
g|g =

b∑
i=1

αigi, gi ∈ B, αi ≥ 0,
b∑
i=1

αi = 1,
b∑
i=1

αiei ≤ ε

}
,

where ei is the linearization error for element i,

ei = L(µi) + 〈gi,µ− µi〉 − L(µ).

Once d∗ was found, we use it to update lagrangin multiplier

µ(k+1) = µ(k) + αkd
∗(k), (2.16)

where the step size αk is chosen in the same way like in the subgradient
method. If the problem we build is infeasible and no d∗ can be found, the
lagrangian multipliers are not updated. In any case at any iteration the
subgradient is computed and it is added to the bundle Pb. This method,
by accumulating gradients from past iterations and choosing the direction
to take, manages to get a better Lagrange multiplier update, compared to a
simple subgradient method. However, numerous iterations may be required
before multipliers are updated, which means that the benefit of a better
upgrade is lost. From our tests the subgradient method was preferable, but
in the literature there are several techniques to try to reduce the number
of iterations in which the bundle method fails to update the multipliers, to
make it more competitive (for more information we always recommend to
read Zhao and Luh [2003]). The stop condition can be chosen with the same
criteria as for the subgradient method.
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2.3 Uncapacitated Single Item Problem

The uncapacitated LSP (ULSP) on a single item is a classic optimization
problem, introduced by Harvey M. Wagner and Thomson M. Whitin in 1958.
It can be formulated as follow

min

T∑
t=1

(ftδt + htIt), (2.17)

s.t. It = It−1 + xt − dt, t = 1, . . . , T,

xt ≤Mtδt, t = 1, . . . , T,

I0 = 0,

xt, It,≥ 0, t = 1, . . . , T,

δt ∈ {0, 1}, t = 1, . . . , T.

The resolution of the ULSP is not only preparatory to the CLSP, but often
is the main building block for its resolution. Also our procedure is based
on this philosophy: the problem is first decomposed through the Lagrangian
relaxation and is then solved individually on each product without consid-
ering any capacity constraint. That is why in this section we will focus on
the resolution of the ULSP. In particular we will propose two different meth-
ods, which will then be compared. The first method is based on the original
algorithm proposed in Wagner and Whitin [1958] which uses dynamic pro-
gramming to solve the problem. Some theoretical notions about DP can be
found in the second chapter, otherwise we suggest to see Brandimarte [2021].
The second method is a probabilistic algorithm that is based on the concept
of cross entropy, of which we will give some theoretical rudiments.

2.3.1 Wagner Whitin Algorithm

One method of solving the ULSP is to enumerate the 2T combinations of
either order or not in each period. The Wagner Whitin algorithm evolves
from a DP characterization of an optimal policy and it is able to find an
optimal solution in a maximum of T (T + 1)/2 steps.

We start from the known functional equation

gt(s) = min
xt≥0

s+xt≥dt

hts+ ftδt + gt(s+ xt − dt), (2.18)

representing the minimal cost policy from the period t to the period T , when
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the inventory at the beginning of time t is It−1 = s. In period T we have

gT (s) = min
xT≥0

s+xT≥dT

hT s+ fT δT .

Using this functional equation it is possible to build a DP algorithm that
works backward in time. However, taking into account the properties of our
problem, it is possible to build an even simpler approach. Let us suppose for
the sake of simplicity d1 > 0, assumption that we eliminate later.

Theorem 2.4. Consider the Problem (2.17). There exists an optimal pro-
gram such that It−1xt = 0, t = 1, . . . , T .

Proof. Assume for contradiction that exist an optimal program for which at
beginning of time period t we have It−1 > 0 unity in the inventory and we
place and order of xt > 0 (i.e., It−1xt > 0). Then there is a cheaper policy
that consists of including It−1 units in the production of the period t, saving
a cost of It−1ht−1.

Note that the theorem is given in the case in which we assume that
the producing and selling cost are constant through the time. Anyway, is
possible to show that a sufficient condition for which the theorem is satisfied
is that the structure of costs is concave, i.e., if the marginal costs are not
increasing. In particular is not relevant that production costs are the same
in different time periods (see Wagner [1959] and Zangwill [1968]).

Corollary 2.4.1. There exists an optimal program such that for all t

xt = 0 or xt =
k∑
i=t

di, t ≤ k ≤ T.

Proof. Since demand must be met for each period, any other value of xt
implies that exists a period t∗ ≥ t such that It∗−1xt∗ > 0, that is not possible
for Theorem 2.4.

The implication of Corollary 2.4.1 is that we can limit the values of s in
Eq. (2.18) for period t between zero and the cumulative demand for t up to
T , and the only T (T +1)/2 different values of s are examined over the entire
T periods. Thanks to these observations ( and some other considerations
that can be found in Wagner and Whitin [1958]), if we denote as F (t) the
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minimal cost program for period 1 through t, it is possible to write

F (t) = min

 min
1≤j<t

fj +
t−1∑
l=j

t∑
k=l+1

hldk + F (j − 1)

 , ft + F (t− 1)


(2.19)

where F (0) = 0 e F (1) = f1. That is, the minimum cost for the first t periods
includes a fixed cost in the period j, plus the cost of meeting demand in the
periods k = j + 1, . . . , t, by carrying inventory from period j, plus the cost
of adopting an optimal policy in periods 1 through j − 1. Adopting this
functional equation is possible starting at time t = 1 and go forward in
time. At any time instant t only t different policies need to be considered.
Moreover, as shown in the paper, if at period t̄ the minimum in Eq. (2.19)
occurs for j = t∗ ≤ t̄ then in periods t > t̄ it is sufficient to consider only
t∗ ≤ j ≤ t. This means that if it is optimal to have a setup cost at time
t∗ ≤ t̄ when periods 1 through t∗ are considered, then we may let xt∗ > 0 in
the T period model without loosing optimality. This statement, known as
the Planning Horizon Theorem, can be used to reduce the number of policies
to compute.

In our problem we always consider the holding unitary cost as constant
in time, and so Eq. (2.19) can be rewrite as

F (t) = min

{
min

1≤j<t

{
fj + h

t∑
k=j+1

(k − j)dk + F (j − 1)

}
,

ft + F (t− 1)

}
, (2.20)

if, as done so far, we assume that in the first step the demand is not zero.
Suppose now that d1 = 0, and the first non zero demand appear in time
period t̄. It is sufficient to set xt = 0, t ≤ t̄, F (t̄) = ft̄ and consider Eq.
(2.20) only for periods from t̄ to T . Alternatively is also possible to slightly
modify the recursion formula and find a valid formulation. Let sjt be 1 if a
positive demand occur between time j and time t, 0 otherwise. Then F (t)
can be computed as

F (t) = min

{
min

1≤j<t

{
fjsjt + h

t∑
k=j+1

(k − j)dk + F (j − 1)

}
,

sttft + F (t− 1)

}
.
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The term sjt prevent to mistakenly add a set up cost when there is no demand
in period between j and t. Anyway, if we use this recursion, the Planning
Horizon Theorem does not hold, so the Eq. (2.20) is preferable, with the
care of start the algorithm in the time period in which the first non zero
demand occurs.

Wagner Whitin algorithm
1: Set F0 = 0,
2: for t ∈ [1, . . . , T ] do
3: for j = 1 ∈ [1, . . . , t] do
4: cj = fj + h

∑t
k=j+1(k − j)dk + Fj−1,

5: end for
6: Ft = min1≤j≤t cj ,
7: end for

To help the reader to better understand the algorithm, here is a small
numerical example, that can be read in Table 2.3. As done from Wagner
and Whitin we use the notation (1, 2, . . . , t∗), t∗ + 1, t∗ + 2, . . . , t̄ to indicate
that an order is placed in period t∗ + 1 to cover the demand in periods
t∗ + 1, t∗ + 2, . . . , t̄ and the optimal policy is adopted for periods 1 through
t∗. Let considering a constant set up cost f = 6 and an holding cost h = 1,
while the demand is specified in the table. We write in the third row the
possible cost for different strategies and in the last row the minimum cost
and the optimal policy, computing using Eq. (2.20).

From the last column of Table 2.3 we know that the optimal solution has
a cost of 16 and we know that we have to order in period 6 and follow the
optimal policy for the first 5. In the column related to t = 5 we understand
that the optimal policy is to order in time t = 3 to cover demand until
period 5 and follow the optimal policy for the first 2 periods. In the column
related to t = 2 we discover that there is nothing to do, in fact in period 1
and 2 the demand is zero, so there are no cost. In the example we compute
the cost of each possible strategy, but the ones in square brackets are the
policies that it is possible to avoid to compute using the Planning Horizon
Theorem. Despite Wagner Whitin’s algorithm exploits the good properties
of the problem to decrease computational effort, several improvements to
the implementation have been proposed over the years. In Heady and Zhu
[1994] an algorithm with execution time that is approximately linear in the
number of time periods is proposed. Similar result are found also in Sajadi
et al. [2009], where the Planning Horizon Theorem and the Economic Part
Period concept are used to reduce the burden of the computations. In our
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t 1 2 3 4 5 6
demand 0 0 14 0 2 5

0 0 [34] [34] [42] [67]
0 20 [20] [26] [46]

6 6 10 25
12 14 24

12 21
16

Minimum cost 0 0 6 6 10 16
Optimal policy - - (12)3 (12)34 (12)345 (12345)6

Table 2.3: Example of Wagner Whitin algorithm.

work, to maintain a good readability of the code, it was decided to implement
the basic algorithm of Wagner Whitin, but with a little bit of programming
effort you could switch to an improved implementation and save computing
time.

2.3.2 Cross Entropy

Sometimes, when a deterministic algorithm is computationally expensive, it
might be convenient to use a stochastic algorithm: accuracy is sacrificed to
get results faster. On this track we implement an algorithm based on the
concept of Cross Entropy.

The CE method was proposed by Rubinstein [1997] as an adaptive im-
portance sampling procedure for the estimation of rare event probabilities.
It is used to change the sampling distribution of the random search so that
the rare event is more likely to occur. The goal of this method is estimates
a sequence of sampling distributions that converges to a distribution with
probability mass concentrated in a region of near-optimal solutions. The
explanation of the CE procedure is taken from De Boer et al. [2005].

Consider the estimation of the probability

` = P (S(X) ≤ γ) = E
[
I{S(X)≤γ}

]
=

∫
I{S(x)≤γ}f(x,u) dx,

where S is a real-valued function, γ is a threshold or level parameter, and the
random variable X has probability density function f(·,u), which is param-
eterized by a finite-dimensional real vector u. In an important sampling pro-
cedure we need to find a pdf g such that if g = 0 then I{S(X)≤γ}f(x,u) = 0.
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We can now represent ` using the pdf g

` =

∫
f(x,u)I{S(x)≤γ}

g(x)
g(x) dx = E

[
f(X,u)I{S(X)≤γ}

g(X)

]
, X ∼ g.

If now we consider X1, . . . ,XN
iid∼ g, an unbiased estimator of ` is given by

ˆ̀=
1

n

N∑
i=1

I{S(Xi)≤γ}
f(Xi,u)

g(Xi)
,

it is know that the pdf g∗ for which the variance of ˆ̀ is minimal is

g∗(x) =
f(x,u)I{S(x)≤γ}

`
,

where however the value ` is unknown. The idea behind the CE methods is
to choose g between a class of parametric densities {f(·,v), v ∈ V} such that
the Kullback Leibler divergence between the optimal importance sampling
pdf g∗ and g is minimal. The Kullback Leibler divergence, which is also
termed the cross-entropy, between g and g∗ is given by

D(g∗, g) =

∫
g∗(x) ln

g∗(x)

g(x)
dx = E

[
ln
g∗(X)

g(X)

]
, X ∼ g∗.

The procedure reduce to find an optimal parameter vector v∗ that minimize
the cross entropy

v∗ = arg max
v

D(g∗, f(·,v))

= arg max
v

∫
g∗(x) ln

g∗(x)

f(x,v)
dx

= arg max
v

∫
g∗(x) ln g∗(x) dx−

∫
g∗(x) ln(x,v) dx

= arg min
v

∫
g∗(x) ln f(x,v) dx

= arg min
v

∫
f(x,u)I{S(x)≤γ}

`
ln f(x,v) dx

= arg min
v

∫
ln f(x,v)I{S(x)≤γ}f(x,u) dx

= arg min
v

Eu
[
ln f(X,v)I{S(X)≤γ}

]
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Using again importance sampling, with a change of measure f(·,w) we can
write

ln f(x,v)I{S(x)≤γ}f(x,u) = I{S(x)≤γ} ln f(x,v)
f(x,u)

f(x,w)
f(x,w),

and so

v∗ = arg min
v

Ew
[
I{S(X)≤γ} ln f(X,v)

f(X,u)

f(X,w)

]
.

This v∗ can be estimated via

v̂ = arg min
v

1

N

N∑
i=1

I{S(Xi)≤γ}
f(Xk,u)

f(Xk,w)
ln f(Xk,v), (2.21)

where X1, . . . ,XN
iid∼ f(·,w). A complication in Eq. (2.21) is that for

a rare event probability `, most of indicators I{S(Xi)≤γ} are zero and it is
not to have a good estimation. In that case is possible to build a sequence
of vector {v̂t} and levels {γ̂t} with the aim to converge to v∗ and γ. At
each iteration t we simulate N independent random variables X1, . . . ,XN

from the current importance sampling density f(·, v̂t−1) and let γ̂t be the
(1 − ρ) quantile of the performances values S(X1), . . . , S(XN ) where ρ is
called rarity parameter. We then update the value of v̂t−1 using the cross
entropy minimization based on the N e = dNρe random variables for which
S(Xi) ≥ γ̂t.

Cross Entropy procedure for rare event estimation
1: Choose v0, N ∈ N, ρ ∈ R, N e = dNρe, max_iter, k = 1,
2: repeat
3: generate X1, . . . ,XN

iid∼ f(·,vk−1),
4: compute S(Xi) for all i,
5: order them from the smallest to largest: S(1), . . . , S(N),
6: let γt be the sample (1− ρ) - quantile, i.e., γt = S(XN−Ne),

7: v̂ = arg min
v

1

N

∑N
i=1 I{S(Xi)≤γ}

f(Xk,u)

f(Xk,w)
ln f(Xk,v),

8: until γ̂t ≤ γ or k = max_iter
9: Let K the final counter. Generate X1, . . . ,XN

iid∼ f(·,vK),

10: estimate ` with ˆ̀=
1

n

∑N
i=1 I{S(Xi)≤γ} =

f(Xi, v̂K)

g(Xi)
.

24



Why it could be useful for optimization purposes? Assume that our
problem has the form

min S(x),

s.t. x ∈ X ,

and admit only one minimizer x∗. As shown in Botev et al. [2013], if we
denote γ∗ = S(x∗) we can associate with the above optimization problem
the estimation of the probability l = P (S(X) ≤ γ) where X has some prob-
ability density f(x,u) with u a real vector and γ close to the unknown value
γ∗. Typically, l is a rare-event probability, and in this sense is possible to use
the CE approach to find sampling distribution that concentrates all its mass
in a neighborhood of the point x∗. In this way we would achieve optimal or
near optimal solutions. Note that, in contrast of what happen in the rare
event simulating setting, here the final level γ∗ is not known in advance but
ideally the method produce a sequence of γ̂t that converge to the optimum
and a sequence of vt that converges to v and such that f(x,u) is a prob-
ability distribution that concentrates all its mass in a neighborhood of the
point x∗.

To run the algorithm one needs to propose a class of parametric sampling
densities {f(·,u), u ∈ U}, the initial vector u0, the sample size N and the
rarity parameter ρ. Obviously the most challenging choice is the selection
of an appropriate class of parametric sampling densities. It has to be flexi-
ble enough to estimate rare-events but it has to be simple enough to allow
fast random variable generation and closed-form solutions to the maximum
likelihood estimation program. For many details on the CE method in an
optimization setting the reader can consult Rubinstein and Kroese [2016].

We now try to understand how we can exploit this idea in our case. The
key step is to observe that is easy to find the optimal ULSP solution once set
up variables are fixed. So our goal is using cross entropy to choose the binary
variables. If we put ourselves in the situation where there is only one product,
a solution can be described by a binary vector. But a vector of binary values
can be seen as a sequence of realizations from a Bernoulli variable. So the
parametric sampling densities that we can use for our problem are

φ(δ,u) =
∏
t

[
(ut)

δt + (1− ut)1−δt
]
,

where δt = 1 if production takes place in period t and ut ∈ [0, 1]∀t. In this
case our objective function can be viewed as

z∗ = min
δ∈X

f(δ). (2.22)
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Using CE method we can associate to the optimization problem (2.22) a
stochastic estimation problem

Pu(f(∆) ≤ z) =
∑
δ∈X

I{f(δ)≤z}φ(δ,u),

where Pu is the probability measure that a random state δ drawn under
φ(δ,u) has a performance function value less than or equal to a given thresh-
old value z. As in the general case, given ∆1, . . . ,∆n, randomly sampled
from density functions φ(δ,p), our goal is to determine p, that can be esti-
mated by solving the problem

p̂ = arg max
p

1

N

N∑
i=1

I{f(∆i)≤z} lnφ(∆i,p).

Since φ(δ,p) is the density of a Bernoulli finding p̂ corresponds to solving

∂

∂pj

N∑
i=1

I{f(∆i)≤z} lnφ(∆i,p),

which gives the optimal updating rule:

p̂j =

∑N
i=1 I{f(∆i)≤z}δij∑N
k=1 I{f(∆i)≤z}

j = 1, . . . , T, (2.23)

where ∆i indicates a binary vector and δij is the j-th component of the i-th
point of the CE population. In the absence of information a starting vector
p(0) for which each value is equal to 1/2 can be used, and rule of Eq. (2.23)
can be iteratively applied with the aim of generating a sequence of increasing
threshold values z0, z1, . . . , converging either to the global optimum z∗ or to
a value close to it. At each iteration, the new value of z is used to generate a
better vector p. The new parameter is used to draw a better population from
φ(δ,p) which will lead to a better value. The process stops when either we
have no improvement in the value of z or the vector p converges to a vector
in X , which implies that any random state drawn under φ(·,p) will converge
to the same solution in X .

We do not underline how to use the binary variable to find the value z of
the objective function, but similarly to what we have seen in Wagner Whitin
algorithm, once we have the periods in which to order, is easy to find the
production and the inventory for any time using Corollary 2.4.1.

Let’s see a pseudocode for the algorithm:
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Cross Entropy algorithm

1: Choose p(0), N ∈ N, ρ ∈ R, max_iter,
2: set k=1
3: repeat
4: draw a sample population Ω(k) = {∆1, . . . ,∆N} ∼ b(p(k)),
5: compute f(∆i) for each ∆i ∈ Ωk,
6: sort Ω(k) in ascending order with respect to f(∆i),

7: p
(k)
j =

∑dρNe
i=1 δij
dρNe

j = 1, . . . , T ,

8: until p(k) /∈ {0, 1}T ∧ k < max_iter

2.4 Capacitated Multi Item Problem

What we have said so far is about a single item uncapacitated lot sizing
problem. In this section we explain how, thanks to the Lagrangian relax-
ation, it is possible to switch from a problem constrained on several items, to
a succession of problems not constrained on the single item. If we consider
our original problem formulation and we build the Lagrangian function as
shown in Eq. (2.11) relaxing the capacity constraint, the problem (2.12) can
be rewritten as

w(µ) = min
T∑
t=1

(
I∑
i=1

(
hiIit + (fi + µtr

′
i)δit + µtrixit

)
− µtRt

)
, (2.24)

s.t. Iit = Ii,t−1 + xit − dit , i = 1, . . . , I, t = 1, . . . , T,

xit ≤Mitδit , i = 1, . . . , I, t = 1, . . . , T,

Ii0 = 0 , i = 1, . . . , I,

xit, Iit ≥ 0 , i = 1, . . . , I, t = 1, . . . , T,

δit ∈ {0, 1} , i = 1, . . . , I, t = 1, . . . , T.

The problem is now uncapacitated, but the objective function (2.24) is multi
item. It is enough to rewrite in the form

I∑
i=1

T∑
t=1

(
hiIit + (fi + µtr

′
i)δit + µtrixit

)
−

T∑
t=1

µtRt (2.25)

to notice that the term
∑T

t=1 µtRt does not give any contribution on the
choice of the minimum (remember we are minimizing in I, x, δ, while La-
grangian multipliers are fixed). Therefore the problem can be decoupled for
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items, with respect to both the objective function and the constraints, and
is possible to solve separately I problems. For each of them we find the best
production plan and then, to compute the objective function all we need is
sum the different pieces and subtract the term

∑T
t=1 µtRt.

So once µ is fixed, for each i = 1, . . . , I we solve

wi(µ) = min
T∑
t=1

(
hiIit + (fi + µtr

′
i)δit + µtrixit

)
s.t. Iit = Ii,t−1 + xit − dit , t = 1, . . . , T,

xit ≤Mitδit , t = 1, . . . , T,

Ii0 = 0

xit, Iit ≥ 0 , t = 1, . . . , T,

δit ∈ {0, 1} , t = 1, . . . , T,

and then we compute the objective function of the problem as

w(µ) =
I∑
i=1

wi −
T∑
t=1

µtRt. (2.26)

Once we call ft = f + µtr
′ and rt = µtr, we can write the single item

model in the form

min
T∑
t=1

(hIt + ftδt + rtxt)

s.t. It = It−1 + xt − dt, t = 1, . . . , T,

xt ≤Mtδt, t = 1, . . . , T,

I0 = 0,

xt, It,≥ 0, t = 1, . . . , T,

δt ∈ {0, 1}, t = 1, . . . , T,

which is very similar to the model (2.17), considered in the Wagner Whitin
discussion, with the single addition of production cost. In this case, even if
the unitary costs change from one time interval to another, the cite Theorem
2.4 holds. So we could use the recursive formula

F (t) = min

{
min

1≤j<t

{
fj + djrj +

t∑
k=j+1

[h(k − j) + rj ] dk + F (j − 1)

}
,

ft + dtrt + F (t− 1)

}
,
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where we add the production cost term. Obviously we can also solve the
problem using the CE method and then, once we find the periods in which to
produce, calculate the optimal quantities to be produced using the Corollary
2.4.1.

Once the optimal production plan for each product is calculated, we can
simply combine the solutions and calculate the value of the dual function as
shown in (2.26). Unfortunately, even after several iterations with Lagrange
multipliers, we have no guarantee that the solution found is feasible for the
original problem, as the capacity constraint may not be met. There is also
no need to build large-scale problems to find an example in which the dual
problem fails to achieve the optimal solution of the primal and in particular
cannot even find a feasible solution.

Example 2.1. Consider an instance with 2 item e 4 time steps. Costs and
demand are

"set_up_cost": [10, 9],
"inventory_cost": [2,3],
"processing_time": [2,3],
"set_up_time": [7,3],

"time_capacity": 31,
"demand": [[7,8,1,5], [2,2,6,4]].

Solving the problem exactly we found that an optimal solution is given by
production
[[7.5 7.5 1.5 4.5]
[2 2 6 4 ]]

inventory
[[0 0.5 0 0.5 0.0 ]
[0 0 0 0 0 ]]

cost
78.0

It is easy to see that for item 1 the Theorem 2.4 does not hold, while we
show that for the relaxed problem the Wagner Whitin property is satisfied.
This means that there is no hope of finding the optimal solution using this
procedure. In this particular case, the example is built in such a way that no
feasible solution that respects the property of Wagner Whitin exists. In fact
if we use a Lagrangian procedure to solve the problem we found the solution
production
[[ 7 8 6 0]
[ 4 0 10 0]]

inventory
[[0 0 0 5 0]
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[0 2 0 4 0]]
cost
76.0

for which the capacity constraint is broken in time steps 1 and 3.

2.4.1 Feasibility Issues

It is therefore necessary to build a procedure to transform a good near fea-
sible solution in a feasible one. This operation can be seen as a transition
from a dual solution to a primal solution, with an obvious increase in the
objective function (remember Theorem 2.1), and it is therefore important to
find a methodology that makes it possible to make the solution feasible by
modifying it as little as possible, so as not to increase its cost too much and
not spend a lot of time. However, sometimes, without more radical inter-
vention it may not be possible to restore the feasibility of the solution. It is
therefore necessary to find a compromise between the ability to make the so-
lution feasible and the time of execution of the process. In general, however,
this re-feasibility method is only applied at the end of the entire problem,
once the Lagrange multipliers have reached a certain degree of convergence
or the maximum number of iterations has been reached. At that moment it
is therefore necessary to build a feasible solution, even at the cost of using
more computational effort. We build three different methods, to be applied
in sequence. Each one is more expensive and more invasive than the previous
one, but it allows with greater probability to find a feasible solution. The
third method in particular guarantees that a feasible solution is found (if it
exists), but at a much higher cost than the other two methods.

Linear Programming Heuristic

The simplest and faster approach we can perform is to take fixed the binary
variables and try to optimize only in the continuous ones, using all the origi-
nal constraints. In this case we have a linear programming problem that has
a polynomial complexity instead of an exponential one. If Yit is the value of
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the fixed variable δit we have to solve the problem

min

I∑
i=1

T∑
t=1

hiIit

s.t. Iit = Ii,t−1 + xit − dit , i = 1, . . . , I, t = 1, . . . , T,

I∑
i=1

(rixit + r′iYit) ≤ Rt , t = 1, . . . , T,

xit ≤MitYit , i = 1, . . . , I, t = 1, . . . , T,

Ii0 = 0 , i = 1, . . . , I,

xit, Iit ≥ 0 , i = 1, . . . , I, t = 1, . . . , T.

This method would appear to be the perfect candidate, but the problem is
that fixing binary variables does not guarantee that a feasible solution can be
found, as can we notice if we analyze Example 2.1. We could try to perform
a sort of fix and optimize heuristic (see Güner Gören and Tunali [2018]) but
we will loose the sense of using a Lagrangian heuristic. Another idea could
be to fix only a part of binary variables: the model will be more complex
without the guarantee of finding a feasible solution. In any case we will need
an heuristic to build a feasible solution, as for example in Dillenberger et al.
[1994], losing again the sense of a Lagrangian optimization.

Production Swap Heuristic

Trigeiro et al. [1989] propose a method that tries to modify as little as possi-
ble the solution, but allow to change the binary variables. A similar approach
was followed by Caserta and Quinonez [2009]: they define a greedy heuristic
scheme that attempts to project the infeasible solution back to the feasi-
ble space. To understand what they do let us suppose that the capacity
constraint of period t is not respected, which means the production plan
suggested by the Wagner Whitin algorithm uses more capacity than avail-
able in period t. Their heuristic scheme attempts to restore feasibility by
moving backward or forward a certain amount of production, until overload
production of period t is eliminated. We tweak their approach slightly to
suit our needs.

Let us first consider the case in which we want to move backward pro-
duction of a certain item i from period t to period t′ < t. To understand how
much production ptt′i for the item i we can move from time t to time t′ we
have to consider the minimum between the production we currently make in
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time t and the production we are able to add in period t′ without exceeding
the capacity constraint, i.e.

ptt
′

i = max

{
min

{
b
Rt′ −

∑I
k=1(rkxkt′ + r′kδkt′)− r′i(1− δit′)

ri
c, xit

}
, 0

}

The first term can be explained as the current available capacity in period
t′ minus, if needed, the capacity spend to activate the production of item i,
divided by the capacity spent for a unit of production of item i. If for some
reason ri = 0 the approach is different: in fact we need just the possibility to
activate the production and it is not important how many unit we transfer.
So we have

ptt
′

i = xitI(Rt′−
∑I
k=1(rkxkt′+r

′
kδkt′ )−r

′
i(1−δit′ )

or better ptt′i = xit if it is possible to starting produce item i in period t′,
zero otherwise. Now we change the production plan in the following way:

• if ptt′i = xit then xit = 0, δit = 0, δit′ = 1 and xit′ += xit

• if 0 < ptt
′

i < xit then xit −= ptt
′

i , δit′ = 1 and xit′ += ptt
′

i

• if ptt′i = 0 no changes are needed

• for any k ∈ {t′, . . . , t} : Ii,k+1 += ptt
′

i

Let us now consider the case in which we want to move forward production
of a certain item i from period t to period t′′ > t. As before it is possible
to move production in period t′′ only if there is enough capacity to produce
it. In this case, however, we must act carefully. If we move the production
from time t to time t′′ without paying attention we could find that in some
period t∗, t ≤ t∗ < t′′ it is no more possible to satisfy the demand. We
have to notice that the quantity we move can not be larger both than the
minimum inventory level between time period t and time period t′′ and than
the production xit. So the amount of production that is possible to move
from time t to time t′′ is

ptt
′′

i = max

{
min

{
b
Rt′′ −

∑I
k=1(rkxkt′′ + r′kδkt′′)− r′i(1− δit′′)

ri
c,

xit, min
t≤k<t′′

Iik

}
, 0

}
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when ri > 0. If the time used for producing item i is zero then

ptt
′′

i = min
{
xit, min

t≤k<t′′
Iik

}
I(Rt′′−

∑I
k=1(rkxkt′′+r

′
kδkt′′ )−r

′
i(1−δit′′ )

Now we have to update the variables like before:

• if ptt′′i = xit then xit = 0, δit = 0, δit′′ = 1 and xit′′ += xit

• if 0 < ptt
′′

i < xit then xit −= ptt
′′

i , δit′′ = 1 and xit′′ += ptt
′′

i

• if ptt′′i = 0 no changes are needed

• for any k ∈ {t′, . . . , t} : Ii,k+1 −= ptt
′

i

To try to make the solution feasible, firstly we look at the periods for which
capacity constraint is not satisfied. All products for which production take
place are considered and for each of them a forward or backward swap is
sought. If no swap is possible it means that we are not able to restore
feasibility in that period, while if at least a swap is perform we check the
feasibility. If the capacity constraint is not satisfied we try to make more
swap, whereas if it is satisfied we move in another time period for which
excess capacity is used, until either capacity is restored in each period or no
more swap are possible.

Production swap heuristic
1: Let T the set of periods for which exist feasibility issues,
2: while |T | 6= 0 do
3: let t the first element of T
4: for i ∈ [1, . . . , I] do
5: if δit = 1 then
6: for t′ ∈ [t− 1, . . . , 1] do
7: try to perform a backward swap
8: if feasibility in time t is restored then
9: t is removed from T , we check the next element in T

10: end if
11: end for
12: for t′′ ∈ [t+ 1, . . . , T ] do
13: try to perform a forward swap
14: if feasibility in time t is restored then
15: t is removed from T , we check the next element in T
16: end if
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17: end for
18: end if
19: end for
20: if no swap are performed then
21: feasibility can not be restored: STOP
22: end if
23: end while
24: solution is feasible

This method is more powerful than the other but it takes more time
to run. In any case also this approach do not ensure us to find a feasible
solution. In fact, it is possible that to find a feasible solution we have to make
joint changes to the solution, which are not provided for by this algorithm.

MILP Approach

We therefore need to find at least one method that guarantees us to obtain
a feasible solution and that is less complicated than finding the optimal
solution from scratch. Unfortunately, as we have mentioned, it is possible to
show that even just finding a feasible solution to the CLSP is an NP-hard
problem. Obviously a method that guarantee us to build a feasible solution
(if the problem admits it) is to impose all the constraints of the original
problem. If we want a new solution that is similar to the one we have, we can
penalize the deviations from the original solution. If the starting solution is
near feasible, find a feasible one could be easier to solve the original problem
from scratch. The model to solve is

min
I∑
i=1

T∑
t=1

|Yit − δit|+ |Xit − xit|

s.t. Iit = Ii,t−1 + xit − dit , i = 1, . . . , I, t = 1, . . . , T,

I∑
i=1

(rixit + r′iδit) ≤ Rt , t = 1, . . . , T,

xit ≤Mitδit , i = 1, . . . , I, t = 1, . . . , T,

Ii0 = 0 , i = 1, . . . , I,

xit, Iit ≥ 0 , i = 1, . . . , I, t = 1, . . . , T,

δit ∈ {0, 1} , i = 1, . . . , I, t = 1, . . . , T,

where Yit is the value of the setup variable and Xit is the value of the pro-
duction variable for item i in period t for the starting solution.
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2.4.2 Solution Procedure

After finishing defining the fundamental blocks of our algorithm, let’s now
see how to proceed to solve the problem. Although in the previous section we
took a peek at how to solve the CLSP, there are still some important details to
discuss, depending on the success of the algorithm. Basically the procedure
for solving the problem is as follows. As a first step we choose the initial
multipliers. At this point using these multipliers the problem is decomposed
on the single product and solved using one of the two methods proposed.
The solutions found are combined to have a candidate CLSP solution. The
multipliers are updated via the subgradient method or the bundle method
and finally the stop conditions are checked. If they occur, the algorithm
ends, otherwise we solve the problem again with the new multipliers. If after
a number of iterations no feasible solutions have been found yet, the three
heuristics to make a solution feasible are applied in sequence.

For the success of the algorithm it is important to choose the right number
of maximum iterations, understand how to initialize multipliers and what
step size use to update them, understand what stopping conditions to use
and in general find the precautions to improve performances. Most of the
choices described later arise from numerous tests on different procedures. We
try to make the choice of parameters as general as possible, so that it does
not depend on the size of the problem or how tight the capacity constraint
is.

Two different procedures are proposed which have different strengths and
weaknesses. Of fundamental influence on the performance of both of them is
the step size αk to be used in the multipliers update in Eq. (2.13) or in Eq.
(2.16). To choose the value of αk we decide to use the approach following
by Süral et al. [2009], i.e., use the formula (2.14) that we rewrite here for
clarity specifying the norm used by us

αk = α
f(x̄)− w(µ(k))

||g||1
.

The idea, already explained above, is that when the numerator f(x̄)−w(µ(k))
is small it means that we are close to convergence and therefore it is right
to take small values so as not to move too quickly. The denominator ||g||1
instead takes into account that if the gradient is very large, we are at a point
where the function is very steep and it is better to move slowly. Let us first
assume that the solution x̄ is feasible and when this formula can give us
problems. The two special cases to consider are when the numerator or the
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denominator are zero. Recall that a subgradient of the dual function

w(µ(k)) =

I∑
i=1

T∑
t=1

(fiδ
(k)
it + hiI

(k)
it ) +

T∑
t=1

(
I∑
i=1

(rix
(k)
it + r′iδ

(k)
it )−Rt

)
µ

(k)
t

is

g(k) =

(
I∑
i=1

(rix
(k)
i1 + r′iδ

(k)
i1 )−R1, . . . ,

I∑
i=1

(rix
(k)
iT + r′iδ

(k)
iT )−RT

)
.

If the subgradient norm is zero, it would mean that any component g(k) is
zero, i.e., there is a feasible solution such that every constraint is satisfied
at the limit. If we try to change in any way the production plan, we found
an infeasible solution at least in one time period. This means that x is the
only feasible solution of the problem. If instead the numerator was null, it
would mean that we found the pair x∗ and µ∗ of optimal solution of primal
and dual. Again there is nothing to do: x∗ is the optimum of the problem.
In general, however, the current solution x̄ is not feasible. In this case it is
not possible that the subgradient norm is zero, because it would mean that
all constraints are respected. For the numerator, obviously for construction
w(µ(k)) ≤ f(x̄) still applies, which means that anyway we will never look
for solutions in the wrong area, but it may be possible that w(µ(k)) = f(x̄).
In particular this is the case when multipliers are all zeros. And that’s why
it’s important, in our algorithm, that we don’t start with multipliers equal
to zero, because we can’t move away from the first solution found.

In all this, the only parameter to calibrate is α. It would be optimal to
find a value that fits all the instances of the problem, but it is not possible.
In fact, when the number of products and cost parameters increase, also the
difference between f(x̄) and w(µ(k)) increases and there is a need to use a
smaller value of α. Several tests have led us to understand that the value
of α should be inversely proportional to the number of products and the
average demand. If we let D be

D =
1

IT

I∑
i=1

T∑
t=1

dit,

then we found that a good choice for α is

α∗ =
1

2DI
.
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Another choice to take that is common to both algorithms is that of
multipliers. As said before, the choice, which is sometimes made, and which
we will also propose in the stochastic case, to start with a vector of multipliers
null, is not effective in our case. After several tests, we realized that to
achieve convergence faster it was good to start with small multipliers: in
fact we notice that in the optimal solutions the multipliers always were not
too large. After some attempts we decided to opt for random multipliers
evenly distributed between 0 and 2. In the procedures shown below, some
of the results are shown in order to motivate the choices made for some of
the parameters in play. A more detailed analysis of the results is done in the
next section. The tables present in this section were built using the WW
algorithm and updating multipliers with the subgradient method. We will
then see the comparison with the other methods of resolution and update of
multipliers.

Classical Procedure

The first approach that we tried to use is what we call Classic Procedure.
Lagrange multipliers are updated and the relaxed problem is solved until one
of the stop conditions is met.

Classical Procedure
1: Choose K, α, bo, bµ
2: Initialize µ(1) : µ

(1)
1 , . . . , µ

(1)
T

iid∼ U(0, 2)
3: Initialize sf , the best feasible solution to None
4: Initialize `(0), the lower bound for optimal cost at iteration 0 to +∞
5: Let c(s) a function that return the cost of the solution s
6: Let d(s) a function that return the dual value of the solution s
7: Let k = 1
8: while (sf is None or c(sf )−`(k−1)

`(k−1) > bo) and ||µ(k−1)−µ(k)||∞
||µ(k−1)||∞

> bµ and
k < K do

9: Let s(k) the solution found using µ(k)

10: `(k) = max{`(k−1), d(s(k))}
11: if s(k) is feasible and c(s(k)) < c(sf ) then
12: sf = s(k)

13: end if
14: find the gradient g(k) using the solution s(k)

15: µ(k+1) = µ(k) + α
c(s(k))− d(s(k))

||g(k)||1
g(k)
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16: end while
17: if sf is None then
18: Try to use the heuristic to restore the feasibility
19: end if

As is possible to see from the pseudocode, our algorithm, in addition to
the aforementioned µ and α, also needs parameters K, b0 and bµ. K is the
maximum number of iterations, while b0 and bµ are two thresholds used to
decide when to end the procedure. If the maximum number of iterations
K has not been reached, the algorithm continues to modify the multipliers
and search for a solution until a feasible one is found. From the moment
that a feasible solution is found, the algorithm starts to check the other stop
conditions and the procedure ends when the relative difference between the
upper bound and the lower bound is less than b0. If the maximum relative
difference between two multipliers is less than bµ, the algorithm stops, also if
a feasible condition was not found at the moment. Obviously the thresholds
must be chosen according to how good the approximation of the optimal
solution is wanted. The lower the thresholds, the more iterations are needed
to complete the procedure. One by one we see how different choices of
parameters change the execution times and the quality of the solutions found
and we try to find the set of values that allows to solve the problem for
instances very different from each other.

As said before thanks to several tests we found that a good value of α
is α∗ = 1/(2DI). Higher values lead to moving too fast in multiplier space.
As a result, too large multipliers may be chosen and the dual function may
diverge (negatively), Smaller values, on the other hand, cause the optimiza-
tion of dual function to progress too slowly. To show how the algorithms
behave at α variation we extracted a pool of instances quite varied and ran
the algorithm for α∗, 1

5α
∗ and 5α∗. The results in Table 2.4 confirm what

was said: for α too small the algorithm is slower, while for α too large it
diverges, without finding satisfactory solutions.

Approach 1
Time(s) Gap (%)

1
5
α∗ 33 1, 43
α∗ 23 0.77
5α∗ 99 60, 0

Table 2.4: Algorithm performances when changing α. Average results on 50 instances.
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Figure 2.1: Cost and dual objective function curves when α = α∗ (left) and α = 1
5
α∗

(right).

In Figure 2.1 we show the curves of the dual objective function and the
cost of the solution through the iterations. On the left is shown the curve
for α = α∗, while on the right is shown for α = 1

5α
∗. It is easily to see by

eye that the function on the right grows more slowly.
Normally, thanks to the smart update of the Lagrangian multipliers, it is

possible to find a feasible solution without having to use heuristics. It may
happen, however, that even if you are very close to a feasible solution, you
still need numerous iterations to find one. In this case it may be convenient
to truncate the algorithm and try to build a solution using heuristics. This is
one of the reasons why it is useful to insert a maximum number of iterations,
after which, if a feasible solution has not been found, we try to build one
using an heuristic. Another reason to enter a maximum number of iterations
is that, using a Lagrangian relaxation to solve the problem, we have no way
of understand if the problem admits solution. We could then continue to look
for a solution, when this does not exist. The main problem in truncating
the process too early is that if the solution found is still too far from be
feasible, heuristics become time consuming and may fail to find a feasible
solution in a reasonable time. In particular the first two heuristics presented
by us, the Linear Programming heuristic and the Production swap heuristic
are still able to give a positive or negative outcome in a short time, while the
MILP heuristic, which is always able to find a solution, may take a really
long time to find one. For this reason when executing this method, a time
limit is set. In the table is possible to see some result obtained by two bunch
of 30 instances. The first group is composed by quite easy instances, while
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Easy instances Difficult instances
Solved Time(s) Gap(%) Solved Time(s) Gap(%)

K = 20 28 24 1, 05 16 25 3, 68
K = 100 30 46 0.07 30 137 0.07

Table 2.5: Algorithm performances when changing K. Time and error refer only to the
solved instances.

the second is composed by difficult ones. We show the differences when we
choose K = 20 or K = 100. As we can see, in the difficult instances, when
20 iterations are used, we fail in building a feasible solution 16 times out
of 30 (300 seconds are used as time limit for the MILP heuristic), while
when using 100 iteration we are always able to find a feasible solution. From
the easy instances we can understand that, even if with 20 iterations we
are almost always able to find a feasible solution, the gap from the optimal
solution is bigger. Obviously, however, better performance comes at the cost
of a longer calculation time. If in the case of the difficult instances we are
more than happy to use more time to be able to solve them all, in the case
of the easy instances, we could be satisfied with the error of 1%, but saving
almost 50% of the time. In order not to spend too much time unnecessarily,
but trying to limit the risk of failing to solve the problem, the algorithm can
be modified slightly. In particular, when we realize that the dual objective
function is close to convergence, we could try to make the solution feasible,
but without ending the Lagrangian relaxation procedure. If we fail to re-
establish eligibility by using one of the two fastest heuristics, we will continue
to iterate by changing the multipliers. One way to tell when the dual function
is converging is to see when it starts to increase more slowly. To understand
when it’s time to try to make the solution feasible, we decided to enter an
additional threshold b1 and to test at iteration k if

c(k) − `(k)

`(k)
< b1,

where c(k) is the cost of the best infeasible solution at iteration k. Note that,
unlike what was done to decide whether to terminate the algorithm, here
c(k) is not an upper bound for the optimal value, because the solution is not
feasible. In any case, this ratio is a good way to understand how close we are
to convergence. To avoid that, after the first time, this attempt to make the
solution feasible is made at each iteration, slowing down the execution of the
algorithm, each time the threshold b1 is lowered by a factor of 10. In Table
2.6 we show the result obtained on the same instances of Table 2.5, when
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Easy instances Difficult instances
Solved Time(s) Gap(%) Solved Time(s) Gap(%)

K = 100 modified 30 31 0.24 30 125 0.36
K = 100 classic 30 46 0.07 30 137 0.07

Table 2.6: Algorithm performances classic versus modified, when K = 100. Average
results on 10 instances.

using the modified algorithm with a threshold b1 = 0.02. The smaller the
threshold, the more the procedure tends to the classic one. The goal of this
modification is to save time without loose too much on performance side. As
we can see in some cases this approach can be of help, as in the case of easy
instances, where we can save about a third of the time, while in other cases,
its contribution is insignificant, as in the case of difficult instances, where we
save less than 10% of the time.

The last two parameters we need to discuss are b0 and bµ. If the values
of these parameters are too low, you may never meet the stop condition
and continue to iterate even if you have a very good feasible solution. If
their values are too high, on the contrary, there is a risk of getting stuck
too early and accepting a solution that, although feasible, has a much higher
cost than the optimal one. Actually, the problem of choosing too high a
threshold is not very felt, in fact very often the first feasible solution found
by the algorithm is already within the 1 − 2% gap from the optimal. By
doing several tests we found that a pair of convenient values is b∗0 = 0.02
and b∗µ = 0.01. In Table 2.7 there are three tests. In the first column we use
values that are a third of those chosen above, in the second column we use
the value b∗0 and b∗µ, while in the third column we use values that are three
times of those proposed before. As we can see, in passing from the third
column to the second, there is a remarkable improvement in performance at
the cost of, on average, only one more iteration, while if we try to decrease
more the parameters values, we have to pay the improvement with a much
higher number of iterations

Restoration Procedure

The second approach we tried to use does not rest on solid theoretical bases.
It consists of a modification of the Classic Procedure, in which, after having
solved the dual problem, we try to make the solution feasible.

The main difference in this method, whereby a pseudo code is shown
below, is than, when changing the solution, we use a pseudo gradient instead
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high b0 and bµ medium b0 and bµ low b0 and bµ
Iterations Gap(%) Iterations Err (%) Iterations Gap(%)

Inst 1 42 0.06 29 0.11 28 0.90
Inst 2 34 0.06 19 0.18 18 0.34
Inst 3 33 0.08 18 0.22 17 1.36
Inst 4 32 0.04 19 0.22 18 0.95
Inst 5 37 0.10 22 0.23 21 0.67
Inst 6 32 0.04 19 0.08 18 0.39
Inst 7 42 0.07 28 0.37 27 1.32
Inst 8 34 0.07 21 0.09 20 0.36
Inst 9 33 0.07 21 0.14 20 0.43
Inst 10 39 0.04 28 0.49 26 1.51

Average 35.8 0.06 22.4 0.21 21.3 0.82

Table 2.7: Algorithm performances when changing b0 and bµ.

Restoration Procedure
1: Choose K, α, bo, bµ
2: Initialize µ(1) : µ

(1)
1 , . . . , µ

(1)
T

iid∼ U(0, 2)
3: Initialize sf , the best feasible solution to None
4: Initialize `(0), the lower bound for optimal cost at iteration 0 to +∞
5: Let c(s) a function that return the cost of the solution s
6: Let d(s) a function that return the dual value of the solution s
7: Let k = 1
8: while (sf is None or c(sf )−`(k−1)

`(k−1) > bo) and ||µ(k−1)−µ(k)||∞
||µ(k−1)||∞

> bµ and
k < K do

9: Let s(k) the solution found using µ(k)

10: `(k) = max{`(k−1), d(s(k))}
11: if s(k) is not feasible then
12: let s(k) be the modified solution using the swap heuristic
13: else
14: let s(k) = s(k)

15: end if
16: if s(k) is feasible and c(s(k)) < c(sf ) then
17: sf = s(k)

18: end if
19: find the pseudo gradient g(k) using the solution s(k)

20: µ(k+1) = µ(k) + α
c(s(k))− d(s(k))

||g(k)||1
g(k)

21: end while
22: if sf is None then
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23: Try to use the heuristic to restore the feasibility
24: end if

of the gradient of the dual function. In fact, also if we are not able to restore
completely the feasibility of the solution x, we modify it. If we call x the
new solution, than we can define the pseudo gradient as

g =

(
I∑
i=1

(rixi1 + r′iδi1)−R1, . . . ,

I∑
i=1

(rixiT + r′iδiT )−RT

)
,

and use it to update the multiplier. We talk about pseudo gradient because
the solution x is no more the optimal solution for the dual problem, and so
Theorem 2.3 does not hold. But let us try to understand what the meaning
of this reasoning may be. Our idea was as follows. Suppose that at the
time t the constraint is not satisfied in solving the dual problem. Using
the swap heuristic there is a new solution in which the same constraint
may or may not be met. If the constraint is not satisfied, even the pseudo
gradient, like the gradient, has the t-th component with positive sign and the
corresponding multiplier will increase. If instead the constraint is satisfied
for the new solution, then the pseudo gradient will have the t-th component
with negative sign and the multiplier will decrease. This would seem a
contradiction: to decrease the multiplier at the time t means to look for a
solution that exploits more the constraint, despite already the solution of the
previous iteration did not respect it. Actually the idea is that if the method
was able to re-establish the feasibility with that multiplier, we would like to
see if it can do that with a set of even smaller multiplier. In other words,
we are trying to give importance to the multipliers corresponding to those
constraints that cannot be restored. The advantages of this approach is
that, at the beginning of the procedure it is easier to find feasible solutions,
although not with a costs close to the optimal. However, of course, trying
to re-establish the constraint at each iteration involves a larger computing
time.

The parameters to use are always the same. For b0 and bµ in particular it
was decided to use the same pair of values. Even the value of α has been kept
constant. In any case, this approach is less related to the maximization of the
dual, so it tends to work well in a larger range of values. Instead, compared
to the Classical Procedure, this algorithm works better with a lower number
of maximum iterations. The algorithm in fact tends to reach good feasible
solutions from the first iterations, but then has some problems to close the
gap and get closer to the optimal. It can therefore be considered a good
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Easy instances Difficult instances
K = 20 Solved Time(s) Gap(%) Solved Time(s) Gap(%)

Classical Procedure 28 24 1, 05 16 25 3, 68
Restoration Procedure 30 30 0.93 30 36 3.14

K = 100 Solved Time(s) Gap(%) Solved Time(s) Gap(%)
Classical Procedure 30 33 0.56 30 137 0.07

Restoration Procedure 30 46 0.07 30 94 1.67

Table 2.8: Performances comparison between the two procedures when K change. Time
and error refer only to the solved instances.

algorithm when we are not interested in having a very precise solution, but
we are interested in having a first approximation in a short time.

We can notice from Table 2.8 how in the case of the difficult instances,
different from the classical procedure, this algorithm is able, even with only
20 iterations, to always find a solution, even if the error is higher.

2.5 Numerical Tests

After having presented in broad outline the two procedures we use to solve
the problem and having highlighted the pros and cons, we finally arrive at
the part of the results, where our methods are compared with the resolution
of Gurobi Optimizer.

First we focus on how we generated instances. There are a lot of data that
can take on a wide range of values, and it’s important to understand how
our algorithm performs with varying parameters. Parameters such as the
number of products and the number of time intervals are obviously chosen a
priori, while the costs and the demand are sampled. Most of our tests were
done for the pair I = 1000, T = 30. In fact is important to have results
that are valid when the size of the products becomes considerable. For time
intervals, assuming that each time period corresponds to 1 week, we preferred
not to exceed 25− 30 weeks, which corresponds to a time horizon of about 6
months. However we also show how these parameters influence the execution
time and the quality of our algorithms and the procedure implemented by
Gurobi Optimizer (version 9.1.0) on a personal computer with 16GB of RAM
and a processor Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59GHz.

The cost and time parameters of each product are distributed according
to a uniform distribution between a minimum and a maximum value. With
regard to demand, each product is associated with a mean and a standard
deviation, also sampled by two uniform distributions. The demand for in-

44



dividual time intervals is then sampled from a normal truncated with the
average and standard deviation sampled before. Being in the deterministic,
the form of the distribution of the demand is not fundamental, but in or-
der to make the data more plausible, the truncated normal distribution has
been chosen. For the available capacity, we have used a constant capacity,
as it is assumed that a company always has the same number of available
manpower hours. Obviously this value is fundamental to define the difficulty
of the problem. If the available capacity is high, the constraint is never vi-
olated and it is simple to build a feasible solution. If the constraint is very
tight, both the MILP resolution, and the one based on Lagrangian relax-
ation, need much more time to find a solution. In particular we define 3
levels of capacity: low, medium and high. We define the necessary capacity
as

C =
1

T

T∑
t=1

I∑
i=1

(ridit + r′i)

and 3 capacity factor level clow = 1.01, cmedium = 1.03 and chigh = 1.05.
The constant capacity level is then calculate as the product of the necessary
capacity and the capacity factor level. It may seem that the capacity so
defined is actually excessive. In fact we are defining C so that on average
we can bear the setup time and the time for the production of the demand
of that period. The fact is that this is only true on average and in those
periods of time when demand is high there will always be production capacity
in default. In practice what happens is that the production plan is very
complicated especially in the first periods, where, starting with the empty
warehouse, there is no possibility of producing in excess for the following
periods. Obviously our choice is not the only one possible nor probably the
most realistic, but it manages effectively to build complex problems, which
allow our algorithm to show its effectiveness.

Before comparing our algorithm with the solution of the problem given
by commercial software, we need to understand which of our strategies is the
best. We have two options both to solve the problem (WW and CE), and
two options to update the Lagrange multipliers, the subgradient method and
the bundle method. Let’s start by analyzing how best to update Lagrange
multipliers. As we mentioned earlier, the bundle method looks for better
directions than the subgradient method, and a small linear optimization
problem is solved to find the right step size. However, the main drawback of
the method is that multipliers are often not updated for several iterations.
This leads the algorithm to need many more iterations to converge, and this
results in a generally slower resolution of the problem. If we leave the same
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Figure 2.2: Cost and dual objective function curves. Bundle method on the left, sub-
gradient method on the right.

Bundle Method Subgradient Method
Time(s) Gap(%) Time(s) Gap(%)

I = 50 15 (4) 2.59 (2.74) 8 (3) 1.44 (1.99)
I = 100 25 (14) 1.98 (2.13) 17 (5) 1.38 (2.47)
I = 200 30 (11) 2.44 (1.79) 28 (9) 0.81 (1.50)
I = 500 81 (29) 1.59 (1.39) 71 (20) 0.17 (0.24)
I = 750 140 (24) 3.59 (2.12) 113 (18) 0.07 (0.02)
I = 1000 250 (55) 3.91 (1.19) 210 (66) 0.21 (0.25)

Table 2.9: Performances comparison between Bundle Method and Subgradient Method
(Classical Procedure is used to solve the problem). Standard deviation in brackets.

number of iterations that are used with the subgradient, we find poor results,
as these iterations are not enough. We found then that the best choice of the
direction in which to move in the space of the multipliers fails to compensate
the high number of iterations without displacements. We also note that if
the bundle method is used to update multipliers, the stop conditions must
be changed. In fact it is no longer possible to keep the stop condition on the
relative deviation of the multipliers, as in numerous iterations these are not
updated, and therefore the deviation would be zero. As you can see in Figure
2.2, the subgradient method is performing much better especially in the first
iterations, managing to get close to the convergence and then slowly refining
the solution. In Table 2.9 instead it is possible to see how for instances with
different size the bundle method turns out to be slower and to have a larger
gap from the optimal solution with respect to the subgradient method.

46



Figure 2.3: Comparison between the performances of MILP approach and our algo-
rithms.

The second choice that needs to be taken is the one regarding the method
to be used to solve the uncapacitated single item problem. Although the
method of cross entropy seemed promising, unfortunately the parameters
to estimate are too many and the problem requires too many iterations to
achieve convergence. We tried to refine the parameters of the problem to
obtain better results, but in no way the method seemed to be able to compete
with the algorithm of WW. In the next chapter, however, we will see how
this approach can be used when the parameters to be estimated are less, and
in particular we use it to estimate the values s and S of the policy (s, S) in
the stochastic case.

So the best solution to proceed to compare our algorithm with that of
commercial software is to use Wagner Whitin to solve the unconstrained
problem and the subgradient method to update multipliers. Firstly, we would
like to show that both of our procedures scale better than the MILP approach
when the number of products increases. To do this we used an example where
costs and also average demand are low. As far as that is not credible, we used
these values to make the resolution fast enough and we could test for very
high number of products. As you can see in Figure 2.3, our algorithm turns
out to have a linear complexity in the number of products, while the MILP
resolution seems to depend on the number of products with a higher grade
term. Another thing we can see is that, in the area of 1000 products, the
MILP approach is quite similar, so in many of our subsequent tests, there
seems to be no substantial difference between our methods and the exact
one. The tests were done for this number of products because it seemed to
us a reasonable compromise between choosing a high value and being able
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Execution time (s) Gap (%)
Exact Classical Restoration Classical Restoration
200 122 55 0.20 3.89

Table 2.10: Average results on 50 instances.

to get results in a short time. It should be remembered, however, that with
a view to trying to solve the problem on larger and larger instances, our
approach becomes more and more favourable.

Let us now consider a more realistic problem, on which we will make our
analyses and evaluate the results. We consider a number of products equal
to 1000 and a number of periods equal to 30. Set up costs are uniformly
distributed between 1750 and 2550, while inventory costs between 2 and
10. In addition, set-up times are uniformly distributed between 30 and 250,
while production times are between 1 and 4. Demand for the single product
is distributed as a truncated normal with the mean uniformly distributed
between 100 and 1000 and the standard deviation between 30 and 70. The
capacity factor level is set as medium.

We generate 50 instances of the problem with this data, and we got that
in all 30 cases, both of our algorithms end before the MILP procedure. As we
see in the table, the restaurant procedure is much faster, but has an average
gap of about 4%, while the classic procedure has a gap below the 1, but
uses a longer calculation time. We now show how changing some parameters
affects the performance of all three methods. In particular, in Figure 2.4 we
can note how, even in the case of higher costs, our algorithms step better
than the software resolution.

Let’s now analyze how performance changes as the relationship between
set up cost and holding cost varies. As is possible to see in Özdamar and
Bozyel [2000], Trigeiro et al. [1989], Thizy and Wassenhove [1985], the diffi-
culty of an instance depends on this ratio. The bigger the problem, the more
difficult it is. Once the demand is fixed, the larger the ratio, the more diffi-
cult the problem becomes. To increase this ratio we kept all the parameters
fixed and changed the set up costs. It’s possible to notice from the table how
as set up costs increase, the problem takes longer to be solved by all three
methods. Despite this, the classical procedure remains competitive, both in
terms of execution time and performance.
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Figure 2.4: Comparison between the performances of MILP approach and our algorithms
in case of large setup-holding costs ratio.

Execution time(s) Gap(%)
Exact Classical Restoration Classical Restoration

fi ∈ [0, 500] 16(2) 97(6) 31(4) 0.04(0.01) 0.25(0.04)
fi ∈ [500, 1000] 20(2) 43(5) 22(4) 0.06(0.01) 0.14(0.04)
fi ∈ [1000, 1500] 41(6) 31(6) 21(5) 0.10(0.04) 0.19(0.09)
fi ∈ [1500, 2000] 132(27) 64(26) 33(11) 0.52(0.44) 0.57(0.26)
fi ∈ [2000, 2500] 277(84) 162(29) 56(24) 0.10(0.05) 3.03(2.50)
fi ∈ [2500, 3000] 729(210) 203(38) 49(26) 0.22(0.06) 3.80(4.52)

Table 2.11: Average performances comparison when the ratio between set up cost and
holding cost varies. Ten repetition are used, standard deviation in brackets.
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Chapter 3

Stochastic Problem for Single
Item Uncapacitated Lot Sizing

After solving the capacitated lot sizing problem (CLSP) in a deterministic
setting, we consider its stochastic version. Before starting to solve the prob-
lem is better understand what we mean with stochastic and which are the
main issues that come around in this context. In the deterministic case we
have set up a model without needing any particular reasoning. The stochas-
tic model, on the other hand, requires a series of modeling choices before
being built, which can lead to different models. Also for this reason, we
prefer to focus first on the uncpacitated single item lot sizing problem and,
once set and solved, we proceed by inserting the capacity constraint. In this
context we do not enter into the complications due to multiple items, but
we try to fully understand how to efficiently solve the problem for the single
product, with the hope that these bases can be used in the future to proceed
to treat a multi item extension. We try to compare different approaches from
very different fields, such as Dynamic Programming (DP) or Reinforcement
Learning(RL). In Section 3.1 explains what is meant by stochastic. There
are highlighted the difficulties that leads to consider this new version of the
LSP and why it is no longer possible to solve the model as it was done pre-
viously. It is also highlighted how crucial it is to properly model the flow
of time and information. In Section 3.2 we talk about the strategies we can
implement to solve the problem. After a fairly theoretical discussion of DP
approaches, we see how this can be used to build different resolution policies.
We apply this technique to the ULSP on a single item. We start from small
size problems to understand the advantages and drawbacks of each method.
Then we implement approximate methods to solve the problem when the
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size grows. Solutions are proposed both in case it is feasible to use a tabular
representation of the problem and when we are forced to find continuous ap-
proximations. In Section 3.3 we try to use different approach and to solve the
problem a Q-factors procedure is proposed, while in Section 3.4 numerical
results are shown. Finally in Section 3.5 we deal with the stochastic CLSP
on a single item, where a Lagrangian procedure is built to find a solution.

3.1 Uncertainty

It is not fundamental in the deterministic case, but for a model with uncer-
tainty is important to understand how information changes over time. We
have already mentioned the difference between time instants and time in-
tervals, but it is better to emphasize it so as not to create confusion in the
reader. Decisions, like how much to produce, are made in a time instant;
state variables, like the inventory on hand, are checked in a time instant,
while the demand is realized in a time interval.

• Time instants are indexed by t = 0, . . . , T . In this moments we look
at the system and make a decision. Observe that there are no decision
to take at time t = T , while the value of the state variable could be
relevant.

• A time interval is the time elapsed between two time instants. They
are indexed by t = 1, . . . , T . After taking a decision at time instant t
the system evolves during the time interval t+ 1.

This aspect is fundamental if consider a stochastic evolution for the system.
In fact at time instant t we observe the state of the system, we choose a
value for the decision variable and only later we will discover the risk factor
(the demand).

Figure 3.1: Illustration of time conventions taken from Brandimarte [2021].

After making these clarifications, the deterministic problem should be
written in slightly differentway, compared to what has been done in Chapter
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2

min

T−1∑
t=0

fδt +

t=T∑
t=1

hIt, (3.1)

s.t. It+1 = It + xt − dt+1, t = 0, . . . , T − 1, (3.2)
xt ≤Mtδt, t = 0, . . . , T − 1,

xt, It,≥ 0, t = 0, . . . , T − 1,

δt ∈ {0, 1}, t = 0, . . . , T − 1.

where the cost involving the inventory on hand at time t = 0 is not consider
because I0 is given. Note that in the deterministic case normally the objec-
tive function does not contains the cost due to the quantity produced, in fact
when demand is deterministic and we fully satisfying it, the total ordered
amount is

T−1∑
t=0

xt =

T∑
t=1

dt − I0 + IT .

Since in the optimal solution the ending inventory on hand is zero and I0 is
given, the total cost given from the amount produced is constant. A priori
this is not true in the stochastic case, due to a well known issue: we may
not guarantee demand satisfaction in each period (or sometimes it might be
possible if the demand is finite, but only at a very high cost). There are two
main situations that can happen when demand is not satisfy completely:
if customers are not willing to wait for delivery at a later time, the excess
demand is lost, if customers are patient, we may satisfy demand at a later
time. In our model assumption we decide to deal with lost sales.

The deterministic model does not therefore have sense in the stochastic
case. In fact we cannot be sure that the constraints It+1 = It + xt − dt+1

and It+1 ≥ 0 are verified at the same time. Obviously, we can not delete
constraint (3.2): in that cases the optimal solution will be a solution for
which all variables are always zero. We need to try to meet the demand, and
penalize lost sale. To do it we can add a new variable, the lost sale zt. In
this way it is possible to rewrite the constraint (3.2) like

It+1 − zt+1 = It + xt − dt+1 t = 0, . . . , T − 1

where zt ≥ 0 is indexed by t = 1, . . . , T . Clearly, we have also to penalized
the lost sales in the objective function with a penalty p for each unit of
unsatisfied demand. Notice that p and h are in some sense related: the
higher the ratio p

h , the greater the importance of satisfying demand. With
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some caution, we could avoid using a penalty for the amount produced xt,
because if production is too little we have a penalty due to the term zt,
while if production is too large we have a penalty due to the term It. In any
case we prefer adding this term for completeness. Another problem with the
stochastic model is that if the demand is not known, it makes no sense to
write in the model dit, in fact this would be a random variable. What we
can do, anyway, is minimize the expected value of the cost function. So the
model in its stochastic version can be write as

min E
[ T−1∑
t=0

(fδt + cxt) +
t=T∑
t=1

(hIt + pzt)
]
,

s.t. It+1 − zt+1 = It + xt − dt+1, t = 0, . . . , T − 1,

xt ≤Mtδt, t = 0, . . . , T − 1,

xt, It, zt ≥ 0,

δt ∈ {0, 1},

where the constraint should be understood in the sense of the recourse mod-
els. In the recourse programming the problem is divided into stages (in the
simple case into two). In the first stage we must take a decision (in these
case the production), while in the second stage, after seeing the realization
of stochastic factors (the demand), we can take further decisions (inventory
on hand and lost sales) to prevent the constraints of the problem from be-
coming infeasible. In other words, in the second phase an additional degree
of flexibility is used to preserve feasibility (but at a cost). Note in particular
that in this second phase the decisions we take depends on the particular
realization of the stochastic elements observed, while in the first phase it
does not.. Normally in these models the uncertainty is modeled through
a scenario tree, while in very simple case an exact expected value can be
computed.

An equivalent approach can be followed also without introducing the
variable zt. In fact, under the lost sales assumption, the state transition
equation becomes

It+1 = max{0, It + xt − dt+1}

and in the objective function we can add the term

T∑
t=1

pmax{0, dt − (It−1 + xt−1)}.
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The model, in a recourse sense can be written as

min E
[ T−1∑
t=0

(fδt + cxt)

+

t=T∑
t=1

(hIt + pmax{0, dt − (It−1 + xt−1)})
]
, (3.3)

s.t. It+1 = max{0, It + xt − dt+1}, t = 0, . . . , T − 1, (3.4)
xt ≤Mtδt, t = 0, . . . , T − 1,

xt, It ≥ 0,

δt ∈ {0, 1}.

Note that in our previous consideration we assume that the only risk factor
is demand: but we may also have to deal with uncertainty about costs.
Considering other factors of uncertainty can complicate the calculation of
the expected value and make simulation necessary even when using simple
demand distributions.

In the literature there are numerous techniques to try to solve the stochas-
tic lot sizing problem. One of the approaches used is the aforementioned
programming with recourse. Otherwise our approach is based on finding a
policy, i.e., a rule of action for every possible state of the system. Obviously
to use such an approach it is necessary to build a model in which a state vari-
able is present. In our case the inventory level on hand can be naturally used
as state variable. In the following paragraphs we see different approaches to
build this policy, based on both Dynamic Programming and Reinforcement
Learning.

3.2 Dynamic programming

Dynamic Programming (DP) is a principle for solving challenging optimiza-
tion problems based on the decomposition of a multistage problem by break-
ing it down into simpler subproblems and using the property that the optimal
solution to the overall problem is composed by the optimal solutions of its
subproblems. The result of a dynamic programming approach is often a
strategy, i.e., a recipe to make decisions after observing random realizations
(in a stochastic setting, as in our case) of risk factors and their impact on
the system state. The concept of system state is central to dynamic pro-
gramming and we need to represent its evolution over time, as a function of
decisions and additional external inputs. However, dynamic programming
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requires a specific model structure: in order to use it we need that the state
of the system at time t+ 1 should depend only on the state observed at time
t, the decision made at time t after observing the state, and the realization
of external inputs during the subsequent time interval, i.e., the system must
have a Markovian representation.

Among the whole range of problems to which dynamic programming
can be applied, in the easy case ours belongs to those stochastic problems
for which the state space is discrete, the decision variables are discrete and
the time horizon is finite. Let’s see in general how such a problem can
be modeled. If we consider the time conventions from Figure 3.1 we can
introduce the following notation.

• The vector of state variables at time instant t is denoted by st. State
variables contain all the information we need to control the evolution
of the system (this does not mean that we are able to predict how it
evolves). s0 is the initial state, which is typically known, whereas sT
is the terminal state. According to our time convention, st is the value
of the state variables at the end of the time interval t, as a result of
what happened between time instants t− 1 and t.

• The vector of decision/control variables at time instant t, is denoted
by xt. Decisions are based on the knowledge of the current state st
(we assume that the state is perfectly observable).

• The vector of external factors at time period t+ 1 is denoted by ξt+1.
The state at time instant t + 1 depends on the state and the selected
decision at time t, but also on the realization of the external factor
during the time interval t+ 1. The convention on the index is used to
remember that ξt+1 is observed after making decision xt.

The system dynamics is represented by a state transition equation like

st+1 = gt+1(st,xt, ξt+1) (3.5)

where the function gt+1 (that could not depend from time) explains how the
transition from one state to the next takes place on the basis of the decisions
made and the risk factors realization.

In the general case, a stochastic problem, with finite horizon T , might
be stated as

minE0

[
T−1∑
t=0

γtft(st,xt) + FT (sT )

]
(3.6)
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where γt ∈ (0, 1) is a discount factor, ft(st,xt) is the immediate cost which
we incur when we make decision xt in state st, while FT (sT ) is the terminal
cost, which only depend on sT . Generally we use γ = 1, because we want
to give the same importance to immediate and future costs, but for example
in financial applications you need to choose a value γ < 1. The notation
E0[ · ] is used to point out that the expectation is taken at time t = 0; hence,
it is an unconditional expectation, as we did not observe any realization of
the risk factors yet. The dependence from the risk factor ξt+1 is hidden but
present: in fact the immediate cost at time t can be seen as:

ft(st,xt) = Et
[
ht(st,xt, ξt+1)

]
where we suppose we’re able to compute the expectation. We could take
advantage on the additive form of Eq. (3.6) to devise a quick and dirty
decision rule: when we are at state st, we could simply solve the greedy
problem

min
xt∈X (st)

ft(st,xt)

where X (st) is the set of feasible decision at state st. In general, as we
imagine, this approach perform poorly, but we could use knowledge of the
next state’s value to balance short and long term goals. If we knew a suitable
function Vt( · ) mapping every state st at time t into its value, we could apply
a decomposition strategy leading to a sequence of single stage problems.The
value Vt(s) should be the expected cost obtained when we apply an optimal
policy from time t onwards, starting from state s. More specifically, when
in state st at time t, we should select the current decision xt ∈ X (st) that
optimizes the sum of the immediate contribution to performance and the
discounted expected value of the next state:

Vt(st) = min
xt∈X (st)

{
ft(st,xt) + E

[
Vt+1(gt+1(st,xt, ξt+1)|st,xt

]}
(3.7)

This recursive functional equation, known as Bellman’s equations, is at the
core of DP. The optimal decision x∗t is obtained by solving an optimization
problem parameterized by the current state st, based on the knowledge of
the value function Vt+1( · ). In the simple case of a small finite state space,
we may directly associate the optimal decision with each state. In this lucky
case, we may represent the optimal decision policy in a tabular form: we
just have to store, for each time instant t and state st, the corresponding
optimal decision. When the space is continuous or even discrete but of huge
dimension this is not possible but we can find the policy in an implicit form,
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i.e.,
x∗t = µ∗t (st) ∈ X (st)

where µt( · ) is a function mapping the state at time t into a feasible decision.
Note that if we denote M like the set of the feasible policy we can rewrite
the problem like

min
µ∈M

E0

[
T−1∑
t=0

ft(st, µt(st)) + FT (sT )

]
(3.8)

In this sense our goal is to find a set of functions, the overall optimal policy,
µ∗ = (µ∗0, µ

∗
1, · · · , µ∗T−1).

Like other functional equations, we need boundary conditions to solve
Eq. (3.7). In our case, the natural solution process goes backward in time,
starting from the terminal condition

VT (sT ) = FT (sT ) ∀ sT

At the last decision time instant, t = T − 1, we should solve the single-stage
problem

VT−1(sT−1) = min
xT−1∈X (sT−1)

{
fT−1(sT−1,xT−1)+

E [VT (gT (sT−1,xT−1, ξT )|sT−1,xT−1]
}
,

for every possible state sT−1. This is a static, but not myopic problem,
since the terminal value function VT ( · ) also accounts for the effect of the
last decision xT−1 on the terminal state. By solving the problem recursively
backward in time, at the end, given the initial state s0, we find the first
optimal decision by solving the single-stage problem

V0(s0) = min
x0∈X (s0)

{f0(s0,x0) + E [V1(g1(s0,x0, ξ1)|sT−1,x0]} .

Once we have found the cost of the overall policy V0(s0) for a given state s0

if we want to check the policy, we may proceed as follows:

• Given the initial state s0 and the value function V1( · ) solve the first
stage problem and find x∗0

• Observe the random risk factors realization ξ1 and use the transition
function to generate the next state, s1 = g1(s0,x

∗
0, ξ1)
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• Given the state s1 and the value function V2( · ), solve the second-stage
problem and find x∗1.

• Repeat the process until we generate the last decision xT−1 and the
terminal state sT .

The S and (s,S) Policies

Dynamic programming may be applied to prove that the optimal decision
strategy for a given problem has a specific form. This means that maybe we
cannot easily find the numerical values that define an optimal strategy, but
we may use DP to infer its structure. The structure of an optimal policy
may be characterized in different ways but, sometimes, we may be able to
come up with an optimal decision rule depending on a small set of unknown
parameters. This is the case of the stochastic single item lot sizing problem.

As we seen in the first part of this thesis, the Wagner–Whitin condition
provides us with an efficient approach to solve a deterministic and uncapaci-
tated lot-sizing problem. As mentioned above, in the stochastic case we have
to accept that we are not always able to meet demand. Let us assume that
the excess demand is lost, so that there is a lost sales penalty and the total
cost function includes a term like

q(s) = hmax{0, s}+ pmax{0,−s}

We can obtain this form with a rewriting of Eq. (3.3). It is enough to
remember that It+1 = max{0, It + xt − dt+1} and so

hIt+1 + pmax{0, dt+1 − (It + xt)}

becomes

hmax{0, It + xt − dt+1}+ pmax{0, dt+1 − (It + xt)}

that is in the form of hmax{0, s} + pmax{0, −s} where we have chosen
s = It + xt − dt+1. For sake of simplicity we disregard fixed cost in a first
moment, but we include a linear variable cost, with unit ordering cost c.
Hence, the overall problem requires to find a policy minimizing the expected
total cost over T time periods:

E0

[
T−1∑
t=0

{
cxt + q(It + xt − dt+1)

}]
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We may write the DP recursion as

Vt(It) = min
xt≥0

{
cxt +H(It + xt) + E

[
Vt+1(It + xt − dt+1)

]}
where we define H(yt) := E

[
q(yt − dt+1)

]
= hE

[
max{0, yt − dt+1}

]
+

pE
[

max{0, dt+1 − yt}
]
We assume zero lead time, so yt = It + xt is the

available inventory after ordering and immediate delivery. Note that if, as
done in Brandimarte [2021], we define

Gt(yt) = cyt +H(yt) + E
[
Vt+1(yt − dt+1)

]
(3.9)

we can conveniently rewrite the recursion as

Vt(It) = min
yt≥It

Gt(yt)− cIt

From the property of q is possible to show that V ( · ) and G( · ) are convex
and they go to +∞ when y → ±∞. See Bertsekas [1995] for more informa-
tion. Now we can claim that Gt( · ) has a finite unconstrained minimizer

St = argmin
yt∈R

Gt(yt)

However, we have the constraint yt ≥ It. If we define unconstrained and
constrained minimizers, St and y∗t , respectively. There are two possibilities

• if the constraint is not active, y∗t > It, then the constrained and un-
constrained minimizer are equal: St = y∗t

• if the constraint is active, y∗t = It, then the inventory levels before and
after ordering are the same, which clearly implies x∗t = 0

Then, the optimal policy follows the rule:

x∗t = µ∗t (It) =

{
St − It, It < St

0, It ≥ St

St is like a target inventory levels: whenever we reach the critical threshold,
we should produce. All we have to do is finding the optimal sequence of
target inventory levels St, although it may not be trivial. If we now consider
the setup costs, as demonstrated in Bertsekas [1995], the optimal policy
changes slightly in

x∗t = µ∗t (It) =

{
St − It, It < st

0, It ≥ st
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depending on two sequences of parameters st and St, where st ≤ St. More-
over in a stationary environment, we find that a stationary (s, S) policy is
optimal. To find these two values we will use some variation of Montecarlo
simulation. The results found with (s, S) policy will be used as a benchmark
for the other methods we will implement. Furthermore, this policy is also be
applied in case in which a capacity constraint in present to understand how
our algorithms perform.

3.2.1 Discrete Demand with Small Support

In principle, if we assume a discrete random demand, we may adopt a tabular
representation of the value function. However, in practice, this can be done
only when a few values are possible for the demand. In fact, one should build
a T × Imax matrix and solve T × Imax optimization problems, where Imax is
an upper bound on the state variable that depends from D, the cardinality
of the demand state space.

We consider lost sales, so the transition equation is Eq. (3.4) that we
rewrite here

It+1 = max{0, It + xt − dt+1}

where in this case (dt)t=1, ... ,T is a sequence of i.i.d. discrete random variable
and we consider zero lead time. We repeat the exact sequence of events

• At time t we observe the inventory on hand It.

• We make production decision xt.

• We observe the realization of demand, dt+1 and update the inventory
on hand.

Note that we need for programming purposes to set a limitation on inventory:
in fact, when we tabulate the value function, we need a value for each time
instant and for each inventory level.

It ≤ Imax

This also imposes a limitation on the quantity produced which must neces-
sarily be positive, but which must be at most equal to quantity Imax − It in
order to be crammed into the warehouse. So the feasible set for the produced
quantity is

Xt(It) =
{

0, 1, . . . , Imax − It
}
.

To construct the value function, we must analyze the immediate cost at the
generic instant of time t. This is made up of different contributions. The first
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is a linear production cost cxt to which it can also be added a fixed cost fδt.
Then, we must take into account cost related to the inventory and the lost
sales. If a lost sale and an extra item in stock had the same weight, we could
use a term like β|It + xt − dt+1| or β(It + xt − dt+1)2, but in a more general
situation the two penalties are not symmetrical. Hence in the end, we have
an immediate cost term that depends on the realization of the risk factor
during the time period t + 1 after making the decision xt. So the recursion
of dynamic programming have an immediate cost which is stochastic:

Vt(It) = min
xt∈Xt(It)

E
[
c xt + f δt + hmax{0, It + xt − dt+1}

+ pmax{0, dt+1 − (It + xt)}+ Vt+1(It+1)
]

for t = 0, 1, . . . , T − 1 and It = 0, 1, . . . , Imax. For simplicity, we choose
VT (IT ) = 0 for every value of the inventory. The only risk factor is simply
a sequence of i.i.d. discrete random variables, then all we need to model
uncertainty is a probability vector πk for each possible value of the demand
k = 0, 1, . . . , dmax.

Example 3.1. Suppose to use the simplified version of the recursion equa-
tion in which no set up costs incurs and a linear non-symmetric cost is given
for inventory on hand and lost sales:

Vt(It) = min
xt∈Xt(It)

E
[
c xt + h It+1 + pI−t+1 + Vt+1(It+1)

]
where, to simplify the notation, we indicated max{0, dt+1 − (It + xt)} with
I−t+1. Furthermore we set T = 4, Imax = 4 and dmax = 3, with πk =
(0.2, 0.3, 0.4, 0.1), h = 1, c = 2 and p = 5.

The dynamic programming algorithm gives the following results:
value_table
[[16.6 12.8 9. 5.2 0. ]
[14.6 10.8 7. 3.2 0. ]
[12.6 8.8 5. 1.2 0. ]
[11.36 7.62 4.08 1.6 0. ]
[10.97 7.4 4.4 2.6 0. ]]

action_table
[[2. 2. 2. 1.]
[1. 1. 1. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

61



As we can see, in this simple case, dynamic programming gives us as a result
a policy with a single value of S. At each instant of time, if the inventory
on hand is below the threshold S = 2, we produce until we have two pieces.
To be precise in this example, the value of S is constant except for the last
instant of time, but this is due to the fact that our dynamic programming
assigns very weak end-of-inventory conditions and therefore has a myopic
behavior in the last period. Let us now try to simulate the results obtained
both using the action table and using the S policy. By sampling 10000 times
the demand from the discrete distribution used earlier and calculating the
average cost when the inventory at the time instant 0 is 2, we get:
average_dp_cost
12.56

average_s_cost
12.62

It is not now in our interest to say whether statistically the two results are
equivalent, but by eye we see that we have obtained the results expected
from the value table.

Example 3.2. Consider now a full version of the recursion equation with a
linear non-symmetric cost is given for inventory on hand and lost sales:

Vt(It) = min
xt∈Xt(It)

E
[
c xt + fδt + h It+1 + pI−t+1 + Vt+1(It+1)

]
Furthermore, we set T = 5, Imax = 6 and dmax = 4, with πk = (0.1, 0.2, 0.15,
0.3, 0.25), h = 3, c = 2, f = 1 and p = 5. The dynamic programming
algorithm gives the following results:
value_table
[[45.66 36.77 27.88 19. 10.2 0. ]
[43.66 34.77 25.88 17. 7.8 0. ]
[41.12 32.23 23.34 14.42 5.2 0. ]
[38.66 29.77 20.88 12. 3.8 0. ]
[38.14 29.25 20.38 11.71 4.8 0. ]
[39.54 30.67 21.88 13.62 7.8 0. ]
[41.58 32.75 24.15 16.6 10.8 0. ]]

action_table
[[3. 3. 3. 3. 2.]
[2. 2. 2. 2. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
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In this case, looking at the action table, we can see that the best policy,
as we expected, is of type (s, S), with s = 2 and S = 3: whenever the
inventory drops below threshold 2, produce until it reaches the level 3. As
in the previous example, we note that, due to the constraint VT (IT ) = 0, the
values of s and S depend on the instant of time that is considered and in
particular they are equal to 1 and 2 respectively in the last instant of time.
Like before we can try to simulate the results obtained both using the action
table and using the (s, S) policy. By sampling 10000 times the demand from
the discrete distribution used earlier and calculating the average cost when
the inventory at the time instant 0 is 3, we get:
average_dp_cost
38.61

average_s_cost
39.20

The cost of policy (s, S) is slightly higher because we used constant values
of s and S. If, on the other hand, we make them vary in the last instant of
time, the result is
average_s_cost
38.65

in line with that obtained with the action table.

The majority of the literature that treats the lot sizing problem tends not
to consider and to undervalue the problem of the so-called "end of inventory
conditions". All deterministic models in fact in the optimal solution, leave
the inventory empty. This condition is almost improbable: just because we
are doing an analysis over six months, does not mean that the company will
close in six months. The justifications for this lack of care are the fact that
the model, built for six months, is revised every month and therefore the
effect of not modeling the inventory level at the end of the time horizon, is
mitigated. In the stochastic case the situation is slightly different, we are
not sure of the value of the inventory at the end of the time horizon, but,
as for example in the proposed dynamic programming algorithm, the fact
that the value function in the last instant is always zero, it makes sure that
ending with an empty or very low level of inventory is not penalizing: for
this reason, as we have seen before, in the last period our algorithm tells us
to produce less than normal. It happens that the problem of the value of
the level of the terminal inventory is by no means trivial and it is not our
aim to deal with it here. However, we would like not to ignore the problem
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completely, so we have developed a series of heuristics to be used to assign
a value to the value function at the terminal instant.

The first heuristic we developed is very rough, but as we notice from
the results shown below, it can give a first help to mitigate the problem of
terminal inventory and in fact it is the one we use in the rest of the work.
What we do is to look at the average demand and figure out how much it
would cost to meet it depending on the level of stock we have at the end of
the time horizon. Suppose a moment for ease that the average demand is
an integer d. If we had an inventory level d, we would not have to spend
something to satisfy it. If we had less than d, we would have to spend to
produce, then the fixed cost plus the unit cost multiplied by the quantity
produced. If we had more than d, instead, we would not have production
costs, but we would have inventory costs the next instant, because we would
have something in stock. If we apply this approach to the previous toy
examples we obtain in the first case
action_table
[[2. 2. 2. 2.]
[1. 1. 1. 1.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

and in the second case
action_table
[[3. 3. 3. 3. 3.]
[2. 2. 2. 2. 2.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]

that is by modifying the value function heuristically we get the approach s
or (s, S) as expected. Even in the simple case in which we are, however,
our heuristic is not enough to always bring decisions to those of optimal
policy (s, S). If we choose T = 5, Imax = 10 and dmax = 9, with πk =
(0.05, 0.05, 0.1, 0.1, 0.2, 0.15, 0.1, 0.1, 0.10, 0.05) and h = 3, c = 2, f = 7 and
p = 5 we obtain the following action table
action_table
[[6. 6. 5. 5. 0.]
[0. 0. 0. 4. 0.]
[0. 0. 0. 0. 0.]

...
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...
[0. 0. 0. 0. 0.]]

which shows a behavior far from that of a policy (s, S). If we use our heuristic
to change the value function in the last time instant, the table change in
action_table
[[6. 6. 6. 6. 5.]
[0. 0. 0. 5. 0.]
[0. 0. 0. 0. 0.]

...

...
[0. 0. 0. 0. 0.]]

which once again does not correspond to a policy (s, S) but certainly comes
closer, suggesting that it could be optimal to choose S = 6 and s = 1.

Of course, the first heuristic method presented in this section does not
take the form of demand distribution into account at all and assumes that
it is optimal to produce to meet the average demand. This, as it is widely
known (newsvendor problem) is only true if there are no fixed costs and if the
penalty for lost sales is equal to the inventory cost. However, before we start
building complicated methods that allow us to accurately estimate the value
function in the final time interval, let’s ask ourselves what it would mean
to do it: it would simply mean adding a column to the value table. In fact
it would simply mean moving the column with all zeros to the right. This
suggests a second, rather obvious heuristic. If I have to choose production
from here to 6 months, I simulate production for 8 − 9 months and then I
choose the best actions to implement only for the first 6, which is what is
done in practice. Below the three action table of before when using T + 2
periods.
action_table
[[2. 2. 2. 2. 2. 1.]
[1. 1. 1. 1. 1. 0.]
[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]]

action_table
[[3. 3. 3. 3. 3. 3. 2.]
[2. 2. 2. 2. 2. 2. 0.]
[0. 0. 0. 0. 0. 0. 0.]

...

...
[0. 0. 0. 0. 0. 0. 0.]]
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action_table
[[6. 6. 6. 6. 5. 5. 0.]
[0. 0. 0. 0. 0. 4. 0.]
[0. 0. 0. 0. 0. 0. 0.]

...

...
[0. 0. 0. 0. 0. 0. 0.]]

If we remove the last two periods, we can mitigated the lack of management
for the final value of the value function

Finding the Optimal (s,S) Policy

In the example presented before, after looking at the action table, is possible
understand the right value for S or for the couple (s, S). In general, however,
we would like to calculate the optimal value of S without having to use the
action table. In case the support is small it is also possible to run a simulation
for all values and choose the one that gets the best results, but when the
possible stock values grow and especially when using the set up costs (and
therefore both s and S), we must find a less expensive way to proceed.

Since the 1960s, a wide range of methods have been developed for find-
ing the optimal policy (s, S). Most, such as Arthur F. Veinott and Wagner
[1965], despite obtaining the optimal pair of values, were unusable, because
they were prohibitively expensive for computation. In the mid-1980s, effi-
cient exact algorithms began to be developed, mostly in the wake of the work
of Federgruen and Zipkin [1984]. Zheng and Federgruen [1991] defines G(y)
the one-period expected costs, including only holding and lost sales penalty
costs, when starting with an inventory position y

G(y) = hE
[

max{0, y − d}
]

+ pE
[

max{0, d− y}
]
,

and he finds the optimal pair of value (s, S) using a minimizer of function
G.

We, on the other hand, preferred to implement a statistical approach
to find the desired pair (s, S). In particular, we can use the cross entropy
method, already presented in the first section, in which we treated the de-
terministic case. This time, however, the parameters to be estimated are
no longer binary but positive integers. As done in Costa et al. [2007] we
create a map from integers to binaries (simply using the binary represen-
tation) and apply the cross entropy algorithm again on 0/1 variables. To
understand the number of bits needed, we use the inventory capacity Imax,
since s < S < Imax. So if Imax can be represented on n bits, we are sure that
n bit will suffice both for s and for S.
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Figure 3.2: Graph shows how densities become more defined when increasing the number
of repetitions.

The main drawback in this way of proceeding is that in this case the
objective function involve an expected value: to understand how well each
pair of proposed values (s, S) perform, we have to start a simulation. Obvi-
ously, the number of repetitions used affect both the speed and accuracy of
the simulation: it is a well known fact that in the limit the sample average
policy cost c(s, S) converges to the expected value E

[
c(s, S)

]
and that its

standard deviation will depend from a factor 1√
n
, where n is the sample size.

Therefore the danger consist in choosing s1, S1 instead of s2, S2 relying on
the fact that c(s1, S1) < c(s2, S2), unaware that E

[
c(s2, S2)

]
< E

[
c(s1, S1)

]
.

To better visualize the problem, we consider an example where Imax = 100
and we show the sample density distribution of c(30, 37) and c(33, 40) when
n = 1, 10, 100, 1000 repetition are performed. As is possible to see from the
graphs, when n is small it’s hard to tell if an observation comes from one
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density or another. As n grows, the task becomes easier and easier, and as a
result it is possible to order alternatives more easily. From our point of view
we can claim that if in the cross entropy method, to calculate the cost of
each alternative we use a number of high repetitions, we are more certain of
its reliability. On the other hand, during the method, such simulation goes
done again and again, and it is not possible to increase too much the number
of repetitions if one wants to obtain a result in short times.

3.2.2 Discrete Random Demand with Large Support

The main difference from the previous paragraph is that we are now consid-
ering a support too large to deal with the problem using an exact dynamic
programming. What we do to decrease the execution time is, instead of
considering all the values between 0 and Imax for the state variable It at
time time t, use only a subset of them. Specifically, once we have chosen
a simplification factor k, we consider only the levels of the status variable
0, k, 2k, . . . , b Imax

k ck. In this way the state variable takes only b Imax
k c+ 1 dif-

ferent values. If now we start the dynamic programming procedure we run
into the problem of not knowing the value function V (s) for each s, as we
would need. In fact at step t we should evaluate Vt+1(max{0, It+xt−dt+1},
but V ( · ) is defined only when It + xt − dt+1 is a multiple of k. In all other
cases we are not able to compute the value function. A widely used ap-
proach in this context (Cervellera et al. [2007], Trick and Zin [1997]) is to
approximate the value function by cubic splines.

Then we calculate the value function only in the points of the grid chosen,
but, in computing the expected value use an approximation of the value
function defined for each possible level of the inventory. Usually in the
approximate dynamic programming the goal of the procedure is only to find
the value function in the selected points. Our algorithm, however, also gives
output an action table at the same points, useful to simplify calculations
during the simulation.
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Approximate dynamic programming: value and action table generation
1: input: T, Imax, k
2: output: V,A
3: initialize the value table V and the action table A
4: for t ∈ [T − 1, . . . , 0] do
5: Let Ṽ be the value table approximation at time t
6: for s ∈ [0 , k , 2k , . . . , b Imax

k ck] do
7: c∗ = +∞, a∗ = None
8: for xt ∈ [0, . . . , Imax − s] do
9: cx = E

[
c xt + fδt + h It+1 + pI−t+1 + Ṽt+1(It+1)

]
10: if cx < c∗ then
11: c∗ = cx, a∗ = xt
12: end if
13: end for
14: V (s/k, t) = c∗, A(s/k, t) = a∗

15: end for
16: end for

Approximate dynamic programming: simulation
1: input: T, Imax, k, n, V,A, s
2: output: c
3: initialize: c vector of size n
4: for i ∈ [1, . . . , n] do
5: c∗(i) = +∞
6: for t ∈ [0, . . . , T ] do
7: Let Ṽ be the value table approximation at time t
8: x∗t = None
9: if s

k = b skc then
10: x∗t = A( sk , t)
11: else
12: if d ske = b skc then
13: x∗t = A(b skc, t)
14: else
15: m = A(d ske, t)
16: M = min{A(b skc, t), Imax − s}
17: c∗∗ = +∞
18: for xt ∈ [m, . . . ,M ] do
19: cx = E

[
c xt + fδt + h It+1 + pI−t+1 + Ṽt+1(It+1)

]
20: end for
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21: if cx < c∗∗ then
22: c∗∗ = cx, x

∗
t = xt

23: end if
24: end if
25: end if
26: c∗(i) = c∗(i) + E

[
c x∗t + fδt + h It+1 + pI−t+1 + Ṽt+1(It+1)

]
27: s = max{0, x∗t − di t+1}
28: end for
29: end for
30: c = 1

n

∑
i c
∗(i)

Before proceeding with the case in which we consider the demand con-
tinuously distributed, let’s do some tests to understand how the different
proposed procedures perform in case of discrete demand, but with very
large support. We compare the time and quality of the results of the al-
gorithm based on exact dynamic programming with the approximate one
(with k = 5, 10, 20, 50) and with the one in which the policy (s, S) is used,
where the parameters s and S are estimated with the cross entropy. We
divide the simulation into two tranches. The first with dmax = 120 and
Imax = 250, the second with dmax = 300 and Imax = 500. The time horizon
is T = 30, while all cost parameters are sampled between a minimum and
a maximum value. Two different analysis are performed, one in which the
value function in the last time instant is always zero and one in which the
heuristic mentioned above is used to fill the table in the last period. Ten
instances are generated, and for each of them the evaluation of the result
is made on 1000 repetitions. The evaluation measure is the per thousand
variation from the optimal cost, where as optimal cost is considered the one
obtained from the exact dynamic programming.

Although the tests done are not sufficient in number and variety, we
can see that the implementation time of the dynamic programming proce-
dure becomes 4 times bigger when the values that can obtain the demand
are doubled. In fact, even if the complexity of the algorithm that imple-
ments dynamic programming is not directly quadratic in the demand, in it
is O(ImaxdmaxT ), and when we increase dmax there is a need to also increase
the maximum inventory level Imax. We also note that the duration of the
algorithm with the implementation of approximate dynamic programming
is about a k-th of that of the original algorithm. This is because obviously
the value table is calculated in a simplified grid of a factor k. The last
algorithm tested, the one concerning the choice of parameters s and S of
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Gap (‰) from exact DP
Appr5 Appr10 Appr20 Appr50 (s, S)

Imax = 250 e.o.v. = F 0.01 0.03 0.03 0.07 4.13
Imax = 250 e.o.v. = T 0.01 0.03 0.03 0.16 3.31
Imax = 500 e.o.v. = F 0 0 0.01 0.61 3.35
Imax = 500 e.o.v. = T 0.01 0.01 0.01 0.02 2.23

Table 3.1: Average Gap on 10 instances of the problem.

Elapsed time (s)
Exact Appr5 Appr10 Appr20 Appr50 (s, S)

Imax = 250 e.o.v. = F 17, 7 5, 2 2, 6 1, 4 0, 6 1, 7
Imax = 250 e.o.v. = T 17, 4 5, 1 2, 6 1, 3 0, 59 1, 8
Imax = 500 e.o.v. = F 72, 0 22, 6 11, 3 5, 7 2, 4 3, 3
Imax = 500 e.o.v. = T 72, 0 21, 6 10, 6 5, 4 2, 2 4, 3

Table 3.2: Average elapsed time on 10 instances of the problem.

the method (s, S) has an execution time that depends a lot on the internal
parameters. These parameters were chosen so that the algorithm could get
good values for the reorder thresholds and so that it was competitive with
the approximated dynamic programming for k large. To be fair, it should
be noted that although approximate dynamic programming is very fast in
building the model, the simulation time increases dramatically. This is not
a problem, however, because our objective is to build a model quickly and
that can occupy little memory. The simulation is certainly important, but
once the model is validated there will be no need to test it on millions of
instances. A company could have dozens, hundreds of cost forecasts, and
you need to test the model on those. As for the results, however, we can see
that the approximate dynamic programming manages to perform at the level
of the exact one. The cost deviation from the exact dynamic programming
implementation is on average less than 0.001%. Even the results obtained
with the (s, S) policy are not daunting, departing from the optimal of about
0.3%. In particular, we note that when we use our heuristic to choose the
value function in the instant terminal, the performance obtained with the
(s, S) policy improves by about 30%. In all subsequent tests, the end of
inventory value heuristic will be applied.
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3.2.3 Continuous Random Demand

When dealing with a situation where average demand values are very large,
any tabular approximation becomes too expensive to be used, both from
the computational and memory point of view. Even when we talk about
companies that produce units, and therefore we should talk about a demand
with integer values, often in literature in these cases we prefer to work with
a demand distributed continuously. The idea we apply is very similar to
that of approximate dynamic programming. In this case, however, we do
not save a value function in tabular form, although small in size, but only
the coefficients of splines, one for each time interval, through which the value
function is approximated.

Obviously, the fact of having only the spline coefficients, causes that
during the simulation phase, you have to solve a small optimization problem.
Furthermore, since it is no longer possible to represent the probability density
of demand through a vector, the expected value of the value function shall
be calculated by simulating the demand. If we not consider setup costs, the
cost function at time t for producing a quantity xt is given by

Ct(xt) = cxt + hE
[

max{0, It + xt − dt+1}
]

+ pE
[

max{0, dt+1 − It − xt}
]

+ E
[
Vt+1(It + xt − dt+1)

]
.

Minimizing this function would seem a hopeless task, but we can use the fact
that the function Gt(·), defined in Eq. (3.9), that we rewrite for convenience

Gt(yt) = cyt + hE
[

max{0, yt − dt+1}
]

+ pE
[

max{0, dt+1 − yt}
]

+E
[
Vt+1(yt − dt+1)

]
is convex in yt = It + xt. Now, it is enough to notice that the value It is
already known when we make the decision and that consequently cIt is a
constant term, to claim that the cost function, which can be written as

Ct(xt) =G(xt + It)− cIt,

is a convex function in the variable xt. The fact that set up costs are present,
does not create complications, in fact the function Ct(·) has a shift upwards
of a constant term for each value of xt, excluding xt = 0. Then the function
remains convex for xt > 0 and to find the optimal production plan it is
enough to calculate the minimum of the function for xt > 0 and compare it
with the option not to produce at all.

In this case, however, we have to complication: the first is that we do not
know the value function, but only its approximation by spline, the second is
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Figure 3.3: Procedure to find the minimum of the function. Black point represent the
best value at that iteration. The blue point is the zero value, which is checked at the end.

that we can not compute the exact expected values. We have no guarantee
that the approximation is still a convex function, and indeed, from the tests
done, it appears that in general it may present region in which the function is
not convex. Despite this, in the many tests we have done, the non convexity
of the function has never given problems in its minimization. So we decided
to use an algorithm that works for convex functions. To find the minimum
point of the function, we build a raw algorithm, which allows, however, to
obtain results with a good approximation in a short time. The approach is as
follows. We starts considering a certain production value x, and compares to
the values of x−d and x+d, where d is a deviation value chosen beforehand.
If producing x is the least expensive strategy, I decrease d and recalculate the
cost of the two extreme strategies. If instead, for example, the less expensive
strategy consists in producing x − d, we set x = x − d and continue the
algorithm without changing the value of d. When d fall below a certain
tolerance, we stop the routine. The best production found is now compared
with the alternative of no produce at all and the best strategy is selected.

Besides the fact that this approach can be used when demand is contin-
uous or when we are not able to determine a density, the advantage of the
algorithm is also at the level of calculation time. The time spent building
the model depends on how many points we use to interpolate the spline. The
smaller the number of points, the shorter the time used, at a cost, however,
of less precision. The simulation time, however, depends directly only on
the sample size used to calculate the expected values. Obviously exists, even
if hidden, the dependence from the maximum available inventory, since the
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Build Time
Imax = 150 Imax = 400 Imax = 800 Imax = 1500

Exact 5.09 41.89 190.80 792.14
Appr5 1.52 13.52 67.00 335.55
Appr50 0.19 1.45 7.17 34.17
(s,S) 1.39 5.46 6, 42 8.40
Cont50 0.19 1.32 6.81 33.12

Table 3.3: Average time in building the model for different methods and different instance
dimensions.

proposed algorithm of minimization uses more iterations to converge if the
range of possible values of the demand is greater. In general, however, by
changing the tolerance and making it proportional to the maximum inven-
tory level, the computing time can be reduced, but at a cost of less precision.
Let’s remember instead that, in the case of the algorithm based on the dy-
namic programming approximated in the discrete case, a reduction in the
building time of the model, always corresponds to an increase in the simula-
tion time. Unlike the continuous case we cannot decide to resort to a greater
level of approximation without incurring an increase of the simulation time.

As we can see from the Table 3.3, for all dynamic programming algo-
rithms, as we expected, the time of building the model has a quadratic trend
with respect to the maximum value of inventory. The advantage of the
approximate algorithms, however, is that is possible too choose a greater ap-
proximation factor to reduce this computing time. Distinctly more efficient
is the search for the pair values s and S, which have an about linear depen-
dence on the size of the instance. The (s, S) policy is the best even when it
comes to simulating the model: in fact the application of the policy does not
depend in any way on the inventory values and has therefore constant time,
as it is possible to see in Table 3.4. Theoretically, even the exact dynamic
programming algorithm has this property, but the calculation time increases
because there are much heavier data structures and therefore there is a slow-
down that depends on the access to the data and the passage of such data
to the methods. Although in a small way, this slowdown is present also in
the algorithms of approximate dynamic programming, where moreover the
simulation time has a dependence on the factor k, in fact, as previously spec-
ified, the k values present between two entries of the approximated action
table, are checked one by one.

Finally, in Table 3.5, we show, in case the inventory available is very high,
how the algorithms of approximated dynamic programming in discrete and
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Simulation Time
Imax = 150 Imax = 400 Imax = 800 Imax = 1500

Exact 0.51 1.12 1.81 2.93
Appr5 3.42 3.84 6.14 8.99
Appr50 24.64 29.13 41.56 53.01
(s,S) 0.12 0.12 0.12 0.12
Cont50 23.09 29.60 38.10 39.85

Table 3.4: Average time in simulating the model for different methods and different
instance dimensions.

Gap (%) Build Time (s) Simulation Time (s)
Exact − 1592 4
Appr50 0.000 69 46
Appr100 0.000 36 90
Cont50 0.038 65 40
Cont100 0.036 33 38
(s,S) 0.018 10 0

Table 3.5: Average results on 5 instances with Imax = 2000.

continuous change when the approximation index is doubled. In this case
the percentage errors are also reported, to show how a higher approximation
index does not degrade the quality of the algorithm too much.

In the next section, we present an alternative to dynamic programming
to solve the stochastic LSP. A reinforcement learning approach based on
Q factors is considered. The results obtained from this approach are not
comparable with those of dynamic programming, neither from a quality point
of view, nor from a speed point of view. However we wanted to present them
because they could be used as a starting point for future work. At the end
of the section we also propose an idea to solve the problem of computational
heaviness of the algorithm.

3.3 Q-factors

The application of the DP principle may require a too expensive effort from
the computational and model point of view. Sometimes an appropriate refor-
mulation can be adopted to exchange expectation and optimization, avoiding
the resolution of a difficult stochastic optimization problem. This situation
occurs in a Q-learning context, a form of reinforcement learning where the
state value function V (s) is replaced by Q-factors Q(s, a) representing the
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value of state-action pairs. A Q-factor Q(i, a) measures the value of taking
action a when in state i.

Let’s consider the case in which we have to deal with an infinite horizon
DP problem. The functional equation is

V (s) = min
x∈X (s)

{
f(s, x) + γE

[
V
(
g(s, x, ξ)

)]}
,

or, if the immediate contribution is itself stochastic

V (s) = min
x∈X (s)

{
E
[
h(s, x, ξ) + γV

(
g(s, x, ξ)

)]}
.

If the decision spaces and the state spaces are discrete it is possible to use
a Markov decision process (MDP) approach. After changing a little bit the
notation we can represent dynamics by a matrix of transition probabilities
between pair of states. Probabilities are influenced by our decisions (called
actions), so we have to use a three dimensional array to store the probabilities
of a transition from state i to state j after choosing action a, π(i, a, j). In
this case the expectation boils down in a sum and we can write the functional
equation like

V (i) = min
a∈A(i)

∑
j∈S

π(i, a, j)
{
h(i, a, j) + γV (j)

}
.

If we name
Q(i, a) =

∑
j∈S

π(i, a, j)
{
h(i, a, j) + γV (j)

}
, (3.10)

we may observe that
V (j) = min

a∈A(j)
Q(j, a). (3.11)

Hence, plugging Eq. (3.11) into Eq. (3.10) it is possible rewrite the DP
recursion in terms of Q-factors:

Q(i, a) =
∑
j∈S

π(i, a, j)
{
h(i, a, j) + γ min

a∈A(j)
Q(j, a)

}
.

In this way we have swapped expectation and optimization: we have
to solve many deterministic optimization problems instead than a single
stochastic one. On the other hand instead of a state value function V (i),
now we have state-action value function Q(i, a). If the size of the problem
becomes large, we may be in trouble. Of course, in general we do not know
the probabilities of transition, or in any case it might be impractical to use
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them. The strength of this approach, however, is that we may learn the
Q-factors by statistical sampling.

Imagine that at iteration k we are about to choose action a(k) and we have
a current set of estimates of Q-factors Q̂(k−1)(i, a). Now, at state s(k) = i
we select the next action by considering what looks best:

a(k) ∈ arg min
a∈A(i)

Q̂(k−1)(i, a).

After applying the selected action we observe the next state s(k+1) = j and
the immediate contribution h(i, a(k), j). Then, we can use this information
to update the estimate of Q(s(k), a(k)). Using the new observation obtained
we have to make a trade off between the short term objective and the long
term objective when we are at state s(k) and select action a(k). If we call

q̃ = h(i, a(k), s(k+1)) + γ min
a′∈A(s(k+1))

Q̂(k−1)(s(k+1), a′),

the update is the following:

Q̂(k)(s(k), a(k)) = αq̃ + (1− α)Q(k−1)(s(k), a(k)).

A similar procedure can be built in a time dependent environment. In
this case Q is a three dimension matrix:

Qt(i, a) =
∑
j∈S

πt(i, a, j)
{
h(i, a, j) + min

a∈A(j)
Qt+1(j, a)

}
,

Adapting this procedure to our case is quite immediate. In the pseudocode
of the algorithm it is sufficient to replace the generic state variable s with
the inventory I and the generic immediate cost function h with the sum of
production cost, set up cost, inventory on hand cost and lost sales cost.

The dynamic programming algorithm has a running time that is O(TI2).
This algorithm instead requires nT iterations. If n were small, the algorithm
would certainly be preferable to dynamic programming, but unfortunately it
is not so. In fact Q is an object with O(TI2) elements, so only to initialize
it you need TI2 operations (however obviously they can be vectorized). The
problem arises from the fact that Q have to be estimated, so Qt(s, a) needs
to be touched several times, for each possible pair. For this n must be chosen
as n̄ I

2

2 , with n̄ at least 100, 1000.
So as much as using methods of reinforcement learning greatly simplifies

the procedures, for such an easy problem, in which you have only one risk
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Qfactors - Finite time horizon
1: input: α, n
2: output: Q
3: sample the demand values dkt, t = 1, . . . , T, n = 1, . . . , n

4: initialize Q(0)
t (s, a), t = 0, . . . , T, s = 0, . . . , I, a = 0, . . . , I−s. Set k = 1

5: for k in [1, . . . , n] do
6: sample s(k)

0

7: for t in [0, . . . , T − 1] do
8: a

(k)
t ∈ arg min

a∈A(s
(k)
t )

Q
(k−1)
t (s

(k)
t , a)

9: s
(k)
t+1 = max{0, s(k)

t + a
(k)
t − dt+1}

10: q = h(s
(k)
t , a

(k)
t , s

(k)
t+1) + min

a′∈A(s
(k)
t+1)

Q
(k−1)
t+1 (s

(k)
t+1, a

′),

11: Q
(k)
t (s

(k)
t , a

(k)
t ) = αq + (1− α)Q

(k−1)
t (s

(k)
t , a

(k)
t )

12: end for
13: end for

factor, it seems to be more convenient an exact approach rather than a
simulation.

In case the application has small support, we did some tests to effectively
understand the feasibility of the algorithm, but the results, in line with our
expectations, showed not bearable calculation times. In Table 3.6 we show
the result of this procedure. After some test α was fixed to 0.02 while we
change I and n̄ to see the effects. Gap is the percentage error in evaluating
the system with respect to the DP result. The second column is ratio between
the execution time of the procedure and the execution time of the exact DP
algorithm. A number 100 means that the algorithm based on Q factor is 100
times slower than the DP one. The last column is a measure of the strategy
risk. The semi IC ratio is calculate as follow

Q95 −DP
DP95 −DP

,

where Q95 is the 0.95 quantile of Qfactors algorithm results, while DP95 is
the 0.95 quantile of DP algorithm results and DP is the average value of
DP algorithm results. We can notice that when we use n̄ = 1000, although
the performance is lower than the DP-based algorithm, the expected cost
distribution is closer to the average value.

In Table 3.7 we show results found with a slightly different version of
the algorithm. In this case we use a starting value for α which is bigger
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T = 6, α = 0.02 Gap (%) Time Ratio Semi IC Ratio (%)
I = 4, n̄ = 300 2.32 233 101.4
I = 4, n̄ = 1000 0.58 800 97.5
I = 10, n̄ = 300 3.71 374 105.0
I = 10, n̄ = 1000 3.03 1266 94.6
I = 20, n̄ = 300 3.03 433 100.8
I = 20, n̄ = 1000 1.71 1422 88.4
I = 50, n̄ = 300 2.60 511 104.7
I = 50, n̄ = 1000 1.58 1764 89.5

Table 3.6: Result of base algorithm: α is fixed, toll = 0.

with respect of before, but it is decreased along the iterations. Moreover a
tolerance parameter is used: at iteration k when we ave to choose a(k)

t we
sampling a random number from a uniform distribution: if it is smaller than
the tolerance we select a(k)

t at random from the possible value a ∈ A(s
(k)
t ).

In terms of performance the two algorithms are quite similar, but the second
is much faster than the first. However, there is no longer any narrowing of
the confidence interval.

To reduce the enormous computational effort that this method expect,
what is possible to do is using a linear regression to estimate the Q-factors.
The main idea is the following: consider a set of state-action pairs and for
each of these initialize the Q-factors. Now we use a regression to express
Q-factors by a linear combination of function depending by states and ac-
tions. Using regression coefficient when we sampling new state-action pairs
we can update the Q-factors. From the new Q-factors is possible to find new
coefficients and go on like this.

Imagine we are a iteration k. The current state-action pair are (s
(k)
j , a

(k)
j ),

j = 1, . . . , n. while the estimates of the Qfactors are Q̂(k−1)(s
(k)
j , a

(k)
j ) =

0, j = 1, . . . , n. Is possible to impose the following linear regression


Q̂(k−1)(s

(k)
1 , a

(k)
1 )

Q̂(k−1)(s
(k)
2 , a

(k)
2 )

. . .

Q̂(k−1)(s
(k)
n , a

(k)
n )

 =


1 s

(k)
1 a

(k)
1

1 s
(k)
2 a

(k)
2

. . . . . . . . .

1 s
(k)
n a

(k)
n


β

(k)
0

β
(k)
1

β
(k)
2

+


ε
(k)
1

ε
(k)
2

. . .

ε
(k)
n


and find β via least square

min
β

n∑
j=1

[
Q̂(k−1)(s

(k)
j , a

(k)
j )−

(
β

(k)
0 + β

(k)
1 s

(k)
j + β

(k)
2 a

(k)
j

)]2

.
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T = 6, α = 0.02 Gap (%) Time Ratio Semi IC Ratio (%)
I = 4, n̄ = 75 toll = 0.50 3.06 58 104.9
I = 4, n̄ = 75 toll = 0.75 0.88 49 97.2

I = 4, n̄ = 100 toll = 0.50 3.01 67 105.2
I = 4, n̄ = 100 toll = 0.75 0.49 67 106.0

I = 10, n̄ = 75 toll = 0.50 3.11 91 101.38
I = 10, n̄ = 75 toll = 0.75 3.20 80 104.2

I = 10, n̄ = 100 toll = 0.50 1.37 121 98.9
I = 10, n̄ = 100 toll = 0.75 1.27 106 105.8

I = 20, n̄ = 75 toll = 0.50 2.70 103 108.8
I = 20, n̄ = 75 toll = 0.75 1.94 95 100.8

I = 20, n̄ = 100 toll = 0.50 1.26 145 100.3
I = 20, n̄ = 100 toll = 0.75 1.71 124 98.0

I = 50, n̄ = 75 toll = 0.50 2.05 127 102.4
I = 50, n̄ = 75 toll = 0.75 4.57 115 112.1

I = 50, n̄ = 100 toll = 0.50 1.28 169 100.9
I = 50, n̄ = 100 toll = 0.75 1.86 156 102.4

Table 3.7: Result of modified algorithm: α decrease along the iteration.

In general is possible to use different functions of s and a and write

min
βl

n∑
j=1

[
Q̂(k−1)(s

(k)
j , a

(k)
j )−

( m∑
l=1

β
(k)
l φl(s

(k)
j , a

(k)
j )
)]2

Now we generate new pairs (s
(k+1)
j , a

(k+1)
j ), j = 1, . . . , n. s

(k)
j is generate

from s
(k)
j and a

(k)
j using the state equation. Now we need to update Q-

factors. The formula was

Q̂(s(k), a(k)) =α
[
h(s(k), a(k), s(k+1)) + γ min

a′∈A(s(k+1))
Q̂(k−1)(s(k+1), a′)

]
+ (1− α)Q(k−1)(s(k), a(k))

but this time we do not know compute the minimum. We could try all
possible actions, but in this way we need to solve an optimization problem
with requires time (we have a gain only from a memory point of view, in fact
we save only β parameters). In this case the update is

Q̂(s
(k)
j , a

(k)
j ) =α

[
h(s

(k)
j , a

(k)
j , s

(k+1)
j ) + γ min

a′∈A(s(k+1))

m∑
l=1

β
(k)
l φl(s

(k+1)
j , a′)

]
+

(1− α)

m∑
l=1

β
(k)
l φl(s

(k)
j , a

(k)
j )
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What we can do is sample the a values or use the sub gradient method.

Qfactor regression
1: input: φ
2: output: φ, β
3: sample (s

(0)
j , a

(0)
j ) and initialize Q(k)(s

(0)
j , a

(0)
j ) = 0, j = 1, . . . , n. Set

k = 1
4: for k in [1, . . . ,K] do

5: β(k) = arg minβ
∑n

j=1

[
Q̂(k−1)(s

(k)
j , a

(k)
j )−

(∑m
l=1 βlφl(s

(k)
j , a

(k)
j )
)]2

6: Sample s(k+1)
j , j = 1, . . . , n

7: for j in [0, . . . n] do
8: a

(k+1)
j = arg mina∈A(s(k+1))

∑m
l=1 β

(k)
l φl(s

(k+1)
j , a)

9: Q̂(s
(k)
j , a

(k)
j ) = α

[
h(s

(k)
j , a

(k)
j , s

(k+1)
j ) +

γ
∑m

l=1 β
(k)
l φl(s

(k+1)
j , a

(k+1)
j )

]
+ (1− α)

∑m
l=1 β

(k)
l φl(s

(k)
j , a

(k)
j )

10: end for
11: end for

3.4 Numerical Result

In this section we show the results obtained with the different dynamic pro-
gramming algorithms. First, we focus on how to generate demand. Unlike
in the deterministic case in this case, the form of demand may affect the
stability of the different methods. In particular, if the demand is normal,
for example, the risk of being on the tails is low and therefore the expected
values can be estimated without too many observations. We have tested in
three different cases. In the first the distribution of demand is given through
a density vector. In this case the demand is discrete and the supports is on
the integer numbers. In the second we used a normal truncated distribution,
while in the third we used a gamma distribution. Despite the continuously
approximated dynamic programming algorithm works when the demand is
distributed continuously, in order to compare it with the other approaches,
the demand is always discretized on integer values in the tests we make.

The tests we show are divided into two parts. The first part is based on
instances of medium size. In these instances the exact dynamic programming
procedure is compared with two different discrete approximate dynamic pro-
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Gap (%) Time (s) 90%I.C.

Exact − 12.9 −
Appr5 −0.004 4.0 [−0.026, 0.013]
Appr50 0.205 0.5 [0.022, 0.333]
Cont50 0.334 0.4 [0.022, 0.718]
(s,S) 0.515 1.9 [0.242, 0.967]

Table 3.8: Average results on 10 instances with Imax = 250 and normal demand.

gramming algorithms with approximation factors k = 5 and k = 50, with
the continuous approximate dynamic programming with k = 50 and with
the (s, S) policy. In the second part of the tests are instead used instances
in which the maximum level of inventory is large. In this case the exact
dynamic programming is too expensive, so the (s, S) policy is used as a
benchmark and both methods of approximated DP, discrete and continuous,
are tested with values of k = 50 and k = 100. As in the deterministic case,
inventory, production, setup and lost sales costs are uniformly distributed
between a minimum and a maximum value. All tests have a time horizon
of 15 periods and the proposed heuristic to determine the end-of inventory
value is used.

For the first part of the tests we use the following values: h ∈ [1, 10], c ∈
[1, 15], p ∈ [16, 30], f ∈ [300, 500], while the maximum level of inventory
is Imax = 250. We generated 10 instances and 1000 scenarios are used to
estimate the cost of each strategy. Average costs and a 90% confidence
interval are collected. The results shown in Table 3.8 refer to the case where
demand is normal, while those in Table 3.9 refer to the case in which demand
has a gamma distribution . In both cases there the mean of the demand is
100 and its standard deviation is 30.

From Table 3.8, we observe that in general, all approximate methods have
really amazing results. The approximations with a factor of k = 50, manage
to save more than 95% of running time compared to the exact method and to
obtain results that differ in average of about 0.3%. A clarification is needed
to explain the results of the second row. In fact, it would seem that the
approximate algorithm performs better than the exact one: in reality this is
not really true, but since the policies generated by the two algorithms are
very similar, approximate algorithm performance may be better on the lim-
ited number of scenarios generated to simulate the results (only 1000). Even
in the case of demand distributed as a gamma, the results are satisfactory.
It is not shown in the table, but it must be said that in this case, there are
greater deviations from the expected cost, that is the one obtained from the
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Gap (%) Time (s) 90%I.C.

Exact − 13.4 −
Appr5 0.020 4.1 [0.002, 0.049]
Appr50 0.384 0.5 [0.165, 0.604]
Cont50 0.253 0.4 [−0.156, 0.799]
(s,S) 0.617 2.9 [0.132, 0.776]

Table 3.9: Average results on 10 instances with Imax = 250 and gamma demand.

table value of the exact dynamic programming. This is certainly due to the
fact that the gamma distribution has heavier tails than normal and therefore
a sample of 1000 observations is not the most suitable method to estimate
the average value. It should not surprise us that there are cases in which
the approximated continuous DP has better performances than the exact
programming. Although the method is approximate, it has the flexibility to
choose production values in continuous, while all other methods can only use
integer production values.

For the second part of the tests we maintain the same value for all the
cost parameters except for the setup cost which are distributed between
1500 and 2000. Now the maximum inventory value is set to 2000, while the
demand has a mean of 1000 and a standard deviation of 300. With such
a large inventory level, the exact DP algorithm, takes about 30 minutes to
build the model. For this reason it was decided to use the (s, S) policy as a
benchmark, where s and S are estimated with the cross entropy method using
more observations than normal. Obviously in this case it is possible that the
algorithms of approximate DP perform better than the benchmark. Some
might argue that without implementing the exact DP, we don’t have a true
measurement of the error, but we did some tests (with only 5 repetitions),
respectively with an inventory level of 800, 1500, 2000 and we have obtained
that the performances of the approximate discrete algorithm are identical
to those of the exact DP algorithm. This makes us believe that in reality,
having set the degree of approximation to k, the algorithm of approximated
discrete DP has a smaller relative error when the maximum inventory level
is larger.

As the results in Table 3.10 show, the discrete DP approximation pro-
cedure perform better than the benchmark. In general, anyway, all the
proposed procedures perform very well, but none can compete at the level of
computing time with the (s, S) policy. However in the next section we show,
even if only with some examples, how the performances of this policy are
degraded when we consider the capacitated problem. Also in Table 3.11, we
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Gap (%) Time (s) 90%I.C.

Benchmark − 200 −
Appr50 −0.040 69 [−0.228, 0.140]
Appr100 −0.039 35 [0.− 228, 0.139]
Cont50 0.009 66 [−0.209, 0.227]
Cont100 0.012 33 [−0.207, 0.227]
(s,S) 0.174 9 [−0.115, 0.456]

Table 3.10: Average results on 10 instances with Imax = 2000 and normal demand.

Gap (%) Time (s) 90%I.C.

Benchmark − 668 −
Appr50 −0.097 90 [−0.480, 0.460]
Appr100 −0.079 46 [−0.490, 0.460]
Cont50 0.069 87 [−0.480, 0.760]
Cont100 0.048 44 [−0.520, 0.690]
(s,S) 0.098 14 [−0.360, 0.790]

Table 3.11: Average results on 10 instances with Imax = 2000 and gamma demand.

can see that all methods have similar performance. Even if not underlined
in the table, as told before, the main advantage of the continuous approx-
imation is that the simulation time remains constant and the higher the
approximation factor k, the more the advantage with respect to the discrete
approximation is sensitive.

3.5 Stochastic Problem for Single Item Capacitated
Lot Sizing

In this part of the work, we use the concepts seen in the previous sections
to solve the problem of lot sizing subject to a capacity constraint. As done
in the deterministic case our goal is to dualize the capacity constraint, solve
many capacitated problems decoupled and finally, thanks to a gradient al-
gorithm adjust the multipliers until converge to a good feasible solution.
Actually, in this case there is nothing to decouple, since we consider CLSP
on the individual product. On the single item the capacity constraint in the
deterministic case takes the form

r xt + r′ δt ≤ Rt, t = 0, . . . , T − 1,
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but obviously written like this, the constraint is meaningless in the stochastic
version of the problem. It should be remembered that xt depends on the state
of the system in which we are, or in our case, on the state of the inventory
at the time t. If we rewrite the constraint like

r xst + r′ δst ≤ Rt, t = 0, . . . , T − 1, s = 0, . . . , Imax,

we understand that the Lagrangian multipliers must depend both on time
and on inventory level. We can remove the constraint and plug it in the
objective function, i.e., in a DP approach we can insert it in the recursion
equation, that become

Vt(It) = min
xt∈Xt(It)

E
[
c xt+fδt+h It+1+pI−t+1+µItt

(
r xt+r

′δt−Rt
)
+Vt+1(It+1)

]
or equivalently

Vt(It) = min
xt∈Xt(It)

E
[
(c+ µItt r)xt + (f + µItt r

′)δt + h It+1 + pI−t+1 − µ
It
t Rt

+ Vt+1(It+1)
]

and the update rule for the Lagrangian multipliers is

µst = µst + α
(
r xst + r′δst −Rt

)
, t = 0, . . . , T − 1, s = 0, . . . , Imax, (3.12)

where we omit the iteration index for readability.
For the capacitated problem we decided to focus only on discrete DP. In

fact in the case in which it is decided to use a continuous approximation,
we would have in some way to build the multipliers like a function of the
inventory on hand. As far as this is feasible, we preferred to remain grounded
and analyze the immediate complications that the capacity constraint entails.
We note that so far we have always used models in which the penalty for
lost sales and for items in stock is piecewise linear. This implies that if
production costs are higher than those of lost sales, it is always optimal
not to produce. In itself this is not a problem, in fact, for the model to
make sense, the relation c < p must apply. But when we are going to use a
procedure with Lagrange multipliers, the relationship becomes c + µr < p,
which is obviously not verified when µ grows.

To understand why this is a problem, let’s suppose to have a solution that
exceeds the capacity constraint. The multiplier µ is increased and it happens
that c + µr > p Then the solution of the next iteration will correspond to
never producing, even if actually the constraint would allow to produce.
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To avoid this inconvenience, which often does not allow to find the right
production plan, we therefore decided to use quadratic penalties, both for
lost sales and for holding costs.

The procedure we propose is to start with a matrix of multipliers all null,
to find the value and the action table and update the multipliers according
to the Eq. (3.12). We choose a step lenght of type

α(k) =
a

b+ ck
,

where a depend on the average demand and the production cost, while b = 1
and c = 0.3. After comparing different stop techniques we decide opt for a
convergence on multipliers of type

||µ(k−1) − µ(k)||∞
||µ(k−1)||∞

< bµ.

Note that in a certain sense the procedure is easier to build with respect
to the deterministic case. In fact now we are not forced to meet the demand.
In particular, although the policy that we find not always guarantee that
we meet the constraint, we can always produce less at any time we fail to
meet the constraint of capacity. In practice the policy found can always be
adjusted as needed. In particular, what is done during the simulation is,
after implementing the optimal choice, to check the capacity constraint. If
it is not respected, production will decrease until it is.

While in the uncapacitated problem we are certain that the exact DP
approach, at least in the case where the probability distribution is given in
discrete, is the best viable policy, here we no longer have this guarantee.
In the deterministic case we implement the model and solve it by Gurobi’s
solver in order to have a comparison of the goodness of our results, but here
it is not so trivial to do the same thing. What we do, however, is implement
our algorithm and compare it with the (s, S) policy. This policy, which is
optimal when the capacity constraint is not present, can still be used, but it
does not give us guarantees of good results. In the uncapacitated case the
results between our algorithms and the (s, S) policy are very similar. What
we expect now is that our performance is considerably better. In this case
to implement the (s, S) policy what we do is look for values for s and S such
that s ≤ S ≤ Pmax, where Pmax is the maximum value that is possible to
produce without exceeding the capacity constraint.

To test the algorithms in a first moment we used a normal (discretized)
demand with mean 70 and standard deviation equal to 20. The maximum
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Gap (%) Time (s) 90%I.C.

Exact − 46.6 −
Appr5 0.811 5.8 [−0.56, 2.54]
Appr50 0.998 0.5 [−4.70, 8.62]
(s,S) 29.573 0.8 [−0.70, 91.80]

Table 3.12: Average results on 30 instances with Imax = 150.

Gap (%) Time (s) 90%I.C.

Exact − 269 −
Appr5 −0.099 84 [−0.93, 0.32]
Appr50 2.451 5 [−3.77, 10.55]
(s,S) 64.5 2 [22.28, 136.05]

Table 3.13: Average results on 30 instances with Imax = 500.

inventory level is Imax = 150. All the cost and time parameters are uni-
formly distributed between the following values: c ∈ [1, 15], h ∈ [1, 10], p ∈
[16, 30], f ∈ [75, 200], r ∈ [1, 3], r′ ∈ [130, 190], Rt ∈ [100, 150]. Both ap-
proximate DP algorithms seem to have good performance, but we can see
how increasing the degree of approximation also increases the variability of
the results. The approximate algorithm, in this case, has a double advantage
regarding the execution time, compared to the exact one. In fact on the one
hand we have to build smaller tables, so fewer operations are done, on the
other we also have to use less multipliers, and the convergence is faster. The
(s, S) policy, instead, despite remaining the fastest, has very poor perfor-
mances. This is due to the fact that when the capacity constraint severely
limits production, it is optimal to produce even when we have so much in
stock, to be ready when there will be a peak of demand and this is an aspect
that (s, S) policy cannot take into account.

For the second part of tests, given the long computation time required to
find a solution when a larger maximum inventory level is used, we decided
to decrease the time horizon from T = 15 to T = 5. Also this time we
use a truncated normal distribution for the demand but with mean 250 and
standard deviation 60. The maximum inventory level is Imax = 500. All the
cost and time parameters are uniformly distributed between the following
values: c ∈ [1, 15], h ∈ [1, 10], p ∈ [16, 30], f ∈ [150, 400], r ∈ [1, 3], r′ ∈
[375, 550], Rt ∈ [375, 550]. The results are more or less in line with the
case where the maximum inventory is lower. The highest variability of the
performances, in our opinion, is due to the fact that exact DP does not always

87



Gap (%) Time (s) 90%I.C.

Exact − 269 −
Appr5 0.467 49 [0.00, 2.45]
Appr50 0.830 2 [0.00, 4.12]
(s,S) 44.9 3 [1.65, 96.10]

Table 3.14: Average results on 30 instances with Imax = 500 and low setup times.

find the best solution, and this can have a different effect on the approximate
algorithms. One group of instances where things work very well is when the
setup times are very low. As we can see in Table 3.14, in fact, in this case the
variation of performance of the approximated algorithms and their execution
times are lower.
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Chapter 4

Conclusion

In conclusion our work proposes different resolution techniques for LSP. In
the deterministic case, our approach has been found to be clearly superior
to that of the commercial software, above all in the more interesting cases in
literature, that is when the number of items is large and the ratio between
setup costs and inventory costs of increases. A strong point of our work is
to have developed several procedures that can be applied to a wide range of
instances and can be used both when we want to get an accurate result, and
when we want to have answers in a short time, even if with less precision.
In addition, after numerous tests, we we found an optimal choice of values
for the problem parameters regardless of the size of the instance or the costs
involved. This is obviously a huge advantage, as there is never a need to
recalibrate the algorithm. Despite this, we are convinced that is possible
to achieve better results, in particular it is possible to work on the imple-
mentation of the WW algorithm to try to get further improvements on the
computing time. Another improvement that we can make to the algorithm
is to build a model in which we can start with a non-empty inventory on
hand. This choice, which could be very useful from a practical point of view,
was not made from the beginning because for historical reasons, lot sizing
models use an empty inventory at the beginning of the time horizon.

As far as the stochastic problem is concerned, our objective has been less
ambitious. Although we can be satisfied with the results obtained, the sec-
ond part of the thesis in fact only lays the basis for the solution of the CLSP
on multiple items. In the single item ULSP, the algorithms of approximated
DP have brought excellent results, obtaining in fact the same performances
of the exact DP, but with much shorter times. In this simple case, however,
the (s, S) policy appears to be the best alternative to use. The strength of
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our algorithms, however, is not to deteriorate when a capacity constraint
is considered. Although the stochastic capacitated problem is dealt with
briefly, we can observe how in this case the (s, S) policy has costs on aver-
age 50% higher than those found by our approximate DP algorithms. The
effort that must still be made is to find more computationally advantageous
approximations to be able to deal with problems with multiple products.
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Appendix A

Python Code for Deterministic
CLSP

A summary of all classes and methods used is given.

DetLotSizing

• solve(dict_data:Dict, mu:numpy.array, time_limit:float, gap:f-

loat, verbose:bool) -> (solution:Solution, comp_time:float)

This method solves the CLSP via MILP. Gurobi is used to build the
model and to solve it. If mu is given it solves a model in which the
capacity constrained has been relaxed.

• solve_wagner_whitin (dict_data:Dict, mu:numpy.array) -> (solu-

tion:Solution, comp_time:float)

This method solves the ULSP via DP. If mu is given it solves the CLPS
for which the capacity constraint has been relaxed. What this method
does is solve at the same time I different problems, one for each product.
Then production, set up periods and inventory are put together to build
the solution. For each product the method wagner_whitin is invoked.

• wagner_whitin (set_up_cost:float, inventory_cost:float, demand:

numpy.array, set_up_time:float, processing_time:float, mu:nump-

y.array) -> (production:numpy.array, set_up:numpy.array, inven-

tory:numpy.array)

This method solves the ULSP via DP. If mu is given it solves the CLPS
for which the capacity constraint has been relaxed. What this method
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does is solve at the same time I different problems, one for each prod-
uct. Then production, setup periods and inventory are put together
to build the solution. For each product the step to perform are the
following:

– A matrix T × T is build. The element ij contains the cost of
produce at time i to cover demand until time j. Only the lower
half is filled.

– Two matrix T × T is build. The first is a matrix of float which
contains the value function. Element ij is the best value when we
consider the cost of production from tme i to time j. The second
is a matrix of List which contains as element ij a List of one or
two elements. If only one element is present it means that the
best policy when we consider the cost of production from time i
to time j is produce at time i only the demand for that period. If
two elements are present it means that the best policy when we
consider the cost of production from time i to time j is produce
at time i to satisfy demand until time k, where k is the second
element of the list. For both matrices only the upper half is filled.

– From the first matrix the best overall cost is extracted. From the
second matrix the optimal ordering policy is found.

– Setup times, production quantity and holding inventory are found.

• solve_cross_entropy (dict_data:Dict, mu:numpy.array) -> (solu-

tion:Solution, comp_time:float)

This method find a solution to the ULSP via a Cross Entropy pro-
cedure. If mu is given it find a solution to the CLPS for which the
capacity constraint has been relaxed. What this method does is solve
at the same time I different problems, one for each product. Then
production, setup periods and inventory are put together to build the
solution. This method do not guarantee to find the optimal solution,
but using an importance sampling Monte Carlo it is looking for a quite
good solution. For each product an iterative procedure is performed:

– From a vector of T Bernoulli with given parameter p, n different
observation are generated. Each vector represents one possible
solution, in fact any solution can be represented from its binary
variables.

– The candidates with best results are used to generate a new pa-
rameter p.
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– The algorithm stops if p is a vector of 0/1 values or if the maxi-
mum number of iteration is reached.

• sub_gradient (dict_data:Dict, mu:numpy.array, solution:Solution,

alpha:float, diff_obj:float) -> (mu:numpy.array, grad:numpy.ar-

ray)

This method perform the subgradient technique explain in Section 2.2
to update the Lagrangian multipliers.

• bundle_sub_gradient(dict_data:Dict, mu:numpy.array, obj:float,

gradients_bundle:numpy.array, dual_values:numpy.array, solution:

Solution, alpha:float, diff_obj:float, time_limit:float, gap:f-

loat, verbose:bool) -> (mu:numpy.array, grad:numpy.array)

This method perform a different way to update lagrangian multipliers.
In this case a simple optimization problem is solved to found an ap-
proximation to the sub differential, that is used to update mu. If it is
not possible to find the subdifferential, the subgradient is used.

Solution

• Solution(problem:DetLotSizing, production:numpy.array, set_up:

numpy.array, inventory:numpy.array, cost:float, mu:numpy.array,

dual_value:float, feasible:bool)

Constructor.

• set_cost(dict_data:Dict) -> (cost:float)

This method compute the cost of the solution.

• make_feasible_LPH(dict_data:Dict, time_limit:float, gap:float,

verbose:bool) -> (solution:Solution, comp_time:float)

This method perform a first attempt to make the solution feasible. It
fix the set up and try to modified production and inventory.

• make_feasible_swap(dict_data:Dict) -> (solution:Solution, comp

_time: float)

This method try to make a solution feasible moving production back-
ward or forward. As first thing period in which an infeasibility is
present are stored in a vector. Then they are considered one by one
and an attempt is made to remove the infeasibility. The attempt con-
sists of the following step:
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– Given a product we try to anticipate the production. If this swap
(backward) allows to remove the infeasibility, the procedure is
stopped and next time period is considered.

– If a swap is not possible we try instead to postpone the produc-
tion. If this swap (forward) allows to remove the infeasibility the
procedure is stopped and next time period is considered.

– If no swap has been made considering all products we stop. We
are not able to restore infeasibility. If at least one swap has been
made, we restart from the first product to try to move production.

At the end if we’re able to restore feasibility for each period, we found
a feasible solution.

• make_feasible(dict_data:Dict, time_limit:float, gap:float, ver-

bose:bool) -> (solution:Solution, comp_time:float)

This method is always able to find a feasible solution for the problem
if it exists. It use the MILP model explained in Section 2.4 and solve
it via Gurobi to restore the feasibility.

• check_feasibility(dict_data:Dict) -> (feasible:bool)

This method return True if the capacity constraint is satisfied.
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Appendix B

Python Code for Stochastic
LSP

SingleItemStochasticLotSizing

A summary of all classes and methods used is given.

• dynamic_programming(dict_data:Dict, mu:numpy.array) -> (value_

table:numpy.array, action_table:numpy.array)

This method finds the ValueTable and the ActionTable for the single
item uncapacitated stochastic LSP in the case in which the demand
has a small discrete support. If mu is given it solves the CLPS for
which the capacity constraint has been relaxed.

• dynamic_programming_simulation (dict_data:Dict, num_scenarios:

int, action_table:numpy.array) -> (cost:float)

This method simulate the performance of a dynamic programming ap-
proach on a single item uncapacitated stochastic LSP in the case in
which the demand has a small discrete support. If time capacity is
given it is able to work with the single item stochastic CLSP.

• dynamic_programming_spline (dict_data:Dict, k:int, mu:numpy.ar-

ray) -> (value_table:numpy.array, action_table:numpy.array)

This method perform an approximate dynamic programming approach
to finds a discretization of the value table and the action table for the
single item uncapacitated stochastic LSP also in the case in which the
demand has a big (but discrete) support. The k value is a sort of
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"simplification factor", if the inventory capacity is I, only (I + 1)/k
level are considered. To evaluate, when needed, the value function in
the points in which it is not defined, a spline approximation is used. If
mu is given it solves the CLPS for which the capacity constraint has
been relaxed.

• dynamic_programming_simulation_spline (dict_data:Dict, num_sce-

narios:int, value_table:numpy.array), action_table:numpy.array,

k:int) -> (cost:float)

This method simulate the performance of an approximate dynamic
programming approach on a single item uncapacitated stochastic LSP
in the case in which the demand has a big (but discrete) support. In
this case we have a discretization of the action table. If the state
in which we are is on the action table, we use it to decide what to
do. If not, we solve a small optimization problem in which we use the
approximation of the value function made with the use of the splines. If
time capacity is given it is able to work with the single item stochastic
CLSP.

• continuous_dynamic_programming_spline(dict_data:Dict, k:int) -

> (spline_coefficient_list:List)

This method work similarly to dynamic_programming_spline, but it
saves only the spline coefficients.

• continuous_dynamic_programming_simulation_spline(dict_data:Dict,

num_scenarios:int, spline_coefficient_list:List) -> (cost:float)

This method simulate the performance of an approximate dynamic
programming approach on a single item uncapacitated stochastic LSP
in the case in which the demand has a continuous support. At any
time step we solve a small optimization problem in which we use the
approximation of the value function made with the use of the splines.

• finds_s_S_cross_entropy(dict_data:Dict) -> (s:int, S:int)

This method uses a cross entropy approach to find the s and S value
of the (s, S) policy for the single item uncapacitated stochastic LSP in
the case in which the demand has a discrete support. We use a binary
representation for s, S and also for the inventory capacity.

• s_S_simulation(dict_data:Dict, num_scenarios:int, s:int, S:int,

seed:int) -> (cost:float)
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This method simulate the implementation of a (s, S) policy.

• sub_gradient (dict_data:Dict, mu:numpy.array, action_table:num-

py.array, alpha:float) -> (mu:numpy.array)

This method perform the subgradient technique to update the La-
grangian multipliers in the case of discrete support.

• q_factors (dict_data:Dict, alpha:float, repetition:int) -> (q:

List)

The Q-factos algorithm presented in Section 3.3 is implemented.
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