
POLITECNICO DI TORINO
Corso di Laurea in Ingegneria Informatica

Master Degree Thesis

Development, Test and
Application of a framework for

cloud serverless services

Thesis Supervisor

Dr. Ing. Boyang Du
Candidate

Andrea Santu

matricola: 251579

Intership Tutor

Dott. Magistrale Antonio Giordano

Academic year 2020-2021

Abstract

The overview of services for the creation of web applications is focusing more and

more towards a micro services oriented approach, moving away from monolithic

structures. The maximum representation of this is with the serverless paradigm,

which since 2014 has seen an ever greater increase in its use and in its investments

by the major cloud providers. Such a paradigm has found an implementation in the

cloud model Function as a Service, which uses plain simple functions as its main

resources. Serverless Framework has emerged as one of the major framework that

allows the usage of the homonym paradigm in a simple way and it introduced a

level of abstraction regarding the underlying structure of the chosen cloud provider.

Despite the functionalities introduced by Serverless, the developer must take charge

of various operations concerning indirectly the business logic of the application,

with the main one being: to structure the code base, to define the various resources

through the compilation of a configuration file, to define a unit testing structure,

fundamental once the application complexity increases. Furthermore, based on the

chosen cloud provider, the developer must find solutions to problems such as Cold

start and limitations in resources creation.

The Restlessness framework was born with the goal of improving the user experi-

ence of Serverless, providing a standard project and testing structure, a Command

Line Interface and a local Web Interface through which is possible to completely

manage the project and with the further goal of minimizing all operations that do

not concern directly the application’s business logic. The framework is provided as

an Open Source package and with the possibility of extending its functionalities,

through the use of addons, some of which are already present, to address common

patterns, such as database access or authentication. During the framework devel-

opment it has been possible to test it on real applications, thus allowing to find

and correct critical issues, with the main ones being: Cold start handling, use of

the non relational database mongodb and limitations on the applications structure

proposed at the beginning of the framework development.

2

Contents

1 Cloud services 5
1.1 Cloud computing models . 7

1.1.1 Infrastructure as a Service (IaaS) 7
1.1.2 Platform as a Service (PaaS) 8
1.1.3 Software as a Service (SaaS) 8

1.2 Serverless paradigm . 9
1.3 Serverless Framework . 11

1.3.1 Advantages . 16
1.3.2 Disadvantages . 17

1.4 Conclusions . 17

2 Tools 21
2.1 JavaScript . 21
2.2 Npm . 24
2.3 Github . 26

2.3.1 Git . 26
2.3.2 Github features . 28

2.4 CircleCi . 32
2.4.1 CI/CD . 32
2.4.2 The platform . 32

2.5 AWS . 35
2.6 React . 39

3 Restlessness 41
3.1 Core . 43
3.2 Cli . 49
3.3 Usage . 53

3.3.1 Local development . 55
3.3.2 Resource creation . 56

3

3.3.3 Test . 61

4 Restlessness Extensions 63
4.1 Authorization . 63

4.1.1 Jwt Authorizer . 63
4.1.2 Usage example . 64

4.2 Data Access Object . 66
4.2.1 Dao for mongodb . 67
4.2.2 Usage example . 69

5 Application 73
5.1 Cold start . 74
5.2 Database proxy . 76
5.3 Micro services . 77

6 Future Works 79

Bibliography 80

4

Chapter 1

Cloud services

In the early days of the web, anyone who wanted to build a web application had

to buy and maintain the physical hardware required to run a server, which was a

cumbersome process to undertake, especially for small businesses [1]. Then came

a new paradigm for the provisioning of computing infrastructure, named Cloud

Computing and defined as:

“Clouds are a large pool of easily usable and accessible virtualized resources

(such as hardware, development platforms and/or services). These resources can

be dynamically reconfigured to adjust to a variable load (scale), allowing also for

an optimum resource utilization. This pool of resources is typically exploited by a

pay-per-use model in which guarantees are offered by the Infrastructure Provider

by means of customized SLAs.” [2]

Cloud Computing is possible because of a technology called virtualization, which

allows the creation of a simulated computer, named virtual machine, that behaves as

if it were a physical computer with its own hardware. When properly implemented,

this approach allows having a more efficient use of the physical hardware, as each

computer is able to run many virtual machines at once. Despites the many benefits,

using virtual machines still requires manual server administration, as each one

simulate a full system, including the operating system and the underlying kernel.

5

Cloud services

Figure 1.1: Representation of the cloud

The next technological step has been containerization, which gave the possibility

of packing an application and all its dependencies, such as system libraries and

system settings into a single entity called Container. With this approach a single

physical machine, including the kernel, is shared by a multitude of containers. The

main advantages that containerization offers, with respect to virtual machines are

[3]:

• Portability: once the application is packed into a container it can be run on

any host supporting that technology.

• Control and flexibility.

• Faster deploy.

• Less server administration.

With this premises about the cloud and its infrastructure is possible to outline the

main models that have emerged in the context of cloud computing.

6

1.1 – Cloud computing models

1.1 Cloud computing models

Among the various types of cloud computing architectures have emerged three main

models, which are: Infrastructure as a Service, Platform as a Service and Software

as a Service. Each model is characterized by an increasing level of abstraction

regarding the underlying infrastructure.

Figure 1.2: IaaS, PaaS, SaaS Pyramid

1.1.1 Infrastructure as a Service (IaaS)

Infrastructure refers to the computers and servers than run code and store data.

A vendor hosts the infrastructure in data centers, referred to as the cloud, while

customers access it over the Internet. This eliminates the need for customers to

own and manage the physical infrastructure, so they can build and host web ap-

plications, store data or perform any kind of computing with a lot more flexibility.

An advantage of this approach is scalability, as customers can add new servers on

demand, every time the business needs to scale up and the same apply also if the re-

sources are not needed anymore. Essentially physical servers purchasing, installing,

maintenance and updating operations are outsourced to the cloud provider, so cus-

tomers can spend fewer resources on that and focus more on business operations,

thus leading to a faster time to market. The main drawback of this approach is the

cost effectiveness, as businesses needs to over-purchase resources to handle usage

spikes, this leads to wasted resources [4].

7

Cloud services

1.1.2 Platform as a Service (PaaS)

This model simplify web development, from a developer perspective, as they can

rely on the cloud provider for a series of services, which are vendor dependent.

However, some of them can be defined as core PaaS services and those are: de-

velopment tools, middleware, operating systems, database management and infras-

tructure. PaaS can be accessed over any internet connection, so developers can

work on the application from anywhere in the world and build it completely on

the browser. This kind of simplification comes at the cost of less control over the

development environment [5]. An example of this kind of services is Google’s App

Engine.

Another model has recently been added to the three main cloud computing

models, named Backend as a Service (Baas). This model stands, with some dif-

ferences, at the same level of PaaS and it’s suited especially for web and mobile

backend development. As with PaaS, BaaS also makes the underlying server infras-

tructure transparent from the developer point of view and also provides the latter

with api and sdk that allow the integration of the required backend functionalities.

The main functionalities already implemented by BaaS are: database management,

cloud storage, user authentication, push notifications, remote updating and host-

ing. Thanks to these functionalities there may be a greater focus on frontend or

mobile development. In conclusion BaaS provides more functionalities with respect

to the PaaS model, while the latter provides more flexibility.

1.1.3 Software as a Service (SaaS)

In this model the abstraction from the underlying infrastructure is maximized.

The vendor makes available a fully built cloud application to customers, through

a subscription contract, so rather than purchasing the resource once there is a

periodic fee. The main advantages of this model are: access from anywhere; no

8

https://cloud.google.com/appengine
https://cloud.google.com/appengine

1.2 – Serverless paradigm

need for updates or installations; scalability, as it’s managed by the SaaS provider,

cost savings. However, there are also main disadvantages, that makes this solution

not suitable in some cases: developers have no control over the vendor software, the

business may become dependent on the SaaS provider (vendor lock-in), no direct

control over security, which may be an issue especially for large companies [6].

Figure 1.3: IaaS, PaaS, SaaS diagram

1.2 Serverless paradigm

The downsides of the previously described approaches varies from the control on

the infrastructure and on the software, to scalability problems, to end with cost

and resources utilization effectiveness. Aiming to solve these problems, the major

providers started investing on a new cloud computing model, named Function as a

Service (FaaS) and based on the serverless paradigm. Such a paradigm is based on

providing backend services on an as-used basis, with the cloud provider allowing

to develop and deploy small piece of code without the developer having to deal

with the underlying infrastructure. So despite the terminology, serverless does not

mean without servers, as they are of course still required, but they are transparent

to developers, which can focus on smaller pieces of code. With this model, rather

than over purchase the resources, to ensure correct functionality in all workload

9

Cloud services

situations, as happens in the IaaS model, the customer is charged by the vendor for

the actual usage, as the service is auto-scaling. Thanks to this approach consumer

costs will be fine grained as shown in 1.4.

Figure 1.4: Cost Benefits of Serverless

Being the underlying infrastructure transparent for the developer, you get the

advantage of a simpler software development process and this advantage character-

ize also the PaaS model. Furthermore, being the service auto-scaling, is possible

to obtain a virtually unlimited scaling capacity, as it happens in the IaaS model,

where the limit is the cloud provider availability.

An implementation of the serverless paradigm is the cloud model named Func-

tion as a Service (FaaS), which allows developers to write and update pieces of code

on the fly, typically a single function. Such code is then executed in response to an

event, usually an api call, but other options are possible and with more events, more

functions are execture. Instead, in absence of events, no code is executed thus lead-

ing to the previously described benefit regarding scalability and cost effectiveness.

Furthermore, through this model turns out to be more efficient to implement web

applications using the modular approach of the micro services architecture (1.5),

since the code is organized as a set of independent functions from the beginning.

10

1.3 – Serverless Framework

Figure 1.5: Monolithic to Micro services application

So the main advantages of the FaaS model are: improved developer speed, built-

in scalability and cost efficiency. As each approach, there are also drawbacks, in

this case developers have less control on the system and an increased complexity

when it comes to test the application in a local environment.

The first cloud provider to move into the FaaS direction has been Amazon, with

the introduction of AWS Lambda in 2014, followed by Microsoft and Google, with

Azure Functions and Cloud Functions respectively in 2016.

1.3 Serverless Framework

Shortly after the release of the service AWS Lambda functions, it has been in-

troduced, in 2015, the Serverless Framework, with the main objective of giving

developers the tools for developing, deploying and troubleshooting serverless ap-

plications with the least possible overhead. The framework consists of an Open

Source Command Line Interface and a hosted dashboard, that combined provide

developers with serverless application lifecycle management. Serverless supports

all runtime provided by AWS, corresponding to the most popular programming

languages such as: Node.js, Python, Ruby, Java, Go, .Net and with others on

11

Cloud services

development.

Although the Serverless Framework, given the number of cloud providers sup-

ported, aim to be platform agnostic, the following examples will be based on the

AWS provider and on the Node.js programming language.

The main work units of the framework, according to the FaaS model, are the

functions. Each function is responsible for a single job and although is possible to

perform multiple tasks using a single function, it’s not recommended as stated by

the design principle Separation of concerns [7]. Each function is executed only when

triggered by an Event, which can be of different type, such as: http api request,

scheduled execution and image or file upload. Once the developer has defined the

function and the events associated to it, the framework takes care of creating the

necessary resources on the provider platform.

The framework introduces the concept of Services as unit of organization. Each

service has one or more functions associated to it and an application can then be

composed by multiple services. This structure reflects the modular approach of the

micro services architecture described previously. Finally, various applications are

grouped under an organization (1.6)

Figure 1.6: Serverless framework resources scheme

A service is described by a file, located at the root directory of the project and

12

1.3 – Serverless Framework

composed in the format Yaml or Json. Below is a simple serverless.yml file (listing

1.1), it defines the service users, which contains just a function, responsible of

creating a user. The handler field specify the path to the function code, in this case

the framework will search for a handler.js file, exporting a usersCreate function, as

show on listing 1.2.

1 org: my -company -org

2 app: chat -app

3 service : users

4 provider :

5 name: aws

6 runtime : nodejs12 .x

7 functions :

8 usersCreate :

9 handler : handler . usersCreate

10 events:

11 - http: post users/create

Listing 1.1: Simple serverless.yml file

13

https://yaml.org/

Cloud services

1 async function usersCreate (event , context) {

2 const user = {

3 name: ’sample_name ’,

4 surname : ’sample_surname ’

5 }

6 await mockDb. createUser (user)

7 return {

8 statusCode : 200,

9 body: JSON. stringify ({ user })

10 }

11 }

Listing 1.2: Simple handler function

./
handler.js
serverless.yml

Figure 1.7: Simple Serverless project structure

Serverless is flexible and does not force a fixed structure of the project, that task

is up to the developer. Defined that structure, the service can be deployed using

the Serverless CLI, on the chosen provider, as shown on listing 1.3.

14

1.3 – Serverless Framework

1 $ serverless deploy

2 Serverless : Stack update finished ...

3 Service Information

4 service : users

5 stage: dev

6 region: us -east -1

7 stack: users -dev

8 resources : 12

9 api keys:

10 None

11 endpoints :

12 POST - https ://.../ dev/users/create

13 functions :

14 usersCreate : users -dev - usersCreate

15 layers:

16 None

Listing 1.3: Deploy command

The deploy command creates the necessary AWS resources, in this case they are:

a Lambda function corresponding to the usersCreate function and an api gateway

to handle http requests. It is then possible to test the newly created resource

by making requests to the url returned by the CLI, specifying the resource path

/users/create. It is possible to invoke online functions also directly from the CLI,

specifying the identifier of the function used in the serverless.yml file, as shown on

listing 1.4

15

Cloud services

1 $ serverless invoke -f usersCreate

2 {

3 " statusCode ": 200,

4 "body ": "{\" user \":{\" name \":\" sample_name \", ...}}"

5 }

Listing 1.4: Invoke command

The development and deploy process shown for a service with a single function

remains the same as the service complexity grows, in particular it is possible to

modify and deploy a single function at a time, since each function has its own

resource associated. This process gets along with the previously described micro

services architecture.

1.3.1 Advantages

The main advantages of using the Serverless Framework are:

• Provider agnostic: the framework aims to be independent from the chosen

cloud provider, thus avoiding vendor lock-in. In practice this feature is not

achieved completely, as the configuration file serverless.yml may be different

across providers. However, the main structure remains the same and that

simplify providers migration.

• Simplified development: the CLI commands simplify the development process,

from the deploy to the testing of the deployed functions.

• Extensible: it is possible to develop plugins that integrate with the CLI com-

mands lifecycle, increasing their functionalities.

• Dashboard: the hosted dashboard allows monitoring and tracing of the de-

ployed functions and services.

16

1.4 – Conclusions

1.3.2 Disadvantages

The main advantages of using the Serverless framework and the Serverless paradigm

are:

• Compilation of the configuration file may become tedious as the project grows.

• The framework is extremely flexible regarding the project structure and that is

an advantage, however, this can be also a drawback as it’s up to the developer

to find a suitable structure and this means less time spent on business related

tasks.

• Unit testing: it is possible to test a deployed function easily, however for

big projects, where it’s necessary to test a lot of functions, this may become

cumbersome.

• Resource threshold: for projects created with AWS, a single serverless.yml

file may create up to 200 resources and if exceeded the deploy operation fails.

Since each function is responsible for the creation of about 10 resources, is very

easy to exceed this limit. The only solution so solve this problem is to split the

functions across multiple services, hence different serverless.yml configuration

files.

• Cold start: inherent overhead of the current implementation of the serverless

paradigm. Since each function is executed only in response to an event, a

certain amount of time is required for resources initialization.

1.4 Conclusions

Each cloud model presented has its own strengths and drawbacks, according to

the wanted goal and the specific project’s needs. Favouring as selection criteria,

solutions that present major advantages in terms of scalability, cost efficiency and

17

Cloud services

speed of development, it has been decided to favour the Serverless option. The

main cloud providers offering this kind of service, as previously stated, are: AWS,

with its Lambda service, Microsoft, with Azure Functions and Google, with Cloud

Functions. Each provider offer different configurations, with different pricing, based

on memory, CPU and execution time as parameters, as shown on 1.1. In the

literature there are several documents comparing the various services side by side

exhaustively [8]. For the project, subject of this document, it has been chosen AWS

as the main provider, as the most mature platform meeting the project’s needs. In

particular it providers the following advantages with respect to the competitors [8]:

• Cold start (1.2)

• Overall maturity

• Performance consistency

• Scalability

18

1.4 – Conclusions

AWS Azure Google
Memory
(MB)

64 * k (k = 2,
3, ..., 24)

1536 128 * k (k =
1, 2, 4, 8, 16)

CPU Proportional
to Memory

Unknown Proportional
to Memory

Language Python
Nodejs Java
and others

Nodejs
Python and

others

Nodejs

Runtime OS Amazon
Linux

Windows 10 Debian 8

Local disk
(MB)

512 500 > 512

Run native
code

Yes Yes Yes

Timeout
(second)

300 600 540

Billing factor Execution
time,

Allocated
memory

Execution
time,

Consumed
memory

Execution
time,

Allocated
memory,
Allocated

CPU

Table 1.1: Cloud providers configuration [8]

Provider-
Memory

Median Min Max STD

AWS-128 265.21 189.87 7048.42 354.43
AWS-1536 250.07 187.97 5368.31 273.63
Google-
128

493.04 268.5 2803.8 345.8

Google-
2048

110.77 52.66 1407.76 124.3

Azure 3640.02 431.58 45772.06 5110.12

Table 1.2: Cloud providers Cold start (in ms) [8]

19

20

Chapter 2

Tools

An important process in the software development is the choice of the right tools,

in order to achieve simplicity and efficiency for both development process and the

project itself. In this chapter will be described the main tools used during the

development of Restlessness and its deployment to make it available for everyone.

2.1 JavaScript

JavaScript is a lightweight interpreted programming language. Interpreted means

that the code is read top to bottom and the result of the running code is immedi-

ately returned. Interpreted programming languages are opposed to compiled one,

where the code is transformed into a binary format that can be directly executed [9].

Although JavaScript was born as a language limited to client side programming, ex-

ploiting an engine directly incorporated into the Web browser, with the introduction

of Node.js has become possible to use this language also for backend programming

and in general in contexts outside of the browser. Node.js is a JavaScript runtime

based on the V8 engine, core engine of the popular Chrome browser [10]. A key

characteristic and one of the main strength of JavaScript with respect to other pro-

gramming languages is its asynchronous nature, that allows having non-blocking

21

Tools

I/O. As a consequence of this, the code runs on a single thread, based on a LIFO

queue (Last In, First Out) continuously checked by the so called Event Loop. As

shown on 2.1, operations regarding File System, Network or Database access are

executed separately and only once completed are inserted again into the queue, to

handle their result. Meanwhile other queued code is executed by the only present

thread.

Figure 2.1: The Event Loop [11]

Being single threaded is a useful limitation as it’s not possible to incur into con-

currency issues. This peculiarities make JavaScript well suited for the so called real-

time applications (RTAs), that is applications that have to process a high volume of

short messages requiring low latency and so they require a highly scalable solution.

Conversely due to its single threaded nature, JavaScript is not recommended for

CPU-heavy jobs, as the Event Loop would be stuck on a single operation [12][13].

Another advantage of JavaScript, especially after the release of Node.js, is the

possibility to use the language for both frontend and backend in the context of Web

development, creating a seamless experience for developers.

JavaScript is a dynamically typed language, which means that it’s not necessary

22

2.1 – JavaScript

to explicitly mention the type of data a variable holds, as that type can change

dynamically as the content of the variable changes (2.1).

1 let a = "Hello World!"

2 a = 42

Listing 2.1: Dynamically typed variables

This feature of the language gives a lot of flexibility to developers, however as

the project complexity grows it can quickly become a downside. For this reason, in

2012 Microsoft released an open source language called Typescript, a superset of

JavaScript that enable static type checking. Being a superset, any JavaScript code

is also valid Typescript code, enabling a gradual integration for already existing

code bases. The Typescript compiler is specifically a transpiler, or a compiler

that takes source code as input and produces other source code as output, in this

case JavaScript code. The compiler will point the errors it encounters, but it

does not prevent the code to be run, hence it behaves like a spellchecker for the

code. Typescript can also infer variables type from their usage, reducing the effort

needed to enable static type checking from the developer [14][15]. Keeping in mind

the described strengths of the JavaScript environment, it has been decided to use

it as the main language for the development of the Restlessness framework.

23

Tools

1 interface Student {

2 name: string

3 graduationYear : number

4 }

5

6 const aStudent : Student = {

7 name: ’Arthur Dent ’,

8 graduationYear : 2020

9 }

10

11 aStudent . graduationYear = ’2020 ’ // Invalid

12 aStudent . graduationYear = 2021 // Valid

Listing 2.2: Static type checking on Typescript

2.2 Npm

The strengths of the JavaScript ecosystem are further increased by the presence of

Npm, shorthand for Node Package Manager, which is the official package manager

for Node.js. Npm rely on the CommonJs modules specification [16], which defines

a convention for the JavaScript module ecosystem. The main components of Npm

are:

• Npm registry: modules can be published to it or installed from it. The official

and main registry is available at the address https://npmjs.org

• npm CLI: the command line tool from which is possible to interact with the

registry, with operations like publishing or installing packages.

• package.json: a configuration file, in the Json format [17], that must be present

for both modules that are published into the registry and modules that use

24

https://npmjs.org

2.2 – Npm

other modules from the registry as dependencies. It contains projects infor-

mations, such as name and version and a list of other modules, on which the

project depends on.

• node_modules: an automatically created folder that contains all the projects

dependencies. At runtime Node.js looks for modules in this folder.

Listing 2.3 shows the package.json of a simple module, while 2.4 shows the def-

inition of a function, on that module, exported using the CommonJs specification.

To publish the package on the Npm registry is possible to invoke the publish com-

mand on the npm CLI. With the install command that same package is installed

as dependency under the node_modules folder and can be used as shown on listing

2.5

1 {

2 "name": " add_module ",

3 " version ": "1.0.0" ,

4 " description ": "Simple module example ",

5 "main": "index.js",

6 "author": "Arthur Dent",

7 " license ": "ISC"

8 }

Listing 2.3: A simple package.json

25

Tools

1 // index.js

2 function add(n1 , n2) {

3 return n1 + n2

4 }

5

6 module.exports = add

Listing 2.4: CommonJs module definition

1 const add = require(’./ add.js’)

Listing 2.5: CommonJs module usage

The Npm ecosystem has been used extensively during the development of Rest-

lessness, for its dependencies and for making it available on the registry. Further-

more, the developed framework uses a feature of Npm called Scoped Packages [18],

which allows to group related packages together under a common scope, acting as

a namespace. Restlessness packages are available under the @restlessness/ scope.

2.3 Github

2.3.1 Git

Git is an Open Source Distributed Version Control System, in particular:

• Control System: Git is a content tracker, it can be used to store content, which

generally is code.

• Version: the tracked content is subject to continuous change, often this changes

are added in parallel. Git helps handling this by maintaining a history of all

changes.

26

2.3 – Github

• Distributed: Git is based on remote and local repositories, the first one stored

in a server, while the latter is stored in the developer computer and both

contains the full history information.

Git is useful to track code changes in all cases, but it’s absolutely necessary to

avoid conflicts when multiple developers work in parallel on a single codebase. The

main concepts introduced by Git are:

• Commit: the main unit representing content modification.

• Branches: allow working simultaneously at the codebase, making different

modifications.

• Push/Pull: operations that allow synchronization between the remote reposi-

tory and the local one.

• Merge: operation that integrate the modification made on a branch into an-

other branch.

• Tag: a string identifier assigned to a specific commit, useful to reference a

particular version of the project (e.g. a simple tag is v1.0.2).

Figure 2.2: Section of Restlessness history

With these concepts it is possible to work on each feature independently from

others, integrating it only when it reaches an appropriate stability level. The strat-

egy adopted with the developed framework has been to create branches with the

27

Tools

feature/ prefix for new functionalities or improvement of existing ones and the fix/

prefix for correction of bugs, followed by the name of the specific feature of fix.

2.3.2 Github features

Github is a web based platform providing all functionalities offered by the Git

system plus additional DevOps features, with the main ones used during the devel-

opment of Restlessness being: Issues, Pull Requests and Projects.

Issues

Issues are Github feature that helps to keep track of tasks, bugs, enhancements

or any kind of modification to the project. They are characterized by a title, that

gives an immediate feedback about what is the reason of the Issue and an optional

description, with more specific and technical information, as shown on figure 2.3.

Each Issue can be assigned to one or more collaborators, responsible for having

it solved. This tracking system is focused on collaboration, as it is possible to

comment and discuss about the Issue with other collaborators, also referencing

other resources, which can be other Issues or code sections. As the project grows

so does the number of Issues and so it becomes important to keep them organized.

This is made possible by using Labels and Milestones. Both allow to group Issues

according to a common characteristic, but with a different granularity [19]. The

first one allows a more specific grouping, with the main ones defined for Restlessness

being:

• enhancement: A new feature, or a request for a new feature.

• bug: A problem in the project functionalities.

• documentation: Improvements or additions to documentation.

• tests: Testing related Issues

28

2.3 – Github

• good first issue: Being the framework Open Source, also external people can

contribute to it, this Label marks simple and easy Issues that can be managed

also by newcomers.

• Packages specific Issues: Restlessness adopt a monorepo strategy [20], having

all provided packages under the same repository, so it has been defined a Label

for each package, such as: CORE, CLI, AUTH-cognito and DAO-mongo.

The latter instead group together Issues linked together from a temporal point of

view, typically a version release or a planned Sprint if following the agile method-

ology [21]. With the Restlessness framework it has been opted for the first option.

Figure 2.3: An Issue on the Restlessness project

Pull Requests

An important process when multiple developers collaborate on a single project are

code reviews, as having project’s modification verified by more than one person

reduces the risk of finding bugs, typos and critical problems later. Pull Requests

are a feature of Github that enable this process. With it a collaborator proposes its

29

Tools

Figure 2.4: List of closed Restlessness Issues

changes while another one accepts or rejects the request. It is possible to discuss on

the specific request, referencing other resources, commenting on code or requesting

modification on the proposed changes, as it happens for Issues. When a Pull

Request is created the author chooses a target branch on which to integrate its

proposed changes and once the request is accepted those changes are merged into

the target branch and the Pull Request is considered closed, as shown on figure 2.5.

Projects

Projects is a recently added Github feature with the purpose of further improve

organizing and distributing tasks and work. From the Projects page it is possible

to define custom columns in which assign different tasks, which can be Issues, Pull

Requests or simple Notes. As shown in figure 2.6, for Restlessness has been defined

tree columns: To do, In Progress and Done. This way it is immediately visible

which tasks need to be done, are under development or are already completed.

30

2.3 – Github

Figure 2.5: An approved Pull Request on the Restlessness project

Figure 2.6: Github Projects board on Restlessness

Being the developed framework Open Source, it is available for consultation, mod-

ification and improvement on Github, as well as this document, on the following

addresses:

• Restlessness: https://www.github.com/getapper/restlessness

31

https://www.github.com/getapper/restlessness

Tools

• Thesis: https://www.github.com/androsanta/Thesis

2.4 CircleCi

2.4.1 CI/CD

Continuous Integration is a practice that encourages developers to integrate their

code changes early and often, into the main and stable version of the project,

which for a git based project is the master branch. Each code integration triggers

an automated build and test, that if failed can be repaired quickly. The main

advantage of using this approach is the early bug detection, which as consequence

will result in an overall reduced bug count and reduced maintenance. Moreover once

set, the CI process does not add any overhead to the development as it is completely

automated. The CI approach is oftentimes related to another approach, which is

the Continuous Delivery, defined as:

“Continuous Delivery (CD) is a software engineering approach in which teams

keep producing valuable software in short cycles and ensure that the software can

be reliably released at any time.” [22]

2.4.2 The platform

CircleCi is an online platform that provides services for implementing Continuous

Integration and Continuous Delivery (CI/CD) on software projects. It can be con-

figured to access the source code repository on Github and after that each commit

can trigger an automated build, test and deploy task. Those automated tasks are

performed inside a clean container or Virtual Machine, ensuring a reproducible

environment.

The main concepts introduced by the platform are:

• Configuration: All processes are orchestrated through a single file called config.yml,

32

https://www.github.com/androsanta/Thesis

2.4 – CircleCi

Figure 2.7: CircleCi flow [23]

in the Yaml format and placed under a folder called .circleci at the root of the

project.

• Orbs: Reusable snippets of code that help automate repeated processes

• Jobs: Building blocks of the configuration file, they are a collection of steps,

which run commands or scripts as specified. Each Job is run in a unique

executor.

• Executor: The container or Virtual Machine that run each Job. It is possible to

chose between Docker containers, Virtual Machines running Linux, Windows

or MacOS.

• Steps: Actions that need to be taken to complete a Job. It can be any kind

of executable command.

• Workflows: They define a list of Jobs with their run order and concurrency.

For the Restlessness development has been chosen the popular containerization

solution called Docker, in particular a Node.js based container, as shown on listing

33

https://yaml.org/
https://www.docker.com/
https://www.docker.com/

Tools

2.6:

1 executors :

2 node12:

3 docker:

4 - image: circleci /node :12.9.1

Listing 2.6: Reusable executor definition

As previously said the framework adopt a monorepo structure, so it has been

necessary to define multiple Workflows, one for each package. Each Workflow

defines two parallel Jobs, for testing and publishing on the Npm registry. Figure

2.8 show the described structure for two Restlessness packages and it is possible to

notice that each Job run in its own container, in parallel and independently from

the others

Figure 2.8: CircleCi workflows for Restlessness

To perform the Steps shown on 2.8 it has been defined reusable commands, with

the main one being:

• install_packages: Install dependencies as specified by the package.json.

• deps_and_tests: Install dependencies and run tests as specified by the package.json.

34

2.5 – AWS

• npm_publish: Publish the package on the Npm registry.

According to the Continuous Delivery approach the publish operation is trig-

gered manually by performing a git tag on a specific repository commit, following

the format: package name, followed by /v and the semantic version of the package

(e.g. @restlessness/core/v1.0.2). A custom script takes care of extracting the ver-

sion information and setting it on the correct package.json, where is read from the

npm publish command.

Although CircleCi offers its own website from which is possible to check Work-

flows execution, errors and details of every operation, it offers also a Github plugin,

that is able to show Workflows result directly on commits or Pull Requests, as

shown on 2.9. The integration between the two services has simplified the develop-

ment workflow of Restlessness and it adds to the already described advantages of

adopting a CI/CD approach.

Figure 2.9: CircleCi Workflows seen from Github

2.5 AWS

Amazon Web Services is a cloud platform offered by Amazon.com, Inc which,

among its various services, also provides serverless computing options. Although

one of the purpose of using the Serverless Framework is to abstract the underlying

35

Tools

infrastructure details of the platform, those details are needed to develop a frame-

work such as Restlessness, that has to interact with the platform at a lower level

to provide its functionalities.

Here is a list of the main services used by Serverless and Restlessness on behalf

of the user and also used during Restlessness development:

• Lambda: The compute service providing the serverless functionalities. A

Lambda function contains the code written by the developer.

• API Gateway: A service that creates a connection point between external

requests and other internal services, such as a Lambda functions.

• S3: Acronym for Simple Storage Service, provides object storage. Resources

are organized in containers called Buckets.

• CloudFormation: A service that allow to model infrastructure as code. Each

CloudFormation configuration corresponds to a resource called CloudForma-

tion Stack, containing the description of other resources, such as AWS Lambda

functions, API Gateway and how such resources may interact.

• CloudWatch: A services for monitoring and observability.

• IAM:Acronym for Identity and Access Management, enables the management

of AWS resources access.

Resource creation during deploy

During the deployment of a Serverless service the user code and its dependencies

are packaged into a zip artifact. It then begins the remote resource creation of

a CloudFormation Stack and an S3 Bucket. Once that resources initialization

has been completed, the CloudFormation configuration and the zip artifact are

uploaded and saved into the S3 Bucket and that operation is followed by the creation

36

2.5 – AWS

of all resources defined on the CloudFormation Stack. Those operations are shown

on figure 2.10

Figure 2.10: Resources creation on Serverless deploy for a User service

Lambda function invocation through an API Gateway

Figure 2.11 shows the simplest possible case of execution flow of an http request,

handled by an API Gateway and forwarded to the Lambda function mapped to the

user specified endpoint path.

A more complex case is given when implementing user Authentication and hence

restricting Lambda execution. The Authentication process is made simple by dele-

gating the operation of granting or denying Authentication to a Lambda function,

called Lambda Authorizer [24], as shown on figure 2.12. There can be two types of

Lambda Authorizers:

• TOKEN: the Lambda receives the caller’s identity in a bearer token.

37

Tools

Figure 2.11: Simple Lambda function execution through an API Gateway

• REQUEST: the Lambda receives the caller’s identity in a combination of head-

ers and query string parameters.

Figure 2.12: Lambda Authorizer function, based on TOKEN identity

The API Gateway forward the request to the specified Lambda Authorizer, that

checks the caller’s identity and generates an Authentication Policy, which is an

object that states which resources the user is authorized to access. The Policy is

then cached to improve performance on subsequent requests and if it the access

request is granted, the flow proceed as in the previously described case.

Serverless abstract this structure by allowing to specify a function as Authorizer

of another function, as shown on listing 2.7, where the getUsers function is executed

only if the function auth grants access.

38

2.6 – React

1 functions :

2 auth:

3 handler : auth. customAuth # auth.js

4 getUsers :

5 handler : users. getUsers # users.js

6 events:

7 - http:

8 path: hello

9 method: get

10 authorizer : auth

Listing 2.7: Authorizer definition on Serverless

2.6 React

An important part of the Restlessness framework is its Graphical User Interface,

which is the main interaction point for the user. The Frontend development, specif-

ically toward Web Interfaces, can count on the presence of several libraries and

frameworks based on the JavaScript language. For the development of Restlessness

it has been chosed the popular library React, due to its simplicity and effectiveness.

React is an Open Source JavaScript library that implements the concept of

virtual DOM (Document Object Model) [25]. The browser creates a DOM object

at page loading and then each Html object inside the DOM can be manipulated

using JavaScript functions, giving the user an immediate feedback. React instead

adopt a different approach by creating a virtual DOM alongside the real one. The

virtual DOM is not directly synched with the real one, so it can be modified much

faster, not having to reflect those modification on the screen. After those virtual

DOM updates are created using the React api, the new istance of the virtual DOM

is compared to the previous one, allowing to reflect the update on the real DOM

39

Tools

only for the elements that actually change. The library allows to create a structure

based on reusable component, obtaining a scalable structure and is particularly

suited for SPA (Single Page Applications) [26]. The library also introduced a new

syntax, named JSX (JavaScript XML) and listing 2.8 show the definition of a React

component.

1 import React from ’react ’;

2

3 const Card = ({ name }) => {

4 return (

5 <div >{ name }</div >

6);

7 };

Listing 2.8: React component definition

40

Chapter 3

Restlessness

Figure 3.1: The Restlessness logo

The Open Source framework named Restlessness was born with the goal of

improving the developer experience of the Serverless framework, by addressing its

encountered problems (1.3.2). The framework is composed by a Command Line

Interface and a frontend application with an associated web server running locally.

In particular the main functionalities that the framework aims to provide are:

• Creation of a new project, through the CLI, based on the typescript language,

with a standard structure and based on the functionalities already offered by

the Serverless framework.

• A local Web Interface that allows creating and managing project resources,

functions, with their associated events and models.

41

Restlessness

• The creation of a standard unit testing structure for each function and based

on the jest library.

• A standard validation structure for function’s input, based on the yup library.

• Deploy of multiple services with a single CLI command, to deal with the

resource threshold limitation of Aws and to manage and structure the created

project following a micro services approach.

• Possibility to extends the framework functionalities.

By addressing those points the framework aims to give developers the tools to focus

on writing business code rather than spend time on boundary problems, that are

important, but there may be the risk of solving the same problems multiple times

(reinventing the wheel), which may be avoided.

Restlessness is composed by different modular components, listed here:

• Restlessness core: core package of the framework, it contains all the classes

and functions that provides the framework functionalities. It is available as

@restlessness/core package on npm.

• Command Line Interface: together with the Web Interface, this is the main

component with which users interact the most. It depends on the core package

to provide its functionalities and it is available as the @restlessness/cli package

on npm.

• Restlessness backend: api service running locally, created with the Restlessness

framework itself. It is used by the Web Interface to provides its functionalities.

• Restlessness frontend: Web Interface with which it is possible to create re-

sources and manage the project. It is part of the CLI.

42

https://www.npmjs.com/package/jest
https://www.npmjs.com/package/yup

3.1 – Core

Figure 3.2: Restlessness main components

3.1 Core

The core package contains the core logic components of the framework, which are:

creation and management of resources, code generation based on templates and

handling of defined functions execution. The main resources that can be created

are:

• Endpoints: endpoints are Serverless functions, triggered by and http event, as

shown on 2.5.

• Schedules: schedules are Serverless functions, triggered by a programmed

event, such as a cron job or a rate event, which is an event that is fired

up periodically, based on the time interval provided.

• Authorizers: extension packages, providing Authorizer functions, as defined

on 2.5.

• Daos: extensions packages, providing Data Access Object functionalities.

• Models: classes modeling resources, such as a User saved into a database. They

can be associated to a Dao package, which provides its own model creation

template.

• Envs: environment files, used to store information in key/value format, from

both the user and the framework with its extensions.

43

Restlessness

• Services: Serverless services (i.e. serverless.json).

The framework allows the creation of those resources and needs to save that

information to be able to remember the project state, so it creates a series of

configuration files, one for each resource type and store them under the config/

directory, in JSON format [27]. It has been decided to format all configuration

files across the project using JSON, preferring it to alternatives, such as Yaml, to

simplify their handling and modification by the framework, given that Typescript

handle JSON files and objects natively. Given the similar structure between those

files, a single abstract class models it, while subclasses implement specific behaviors,

following the structure shown in figure 3.3. Each file entry has a type extending

the interface JsonConfigEntry, which contains an entry identifier. This structure

is achieved using the Typescript feature called Generic Types [28].

Figure 3.3: Configuration file classes structure
.

Resources created through Restlessness need to find a correspondence on the

Serverless configuration file (serverless.yml or serverless.json). Moreover it has

been decided to let the framework manages more than one service at a time associ-

ated to the same application or project, due to a platform limitation, as described

on 5.3. The structure adopted by the framework is to save the configuration file

of each service under the serverless-services folder and to provide by default two

services, as shown on figure 3.4. The first service is called shared and is reserved for

44

3.1 – Core

the definition of resources that are common across the entire application, avoiding

duplicates. Any AWS resource can be shared and there is one in particular that’s

important to share, the API Gateway. Indeed as shown on 2.5 Serverless auto-

matically creates a gateway and so an api address, for each service and this can

become cumbersome when dealing with more than one service. Figure 3.5 shows

that sharing the API Gateway results in the user having to interact with a single

endpoint. Other shared resources may be simple functions or authorizers. The

other framework defined service, named offline, is required for local development

and it contains the resource definition of all services, that will be read from the

serverless-offline plugin, as described on 3.3.1. Restlessness manages the synchro-

nization between offline and other user defined services transparently for the user

and this is one of the task of the JsonServices class.

./
serverless-services/

offline.json
shared.json

Figure 3.4: Services directory on a Restlessness project

Figure 3.5: Non shared (left) and shared (right) API Gateway on multiple services
.

The JsonServices class manages all operations regarding the Serverless services

files, with the main ones being: offering CRUD methods for the various resources,

45

Restlessness

such as: services; functions, with http or schedule events; serverless plugins; autho-

rizer functions, associated to a single service or a shared authorizer. Each operation

is reflected also on the offline service.

Environment variables

An important aspect when developing web applications is the handling of differ-

ent deploying environments, as each one of them requires different configurations,

mostly for sensitive information, such as database credentials. It has been decided

to handle those information with different environment files, storing environment

variables. When a project is created the framework generates 4 different environ-

ments: locale, test, staging and production. Each environment has an associated

type and stage, with the first representing the purpose of that environment and the

latter the corresponding Serverless stage. Below are the available types:

• test: environments used only for testing, which can happen locally but also

through CI platform.

• dev: environments used for local development.

• deploy: environments that can be deployed.

All information about the environments (name, type, stage) are stored in the con-

figuration file config/envs.json and are managed by the JsonEnvs class.

Environment variables are stored in the format key=value and variable expan-

sions is supported, so the value of a key can be another variable, using the syntax

shown on listing 3.1.

1 key1=${ otherKey }

2 key2=sample ${key1}

Listing 3.1: Environment variable syntax

46

3.1 – Core

Each environment is then stored under the envs/ directory, in the form .env.<name>

and the interaction with those files is handled by the EnvFile class. The load and

expansion operation is performed differently depending on the operation, local de-

velopment or deploy. During local development it is the dev command that load

the environment specified in input (3.3.1). During deploy instead, the environment

file is expanded and copied under the project root, in a file named .env, as this

makes deploying from CI straightforward. Then at runtime the .env is automati-

cally loaded by the LambdaHandler or ScheduleHandler functions.

Extensions

The framework has been designed from the beginning with the possibility of ex-

tending its functionalities using external packages. In order to achieve this, it has

been defined an AddOnPackage class, containing the following lifecycle hooks:

• postInstall: executed after the addon package has been installed. Here it’s

possible to perform initialization operations.

• postEnvCreated: executed after a new environment has been created, so the

addon can add its own environment variables if needed.

• beforeEndpoint: executed before the corresponding function of an endpoint.

Here it’s possible to perform resource initialization, for example opening a

database connection.

• beforeSchedule: as for endpoints, it’s executed before the corresponding func-

tion of a schedule.

In addition to this class Restlessness provides also more specific classes, for authen-

tication and data access 3.6.

47

Restlessness

Figure 3.6: Add on packages structure

Handlers

The Core package provides different functions and classes to simplify some opera-

tions and to provide additional functionalities on top of the Serverless framework.

LambdaHandler is a core function, reserved to be used for function associated

with an http event. Its purpose is to parse the request payload and or query

parameters, load the environment variables and execute the lifecycle hooks of the

installed addons. After those operations the LambdaHandler executes the actual

handler function associated for the endpoint.

ScheduleHandler behaves similarly to LambdaHandler, but it is reserved for

functions with an associated schedule event, hence it is simpler. Its only tasks are

to execute lifecycle hooks and the actual handler function.

ResponseHandler is a class providing static methods for generating response

object for http endpoints. The response can be created using a JSON or a Buffer

representation.

48

3.2 – Cli

TestHandler is a class that simplify testing endpoints. Its main methods are:

beforeAll, afterAll and invokeLambda. The beforeAll function performs initializa-

tion operations, such as loading the correct environment variables and then the

function invokeLambda executes the endpoint function providing automatically the

event and context objects, simulating this way an http event. Then the afterAll

function performs cleanup operations. The fact that serverless is based on function

makes possible to use this simple testing structure, as it’s not necessary for example

to actually starts an http server to test the endpoints.

3.2 Cli

The Cli package provides a series of commands, listed here.

new Creates a new project in the current working directory, or on the specified

input parameter.

dev The local development requires the presence of different processes, which

are: the Api service and the Web Interface provided by Restlessness and also

the project’s process, to be able to test in real time the defined functions. The

CLI handles those 3 processes through the dev command. In particular, both the

project’s process and Restlessness backend, are executed using the Serverless plugin

serverless-offline, which allows simulating an api gateway, effectively creating a lo-

cal http server. Instead for the frontend process it has been used the npm package

serve, through which is possible to create an http server that serves static files.

Furthermore, the dev command takes care of executing those processes following

the dependency order, which is: Restlessness backend, frontend and finally the

project’s process. Another task of the dev command is to implement inter process

communication between itself and the backend process. This is necessary as when

resources are created, for example endpoints or schedules, the corresponding files

49

https://www.npmjs.com/package/serverless-offline
https://www.npmjs.com/package/serve

Restlessness

need to be compiled by typescript and also the serverless-offline plugin needs to be

restarted for those resources to be available from the http server. The command

receives the environment name in input, as it takes charge of loading the corre-

sponding environment variables from the folder .envs, as explained on section 3.1.

Among all environment variables, there is one, named RLN_PROJECT_PATH ,

set by the dev command, that indicates to the Backend process the path to the

Restlessness project to manage.

Figure 3.7: Processes generated by the dev command

create-env Generates the .env file, under project’s root, corresponding to the

environment name received as input.

add-dao Add an addon package of type Dao to the project, executing lifecycle

hooks.

add-auth Add an addon package of type Auth to the project, executing lifecycle

hooks.

deploy The Serverless Framework already provides a command for the deploy

operation, as shown on 1.3, however, with the micro services oriented structure

suggested by Restlessness this operation is more elaborated, as it involves the deploy

50

3.2 – Cli

of more than one service, in a particular order. This is necessary because of the

presence of the shared resources service, so to successfully deploy a service that

uses resources from the shared one, it is necessary that those resources already

exist. The correct deploy ordering is then shared service first, followed by all the

other services. It should be noted that the offline service is not involved in the

deploy process as it’s used only for local development. To address this operations

the Restlessness CLI provides a custom deploy command (listing 3.2).

1 $ restlessness deploy

2 $ restlessness deploy --env production

3 $ restlessness deploy --env production users

Listing 3.2: Deploy command

It is possible to deploy the application on different environments, otherwise the

command assume staging as the default environment. It is also possible to perform

the deploy of just a single service, to keep the whole development, test and deploy

process fast and easy, when making small changes, in accordance with the serverless

paradigm. Since the deploy operation involves more than one service, it’s important

that the information among them are consistent, especially when deploying. This

is why the deploy command, under the hood, takes care of performing this check,

with a method from the JsonServices class, named healthCheck. In particular, it

checks that the various services belong to the same serverless organization and

organization, the same AWS deploy region and that do not exist services with

functions associated to the same path. The latter is due to the fact that the

services use a shared api gateway.

remove Complementary command with respect to deploy, it removes all services

enforcing an opposite ordering doing so.

51

Restlessness

Backend

The Restlessness backend provides the endpoints used by the frontend to show,

create, update and delete the framework resources described previously. It has been

created with the Restlessness framework itself and it relies on the @restlessness/core

package to provide its functionalities. It is run locally using the serverless-offline

plugin, resulting in a lightweight Api Service. The Restlessness resources that the

Api provides coincide with the resources already described, which are: Endpoints,

Schedules, Authorizers, Daos, Envs, Models and Services. For each resource it has

been created a corresponding Model, to map the information received from the

core package into the format expected by the frontend and vice versa. All Models

inherit basic functionalities from a base class named BaseModel (3.8), with utility

methods for accessing data and the unimplemented methods toConfigEntry and

fromConfigEntry, that perform map operations. Figure 3.9 shows the flow for a

request regarding the creation of an endpoint.

Figure 3.8: BaseModel class

Figure 3.9: Creation of an endpoint

52

https://www.npmjs.com/package/serverless-offline

3.3 – Usage

Frontend

The Restlessness frontend provides a simple interface to interact with the frame-

work. Once opened a dashboard provides some project’s information and links to

pages for each resource, where it is possible to view the current resources create

and modify them. Figure 3.10 shows the site map of the frontend.

Figure 3.10: Restlessness frontend site map

3.3 Usage

The Restlessness CLI is available for installation on the npm platform. Once in-

stalled, the first step toward using the framework is the creation of a new project

and that is possible using the new command, as shown on listing 3.3.

53

Restlessness

1 $ restlessness new rln_project

Listing 3.3: New command

Once the command has finished, a new folder has been created, with a completely

structured restlessness project, as can be see in figure 3.11.

./
.restlessness.json
configs/

authorizers.json
daos.json
default-headers.json
endpoints.json
envs.json
models.json
schedules.json

envs/
.env.locale
.env.production
.env.staging
.env.test

serverless-services/
offline.json
shared.json

src/
exporter.ts
schedulesExporter.ts

Figure 3.11: Sample Restlessness project structure

The sample project shown in figure 3.11 however, does not include all generated

files, as some of them are not strictly part of the framework, but are required from

other used tools, in particular:

• .eslintrc.json: configuration file of the linter eslint.

• .gitignore: it lists intentionally ignored files from the git tracking system.

54

https://eslint.org/

3.3 – Usage

• package.json: entry point of every npm project, it lists the project dependen-

cies, as well as other project related information, such as the project name and

version.

• package-lock.json: npm generated file, it contains a snapshot of the version of

all dependencies, with the goal of obtaining reproducible builds.

• tsconfig.json: configuration file for the Typescript compiler.

The first noticeable difference with respect to a plain serverless project is the lack

of a serverless.yml (or serverless.json) file under the root, instead it is present the

serverless-services/ directory with the default services shared and offline. Other

created files are: configuration files, under the config folder, environment files,

source code, under the src folder and a .restlessness.json file, used to store project

related information needed by the framework.

3.3.1 Local development

The dev command starts the processes as described on 3.2, producing the output

shown on 3.4.

1 $ restlessness dev locale

2 $ RESTLESSNESS : Running on http :// localhost :5000

3 $ rln - project : offline : Starting Offline : dev/us -east -1.

4 $ rln - project : offline : Offline listening on http :// local

...

5 $ * clean: rln -project -offline -dev -clean

6 $ rln - project :

7 $ POST | http :// localhost :4000/ dev/users

Listing 3.4: Dev command

55

Restlessness

3.3.2 Resource creation

The Web Interface looks like in the figure 3.12 and provides some project details,

such as serverless organization, application (section 1.3) and finally the aws data

center region to which the project will be deployed. The main functionalities are

then available through some shortcuts, that allow creating and consulting resources,

such as endpoints, schedules, services and models.

Figure 3.12: Restlessness Web Interface

Being Restlessness a framework for serverless services, the primary resource that

can be defined are functions and at the moment it is possible to define two type of

functions, based on the event that triggers them. They are endpoints and schedules.

56

3.3 – Usage

Endpoints

It is possible to create an endpoint from the Web Interface, by specifying the

following fields, as shown on figure 3.13:

• Service: the service to which the function must be associated.

• Route: the path corresponding to the serverless function.

• Method: the http method.

• Warmup enabled: enable or disable the warmup plugin (5.1)

• Daos: Associated Data Access Object addon.

• Authorizer: this optional field sets a further function, that perform the autho-

rization operation, granting or denying access to the specified function.

During the endpoint creation, the framework takes care of saving the provided

information on the configuration file config/endpoints.json and to create code tem-

plate for the development of the corresponding function. As shown on figure 3.14,

it has been created a folder under src/endpoints, using the notation http method

plus normalized value of the http path.

The developer can then code the function on the handler.ts file, which already

contains a template (listing 3.5) and define the validation object in validations.ts

(listing 3.7). It is also possible to exploit the Typescript functionalities, defining

the various interface for the request, response and query parameters objects, all

under the interfaces.ts file (listing 3.8). The actual function entry point that will

be executed once deployed is defined in the file index.ts (listing 3.6). This function

is created binding the function LambdaHandler input with the handler function

and validation object.

57

Restlessness

Figure 3.13: Creation of and endpoint

./
src/

endpoints/
post-users

handler.ts
index.ts
index.test.ts
interfaces.ts
validations.ts

exporter.ts
schedulesExporter.ts

Figure 3.14: Structure of a new endpoint folder

58

3.3 – Usage

1 export default async (req: Request) => {

2 try {

3 const {

4 validationResult ,

5 payload ,

6 } = req;

7

8 if (! validationResult . isValid) {

9 return ResponseHandler .json ({

10 message : validationResult . message

11 }, StatusCodes . BadRequest);

12 }

13

14 return ResponseHandler .json ({});

15 } catch (e) {

16 console .error(e);

17 return ResponseHandler .json(

18 {}, StatusCodes . InternalServerError);

19 }

20 };

Listing 3.5: handler.ts content

1 export default LambdaHandler

2 .bind(this , handler , validations , ’postUsers ’);

Listing 3.6: index.ts content

59

Restlessness

1 const queryStringParametersValidations =

2 (): YupShapeByInterface < QueryStringParameters > => ({})

;

3

4 const payloadValidations =

5 (): YupShapeByInterface <Payload > => ({});

6

7 export default () => ({

8 queryStringParameters : yup.object ()

9 .shape(queryStringParametersValidations ()),

10 payload : yup.object ()

11 .shape(payloadValidations ()). noUnknown (),

12 });

Listing 3.7: validations.ts content

1 import { RequestI } from ’@restlessness /core ’;

2 export interface QueryStringParameters {}

3 export interface Payload {}

4 export interface Request extends

5 RequestI < QueryStringParameters , Payload , null > {};

Listing 3.8: interfaces.ts content

Schedules

Schedules are serverless functions that are triggered by a programmed event. By

creating a Schedule from the Web Interface the framework creates the necessary

template files under src/schedules as shown on 3.15 and also saves the provided

information under the config/schedules.json file.

60

3.3 – Usage

./
src/

schedules/
clean/

handler.ts
index.ts

Figure 3.15: Structure of a schedule endpoint folder

The structure of the template files is similar to the one generated for endpoints,

but simpler. The handler.ts file contains the function that the developer has to

code, while the index.ts file is the entry point. The core function ScheduleHandler

is used to wrap the handler function, the same way as happens for endpoints, with

the purpose of executing the framework lifecycle hooks.

1 export default async (event) => {};

Listing 3.9: handler.ts content

1 import { ScheduleHandler } from ’@restlessness /core ’;

2 import handler from ’./ handler ’;

3 export default ScheduleHandler .bind(this , handler , ’clean

’);

Listing 3.10: index.ts content

3.3.3 Test

A test template is also provided when creating a new endpoint and it is based

on the popular unit testing library jest, in conjunction with the TestHandler class

provided by Restlessness.

61

https://jestjs.io/

Restlessness

1 const postUsers = ’postUsers ’;

2

3 beforeAll (async done => {

4 await TestHandler . beforeAll ();

5 done ();

6 });

7

8 describe (’postUsers API ’, () => {

9 test(’’, async (done) => {

10 const res = await TestHandler . invokeLambda (

11 postUsers);

12 // expect(res. statusCode).toBe(StatusCodes .OK);

13 done ();

14 });

15 });

16

17 afterAll (async done => {

18 await TestHandler . afterAll ();

19 done ();

20 });

Listing 3.11: index.test.ts template

62

Chapter 4

Restlessness Extensions

4.1 Authorization

Serverless functions can also perform authorization operations, as described on 2.5.

Restlessness provides the abstract class AuthorizerPackage, extending AddOnPack-

age, which provides a standard structure to define token based authorizer functions.

Figure 4.1: AuthorizerPackage class

4.1.1 Jwt Authorizer

Restlessness already provides the package @restlessness/auth-jwt, implementing the

Json Web Token authorization method, defined as:

63

Restlessness Extensions

“JSON Web Token (JWT) is an open standard (RFC 7519) that defines a com-

pact and self-contained way for securely transmitting information between parties

as a JSON object. This information can be verified and trusted because it is digi-

tally signed. JWTs can be signed using a secret (with the HMAC algorithm) or a

public/private key pair using RSA or ECDSA.” [29]

In its compact form, the token consist of three parts separated by dots, which are:

• Header: It typically consists of two parts: the type of token, which is JWT

and the signing algorithm used. The JSON object containing those keys is

then Base64url encoded, creating the first part of the token.

• Payload: It contains the claims, which are statements about an entity, which

usually is the user, plus any additional data. Also this JSON object is then

Base64url encoded and it forms the second part of the token.

• Signature: The third part is the signature obtained by signing the already

created parts (Header and Payload separated by a dot) with a secret.

The final output is composed by three Base64url strings, separated by dots, that

can be easily passed in an Http environment. In the case of the Jwt Authorizer

function it will be included in the requests in the Authorization header, with type

Bearer.

4.1.2 Usage example

The package can be used on a Restlessness project following this steps:

Installation The package can be installed using the npm CLI and then added

to the project using the Restlessness CLI, particularly with the add-auth command

(4.1).

64

4.1 – Authorization

1 $ npm install @restlessness /auth -jwt

2 $ restlessness add -auth @restlessness /auth -jwt

Listing 4.1: auth-jwt installation

Model creation Once installed, the package automatically creates a model class,

named JwtSession, based on the template defined by the package and it can then

be extended as needed (4.2).

1 export default class JwtSession {

2 [’constructor ’]: typeof JwtSession

3 id: string

4

5 async serialize (): Promise <string > {

6 return JSON. stringify (this);

7 }

8

9 static async deserialize (

10 session : string): Promise <JwtSession > {

11 const jwtSession = new JwtSession ();

12 Object.assign(jwtSession , JSON.parse(session));

13 return jwtSession ;

14 }

15 };

Listing 4.2: A JwtSession class created by the auth-jwt package

Model usage It’s then possible to create a session and generate the Jwt token,

as shown on 4.3.

65

Restlessness Extensions

1 // Generate session and serialize it

2 const session = new JwtSession ();

3 session .id = myId;

4 session .name = ’Arthur ’;

5 session . permissions = [];

6 // Once serialized , the session can be

7 // easily returned to the user

8 const serialized = session . serialize ();

9

10 // Deserialize the session

11 const deserialized = JwtSession . deserialize (serialized);

12 console .log(deserialized .name) // --> Output: Arthur

Listing 4.3: User model usage

4.2 Data Access Object

To simplify the creation of a Data Access Object, Restlessness provides the abstract

class DaoPackage (listing 4.4), which extends the AddOnPackage class previously

defined.

1 abstract class DaoPackage extends AddOnPackage {

2 abstract modelTemplate (modelName : string): string

3 }

Listing 4.4: DaoPackage class definition

In addition to the previously defined hooks, classes implementing DaoPackage,

should implement also the modelTemplate method and a base dao class, to which

we will refer to as DaoBase. This latter class should provides the main Dao func-

tionalities, while the code template returned by modelTemplate should define a

66

4.2 – Data Access Object

class that extends the DaoBase one.

4.2.1 Dao for mongodb

Restlessness already provides a Dao package for the popular non relational database

mongodb and it’s available on the npm platform as @restlessness/dao-mongo. That

package exports two main components: an implementation of the DaoPackage class

and a MongoBase class, the base class containing the main Dao functionalities for

CRUD operations, as shown on listing 4.2.

Figure 4.2: MongoBase class

Users of the package can then create models based on the MongoBase class

through the Restlessness Web Interface. The creation of that model is made possible

by implementing the DaoPackage.modelTemplate method, as shown on listing 4.5.

67

https://www.mongodb.com/

Restlessness Extensions

1 const modelTemplate = (name: string): string => ‘

2 import {

3 MongoBase , ObjectId

4 } from ’@restlessness /dao -mongo ’;

5

6 export default class ${name} extends MongoBase {

7 [’constructor ’]: typeof ${name}

8

9 static get collectionName () {

10 return ’${ pluralize (name , 2). toLowerCase ()}’;

11 }

12 };

13 ‘;

Listing 4.5: modelTemplate function definition

Database Proxy

The MongoBase class uses the MongoDao class internally to perform database

operations. The latter class, at the early stage of Restlessness development, offered

an abstraction layer over the official mongodb driver for Node.js, effectively using

the driver internally. As described on chapter 5, this approach showed its drawbacks

in the context of a serverless application, so the next approach has been to exploit

the concept of Database Proxy. The main idea is to have a serverless function,

the proxy, with the task of performing all database access, on behalf of all other

serverless functions. Another advantage of Serverless is indeed the possibility to

invoke a function from another one, but this comes at the cost of a doubled Cold

start (5.1), resulting in a performance degradation for some requests. However,

the solution provided on 5.1 is particularly useful in this case because enabling the

68

https://www.npmjs.com/package/mongodb

4.2 – Data Access Object

warmup plugin on the proxy function, avoids the costs of function initialization

and also database connection, making it possible to enable warmup only on a small

group of functions, so the overall performance improves or stays the same.

Figure 4.3: Mongo proxy structure

To implement this structure it has been developed a serverless plugin, named

serverless-mongo-proxy and usable independently of the Restlessness framework.

The plugin automatically creates the serverless proxy function in the specified ser-

vice, which in the case of Restlessness is the shared one, so all services can exploit

the advantages of using a proxy. Since all information exchanged between serverless

functions must be serialized, the plugin used the bson encoding, to obtain consistent

representation for data types such as dates and regular expressions.

The MongoDao class can then invoke the proxy function internally, without

having to keep a connection open.

4.2.2 Usage example

The package can be used on a Restlessness project following this steps:

Installation It is possible to install the package using the npm CLI and then

adding it to the enabled restlessness addons using the restlessness CLI command

add-dao (4.6).

69

https://www.npmjs.com/package/serverless-mongo-proxy
http://bsonspec.org/

Restlessness Extensions

1 $ npm install @restlessness /dao -mongo

2 $ restlessness add -dao @restlessness /dao -mongo

Listing 4.6: dao-mongo installation

Model creation Once installed it is possible to create, from the Web Interface,

models based on the Dao class provided by the package (4.4).

This corresponds to the creation of a model template that can be extended with

methods and fields (4.7)

1 export default class User extends MongoBase {

2 [’constructor ’]: typeof User

3 name: string

4 age: number

5

6 static get collectionName () {

7 return ’users ’;

8 }

9 };

Listing 4.7: A new model based on the dao-mongo package

Model usage It’s then possible to perform database operations, exploiting the

abstraction provided by the MongoBase class, as shown on 4.8.

70

4.2 – Data Access Object

1 const user = new User ();

2 user.name = ’Andrea ’;

3 user.age = 25;

4 await user.save ();

Listing 4.8: User model usage

Figure 4.4: Creation of a Model

71

72

Chapter 5

Application

During its development process, the Restlessness framework has been tested on real

deployed applications and this has been fundamental as it helped finding bugs and

critical issues at an early stage. The main issues have emerged during the imple-

mentation of the backend for the project Spazio alla Scuola, a platform thought by

the Fondazione Agnelli.

The foundation is a non-profit, independent institute for social science research,

born in 1966 in Turin, by the lawyer Agnelli, on the occasion of the centenary of

the birth of the founder of Fiat, Senator Giovanni Agnelli. Its purpose is to work

in support of scientific research and to disseminate knowledge of the conditions on

which Italy’s progress depends.

The project Spazio alla Scuola aims to provide a concrete support to school

leaders for lecture resumption on September 2020, given the health situation on

the country due to the SARS-CoV-2 pandemic. The platform offers tools to verify

the capacity of classrooms and other school spaces, to plan classrooms flows and

staggering, in compliance with the distancing measures. The platform is provided

as a free service and is available at the address www.spazioallascuola.it [30].

73

www.spazioallascuola.it

Application

5.1 Cold start

The first encountered problem has been Cold start, a new term in the serverless

development that denotes the situation in which a serverless function is not active

yet, so the platform must perform some resources initialization, with the main one

being1 [31]:

• Code: the project’s code is uploaded in a zip archive, so it needs to be down-

loaded and extracted.

• Extensions: AWS allows to associate extensions to a lambda function, to in-

tegrate it with custom monitoring, security or other tools.

• Runtime: bootstrap operation for the chosen runtime environment, it is also

possible to provide a custom runtime if needed.

• Function: code written by the developer, it can perform some resource initial-

ization, such as creating a database connection.

Figure 5.1: Aws Lambda lifecycle

The Cold start refers exactly to this Init phase and it represents an overhead

to the function execution. However, once this phase is completed the function is

ready and subsequent invocations will not suffer from it. Then after some times

without receiving any events, usually in the order of 5 to 20 minutes, the platform

performs the Shutdown phase, so any following event causes the process to start

1Relatively to the Aws platform

74

5.1 – Cold start

again from the Init phase. For the majority of runtimes the duration of the Cold

start varies in the order of tenths of a second, as shown on figure 5.2. The provided

numbers vary also based on the memory allocated for the function and the size of

the provided code package.

Figure 5.2: Cold start duration for different runtimes

In the particular case of the project Spazio alla Scuola the Cold start duration

was experienced to be in the order of 1.5s, caused mainly from: mongodb initial-

ization and connection (about 500ms) and third party libraries (about 400ms) and

Restlessness overhead (about 50ms).

One of the approaches to mitigate the effect of the Cold start proposed by

the Serverless community has been the plugin named serverless-plugin-warmup.

The plugin creates a scheduled function programmed to invoke the other defined

functions, forcing the platform to keep an active container for each function. This

way the Cold start effect remains present, but the end user of the api does not

experience it.

It has been decided to make this plugin an integral part of the Restlessness

framework, granting out of the box support for it. From the Web Interface is

75

https://www.npmjs.com/package/serverless-plugin-warmup

Application

possible to enabled or disable the warmup on the single endpoint, since not all

functions may need it. By including the warmup plugin into the framework the

effect of Cold start has been mitigated, however, it introduced another type of

issue.

5.2 Database proxy

The project Spazio alla Scuola rely on the popular non relational database mon-

godb. As stated previously, each function run in its own runtime, independently

from the others, consequently each function requiring database access needs to open

a non shared connection. So the number of active connections can become quite

high, depending on the number of active functions, furthermore, using mongodb

the connection remains active for a certain amount of time even after the function

has been shutdown. This leads to a high number of active connections, which is a

problem, not only in terms of resources used, since each connection requires mem-

ory usage on the database, but also because mongodb has a limit of 500 concurrent

connections and once the threshold is exceeded the application experiences random

errors when performing database operations.

Figure 5.3: Mongodb connections reaching the 500 threshold

76

https://www.mongodb.com
https://www.mongodb.com

5.3 – Micro services

Although the problem has been amplified by the introduction of the warmup plu-

gin integration, it remains a critical issue for application that rely on the high scala-

bility of the serverless platform. To address this problem on its relational databases,

AWS rely on the usage of a proxy between the functions and the database. Ex-

ploiting the concept of a proxy, it has been decided to approach the problem in the

same way, since a solution for for the mongo database does not exist at the moment.

Restlessness already provides the package @restlessness/dao-mongo, as described

on section 4.2, defining an abstraction level over the mongodb driver, so it was pos-

sible to include a proxy without changing the exposed methods for the users. It has

been decided to develop an open source plugin, named serverless-mongo-proxy, to

provide the proxy functionality, independently from the Restlessness framework, as

shown on 4.2.1. The dao-mongo package then uses the plugin internally, providing

an effective solution to the presented problem.

5.3 Micro services

During the deployment of an application on the AWS platform a number of re-

sources are created for each function, to provides services such as logging, API

Gateway for http events, permissions and others functionalities. The AWS plat-

form has a threshold of maximum 200 resources definable for each service (1.3.2)

and since for each function there are about 10 resources associated, it follows that

each service can define about 20 functions. Since the serverless paradigm proposes

a Micro services oriented approach this limitation actually force developers to com-

pose their application as a set of low complexity services. So the next step in the

Restlessness framework development has been to switch between the management

of a single service, to a multitude of services, under the same Restlessness project.

With this approach it has been possible to split the functions of the project Spazio

alla Scuola into multiple services, obtaining a more fine grained separation between

77

https://github.com/getapper/serverless-mongo-proxy

Application

its logic components.

In conclusion the choice of using serverless, combined with the Restlessness

framework for the backend api of Spazio alla Scuola, brought the desired bene-

fits in terms of ease of development, after the proper framework improvements de-

scribed previously. At its peak, the api service has managed 500 thousand requests,

demonstrating the advantage of the natural scalability of the serverless approach.

78

Chapter 6

Future Works

At the end of this development cycle, Restlessness can be defined as production

ready, being used on real deployed app successfully. However, its development is

not completed and on its roadmap there are a series of features and improvements

to do. While at the moment the framework supports only the AWS cloud provider,

one of the main objective is to make the framework effectively platform agnos-

tic, thus providing support for other providers, firstly for Google Cloud Platform

and Microsoft Azure Functions. This feature represents a great challenge, as each

provider’s platform must be studied in its details to being able to offer the same

functionalities cross platforms.

Regarding code testing there is a structure for unit testing, but at the moment

there is no proposed solution for integration testing. In this case, it will be possible

to create a lightweight structure exploiting the fact that serverless is based on

functions, as it has been done for unit testing.

Another planned improvement is to bring all Cli functionalities on the Web

Interface and vice versa, giving developers more flexibility when it comes to manage

a Restlessness based project.

Last but not least, the list of provided extensions can be increased, by supporting

other databases or authentication methods.

79

Bibliography

[1] “What is serverless computing?” [Online]: https://www.cloudflare.com/

learning/serverless/what-is-serverless

[2] in “A break in the clouds: towards a cloud definition” 12 2008.

[3] “What Is the Cloud?” [Online]: https://www.cloudflare.com/learning/cloud/

what-is-the-cloud

[4] “What Is IaaS (Infrastructure-as-a-Service)?” [Online]: https://www.

cloudflare.com/learning/cloud/what-is-iaas

[5] “What is Platform-as-a-Service (PaaS)?” [Online]: https://www.cloudflare.

com/learning/serverless/glossary/platform-as-a-service-paas

[6] “What Is SaaS?” [Online]: https://www.cloudflare.com/learning/cloud/

what-is-saas

[7] E. W. Dijkstra, Selected Writings on Computing: A Personal Perspective

Springer-Verlag, 1982.

[8] “Peeking Behind the Curtains of Serverless Platforms” in 2018 USENIX

Annual Technical Conference (USENIX ATC 18) Boston, MA, USENIX

Association, July 2018, pp. 133–146. [Online]: https://www.usenix.org/

conference/atc18/presentation/wang-liang

[9] “What is JavaScript?” [Online]: https://developer.mozilla.org/en-US/docs/

Learn/JavaScript/First_steps/What_is_JavaScript

[10] “Node.js.” [Online]: https://nodejs.org/en

[11] “Node.js Event Loop.” [Online]: https://www.geeksforgeeks.org/

80

https://www.cloudflare.com/learning/serverless/what-is-serverless
https://www.cloudflare.com/learning/serverless/what-is-serverless
https://www.cloudflare.com/learning/cloud/what-is-the-cloud
https://www.cloudflare.com/learning/cloud/what-is-the-cloud
https://www.cloudflare.com/learning/cloud/what-is-iaas
https://www.cloudflare.com/learning/cloud/what-is-iaas
https://www.cloudflare.com/learning/serverless/glossary/platform-as-a-service-paas
https://www.cloudflare.com/learning/serverless/glossary/platform-as-a-service-paas
https://www.cloudflare.com/learning/cloud/what-is-saas
https://www.cloudflare.com/learning/cloud/what-is-saas
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://nodejs.org/en
https://www.geeksforgeeks.org/node-js-event-loop
https://www.geeksforgeeks.org/node-js-event-loop

node-js-event-loop

[12] “The Node.js Event Loop.” [Online]: https://nodejs.dev/learn/

the-nodejs-event-loop

[13] J. Rachowicz, “When, How And Why Use Node.js as Your Backend” 02 2017.

[Online]: https://www.netguru.com/blog/node-js-backend

[14] “What is TypeScript?” [Online]: https://www.typescriptlang.org

[15] D. Lease, “TypeScript: What is it and when is it use-

ful?” 01 2018. [Online]: https://medium.com/front-end-weekly/

typescript-what-is-it-when-is-it-useful-c4c41b5c4ae7

[16] E. Elliott, Programming JavaScript Applications: Robust Web Architecture

with Node, HTML5, and Modern JS Libraries O’Reilly Media, Inc., 04 2014.

[17] “JSON data interchange syntax ISO.” [Online]: https://www.iso.org/

standard/71616.html

[18] “Creating and publishing an organization scoped package.” [Online]: https:

//docs.npmjs.com/creating-and-publishing-an-organization-scoped-package

[19] “Mastering Issues.” [Online]: https://guides.github.com/features/issues

[20] B. Reece, “From Monolith to Monorepo” 11 2017. [Online]: https:

//medium.com/@brockreece/from-monolith-to-monorepo-19d78ffe9175

[21] “Principles behind the Agile Manifesto.” [Online]: https://agilemanifesto.org/

iso/en/principles.html

[22] L. Chen, “Continuous Delivery: Huge Benefits, but Challenges Too” in IEEE

Software, v. 32, n. 2, pp. 50–54, 2015.

[23] “What is CircleCi?” [Online]: https://circleci.com/docs/2.0/about-circleci

[24] “Use API Gateway Lambda authorizers.” [On-

line]: https://docs.aws.amazon.com/apigateway/latest/developerguide/

apigateway-use-lambda-authorizer.html

[25] “DOM Living Standard.” [Online]: https://dom.spec.whatwg.org

[26] “React - A JavaScript library for building user interfaces.” [Online]:

81

https://www.geeksforgeeks.org/node-js-event-loop
https://www.geeksforgeeks.org/node-js-event-loop
https://nodejs.dev/learn/the-nodejs-event-loop
https://nodejs.dev/learn/the-nodejs-event-loop
https://www.netguru.com/blog/node-js-backend
https://www.typescriptlang.org
https://medium.com/front-end-weekly/typescript-what-is-it-when-is-it-useful-c4c41b5c4ae7
https://medium.com/front-end-weekly/typescript-what-is-it-when-is-it-useful-c4c41b5c4ae7
https://www.iso.org/standard/71616.html
https://www.iso.org/standard/71616.html
https://docs.npmjs.com/creating-and-publishing-an-organization-scoped-package
https://docs.npmjs.com/creating-and-publishing-an-organization-scoped-package
https://guides.github.com/features/issues
https://medium.com/@brockreece/from-monolith-to-monorepo-19d78ffe9175
https://medium.com/@brockreece/from-monolith-to-monorepo-19d78ffe9175
https://agilemanifesto.org/iso/en/principles.html
https://agilemanifesto.org/iso/en/principles.html
https://circleci.com/docs/2.0/about-circleci
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://dom.spec.whatwg.org

https://reactjs.org

[27] “JSON data interchange syntax ISO.” [Online]: https://www.iso.org/

standard/71616.html

[28] “Typescript - Generics.” [Online]: https://www.typescriptlang.org/docs/

handbook/generics.html

[29] “The Anatomy of a JSON Web Token” 2015. [Online]: https://scotch.io/

tutorials/the-anatomy-of-a-json-web-token

[30] “Spazio alla scuola.” [Online]: https://www.fondazioneagnelli.it/2020/07/17/

spazio-alla-scuola

[31] “AWS Lambda execution environment.” [Online]: https://docs.aws.amazon.

com/lambda/latest/dg/runtimes-context.html

82

https://reactjs.org
https://www.iso.org/standard/71616.html
https://www.iso.org/standard/71616.html
https://www.typescriptlang.org/docs/handbook/generics.html
https://www.typescriptlang.org/docs/handbook/generics.html
https://scotch.io/tutorials/the-anatomy-of-a-json-web-token
https://scotch.io/tutorials/the-anatomy-of-a-json-web-token
https://www.fondazioneagnelli.it/2020/07/17/spazio-alla-scuola
https://www.fondazioneagnelli.it/2020/07/17/spazio-alla-scuola
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html

	Cloud services
	Cloud computing models
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)

	Serverless paradigm
	Serverless Framework
	Advantages
	Disadvantages

	Conclusions

	Tools
	JavaScript
	Npm
	Github
	Git
	Github features

	CircleCi
	CI/CD
	The platform

	AWS
	React

	Restlessness
	Core
	Cli
	Usage
	Local development
	Resource creation
	Test

	Restlessness Extensions
	Authorization
	Jwt Authorizer
	Usage example

	Data Access Object
	Dao for mongodb
	Usage example

	Application
	Cold start
	Database proxy
	Micro services

	Future Works
	Bibliography

