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Introduction

The main goal of this paper is to explore Machine Learning (ML) algorithms

related to the Predictive Maintenance (PdM) framework in the context of

Electric Vehicle (EV).

In process industries, induction motors make up approximately 70% of all

driven electrical loads. In this regard, there has been much interest on ways

to better diagnose the wellness condition of these motors. Predictive Main-

tenance is an important maintenance tool in order to identify in advance the

anomalies and potential faults.

In this thesis, three principal machine learning algorithms are explored, Sup-

port Vector Machine (SVM), XGBoost and Random Forest (RF). Another

simple statistical model is performed, the Linear Regression, whose results

will be taken as starting point.

The data on which this paper works, don't make available any maintenance

information. So, some arguments are carried forward in order to extract from

the data which records would have represented a fault in the in Permanent

Magnet Synchronous Motor (PMSM).

The �rst chapter of this book describes the state of art of the PdM frame-

work, referred to in the literature. It presents most of the research that are

carried out in this context, highlighting the di�erences between them.

The second one illustrates the work�ow, which algorithms are performed and

how they are optimized. It explains that two kind of models are used, re-
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gression and classi�cation algorithms, in order to better explain the target

variable.

In the third chapter, the results of the models analysed in the second chapter

are shown.
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Chapter 1

State of the art

To begin exploring the subject matter of this thesis, the state of the art

should be approached in order to have a clear picture of what the recent

research on this area of industry entails.

It refers to the intelligent monitoring of equipment in order to determine

promptly the current damage state, scheduling an optimal maintenance plan

to repair it and reduce the machine downtime. Machine learning approaches

are viably used in the areas where the availability of data is increasing, such

as the maintenance in industry sector (industry 4.0).

Here, it will follow an excursus of the di�erent approches that are proposed

for this theme.

1.1 Descriptive papers.

The �rst paper analysed is called "Predictive Maintenance for Motors Based

on Vibration Analysis with Compact Rio" [1].

As the name suggests, it refers to the vibration data in order to take decision

on the maintenance of the machine, with no reference to arti�cial intelligence

algorithms.

Rotating machines generate deterministic signals, so the spectral analysis

of these signals is necessary for the study of motors. The representation of
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1.1. Descriptive papers. Chapter1. State of the art

Figure 1.1: Vibration peaks according to measured variables.

the signal in the frequency domain, i.e. its spectrum, facilitates the study

of vibrations. Frequency is de�ned as the number of events produced in a

given time. A vibration is de�ned as a small-amplitude oscillatory motion

(see Figure 1.1).

Figure 1.2: Compact Rio and Module 9215 Chassis

Each machine has its own vibration signal, in which information about each

of its components is found. This means that an acquired vibration signal is

the vector sum of the vibration of each of its components [1].

Vibration analysis refers to the spectral analysis of vibrations in which its har-
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1.2. Papers that use Machine Learning Techniques Chapter1. State of the art

Figure 1.3: The PdM topics are associated to the best machine learning

techniques

monic components are considered. The recon�gurable NI cRIO-9074 chassis

is the instrument used (see Figure 1.2). It was used with intelligent real-time

controller for CompactRio.

Another interesting document is the one cited in [3], which assign for

each sector of manufacturing industry 4.0 a possible good Machine learning

algorithm for predictive maintenance. The paper classi�es the research ac-

cording to the ML algorithms, ML category, machinery, and equipment used,

device used in data acquisition, classi�cation of data, size and type, and high-

light the key contributions of the researchers, and thus others guidelines and

foundation for further research, see Figure 1.3.

1.2 Papers that use Machine Learning Tech-

niques

An important document cited in this thesis is called "Machine Learning-based

for Predictive maintenance in industry 4.0" [2].

The �rst part explains how a PdM algorithm can be performed and what

kind of data we need as an input. It explains that Machine Learning-based

7
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Figure 1.4:

PdM can be divided into the following two main classes: supervised, where

information on the occurrence of failures is present in the modelling dataset

and unsupervised, where logistic and/or process information is available, but

no maintenance data exists. In the second part, some details of the techniques

used are given.

The historical data used to feed the machine learning algorithm is visible

in �gure 1.4, where the statoRot is the state of the main spindle rotor. This

feature was treated as the target variable.

Maintenance management has been achieved by training a Random Forest

approach on a cutting machine much used in the wood industry (see Figure

1.5).

The results showed a proper behavior of the approach on predicting di�erent

machine states (Fault/no Fault) with high accuracy (95%) on a data set of

530731 data readings.

Sometimes it's necessary to develop regression instead classi�cation al-

gorithms in order to do predictive maintenance [5]. This paper proposes a

data science approach with embedded statistical data mining and a machine

learning algorithm to predict the remaining useful life (RUL) of the rotary

bearings in a motor. So the label column is a continuous variable and the

methods used to make prediction were:
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Figure 1.5: Example of the machine adopted in this paper.

� Ordinary Least Squares (OLS);

� Feasible Generalized Least Squares (FGLS), statistical method useful

when the hypotesis of homoscedasticity is rejected;

� Support Vector Regression (SVR).

Figure 1.6: Features extraction from the time domain and the frequency

domain

The vibration data is collected from an operational real-world induction mo-

tor. The features are extracted from the time domain and the frequency
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1.3. Papers that use Neural Network methods Chapter1. State of the art

domain, using three dimensions, as showed in the Figure 1.6. The fea-

tures �Mse.ts�, �Intercept.ts�, �First-point.cp�, �Ampl1.f�, �Ampl-mean.f� and

�Ampl-Kurtosis.f� were removed because of their high correlation with the

other features, and it was used the Stepwise regression method in order to

select the most important features that have been identi�ed by �Kurtosis.ts�,

�Max.ts�, �Ampl1-freq.f�, �Ampl2.f� and �Ampl2-freq.f. The outcomes are

showed in �gure see Figure 1.7.

Figure 1.7: Results of the three models against the real values of the RUL.

It can be observed that SVR perfomed better than the other two methods

but it has to be said that the interpretabiility is lower and the computation

time is higher.

1.3 Papers that use Neural Network methods

The aim of the work [4] is to prevent fault progression and protect vital com-

ponents of the power system by early detection of electrical faults of three

phase induction motors using arti�cial neural network.

This time a multiclass classi�cation Arti�cial Neural Network (ANN) has

developed, since the target variable has represented by seven classes of elec-
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1.3. Papers that use Neural Network methods Chapter1. State of the art

Classes V1 V2 V3 I1 I2 I3 Fault

1 2.661 2.624 2.701 0.491 0.479 0.493

1 2.660 2.625 2.701 0.491 0.479 0.492
No fault (1)

2 2.648 2.599 2.672 0.006 0.643 0.640

2 2.650 2.601 2.674 0.006 0.641 0.639
Overload (2)

3 0.920 2.621 2.627 0.172 0.772 0.663

3 0.920 2.622 2.625 0.172 0.772 0.663
Graund fault (3)

4 1.875 1.855 1.875 0.287 0.287 0.281

4 1.453 1.450 1.442 0.245 0.250 0.234
Locked rotor (4)

5 2.866 2.872 2.855 0.482 0.500 0.497 Unbalanced
5 2.869 2.876 2.860 0.484 0.500 0.497 voltage (5)

6 2.658 2.614 2.688 1.671 1.650 0.669 Single phasing,
6 2.661 2.613 2.689 1.417 1.398 1.411 under voltage (6)

7 2.638 2.600 2.674 0.803 0.783 0.798
7 2.650 2.608 2.683 0.857 0.838 0.848 Overvoltage (7)

Table 1.1: Input data to feed the Neural Network

trical faults of induction motors; overload, ground fault, locked rotor, single

phasing, over voltage, under voltage and unbalanced supply voltage.

Figure 1.8: Results of the ANN model

A feed forward back loop neural network algorithm is performed by us-
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Parameters Units

Var1 Vibration speed m/s

Var2 Motor Torque Nm

Var3 Acceleration mm2/s

Var4 Motor Speed Hz/s

Var5 Air Pressure bar

Var6 Product Weight hg

Var7 Deceleration mm2/s

Var8 Current A(Amps)

Var9 Belt tension N/m

Var10 Motor tension N/m

Var11 Temperature *C

Table 1.2: Time-Series dataset variables

ing three phase voltages and currents as input data, as it can be seen in

Table 1.1. After a little explanation of how the ANN works, the results are

showed and all the test data are classi�ed accurately, as the Figure 1.8 shows.

The last paper analysed [6] is a complex one, in the sense that it explores

an innovative way to handle multivariate data. It is built a classi�cation

model using a combination of time-series imaging and Convolutional Neural

Network (CNN) for Predictive Maintenance of conveyor motors.

In this research, time-series represent di�erent observations recorded from

the machine over time. The framework is designed to accommodate multi-

variate time-series as inputs of the model.

The experimental data is composed of 11 parameters (Vibration speed, Motor

torque, Acceleration, Motor Speed, Air pressure, Product Weight, Decelera-

tion, Current, Belt tension, Motor tension, Temperature, see Table 1.2) and

one outcome which is the type of Fault detected in the system .Three states

of the conveyor motor: (1) No-Fault (2) Minor Fault and (3) Critical Fault

with urgent need of maintenance.
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Figure 1.9: Overall system's architecture

As well explained in the Figure 1.9, the time-series are encoded into images

via the Gramian Angular Field (GAF) method by using the poolar coordi-

nates and used as inputs to feed the Convolution Neural Network model. It is

achieved an overall accuracy of 100% by using the CNN + Recti�ed Linear

Uni (ReLU) model, and only 55% by performing Support Vector Machine

(SVM), see the Confusion Matrixs in Table 1.3.

SVM CF MF NF

CF 612 169 224

MF 149 181 706

NF 0 96 864

CNN + ReLu CF MF NF

CF 1000 0 0

MF 0 1000 0

NF 0 0 1000

Table 1.3: Confusion matrix result of the two models
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Chapter 2

Proposed methodology

In this chapter, the steps of the work done will be explored and described.

As usually the preprocessing process is analyzed �rst.

2.1 Explorative analysis

Advanced explorative analysis of the datasets through statistical techniques

and their interpretation is carried out, i.e. each signal (feature1) is analyzed

to understand how to synthesize them.

The raw data will pass through two principal steps to be readily used as

input of the machine learning models:

1. Data Cleaning. In this process, the data are prepared for analy-

sis by removing or modifying those which are incorrect or incomplete.

Moreover, the variables to be taken into consideration are selected, by

considering only one of a group of features highly correlated. This

improves the quality of the training data for analytics and enables ac-

curate decision-making [20], [21].

2. Feature extraction. In this process an initial set of raw data, showed

in Figure 2.1, is reduced to more manageable groups for processing [10].

1A feature is an attribute used to feed the Machine Learning algorithm. Feature,

predictor, attribute, and variable have to be meant as the same.
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2.1. Explorative analysis Chapter2. Proposed methodology

First, the data are aggregated in di�erent sessions with a similar period

of time, second, it is extracted from each feature the most common

statistics (the quality and quantity of features are key determinants

which strongly in�uence the outcome of the prediction [11]). In this

way, we will obtain a data set with more predictors but with a much

fewer number of records.

2.1.1 Origin of the data

Figure 2.1: Summary of the raw data

The data on which this thesis is based, was taken from the Kaggle plat-

form and consists of 140 hours recordings from a Permanent Magnet Syn-

chronous Motor (PMSM) [7]. PMSMs are brushless and have very high reli-

ability and e�ciency. Due to their permanent magnet rotor, they also have

higher torque with smaller frame size and no rotor current, all of which are

advantages over AC Induction Motors (AICMs) [12]. Synchronous motors

contain multiphase Alternating Current electromagnets on the stator of the

motor that creates a magnetic �eld that rotates in time with the oscillations

of the line current.

This kind of motors are widely used in robotics, machine tools, actuators,

and they have been considered to be used in high-power applications such as

industrial drives and vehicular propulsion [13].

The �rst �ve rows of the dataset are shown in Figure 2.1: it is composed of
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998070 rows and 15 time series variables.

Each predictor can be detailed as follows:

� ambient : temperature as measured by a thermal sensor located closely

to the stator

� coolant : coolant temperature. The motor is water cooled. Measurment

is taken at out�ow.

� u_d : voltage d-component

� u_q : voltage q-component

� motor_speed : the speed achieved by the motor;

� torque: torque induced by current

� i_d : current d-component

� i_q : current q-component

� pm: permanent Magnet surface temperature representing the rotor

temperature. This was measured with an infrared thermography.

� stator_yoke: stator yoke temperature measured with a thermal sensor.

� stator_tooth: stator tooth temperature measured with a thermal sen-

sor.

� stator_winding : stator winding temperature measured with a thermal

sensor.

� pro�le_id : to identi�ed Distinctive sessions. Each measurement session

has a unique ID.

� i_s : the current vector de�ned as
√
id

2 + iq
2.

� u_s : the voltage vector de�ned as
√
ud2 + uq2.

The last two features are added later [7].
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2.1. Explorative analysis Chapter2. Proposed methodology

Figure 2.2: Di�erent signals of the ambiental temperature. The downward

peaks represent outliers

2.1.2 Outliers detection

When you work on a huge amount of data, an important process is detecting

the outlier value, i.e. those data whose values are clearly a mistake in typing.

Let's observe in Figure 2.2 the signal of the ambiental temperature for four

di�erent sessions. It seems necessary to remove all those values below a

certain treshold. Infact it is not reasonable to think that the external tem-

perature could have such sudden drops.

Even if it is known that the feature ambient is measured by a sensor close

to the stator, it's evident from Figure 2.3 there are no common relationships

between these signals. For some sessions and some points, the downward

peaks (green line) are linked to the downward trend of the stator_yoke and

pm features (orange and violet lines), see the central zone of the lower left

image, for others, they are associated to increase values in both these tem-

peratures, see the central zone of the upper right image.

To remove these values, it is adopted the following idea: collecting the

signals (treated as independent for each sessions) in groups, let xi,j be the

ambient value of the group i of the sessions j. For each of them, taking the

18
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Figure 2.3: Relationship between the ambient (green line), stator (orange

line) and rotor temperatures (violet line).

mean (x̄i,j) value and removing those values that were out of the interval:

(−0.5 + x̄i,j; x̄i,j + 0.5) ∀ i group and ∀ j session.

After that, replace these values with the ones that will be obtained using the

pre-built interpolate function of Python.

Figure 2.4: Ambient signals with outlier detected

It can be stated, by observing Figure 2.4 compared to Figure 2.2, the idea

worked and the outliers have been removed.
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2.1. Explorative analysis Chapter2. Proposed methodology

Figure 2.5: Correlation Matrix on the raw data

2.1.3 Target variable

At this point, it is important to have clear in mind which is the target to

achieve in this work.

The dataset just explored, had as the initial goal the one to best predict the

di�erent stator and rotor temperatures. Now, you want to construct some

models in order to be able to predict the status of the battery and if it needs

some maintenance works. As can be seen from the description above, there

is no label column about the health status of the battery. Moreover, there is

no access to the original data, they have been given already standardized.

Having in mind that, some considerations are made. One could suppose that

the extreme values of a certain variable are a symptom of a malfunction of

it. So if it could be possible to understand from the dataset which are the

anomalous values for the voltage in the battery, one could link these values

to eventual damage.

Now, since each record of the dataset is equal to 0.5 seconds, it cannot

be said that one instant of under or over voltage corresponds to a damage of

the battery, but if this trend persists, then maintenance work is suggested.

Then the next step was to aggregate the data into a certain interval of

time, and afterward to observe the distribution of the vector voltage u_s to
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2.1. Explorative analysis Chapter2. Proposed methodology

understand which values have to be considered as extreme ones (the outlier

values will be taken into account).

2.1.4 Features selection

In this �rst step, the focus is on reducing the dimensionality of the predictors'

space by looking at the correlation matrix [18].

The Correlation matrix in Figure 2.5 shows that there is a signi�cant corre-

lation between all the three di�erent stator temperatures. The lineplots in

Figure 2.6 con�rm that all three temperatures follow the same trend.

The stator winding temperatures shows the biggest variation followed by the

stator tooth and stator yoke temperature.

Figure 2.6: Correlation between the three temperatures

This is especially noticeable when there is a lot of variation in the stator

winding temperature. If this is the case, the stator tooth and yoke temper-

atures follow a smoother path than the temperature recorded on the stator

winding. In other words, the heat dissipated by the stator windings takes

some time to heat the stator tooth and yoke due to the thermal inertia of

both stator parts.

A very high positive linear correlation was observed between i_q and

torque, and the q-component of the voltage u_d is highly negative linearly
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correlated with torque and i_q. The Figure 2.7 con�rm this sentence: the

i_q and torque curves are almost overlapped, compared to the u_q curve

that follows almost an opposite trend.

Figure 2.7: Relationship between i_q, u_d and torque.

Indeed, for the former insight, we can refer to electric drive theory, where

either higher torque is exclusively dependent on i_q in case of similar-sized

inductances in d- and q-axis, or increasing with higher i_q and slightly de-

creasing i_d else wise (more common in practice).

There is an almost high positive linear correlation between the tempera-

tures and coolant. Moreover the features u_s and i_s are not highly linear

correlated with respectively u_d, u_q and i_d, i_q, but we know that they

have a strong quadratic correlation, since their de�nition.

Then, by �xing the threshold at 80% for considering a pair of predictors

highly correlated, we proceed as follows:

� The feature torque is kept between i_q, torque, and u_q ;

� u_d, u_q and i_d, i_q, are highly correlated with respectively u_s

and i_s : The last two are kept;

� It is kept only the stator_yoke between the stator's temperatures;
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� Coolant is removed because high correlated to stator_yoke.

This choices brought to have the dataset in Figure 2.8, with 8 columns and the

same number of rows of the initial dataset. It's important to observe that the

Figure 2.8: Dataset after features selection.

predictors' space is composed of the statistics of three di�erent temperatures

(ambient, rotor, and stator), the speed, and the torque achieved by the motor

and the current vector.

2.1.5 Aggregate the data

The Plot in Figure 2.9 shows that sessions' time is not the same and it is

between almost 20 min to around 6 hours. The short sessions with ids "47",

"46" might be not very representative as temperatures inside electric motors

need time to vary. It can understand that longer sessions are more reliable

as well as should properly consider in both train and testing.

So when the signals are analyzed for splitting the dataset into the same pe-

riod, care must be taken in considering each session independent of each

other.

After a lot of experimental trials, it was chosen to aggregate the data every

1850 rows, which are more or less equivalent to 15 minutes. To checking if

this choice is reasonable for all the signals and all the pro�les, some pictures

are shown. Figure 2.10 shows the results of two signals: the permanent
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Figure 2.9: Di�ererent sessions' time

magnet temperature (pm) for three independent sessions, and the torque.

The blue lines represent the pm signal and the vertical green dashed lines

are 15 minutes away from each other.

The lines have clearly captured the smooth central zone. The left and right

sides instead are broken into signals with a similar pattern.

Let's focus the attention on the third picture starting from the top (pm

signal of the pro�le id 66). The broken lines on the left side present a small

initial constant part, then a rapid growth, and �nally a new small settling

zone. The right side, on the other hand, has divided the signal into small

parabolas with concavity upwards. Similar reasonings can be done for the

other graph. Then, the next steps are summarized here.

� Aggregate the data in intervals of 15 minutes, by computing for each

feature (except for the label u_s, where only the average is computed)

the following statistics: minimun, maximum, mean, root mean square,

kurtosis, skewnees. The �rst three are well explained itself, while the

others are de�ned as follows:

� Root Mean Square (RMS): the square root of the arithmetic mean

square of the signal, and it represents the average power:

RMS =

√√√√ 1

n

n∑
i=1

x2i
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Figure 2.10: Pm signals for three independent sessions and the torque signal

splitted into 15 minutes.

� Skewness : it characterizes the degree of asymmetry of a distribu-

tion around its mean. Positive skewness indicates a distribution

with an asymmetric tail extending toward more positive values.

Negative skewness commonly indicates that the tail is on the left

side of the distribution, and positive skew indicates that the tail

is on the right [9]. Let's de�ne µ, σ respectively the mean and the

std of the signal, then the skewness remains de�ned as follows:

Skewness =
1

n

∑n
i=1(xi − µ)3

σ3

� Kurtosis : is a measure of the "tailedness" of the probability distri-

bution of the signals.For this measure, higher kurtosis corresponds

to greater extremity of deviations (or outliers), and not the con-

�guration of data near the mean [8].

Kurtosis =
1

n

∑n
i=1(xi − µ)4

σ4
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� Analyzed again the confusion matrix on those new features and take

only one feature between the pairs highly correlated.

The �nal dataset containing the aggregated data on which the ML algorithms

described in the next chapters will be trained, is showed in Figure 2.11.

Figure 2.11: First �ve rows of the �nal aggregated dataset.

The dataset consists of 565 records and 28 predictors and with one label

which is called, making use of a lot of imagination, 'mean_us '. It represents

the vector voltage in the battery averaged every �fteen minutes on which to

compute regression and classi�cation algorithms:

� Multiple linear regression, XGBoost and Random Forest for the regres-

sion;

� Support Vector Machine, XGBoost and Random Forest for the classi-

�cation.

To discretize the label `mean_us ', we can have a look at the box plot in

Figure 2.12. The vertical right (left) line instead represents the values equal

to 1.5*range interquartile plus (minus) the third (the �rst) quartile. The

values outside these lines could be some outliers or, in our case, potential

values representing a fault in the work of the battery. The goal is to predict

anomalies in the battery. If you are able to predict the outlier values, maybe

you can �gure out some faults, and make some Predictive Maintenance on

the battery.
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Figure 2.12: Box plot of the label column

Then, the mean voltage vector feature ('mean_us ') can be discretized into

�ve classes:

� class 0: the values less than 0.2;

� class 1: the values between 0.85 and 1.25;

� class 2: the values between 1.25 and 1.53;

� class 3: the values between 1.53 and 2.3;

� class 4: the values greater than 2.3.

In Figure 2.13 a histogram of the class distribution is shown. Since there

are only 9 values of class 4, also less when we split them into training and

test sets, class 4 was merged with the class 0. In this way, class 0 means

"Damaged" battery, since it could represent both overload and underload

voltage of the battery. Class 1 is the "Medium Damage" battery, class 2

is "Operative" battery and class 3 is "New" battery.

It is important to say that if one is able to predict with high performances

the exact continuous values (reached by performing regression algorithm)

assumed from the variable mean_us, a domain expert could say, from the

high one of his experience, if the PMSM needs some maintenance works. By

discretizing the label instead, the expert will be able to take a decision by
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Figure 2.13: Histogram of the classes distribution

knowing that the battery has a mean voltage belonged to a set of values too

high or too low.

2.2 Machine Learning algorithms

This section will be explored the algorithms that are used in this thesis and

how they are developed.

For each algorithm, the following steps are taken into consideration:

� the data are split into train and the test set (respectively 80% and 20%

of the entire set of data) for measuring the performances and, when

Cross Validation is not performed, the train set is in turn divided into

train and validation for tuning the parameters;

� the metrics have been computed by averaging on a di�erent split of

data, in order to have reliable estimations of such measurements;

� a random state is set at each step above for reproducible results.

Moreover, three models for each algorithm (both regression and classi�cation

ones) are trained: the �rst by using the given default values, the second with
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an optimization method for searching at the best Hyperparameters, and the

third one, which is reduced the dimensionality of the features space by looking

at the importance of the features and taking the ones whose cumulative

percentage was above 95

2.2.1 Multiple Linear regression

One of the simple approach for predicting a quantitative response Y on the

basis of a multiple predictorX. Let's suppoose p the number of distinct pred-

itors, is the Multiple Linear Regression. As the name suggests, it assumes

that there is approximately a linear relationship between Y and X and can

be explicitated by the following equation

(2.1) Y = β0 + β1X1 + β2X2 + . . .+ βpXp + ε,

where β is the unknown coe�cient vector and ε is the not observable error

vector distribuited as multivariate gaussian with

E[ε] = 0 and V arCov(ε) = σ2I.

The fact that ε1, ε2, . . . , εn are Indipendent Identically Distribuited (IID) is

called homoskedasticity ([14]). In this work the coe�cients βi ∀i = 0, . . . , p

are estimated by the Ordinary Least Squares (OLS), that is by minimizing

the Residual Sum of Squares (RSS), de�ned as

RSS =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(yi − β̂0 + β̂1xi1 + β̂2xi2 + . . .+ β̂pxip)
2

where the β̂i are the estimates of the true coe�cients βi.

In this work, the dependent variable Y is the column mean_us, while

the predictors' matrix X is composed of all the other features. The trained

linear model regression is shown in Figure 2.14.

It is common, trying to improve the linear model by removing one, more or

even all the predictors.
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Figure 2.14: Linear regression model on the entire dataset

The �rst thing on which focus the attention is the value called 'Prob(F-

statistic)'. It represents the probability associated with the hypothesis that

this model is equal to the null one (the model with only the intercept). It

can be seen, from Figure 2.14,that such value is so small (= 4.4 ∗ 10−58) that

the hypothesis is rejected.

Going forward, it can be made inference on the coe�cients β̂i. In fact,

each coe�cient has an associated column named 'P > |t|', that is the pvalue
associated with the null hypothesis H0 : β̂i = 0.

It derives from the fact that under the null hypothesis, the statistic

t =
β̂i√

MSE(XTX)−1
∼ t(n− p)

where t(n − p) is the t-student with n − p degrees of freedom, the pvalue =

P(t(n− p) > toss).

Then, it can be taken the choice of rejecting the null hypothesis with a con�-

dence of 5% if those values are less than 0.05, and don't do that for the ones

greater.

For example, one could think to remove skewnees_ambient from the pre-

dictors' space, and keep mean_motorSpeed. It is too important to say that
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whenever the model changes (even if by removing only one feature) the pvalue

column will be di�erent.

Then for example, if it is removed from the model in Figure 2.14 kur-

tos_ambient cause a higher pvalue than 0.05, the feature skewnees_ambient

could have (or not) a pvalue less than 0.5.

An optimal search on the predictor space will be performed by looking at

the best value of the AIC, de�ned as

AIC = 2 ∗ numberOfParameters− 2log(L),

with L the maximum value of the likelihood function.

Another important statistic is the R2, which represents the proportion of

variability in Y explained using X (with respect to the model with only the

intercept).

2.2.2 Support Vector Machine

A Support Vector Machine (SVM) is a discriminative classi�er de�ned by a

separator hyperplane.

It is a supervised learning algorithm that, starting from the data of the la-

beled training set (whose it is known the class to which it belongs), generates

a hyperplane able to divide the data belonging to di�erent classes and there-

fore also able to classify the new elements of space. For example, in two

dimensions the hyperplane is given by a line that divides the space R2 into

two parts in each of which lies a class ([15]). SVM is used to produce non-

linear decision boundaries; it is in fact an extension of the support vector

classi�er that increases the size of the feature space (increases the number of

predictors) through mathematical functions called kernels.

In general, a kernel is de�ned as follows:

K(x, y) =< φ(x);φ(y) >

where < · ; · > represents the scalar product.

The most used kernels are the following:
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Figure 2.15: Simple idea of how the hyperplane generated by the SVM works

for binary classi�cation

� Linear Kernel: K(x; y) =< x; y >;

� Polinomial Kernel: K(x; y) = (< x; y > +c)d;

� Radial Basis Function (RBF) Kernel: K(x; y) = eγ(<x−y;x−y>)

This algorithm was created as a binary problem classi�er (2 membership

classes), but was subsequently adapted to multiclass problems as well.

The two most used approach are One-versus-One (OvO) and One-versus-All

(OvA).

The OVO approach constructs K(K-1)/2 (with K > 2, number of classes)

SVMs, each of which only compares a pair of classes; counting the number

of times a new datum is assigned to each of the K classes, we assign as label

the one with the greatest number of occurrences.

The one-versus-all (OvA) approach �ts K SVMs, comparing each time a

single class with all the others; for each model we save the parameters

β0k, β1k, . . . , βpk (coe�cients of the separating hyperplane) and assign the

new data x to the class for which β0k +β1kx1 + . . .+βpkxp is maximum ([16],

[15]).
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2.2.3 Random Forest

In this section, another kind of approach for both classi�cation and regression

purposes will be introduced, known as a "Random Forest".

Before to talk about it, it is reasonable to introduce the "decision tree"

algorithm. The name derives from the fact that the set of rules used to

divide the predictor space can be summarized and visible with a tree.

It starts from the root of the tree (at which point all observations belong to

a single region) and gradually divides the space into two new branches ('top-

down' approach). At each step, the tree will be divided into two further

branches simply looking for the split which immediately leads to a greater

reduction in variance and not looking at the one that would lead the entire

branch to a smaller variance ('greedy' approach) [15]. A global view of this

idea is shown in Figure 2.16

Figure 2.16: Simplify idea of the Random Forest approach

There are several criteria in choosing the best binary split, only those used in

our analysis are described below. For the regression problem, the algorithm

will look for the split such that the resulting tree has the lowest RSS.
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In detail, let's de�ne

R1(j, s) = {X|Xj < s} and R1(j, s) = {X|Xj ≥ s}

for any j = 1, . . . p and any cutpoint s. Then we seek for the value of j and

s that minimize the equation

(2.2)
∑

i:xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ŷR2)
2

where ŷR1 and ŷR2 are the mean response for the observations in R1(j, s) and

R2(j, s).

Regarding the classi�cation problem, the algorithm will split the tree into

two parts in order to minimize the so-called 'Gini index', de�ned by the

equation:

G =
K∑
k=1

p̂mk(1− p̂mk)

where p̂mk represents the percentage of the number of observations in region

m belonging to class k.

It is observed that the Gini index assumes small values if p̂mk is close to 1

(i.e. most of the observations in the m region come from class k) or close to

0 (very few observations of the class k). This is in line with the objectives of

the method as we would like to have 'pure' regions, i.e. containing only one

class.

The process of building the tree thus described could lead to a good predic-

tion on the training data, but poor performance on the test data. One could

therefore look for a tree with fewer splits, gaining both interpretability and

lower variance at the cost of some bias.

The alternatives are manifold. You could cut the tree to a certain depth,

or decide to make it grow only if that particular split leads to a reduction

in variance above a predetermined threshold. An even better strategy is to

grow a very large T0 tree, and then prune it back to get a subtree. We will

apply these strategies by tuning the hyperparameter.

By aggregating many decision trees, the performance obtained with respect
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to the single tree could be improved. Random Forest is a particular method

that allows you to do this. Several training data sets are generated (one

possibility is through the bootstrap method), and a tree is �tted on each of

them. The �nal result will be an average over all the predictions obtained

(for regression trees), while the class with the highest number of occurrences

in the various intermediate results for the classi�cation problem will be pre-

dicted.

The B value concerning the number of training sets on which to build each

tree, is a parameter to be �ne-tuned. It doesn't lead to over�tting also for

very large numbers. We �x it su�ciently large until the error has settled

down.

The 'Random Forest' algorithm also provides an improvement by decorrelat-

ing the trees. In fact, every time a tree is built on the di�erent training data

sets generated with the bootstrap method, a random number m of predictors

is chosen from the entire initial set p. The split is allowed to use only one of

those m predictors. For greater detail of how "Random Forest" works, see

[15].

2.2.4 XGBoost

XGBoost is a decision-tree-based ensemble Machine Learning algorithm (as

Random Forest) that uses a gradient boosting framework.

Boosting, unlike bagging that involves creating multiple copies of the original

training data set using the bootstrap and then combining all of the �tted

trees on each copy in order to create the predictive model, works in a way

that the trees are grown sequentially: each tree is grown using information

from previously grown trees ([15]). The boosting approach learns slowly:

given the current model we �t a decision tree to the current residuals, rather

than the outcome y as the response. Then this new decision tree is added to

the �tted function in order to update the residuals.

The parameter that controls the rate at which boosting learns is found by

solving an optimization problem [17]. XGBoost in fact minimizes a regu-
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Figure 2.17: XGBoost illustration

larized (L1 and L2) objective function that combines a convex loss function

(based on the di�erence between the predicted and target outputs) and a

penalty term for model complexity. It's called gradient boosting because

it uses a gradient descent algorithm to minimize the loss when adding new

models [19].

36



Chapter 3

Experimental results

In this chapter will be examined the results of the di�erent trained models.

For better readability and interpretability, will be chosen always a certain

type of metrics and images for the regression problem and another type for

the classi�cation one.

3.1 Evaluation of the regression models

About the regression, there will be taken into account the Mean Absolute

Error (MAE), the Root Mean Square Error (RMSE), and the Accuracy. The

�rst two are standard de�ned as:

(3.1) MAE =
1

n

n∑
i=1

(yi − ŷi)

(3.2) RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

where ŷi is the predicted value of the true one yi for the record i.

While the Accuracy is de�ned in this work as 100- the mean absolute per-

centage error, analytically:

(3.3) Accuracy = 100

(
1− 1

n

n∑
i=1

(yi − ŷi)
yi

)
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The �rst image at which having a look is simple the right signal (blue line)

against the predicted values (red points) (see the upper part of the Figure

3.1): the more red points coincide with the vertices of the interrupted blue

signal, the more accurate the models will be.

Figure 3.1: Images to analyze for the result of the regression algortihms

To better understand which are the areas with good performances and which

no, the reader can view the images in Figure 3.1. The straight blue line

represents the true value, while the red dots are the sorted predicted values.

In this way the reader has a graphic idea of where the metrics come from,

and which zones could be improved.

3.2 Evaluation of the classi�cation models

Regarding the classi�cation problem, the only metric analyzed is the Ac-

curacy, giving much importance to the confusion matrix [22] and the ROC

Curves.
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3.2.1 Confusion Matrix

The confusion matrix can be read as follows: the classes are ordered as

explained at the end of section 2.1; on the diagonal of the matrix you can

read the amount of data of the test set correctly classi�ed for each class;

the sum of the values of a single column returns the number of data really

belonging to that class (concerning Figure 3.2 for example, we can say that

there are 9 data labeled as class 0); the sum of the values of a single row

returns the number of data classi�ed as belonging to the respective class (for

example 10 data are classi�ed as class 1).

Figure 3.2: Example of Confusion Matrix.

Starting from here we can de�ne useful statistics:

� Accuracy : de�ned as the ratio between the number of correctly clas-

si�ed observations (for a problem with two classes we speak of True

positive-TP and True negative-TN) and the total number of remarks;

� Precision: also called value positive predictive, it is de�nite at the

class level, i.e. for each class, and is the proportion of correctly classi-

�ed observations (TP) to the number of observations totals that have

been classi�ed as belonging to that class (True positive-TP and False

positive-FP);
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� Recall : is always de�ned at the class level and is the proportion of

correctly classi�ed observations (TP) compared to the number of total

observations that really belong to that class (True positive-TP and

False negative-FN)

� Speci�city : de�ned for every single class, measures the proportion be-

tween the number of True negative-TN, that is the observations cor-

rectly classi�ed in the other classes, with respect to the total number

of observations really belonging to the other classes (True negative-TN

and False positive-FP)

� F1-score is a measure of the test accuracy and it is de�ned as:

F1 − score = 2
precision ∗ recall
precision+ recall

3.2.2 ROC curves

Finally, it is analyzed a graphical method to evaluate the performance of the

�tted models. The ROC curve (see Figure 3.3) shows the trade-o� between

Figure 3.3: Example of a ROC curves.

recall and speci�city.

Classi�ers for which the curve is closer to the upper left corner have better
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performance; instead, the more the curve approaches the diagonal, the more

accuracy of the test is low (for a random classi�er we expect that the curve

is close to the diagonal) [23].

3.3 Regression algorithms

3.3.1 Linear Regression

The �rst simple model trained on the aggregated data is the one shown in

Figure 2.14, where some considerations have been already done.

Then, the results are showed in Figure 3.4.

Figure 3.4: Graphical results of the Linear Model with all predictors.

It is obvious that the performances are very bad: almost no one points

coincide with the vertices of the true signals and, especially for the low values

of the response, the predictions are far away from the real values.

It is evident from Figure 2.14 (that image came from this model) that not

all the features are important. That is, we can't exclude that most of the
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coe�cients are zero. In fact the p-value associated to the null hypothesis

that some coe�cients βi are null, is very large for some of them.

Selecting optimal features.

We want to train another model by selecting only a subset of the initial fea-

tures. We do that by taking into account the AIC's lowest values.

One would be tempted to consider all the possible combinations of the pre-

dictors. But that is infeasible! In fact, let's suppose that we want to compute

all the combinations of the features by taking into account 14 of them, the

machine should consider
(
28
14

)
= 28!

14!14!
= 4.0 · 106 iterations. If we suppose

that each iteration lasts 0.08 seconds, then the time needed to run the code

is about 891 hours! Only by considering 14 variables!

Then we took the following decision: we will keep the features resulting

the lowest AIC if we train a linear model with this number of predictors

[1, 2, 3, 4, 5, 6, 24, 25, 26, 27, 28].

Here follows the name of the features selected: skewnees_ambient, kur-

tos_ambient, rootMeanSquare_ambient, mean_ambient, minimum_motorSpeed,

skewnees_motorSpeed, rootMeanSquare_motorSpeed, mean_motorSpeed, min-

imum_torque, maximum_torque, skewnees_torque, kurtos_torque, mean_torque,

skewnees_pm, kurtos_pm, rootMeanSquare_pm, mean_pm, kurtos_statorYoke,

rootMeanSquare_statorYoke, minimum_is, maximum_is, skewnees_is, kur-

tos_is, rootMeanSquare_is. The graphical results are visible in Figure 3.5.

Even if we haven't been able to select the best features ever for the linear

regression, it is evident that this model doesn't �t good the data. It seems

that the model performed better only the value of the mean_us close to 1.3

in the middle, the rest is very similar and for this reason, it has to be dis-

carded.

The performance achieved by this last Linear regression model are:

� Mean Absolute Error: 0.17;
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Figure 3.5: Graphical results of the linear model with the predictors chosen

in order to obtain the lowest AIC

� Root Mean Square Error: 0.23;

� Accuracy: 82.54%

These results will be taken as starting point for the other models.

3.3.2 Random Forest

The �rst Random Forest model analysed is the one with the parameters

chosen by default. The most important, are de�ned as follows [24]:

� n_estimators (default=100): the number of trees in the forest;

� max_depth (default=None). the maximum depth of the tree. If None,

then nodes are expanded until all leaves are pure or until all leaves

contain less than min_samples_split samples;

� min_samples_split (default=2) : the minimum number of samples re-

quired to split an internal node;
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� min_samples_leaf (default=1): the minimum number of samples re-

quired to be at a leaf node. A split point at any depth will only be

considered if it leaves at least min_samples_leaf training samples in

each of the left and right branches;

� max_features (default=�auto�): the number of features to consider

when looking for the best split. It can assume values �auto�, �sqrt�,

�log2�, or some int value less than the number of predictors.

� bootstrap (default=True): whether bootstrap samples are used when

building trees. If False, the whole dataset is used to build each tree.

We can soon observe the graphical results, in Figure 3.6.

Figure 3.6: Graphical result of the �rst Random Forest with parameter cho-

sen by default

It is clear that a step forward has been taken from the linear model in section

3.3.1. In the upper part much more values are close to the vertices of the real

signal and they are even much closer to the blue line: the mass of the signal

(the red points in the central zone) is predicted very good and the extreme

values have slightly worse performance only for low values, where some of

them are predicted as they belonged at the central zone.
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These observations are corroborated from the metrics visible below, where

the accuracy is almost 92.7%.

� Mean Absolute Error: 0.08;

� Root Mean Square Error: 0.11;

� Accuracy: 92.69%

Random Search for tuning the parameters.

Now, we instantiate the Random Search and �t it like any Scikit-Learn model

for tuning the parameters. The �rst thing to do is create the grid of the

parameters values that have to be taken into account by the Random Search

[25]

� bootstrap: [True, False],

� max_depth: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None],

� max_features : ['auto', 'sqrt', 14.0],

� max_samples : [0.1, 0.3, 0.5, 0.7, 0.9, 1],

� min_samples_leaf : [1, 2, 4],

� min_samples_split : [2, 5, 10],

� n_estimators : [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

On each iteration, the algorithm will choose a di�erent combination of the

parameters. Altogether, there are 3 · 11 · 3 · 6 · 3 · 3 · 10 = 53460 settings!

However, the bene�t of a random search is that we are not trying every com-

bination, but selecting at random to sample a wide range of values.

The most important arguments in RandomizedSearchCV are n_iter, which

controls the number of di�erent combinations to try, and cv which is the

number of folds to use for Cross Validation (it has chosen n_iter= 500 and

cv=3 respectively). More iterations will cover a wider search space and more
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cv folds reduce the chances of over�tting, but raising each will increase the

run time.

Machine learning is a �eld of trade-o�, and performance vs time is one of the

most fundamental.

The best parameters after applied the Random Search are the following:

� n_estimators : 500;

� min_samples_split = 5;

� min_samples_leaf = 2;

� min_samples : 0.9;

� max_features = 'auto';

� max_depth = 60;

� bootstrap = True.

whose results are the following:

� Mean Absolute Error: 0.09;

� Root Mean Square Error: 0.12;

� Accuracy: 91.75%

We have no improved our model since the accuracy is decreased almost of

0.1%. That means the Random Search has no explored the default parameter

solution, and all of the other ones had worse performance than the �rst one.

The di�erences between Figures 3.7 and 3.6 are not visible at �rst glance. For

example, we observe that the value greater than the lowest one is predicted

0.75 here with respect to 0.7 in the �rst trained Random Forest model.
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Figure 3.7: Graphical result of the Random Forest model with aRandom

Search for tuning the parameters.

Random Forest applied on a reduced the predictors' space

In order to quantify the usefulness of all the variables in the entire predictors'

space, we can look at the relative importance of the variables.

The importance returned in Skicit-learn represents how much including a

particular variable improves the prediction [26].

It can be said, by looking at Figure 3.8, that for the Random Forest model

the maximum_motorSpeed and mean_motorSpeed variables are the most

two important ones.

Obviously, not only the �rst two will be considered but will take the features

whose total gain will be at least 0.95. In particular will be chosen the 14 fea-

tures, maximum_motorSpeed, mean_motorSpeed, minimum_motorSpeed,

mean_torque, rootMeanSquare_is, rootMeanSquare_motorSpeed,

maximum_torque, minimum_torque, minimum_is, kurtos_motorSpeed,

maximum_is, skewnees_motorSpeed, kurtos_torque, skewnees_torque, whose

total gain is equal 95.25%.

The model trained using the same parameters found with the Random

Search and the important features just mentioned, achieves the following
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Figure 3.8: Usefulness of the Random Forest variables.

performances:

� Mean Absolute Error: 0.08;

� Root Mean Square Error: 0.12;

� Accuracy: 92.48%

Even if the number of features used is 21 instead of 28 considered in the �rst

model, the MAE is the same and the accuracy is reduced only by 0.2%.

Grid Search and features selection

The last Random Forest model explored is the one with a Grid Search for

tuning the parameters and a subset of the features selected from the same

procedure introduced in the preceding paragraph.

The Grid Search is a method for tuning the parameters similar to the Random

Search, but with the di�erence that this time all the combinations of the

parameters have to be explored. Here for not boring reading, we will show

only the �nal results. Figure 3.9 shows that this last model predicted very

well for the values above 1.2, especially for the greatest two values which were
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Figure 3.9: Graphical result of Random Forest with Grid Search and features

selection

always understimated. Some improvements instead, wuold be indicated for

the left side of the image below.

The metrics achieved are shown here:

� Mean Absolute Error: 0.07;

� Root Mean Square Error: 0.11;

� Accuracy: 92.72%

The accuracy is the greatest one achieved up to now: it is greater than the

�rst model by 0.03% and almost 0.25% more than the model with parameters

chosen with a Grid Search and features selection.

It is also necessary to say, that the run time of the Grid Search is de�nitely

greater than the Random Search. So, which Random Forest model is bet-

ter than the other, is not easy to decide. It depends on the goal and the

equipment available from the company which will use this algorithm. If the

machines are not so powerful and lose a percentage of 0.25 in the accuracy is

not a big issue, it has to be preferred the model with the Random Search for

selecting the best parameters. In addition, if the prediction has to be done

in real-time (and in the PdM framework this would be necessary), the choice

would be to use the Random Search method.
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3.3.3 XGBoost

The next step is to instantiate an XGBoost regressor object by calling the

XGBRegressor() class from the XGBoost library with the hyper-parameters

passed as arguments.

The most common parameters that should be known, are [27]:

� learning_rate (default 0.3): step size shrinkage used to prevent over-

�tting. Range is [0,1]

� max_depth (default 6): determines how deeply each tree is allowed to

grow during any boosting round.

� colsample_bytree (default 1): percentage of features used per tree.

High value can lead to over�tting.

� n_estimators (default 100): number of trees you want to build.

� min_child_weight (default 1):is the minimum weight required in order

to create a new node in the tree. A smaller min_child_weight allows

for more complex trees, but again, more likely to over�t.

� objective : determines the loss function to be used like reg:squarederror

for regression problems, reg:logistic for classi�cation problems with only

decision, binary:logistic for classi�cation problems with probability.

XGBoost also supports regularization parameters to penalize models as they

become more complex and reduce them to simple (parsimonious) models.

� gamma (default 0): controls whether a given node will split based on

the expected reduction in loss after the split. A higher value leads to

fewer splits. Supported only for tree-based learners.

� alpha (default 0): L1 regularization on leaf weights. A large value leads

to more regularization.

� lambda (default 1): L2 regularization on leaf weights and is smoother

than L1 regularization
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Figure 3.10 shows immediately the graphical performance of the �rst XG-

Boost model with the parameters chosen by default.

Figure 3.10: Graphical Results of the XGBoost model with parameter chosen

by default

This time the predictions are really good. Not only for the right side of the

image below, but also for the left whose red points seem to approach the blue

line: only one point in the left area has been predicted about 1.13 while the

corresponding true value was almost 0.65. It is necessary to remember that

the data have been standardized and we don't know how that happened.

The performances achieved by this �rst XGBoost model are:

� Mean Absolute Error: 0.07;

� Root Mean Square Error: 0.11;

� Accuracy: 93.1%

So a di�erence of 0.48(= 1.13 − 0.65) could be signi�cant. As we expected

(see the image above), the metrics achieved from this model are very good,

especially about the accuracy, which is greater than the 93%!
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XGBoost model with tuning the parameters

In order to build more robust models, it is common to train a k-fold Cross

Validation for tuning the parameters, where all the entries in the original

training dataset are used for both train as well as validation. XGBoost

supports k-fold cross validation via the cv() method. Cross Validation is a

technique that involves reserving a particular sample of a dataset (the vali-

dation set) that is not used for training the model. Later, the model is tested

on this sample [28].

All we need to do is specify the nfolds parameter, which is the number of

cross validation sets I want to build.

The �rst parameter we will look at is not part of the parameters dictio-

nary, but will be passed as a standalone argument to the training method.

This parameter is called num_boost_round and corresponds to the number

of boosting rounds or trees to build. XGBoost provides a nice way to �nd the

best number of rounds whilst training. Since trees are built sequentially, in-

stead of �xing the number of rounds at the beginning, we can test our model

at each step and see if adding a new tree/round improves performance.

So we need to pass a num_boost_round which corresponds to the maximum

number of boosting rounds that we allow. We set it to a large value (=1000)

hoping to �nd the optimal number of rounds before reaching it, if we haven't

improved performance on our test dataset in early_stopping_round rounds

(it is �xed to 15).

As we can see from Figure 3.11, the cross validation stopped before reach-

ing the maximum number of boosting rounds, that's because after the 157th

tree adding more rounds did not lead to improvements of RMSE on the test

dataset.

In order to tune the other hyperparameters, we will use the cv function

from XGBoost. We don't need to pass a test dataset here as just said. It's

because the cross-validation function is splitting the training dataset into
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Figure 3.11: Number of trees with no improvements.

nfolds and iteratively keeps one of the folds for test purposes.

The parameters selected after applying the Cross Validation on the XGBoost

model, are:

� learning_rate = 0.15;

� max_depth = 3;

� colsample_bytree = 0.9;

� gamma = 0.0;

� min_child_weight = 3;

� alpha = 0.

It is also suggested to observe the elapsed time to run the Cross Validation.

It was equal to 12328 seconds = 12328/3600 hours = 3.42 hours (Processor

Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz, 2.30 GHz, RAM 16,0 GB,
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Operative System with 64 bit, processor based on x64).

The metrics achieved by this model are the following:

� Mean Absolute Error: 0.07;

� Root Mean Square Error: 0.10;

� Accuracy: 93.72%

The accuracy in this case is lightly greater than the one where the tuning

parameters are not used.

To have a graphic idea of the XGBoost results, we can see the Figure 3.12

Figure 3.12: Graphic results of the XGBoost after tune the parameters.

We can see very good performances. The low predicted values are always

more close to the blue line and the prediction of the right side are good as

always.

XGBoost with features selection

Another method to try to improve the performances is removing some useless

features by visualizing the XGBoost model, is to examine the importance of

54



3.3. Regression algorithms Chapter3. Experimental results

Figure 3.13: Importance features for XGBoost model.

each feature column in the original dataset within the model.

There are several types of 'importance' in Xgboost, i.e. it can be computed in

several di�erent ways. The default type is the gain, which shows the average

gain across all splits where the feature was used (just as used for the Random

Forest).

In the upper part of the Figure 3.13, is shown the histogram of the features'

name on the x-axis and their relative importance on the y-axis. Below instead

are visible the only features that we will consider for the next model in order

to have a total gain greater than 95%.

It is suggestive to note that the predictors' space is halved and basically

the rotor and stator's temperatures are removed (will be considered only the

variable skewnees_statorYoke and no one statistic relative to pm).

By looking at Figure 3.14 instead, the value of accuracy is highlighted, since

it is almost 94%. The graphic results do not di�er from the previous one. It
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Figure 3.14: Results of the �nal XGBoost-Regressor model.

can be noted that the fourth value in ascending order is predicted slightly

bad than the previous one, but all the others are more precise.

By outperforming the Linear and the RF regression models, the XGBoost

regressor is the most appropriate model for the problem addressed along the

section2.1.

3.4 Classi�cation algorithms

Here we address the classi�cation problem, i.e. we do not want to predict

the exact value of the vector voltage, but we want to predict the class (the

range of values are explained at the end of section 2.1.5) at which each value

belongs.

3.4.1 Support Vector Machine

SVM with polynomial kernel

Let's �t the �rst SVM model with the polynomial kernel.

The hyperparameters to be set are the coe�cient C which corresponds to
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Figure 3.15: Grid Search for tuning the hyperparameters C and d

the penalty term (plus larger the more it penalizes classi�cation errors) and

the degree of the polynomial d. For the tuning of the hyperparameters we

use a sort of GridSearch doing vary the coe�cient C from a value of 103 to

a value of 102 with one step multiplicative equal to 10 and degree d in range

2; 3; 4 and evaluating the accuracy of the results on the validation set. In

the analysis we used both approaches OvO and OvA, see Figure 3.15.

The maximum accuracy (52,00%) is obtained for C = 100 and d = 2, while

it is practically equal to the variation of the approach used, which is why

we decide to �t the model with C = 100 and d = 2 with a One versus One

approach.

We get the results shown in Figure 3.16 where, both the confusion matrix

along with a number of statistics on the classi�cation and the Multiclass

ROC curve, are reported.
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Such performances do not need any comment. All the records are classi�ed

as belonged to class 2 (the most popular one) apart from two considered as

class 3, besides only one was predicted correctly.

Figure 3.16: Confusion matrix and ROC curve for the SVM model with

polynomial Kernel.

SVM with Radial kernel At this point, let's try to �t also an SVM model

with a Radial kernel, following a logic similar to what was done before.

In this case, the hyperparameters to �t are the coe�cient C and the coe�cient
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γ: the �rst is chosen by a GridSearch, while the second is set by the model

in order to select the best possible value (gamma = 'auto').

Figure 3.17: Grid Search on the parameter C of the SVM with Radial kernel

As can be seen from Figure 3.17, the best value is for C = 10 with which

an accuracy of 56.55% on the validation set is reached.

Figure 3.18: Confusion Matrix of the SVM with Radial Kernel

We can observe from Figure 3.18, as this model is de�nitely better than the

one with Polynomial kernel. There are 5 and 4 records predict correctly for
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the class 0 and 1, even if on a support of 12 and 20 respectively. Also, 12

records are predicted to belong to class 3 (only seven were really of class 3)

at the expense of 'only' 48 records predicted of class 2.

However, we can state that the SVM models do not �t on this data, since

the overall accuracy is slightly greater than 55%. We will do better with the

other models.

3.4.2 Random Forest

In this section three Random Forest models will be explored in the classi�-

cation framework:

Figure 3.19: Confusion matrix of the Random Forest model with tthe pa-

rameters chosen by default.
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1. with the parameters chosen by default;

2. a Grid Search will be instantiate for tuning the best Hyperparameters;

3. the predictors space is reduced by looking for the most important fea-

tures.

The Figure shows immediately the confusion matrix of the �rst model whose

accuracy is 76,73%.

The algorithm has predicted correctly 7 records belonged to class 0. It

made four errors for that class, and it has been not able to predict the other

two numbers for the same class. The recall and the precision for class 2 and

3 are reasonable. Opposite direction for class 1, where the precision and the

recall are just 50% and 36%. It has predicted rightly only ten records on a

support of 14.

Figure 3.20: Multiclass ROC curve of the �rst Random Forest.

Moreover, in Figure 3.20, we can see that the Area Under the Curve (AUC)

of the class 0, is really good, about 98%.

Random Forest with the custom parameters

Now the Grid Search is instantiated in order to �x the best parameters, whose

values are:

61



3.4. Classi�cation algorithms Chapter3. Experimental results

� bootstrap = False;

� ccp_alpha = 0.0;

� max_depth = 40;

� max_samples = 0.2;

� min_samples_split = 5.

Once we choose the optimal parameters, it is very important to set also the

parameters max_features. We do that by plotting the number of predictors

against the number of trees, by evaluating the Out of Bag error (see Figure

3.21).

Figure 3.21: OOB error versus the number of trees for three di�erent values

of the parameter max_features.

The di�erence between Out-Of-Bag (OOB) error and k-fold cross-validation

is that k-fold cross-validation and OOB assume di�erent sizes of learning

samples. For example, in 10-fold cross-validation, the learning set is 90%,

while the testing set is 10%. However, in OOBE if each bag has n samples,

such that n= total number of samples in the whole samples set, then this
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implies that the learning set is practically about 66% (two thirds) and the

testing set is about 33% (one third).

Figure 3.22: Global results of the Random Forest model with custom Hyper-

parametes

It can be stated that max_features = 'p/2' and 'p' perform very similar,

with respect to max_features = 'sqrt' whose curve is always above to the

other ones. We can also say that the error made decreases as the number of

trees increases, up to 300, where a �at area seems to begin. Some powerful

machines could increase this number and observe the results.

This model has predicted correctly one more record for the class 0,1 and
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2. Six records (on a total of 11) have been predicted correctly belonged to

the class 1, by increasing the precision from 0.50 to 0.55 and the recall to

0.43 (see the upper part of the Figure 3.22).

Even more important is that the precision and the recall of the class 0 have

reached 0.67 and 0.89 respectively.

These observations have increased the ROC curve of the class 2 to 0.886.

Random Forest with custom parameters and a subset of the entire

predictors set

As usual, it would be nice to understand which features to remove based

on their minor importance according to the last model trained. Figure 3.23,

shows the results. According to this image, 23 features will be selected with

Figure 3.23: Features importance in the Random Forest

an overall gain of 95.17%. It should be noted that each time this model grows

a tree, only an half of the entire predictor' space will be used for splitting

it, so it is reasonable that more features (than for example the XGBoost
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Regressor) are considerated as important.

The accuracy achieved by this last model is equal to 79,7% and both the

confusion matrix and the multiclass ROC curve are shown in Figure 3.24.

Figure 3.24: Results of the Random Forest with optimal parameters and

feature selection.

Very similar results between the last two models. Even if the accuracy of the

last model (the one with only 23 features) is greater than the model with all

the features of 0.4% in mean, practically there may be no big changes. The

recall of the class 0 is decreased because the support was 12 instead of 9; on

the contrary, the precision is increased because only two wrong predictions

have been made.
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Some of these changes are due to the randomness of the Random Forest

algorithm (for example when a tree is built) or to the splitting considered

for plotting the confusion matrix or also to the number of simulations (100

is not so big for a more computational powerful machine).

3.4.3 XGBoost

The last model analyzed for classi�cation purposes, is the XGBoost. As

usual the steps will be to train three models: the �rst by using the given

default values on it and then trying to improve it by optimizing settings and

reducing the predictors' space.

Figure 3.25: Global Final results of the XGBoost model

We can observe from Figure 3.25 that this model performs better than the

�rst one performed by the Random Forest algorithm, whose accuracy is
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78,88%. We can also observe well performances of the pair precision and

recall for the class 0 (both above 70%), slightly worse than the ones of class

2 (see Figure 3.25).

XGBoost with optimal settings

Here it is instantiated a sort of Grid Search creating by myself in order to

�nd the best Hyperparameters whose accuracy on the validation set is the

greatest one.

Figure 3.26: Results of the XGBoost model whose parameters are chosen

with a Grid Search
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The outcomes are:

� learning rate = 0.1;

� max depth = 10;

� min_child_weight = 1;

� gamma =0;

� colsample_bytree = 0.6;

� n_estimator = 200.

Figure 3.27: Important feature of the XGBoost for the classi�cation problem

Let's say that this last model has found a sort of equilibrium between the

classes (see Figure 3.26): all the statistics are greater or equal than 70%,

except from the recall of the class 0, since the algorithm has predicted cor-

rectly only 6 values on 9, and the precision of the class 1 whose predicted

records have been 19, but only 12 were right. The overall accuracy was equal

to 79,33%.
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XGBoost with features selection

With the idea of reducing the computational e�ort, a feature importance

analysis is performed on the XGBoost model.

Figure 3.28: Global results of the XGBoost with optimal settings and features

importance analysis

In Figure 3.27 is shown the relative importance of each feature in the XG-

Boost model. We can see that also here the stator's temperature of the yoke

is useless in order to �nd the best split in the model and, as consequence, to

better classify the mean voltage vector.
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The overall accuracy achieved by this model is 79,04%, and the confusion

matrix along with the multiclass ROC curves is presented in Figure 3.28.

Again, no big changes happen compared to the previous one, due to the fact

that the features removed do not have a big impact on the performances of

the model itself.

The 3% less accuracy of this model with the previous one is due to the usual

randomness with which the graphic results are generated.
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Conclusions

The objective of this thesis is to develop a framework suitable for Predictive

Maintenance in the Electric Vehicle context, by joining Zirak's backend with

specially researched and tested machine learning algorithms.

Figure 3.29 contains a summary of the mean accuracy achieved by apply-

ing di�erent models for both classi�cation and regression purposes .

By looking at the metric, it can be said that the goal of obtaining an excel-

lent prediction model for the continuous standardized values of the battery's

mean voltage vector, has been accomplished, since the XGBoost with optimal

Hyperparameters and a selection of the features has achieved an accuracy of

almost 94% and the extreme values have been perfectly predicted except for

two of them (see Figure 3.14).

On the contrary, the performance for classi�cation purposes could be in

some way improved: if the last Random Forest trained seems to be the best,

in reality, there aren't many di�erences in the performance with the XGBoost

with all features and optimal Hyperparameters.

In any case, the fact that fewer features are used in training the RF, makes

it the preferable model to apply.

Let's suppose that a company, for some reasons, has an issue to install sensors

that take in real-time the temperature of the stator yoke, and suppose that,

after applying a features selection, all the statistics related to the stator yoke

are removed because their little importance (in the RF model of section 3.4.2



Figure 3.29: Global �nal summary of the results.

only rootMeanSquare_statorYoke and has been taken), this result is great.

The company will get similar performances without the data that come from

those sensors and it will avoid the problem of installing them, saving resources

on the way.

Next steps However, other experiments could be carried out in order to

achieve better classi�cation performance.

It would be suitable to train these models on a dataset with the information

on the occurrence of battery failures.

If this happened, the classes distribution would have been di�erent and likely



also the performance. Still, some Neural Network (NN) could be reasonably

performed in this context, as suggested from the papers in the last paragraph

of the �rst work's chapter, where Feed Forward back loop NN and CNN had

great results.
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stati i risultati, li avrebbe condivisi, nel bene o nel male. Devo tanto a questa
donna, questo traguardo è anche il suo!
Grazie Mamma!

Seguo la scia e ringrazio mio papà. Banale dire che una gran parte delle �nanze
che un percorso del genere lascia inevitabilmente per strada, sono state le sue.
Ma non c'è solo questo. Il suo modo di rispondere e dare consigli nei giorni in cui
gli ho comunicato un mio problema, il più delle volte irruento, mi dava una sorta di
serenità. La persona in questione non mi fraintenda, questa serenità non è dipesa
dall'utilità del consiglio, ma dalla leggerezza con la quale è stato dato. Non è stato
facile, ma col tempo, ho imparato ad integrarlo e renderlo un fattore positivo in
quel mio modo di a�rontare la vita che è perfettamente riassunto dalle sue parole:
'Figlj mij tu piens tropp'.

Va beh a questo punto già che ci siamo ringrazio anche mia sorella. Senza dubbio il
componente più colto della mia famiglia (prima di oggi) da cui ho imparato molto
soprattutto nella prima parte di questo percorso.
L'ansia di un esame, il fatto di non essere valutati per ciò che si merita, le sen-
sazioni di non superare un modulo o addirittura pensare: 'no va beh, questo è
troppo di�cile', io le conoscevo già.
Dove i consigli tecnici di mia mamma non erano adatti (vedi un paio di paragra�
sopra), lo diventavano i suoi.
Nella seconda parte di questo percorso i rapporti si sono un pò inclinati, ma ho
spesso agito usufruendo delle sue parole. Ricordo ancora di aver accettato l'unico
26 perché in triennale lei mi disse: 'ma se ri�uti un voto del genere, a che costo
lo riesci ad aumentare?'. Inoltre è stata d'esempio per le mie (poche rispetto alle
sue) opere di carità, in quanto molto incline ad aiutare le persone più bisognose.
Quando dopo 12-13 ore di studio, tutto sporco e puzzolente, mi mettevo una tuta
bucata per andare al supermercato e decidere cosa mangiare (la tuta bucata non è
citata a caso), beh quella cena donata al ragazzo che non ne aveva, dava un senso
alla mia giornata.
Ricordo ancora con molto piacere le tappe �sse nel centro Italia prima di andare
a Benevento, le partite a beach volley in estate e quella nuotata in cui provato,
tentato e fatto di tutto per raggiungerla ma non c'è stato niente da fare nonostante
partissi con un piccolo vantaggio... il mio avversario non vedeva! Quelle giornate
sono state un ottimo momento di ricarica di energia.
Spero di fare ancora tesoro della sua esperienza, anche perché il lavoro incombe e
i fallimenti sono dietro l'angolo (notare l'ironia...).

Ringrazio a questo punto ogni singola persona incontrata in questo cammino, per-
ché quando un percorso così lungo termina in modo importante, ognuno ha fatto
la sua parte. Nominarli tutti è impossibile però ricordo con piacere tutti i miei
coinquilini Francesco, Arianna, Federica, Luca, Alessandro, Amin ed Ahmad da
cui ho imparato ad adattarmi, condividere (con una qualche di�coltà) gli spazi
comuni ed aprire la mia mente a nuove culture. Ringrazio i miei cognatini Mara e
Jonathan perché di grande esempio per me nel vedere i propri studi ripagati con
la giusta moneta (e non solo in senso �gurativo). Ringrazio i ragazzini Marcol-
ino, Nando, Michele e Vincenzino perché hanno aumentato di gran lunga la mia



autostima, sempre riconoscenti dei miei consigli. In�ne ricordo con piacere le per-
sone incontrate a Londra So�a, Keno, Priyanka e soprattutto i miei cugini, Fabio
e Sach, che hanno trasformato quell'esperienza da un potenziale 'terribile', ad uno
splendido 'piacevole'.

Ringrazio ancora, Francesco, Giuseppe e Timothee perché hanno reso più dinamico
questo percorso con qualche giornata al campetto e non solo... Ringrazio i miei
carissimi amici Manuel e Gianmichele, che anche se non siamo riusciti a vederci
tanto, sono sempre stati pronti a regalarmi chiacchierate piacevoli e momenti rilas-
santi. Molto simile alla situazione con mio cugino Michele dove le telefonate erano
incentrate su piatti da cucinare, partite a play-station o formazione da schierare al
fantacalcio.

Ringrazio anche la mia nonna Grazia, che molto simile a mio padre (sono l'una
la mamma dell'altro), mi ha sempre voluto trasmettere quella sorta di spensier-
atezza e modo di agire 'd'istinto' che avrebbe sicuramente portato ad una miglioria
nella mia vita e nel mio studio. Il tutto con l'esperienza di una nonna però...

Ringrazio poi i miei colleghi, ma soprattutto amici, Michele, Patrick, Sara, Ser-
ena, Giulia, Luca e Vittorio che hanno accompagnato in toto questi miei anni.
Splendide persone con le quali ho trascorso la maggior parte del mio tempo. Ri-
cordo giornate intere davanti ai libri o al PC, a cercare disperatamente un 'se e solo
se' o a risolvere un di�cilissimo sistema lineare di 12 incognite in 12 equazioni. I
progetti sviluppati insieme sono troppi se paragonati alle bottiglie di vino stappate,
spero che questa tendenza possa cambiare in futuro.

Non mi sono a�atto dimenticato. Se c'è una persona a cui devo un grande Grazie,
è il mio Amore. Ho iniziato questo percorso insieme a lei o lo concludo con lei al
mio �anco.
Devo essere sincero, nessuno mi ha sopportato quanto lei. E non deve esser stato
facile...
Qualunque esame andato male era pronta a subire la mia rabbia e tranquillizzarmi,
ed io sapevo di poter andare da lei perché mi avrebbe dato sollievo o magari non
creduto alle mie impressioni, dandomi ancora una speranza in un voto migliore.
L'ho spesso accusata di distarmi o di interrompere il mio studio, o di non lascia-
rmi libero di svagare come io volessi. Ma erano tutti alibi che cercavo perché la
stanchezza aveva preso il sopravvento e la necessità superava la volontà di stare
ancora sui libri.
Ho quasi sempre apprezzato quel suo modo di pretendere attenzioni perché mi dava
la spinta necessaria per terminare il prima possibile quel mio studio, altrimenti
sarebbe stato un incubo sostenere a lungo quelle pretese. Ho sempre amato quel
suo modo di addolcire le mie giornate con qualche bacino o con qualche sguardo
un pò triste ma a�ascinante. Quel suo modo di regalarmi un sorriso con qualche
saltello a cofanetto o dei balletti improvvisati partiti dalle note di una stupida
canzoncina appena sentita in pubblicità o ancora per delle balorde posizioni che
una gatta assumeva durante la giornate. O quel suo modo di passare ore ed ore
a fantasticare su possibili situazioni future, su nomi bizzarri da dare ai �gli, le 10
combinazioni di piatti da fare a tavola o su matrimoni da organizzare su un monte
a 750 mt di altezza dal livello del mare e con 7 scalini farsi il bagno. Sempre a
mare, intendo...
Ho semplicemente amato il modo in cui sei stata te stessa. Grazie Amore!

Eh sì, tra tutti c'è anche una gatta che è stata parte della mia vita senza la quale
molti dibattiti o chiarimenti non sarebbero avvenuti: come educarla, cosa darle da
mangiare o come farle la pulizia anale, come dividere 90 o 120 cm di materasso tra
me, la mia principessa ed una gatta. A parte ciò, l'energia che trasmettevano le
sue fuse e l'incanto del suo sguardo sono su�cienti per meritarsi un grazie.



Spendo ancora due parole per ringraziare colui che rappresenta molto più di un
cugino. Antonio è stato a tratti un mio coinquilino, spesso un amico, ma anche e
soprattutto un fratello.
Ricordate i soldi lasciati per strada da mio padre? Bene, io con lui ne ho persi
una cifra simile tra bollette e fantacalci. Diciamo però che sono stati ripagati dalle
tante partite a ping-pong (una competizione che nemmeno Nadal-Federer si pos-
sono immaginare), le giocate a play-station, il beach-volley, le pizze, le partite a
poker. Le chiaccherate �no a tarda sera a ragionare su quanto avrei guadagnato
una volta uscito da questo ateneo (35-40 i primi anni, almeno 70 il secondo).
Le chiamate a mezza mattinata del week-end che iniziavano: 'oh ma a quant
stamm?', oltre ad uno sperpero di denaro rappresentavano per me un momento
di gioia e condivisione.
Ho avvertito sempre grande stima da parte sua nei miei confronti, e questo mi ha
dato una forte carica. Io ne ho altrettanta per lui!

Desidero ringraziare in�ne anche mio zio Rolando. Sono sempre riuscito a co-
municare con lui in modo speciale, sapevo di poter contare su di lui per qualunque
consiglio, necessità o bisogno, e sapevo che lui avrebbe fatto lo stesso qualora io
avrei fatto o potuto fare qualcosa che non andava.
Ho imparato molto da lui ed oggi mi ci rivedo molto. Quel suo modo di ragionare,
di prendere decisioni, di organizzare una tavola, di intrattenere un'ampia platea o
di apprezzare un buon bicchiere di vino, che qualcuno addita erroneamente con la
frase 'tu si tropp lient', io lo de�nirei 'saggezza'.

Ringrazio in�ne un oggetto, che apparentemente dalla una forma perfetta ma con
qualche imperfezione per accogliere dei polpastrelli, i miei: la palla da basket. In
ogni dove, in ogni quando e perché bastava che c'era lei per liberare la mia mente
e cambiare il mio umore. Quell'oggetto che magicamente esce dalla mia mano per
ritornare lì, e poi con tocco sopra�no entra in un cestino posto a 3.05mt da terra
(quando sono fortunato) è assolutamente da meritarsi una citazione.

Arrivo �nalmente alla conclusione di questo discorso. Mi sembra riduttivo chia-
marlo un ringraziamento... questa è una dedica, una lode alle persone più impor-
tanti della mia vita, i miei nonni, Nonna Maria e Nonno Tonino.
Se dopo 19 anni di studio ho avuto il coraggio di intraprendere l'università e con-
tinuare gli studi, è grazie ai loro insegnamenti, alla loro �ducia nelle mie capacità
e al fatto di credere nella cultura come fonte principale di realizzazione personale.
Mio nonno mi ripeteva spesso: "studia a nonno che poi puoi entrare in politica"
e la nonna mi chiedeva spesso : "ma allora a nonna esci col massimo dei voti?".
Ovviamente io in politica non ci sono entrato e non so con quale voto mi sarò
laureato, ma sono convinto che saranno �eri di me.
Oggi il mio cuore è triste per non poter condividere con loro questo momento,
voglio però che sappiano che ho vissuto tutti questi anni seguendo i valori ed i
principi che mi hanno insegnato.
Se mi stanno vedendo da lassù, vorrei che mi immaginassero abbracciati a mia
nonna con il braccio sinistro attorno al suo �anco e la mia mano destra incrociata
con quella di mio nonno. Tac.. la festa è �nita.
Li accompagno a casa e dormo da loro perché non possono restare soli, porto nonna
a letto, le do un bacio e le auguro la buona notte. Vado sul divano e mi addormento
scoperto perché sono stanco, mio nonno viene e mi 'accommuglia' le coperte. Mi
bacia e mi dice: 'buona notte a nonno'... Ciao nonni.
Grazie di essere quel che siete stati.


