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0. Sommario 
 
I.  Introduzione 
La Tesi presentata si propone di realizzare un modello a compartimenti per simulare il processo 
di co-precipitazione dell’idrossido di Nichel-Manganese-Cobalto (NMC) NixMnyCoz(OH)2. 
Questo composto è di interesse in quanto è il precursore del materiale costituente il catodo nelle 
batterie agli ioni di Litio (LiNixMnyCozO2), batterie il cui utilizzo è ormai molto diffuso in un 
gran numero di settori. 
La sintesi di questo ossido è divisa in due step (Barai et al, 2019): 
1) co-precipitazione: processo che produce il precursore di cui si è parlato sopra, a partire da 
soluzioni di solfati di Litio, Manganese e Cobalto in presenza di ammoniaca; 
2) calcinazione: il precursore viene sottoposto a ossidazione e litiazione per ottenere 
LiNixMnyCozO2. 
Il primo processo è quello trattato in questa Tesi. La reazione di co-precipitazione è un processo 
molto complesso in cui entrano in gioco diversi meccanismi. La base di lavoro di questa Tesi è 
l’utilizzo della geometria di un reattore fornita dall’azienda Umicore. 
I principali fenomeni che vengono considerati per simulare la reazione di co-precipitazione in 
questo reattore sono: sistema pressione-velocità dell’acqua presente nel reattore (equazioni di 

Navier-Stokes), equazioni di trasporto delle specie coinvolte nella co-precipitazione, chimica 
del sistema ed equazioni di trasporto dei momenti (per le quali servono le cinetiche di 
precipitazione) (Gavi et al., 2007). La soluzione dei campi di pressione e velocità può essere 
risolta separatamente dagli altri meccanismi. 
La soluzione dei campi di velocità e pressione viene calcolata tramite simulazioni 
fluidodinamiche utilizzando il software ANSYS Fluent. 
Le equazioni di trasporto delle specie vengono definite per i cationi metallici, per l’ammoniaca 

e per le cariche inerti. Nelle equazioni dei metalli si trova un fattore sorgente che rappresenta 
la precipitazione di queste specie allo stato solido. 
I meccanismi chimici presenti, ipotizzati da van Bommel e Dahn (2009), consistono in una serie 
di reazioni di equilibrio fra il metallo e l’ammoniaca che lo complessa, e in particolare la 

reazione grazie a cui avviene la crescita delle particelle è un equilibrio fra l’idrossido metallico 

e la soluzione di ammoniaca. 
Le equazioni di trasporto dei momenti vengono derivate dal bilancio di popolazione (PBE) e 
risolte utilizzando il metodo di quadratura dei momenti (QMOM), del quale vengono calcolati 
pesi e nodi con appropriati algoritmi.  
Risolvere tutte queste equazioni con ANSYS Fluent significherebbe fare tutti i calcoli per ogni 
cella del sistema e, dato il grande numero di celle presenti, questo significherebbe alti costi 
computazionali e tempi di simulazione. Lo scopo della Tesi è quindi quello di risolvere questo 
problema utilizzando un modello a compartimenti. 
Questo è possibile grazie a uno strumento di ANSYS Fluent che permette di dividere il dominio 
(l’interno del reattore) in zone interconnesse. In questo modo è possibile considerare ognuno di 
questi compartimenti come un CSTR e risolvere le equazioni che descrivono il fenomeno non 
più per ogni cella, ma per un numero di gran lunga minore di compartimenti. I calcoli in questi 
compartimenti vengono svolti grazie all’utilizzo di uno script scritto in linguaggio Python. 
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La divisione in compartimenti deve essere fatta in modo ponderato, considerando che i 
parametri controllanti la co-precipitazione siano il più omogenei possibile in ogni 
compartimento. I parametri che si sono scelti di utilizzare per la suddivisione sono la 
supersaturazione e la velocità di dissipazione dell’energia cinetica turbolenta. 
 

II. Fluidodinamica 
Un fattore importante nel sistema considerato è la fluidodinamica all’interno del reattore. È 
quindi di fondamentale importanza calcolare il campo di moto nel sistema in esame per poterlo 
utilizzare successivamente accoppiandolo ai meccanismi di coprecipitazione. Per far ciò è 
necessario risolvere l’equazione di continuità e l’equazione di Navier-Stokes, tenendo però 
conto del fatto che all’interno del reattore miscelato le velocità sono tali da generare turbolenza, 

quindi sfruttando la decomposizione di Reynolds, per cui la velocità può essere vista come la 
somma di una velocità media e una fluttuante, è possibile ottenere le equazioni di continuità e 
Navier-Stokes in regime turbolento: 
 
 𝜕𝜌

𝜕𝑡
+
∂(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0 (II.1) 

 ∂(𝜌𝑢𝑖)

𝜕𝑡
+
∂(𝜌𝑢𝑖 𝑢𝑗)

𝜕𝑥𝑗
= −

∂(𝑝)

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(μ (

𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
)) − 𝜌

𝜕

𝜕𝑥𝑗
(𝑢𝑖

′𝑢𝑗
′) + 𝜌𝑔𝑖 (II.2) 

 
La quale non è però un’equazione risolvibile analiticamente, in quanto risente del problema 

della chiusura. Questo problema viene affrontando risolvendo le equazioni per energia cinetica 
turbolenta, definita come: 
 
E per dissipazione turbolenta, definita come: 
 
 

𝑘 =
1

2
tr(⟨𝑢𝑖

′𝑢𝑗
′⟩) (II.3) 

 
𝜀 = 2ν

𝜕𝑢𝑖
′

𝜕𝑥𝑗

𝜕𝑢𝑖
′

𝜕𝑥𝑗
 (II.4) 

 
Le cui equazioni di bilancio sono ottenibili a partire dall’equazione II.2 e considerando la teoria 
di Kolmogorov: 
 
 𝜕(𝜌𝑘)

𝜕𝑡
+
𝜕(𝜌𝑘𝑢𝒊)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
(
μ𝑡
𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
) + μ𝑡 (

𝜕𝑢𝒊
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜌𝜀 (II.5) 

   
 𝜕(𝜌𝜀)

𝜕𝑡
+
𝜕(𝜌𝜀𝑢𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
(
μ𝑡
𝜎𝜀

𝜕𝜀

𝜕𝑥𝑗
) + 𝐶1μ𝑡

𝜀

𝑘
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜌𝐶2
𝜀2

𝑘
 (II.6) 
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In cui la viscosità turbolenta è definita come: 
 
 

μ𝑡 = 𝜌𝐶μ
𝑘2

𝜀
 (II.7) 

 
Le costanti e numeri di Prandtl turbolenti sono determinati empiricamente. Sono di uso comune 
i valori mostrati in tabella I. 
 
Tabella I Valori delle costanti del modello k-eps utilizzate in Ansys Fluent 

 
III. Aspetti chimici 
La co-precipitazione viene condotta in presenza di ammoniaca in quanto la crescita degli 
idrossidi di NMC è dovuta all’equilibrio fra la soluzione di ammoniaca e le particelle di 

idrossido. L’ammoniaca aumenta la solubilità dell’idrossido: 
 
 𝑀(𝑂𝐻)2 + 𝑛𝑁𝐻3 ↔ [𝑀(𝑁𝐻3)𝑛]

2+ + 2𝑂𝐻−  (III.1) 

 
La crescita è quindi dovuta alla dissoluzione di particelle più piccole in favore della crescita di 
quelle più grandi: 

 
 𝑀(𝑂𝐻)2 ↔ 𝑀2+ + 2𝑂𝐻− (III.2)  

 
Gli equilibri e le relative costanti che descrivono il fenomeno sono elencate in tabella 2.2. 
Da questi equilibri si può definire un sistema di equazioni per il calcolo delle concentrazioni 
dei metalli nella soluzione e il successivo calcolo della supersaturazione: 
 
 

𝐶
𝑀𝑖
2+

𝑡𝑜𝑡𝑎𝑙 − [𝑀𝑖
2+] − ∑ 𝑘𝑛

(𝑀𝑖)
[𝑀𝑖

2+][𝑁𝐻3]
𝑛𝑖

𝑛𝑖
(max )

𝑛𝑖=1

= 0         𝑤𝑖𝑡ℎ  𝑖 = 1, 2, 3 (III.3) 

   
 

𝐶𝑁𝐻3
𝑡𝑜𝑡𝑎𝑙 − [𝑁𝐻3] −

𝑘𝑏[𝑁𝐻3]

[𝑂𝐻−]
−∑ ∑ 𝑛𝑖𝑘𝑛

(𝑀𝑖)[𝑀𝑖
2+][𝑁𝐻3]

𝑛𝑖

𝑛𝑖
(𝑚𝑎𝑥)

𝑛𝑖=1

3

𝑖=1

= 0 (III.4) 

   

𝐶1 𝐶2 𝐶μ 𝜎𝜀 𝜎𝑘 
1.44 1.92 0.09 1.0 1.3 
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2∑𝐶

𝑀𝑖
2+

𝑡𝑜𝑡𝑎𝑙

3

𝑖=1

+
𝑘𝑏[𝑁𝐻3]

[𝑂𝐻−]
+

𝑘𝑤
[𝑂𝐻−]

+ [𝑁𝑎+] − 2[𝑆𝑂4
2−] − [𝑂𝐻−] = 0 (III.5) 

   

In cui il termine [𝑁𝑎+] − 2[𝑆𝑂42−] viene definito come concentrazione degli ioni inerti, che 
può essere considerata costante (non intervengono in reazioni) e sarà utile per la risoluzione del 
sistema. 
La supersaturazione, forza spingente della precipitazione, è definita per il sistema come: 
 
 

𝑆 = (
∏[𝑀2+]𝑀𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 [𝑂𝐻−]2

𝐾𝑠𝑝_𝑁𝑀𝐶
)

1
3

 (III.6) 

 
In cui MConcRatio è il rapporto fra la concentrazione del metallo M e quella di metalli totale, 
mentre 𝐾𝑠𝑝_𝑁𝑀𝐶  è definita come: 

 
 𝐾𝑠𝑝_𝑁𝑀𝐶 = (𝐾𝑠𝑝_𝑁𝑖)

𝑁𝑖𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜(𝐾𝑠𝑝_𝑀𝑛)
𝑀𝑛𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜(𝐾𝑠𝑝_𝐶𝑜)

𝐶𝑜𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 (III.7) 

 

Con: 𝐾𝑠𝑝_𝑁𝑖 = 10−15.22 , 𝐾𝑠𝑝_𝑀𝑛 = 10
−12.70 , 𝐾𝑠𝑝_𝐶𝑜 = 10

−14.89. 

 

IV. Bilancio di popolazione 
La funzione densità di popolazione n(L,x,t) rappresenta la probabilità di avere un numero di 
particelle in un determinato intervallo di coordinata interna L (in questo caso lunghezza): 
 

𝑛(𝐿, 𝒙, 𝑡)𝑑𝐿 = 𝑛𝑢𝑚𝑒𝑟𝑜 𝑑𝑖 𝑝𝑎𝑟𝑡𝑖𝑐𝑒𝑙𝑙𝑒 𝑐𝑜𝑛 𝑙𝑢𝑛𝑔ℎ𝑒𝑧𝑧𝑎 𝑓𝑟𝑎 𝐿 𝑒 𝐿 + 𝑑𝐿 
 
Il bilancio di popolazione ne descrive l’evoluzione in un sistema, in quanto è un bilancio del 
numero di particelle in un volume infinitesimo a un tempo t: 

 
 𝜕𝑛(𝐿, 𝒙, 𝑡)

𝜕𝑡
+ ∇ ∙ (𝒖 ∙ 𝑛(𝐿, 𝒙, 𝑡))

= 𝐽(𝑆) −
𝜕

𝜕𝐿
 (𝐺(𝐿) ∙ 𝑛(𝐿, 𝒙, 𝑡)) + 𝐵𝑎𝑔𝑔(𝐿, 𝒙, 𝑡) − 𝐷𝑎𝑔𝑔(𝐿, 𝒙, 𝑡) 

(IV.1) 

 

In cui S è la supersaturazione, 𝐽(𝑆) la velocità di nucleazione, 𝐺(𝐿) la velocità di crescita e 
𝐵𝑎𝑔𝑔(𝐿, 𝒙, 𝑡) e 𝐷𝑎𝑔𝑔(𝐿, 𝒙, 𝑡) le velocità di nascita e morte dovute ad aggregazione. 

Dalla definizione di momento di ordine q: 
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𝑚𝑞(𝒙, 𝑡) = ∫ 𝑛(𝐿, 𝒙, 𝑡) ∙ 𝐿𝑞  𝑑𝐿

+∞

0

 (IV.2) 

𝑞 = 0, 1, 2, 3 
 

Si può scrivere il PBE in termini di momenti, ricavando un’equazione di continuità (momento 
di ordine zero ed equazioni di trasporto per le proprietà medie (Marchisio et al., 2003): 

 
 𝜕𝑚𝑞

𝜕𝑡
+ ∇ ∙ (𝒖 ∙ 𝑚𝑞)

= 𝑥𝑐
𝑞 ∙ 𝐽(𝑆) + ∫ 𝑞 ∙ 𝐿𝑞−1 ∙ 𝐺(𝐿) ∙ 𝑛(𝐿, 𝒙, 𝑡)

+∞

0

 𝑑𝐿

+ ∫  (𝐵𝑎𝑔𝑔(𝐿, 𝒙, 𝑡) − 𝐷𝑎𝑔𝑔(𝐿, 𝒙, 𝑡))𝐿
𝑞𝑑𝐿

+∞

0

 

(IV.3) 

 
In cui xc è la dimensione critica di nucleazione. 
Questo tipo di formulazione presenta però un eccesso di incognite in confronto alle equazioni, 
ed è quindi affetto da un problema della chiusura (Dorao e Jakobsen, 2006). Questo problema 
si affronta con il metodo della quadratura dei momenti (QMOM): 
 
 

𝑚𝑞 =∑𝑤𝑖 ∙ 𝐿𝑖
𝑞

𝑁

𝑖=1

 (IV.4) 

 
E le equazioni dei momenti diventano quindi: 
 
 𝜕𝑚𝑞

𝜕𝑡
+ ∇ ∙ (𝒖 ∙ 𝑚𝑞)

= 𝑥𝑐
𝑞 ∙ 𝐽(𝑆) + 𝑞 ∙∑𝑤𝑖 ∙ 𝐿𝑖

𝑞−1 ∙ 𝐺(𝐿𝑖)

𝑁

𝑖=1

+
1

2
∑𝑤𝑖∑𝑤𝑗(𝐿𝑖

3 + 𝐿𝑗
3)
𝑞
3𝛽𝑎𝑔𝑔

𝑁

𝑗=1

𝑁

𝑖=1

−∑𝑤𝑖𝐿𝑖
𝑞∑𝑤𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝛽𝑎𝑔𝑔 

(IV.5) 

 
A questo punto è necessario trovare i valori dei pesi e dei nodi del metodo di quadratura. Per 
farlo è possibile utilizzare algoritmi consolidati come quello product-difference (PD), Wheeler 
o Wheeler adattivo. 
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V.  Cinetiche di precipitazione 
I principali meccanismi coinvolti sono nucleazione, crescita e aggregazione. 
La nucleazione è la formazione di nuove particelle di precipitato e si distingue in omogenea ed 
eterogenea, a seconda che si verifichi rispettivamente per la sola presenza della 
supersaturazione o per un effetto combinato di supersaturazione e interfacce solide. 
La dipendenza della velocità di nucleazione dalla supersaturazione è molto simile nei due casi, 
differendo nel caso eterogeneo di un fattore f, compreso tra 0 e 1, dipendente dalle proprietà 
dell’interfaccia solida. 
Le equazioni sono le seguenti: 
 
 

𝐽ℎ𝑜𝑚 = 𝐽ℎ𝑜𝑚
∞ exp (−

𝑘

𝑙𝑛2𝑆
) (V.1) 

 
𝐽ℎ𝑒𝑡 = 𝐽ℎ𝑒𝑡

∞ exp (−
𝑓 ∗ 𝑘

𝑙𝑛2𝑆
) (V.2) 

 

In cui le costanti 𝐽ℎ𝑜𝑚/ℎ𝑒𝑡∞  e 𝑘 dipendono dalle proprietà fisiche del sistema e delle sostanze. 

La crescita è il meccanismo per cui le molecole passano dalla soluzione alla superficie delle 
particelle, causandone un aumento di dimensioni. La velocità di crescita può dipendere da due 
diversi fenomeni che avvengono in serie: il trasferimento di materia e l’integrazione 

superficiale. La velocità di crescita è strettamente legata al flusso molare per unità di superficie, 
che per i due fenomeni in serie può essere scritto come (Mersmann, 2001): 
 
 �̇� = 𝑘𝑚𝑡(𝐶𝑏𝑢𝑙𝑘 − 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒) = 𝑘𝑠𝑖(𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝐶𝑒𝑞)

𝑔
 (V.3) 

   
I cui flussi devono essere appunto uguali perché avvengono in serie. 
Infine l’aggregazione è il meccanismo nel quale particelle già esistenti si uniscono, creando 

particelle più grandi. L’aggregazione può essere dovuta a moto browniano e al regime 
turbolento, i cui kernel di aggregazione sono (Gavi et al, 2007): 
 
 

𝑘𝑏𝑚 =
2𝑘𝐵𝑇

3𝜇

(𝐿𝑖 + 𝐿𝑗)
2

𝐿𝑖𝐿𝑗
 (V.4) 

 
𝑘𝑡𝑓 = 1.29√

𝜀

ν
(𝐿𝑖 + 𝐿𝑗)

3
 (V.5) 

 

In cui 𝑘𝐵 è la costante di Boltzmann, 𝑇 la temperatura, 𝜇 la viscosità dinamica,  𝐿𝑖 e 𝐿𝑗 le 
dimensioni delle particelle coinvolte nell’aggregazione, 𝜀 la velocità di dissipazione 
turbolenta e ν la viscosità cinematica. 
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VI. Equazioni di trasporto di specie e momenti 
Le equazioni da risolvere nel sistema in esame, oltre al campo di moto, riguardano il trasporto 
delle specie coinvolte nella precipitazione e il trasporto dei momenti della funzione di 
distribuzione della popolazione, rappresentanti proprietà fisiche del precipitato. 

Le specie di cui si risolve l’equazione di traporto sono cinque: i tre cationi metallici [𝑀2+] 
([𝑁𝑖2+], [𝑀𝑛2+], [𝐶𝑜2+]), l’ammoniaca e le cariche inerti (definite precedentemente come: 

𝐶𝑐𝑎𝑟𝑖𝑐ℎ𝑒 𝑖𝑛𝑒𝑟𝑡𝑖 = [𝑁𝑎+] − 2[𝑆𝑂4
2−]). 

Per gli ioni metallici si ha: 
 𝜕𝐶𝑀2+

𝜕𝑡
+ ∇ ∙ (𝒖𝐶𝑀2+) = 𝑆𝑀2+  (VI.1) 

In cui il termine sorgente 𝑆𝑀2+ rappresenta il meccanismo di precipitazione ed è espresso come: 

 
 𝑆𝑀2+ = −𝑝𝑟𝑒𝑐𝑅𝑎𝑡𝑒 × 𝑀2+𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 (VI.2) 

 

In cui 𝑀2+𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 è il rapporto molare fra il metallo 𝑀2+ e la somma di tutti i metalli, 
mentre 𝑝𝑟𝑒𝑐𝑅𝑎𝑡𝑒 dipende dalla quantità di precipitato formatasi, quindi dipende dal termine 
sorgente del terzo momento (che rappresenta infatti il volume di precipitato generato per unità 
di volume): 
 

𝑝𝑟𝑒𝑐𝑅𝑎𝑡𝑒 = 𝐾𝑣 × (𝑥𝑐
3 ∙ 𝐽(𝑆) +∑(3 × 𝑤𝑗

2

𝑗=1

× 𝐺(𝐿𝑗) × 𝐿𝑗
2)) ×

𝜌𝑐𝑟𝑦𝑠𝑡𝑎𝑙

𝑎𝑀𝑎𝑠𝑠𝐶𝑟𝑦𝑠𝑡𝑎𝑙
 (VI.3) 

Per quanto riguarda ammoniaca e cariche inerti, non ci sono termini sorgente in quanto il primo 
è solo un intermedio della reazione, quindi non si consuma, mentre il secondo non interviene 
affatto nelle reazioni. Le loro equazioni di trasporto sono: 
 
 𝜕𝐶𝑁𝐻3

𝜕𝑡
+ ∇ ∙ (𝒖𝐶𝑁𝐻3) = 0 (VI.4) 

 𝜕𝐶𝑐𝑎𝑟𝑖𝑐ℎ𝑒 𝑖𝑛𝑒𝑟𝑡𝑖
𝜕𝑡

+ ∇ ∙ (𝒖𝐶𝑐𝑎𝑟𝑖𝑐ℎ𝑒 𝑖𝑛𝑒𝑟𝑡𝑖) = 0 (VI.5) 

 
Le equazioni di trasporto dei momenti di ordine q sono invece nella forma: 
 
 𝜕𝑚𝑞

𝜕𝑡
+ ∇ ∙ (𝒖𝑚𝑞) = 𝑆𝑚𝑞

 (VI.6) 

 
In cui il termine sorgente è definito come: 
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𝑆𝑚𝑞

= 𝑥𝑐
𝑞 ∙ 𝐽(𝑆) + 𝑞 ∙∑𝑤𝑖 ∙ 𝐿𝑖

𝑞−1 ∙ 𝐺(𝐿𝑖)

𝑁

𝑖=1

+
1

2
∑𝑤𝑖∑𝑤𝑗(𝐿𝑖

3 + 𝐿𝑗
3)
𝑞
3𝛽𝑎𝑔𝑔

𝑁

𝑗=1

𝑁

𝑖=1

−∑𝑤𝑖𝐿𝑖
𝑞∑𝑤𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝛽𝑎𝑔𝑔 

(VI.7) 

 
Di cui è interessante notare che per q = 3 si ottiene il termine sorgente del momento di ordine 
tre, collegato come visto al termine sorgente dell’equazione di trasporto dei cationi metallici e 
non affetto dai termini di aggregazione, dal momento che questa non varia il volume totale del 
precipitato. 
 

VII. Simulazione CFD 
La geometria del reattore è data da Umicore. Si tratta di un reattore agitato operante in continuo, 
alimentato da ammoniaca, idrossido di sodio e solfati di Nichel, Manganese e Cobalto (questi 
metalli in proporzione 6-2-2, per ottenere un precipitato con la stessa proporzione in metalli).  
Le equazioni che descrivono la fluidodinamica del sistema descritte nel capitolo II non sono 
risolvibili analiticamente e possono essere risolte tramite discretizzazione delle equazioni. Il 
metodo utilizzato da Fluent è quello dei volumi finiti: il dominio viene diviso in piccoli volumi 
(celle) in cui vengono integrate le equazioni fluidodinamiche e risolte grazie ad opportune 
approssimazioni, come per il termine convettivo (viene utilizzato il first order upwind e, per 
maggiore precisione, il second order upwind). L’accoppiamento pressione-velocità viene 
effettutato con l’algoritmo SIMPLE. 
Le celle intorno alle parti in rotazione sono raggruppate in zone, anche loro rotanti alla stessa 
velocità, secondo il modello ‘multiple reference frame’. 
 

VIII. Script Python 
Lo script si propone di risolvere le equazioni che descrivono la co-precipitazione non per ogni 
cella, come avverrebbe effettuando una simulazione CFD-PBE, portando alla soluzione del 
sistema di equazioni per centinaia di migliaia di celle, ma per qualche decina di compartimenti, 
raggruppamenti di celle generati utilizzando lo strumento Reactor Network Model di ANSYS 
Fluent e le informazioni ad essi legati estratti tramite un’opportuna User Defined Function 

(UDF), riducendo considerevolmente tempi e costi computazionali. 
Questi compartimenti hanno il comportamento di reattori CSTR e sono interconnessi: le 
equazioni risolte quindi sono quelle della precipitazione (Eq.s VI.1, VI.4, VI.5 E VI.6) in cui 
compaiono anche termini dovuti ai flussi fra i compartimenti: 
 
 𝑑𝐶

𝑀2+
𝑗

𝑑𝑡
=∑

𝑄𝑖,𝑗

𝑉𝑗
𝐶𝑀2+
𝑖

𝑖

−∑
𝑄𝑗,𝑖

𝑉𝑗
𝐶
𝑀2+
𝑗

𝑖

+ 𝑆
𝑀2+
𝑗  (VIII.1) 

 𝑑𝐶𝑁𝐻3
𝑗

𝑑𝑡
=∑

𝑄𝑖,𝑗

𝑉𝑗
𝐶𝑁𝐻3
𝑖

𝑖

−∑
𝑄𝑗,𝑖

𝑉𝑗
𝐶𝑁𝐻3
𝑗

𝑖

 
(VIII.2) 
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 𝑑𝐶𝑖𝑛𝑒𝑟𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑠
𝑗

𝑑𝑡
=∑

𝑄𝑖,𝑗

𝑉𝑗
𝐶𝑖𝑛𝑒𝑟𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑠
𝑖

𝑖

−∑
𝑄𝑗,𝑖

𝑉𝑗
𝐶𝑖𝑛𝑒𝑟𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑠
𝑗

𝑖

 
(VIII.3) 

 𝑑𝑚𝑘
𝑗

𝑑𝑡
=∑

𝑄𝑖,𝑗

𝑉𝑗
𝑚𝑘
𝑖

𝑖

−∑
𝑄𝑗,𝑖

𝑉𝑗
𝑚𝑘
𝑖

𝑖

+ 𝑆𝑚𝑘

𝑗  
(VIII.4) 

 
I compartimenti vengono quindi creati utilizzando il tool sopra citato; a questo tool devono 
essere fornite due informazioni: il criterio utilizzato per dividere il reattore, ossia una Custom 
Field Function il cui campo nel dominio viene utilizzato per definire i compartimenti, e il 
numero di compartimenti desiderati. 
Una volta creati, si utilizza una UDF per estrarre le informazioni sui compartimenti: i dati 
relativi ai volumi dei compartimenti vengono scritti nel file react_zone_ave, quelli relativi ai 
flussi fra i compartimenti nel file react_zone_flux e quelli relativi a flussi in ingresso e in uscita, 
con relativi compartimenti e concentrazioni di ingresso, vengono scritti nel file 
react_zone_flux_toBoundary. Da queste informazioni in input, lo script risolve le equazioni 
VIII.1, VIII.2, VIII.3 E VIII.4 per ogni compartimento, arrivando a trovare quindi le 
concentrazioni e i momenti allo stazionario di ogni compartimento. Queste equazioni come si 
può vedere sono scritte come dipendenti dal tempo, in quanto per risolverle viene utilizzata un 
risolutore di equazioni differenziali ordinarie presente nella libreria Scipy, che risolve un 
problema ai valori iniziali. Essendo la soluzione ricercata quella allo stazionario, è sufficiente 
calcolare la soluzione nel tempo finché non viene raggiunto uno stazionario. 
Il file init_run legge tutti questi dati da questi file e li immagazzina in vettori, dopodiché dal 
file caseSetup legge le impostazioni del risolutore di equazioni differenziali, le impostazioni 
per l’algoritmo di Newton-Raphson, il numero di nodi utilizzato nel metodo di quadratura e 
altri dati utili come la densità dei cristalli. 
Grazie a queste informazioni, nel file NiMnCoHydroxidePrec viene utilizzato il risolutore di 
sistemi di equazioni differenziali ordinarie solve_ivp, a cui bisogna fornire le equazioni, i cui 
termini cambiano nel tempo e devono essere aggiornati. 
Le equazioni vengono aggiornate calcolando la supersaturazione tramite il file 
ChemicalEquilibria.py, a partire dalla soluzione delle concentrazioni del tempo precedente. 
Questo file si avvale dell’algoritmo di Newton-Raphson modificato per risolvere il sistema di 
equazioni che descrivono l’equilibrio delle specie (Eq.s III.3, III.4 E III.5) e poter così calcolare 
la supersaturazione (Eq. III.6). 
Dopodiché vengono calcolati pesi e nodi del metodo di quadratura dei momenti con il file 
MomentCalc.py, che utilizza l’algoritmo Wheeler adattivo. A questo punto si possono utilizzare 
i modelli cinetici presenti nei relativi file  (growth.py, nucleateSize.py, nucleation.py, 
aggrEfficency.py and aggregation.py) per calcolare le cinetiche di precipitazione.  
Con ciò, è possibile definire per ogni compartimento le equazioni che ne descrivono 
l’evoluzione nel tempo, considerando anche i flussi fra i compartimenti che trasportano sia 
concentrazioni che momenti. 
Infine il file RunPrecSolver.py è il quello che viene eseguito per avviare i calcoli. Raccoglie 
tutti i passaggi precedentemente descritti e li richiama nell’ordine giusto, dando alle funzioni 

gli input di cui hanno bisogno e arrivando così a calcolare la soluzione. 
Altri file di supporto sono presenti, con funzioni secondarie di snellimento dello script, oppure 
con funzioni di post-processing, come creazioni di grafici e altro. 
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IX. Risultati CFD 
Dalla simulazione CFD vengono calcolati i campi di moto e di turbolenza del reattore. Il campo 
di moto risulta simmetrico rispetto all’asse di rotazione. Il campo di moto garantisce la 
dispersione delle particelle precipitate e un buon grado di miscelazione dei reagenti in ingresso. 
 

 
Figura I Valori di velocità (m/s) nel piano contenente l’ingresso di NH3  
 
Il valore di velocità di dissipazione dell’energia cinetica turbolenta media nel reattore è molto 

simile alla potenza utilizzata da Umicore per agitare il reattore. 
 

 
X. Risultati dello script 
 Sono state esplorate tre strategie diverse per la divisione in compartimenti del reattore: 

• Divisione utilizzando la velocità di dissipazione dell’energia cinetica turbolenta 
• Divisione utilizzando la supersaturazione 
• Divisione utilizzando entrambi i parametri precedenti 

Utilizzando la velocità di dissipazione dell’energia cinetica turbolenta si nota che vengono 

formati compartimenti molto grandi agli ingressi: questo comporta una mancata descrizione 
degli alti gradienti di concentrazione che ci sono in prossimità degli ingressi. Questi gradienti 

Metals 

NH
3
 

NaOH 
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vengono in questo modo ‘appiattiti’ in un volume (perfettamente miscelato) molto grande. In 

questo modo l’alto gradiente di supersaturazione che sarebbe presente non viene considerato, 
comportando una sottostima di nucleazione e crescita delle particelle. 
Si è pensato quindi di utilizzare la supersaturazione. Il campo di questa viene ricavato da una 
simulazione in cui il PBM viene direttamente risolto da Ansys Fluent in ogni cella. Questa 
simulazione ancora non è giunta a convergenza, ma il campo di supersaturazione è consistente 
con quello previsto allo stazionario. Utilizzando la sola supersaturazione invece i 
compartimenti che vengono creati sono piccoli abbastanza da descrivere in modo appropriato 
il gradiente di concentrazione agli ingressi, ma non si creano compartimenti che suddividano le 
zone in base alla velocità di dissipazione dell’energia cinetica turbolenta, termine che compare 

nel calcolo della velocità di aggregazione, il che può portare a una cattiva stima dei termini di 
aggregazione. 
Infine si è scritto un UDF per generare un campo che consideri i valori di supersaturazione 
vicino all’ingresso e i valori di dissipazione nel resto del reattore. In questo modo si son potuti 
creare sia i compartimenti vicino agli ingressi, sia quelli che descrivono la variazione della 
dissipazione (figura III). 

 
Figura II Compartimenti (70) creati con l’UDF in un piano che contiene l’ingresso di NaOH 
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Aumentando il numero di compartimenti si è visto che la presenza di piccoli compartimenti 
vicino agli ingressi permette una buona stima del gradiente della supersaturazione e quindi di 
nucleazione e crescita (figura IV), con risultati relativi ai momenti del PSD con ordini di 
grandezza ragionevoli (tabella III).  
 

Outlet kmol/m3 

Ni2+  4,94x10-7 

Mn2+ 1,65x10-7 

Co2+ 1,65x10-7 

NH3 8,74x10-1 

m0 6,7x10+12 

m1 3,98x10+7 

m2 1,17x10+3 

m3 5,57x10-2 

SMD 4,8x10-5 

Tabella II Concentrazioni, momenti e SMD (Sauter Mean Diameter) all’uscita del modello a 

70 compartimenti creati con l’UDF 
 
Al tempo stesso si è visto che l’aggregazione avviene solo nei compartimenti vicino all’ingresso 

dei metalli, compartimenti in cui la velocità di crescita è sufficientemente elevata da ottenere 
un valore di efficienza di aggregazione sensibilmente diverso da zero (figura V). 
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Figure III Supersaturazione dei 70 compartimenti creati dividendo il reattore con l’UDF 
 

Figure IV Contributo all’aggregazione del momento di ordine zero nei 70 compartimenti creati 
dividend il reattore con l’UDF (comportamento simile per gli altri momenti) 
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XI. Conclusioni 
Nella presente Tesi è stato studiato un modello a compartimenti per la risoluzione delle 
equazioni che descrivono la precipitazione di idrossidi di Nichel, Manganese e Cobalto in un 
reattore agitato in condizioni stazionarie. 
Questo comporta una diminuzione dei costi computazionali e dei tempi derivanti dal risolvere 
utilizzando ANSYS Fluent questo sistema in ogni cella del dominio (simulazione CFD-PBM): 
infatti quest’ultima richiede oltre a un’ampia potenza di calcolo, dei tempi che possono essere 

nell’ordine di grandezza delle settimane, mentre utilizzando il modello a compartimenti, con 

un solo processore, i tempi si riducono a circa 12 ore con 20 compartimenti, fino a 48-72 ore 
con 70 compartimenti. 
Le equazioni del modello a compartimenti vengono risolte utilizzando uno script scritto in 
linguaggio Python.  
Questo script ha bisogno dei dati dei flussi, volumi e proprietà medie dei compartimenti. Questi 
compartimenti vengono creati utilizzando un tool di ANSYS Fluent, il Reactor Network Model, 
che divide il dominio in compartimenti utilizzando uno o più parametri. Una volta diviso il 
dominio, tramite l’utilizzo di un UDF si estraggono i dati necessari allo script. 
Cruciale per l’attendibilità dei risultati è il criterio della divisione del reattore in compartimenti. 
Utilizzando solamente la velocità di dissipazione dell’energia cinetica turbolenta, i 

compartimenti creati agli ingressi sono troppo grandi e descrivono male il gradiente di 
concentrazione e di supersaturazione, portando a una sottostima di velocità di nucleazione e di 
crescita. 
Utilizzando la sola supersaturazione per dividere il reattore, il campo di velocità di dissipazione 
non viene considerato, fatto che può portare a una stima errata della velocità di aggregazione. 
Utilizzando la supersaturazione agli ingressi e la velocità di dissipazione altrove (tramite 
un’opportuna UDF) vengono creati piccoli compartimenti agli ingressi e il resto del reattore 
viene diviso secondo la velocità di dissipazione. 
Analizzando i termini dell’aggregazione, si può notare che la divisione tramite la velocità di 

dissipazione non è determinante dal momento che l’aggregazione non è trascurabile solo nei 

compartimenti più vicini all’ingresso dei metalli. Con i parametri cinetici attuali quindi la 
velocità di crescita ha un grande impatto sull’efficienza di aggregazione, facendo in modo che 

solo i compartimenti con alta velocità di crescita abbiano un’efficienza sensibilmente diversa 
da zero. Quindi la creazione di compartimenti di piccole dimensioni agli ingressi è il fattore più 
influenzante i risultati. 
Un metodo per la creazione dei compartimenti e l’importanza dei compartimenti di ingresso 

sono stati definiti. Prospettive future del lavoro sono un confronto con i risultati di una 
simulazione CFD-PBM risolta in ogni cella e parallelizzazione dello script per maggiori 
prestazioni. 
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1. Introduction 
 
Lithium-ion batteries are rechargeable energy storage devices whose use is widespread in many 
fields (for example in the electronics and automobile industry). The functioning of these 
batteries consists in lithium ions that during discharge move, through an electrolyte, from the 
negative electrode to the positive electrode. 
These batteries show high energy and power density, they are not affected by memory effect, a 
longer cycle life duration (relatively to the others rechargeable batteries) and a low self-
discharge. The technology development keeps requiring from these batteries an enhanced 
capacity and higher energy density, but at the same time a reduced weight and size. This is 
dependent on the cathode composition. 
Usually the negative electrode is made by graphite and the positive electrode is made by a 
layered compound (rather than spinel or polyanion oxides, Manthiram, 2020). The type of 
battery often takes its name from the cathode material. 
One of the more performing types of Lithium-ion battery is the NMC battery, that stands for 
Nickel-Manganese-Cobalt, since the cathode has the form of: 
LiNixMnyCozO2 with x+y+z=1 
This type of cathode has lower costs, less toxicity and higher capacity in comparison to the 
single metal oxides (LiCoO2, LiMnO2 and LiNiO2). The NMC material is subjected to 
irreversible capacity loss, accelerated by electrolyte decomposition at the electrode-electrolyte 
interface: the layer of decomposition product is called CEI (cathode-electrolyte interphase) at 
cathode and SEI (solid-electrolyte interphase) at anode (Fang et al., 2018). These layers hinder 
lithium transport at the interfaces.  
The electrochemical characteristics of this cathode depend highly on how the synthesis is 
conducted. There are many synthesis techniques, but using a coprecipitation reaction is the most 
common since creates homogeneous cation distribution in their layered structures (van Bommel 
and Dahn, 2009). 
The parameters that should be monitored, because of their involvement in the performance, are 
particle size, size distribution, internal porosity and cation mixing in structure (Barai et al, 2019; 
Li et al., 2011). As mentioned, these parameters depend on the synthesis performed. 
The synthesis is divided in two steps (Barai et al, 2019): 
1) co-precipitation: this step is the one covered in this Thesis, and consists in a co-precipitation 
process that produces the precursor NixMnyCoz(OH)2 (NMC hydroxide) from solutions of 
Lithium, Manganese and Cobalt sulfates under the presence of ammonia. The parameters 
mentioned above are determined during this step; 
2) calcination: the precursor is subjected to oxidation and lithiation in order to obtain 
LiNixMnyCozO2. 
 
The co-precipitation is a complex process that occurs at several scales, from atoms to chemical 
reactors. It is obviously of interest to predict the characteristic of the precursor particles after 
the process, in order to manipulate the operating conditions for the improvement of the 
performance of the battery. This can be easily done with a computational model based on 
Computational Fluid Dynamics (CFD). In this thesis the work focused on a specific reactor 
geometry (and the corresponding computational mesh) provided by the Umicore company 
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partner of Politecnico di Torino of the European Project Simdome. For confidentiality reasons 
some details of the geometry will not be revealed and some figures will be censored. 
There are four main phenomena that are considered to simulate the co-precipitation in the 
reactor: the fluid dynamic of the coprecipitation reactor, described by solving the Navier-Stokes 
equations, the mixing of the involved reactants, described by solving the transport equations of 
the species involved, the chemistry of the system, described by solving the corresponding 
chemical equilibria and the evolution of the formed particles of NMC hydroxides, described by 
solving the corresponding population balance equation, PBE (Gavi et al.,2007).  
The fluid dynamic of the coprecipitation reactor is predicted with the commercial CFD code 
ANSYS Fluent. Since the flow is turbulent, a turbulence model, namely the standard k-ε model, 
was employed. Moreover as in the case considered the fluid is agitated by impellers, the 
multiple reference frame (MRF) was employed. 
The transport equations of the involved species are written for the metal cations, for the 
ammonia and for the inert charges. These equations assume that these species move with water 
and in the case of metal ions have a source term that represents the consumption of reactants 
due to the precipitation mechanism. 
The chemistry mechanisms involved in the phenomena have been speculated by van Bommel 
and Dahn (2009), who have hypothesized that growth of the particles depends on an 
instantaneous equilibrium between the metal hydroxide and the ammonia solution, and they 
wrote the equilibria equations that determine the concentrations of the species in the reactor. 
The PBE was solved in terms of transport equations of the moments of the particle size 
distribution. The closure problem is overcome by using the quadrature method of moments 
(QMOM), in which weights and nodes are calculated using an appropriate algorithm. These 
equations need a known kinetic law, namely nucleation, growth and aggregation rates. 
All these additional equations can be coupled with the equation for the flow field by using the 
user-defined functions of ANSYS Fluent and resulting in the so-called CFD-PBE model. 
However, repeating all these calculations in every cell of the computational domain leads to 
high computational costs. The purpose of this Thesis is therefore to study and develop a faster 
and cheaper compartment model, in order to carry out these simulations in reasonable times. 
This is reached by using the Reactor Network tool of ANSYS Fluent, that divides the domain 
in interconnected volumes. In this way the additional equations of the co-precipitation process 
can be solved in every volume, considering each of them as CSTR reactors. The solution is 
calculated now no more in a huge number of cells, but in a very small number of compartments. 
The computational cost scales with the size of the system and this can be reduced from the 
initial number of cells (approximately 1 million) to the final number of compartments (order of 
magnitude of the tens). All the additional equations are solved via an efficient computer code 
written in Python. 
The division into compartments can not be done in a random way, it must be done so that the 
relevant features in the precipitation are as homogeneous as possible (in each compartment).  
In order to achieve that, both supersaturation and turbulent dissipation rate, which are the most 
important parameters in precipitation kinetics, are used to divide in compartments the reactor. 
The thesis is structured as follows: 
In chapter 1 a general introduction to the topic of the Thesis and its purpose is made. 
In chapter 2 the theory of the four phenomena involved is described. 
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In chapter 3 the models and tools used in Fluent to reach the results, the setup of the simulations 
and the functioning of the written script are described. 
In chapter 4 the results obtained by the CFD simulations and by the compartment model are 
described. 
In chapter 5 the main conclusions and the future perspectives are described. 
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2. Theory and fundamentals 
 

2.1 Fluid-dynamics  
2.1.1 Governing equations 
The fluid dynamics in the coprecipitation reactor is predicted by solving the continuity and 
Navier-Stokes equations for an incompressible fluid, namely water. 
The continuity equation (conservation of mass) reads as follows: 
 
 𝜕𝜌

𝜕𝑡
+
∂(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0 (2.1) 

 
Whereas the conservation of momentum equation (or Navier-Stokes equation) as follows: 
 
 ∂(𝜌𝑢𝑖)

𝜕𝑡
+
∂(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

∂(𝑝)

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 (2.2) 

 
In which the term: 
 
 

𝜏𝑖𝑗 = (μ(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
μδ𝑖,𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

) (2.3) 

 
is called deviatoric stress tensor and represents the momentum flux transport due to molecular 
phenomena. In this equation μ is the dynamic viscosity, a physical property of the specie that 
can be interpreted as the resistance placed by the fluid to deformation and δ𝑖,𝑗 is the Kronecker 
delta, a function equal to zero when 𝑖 ≠ 𝑗 and equal to one when 𝑖 = 𝑗. 
Equations (2.1) and (2.2) can be simplified considering the fluid incompressible and Newtonian 
and flowing under steady-state conditions. The time derivatives terms can be neglected and the 
density is considered constant on the domain, resulting in: 
 
 ∂(𝑢𝑖)

𝜕𝑥𝑖
= 0 (2.4) 

 
𝑢𝑗 ∙

𝜕𝑢𝑖
𝜕𝑥𝑗

= −
1

𝜌

∂(𝑝)

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(ν
𝜕𝑢𝑖
𝜕𝑥𝑗

) + 𝑔𝑖 
(2.5) 

 
We can see that the deviatoric stress tensor is reduced to ∇ ∙ (ν ∇𝐮), since is first applied the 
Newton’s law and then this is simplified by the incompressible hypothesis. The term ν is called 
kinematic viscosity and is equal to the ratio between the dynamic viscosity and the density of 
the fluid.  
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2.1.2 Equations for turbulent flows 
The equations described in the previous section are valid for flows under the laminar regime, 
i.e. for flows with low Reynolds number (Re). 
If the Re is greater than a critical value (i.e. 2100 for flows in pipes) the condition of the flow 
cannot be considered laminar due to its chaotic behaviour and it is considered turbulent. The 
equations of the previous chapter can no more describe correctly this kind of regime because 
turbulent flows are characterized by the fluctuating motions of the fluid. These fluctuations can 
be modelled using the Reynolds decomposition: 
 
 𝑢𝑖 = 𝑢𝑖 + 𝑢𝑖

′ (2.6) 

 

In which 𝒖𝒊 is decomposed in the sum of a mean value 𝒖𝒊 and a fluctuating value 𝒖𝒊′. In this 
way it is possible to write the continuity and momentum balance equations (3.1) and (3.2) for 
the turbulent regime: 
 
 𝜕𝜌

𝜕𝑡
+
∂(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0 (2.7) 

 ∂(𝜌𝑢𝑖)

𝜕𝑡
+
∂(𝜌𝑢𝑖  𝑢𝑗)

𝜕𝑥𝑗
= −

∂(𝑝)

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(μ(

𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
)) − 𝜌

𝜕

𝜕𝑥𝑗
(𝑢𝑖

′𝑢𝑗
′) + 𝜌𝑔𝑖 (2.8) 

 
As it is possible to see the continuity equation is identical to the equation under laminar 
conditions (equation 2.1), but instead of 𝑢𝑖 the time averaged 𝑢𝒊 is used instead. The same can 
be stated for the Navier-Stokes equation with the difference that now the additional term: 
𝜌

𝜕

𝜕𝑥𝑗
(𝑢𝑖

′𝑢𝑗
′) appears. This is known as Reynold stress tensor, it is constituted by the fluctuating 

velocities and represents the momentum transport caused by turbulent fluctuations (Bird et al, 
2002). This term is the cause of the closure problem present in turbulent models: the term 
𝜌

𝜕

𝜕𝑥𝑗
(𝑢𝑖

′𝑢𝑗
′) is a complicated function of unknown variable and any attempt to write it in terms 

of other variables will result in equations containing the third order term 𝑢𝑖′𝑢𝑗′𝑢𝑘′ . Therefore 
these equations can be solved with empirical models such as the one described in next section. 
 
 
2.1.3 Standard k-ε model 
The standard k-ε model is a second order model that has been proposed by Launder and 
Spalding (1973) and, as mentioned before, is used in computational fluid dynamics to deal with 
the closure problem of turbulence equations. 
The model solves the transport equation for the turbulent kinetic energy, defined as: 
 
 

𝑘 =
1

2
tr(⟨𝑢𝑖

′𝑢𝑗
′⟩) (2.9) 
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For which it is possible to derive its balance equation, from Eq. (2.8): 
 
 𝜕(𝜌𝑘)

𝜕𝑡
+
𝜕(𝜌𝑘𝑢𝒊)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
(
μ𝑡
𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
) + μ𝑡 (

𝜕𝑢𝒊
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜌𝜀 (2.10) 

 

In which the generation of turbulent kinetic energy: μ𝑡 (
𝜕𝑢𝒊

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
)
𝜕𝑢𝑖

𝜕𝑥𝑗
, occurring at the large 

scale is compensated by the turbulent dissipation rate, ε, occurring at the small scale an defined 
as follows: 
 

𝜀 = 2ν
𝜕𝑢𝑖

′

𝜕𝑥𝑗

𝜕𝑢𝑖
′

𝜕𝑥𝑗
 (2.11) 

 
Considering, from Kolmogorov theory, the relationship between k and ε in the energy 

containing range for eddies of typical dimension L: 
 

𝜀 =
𝑘
3
2

𝐿
 

(2.12) 

 
A turbulent dissipation rate balance equation can be written, using some physical consideration, 
in a form similar to that of Eq. (2.10): 
 
 𝜕(𝜌𝜀)

𝜕𝑡
+
𝜕(𝜌𝜀𝑢𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
(
μ𝑡
𝜎𝜀

𝜕𝜀

𝜕𝑥𝑗
) + 𝐶1μ𝑡

𝜀

𝑘
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜌𝐶2
𝜀2

𝑘
 (2.13) 

 

The term μ𝑡 (turbulent or eddy viscosity) is calculated with the following equation: 

 
 

μ𝑡 = 𝜌𝐶μ
𝑘2

𝜀
 (2.14) 

 

The constants seen in the equations above (𝐶1, 𝐶2, 𝐶μ and the turbulent Prandtl numbers  
𝜎𝜀 and 𝜎𝑘) have been determined empirically and their values are reported in table 2.1  (ANSYS 
Fluent Theory Guide 15, 2013). 
Table 2.1. Values of the constants appearing in the k-eps model as implemented in Ansys Fluent. 

 
2.2 Coprecipitation and chemical equilibria 
The synthesis of NMC hydroxides by a coprecipitation reaction is carried out in presence of 
ammonia. This is done because it has been showed that the growth of hydroxide particles is due 

𝐶1 𝐶2 𝐶μ 𝜎𝜀 𝜎𝑘 
1.44 1.92 0.09 1.0 1.3 



 25 

to the equilibrium between metal hydroxide particles and aqueous ammonia solution (van 
Bommel and Dahn, 2009); with this mechanism, aqueous ammonia increases the solubility of 
the metal hydroxide, as shown in the following equilibrium: 
 
 𝑀(𝑂𝐻)2 + 𝑛𝑁𝐻3 ↔ [𝑀(𝑁𝐻3)𝑛]

2+ + 2𝑂𝐻−  (2.15) 

 
Therefore the reaction leading to the growth of the particles of interest is described by the 
dissolution of the metal hydroxide, which is improved by the presence of aqueous ammonia, 
and recrystallization mechanism. So smaller particles dissolve: 
 
 𝑀(𝑂𝐻)2 ↔ 𝑀2+ + 2𝑂𝐻− (2.16) 

 
in order to make larger particles grow. 
The description of the equilibria acting during the coprecipitation process, reported in table 2.2, 
coupled with the mass balance of the species (see 2.2.2), is necessary in order to calculate the 
equilibrium concentrations of the species in solution and the resulting supersaturation. The 
reactions considered are the coordination of ammonia to the metal ions, the base dissociation 
constant of aqueous ammonia, the solubility of the metal hydroxide and the water dissociation 
constant. 
Table 2.2. Equilibria reactions and reaction constants in coprecipitation 

Equilibrium reaction Ni 
(log K) 

Mn 
(log K) 

Co 
(log K) 

𝑀2+ + 𝑁𝐻3 ↔ [𝑀(𝑁𝐻3)]
2+ 2.81 1.00 2.10 

𝑀2+ + 2𝑁𝐻3 ↔ [𝑀(𝑁𝐻3)2]
2+ 5.08 1.54 3.67 

𝑀2+ +  3𝑁𝐻3 ↔ [𝑀(𝑁𝐻3)3]
2+ 6.85 1.7 4.78 

𝑀2+ + 4𝑁𝐻3 ↔ [𝑀(𝑁𝐻3)4]
2+ 8.12 1.3 5.53 

𝑀2+ + 5𝑁𝐻3 ↔ [𝑀(𝑁𝐻3)5]
2+ 8.93 - 5.75 

𝑀2+ + 6𝑁𝐻3 ↔ [𝑀(𝑁𝐻3)6]
2+ 9.08 - 5.14 

𝑁𝐻3 + 𝐻2𝑂 ↔ 𝑁𝐻4
+ + 𝑂𝐻− -4.8 -4.8 -4.8 

𝑀(𝑂𝐻)2 ↔ 𝑀2+ + 2𝑂𝐻−  -15.22 -12.70 -14.89 

𝐻2𝑂 ↔ 𝐻+ + 𝑂𝐻− -14 -14 -14 

 

2.2.1 Supersaturation 
Supersaturation is the driving force for coprecipitation and it is needed in order to obtain a solid 
phase from a saturated solution. 
Supersaturation in this system is defined as follows: 
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𝑆 = (

∏[𝑀2+]𝑀𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 [𝑂𝐻−]2

𝐾𝑠𝑝_𝑁𝑀𝐶
)

1
3

 (2.17) 

 
 

In which  [𝑀2+] is the concentration of the metal cation, MConcRatio is the fraction of the 
metal cation concentration on the overall metal cations concentration: 
 
 

𝑁𝑖𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 =  
[𝑁𝑖2+]

∑[𝑀2+]
 (2.18) 

   
 

𝑀𝑛𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 =  
[𝑀𝑛2+]

∑[𝑀2+]
  

(2.19) 
 
 

 
𝐶𝑜𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 =  

[𝐶𝑜2+]

∑[𝑀2+]
 

 

(2.20) 

 

so the term  ∏[𝑀2+]𝑀𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 is the product of the three terms (one for every metal cation),  
[𝑂𝐻−]2 is the concentration of hydroxide anions and 𝐾𝑠𝑝_𝑁𝑀𝐶 is defined as: 

 
 𝐾𝑠𝑝_𝑁𝑀𝐶 = (𝐾𝑠𝑝_𝑁𝑖)

𝑁𝑖𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜(𝐾𝑠𝑝_𝑀𝑛)
𝑀𝑛𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜(𝐾𝑠𝑝_𝐶𝑜)

𝐶𝑜𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 (2.21) 

 

With: 𝐾𝑠𝑝_𝑁𝑖 = 10−15.22 , 𝐾𝑠𝑝_𝑀𝑛 = 10
−12.70 , 𝐾𝑠𝑝_𝐶𝑜 = 10

−14.89. 

 

2.2.2 Equilibrium equations and cations balance 
The supersaturation can be calculated only if the equilibrium equations are solved. The 
equations useful for this purpose are the equations from the equilibrium of the reactions seen in 
section 2.2: 
Table 2.3 Equilibria equations in coprecipitation 

Reaction Equilibrium 

𝑀𝑖
2+ + 𝑛𝑁𝐻3 ↔ [𝑀𝑖(𝑁𝐻3)𝑛]

2+ 𝑘𝑛
(𝑀𝑖)

=
[𝑀𝑖(𝑁𝐻3)𝑛]

2+

[𝑀𝑖
2+][𝑁𝐻3]𝑛
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𝑁𝐻3 +𝐻2𝑂 ↔ 𝑁𝐻4
+ + 𝑂𝐻− 𝑘𝑏 =

[𝑁𝐻4
+][𝑂𝐻−]

[𝑁𝐻3]
 

𝐻2𝑂 ↔ 𝐻+ + 𝑂𝐻− 𝑘𝑤 = [𝐻+][𝑂𝐻−] 

 
In the first row ∑ 𝑛𝑖

(𝑚𝑎𝑥)3
𝑖=1  equations, i.e. the sum on every metal of the maximum number of 

complexes that can afford (six for Nickel and Cobalt, four for Manganese). 
These equations are coupled with the mass balances involving total concentrations: 
 
 

𝐶
𝑀𝑖
2+

𝑡𝑜𝑡𝑎𝑙 = [𝑀𝑖
2+] + ∑ [𝑀𝑖(𝑁𝐻3)𝑛𝑖]

2+         𝑤𝑖𝑡ℎ  𝑖 = 1, 2, 3

𝑛𝑖
(max )

𝑛𝑖=1

 (2.22) 

 
These are three equations (one for every metal ion) that show that the total concentration of the 
metal ion is given by the sum of the concentration of the dissolved ion and the concentration of 
the ions complexed by ammonia.  
 
 

𝐶𝑁𝐻3
𝑡𝑜𝑡𝑎𝑙 = [𝑁𝐻3] + [𝑁𝐻4

+] +∑ ∑ 𝑛𝑖[𝑀𝑖(𝑁𝐻3)𝑛𝑖]
2+

𝑛𝑖
(max )

𝑛𝑖=1

3

𝑖=1

 (2.23) 

 
This equation shows that the total ammonia is given by the sum of the concentrations of 
ammonia, ammonium ion and the ammonia complexing the metal ions. 
The last equation needed is the charge balance: 
 
 

2∑𝐶
𝑀𝑖
2+

𝑡𝑜𝑡𝑎𝑙

3

𝑖=1

+ [𝑁𝐻4
+] + [𝐻+] + [𝑁𝑎+] − 2[𝑆𝑂4

2−] − [𝑂𝐻−] = 0 (2.24) 

   

The term [𝑁𝑎+] − 2[𝑆𝑂42−] is very useful, since represents the charge of inert ions, which is a 
constant in the system, defined only by the inlet conditions: 𝑁𝑎+ enter only with sodium 
hydroxide and 𝑆𝑂42− with the metals sulfates, and both ions do not intervene in any reaction. 
All these equations can be rearranged in order to write only equations as a function of five 
unknowns: [𝑀𝑖

2+] ([𝑁𝑖2+], [𝑀𝑛2+], [𝐶𝑜2+]), [𝑁𝐻3], [𝑂𝐻−]. 

We obtain five equations for five unknowns: 
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𝐶
𝑀𝑖
2+

𝑡𝑜𝑡𝑎𝑙 − [𝑀𝑖
2+] − ∑ 𝑘𝑛

(𝑀𝑖)
[𝑀𝑖

2+][𝑁𝐻3]
𝑛𝑖

𝑛𝑖
(max )

𝑛𝑖=1

= 0         𝑤𝑖𝑡ℎ  𝑖 = 1, 2, 3 (2.25) 

   
 

𝐶𝑁𝐻3
𝑡𝑜𝑡𝑎𝑙 − [𝑁𝐻3] −

𝑘𝑏[𝑁𝐻3]

[𝑂𝐻−]
−∑ ∑ 𝑛𝑖𝑘𝑛

(𝑀𝑖)[𝑀𝑖
2+][𝑁𝐻3]

𝑛𝑖

𝑛𝑖
(𝑚𝑎𝑥)

𝑛𝑖=1

3

𝑖=1

= 0 

 
(2.26) 

   
 

2∑𝐶
𝑀𝑖
2+

𝑡𝑜𝑡𝑎𝑙

3

𝑖=1

+
𝑘𝑏[𝑁𝐻3]

[𝑂𝐻−]
+

𝑘𝑤
[𝑂𝐻−]

+ [𝑁𝑎+] − 2[𝑆𝑂4
2−] − [𝑂𝐻−] = 0 

 
(2.27) 

   
This is a system of five non-linear equation which can be solved by using for example the 
Newton-Rapson method. 
 

2.3 Population balance equation and closure problem 
The number density function n(L,x,t) or particle size distribution (PSD) represents the 
probability of having a number of particles in a range of internal coordinate (the particle size L 
in this case): 
 

𝑛(𝐿, 𝒙, 𝑡)𝑑𝐿 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐿 𝑎𝑛𝑑 𝐿 + 𝑑𝐿 

 
The evolution of the PSD can be described by the population balance equation (PBE). The PBE 
is the balance of the number of particles in an infinitesimal volume, at a certain time, which are 
characterized by a specific particle size. The PBE reads as follows:  
 
 𝜕𝑛(𝐿, 𝒙, 𝑡)

𝜕𝑡
+ ∇ ∙ (𝒖 ∙ 𝑛(𝐿, 𝒙, 𝑡))

= 𝐽(𝑆) −
𝜕

𝜕𝐿
 (𝐺(𝐿) ∙ 𝑛(𝐿, 𝒙, 𝑡)) + 𝐵𝑎𝑔𝑔(𝐿, 𝒙, 𝑡) − 𝐷𝑎𝑔𝑔(𝐿, 𝒙, 𝑡) 

(2.28) 

 

In which S is the supersaturation, 𝐽(𝑆) is the nucleation rate, 𝐺(𝐿) is the molecular growth rate 
and 𝐵𝑎𝑔𝑔(𝐿, 𝒙, 𝑡) and 𝐷𝑎𝑔𝑔(𝐿, 𝒙, 𝑡) are birth and death rates due to aggregation. 

Nano-particles suspended in fluids moves with the fluids since their Stokes number values are 
very small (Gavi et al., 2007). Therefore the velocity appearing the PBE is the fluid velocity. 
 

2.3.1 Method of moments 
The PBE is in this work solved by using the method of moments. Using the definition of 
moment of order q: 
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𝑚𝑞(𝒙, 𝑡) = ∫ 𝑛(𝐿, 𝒙, 𝑡) ∙ 𝐿𝑞 𝑑𝐿

+∞

0

 (2.29) 

 

𝑤𝑖𝑡ℎ 𝑞 = 0, 1, 2, 3 
 

In order to be solved, Eq. (2.28) can be written in terms of the moments, deriving a continuity 
equation (zero order moment) and transport equations for mean properties (Marchisio and Fox, 
2013): 
 
 𝜕𝑚𝑞

𝜕𝑡
+ ∇ ∙ (𝒖 ∙ 𝑚𝑞)

= 𝑥𝑐
𝑞 ∙ 𝐽(𝑆) + ∫ 𝑞 ∙ 𝐿𝑞−1 ∙ 𝐺(𝐿) ∙ 𝑛(𝐿, 𝒙, 𝑡)

+∞

0

 𝑑𝐿

+ ∫  (𝐵𝑎𝑔𝑔(𝐿, 𝒙, 𝑡) − 𝐷𝑎𝑔𝑔(𝐿, 𝒙, 𝑡))𝐿
𝑞𝑑𝐿

+∞

0

 

(2.30) 

 
In which xc is the critical size for nucleation. 
The moment formulation presents an excess of unknowns with respect to the equations, so this 
formulation is affected by the closure problem (Dorao and Jakobsen, 2006). This problem is 
addressed using the quadrature method of moments (QMOM): 
 
 

𝑚𝑞 =∑𝑤𝑖 ∙ 𝐿𝑖
𝑞

𝑁

𝑖=1

 (2.31) 

 
Using this method, the closure problem can be overcome and the equation becomes (Marchisio 
et al, 2003): 
 
 𝜕𝑚𝑞

𝜕𝑡
+ ∇ ∙ (𝒖 ∙ 𝑚𝑞)

= 𝑥𝑐
𝑞 ∙ 𝐽(𝑆) + 𝑞 ∙∑𝑤𝑖 ∙ 𝐿𝑖

𝑞−1 ∙ 𝐺(𝐿𝑖)

𝑁

𝑖=1

+
1

2
∑𝑤𝑖∑𝑤𝑗(𝐿𝑖

3 + 𝐿𝑗
3)
𝑞
3𝛽𝑎𝑔𝑔

𝑁

𝑗=1

𝑁

𝑖=1

−∑𝑤𝑖𝐿𝑖
𝑞∑𝑤𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝛽𝑎𝑔𝑔 

(2.32) 

 

In which 𝛽𝑎𝑔𝑔 is the aggregation kernel, which indicates the frequency of collisions that cause 



 30 

aggregation between particles of size 𝐿𝑖 and 𝐿𝑗. 

The source terms are now defined with the quadrature method of moments, but now the issue 
is the calculation of the nodes Li and the weights 𝑤𝑖.  
In Marchisio and Fox (2003) is shown how to deal with this problem. Beginning with the 
definition of a set of orthogonal polynomials ({𝑃0(𝐿), 𝑃1(𝐿),…𝑃𝛼(𝐿),…} with 𝑃𝛼(𝐿) =
𝑘𝛼,0𝐿

𝛼 + 𝑘𝛼,1𝐿
𝛼−1 +⋯+ 𝑘𝛼,𝛼) in the integration interval Ω𝐿: 

 
 

∫𝑛(𝐿)𝑃𝛼(𝐿)

Ω𝐿

𝑃𝛽(𝐿)𝑑𝐿 {
= 0 𝑓𝑜𝑟 𝛼 ≠ 𝛽 
> 0 𝑓𝑜𝑟 𝛼 = 𝛽

 (2.33) 

 

With 𝑛(𝐿) weight function, which together with the integration interval, uniquely define the set 
of polynomials. 
A theorem states that any set of orthogonal polynomials has a recurrence formula that relates 
three consecutive polynomials: 
 
 𝑃𝛼+1(𝐿) = (𝐿 − 𝑎𝛼)𝑃𝛼(𝐿) − 𝑏𝛼𝑃𝛼−1(𝐿)     𝑤𝑖𝑡ℎ 𝛼 = 0, 1, 2, … 

𝑃−1(𝐿) = 0   𝑎𝑛𝑑 𝑃0(𝐿) = 1 
(2.34) 

 

And the coefficients 𝑎𝛼 and 𝑏𝛼 are defined as: 
 
 

𝑎𝛼 =
∫ 𝑛(𝐿)𝐿𝑃𝛼(𝐿)Ω𝐿

𝑃𝛼(𝐿)𝑑𝐿

∫ 𝑛(𝐿)𝑃𝛼(𝐿)Ω𝐿
𝑃𝛼(𝐿)𝑑𝐿

   𝑤𝑖𝑡ℎ 𝛼 = 0, 1, 2, … 

 

(2.35) 

 
𝑏𝛼 =

∫ 𝑛(𝐿)𝑃𝛼(𝐿)Ω𝐿
𝑃𝛼(𝐿)𝑑𝐿

∫ 𝑛(𝐿)𝑃𝛼−1(𝐿)Ω𝐿
𝑃𝛼−1(𝐿)𝑑𝐿

   𝑤𝑖𝑡ℎ 𝛼 = 1, 2, … 
(2.36) 

 
 
This theorem, that shows the recursive relation existing between the polynomials, is the 
foundation of the use of orthogonal polynomials.  

The coefficients 𝑎𝛼 and 𝑏𝛼 can be written in terms of moments and A quadrature method with 
N weights and N abscissas (or nodes) can be calculated from 2N moments (Marchisio and Fox, 
2013), in this work will be used N = 2 nodes, so the moments will be 𝑚0, 𝑚1, 𝑚2, 𝑚3. From 
these moments can be calculated the coefficients: 
 
 𝑎0 =

𝑚1

𝑚0
 (2.37) 
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𝑎1 =

𝑚3𝑚0
2 +𝑚1

3 − 2𝑚2𝑚1𝑚0

𝑚2𝑚0 +𝑚1
2 − 2𝑚1

2𝑚0

 
(2.38) 

 
𝑏1 =

𝑚2𝑚0 +𝑚1
2 − 2𝑚1

2𝑚0

𝑚0
2 1 

(2.39) 

 

That can be used to calculate the polynomial of order two 𝑃2(𝐿) orthogonal to the weight 
function, which roots are the nodes of the Gaussian quadrature approximation. 
Finding the roots of a polynomial is an ill-conditioned problem, but it can be turned into a well-
conditioned problem of finding the eigenvalues and eigenvectors of a tri-diagonal symmetric 
matrix. This can be obtained from a diagonal similarity transformation that transforms the 
matrix form of the recursive system of polynomials: 
 
 

𝐿 [

𝑃0(𝐿)

𝑃1(𝐿)
⋮

𝑃𝛼−1(𝐿)

] =

[
 
 
 
 
 
 
𝑎0 1

𝑏1 𝑎1 1

𝑏2 𝑎2 1

⋱ ⋱ ⋱

𝑏𝛼−1 𝑎𝛼−1]
 
 
 
 
 
 

[

𝑃0(𝐿)

𝑃1(𝐿)
⋮

𝑃𝛼−1(𝐿)

] + [

0
0
⋮

𝑃𝛼(𝐿)

] (2.40) 

 
in a tri-diagonal symmetric Jacobi matrix: 
 
 

𝑱 =

[
 
 
 
 
 
 𝑎0 √𝑏1

√𝑏1 𝑎1 √𝑏2

√𝑏2 𝑎2 √𝑏3

⋱ ⋱ ⋱

√𝑏𝛼−1 𝑎𝛼−1]
 
 
 
 
 
 

 (2.41) 

 

The nodes Li,q have been defined above as the roots of the polynomial 𝑃𝛼(𝐿), with 𝛼 = N 
(number of nodes). The N weights can be calculated as 
 
 𝑤𝛼 = 𝑚0𝜑𝛼1

2  (2.42) 

 

with 𝜑𝛼1 equal to the first component of 𝛼th eigenvector 𝝋𝜶 of the Jacobi matrix. 
The solution of this problem, considering the dependence of the coefficients appearing in the 
Jacobi matrix, in order to find weights 𝑤𝑖,𝑞 and abscissas Li,q, can be determined using specific 
algorithms, such as the product-difference (PD) algorithm or the Wheeler algorithm. 
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2.3.2 Product-difference algorithm (PD) 
Based on the theory of continued fractions of Stieltjes, is often efficient and can be applied to 
this case since there are not the conditions that limit this algorithm, i.e. a high value of N or a 
distribution with zero mean (𝑚1 = 0) (Marchisio and Fox, 2013). 
First of all a matrix P is defined which components are: 
 
 𝑃𝛼,1 = 𝛿𝛼1   𝑤𝑖𝑡ℎ 𝛼 = 1, 2, … , 2𝑁 + 1 (2.43) 

 

in which 𝛿𝛼1 is the Kronecker delta. 
 
 𝑃𝛼,2 = (−1)

𝛼−1𝑚𝛼−1   𝑤𝑖𝑡ℎ 𝛼 = 1,… , 2𝑁 (2.44) 

 𝑃𝛼,𝛽 = 𝑃1,𝛽−1𝑃𝛼+1,𝛽−2 − 𝑃1,𝛽−2𝑃𝛼+1,𝛽−1   

𝑤𝑖𝑡ℎ 𝛽 = 3,… , 2𝑁 + 1   𝑎𝑛𝑑 𝛼 = 1,… ,2𝑁 + 2 − 𝛽 

(2.45) 

 
For example in our case, with N=2: 
 
 

𝑷 =

[
 
 
 
 
1 𝑚0 𝑚1 𝑚0𝑚2 −𝑚1

2 𝑚0(𝑚3𝑚1 −𝑚2
2)

0 −𝑚1 −𝑚2 −(𝑚0𝑚3 −𝑚2𝑚1)

0 𝑚2 𝑚3

0 −𝑚3

0 ]
 
 
 
 

 (2.46) 

 

Then the coefficients of the continued fraction ζ𝛼 are calculated using a recursive relationship: 

 
   𝜁1 = 0  (2.47) 

 
  𝜁𝛼 =

𝑃1,𝛼+1
𝑃1,𝛼𝑃1,𝛼−1

   𝑤𝑖𝑡ℎ 𝛼 = 2,… , 2𝑁   (2.48) 

 
Finally, the coefficients of the symmetric tridiagonal Jacobi matrix are calculated with sum and 
products of  𝜁𝛼: 
 
  𝑎𝛼 = 𝜁2𝛼 + 𝜁2𝛼−1   𝑤𝑖𝑡ℎ 𝛼 = 1,… ,𝑁 (2.49) 

  𝑏𝛼 = −√ 𝜁2𝛼+1 𝜁2𝛼    𝑤𝑖𝑡ℎ 𝛼 = 1,… ,𝑁 − 1 

 

(2.50) 

2.3.3 Wheeler algorithm 
The idea on which this algorithm is based is the use of a different set of basis functions 𝜋𝛼(𝐿) 
to represent the orthogonal polynomials, which better sample the integration interval Ω𝐿. This 
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has the consequence of increasing the stability of the algorithm (Marchisio and Fox, 2013). This 
algorithm does not suffer from the issues that affect the PD algorithm.  

The modified moments ν𝑞 are calculated analogously to the standard ones: 

 
 

ν𝑞 = ∫𝜋𝑞(𝐿)𝑛(𝐿)𝑑𝐿

Ω𝐿

   𝑤𝑖𝑡ℎ 𝑞 = 0, 1, … , 2𝑁 − 1 (2.51) 

 

and from these the coefficients are calculated. It is assumed that 𝜋𝑞(𝐿) follows the recursive 
relation: 
 𝜋−1(𝐿) = 0 (2.52) 

 𝜋0(𝐿) = 1 (2.53) 

 𝜋𝛼+1(𝐿) = (𝐿 − 𝑎𝛼
′ )𝜋𝛼(𝐿) − 𝑏𝛼

′ 𝜋𝛼−1(𝐿) (2.54) 

 
where the coefficients must be known. Using the intermediate quantities: 
 
 

𝜎𝛼,𝛽 = ∫𝑛(𝐿)

Ω𝐿

𝜋𝛼(𝐿)𝜋𝛽(𝐿)𝑑𝐿   𝑤𝑖𝑡ℎ 𝛼, 𝛽 ≥ −1 (2.55) 

 
initialized in the following way: 
 
 𝜎−1,𝛼 = 0   𝑤𝑖𝑡ℎ 𝛼 = 1, 2, … , 2𝑁 − 2 (2.56) 

 𝜎0,𝛼 = ν𝛼    𝑤𝑖𝑡ℎ 𝛼 = 0, 1, … , 2𝑁 − 1 (2.57) 

 𝑎0 = 𝑎0
′ +

ν1
ν0

 (2.58) 

 𝑏0 = 0 (2.59) 

 
can be computed that: 
 
 𝜎𝛼,𝛽 = 𝜎𝛼−1,𝛽+1 − (𝑎𝛼−2 − 𝑎𝛽

′ )𝜎𝛼−1,𝛽 − 𝑏𝛽−1𝜎𝛼−2,𝛽 + 𝑏𝛽
′ 𝜎𝛼−1,𝛽−1 

 𝑤𝑖𝑡ℎ 𝛼 = 1, 2, … ,𝑁 − 1   𝑎𝑛𝑑 𝛽 = 𝛼, 𝛼 + 1,… , 2𝑁 − 𝛼 − 1      
(2.60) 

 
In the end, the coefficients of the Jacobi matrix are calculated as: 
 
 𝑎𝛼 = 𝑎𝛼

′ −
𝜎𝛼−1,𝛼
𝜎𝛼−1,𝛼−1

+
𝜎𝛼,𝛼+1
𝜎𝛼,𝛼

 (2.61) 
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 𝑏𝛼 =
𝜎𝛼,𝛼

𝜎𝛼−1,𝛼−1
 (2.62) 

 

The algorithm presents higher stability than the PD algorithm even if the modified moments ν𝑞 
are chosen equal to the standard ones (so 𝑎𝛼′ = 𝑏𝛼

′ = 0). 
 

2.3.4 Adaptive wheeler algorithm 
The Wheeler algorithm is able to calculate weights and nodes for a realizable moment set, but 
if they are unrealizable it will fail.  
An adaptive version of the Wheeler algorithm is explained in Yuan and Fox (2011). This 
version uses the fact that in a realizable set of moments 𝜎𝛼,𝛼 > 0 , so the check for realizability 
is carried by the inequality: 
 
 𝜎𝛼,𝛼 ≤ 0   𝑤𝑖𝑡ℎ 1 ≤ 𝛼 ≤ 𝑁 (2.63) 

 

If at a certain 𝛼 = 𝑚 results that 𝜎𝑚,𝑚 ≤ 0 , then there are only 𝑚 − 1 weights and nodes that 
can be computed. 
This adaptive version is useful in degenerate cases in which the exact number density function 
is composed of less than N weighted Dirac delta functions; in these cases, the algorithm gives 
the exact number density function (Marchisio and Fox, 2013). 
 

2.3.5 Realizability of a moment set 
If the nodes calculated with the algorithms described above are always within the support Ω𝐿, 
they represent realizable values of the internal coordinate (𝐿). If the weights are always positive 
too, the quadrature used obtains accurate results. 
These properties are respected only if the moment set is realizable, that means that exists a 
number density function which results in that specific set of moments (Marchisio and Fox, 
2013). So if the algorithms receive in input an invalid moment set, unrealizable nodes will be 
calculated and this will be a danger for the stability of the simulation. 
 

2.4 Precipitation kinetics 
Precipitation is a complex phenomenon in which many mechanisms take part in the path that 
lead the solute to crystallize and that determines the particle size distribution of the crystals 
obtained. 
There are three main mechanism considered in this work: nucleation, growth and aggregation, 
the theory of which will be shown in the next chapters. 
 
2.4.1 Nucleation 
Nucleation is the mechanism leading to the formation of new particles during precipitation. 
There are two main types of nucleation: homogeneous and heterogeneous. 
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Homogeneous nucleation is induced only by supersaturation and occurs in absence of foreign 
solid interfaces, such as impurities in the solution: clusters are formed and destructed by 
spontaneous fluctuations of density and composition. They can only increase or decrease in size 
by molecular addition and, considering these phenomena as reversible reactions, it can be 
shown that a critical cluster size exists, at which the clusters are thermodynamically stable and 
beyond which growth is favoured on decay. This occurs because there are two contributes on 
the reversible work necessary to form clusters: a volume contribute (to form the bulk of the 
crystal particle) and a surface contribute (to form the surface of the crystal particle) (Mersmann, 
2001). These two terms depend on a third power of cluster dimensions and on a second power 
respectively, driving to the critical cluster size described before.  
The rate at which these nuclei are formed is called nucleation rate and its dependence on 
supersaturation is shown in the following equation: 
 
 

𝐽ℎ𝑜𝑚 = 𝐽ℎ𝑜𝑚
∞ exp (−

𝑘

𝑙𝑛2𝑆
) (2.64) 

 

In which the constants 𝐽ℎ𝑜𝑚∞  and 𝑘 depend on physical properties of the system and of the 
substance. 
Heterogeneous nucleation occurs due to the combined effect of supersaturation and the presence 
of solid interfaces (in real applications the solution can never be pure and impurities acting as 
solid interfaces will be always present). The solid interfaces provide sites where nucleation can 
easily occur due to reduced energy requirements (Randolph 1971). It can be shown that the 
dependence on supersaturation of heterogeneous nucleation rate is very similar to that 
homogenous, since the free energy needed to form the nuclei differs in the two cases of a 
constant f that can vary from 0 to 1: 
 
 

𝐽ℎ𝑒𝑡 = 𝐽ℎ𝑒𝑡
∞ exp (−

𝑓 ∗ 𝑘

𝑙𝑛2𝑆
) (2.65) 

 

In which the constants 𝐽ℎ𝑒𝑡∞  and 𝑓 depend on physical properties of the system and of the 
substance and also on physical properties of the solid interface. 
Analysing Eqs. (2.64) and (2.65), it is possible to observe that heterogeneous nucleation is more 
relevant than homogeneous at lower values of supersaturation. At higher supersaturation 
instead, homogeneous nucleation becomes the main phenomena leading to creation of nuclei, 
as shown in figure 2.1. 
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Figure 2.1 Homogeneous and heterogeneous nucleation dependence on supersaturation 
(Richardson et al, 2002) 
 
2.4.2 Growth 
Growth is the mechanism in which molecules transfer from the solution to the surface of the 
particles, causing size enlargement of the particles. There are two main steps in growth: a 
diffusional step in which particle moves from the bulk of the solution to the surface of the 
particle, and a surface integration step in which phase change occurs and the molecule is 
positioned in the lattice (Mersmann, 2001). 
With this consideration, the molar flux per unit of surface (directly linked to the growth rate) 
can be described as: 
 
 �̇� = 𝑘𝑚𝑡(𝐶𝑏𝑢𝑙𝑘 − 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒) = 𝑘𝑠𝑖(𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝐶𝑒𝑞)

𝑔
 (2.66) 

 

In which 𝑘𝑚𝑡 is the mass transfer coefficient,  𝑘𝑠𝑖 is the surface integration reaction rate 
constant, 𝑔 is the order of the integration reaction, 𝐶𝑏𝑢𝑙𝑘 and 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒  are the concentration of 
solute in bulk and surface and 𝐶𝑒𝑞 is the equilibrium concentration (solubility). The two 
phenomena occur in series so their fluxes are put equivalents. If mass transfer is the limiting 
step, the growth rate depends on the first of the two terms, instead if mass transfer is not limiting, 
the surface integration rate determines the growth rate. 
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2.4.3 Aggregation 
Aggregation is the mechanism leading to size enlargement of the particles due to the union of 
pre-existing particles. Contrarily to the two mechanism above described, this mechanism is 
discontinuous and do not involve the solute in the continuum phase, so it does not change the 
mass of the two phases. 
Aggregation can be cause by Brownian motion (random collisions) and by turbulent flows 
(collisions caused by turbulent fluctuations). The aggregation kernel for Brownian motion is 
(Gavi et al, 2007): 
 
 

𝑘𝑏𝑚 =
2𝑘𝐵𝑇

3𝜇

(𝐿𝑖 + 𝐿𝑗)
2

𝐿𝑖𝐿𝑗
 (2.67) 

 

In which 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, 𝜇 is the dynamic viscosity and 𝐿𝑖 
and 𝐿𝑗 are the dimensions of the particles involved in aggregation. 

The aggregation kernel for turbulent flows is: 
 
 

𝑘𝑡𝑓 = 1.29√
𝜀

ν
(𝐿𝑖 + 𝐿𝑗)

3
 (2.68) 

 

In which 𝜀 is the turbulent dissipation rate and ν is the kinematic viscosity. 

The overall aggregation kernel is corrected using an aggregation efficiency coefficient that 
takes unsuccessful collision due to inter-particle forces into account (Gavi et al, 2007). 
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2.5 Species transport equations 
Other equations that must be solved for the system are the equations that described the transport 
of the species. The equations considered are, for metal ions: 
 
 𝜕𝐶𝑀2+

𝜕𝑡
+ ∇ ∙ (𝒖𝐶𝑀2+) = 𝑆𝑀2+ (2.69) 

 

in this equation we can see a source term 𝑆𝑀2+, that represents the precipitation mechanism of 
the cations, turning to solid state and can be expressed as: 
 
 𝑆𝑀2+ = −𝑝𝑟𝑒𝑐𝑅𝑎𝑡𝑒 × 𝑀2+𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 (2.70) 

 

In which 𝑀2+𝐶𝑜𝑛𝑐𝑅𝑎𝑡𝑖𝑜 is defined in Eqs. (2.18), (2.19) and (2.20), and the precipitation rate 
𝑝𝑟𝑒𝑐𝑅𝑎𝑡𝑒 depends on the amount of crystal that is created: this value is represented by the 
source term of the third moment (volume of crystal generated per volume unit): 
 
 

𝑝𝑟𝑒𝑐𝑅𝑎𝑡𝑒 = 𝐾𝑣 × (𝑥𝑐
3 ∙ 𝐽(𝑆) +∑(3 × 𝑤𝑗

2

𝑗=1

× 𝐺(𝐿𝑗) × 𝐿𝑗
2)) ×

𝜌𝑐𝑟𝑦𝑠𝑡𝑎𝑙

𝑎𝑀𝑎𝑠𝑠𝐶𝑟𝑦𝑠𝑡𝑎𝑙
 (2.71) 

There are two more species for which is needed the transport equation: the first one is the 
ammonia: 
 
 𝜕𝐶𝑁𝐻3

𝜕𝑡
+ ∇ ∙ (𝒖𝐶𝑁𝐻3) = 0 (2.72) 

 
There is no source term in this equation because ammonia is just an intermediate in the 
precipitation, forming complexes with the metal ions, but at the end it is not consumed but any 
reaction. 
The last equation is the conservation of inert charges: 
 
 𝜕𝐶𝑖𝑛𝑒𝑟𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑠

𝜕𝑡
+ ∇ ∙ (𝒖𝐶𝑖𝑛𝑒𝑟𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑠) = 0 (2.73) 

 

As seen in chapter 2.2.2 𝐶𝑖𝑛𝑒𝑟𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑠 = [𝑁𝑎+] − 2[𝑆𝑂4
2−]. 

 

2.6 Moment transport equations 
The governing equations that describe the evolution of the moments of order q are: 
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 𝜕𝑚𝑞

𝜕𝑡
+ ∇ ∙ (𝒖𝑚𝑞) = 𝑆𝑚𝑞

 (2.74) 

 

In which the source term 𝑆𝑚𝑞
 can be written as: 

 
 

𝑆𝑚𝑞
= 𝑥𝑐

𝑞 ∙ 𝐽(𝑆) + 𝑞 ∙∑𝑤𝑖 ∙ 𝐿𝑖
𝑞−1 ∙ 𝐺(𝐿𝑖)

𝑁

𝑖=1

+
1

2
∑𝑤𝑖∑𝑤𝑗(𝐿𝑖

3 + 𝐿𝑗
3)
𝑞
3𝛽𝑎𝑔𝑔

𝑁

𝑗=1

𝑁

𝑖=1

−∑𝑤𝑖𝐿𝑖
𝑞∑𝑤𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝛽𝑎𝑔𝑔 

(2.75) 

 
Leading to Eq. (2.32) obtained by the population balance equation. It is useful to see that for q 
= 3, we obtain the source term for the third moment, which represents the volume of crystal 
generated and is useful to express the source term for the metal ions (Eq. (2.71)) and is not 
affected by the aggregation term, since it do not change the total volume of precipitate. 
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Test cases and numerical details 
The reactor geometry and mesh were prepared and provided by Umicore: the reactor is a 
continuous stirred reactor which geometry can not be shown for confidential reasons.  
The reactor is continuously fed with ammonia, sodium hydroxide and Nickel, Manganese and 
Cobalt sulfates. These metals are fed in a 6-2-2 proportion, in order to obtain an NMC hydroxide 
precipitate with the same proportions of the metals. 
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In the following chapters the steps used to seek a solution will be discussed: a CFD simulation 
is needed to obtain the velocity and pressure fields in the reactor; with this information the 
reactor can be divided using turbulent dissipation rate in a compartment model that is studied 
to obtain this solution with lower computational costs. 
 

3.1 CFD simulation 
 
The governing equations for fluids seen in section 2.1 are partial differential equations that, 
excluded some notable case with particular geometries and flow conditions, are complicated 
functions of time and space and an analytical solution can not be computed. 
The solution is sought using discretization methods: discretization consists in transform the 
partial differential equations, which are continuous functions, are approximated with analogous 
set of discrete equations that prescribes values in a finite number of points (or volumes) of the 
domain and that can be solved in an algebraic way  (Anderson, 1995). These solutions are 
therefore numerical solutions in only discrete points of the domain. 
The more common discretization techniques are: 

- Finite difference method 
- Finite element method 
- Finite volume method 

 
3.1.1 Finite volumes method 
The finite volume method is the one used by Fluent due to its property of guaranteeing the 
conservation of quantities in each control volume, which is fundamental for most engineering 
cases. 
The steps of this method are (Moukalled et al, 2016): 

1. Divide the domain of interest is divided into non-overlapping discrete control volumes 
(or cells), in the center of which is located the variable 

2. Integrate the differential form of the governing equations in each volume to construct 
the equations for the discrete variables 

3. Linearize the discretized equations  
4. Solve the linearized equations and find updated values for the variables 

The governing equation for a generic scalar variable ∅ in differential form is: 
 
 ∂(𝜌∅)

𝜕𝑡
+
∂(𝜌∅𝒖𝒋)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(Γ

𝜕∅

𝜕𝑥𝑗
) + 𝑆∅ (3.1) 

In which the first one is the time dependent term, the second one the convective term, the third 
the diffusion term and the last the source term. 
Considering a stationary case, we can write the equation in integral form for the generic volume 
V: 
 

∫
∂(𝜌∅𝒖𝒋)

𝜕𝑥𝑗
𝑉

dV = ∫
𝜕

𝜕𝑥𝑗
(Γ

𝜕∅

𝜕𝑥𝑗
)dV

𝑉

+ ∫𝑆∅
𝑉

dV (3.2) 
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And using the divergence theorem, the volume integrals of convection and diffusion can be 
replaced with surface integrals: 
 
 

∮𝜌∅𝒖𝒋
𝜕𝑉

dS = ∮Γ
𝜕∅

𝜕𝑥𝑗
𝜕𝑉

dS + ∫𝑆∅
𝑉

dV (3.3) 

 
In which the surface integral is over all the faces j of the volume considered: 
 
 

∑ ( ∮ (𝜌∅𝒖𝒋 − Γ
𝜕∅

𝜕𝑥𝑗
)

𝜕𝑉𝑘

dS)

𝑘 𝑓𝑎𝑐𝑒𝑠

 (3.4) 

 
As already said, the variable of interest is located at the center of the volume V. This means 
that for the volume integral, we can use the value in the center itself in a one point Gaussian 
quadrature integration with a second order accuracy (Moukalled et al, 2016), or more simply: 
 
 

∫𝑆∅
𝑉

dV =  𝑆∅𝑉 (3.5) 

 
The surface integrals can instead be approximated using: 
 
 

∮ (𝜌∅𝒖𝒋 − Γ
𝜕∅

𝜕𝑥𝑗
)

𝜕𝑉𝑘

dS = ∮ 𝑓

𝜕𝑉𝑘

dS = 𝑓𝑘𝑆𝑘 (3.6) 

 

So it is approximated multiplying the value of f in the center of the face (𝑓𝑘) by the surface of 
the face itself (like for volume integrals, a one point Gaussian quadrature integration that gives 
a second order accurate approximation) (Moukalled et al, 2016). The value of the function f in 
the center of the face is not known, so a method to estimate it is needed.  
  



 42 

3.1.2 Spatial discretization interpolation 
In the previous chapter we have seen that the discrete values of the scalar ∅ are stored in the 
center of the cells, but for convection terms we need the value at the center of the faces and 
then a way to interpolate this value using the cell center values. 
The schemes used to interpolate these values in this work are two upwind schemes: first order 
and second order upwind. 
First of all is useful to define the mean of the word upwind: an upwind scheme has the 
characteristic of deriving the value of the scalar at the face using the value of the cell “upwind”, 

that means the upstream cell relatively to the direction of the normal velocity 𝒖𝒋. 

In first order upwind, it is assumed that the face value ∅𝒇 is equal to the upstream cell value  
∅𝒄. Considering a Taylor expansion centered in the upstream cell: 
 
 

 ρ𝒖𝒋∅𝒇 = ρ𝒖𝒋∅𝒄 + ρ𝒖𝒋(𝒙𝒇 − 𝒙𝒄)
𝜕∅

𝜕𝒙
|
𝒄
 (3.7) 

 
In which orders higher than one have been neglected. It is possible to see that using this 
interpolation scheme a numerical error is committed which is proportional to ρ𝒖𝒋(𝒙𝒇 − 𝒙𝒄), 
which can be written using cell dimension ∆𝑥 as ρ𝒖𝒋∆𝑥

𝟐
 that is also called numerical diffusion, 

due the fact that it alters the value of the diffusion coefficient. 
The second order upwind has second order accuracy and the face value is computed using the 
expression (ANSYS Fluent theory guide 15, 2013): 
 
 ∅𝒇 = ∅𝒄 + 𝛁∅ ∙ 𝒓 (3.8) 

 

In which 𝛁∅ is the gradient of in the upstream cell and 𝒓 is the displacement vector from the 
upstream cell center to the face, so the gradient in the cell is considered equal to the gradient in 
the upstream cell. 
 

3.1.3 Pressure-velocity coupling 
The solver used is pressure-based: this means that continuity is guaranteed by solving a pressure 
(or pressure correction) equation derived by continuity and momentum equations. The pressure-
based solver used is the segregated one, that means that equations, which are non-linear and 
coupled, are solved one after another, in a “segregated” way (ANSYS Fluent theory guide 15, 
2013) , as can be seen in figure 3.1. 
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Figure 3.1 Pressure-velocity coupling scheme from ANSYS Fluent theory guide 15 
 
The algorithm used is SIMPLE (Semi-Implicit Method for Pressure Linked Equations) which 
solves the momentum equation with a guessed pressure field, compute the corresponding face 
flux, which does not satisfy the continuity equation and then is corrected and with this 
correction the pressure correction equation is solved and the corrected fields can be computed. 

 
3.1.4 Moving reference frame 
Moving reference frame theory is described in ANSYS Fluent theory guide 15: by default 
ANSYS Fluent solves the governing equations in a stationary reference frame. When moving 
parts are involved, it is more advantageous to solve these equations in a moving reference 
frame. That’s because moving parts can make the problem unsteady if viewed from a stationary 
frame, while in a moving reference frame the flow near the moving parts can be modelled as a 
steady state problem (respect to the moving frame). 
Being the reactor agitated, the fluid has rotational components that require this approach. 
Using the moving reference frame, the equations of motion are transformed so that steady state 
solutions are achievable, including additional acceleration terms from the transformation from 
stationary to moving reference frame. 
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The equations of motion of the moving reference frame include additional terms of acceleration 
of the fluid. These equations can be expressed using either relative or absolute velocities as 
dependent variables.  
For this job, absolute velocity formulation has been chosen because the choose between the two 
formulations is made based on most of the flow domain having the smallest velocities in that 
frame, in order to obtain a more accurate solution. So, such in our case, if most of the domain 
belongs to the subdomain that is stationary, the absolute velocity formulation is preferred. 

Considering a reference system that rotates with angular velocity 𝝎 and translates with velocity 
𝒗𝒕 with respect to the stationary reference frame, the following variables are defined: 

𝒗𝒓 = 𝒗 − 𝒖𝒓 transformation of the velocities from the stationary frame to the moving 
frame, where 𝒖𝒓 = 𝒗𝒕 +𝝎 × 𝒓. 

𝒓 position vector from the origin of the moving system to the point considered 

𝒗 absolute velocity, from the point of view of the stationary frame 

𝒗𝒓 relative velocity, from the point of view of the moving frame 

𝒖𝒓 velocity of the moving frame relative to the stationary one 

Then the governing equations solved are: 
 
 𝜕𝜌

𝜕𝑡
+ ∇ ∙ 𝜌𝒗𝒓 = 0          𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑎𝑠𝑠 (3.9) 

 
 𝜕

𝜕𝑡
𝜌𝒗 + ∇ ∙ (𝜌𝒗𝒓𝒗) + 𝜌[𝝎 × (𝒗 − 𝒗𝒕)]

= −∇𝑝 + ∇ ∙ 𝝉 + 𝑭      𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 
(3.10) 

 

 

3.1.5 Multiple reference frame (MRF) 
When zones rotating with different rotational speeds are present, the steady state approximation 
of the MRF model could be used. It consists in the division of the fluid zone in cell zones 
(subdomains), each rotating at his own rotational speeds. These zones are separated by 
interfaces boundaries and are solved with the moving reference frame equations. 
If the velocity is formulated in absolute terms, at the interface between subdomains no 
transformations are needed, because the velocities of the governing equations in each 
subdomain are stored in the absolute frame. 
In the MRF model the mesh remains fixed during the computation (ANSYS Fluent theory guide 
15). 
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3.1.6 Simulation setup 
The pressure and velocity fields are calculated using ANSYS Fluent. The solver is pressure-
based and a steady solution is sought. 
The turbulence model used is the standard k-ε and the profile near walls is calculated using the 

standard wall functions.  
Around the rotating parts of the reactor, a rotating cell zone is defined with the same angular 
velocity. 
The inlet fluxes are given by Umicore. The inlets are set as velocity inlets: the velocity is 
specified with a direction normal to the boundary and a magnitude calculated using the flux of 
the inlet itself and knowing the area of inlet. Turbulence conditions at inlets is specified with 
hydraulic diameter (known from geometry) and turbulence intensity ratio.  
Outlet is set as a pressure outlet and is necessary to use, in order to minimize reverse flow 
issues, the option “target mass flow rate”, set as the sum of the inlets flows (since stationary 
solution is sought). 
In the following tables are resumed the settings and specified numerical values of what above 
said. 
 

Solver Pressure-based 

Solution Steady 

Gravity -9.81 𝑚
𝑠2

 

Turbulence model Standard k- ε 

Near wall treatment Standard wall functions 

Inlets Velocity-inlet 

Outlet Pressure-outlet 

Table 3.1 CFD simulation set-up 
 
The turbulent intensity at inlets is defined of 1% because the Reynold numbers at inlets are low: 
 
 

𝑅𝑒𝑀𝑒  =  
𝑣𝑀𝑒 ∗ 𝐷

ν
 (3.11) 

 
𝑅𝑒NH3  =  

𝑣NH3 ∗ 𝐷

ν
 

(3.12) 

 
𝑅𝑒NaOH  =  

𝑣NaOH ∗ 𝐷

ν
 (3.13) 

 
The first iterations are carried with the following settings: 
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Pressure velocity 
coupling Scheme SIMPLE 

Spatial discretization 

Gradient Least square cell based 

Pressure Standard 

Momentum First order upwind 

Turbulent kinetic energy First order upwind 

Turbulent dissipation rate First order upwind 

Table 3.2 CFD simulation first iterations schemes set-up 
 
With warped-face gradient correction activated.  
When residuals are no more lowering enough, the settings are changed to: 

Pressure velocity 
coupling Scheme SIMPLE 

Spatial discretization 

Gradient Least square cell based 

Pressure Second order 

Momentum Second order upwind 

Turbulent kinetic energy Second order upwind 

Turbulent dissipation rate Second order upwind 

Table 3.3 CFD simulation last iterations schemes set-up 
 
Since high oscillations have been observed in residuals of turbulent kinetic energy, in order to 
reduce this issue the initial iterations are carried with high order term relaxation, which are 
improved going on with the iterations and removed when the residuals are steady enough with 
high relaxation factors of this tool. When removed this option, the simulation is carried on until 
the residuals went under the desired threshold shown in table 3.4. 
 

Variable Absolute residual threshold 

continuity 1e-5 

momentum 1e-4 

Turbulent kinetic energy 1e-4 

Turbulent dissipation rate 1e-4 

Table 3.4 Residuals of CFD simulation 
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3.3 Python script 
3.3.1 Purpose of the script  
Python is an interpreted programming language with high-level data structures. It is object-
oriented programming. 
A script is a computer program, written in an interpreted language, with low complexity and 
quite linear, without a graphic interface and that uses libraries to implement more sophisticated 
functions. 
The use of Python for writing this script is due the fact that it is suitable for scripting 
development and it can have access to a collection of libraries which are really useful for the 
purpose of the work, for example two libraries are often used in the script: SciPy and NumPy. 
They contain useful scientific modules (for example the solver for ordinary differential 
equations).  
The purpose of the work is to solve the equations governing the system (sections 2.5 and 2.6) 
in a simplified way, which will lead to less computational cost and time spent in simulation 
than a full coupled CFD-PBE simulation. With full coupled CFD-PBE simulation the 
simulation is carried cell by cell, but this means a long simulation with high computational 
costs, because there is a huge number of cells and in every single cell Fluent has to solve the 
equations for concentrations and moments for every iteration.  
In the following chapters will be described the method used in this Thesis to seek for the 
precipitation solution by decreasing the computational costs of the operation. 
 

3.3.2 Compartment model 
The basic idea to decrease the computational costs of the simulation is to agglomerate the cells 
with similar characteristics (characteristics to be discussed in section 4), creating compartments. 
These compartments behave like CSTR reactors, so the values in each of them are 
homogeneous, and are connected between them, interchanging fluxes. 
With such a division the precipitation equations can be solved in a small number of 
compartments, instead of solving them in a huge number of cells using ANSYS Fluent, 
describing the precipitation model and its equations in an UDF and carrying the calculations in 
every cell of the domain. This would considerably decrease the computational costs and time 
required for the simulation, considering that the number of cells is in the order of magnitude of 
millions, while the number of compartments is in the order of magnitude of tens (and the 
solution of a system of equations does not increase linearly with the number of interconnected 
elements, but much faster).  
In order to carry the calculations to solve this system of equations, a Python script is written, 
that can be easily editable, improvable and manageable. 
The script solves the equations described in sections 2.5 and 2.6 for every compartment. These 
equations should be modified to keep into account that the compartments are perfectly mixed 
and linked between them. Considering Qi,j as the volumetric flux from the compartment i to the 
compartment j with volume 𝑉𝑗, the precipitation equations can be written as follows: 
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 𝑑𝐶
𝑀2+
𝑗

𝑑𝑡
=∑

𝑄𝑖,𝑗

𝑉𝑗
𝐶𝑀2+
𝑖

𝑖

−∑
𝑄𝑗,𝑖

𝑉𝑗
𝐶
𝑀2+
𝑗

𝑖

+ 𝑆
𝑀2+
𝑗  (3.14) 

 𝑑𝐶𝑁𝐻3
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(3.15) 

 𝑑𝐶𝑖𝑛𝑒𝑟𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑠
𝑗

𝑑𝑡
=∑

𝑄𝑖,𝑗

𝑉𝑗
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𝑖

𝑖
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𝐶𝑖𝑛𝑒𝑟𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑠
𝑗

𝑖

 
(3.16) 

 𝑑𝑚𝑘
𝑗

𝑑𝑡
=∑

𝑄𝑖,𝑗

𝑉𝑗
𝑚𝑘
𝑖

𝑖

−∑
𝑄𝑗,𝑖

𝑉𝑗
𝑚𝑘
𝑖

𝑖

+ 𝑆𝑚𝑘

𝑗  
(3.17) 

 
In figure 3.2 can be seen a schematic example of a compartment model. 
The crux of this method are the characteristics previously mentioned used to divide the reactor 
in compartments. The division itself of the reactor can be achieved using a tool given by 
ANSYS Fluent, as will be explained in next chapter. 
 
 

 
Figure 3.2 Schematic example of compartment model 
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3.3.3 Reactor network model 
ANSYS Fluent provides a tool called Reactor Network Model that is used to divide the reactor 
in compartments, agglomerating cells of the domain with a certain criterion. 
These compartments are linked between them and interchanging fluxes between neighbour 
reactors.  
Looking at the kinetics (chapter 3.3.10), it can be seen that there are two parameters that vary 
in space that are involved in the calculation of the kinetics: supersaturation and turbulent 
dissipation rate. Then, in order to predict as accurately as possible the precipitation phenomena, 
it is important to create compartments agglomerating cells in which these parameters are as 
similar as possible, and divide the zones with high differences in this parameters.  
Ansys Fluent allows to choose multiples Custom Field Functions in the Reactor Network Tool 
to divide the reactor. The other input given to the tool is the number of desired compartments.  
Further information about the division carried will be shown in the results section. 
Once this step is completed, the following step is to obtain all the information of interest from 
these compartments. The information needed can be seen in equations (3.14), (3.15), (3.16) and 
(3.17): the volumes of the compartments and the fluxes between the compartments (including 
the inlet fluxes and the outlet ones) and the concentrations of the species at the inlets. In addition 
to these, it is necessary, in order to calculate the aggregation terms, to obtain the average of the 
turbulent dissipation rate in every compartment. All this information is not given by default by 
the Reactor Network Tool: an User-Defined Function is used to extract this information from 
Fluent once the compartments are created. The fluxes and the turbulent dissipation rate between 
the compartments are known since the division is carried after the CFD simulation. So the UDF 
extract all this information and write them in .txt files, which will be described in chapter 3.3.6. 
 

3.3.4 User-defined function 
A user-defined function (UDF) is an additional function present in Fluent and is directly 
programmed by the user. It can be loaded in the ANSYS Fluent solver in order to enhance and 
customize some of its features.  
They must be written in C programming language (and need to be saved in .c extension). They 
are coded using additional macros and functions given by ANSYS Fluent (ANSYS Fluent UDF 
Manual 15, 2013) that access to the solver data to perform the required task. 
The UDF files can be interpreted or compiled (ANSYS Fluent UDF Manual 15, 2013): 
-if they are interpreted, they are interpreted and loaded directly at runtime, in a single step. The 
source code is compiled into an intermediate, architecture-independent machine code that 
executes on an interpreter when the UDF is invoked; 
-if they are compiled, the steps are two: first a shared object library is built and then it is loaded 
to Fluent. They are built in the same way that Fluent executable is. The object code library 
contains the native machine language translation of the C source code. They are specific to the 
computer architecture being used. 
 

3.3.5 Organization of the script 
The goal of the script is to receive the information of the compartments described in the 
previous chapter, process them, solving mass balances and the precipitation equations for each 
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compartment, in order to obtain the concentrations and the moments in every compartment at 
stationary, as described schematically in figure 3.3. 
 

 
Figure 3.3 inputs and outputs of the script 
 
The script is composed by many files, each with a specified function, to obtain a script that is 
more legible and easier to modify if needed.  
The main files that take part to the calculations are: 

- RunPrecSolver.py: the main file, which is run to start the calculations 
- Init_run.py: initialize the settings of the system and read the data 
- ChemicalEquilibria.py: contains the Newton-Raphson solver 
- MomentCalc.py: contains algorithms to calculate weights and nodes of QMOM 
- NiMnCoHydroxidePrec.py: contains the ODE solver 

Besides these files, some other files are present, containing functions that calculate kinetic 
terms, post-processing files (to read the results, elaborate them, plot them, calculate overall 
mass error or compartments mass errors) or just containing support functions useful to 
streamline and make the script fluid. 
 

3.3.6 File init_run 
The function of this file is to set up all the information needed for the solver (such as physical 
parameters, settings and compartments information), reading them from the appropriate files 
and rearranging them as needed. 
The files containing this information are five, in .txt format: caseSetup, constantDict, 
react_zone_flux_toBoundary, react_zone_ave and react_zone_flux. 
In the caseSetup file are written all the settings for the set up of the script; most of the 
information contained here will be described below, since much of it is read and fed to the script 
through the init_run file.  
From caseSetup are read the options needed for the differential equation solver, which will be 
passed to the solver function as parameters. Further details about these parameters can be found 
in chapter 3.3.7. 
Still in this file is written information useful to the equations of moments, but the only one 
loaded in init_run is the number of nodes used for quadrature approximation. The other 
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information (containing kinetics parameters) is acquired by another function (see chapter 3.3.7). 
At least from caseSetup are taken the crystals density, the fluid density and a dictionary with 
the parameters for the Newton-Raphson solver (maximum number of iterations and tolerance, 
see chapter 3.3.8). 
In the constantDict file is written a dictionary in which init_run finds the atomic masses of 
Nickel, Manganese and Cobalt. 
At last must be read all the information about the compartments, inlets and outlets, and store 
that in functional arrays to use them in an efficient way. when needed adapt this in a form that 
will result optimal for the script. All these are in the three .txt files 
(react_zone_flux_toBoundary, react_zone_ave and react_zone_flux) created with the UDF 
described in chapter 3.3.3 from the compartment creation in ANSYS Fluent. 
In react_zone_ave can be found the volumes (m3) and the turbulent dissipation rate (m2/s3) of 
every compartment, which are stored in two arrays, with a correspondence between the 
compartment to which the stored value belongs and the position in the array. 
 

 
Figure 3.4 example of react_zone_ave file 
 
With the information in react_zone_flux, two storages are created: one array containing the 
couples (‘From’ and ‘To’) of the IDs that are connected by fluxes, and an array containing the 

values of the fluxes itself (read as kg/s and converted to m3/s using density), which position in 
the array correspond to the flux between the compartments in the respective position of the 
previous array. 
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 Figure 3.5 Example of react_zone_flux file  
 
The information in react_zone_flux_toBoundary is about the real inlets and outlets of the 
reactor. This information is stored in an array containing the IDs relative to the compartment in 
which they are present and their fluxes and concentrations of metals and ammonia. This 
information is further processed: the objective is to create four vectors, containing respectively 
the compartments IDs of the inlets, those of the outlets, the fluxes and the concentrations of the 
inlets and the concentrations of the outlets. All this can be easily done by checking the sign of 
the flowrates and knowing that inlets and outlets are characterized by having as a convention 
the same ‘From’ and ‘To’ compartments ID in the file react_zone_flux, in order to distinguish 
between inlets and outlets. For the outlets, the flowrates are saved in their absolute values. 
 

 
Figure 3.6 Example of react_zone_flux_toBoundary file 
 
An on-off flag in caseSetup indicates if the pH is kept constant or not and this defines the 
function that will be used in the Newton-Raphson solver. If the constant pH is off, the column 
with the NaOH concentrations of the inlets is read in react_zone_flux_toBoundary and the 
flowrate weighted average concentration of NaOH is calculated and appended to those of the 
metals (the case in exam has not constant pH, so the NaOH is considered). 
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In the end a vector containing the cations concentrations ratio on the total of the inlets is defined, 
in which the cation concentration ratio is defined as in equations 2.4, 2.5 and 2.6. 
From this the atomic mass a.m. of crystals is calculated as follows: 
 
 𝑎.𝑚.= ∑ (𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜𝑚𝑒𝑡𝑎𝑙 ∙ 𝑎.𝑚.𝑚𝑒𝑡𝑎𝑙 )

𝑚𝑒𝑡𝑎𝑙

  + 2 ∙ (𝑎.𝑚.𝑜𝑥𝑦𝑔𝑒𝑛+ 𝑎.𝑚.ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 ) (3.18) 

 

3.3.7 File NiMnCoHydroxidePrec 
This script is the core of the solver. Here can be found the ordinary differential equation solver 
and the Newton-Raphson and moment calculator algorithms are imported to update the 
equations of the system every iteration. 
An important aspect to underline is that the solution to be sought is stationary but to find it a 
solver of differential equations is used which solves an initial value problem (and therefore time 
dependent). This is done by using an ODE solver contained in the Scipy library and therefore 
already optimized: it is sufficient to wait for the solution to continue over time until it reaches 
a steady state.  
The function ‘odeEqs’ defines the equations governing the phenomena in order to give them to 

the solver. The function receives in input the vector y, which is the previous solution of the 
solver (concentrations and moments) at the time t of iteration.  
The values of y corresponding to the concentrations are used to calculate the supersaturation, 
calling the Newton-Raphson solver function contained in the file ChemicalEquilibria.py (see 
section 3.3.8).  
Then the weights and the nodes of the quadrature method are calculated, calling the algorithm 
from the file MomentCalc.py (see chapter 3.3.9). 
With this information, using the kinetics models contained in the files described in section 
3.3.10 and read by an appropriate function, nucleation rate, growth rate and aggregation rate 
are computed. 
At this point the script has all the necessary in order to define the equations that have to be 
solved (chapters 2.5 and 2.6). The aim is to define the right side of equation (3.19) (𝑓(𝑡, 𝑦)). 
The only terms missing at this point to complete the definition are the convection ones, that 
consist in fluxes between the compartments and real inlets and outlets. 
Before adding the convection terms, all these calculations are carried looping over all the 
compartments (each with its own solution y). 
Now the equations are stored in an array, which is long nine times the number of compartments 
(every compartment has the nine equations for the nine variables stored), so in the first nine 
positions are found the equations of the compartment with ID=0 and so on. These equations 
lack of the convection term that will be added at every compartment. Exploiting the arrays 
created in the file init_run.py containing all information about the volumes of the compartments 
and the fluxes present in every compartments, both the fluxes between compartments and the 
real inlets and outlets of the reactor, it is possible to add the missing convective terms.  
It can be useful to remind that the compartments are considered as CSTR systems, so the inlet 
flowrates in a compartment are multiplied by the outlet concentrations/moments of the origin 
compartment (see Eqs. (3.14), (3.15), (3.16) and (3.17)). 
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The vector containing the equations for all the compartments is now defined and the solver has 
its inputs ready.  
The solver used the solve_ivp function of the Scipy library, that solves an initial value problem 
(IVP) for systems of ordinary differential equations (ODE): 
 
 𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) (3.19) 

 
 𝑦(𝑡0) = 𝑦0 (3.20) 

 

In which 𝑓(𝑡, 𝑦) is the vector containing the equations for every compartment, created in the 
function mentioned above, 𝑦0 is the initial condition (that for every compartment is the one 
calculated in the init_run script). 
The solver aims to find the value of y(t) that satisfies the differential equations, integrating 
numerically the system.  
Then the parameters given to the solver are: the array containing the equations and, from the 
information read in the file init_run.py, the initial and final time, the initial condition and the 
solver options. This options are: the integration method used by the solver (explicit Runge-
Kutta RK45 method has been chosen), the relative and absolute tolerance (the absolute 
tolerance is a vector since it depends on the order of magnitude of the variable of interest), the 
initial step size (in time) and the maximum step size that the solver can use (since the solver 
adapts by itself the step size that it calculates as optimal). The maximum step size allowed 
changes in every interval of integration and assumes the values shown in table 3.5: 

 
 
 
 
 

Table 3.5 Final times and their time steps 
 
At the beginning of the simulation must be used time steps small enough to do not have 
numerical errors of the solver, since initially the variables in the compartments change very 
fast. For a similar reason, the aggregation terms are calculated only after a certain time (about 
one thousandth of the final time) since with the initial moment distribution it can give some 
convergence error to the solver.  
In the end one last parameter is given, called ‘events’, which is meant to stop the solver when 
we think that the solution has reached a stationary state. The solver reads the output of this 
function and if this output reaches zero, the solver stops its calculations. The output of this 
function is designed as: 
 

Final 
time 1e-13 1e-11 1e-9 1e-7 1e-5 1e-3 1e-1 1e+1 1.5e+5 

Max 
step 
allowed 

1e-15 1e-13 1e-11 1e-9 1e-7 1e-5 1e-3 1e-1 1e+1 
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𝑜𝑢𝑡𝑝𝑢𝑡 = max(𝑎𝑏𝑠 (

𝑓(𝑡, 𝑦)

𝑦
)) − 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (3.21) 

 
So, when the maximum of the absolute values of the division between the time derivative of 
the differential equation (i.e. those calculated in the function ‘odeEqs’) and the values of the 

solution 𝑦 at that iteration reaches the value of 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 , the solver stops its iterations, 
because it means that the time derivative is enough low to be considered stationary. The division 
with 𝑦 is needed because the solution values (moments or concentrations) have different order 
of magnitude. 
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Figure 3.7 Schematic functioning of the calculation algorithm 
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3.3.8 File ChemicalEquilibria and NR-solver 
The file ChemicalEquilibria.py contains the modified Newton-Raphson solver for the system 
of equilibrium equations (equations described in section 2.2.2). The inputs needed are the the 
cations concentrations ratio and the solver options read in the init_run script. Then when the 
function is called when supersaturation of a compartment must be calculated, the previous 
values of equilibrium concentrations obtained in the compartment are used as initial guess and 
the actual concentrations of the compartments (information contained in the solution of the IVP 
solver) are given as inputs. 
The equilibria of the system can be described by Eqs. (2.25), (2.26), (2.27). This system of 
equations can be seen in the following form: 
 
 𝑱(𝒙𝑚) ∙ (𝒙𝑚+1 − 𝒙𝑚) = −𝒇(𝒙𝑚) (3.22) 

 

The variables of the system, [𝑀𝑖
2+], [𝑁𝐻3] and [𝑂𝐻−], concentrations in solution, are the 

unknown, since the known value of concentrations is the total concentration in the 
compartment. In the file ChemicalEquilibria.py, the vector −𝒇(𝒙𝑚) and the matrix 𝑱(𝒙𝑚) of 
the current compartment are defined using the total values of concentrations of the compartment 
(solution of the IVP solver), and the initial guess of the solution of the system of equations. 
After that, these values are used in the function linalg.solve (from Numpy libraries), which 
solves the linear matrix equation (Eq. (3.22)), returning (𝒙𝑚+1 − 𝒙𝑚) (the solver is called 
modified since works with this difference), that can be used to obtain the new values of the 
solution 𝒙𝑚+1 that will be used in next iteration. If the l1 norm of (𝒙𝑚+1 − 𝒙𝑚) is less than the 
tolerance 𝜖 (defined in the solver options) or if the number of iterations overcome a limit (a 
limit read in the caseSetup file), the iterations are stopped: 
 
 ‖𝒙𝑚+1 − 𝒙𝑚‖1 < 𝜖 (3.23) 

 

And the last value 𝒙𝑚+1 is considered the solution and can be used to calculate supersaturation 
(see chapter 2.2.1). Then supersaturation is given as output of the function and will be used to 
define the equations of the compartment for the ODE solver. The last value of the solution 𝒙𝑚+1 
will be stored to use it as initial value for the compartment in the following time step.  
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Figure 3.8 Schematic functioning of the file ChemicalEquilibria 
 

3.3.9 File Moment Calc 
In this file are contained the algorithms which purpose is to compute the weights and the 
abscissas for the QMOM. 
The algorithms used is the adaptive Wheeler (see chapter 2.3.3), at which, given as input the 
moments and the number of nodes, give as output the weights and nodes, or can raise an error 
in case of non realizability.  
The use of this algorithm gives more stability to the script, especially in the initial time steps. 
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3.3.10 Kinetic files 
Other noteworthy files are the files are the ones in which kinetics are defined: growth.py, 
nucleateSize.py, nucleation.py, aggrEfficency.py and aggregation.py. 
These files use the information read with the function ‘createModels’ (see 

NiMnCoHydroxidePrec) to calculate the growth rate, the nucleate size, the nucleation rate, the 
aggregation efficiency and the aggregation term. 
In these files the models used to describe the mechanisms that vary the population are defined. 
These models are given every iteration some information as input since they depend on different 
properties of the system that can vary from iteration to iteration. The models used and their 
parameters will be presented below. 
The critical nucleate size is defined as constant: 
 
 𝑥𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.24) 

 

For nucleation, as seen in chapter 2.4.1, an exponential law dependent on 𝑙𝑛2(𝑆) can describe 
the phenomena, with two terms, one for homogeneous nucleation and one for heterogeneous 
nucleation: 
 
 𝐽 = 𝐾𝐽1 ∙ exp (

−𝑛𝑗1

𝑙𝑛2(𝑆)
) + 𝐾𝐽2 ∙ exp (

−𝑛𝑗2

𝑙𝑛2(𝑆)
) (3.25) 

 

In which 𝑆  is the supersaturation, defined in section 2.2.1 and 𝐾𝐽1, 𝐾𝐽2, 𝑛𝑗1 and 𝑛𝑗2 are 
parameters of the model 
Growth: 
 𝐺 = 𝐾𝐺 ∙ (𝑆 − 1)

𝑛𝐺 (3.26) 

 

In which 𝐾𝐺 and 𝑛𝐺  are parameters of the model. 

Aggregation efficency: 
 

𝐴𝑒𝑓𝑓 = exp

(

 −

√
𝜀
ν ∙ 𝐷𝑏

𝐺 ∙ 𝑓

)

  (3.27) 

With: 
 

𝐷𝑏 = √
𝜌

𝐴𝑝
∙  (𝜀 ∙ ν)

1
4 ∙ 𝐿𝑒𝑞 (3.28) 

 
 

𝐿𝑒𝑞 =
𝐿1𝐿2

√(𝐿1 − 𝐿2)2 + 𝐿1𝐿2
 (3.29) 
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𝑓 =
4 ∙ (1 + 𝑟𝐿 −√𝑟𝐿2 − 1)

(
1
3 + 𝑟𝐿 −√𝑟𝐿

2 − 1) − (𝑟𝐿 − √𝑟𝐿2 − 1)
2

∙ (
2
3 𝑟𝐿 +

√𝑟𝐿2 − 1
3 )

 

  

𝑤𝑖𝑡ℎ 

{
 

 𝑟𝐿 =
𝐿1
𝐿2
 𝑖𝑓 𝐿1 > 𝐿2

𝑟𝐿 =
𝐿2
𝐿1
 𝑖𝑓 𝐿2 > 𝐿1

 

 

(3.30) 

In which 𝜀 is the turbulent dissipation rate, ν is the kinmatic viscosity, 𝐺 is the growth rate, 𝜌 
is water density,  𝐴𝑝 is a parameter of the model and 𝐿1 and 𝐿2 are the abscissas of the QMOM. 

Aggregation: 
 

𝐴 = 𝐴𝑒𝑓𝑓 ∙ (
2𝑘𝑏𝑇

3𝜇
(
𝐿1
𝐿2
+
𝐿2
𝐿1
+ 2) + 2,2943 ∙ 𝑐𝑎𝑑𝑗√

𝜀

ν
(𝐿1 + 𝐿2)

3) (3.31) 

 

In which 𝑘𝑏 is the Boltzmann constant, 𝑇 is the temperature and 𝜇 is the dynamic viscosity. The 
first term in the parenthesis is the aggregation contribute of Brownian motion and the second 
term is the contribute of turbulence, with 𝑐𝑎𝑑𝑗 as parameter of the model. 

 

3.3.11 File runPrecSolver 
The RunPrecSolver.py is the file that is launched in order to start the calculations. 
This file contains the main function, from which are imported the functions from the other files, 
giving them the input variables they need to go on with the calculations. 
So first it recalls the init_run main function and from that obtains all its outputs (parameters, 
settings and compartments information). These outputs are used as inputs to the ODE solver (in 
NiMnCoHydroxidePrec), which will compute the solution and give it as output.  
It can be of interest to fill the reactor with some of the species (such as ammonia) before carry 
the precipitation calculations, to improve the solver performances and robustness: to do that is 
used the ODE solver with the source terms for the equations deactivated, in inlet just the species 
that is desired to fill the reactor and initial conditions equal to zero: this way a solution of just 
mixing of this species is calculated over all the compartments. 
At this point the precipitation can be solved: the ODE solver is used, this time with the real 
inlets conditions (all species) as inlets and the mixing solution calculated in the previous step 
as initial condition. This first solution is sought until a first final time: the solution is sought 
dividing the total time of integration in many intervals, every interval has his own maximum 
time step allowed that will be used by the ODE solver to progress with the calculations and will 
be improved moving forward in time (and therefore approaching the stationary). This way the 
initial calculations, which are the most sensitive, are carried with little time steps and the 
robustness of the solver is improved. So the ODE solver is used many times, each with initial 
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solution the solution from the previous interval time (see chapter 3.3.7). Intervals and time steps 
are shown in table 3.5. 

  

settings, parameters, compartments info = initialize 

function outputs 

source terms = off 

inlet = select species to mix 

mixing solution = ODE function(settings, parameters, 

compartments info, inlet) 

source terms = on 

inlet = real inlet 

initial conditions = mixing solution 

solution = ODE function(settings, parameters, compartments 

info, inlet) 
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4. RESULTS 
4.1 CFD results 
In this section the results of the CFD simulations, carried with the setup described in section 
3.1.6, will be described. 
The contour plots of the velocity magnitude and the turbulent dissipation rate are presented in 
two different planes, perpendicular to each other and with z axis (parallel to the shaft of the 
stirrer and in the direction of the height of the reactor) in Fig. 4.1 and 4.2. 
The contour plot for the velocity magnitude is shown with velocity vectors to highlight the 
direction of the flow. These plots show the effect of the stirrer on the velocity field and the 
symmetry with respect to the z axis.  
The flow features guarantee a good degree of dispersion of the precipitated particles which are 
very heavy and a good degree of dispersion of the reactants. It is eventually worth noticing that 
the upper part of the reactor is instead characterised by a stagnant zone. 
 

 
Figure 4.1 Velocity magnitude (m/s) in the plane containing NH3 inlet 

Metals 

NH
3
 

NaOH 
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Figure 4.2 Velocity field in the plane containing metals and NaOH inlets 

 
Another property of great interest to assess the mixing feature of the reactor is the turbulent 
dissipation rate. This property is important because it determines at the same time the mixing 
rate at different scales and the aggregation rate. It is typically used to divide to reactor into 
compartments. 
The values of volume average turbulent dissipation rate and mixing power required to stir the 
reactor by Umicore are of the same order of magnitude, then the value obtained by the 
simulation can be considered reliable. The difference existing between the values can be a 
consequence of an insufficiently dense grid near the rotating parts, that results in a loss of 
precision when describing this property here, since as expected, the values of turbulent 
dissipation rate near the rotating zone are very high, changing of two or three orders of 
magnitude moving slightly away from them (Fig. 4.3 and 4.4). 
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Figure 4.3 Turbulent dissipation rate field in the plane containing NH3 inlet  
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Figure 4.4 Turbulent dissipation rate field in the plane containing metals and NaOH inlets 
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4.2 Script results 
The script is carried with some different settings and compartment divisions and some 
conclusion can be drawn concerning the criteria employed to divide the reactor in 
compartments. 
Inlet concentrations of the species are given by Umicore. Moments at inlet are equal to zero, 
representing the fact that no particles are fed in the inlets. 
Different strategies are explored and they are described below: 

• Compartment division by using only turbulent dissipation rate 
• Compartment division by using only supersaturation 
• Compartment division by using turbulent dissipation rate and supersaturation 

 
4.2.1 Compartment division using only turbulent dissipation rate 
In this simulation, the reactor is divided by using the decimal logarithm of the turbulent 
dissipation rate. As explained before, the turbulent dissipation rate is important for the 
phenomena involved because it determines the overall mixing rate in the reactor and it 
determines both the collision rate and the aggregation efficiency.  
Turbulent dissipation rate field is known from the CFD simulation of the reactor (see chapter 
4.1). 
The number of compartments chosen was 20 and in figure 4.5 there are shown in the plane 
containing the metal and NaOH inlets. 
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Figure 4.5 Compartments using turbulent dissipation rate in a plane containing metals and 
NaOH inlets 
 
The concentrations of the chemical species involved and the moments of the PSD obtained at 
the outlet of the reactor are shown in table 4.1. 
 

Outlet  

Ni2+ (kmol/m3) 4,97x10-7 

Mn2+ (kmol/m3) 1,66x10-7 
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Co2+ (kmol/m3) 1,66x10-7 

NH3 (kmol/m3) 8,75x10-1 

m0 (1/m3) 2,98x10+9 

m1 (m/m3) 4,37x10+5 

m2 (m2/m3) 1,27x10+2 

m3 (m3/m3) 5,58x10-2 

SMD 4,37x10-4 

Table 4.1 Concentrations, moments and SMD (Sauter Mean Diameter) at outlet of the 
compartment model created with turbulent dissipation rate 
 
Results of table 4.1 can be explained observing this figure: nucleation and growth are heavily 
dependent on supersaturation (Eqs. 3.25 and 3.26); supersaturation, by definition (Eq. 2.17), 
depends on concentrations, in particular those of metals. It is therefore expected that 
supersaturation will be higher near the metal (and sodium hydroxide) inlets, quickly decreasing 
when moving away from them, due to mixing and the high precipitation rate which results in 
supersaturation depletion. 
It is clear that a correct description of the process requires a large number of compartments in 
regions characterized by large concentration gradients.  
The compartments at the inlets are relatively big: this means that the reactants enter into very 
large compartments, which are considered perfectly mixed resulting in concentration values 
that are smoothed out. This in turn results into an underestimation of the nucleation and growth 
rates, leading to low values of the predicted moments of the PSD at outlet (table 4.1). Figure 
4.6 shows how supersaturation is low and similar in all the compartments. 
 



 69 

 
Figure 4.6 Supersaturation over compartments dividing the reactor with turbulent dissipation 
rate 
 

4.2.2 Compartment division by using only supersaturation 
In this simulation, the reactor is divided by using the decimal logarithm of the supersaturation. 
The supersaturation values are obtained by an on-going CFD simulation in with the PBM is 
directly solved within the code Ansys CFD Fluent (see chapter 3.3.2). The CFD simulation has 
not converged yet but results are consistent with what is expected. 
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Figure 4.7 Supersaturation distribution in an on going full coupled CFD-PBE simulation 
 
Supersaturation is a very important properties since it defines the rates of all the relevant 
phenomena, especially nucleation and molecular growth. In figure 4.7 the supersaturation 
spatial distribution is shown in one plane: as it can be seen there is a high gradient of 
supersaturation at the inlets, in particular in the inlets for the metals and NaOH. The 
compartment division must take into account these high values of supersaturation gradients 
near the inlets. The division into compartments must be carried out accordingly loosing as little 
information as possible and creating compartments small enough to properly represent these 
supersaturation gradients. 
The number of compartments chosen to divide the reactor was 20. In figure 4.8 the 
compartments distribution in the plane containing the inlets for metals and NaOH is shown.  
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Figure 4.8 Compartments using supersaturation in a plane containing metals and NaOH inlets 
 
Table 4.2 shows the metal concentrations, the concentration of all the other chemical species 
involved, as well as the values of the moments of the PSD and of the mean Sauter diameter of 
the particles at the reactor outlet. 
 

Outlet  

Ni2+ (kmol/m3) 4,97x10-7 

Mn2+ (kmol/m3) 1,66x10-7 

Co2+ (kmol/m3) 1,66x10-7 
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NH3 (kmol/m3) 8,75x10-1 

m0 (1/m3) 2,2x10+12 

m1 (m/m3) 1,57x10+7 

m2 (m2/m3) 7,43x10+2 

m3 (m3/m3) 5,58x10-2 

SMD 7,5x10-5 

Table 4.2 Concentrations, moments and SMD (Sauter Mean Diameter) at outlet of the 
compartment model created with supersaturation 
 
Comparing these results with the ones obtained by dividing the reactor using the turbulent 
dissipation rate, it can be seen that the values of the moment of the PSD are larger, proving that 
more particle nucleation and growth is predicted in this case. 
The creation of smaller compartments at inlets allows a more accurate calculation of the 
nucleation and growth terms, which are responsible for the increasing of the moment of the 
PSD. 
With that kind of division, it is possible to see a supersaturation gradient among the 
compartments (figure 4.9). This type of division, however, has a flaw: not taking into account 
the turbulent dissipation rate in the reactor can result in an incorrect estimate of the aggregation 
rate, which in this case shows to be not negligible just in the compartment of metals inlet. 
The diagrammed value is the contribute to the moment of order 0 given by the aggregation 

(term  1
2
∑ 𝑤𝑖 ∑ 𝑤𝑗(𝐿𝑖

3 + 𝐿𝑗
3)

𝑞

3𝛽𝑎𝑔𝑔
𝑁
𝑗=1

𝑁
𝑖=1 − ∑ 𝑤𝑖𝐿𝑖

𝑞 ∑ 𝑤𝑗
𝑁
𝑗=1

𝑁
𝑖=1 𝛽𝑎𝑔𝑔 in Eq. (2.75), with q = 0). 
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Figure 4.9 Supersaturation over compartments dividing the reactor with supersaturation 
 

 
Figure 4.10 Aggregation contribute to the moment of order 0 over compartments dividing the 
reactor with supersaturation (similar behaviour for the other moments) 
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As it can be seen in figure 4.11 the nucleation rate is appreciable in many compartments, but 
most of the nucleation occurs near the metal inlets. In figure 4.12 it can be seen that the growth 
rate is more evenly distributed between compartments, since is less dependent from the 
supersaturation. The maximum growth rate is still in the compartment near the metal inlets. 
 

 
Figure 4.11 Nucleation rate over compartments dividing the reactor with supersaturation 
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Figure 4.12 Growth rate over compartments dividing the reactor with supersaturation 
 

4.2.3 Compartment division by using the turbulent dissipation rate and 
supersaturation 
Examining figures 4.5 and 4.9, it has been described how the division considering turbulent 
dissipation rate lacks of small compartments at the inlet, while the division considering 
supersaturation lacks of compartments in the zones with greater difference in the turbulent 
dissipation rate. 
Both supersaturation and the turbulent dissipation rate are important for the description of the 
phenomena involved and therefore it is a fundamental goal to develop a strategy that divides 
the reactor in compartments  considering both properties, in order to minimize the loss of 
information.  
The Reactor Network Tool provided by Fluent allows the user to select multiples Custom Field 
Functions in order to divide the reactor into compartments. 
The first idea is naturally the selection of the two Custom Field Functions, the decimal 
logarithm of the supersaturation (or the supersaturation) and the decimal logarithm of the 
turbulent dissipation rate, and the creation of the compartments with this method. Carrying on 
with that idea, the results obtained were not optimal, since clearly the two different properties 
cannot be decoupled, interacting and making the created compartments not usable. 
Then, in order to decouple the information an UDF has been written: 
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The aim of the UDF is to create two User Defined Memories (UDM): starting from the 
supersaturation distribution, an if condition discriminates the cells with supersaturation higher 
than VALUE, cells in which is of interest to use the supersaturation to create the compartments, 
from the other cells, in which is of interest to use the logarithm of the turbulent dissipation rate 
to create the compartments.  
Therefore in the cells with supersaturation values larger than a threshold value (taken equal to 
100 in this example) the supersaturation is stored in UDMa, while in the other cells the decimal 
logarithm of the turbulent dissipation rate is stored in UDMb. By giving a completely out of 
range value to UDMa (for example -100) in the cells in which we are interested in 
supersaturation, and vice versa with UDMb where we are interested in dissipation rate, we are 
able to completely uncouple the two parameters when compartments are created. 
After compiling this UDF, in which the VALUE decided as threshold was 4 (which has been 
seen to describe an appropriate area around the inlets), the UDMs created are defined as Custom 
Field Functions and selected in the Reactor Network Tool to create the compartments. 
The number of compartments chosen to divide the reactor was 50. In figure 4.15 the 
compartment distribution in the plane containing the inlets for the metals and NaOH is shown. 
 

if (supersaturation > VALUE)  

{ 

UDMa = -100; 

UDMb = supersaturation; 

} 

else 

{ 

UDMa = log10(turbulent dissipation rate); 

UDMb = -100; 

} 
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Figure 4.13 Compartments (50) using the UDF in a plane containing metals and NaOH inlets 
 
It can be seen in figure 4.15 that the compartments are created as desired: compartments near 
the inlets are created and in the rest of the reactor the compartments are similar to the ones 
created using only the turbulent dissipation rate (figure 4.5). 
Providing the script with information about these compartments, the concentrations and the 
moments of the PSD obtained at the outlet of the reactor were of the order of magnitude of 
those obtained by dividing the reactor with the logarithm of turbulent dissipation rate (table 
4.3). This is because, as can be seen in figure 4.16, the compartments created at the inlets were 
few and too big compared to those created using only the supersaturation. 
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Outlet  

Ni2+ (kmol/m3) 4,97x10-7 

Mn2+ (kmol/m3) 1,66x10-7 

Co2+ (kmol/m3) 1,66x10-7 

NH3 (kmol/m3) 8,75x10-1 

m0 (1/m3) 2,51x10+9 

m1 (m/m3) 3,89x10+5 

m2 (m2/m3) 1,20x10+2 

m3 (m3/m3) 5,58x10-2 

SMD 4,7x10-4 

Table 4.3 Concentrations, moments and SMD (Sauter Mean Diameter) at outlet of the 50 
compartments model created with UDF 
 
The number of compartments has been increased to 60 in order to achieve a division at inlets 
more similar to the one obtained when using supersaturation only. Figure 4.17 shows the 
compartment distribution in the plane containing the inlets for the metals and NaOH. 
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4.14 Compartments (60) using the UDF in a plane containing metals and NaOH inlets 
 
Providing the script with information about these compartments, the concentrations and 
moments obtained at the outlet of the reactor are shown in table 4.4. 
 
 
 

Outlet  

Ni2+ (kmol/m3) 4,97x10-7 
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Mn2+ (kmol/m3) 1,66x10-7 

Co2+ (kmol/m3) 1,66x10-7 

NH3 (kmol/m3) 8,75x10-1 

m0 (1/m3) 3,8x10+12 

m1 (m/m3) 2,74x10+7 

m2 (m2/m3) 9,80x10+2 

m3 (m3/m3) 5,58x10-2 

SMD 5,7x10-5 

Table 4.4 Concentrations, moments and SMD (Sauter Mean Diameter) at outlet of the 60 
compartments model created with the UDF 
 
Results show that nucleation and growth are described with more details at the metal inlet, since 
there are more and smaller compartments there. This can be seen also in figure 4.19, in which 
supersaturation in every compartment is shown, underlining the presence of compartments with 
high supersaturation at inlets, as expected. 
The turbulent dissipation rate is also well considered in the reactor. Observation of figure 4.17 
and comparison with figure 4.5 (compartments created using only the logarithm of turbulent 
dissipation rate) reveals that in the reactor the compartments are divided correctly using the 
logarithm of the turbulent dissipation rate. Figure 4.20 shows the aggregation rate among the 
compartments. It can be seen that the aggregation rate is not negligible just in one compartment, 
that is the one directly near the metals inlet face. 
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Figure 4.15 Supersaturation over 60 compartments dividing the reactor with the UDF 
 
The behaviour of the aggregation rate can be explained as follows: the overall aggregation rate 
equals to zero because the aggregation efficiency is very low. In fact, in the compartments in 
which the growth rate, on which the aggregation efficiency depends (Eq. 3.27), is too small 
even under the presence of large collision rates no aggregation occurs. Only the compartments 
in which the growth rate is high enough (metals inlet) presents an aggregation efficiency 
significantly different from zero. Those are the compartments in which some aggregation 
occurs. 
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Figure 4.16 Aggregation contribute to the moment of order 0 over 60 compartments dividing 
the reactor with the UDF (similar behaviour for the other moments) 

 
Figure 4.17 Nucleation rate over 60 compartments dividing the reactor with the UDF 
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Figure 4.18 Growth rate over 60 compartments dividing the reactor with the UDF 
 
In order to explore the role of the number of compartments on the final model accuracy, this 
variable was further increased up to 70. Figure 4.23 reports the compartments distribution in 
the plane containing the inlets of the metals and NaOH. 
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Figure 4.19 Compartments (70) using the UDF in a plane containing metals and NaOH inlets 
 
Providing the script with information about these compartments, the concentrations and 
moments obtained at the outlet of the reactor are shown in table 4.5. 
 

Outlet  

Ni2+ (kmol/m3) 4,94x10-7 

Mn2+ (kmol/m3) 1,65x10-7 
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Co2+ (kmol/m3) 1,65x10-7 

NH3 (kmol/m3) 8,74x10-1 

m0 (1/m3) 6,7x10+12 

m1 (m/m3) 3,98x10+7 

m2 (m2/m3) 1,17x10+3 

m3 (m3/m3) 5,57x10-2 

SMD 4,8x10-5 

Table 4.5 Concentrations, moments and SMD (Sauter Mean Diameter) at outlet of the 70 
compartments model created with the UDF 
 
A greater number of compartments at inlets is reached (figure 4.24). The compartment directly 
near the metal inlet face is halved in dimensions compared to that obtained with 60 
compartments, one half still being the one in which metals enter, the other half directly 
connected with the first half. This leads mainly to a higher value of the total particle number 
density, represented by the moment of order zero of the PSD. This value is about 75% higher 
since nucleation is better estimated and then the Sauter mean diameter decreases by about 15%, 
since there are more and smaller particles. 
The aggregation rate is again not negligible just in the two smaller compartments at metals inlet, 
in which growth rate is larger than orders of magnitude (figure 4.28).  
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Figure 4.20 Supersaturation over 70 compartments dividing the reactor with the UDF 
 

 
Figure 4.21 Aggregation contribute to the moment of order 0 over 70 compartments dividing 
the reactor with the UDF (similar behaviour for the other moments) 
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Figure 4.22 Nucleation rate over 70 compartments dividing the reactor with the UDF 
 

 
Figure 4.23 Growth rate over 70 compartments dividing the reactor with the UDF 
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5. CONCLUSIONS 
In this work, a compartment model has been studied in order to solve the equations describing 
the precipitation of Nickel, Manganese and Cobalt hydroxides in a stirred tank reactor in steady 
state conditions without performing a fully coupled CFD-PBE simulation. The compartment 
model consists in the division of the reactor in compartments interconnected in which the 
governing equations for precipitation are solved by considering the compartments as perfectly 
mixed systems. The calculations are carried by a script written in Python language. 
Performing a full coupled CFD-PBE simulation requires the solution of the precipitation 
governing equations in every cell of the domain, leading to high computational costs and long 
simulation times (in the order of magnitude of weeks). The use of a compartment model solved 
by the script is an approximation that significantly reduces the computational costs. For 
example with just one processor the typical simulation time for the compartment model, varies 
from 12 hours with 20 compartments to 48-72 hours with 70 compartments. 
A crucial aspect of the compartment model is how the division of the reactor is carried out. 
Since the kinetics on variables that vary in the reactor, such as the supersaturation and the 
turbulent dissipation rate (aggregation), the compartments created must describe as best as 
possible their gradients in the reactor. 
A CFD simulation of the reactor is carried in order to obtain the velocity and turbulence fields, 
using the Multiple Reference Frame model to describe the motion of the fluid around the 
moving parts and using as turbulence model the standard k- ε. 
The supersaturation field is obtained from an on-going full coupled CFD-PBE simulation. The 
field is still not the steady one but the supersaturation distribution and its gradients are 
reasonably similar to those expected. 
The division of the reactor is carried by ANSYS Fluent, which has implemented the Reactor 
Network Tool, useful to agglomerate the cells of the domain in compartments based on the 
selected Custom Field Functions. 
By using just the logarithm of the turbulent dissipation rate (from the CFD simulation) to divide 
the reactor, the compartments at inlets were too big and the moments distribution was low, since 
nucleation and growth were underestimated. 
By using just the logarithm of the supersaturation, turbulent dissipation rate gradient is not 
considered, leading to possible bad estimations of the aggregation rate. 
By using two Custom Field Functions, one with the turbulent dissipation rate and one with the 
supersaturation, the reactor is divided with small compartments created by supersaturation at 
inlets and with compartments created by turbulent dissipation rate in the rest of the reactor. 
Increasing the numbers of reactors has been seen to create smaller compartments at inlets, in 
particular at metal inlet, better estimating nucleation and growth and leading to particles with 
smaller SMD at outlet. 
By analysing the aggregation rate over compartments, it was clear that it was not negligible 
only in the compartments directly near to the metals inlet face: this is due to the dependence of 
the aggregation efficiency on the growth rate in an exponential term, leading to aggregation 
efficiency of almost zero, no matter the turbulent dissipation rate, in the others compartments 
because of the difference in order of magnitudes of the growth rate term. 
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Therefore, with the kinetics used in this work turbulent dissipation rate division is not much 
incident; the main parameter influencing the result is the dimension of the compartments 
directly near the metals inlet face.  
Then to create a compartment model, dissipation rate can surely be important, but the creation 
of small compartments positioned on the metals inlet face is fundamental. 
A method to create compartments considering both parameters has been defined and the 
importance of the compartments near the inlets have been showed. 
Future perspectives of the work are a comparison of the results with a full CFD-PBE coupled 
simulation and a breakage model, for which turbulent dissipation rate division could be more 
impacting, and a parallelization of the script, in order to solve the system much faster. 
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