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Abstract

Motivated by problems arising in social networks, this thesis work considers
a competition between two strategic agents who try to maximally influence
a population by targeting a finite number of non-strategic/regular agents. It
is assumed that regular agents adjust their opinion through a distributed av-
eraging process, whereas the strategic agents present a fixed belief, towards
which they try to shift the average opinion of the overall network by identi-
fying the optimal targets to connect to. More specifically, the competition is
set from the perspective of one of the strategic agents, as the optimization
problem of selecting at most k regular agents to connect to in order to shift
the network average opinion. Such a problem is known to be computationally
hard, and effective heuristics are needed to reduce its complexity.

The core of this thesis work consists in the technical results upon which
these heuristics are built. In particular, the problem is tackled in two ways.
On one hand, an alternative proof (with respect to the literature) of the
objective function submodularity is provided, so as to reduce the problem
to a greedy heuristic – in this way, rather than solving one computationally
challenging optimal targeting problem, it is possible to find a suboptimal
solution by solving k separate single targeting problems. On the other hand,
I exploit the underlying graph structure to solve special instances of the
problem, upon which I build more refined heuristics.

As a first instance, I exploit the electrical analogy to provide the analytical
solution for the single targeting problem over line graphs (STP). Then, the
peculiar behavior of the objective function over such graphs is proved to
be extendable to generic tree graphs, by considering the tree branches as
pseudo-line graphs. From these findings, I define an algorithm that finds the
optimal solution in a much faster way with respect to a brute-force approach.
Upon this, I extend the algorithm to singular targeting problems over tree-
like/sparse graphs, and then to the more general optimal targeting problem
(OTP), by combining the STP solutions in a greedy manner.

Subsequently, as a second instance, the analytical solution for the OTP
over complete graphs is provided. The result here is important, since it pro-
vides an immediate and simple answer to the question whether it is conve-
nient or not to block the opponent’s influence by targeting the same nodes.
Upon this, another heuristic is built, by extending the simple strategy to
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block the opponent or not, depending on a similar criteria, to generic graphs.
Moreover, two additional heuristics are built based on the intuition that high
degree nodes are the most influential ones. The former restricts the greedy
search to a subset of nodes, reducing the complexity, whereas the latter con-
sists in a zero-cost heuristic that targets the k+ nodes with highest degree.

Finally, a scheme summarizing all the possible heuristics is provided in
order to combine them effectively. Indeed, different depending on the cost vs
accuracy trade-off and the underlying graph, some heuristics are better than
others.
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Nomenclature

Acronyms

OTP Optimal Targeting Problem

STP Singular Targeting Problem

Symbols

B Incidence matrix

C Conductance matrix

ci Cardinality of the subtree rooted at node i ∈ {path from v− to v+}
made up by the nodes j ∈ I<iv− ∩ I<iv+ of the tree T

d Degree vector

D Degree matrix

DC Diagonal matrix of edge conductances, (DC)ee = Ce

DC1 Diagonal matrix of node total conductances, DC1 = diag(C1)

E Edge set

F+(A) Sum of the asymptotic opinions of the regular individuals when A is
the set of nodes linked to the strategic agent +

F Computational complexity of the objective function F+

G Graph

G|R Graph restricted to the regular set R
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G+(A) Sum of the asymptotic opinions’ sign of the regular individuals when
A is the set of nodes linked to the strategic agent +

GC Electrical network associated to graph G

H Fundamental matrix, (I −Q11)−1

I Node set of the tree graph T

I<ij Subset of I’s nodes that form the subtree rooted at node i that does
not contain node j, along with the path from i to j, apart from i

k+ Number of edges that agent + can place

k− Number of edges that agent − can place

L Laplacian matrix

Ni Neighborhood of agent i

N Number of regular nodes

Q Normalized weight matrix

Q11 R×R block of the normalized weight matrix

Q12 R× S block of the normalized weight matrix

R Regular agents node set

Reff Effective resistence

S Strategic agents node set

T Tree graph

Û := U ∪ v

V Node set of G

V Voltage vector

v+ Node linked to strategic node +

v− Node linked to strategic node −
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W Weight matrix of G

W 11 R×R block of the weight matrix

W 12 R× S block of the weight matrix

x(t) Opinion vector at time t

xR(t) Opinion state vector restricted to the regular agents set at time t

xS(t) Opinion state vector restricted to the strategic agents set at time t

x̄ Asymptotic opinion state vector

x̄R Asymptotic opinion state vector restricted to the regular set

x̄(A) Asymptotic opinion state vector when A is the set of nodes directly
connected to the strategic agent +

+ Agent +

− Agent −

1 All-ones vector

η Input current vector

φ Current flow vector
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Chapter 1

Introduction

During the last few years, the diffusion of opinions has seen an explosion in
terms of relevance and reach. Thanks to the new connections made possible
by social platforms, individuals nowadays interact with thousands of others,
exchanging opinions, ideas, memes, and much more, in an unprecedented
way. At the same time, alongside these new technologies, the propagation
of systematic biases and misinformation arose significantly, becoming even-
tually a real threat to western democracies. As examples, let us think to
the misleading ads proposed during the Brexit campaign in 2016 [1], or the
Pizzagate conspiracy theory that went viral during the 2016 US Presidential
Elections [2]. In this context, understanding how opinions spread among
population, and how political agents can intervene to control such dynamics
becomes crucial.

Opinion Dynamics Theory

The main approach to model opinion dynamics represents society as a social
network of N interconnected agents, each communicating with her contacts.
I consider that at an initial stage every agent has a belief around a topic,
represented by a distribution x(0) over the agents. Then, by interacting
with her contacts, each agent updates her opinion by averaging her own
with the ones of her neighbors in a distributed manner. This distributed
averaging process is better known as the French-DeGroot model [3, 4, 5]. In
this model, when the underlying graph representing the network of agents
is particularly connected, the dynamics taking place leads in the long-run
to a consensus among the population. However, in reality, it is difficult to
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see such a consensus to a societal extent. In order to overcome this issue,
a generalization to the French-DeGroot model is considered [6]. According
to this, some individuals are not updating their opinion, spreading over and
over the same myopic idea. I denote these agents as strategic, and I interpret
them as either individuals or media outlets who wish to influence others with
their opinion. However, more in general, these agents can also be interpreted
as stubborn individuals, who do not easily change their opinion, or opinion
leaders, who have a strong influence over some communities and are less likely
to change their opinion as time goes on. By introducing this differentiation in
the agents’ behavior, we can find in the long-run the disagreement in society
that we usually see, while maintaining the simplicity of the French-DeGroot
model [7, 8, 9].

The framework in which this thesis work takes place differentiates agents
in these two categories and assumes that non-strategic/regular agents in-
fluence each other reciprocally, and experience equal influence from their
neighbors. So, while regular individuals interact and mutually influence each
other, strategic agents have the only effect of shifting population’s opinion
towards their own. Clearly, this is an ideal representation of reality. How-
ever, let us notice how the assumption of uninfluenceable individuals, as well
as the one of network staticity, becomes more robust as the diffusion dura-
tion decreases. This means that such model of a static society of regular and
strategic individuals would be much closer to reality as the opinion dynamics
time span is short.

Nevertheless, a huge variety of different approaches are present in the
literature: the updating function relating the opinion of some agents to the
other opinions can be either linear or nonlinear; the time domain in which the
diffusion takes place can be either discrete or continuous; the update timing
among agents can be either synchronous or asynchronous; the agents’ opin-
ion/state can be either categorical or quantitative; the interactions between
individuals can be pairwise, among nearest neighbors or among anyone else;
etc. In this diversity of possibilities, different approaches are more peculiar to
some domains rather than others, whereas some generalizations can even be
useless, depending on the application. For example, linear update functions
allow for a simple mathematical treatment by means of well-known linear al-
gebra techniques, such as matrix theory, making them a powerful instrument
for studying opinion formation. Conversely, nonlinear update functions are
more customizable and can be effectively used for a broad variety of fields:
from the diffusion of innovations to epidemics.
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At the same time, some generalizations can even be indifferent to the
analysis: e.g. in this work it is assumed that all agents update their opinion
synchronously within a discrete-time domain. Both these assumptions have
no impact on asymptotic opinions, making our work rather general.

Maximal Influence Competition

Building upon these notions, the main question that arises is the following:
How is it possible to control these dynamics? To answer this question quanti-
tatively, the problem is stated as a competition between two strategic agents
– of opposite opinion – who try to lead population’s opinion towards their
own by targeting a certain number of regular agents. This competition is set
from the perspective of one of the strategic agents, so as to be described by
the optimization problem of selecting at most k regular agents to connect
to in order to maximally shift the average asymptotic opinion of the social
network. Notice that this representation in not restrictive in terms of con-
nection with reality, since it is equivalent to a more general one: where there
is an arbitrary number of strategic agents of opposite opinion. Indeed, by
remarking the equivalence between an asymptotic opinions network and an
electrical network, all the strategic agents of identical opinion can be consid-
ered as voltage sources and merged together, without affecting the long-run
results. In this context, rather that thinking of two competitors as single
individuals, we can think of them as two groups of people – made up of opin-
ion leaders, media, influencers, stubborn individuals, etc. – holding opposite
opinions and trying to make their idea prevail by optimally targeting new
individuals.

In the last few years, a major interest has been arising around these
influence maximization problems over networks, attracting researches with
different kinds of background.Some used an approach similar to ours to the
problem. [10] analyzed the same problem as the one presented in this
work, complementing part of the work studied in this thesis. Similarly,
[11, 12, 13, 14, 15] tackled an analogous problem where influence maxi-
mization is achieved by means of regular agents’ replacements with strategic
agents rather than targeting. Others, instead, tackled the same problem as
ours but with a different approach. [16] studied the problem applied to op-
timal investment strategies for competing camps, and also extended it to a
multiphase dynamic game [17, 18], within the Friedkin-Johnson framework
[6]. Conversely, [19] tackled the problem using a game theoretical approach.
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While [20] extended the model to three competitors: two extremists and one
centrist. In addition, [21] treated the problem as a dynamic targeting game.
On the other hand, also different optimal targeting problems have been stud-
ied: [22] presented a work where two firms seek to maximize the diffusion of
a product in a society, and another one [23] where a planner wants to do the
same in terms of an action.

Optimal Targeting Problem Results and Heuristics

The optimization problem tackled in this thesis is known to be computa-
tionally hard [10]. This means that a brute-force approach is unfeasible, and
effective heuristics are needed to reduce its complexity.

The core of this thesis work consists in the theoretical results that have
been discovered, and successively deployed to build these heuristics. Whereas,
the main contributions to the literature are the resulting heuristics, which
led to a significant improvement in the emerging solution of the optimiza-
tion problem, in terms of both accuracy and expensiveness. The simplest
way to tackle the problem is to reduce its complexity by making use of the
submodularity of the objective function. In particular, both its monotonicity
and submodularity are proved independently and without being aware of the
results in [10], which appeared later – in addition, alternative version of the
results are provided in Appendix A.1 and A.2, the latter being built upon
the results in [11]. Thanks to these findings, one can bypass the computation
of the optimal targeting problem (OTP), of complexity O(N3+k), by simply
computing the 1-best solutions of successive k singular targeting problems
(STP) in a greedy manner. Such 1-best solutions are simply computed with a
brute-force approach, by comparing all the N possible combinations. This al-
lows to reduce the complexity to O(kN4), and leads eventually to a bounded
approximation of the optimal solution [24].

A more complicated way to tackle the problem consists in exploiting the
results for some special graph in order to build more refined heuristics. Our
contribution here is entirely original to the literature, and leads to remarkable
results. As a first kind of special graphs, the analytical solution for the
STP over line graphs is provided. In particular, the computation of the
objective function in terms of the target node position exhibits a peculiar
concave behavior. This allows to find a closed-form solution for the STP over
line graphs. Additionally, such peculiar behavior of the objective function
is proved to be extendable to the branches of generic tree graphs, when
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treated as pseudo-line graphs. Here, if the tree is known, it is possible to
find again a closed-form solution. But, in addition, these findings also allow
to define an algorithm which finds the optimal solution for the STP over
generic tree graphs in an efficient way. Subsequently, as a second kind of
special graphs, the analytical solution for the OTP over complete graphs is
provided, implying that, whatever the budget available to both players, it
is possible to solve the OTP in a closed-form. This result is powerful, since
it tells us in an immediate way whether it is convenient or not to block the
opponent’s influence by targeting the same nodes: if the overall number of
edges available and placed by one strategic agent is strictly greater than the
number of edges placed by the opponent, the optimal strategy consists in
blocking their influence over the graph.

Finally, upon these results, a variety of heuristics are built, which will
be used interchangeably depending on the previous knowledge about the
underlying graph and the accuracy vs cost trade-off characterizing different
heuristics. In order to present useful results, these heuristics are compared
with zero-cost strategies, consisting in both the targeting of highest degree
nodes, and a mix between targeting the highest degree nodes and a blocking
approach – coming from the complete graph result. In this way we can have
a proper comparison between the best (empirically determined) zero-cost so-
lutions, with respect to expensive results. For the simple STP, upon the tree
graph algorithm, a tree-like heuristic over generic graphs is built, allowing
to cut the cost significantly in the maximum search, with more remarkable
results as the graph is more tree-like/sparse. Next, for the OTP, the blocking
heuristic is built by copying the mechanics of the complete graph result – by
blocking the opponent influence over nodes whose degree is sufficiently high
– and by placing the remaining nodes in a greedy manner. This is usually
more accurate and less expensive than a purely greedy approach. Notice
however, that this is not always true, especially when the graph is sparser.
Moreover, it is possible to additionally reduce the heuristics complexity by
implementing the greedy search in a smarter way: either simulating k succes-
sive tree-like heuristics, or by doing the k brute-force searches restricted to
a subset of high-degree nodes. Concluding, these heuristics are summarized
in a scheme of work telling which heuristic to choose, based on the cost vs
accuracy trade-off, and the underlying graph.
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Chapter 2

Problem Statement

2.1 Preliminaries and Graph Terminology

When studying networks of interconnected agents, the fundamental mathe-
matical model is that of graphs. In such representation, the unitary elements
making up the network are denoted as nodes, while the relationships among
such entities are represented as links among them – denoted as edges or links
– and can eventually stress a directionality, if directed, or not, if undirected.
Moreover, such edges can be associated to values quantifying their strength.
In this case we talk about weighted edges and the graph associated will be
denoted as a weighted graph.

More formally, a weighted graph is defined as the triple

G = (V , E ,W )

where

• V is the countable set of nodes associated

• E ⊆ V × V is the set of edges, indicated as the ordered pair (i, j) if
directed from node i to j

• W ∈ RV×V+ is the weight matrix associated, where Wij > 0 indicates
the strength of edge (i, j) and Wij = 0 if and only if (i, j) /∈ E , i.e. if
there is no edge (i, j).

Then, I will denote a graph G = (V , E ,W ) as

15



16 CHAPTER 2. PROBLEM STATEMENT

• undirected if its weight matrix W is symmetric, i.e. Wij = Wji for
each i, j ∈ V . In such case, the undirected edges will be denoted as
unordered pairs {i, j}, corresponding to both the directed links (i, j)
and (j, i).

• unweighted if its weight matrix W ∈ {0, 1}V×V , i.e. Wij = 1 if and
only if (i, j) ∈ E . Note that unweighted graphs can be equivalently
indicated by the couple G = (V , E).

Let us now introduce some definitions associated to the nodes of the graph.

Let G = (V , E ,W ) be a graph, then

• the out-neighborhood and in-neighborhood of a node i ∈ V are defined
as the sets of nodes to which i is linked when pointing outwards and
inwards respectively, i.e.

Ni = {j ∈ V : (i, j) ∈ E} , N−i = {j ∈ V : (j, i) ∈ E}

while the nodes in Ni and N−i are called the out-neighbors and in-
neighbors of node i respectively. Note that when the two sets are
identical – as for undirected graphs – I will simply refer to a sole neigh-
borhood, univocally denoted as Ni, whose elements are called neighbors.

• when a node i has no out-neighbors, i.e. it has no links pointing out-
wards other than possibly itself, it is called a sink.

• the out-degree and in-degree of a node are defined as

wi =
∑
j∈V

Wij , w−i =
∑
j∈V

Wji

Note that for unweighted graphs, as I will analyze, such degrees corre-
spond to the cardinality of the out-neighborhood and in-neighborhood
of a node i respectively plus possibly itself. Whereas for undirected
graphs such degrees are identical and I will simply refer to a sole degree
as wi.
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Walks, Paths and Reachability

Let us now introduce a series of notions that exploit the graph representation
and allow for intuitive interpretations of its key properties.

Let G = (V , E ,W ) be a graph, then

• a finite sequence of nodes γ = (γ0, γ1, . . . , γl) such that γ0 = i, γl = j
and (γh−1, γh) ∈ E for each h = 1, 2, . . . , is defined as the walk from
node i to node j, while l is called the length of the walk.

• a walk γ = (γ0, γ1, . . . , γl) such that γh 6= γk for each h, k such that
0 ≤ h < k ≤ l except for possibly γ0 = γl, i.e. a walk that does not
pass in the same node twice except for possibly its starting point, is
called a path.

• a path γ = (γ0, γ1, . . . , γl) such that l ≥ 3 and γ0 = γl, i.e. a non-trivial
path starting and ending in the same point, is called a cycle.

• a node j is said to be reachable from node i if it exists a walk γ from i
to j.

• the graph G is called strongly connected if for each i 6= j in V , there
exists a walk from i to j, i.e. j is reachable from i.

• a subset of nodes U ⊂ V is said to be trapping – or absorbing – in G if
for every node i ∈ U and j ∈ V \ U there exists no path from i to j.

• a subset of nodes U ⊂ V is said to be globally reachable in G if for every
node j ∈ V \ U there exists a path from j to some node i ∈ U .

Algebraic Graph Theory

Let us now introduce the basic linear algebraic tools used in this work to
exploit the graph representation. Notice that for the whole document the
vectors v are represented as column vectors while their transpose is denoted
as v>. In addition, I will denote as 1 the all-ones column vector, whose size
is determined according to its usage.

The first natural matrix of interest is obviously the weight matrix W ,
whose elements are the weights associated to each edge of the graph.

From W it is possible to obtain



18 CHAPTER 2. PROBLEM STATEMENT

• the out-degree and in-degree vectors

w = W1 , w− = W1

whose elements are the out-degrees and in-degrees associated to each
node respectively.

• the out-degree matrix, or simply the degree matrix

D = diag(w)

which is the rewriting of the w vector into the main diagonal of the
diagonal matrix D.

In addition to W , two other matrices turn out to be extremely relevant:

• the normalized weight matrix

Q = D−1W

which is non-negative and for which Q1 = 1, i.e. its rows sum to one.
Matrices with such properties are called stochastic, since the elements
of such rows can be associated to probabilities.

• the Laplacian matrix

L = D −W

for which L1 = 0, i.e. its rows have zero sum. Matrices L with this
property and such that −L is Meltzer are indeed called Laplacian.

Additionally, it is also useful to restrict the normalized weight matrix Q to a
subset U of nodes, denoting such new matrix as Q|U . Then, it is easy to see
that

• if U is trapping, Q|U is stochastic

• if U is not trapping, Q|U is sub-stochastic, i.e.

Q|U1 ≤ 1 Q|U1 6= 1
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Spectral Properties

Let us now exhibit one of the main results of non-negative matrices theory:
the Perron-Frobenius theorem [25, 26]. Such result is related to the spectral
properties of non-negative square matrices and its consequences on the graph
theoretical framework are various. However, for brevity, I will simply present
the results functional to the development of this work, also omitting the proof
of this result, which can be found – in alternative ways – on various other
works [25, 26, 27, 28, 29, 30, 31].

Theorem 2.1.1 (Perron-Frobenius). Let A ∈ Rn×n
+ be a non-negative square

matrix. Then, there exist a unique non-negative eigenvalue λA ∈ R+ and
non-negative vectors x, y ∈ Rn

+ such that

• Ax = λAx

• A>y = λAy

• ∀λ eigenvalue of A, |λ| ≤ λA

Such eigenvalue λA – being the eigenvalue with greatest module – is called
the dominant eigenvalue of A, while the corresponding vectors x and y are
called the right and left dominant eigenvalues, respectively.

This result can be written in terms of the normalized weight matrix,
since it is a non-negative square matrix. Indeed, it possible to write down
the following corollary as a simple rewriting of the Perron-Frobenius theorem.
The proof is omitted for triviality.

Corollary 2.1.2. Let G = (V , E ,,W ) be a graph where W ∈ R|V|×|V|. Let
Q = D−1W be its normalized weight matrix. Then, there exist a unique non-
negative eigenvalue λQ ∈ R+ and non-negative eigenvectors x, y ∈ Rn

+ such
that

• Qx = λQx

• Q>y = λQy

• ∀λ eigenvalue of Q, |λ| ≤ λQ
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2.2 Competitive Opinion Dynamics

The focus of this work is related to the study of opinion dynamics controlla-
bility over networks. In this regard, let us represent a society as an influence
network described by a graph

G = (V , E ,W )

whose nodes i ∈ V represent its individuals, also denoted as agents, and the
edges (i, j) ∈ E express the interactions among them. The intensity of such
interactions are reported in the weight matrix W , where the entries Wij rep-
resent how much agent i is positively influenced by agent j, while the Wii

terms determine how much agent i weights her own current opinion with
respect to others’ ones, i.e. it indicates her resistance to change.

Let us now assume that each individual has a state xi(t) ∈ [−1,+1], rep-
resenting her opinion at time t, that at each time step t = 1, 2, 3, . . . is
updated as a response to the interaction with her neighbors, according to
the update rule

xi(t+ 1) =
∑
j∈V

Qijxj(t) i ∈ V , t = 1, 2, . . . (2.1)

indicating that the new state xi(t+1) of agent i corresponds to the weighted
average of her neighbors’ opinion xj(t) at time t and her own previous one
xi(t). More compactly, equation (2.1) can be rewritten in the matrix form

x(t+ 1) = Qx(t) t = 1, 2, . . . (2.2)

where x(t) corresponds to the vector of all agents’ opinion. Such equation in
the social science context is known as the DeGroot opinion dynamics model
[3, 4, 5] or, more generally, as the linear averaging dynamics on G.

This behavior could also be taken to the limit: when an agent only con-
siders her own opinion, i.e. x(t + 1) = x(t) for each t = 1, 2, . . . . Such
individuals are defined as strategic and have a huge impact on the dynamics.

Indeed, it is convenient to handle this different behavior by splitting the
population into:

• R ⊆ V : set of regular agents, who weight their opinion among their
neighbors



2.2. COMPETITIVE OPINION DYNAMICS 21

• S = V \ R : set of strategic agents, who maintain the same opinion

By rearranging the nodes in such a way that the regular nodes come first,
it is possible to partition the weight matrix W in its R×R, R× S, S ×R
and S × S blocks, as denoted below

W =

R S( )
W 11 W 12 R

0 I S

where W 21 is substituted with the null matrix and W 22 with the identity
matrix of corresponding dimensions.

Moreover, let us make two strong assumptions on the regular agents behavior
in order to keep the mathematics simple:

Assumption 1. W 11 = (W 11)>, i.e. G|R undirected

Assumption 2. W 11 ∈ {0, 1}R×R, i.e. G|R unweighted

where G|R is the graph restricted to regular agents.
The two assumptions tell us that each person reciprocally influences each

other and that each individual is equally influenced by the individuals she
interacts with, respectively.

On the other hand, let us also assume for the strategic agents that

Assumption 3. 1>W 12 ≥ 1
>

Assumption 4. W 12 ∈ {0, 1}R×S

which tell that each strategic agent has at least one link to a regular agent,
but no more than one to the same target. Thanks to the latter assump-
tion, the problem will be easier to state – in terms of node targeting – and
it will present a quite reduced solution space, i.e. all the possible config-
urations of W 12 in {0, 1}R×S such that 1>W 12 ≥ 1

>. Such assumption is
both intuitive and motivated by experiments over different random graphs,
which will suggest that multiple targeting onto the same node is not optimal.

The work presented here focuses on optimal targeting on a social network,
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expressed as a competition between two agents of opposite opinion. Such
agents are represented as two strategic agents, denoted as − and +, of opin-
ion −1 and +1 respectively, while the other individuals of the social network
are considered as regular.

Let us now assume that the population size is finite and equal to N + 2,
i.e. |V| = N + 2, and let us rearrange the nodes in such a way that the
regular nodes come first, i.e.

• R = {1, 2, 3, . . . , N}

• S = {N + 1, N + 2} := {−,+}

where the two strategic nodes are denoted as − and + form now on.

Now, by partitioning the normalized weight matrix in its R×R, R× S,
S ×R and S × S blocks so that

Q =

R S( )
Q11 Q12 R
0 I S

the discrete-time update rule in vector representation becomes

xR(t+ 1) = Q11xR(t) +Q12xS(t)
t = 1, 2, . . .

xS(t+ 1) = xS(t)
(2.3)

where xR(t) and xS(t) are the partitions of the state vectors as

x(t) =

(
xR(t)
xS(t)

)
R
S

Let us now assume that the graph restricted to regular nodes G|R is strongly
connected, i.e. for each couple of node i and j there always exists a path in
G|R going from i to j:

Assumption 5. G|R strongly connected

Such condition is required since we want S to be globally reachable for each
possible configuration of strategic nodes connections. Indeed, the following
proposition holds.
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Proposition 2.2.1. Let G = (V , E ,W ) be a graph, let S ⊂ V be a nonempty
subset of nodes, let R = V \ S, and let W 12 be the R× S block of the weight
matrix W . Then, for all the possible combinations of W 12 ∈ {0, 1}R×S such
that 1>W 12 ≥ 1

>, S is globally reachable iff G|R is strongly connected

Proof. Assumption 3, i.e. 1
>W 12 ≥ 1

>, tells that each node in S has at
least one link to a node in R. Without loss of generality, let us consider the
case where all the nodes belonging to S are linked to the only one, same,
node i in R – the worst-case scenario, in terms of connectivity. Thus, being
S globally reachable, it means that for each j ∈ R, i is reachable from j,
since it is the only node through which S is reachable. However, the choice
of such node i is arbitrary, considering all the combinations of W 12, leading
to the definition of connectivity for G|R.

Such assumption – under which each regular node can reach at least one
strategic node – leads to a fundamental result, as expressed in the following
proposition: each regular agent, by following the DeGroot dynamics as ex-
pressed in (2.3), will reach a stationary opinion as time goes on, and such
opinion will be a combination of the opinions of all the strategic agents she
can reach.

Proposition 2.2.2. Let G = (V , E ,W ) be a graph, let S ⊂ V be a nonempty
globally reachable subset of strategic nodes, let R = V \ S be the subset of
regular nodes, and let Q11 be the R×R block of the normalized weight matrix
Q. Then,

(i) Q11 is substochastic and asymptotically stable

(ii) I −Q11 is invertible with non-negative inverse matrix

H = (I −Q11)−1 =
∑
k≥0

(Q11)k

where H is called the fundamental matrix

(iii) for every intial state vector x(0) ∈ RV , the DeGroot dynamics with
strategic nodes described in (2.3) satisfy

lim
t→+∞

xR(t) = HQ12xS
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Proof. Starting from (i), the sub-stochasticity of Q11 follows from the facts
that Q11 = Q|R and R is not trapping, since S is globally reachable and
nonempty. The second result of (i) makes use of Perron-Frobenius Corollary
2.1.2, which says that under this conditions it always exists a y ≥ 0 such
that (Q11)>y = λQ11y, where λQ11 is the dominant eigenvalue of Q11. Then,
let U ⊆ R be the support of y. Since S is globally reachable, also U is not
trapping, and thus sub-stochastic. Consequently, by summing over i ∈ U , it
is possible to obtain that

λQ11

∑
i∈U

yi =
∑
i∈U

λQ11yi

=
∑
i∈U

∑
j∈V

(Q11)jiyj

=
∑
i∈U

∑
j∈U

(Q11)jiyj

<
∑
j∈U

yj

where the last inequality holds since mini∈U
∑

j∈S(Q11)ijyj < 1, being Q11

sub-stochastic. This leads to λQ11 < 1, sufficient and necessary condition for
Q11 to be asymptotically stable.

Point (ii) is a consequence of this result. Indeed, since (Q11)t → 0 as
t→ +∞, it is possible to write

(I − lim
t→+∞

(Q11)t) = (I −Q11)(I +Q11 + (Q11)2 + . . . )

I = (I −Q11)(I +Q11 + (Q11)2 + . . . )

implying that (I−Q11) is invertible and its inverse is exactly the second term
of the right member of the equation, i.e.

(I −Q11)−1 =
∑
k≥0

(Q11)k

which is non-negative, since it is a sum of positive terms.
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Point (iii) instead is obtained by writing (2.3) explicitly. Indeed,

xR(t) = Q11xR(t− 1) +Q12xS

= Q11[Q11xR(t− 2) +Q12xS ] +Q12xS

= (Q11)2xR(t− 2) + [(Q11)1 + (Q11)0]Q12xS

...

= (Q11)txR(0) + [(Q11)t−1 + (Q11)t−2 + · · ·+ (Q11)0]Q12xS

= (Q11)txR(0) +

[
t−1∑
k=0

(Q11)k

]
Q12xS

that by taking the limit t→ +∞ leads to

lim
t→+∞

xR(t) = HQ12xS

This leads to the notion of asymptotic opinion state vector, defined as

x̄ := lim
t→+∞

x(t) =

(
HQ12xS

xS

)
∈ RV

where its regular agents partition can be expressed in the following equivalent
ways:

x̄R = HQ12xS = (I −Q11)−1Q12xS =

[∑
k≥0

(Q11)k

]
Q12xS

Nonetheless, in Chapter 3.2, by introducing the notions of random walks
over graphs, I will allow for a probabilistic interpretation of such vector, that
originates by noticing that

HQ12 = 1
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Indeed, since Q is stochastic,

Q11
1 +Q12

1 = 1

Q12
1 = (I −Q11)1

(I −Q11)−1Q12
1 = 1

In such way, we can interpret the asymptotic opinion x̄i of a regular agent
i ∈ R as a convex hull of opinions xS of the strategic nodes s ∈ S, i.e.

xRi =
∑
s∈S

(HQ12)isx
S
s (2.4)

where

(HQ12)is =
∑
k≥0

∑
i0=i,i1...ik−1∈R,ik=s

∏
1≤h≤k

Qih−1,ih (2.5)

i.e. the coefficient is the sum of the probabilities of all the possible k-length
paths from node i ∈ R to node s ∈ S where the first k − 1 nodes of such
path are regular ones, for all k.

This means that the asymptotic opinion of a regular agent i can be writ-
ten as the sum over s ∈ S of the probabilities of going from node i to node s
– multiplied by the state of such strategic node – through the random walk
defined by the normalized weight matrix Q.

Lastly, the asymptotic opinion state vector can be equivalently expressed
as the only vector satisfying the system{∑

j∈V Lijxj = 0 ∀i ∈ R
xi = xSi ∀i ∈ S

(2.6)

where Lij is the ij-th component of the Laplacian L = D −W . Indeed

L

(
HQ12xS

xS

)
= D

(
HQ12xS

xS

)
−D

(
Q11HQ12xS +Q12xS

Q21HQ12xS +Q22xS

)
= D

(
(I −Q11)HQ12xS −Q12xS

xS −Q21HQ12xS −Q22xS

)
= D

(
0

xS −Q21HQ12xS −Q22xS

)
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2.3 Optimal Targeting

Since my focus is to investigate optimal targeting on a social network, let us
set the problem as an optimization problem from the perspective of one of
the strategic agents: +. In such context, I assume that the other strategic
agent −, the adversary, is already linked to the population while + could or
could not be linked yet.

First of all, let us assume that the unitary edges of agent − are already
placed and let us define the number of such edges as

• k− :=
∑

j∈RWj−

On the other hand, we need to define both the number of edges k0
+ already

linked to +, and the available amount of edges k+ that she has to add, such
that the initial weight matrix W (0), that is the weight matrix before the
targeting problem, is such that

• k0
+ :=

∑
j∈RW

(0)
j+

while the final weight matrix W , that is the weight matrix after the targeting
problem, is such that

• k+ + k0
+ :=

∑
j∈RWj+

Indeed, I assume that at the beginning the k− edges of agent − and the k0
+

edges of agent + are placed, while agent + faces the optimization problem of
maximizing the sum of asymptotic opinions by placing these k+ edges. No-
tice how the condition 1

>W 12 ≥ 1
> is equivalent to ask for k− and k0

+ + k+

to be greater than one.

In order to formalize this problem from the perspective of the + agent, let
us denote by x̄

(A)
i the asymptotic opinion of agent i in the particular config-

uration of new edges linked to the strategic agent +, univocally identified by
the weight matrix WA, where the new nodes targeted by + are all the nodes
belonging to the set A. Then, the simplest choice for the objective function,
since the goal of the + agent is to move the other nodes’ opinion towards her
own, is the sum of all the regular agents’ opinion, in terms of the set A of
nodes targeted by +.
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Optimal Targeting Problem (OTP): Let us define the objective function
that we want to maximize as the set function

F+ : 2R → R

whose domain is the family of nonempty sets of the possible combinations of
regular agents. Such function takes as input the set of regular nodes that are
targeted by the strategic agent + and it computes the average asymptotic
opinion of the agents in such particular configuration, i.e.

F+(A) =
1

N

∑
i∈R

x̄
(A)
i , A ⊆ R (2.7)

Then, the optimal targeting problem OTP can be defined as

max
A⊆R

F+(A) (2.8)

which, in practice, is an influence maximization problem in terms of optimal
targeting. In particular, if k+, k− ≥ 1, I will refer to the general problem
(2.8) as the optimal targeting problem (OTP) or multiple targeting problem,
whereas, if k+, k− = 1, I will talk of single targeting problem (STP), and I
will slightly change the notation.

Singular Targeting Problem (STP): : Let us denote by v+ and v− the
unique nodes linked to + and − respectively, and by F+(v+) the objective
function. Then the single targeting problem STP is defined as

max
v+∈R

F+(v+) (2.9)



Chapter 3

Graphs, Random Walks and
Electrical Analogy

3.1 Special Graphs

In this section let us define the main graphs that will be studied in the rest
of the manuscript.

Tree Graph

A tree graph is a connected graph that is unweighted, undirected, and that
has no cycles.

1

2 3

4 5

Figure 3.1: Tree graph with N = 5

Line Graph

A line graph is a tree graph where N − 2 nodes have degree two, and two
nodes have degree one.

29
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1 2 3 4 5 6

Figure 3.2: Line graph with N = 6

Complete Graph

A complete graph is a connected unweighted undirected graph where each
node is linked to every other node.

1

2

3

4

5

6

7

8

Figure 3.3: Complete graph with N = 8

3.2 Random Walks on Graphs

In this section I present the basic notions of Markov chains and their random
walks representation on graphs. Indeed, when talking of a finite state space
Markov chain, it is possible to associate this notion to the one of a random
walk over a graph, where a state corresponds to a node and the overall
finite state space to the node set. In particular, depending on the considered
dynamics, it is possible to represent both discrete-time and continuous-time
Markov chains. However, I will only present the former of the two, since in
this work – studying asymptotic states – both representations are equivalent,
i.e. asymptotic opinion states do not depend on the time domain of the
update rule or – from the alternative point of view here presented – the time
domain of the associated Markov chain.
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Markov Chains and Random Walks

A Markov chain is a stochastic process where the probability distribution
of future states is completely determined by the present state distribution,
regardless of the past history of the stochastic process. This property is
known as the Markov property.
In the graph theoretical framework, when the state space of the Markov chain
is discrete and finite, it is possible to think of a Markov chain as a particle
moving over the nodes of a graph in a random walk manner. Indeed, it is
possible to imagine such particle as jumping from one node to another: if at
time t the particle is located in node i, at time t+ 1 it could jump to one of
its out-neighbors j with a probability proportional to the weight of the edge
(i, j). In such way, it is possible to visualize a discrete-time Markov chain
as a moving particle. Nevertheless, also the opposite is true: some dynamics
over graphs can be equivalently expressed as a Markov chain and can be
tackled by the tools of stochastic processes.

More formally, let X(t) be a discrete-time stochastic process with dis-
crete state space X . Then, X(t) is a discrete-time Markov chain if for any
i, j, i0, i1, . . . , it−1 ∈ X the Markov property

P(X(t+1) = j|X(t) = i,X(t−1) = it−1, . . . , X(0) = i0) = P(X(t+1) = j|X(t) = i)

holds. This means that the probability of going from a state i to j – also
called transition probability – only depends on the current state, while it does
not depend on the history of past states.

Since I want to describe such concept from a graph theoretical point of
view, let us assume that the state space X of the discrete-time Markov chain
X(t) is discrete and finite. Then, it is possible to associate such Markov
chain to a graph G = (V , E ,W ), where the finite state space X corresponds
to the node set V and the transition probability P(X(t + 1) = j|X(t) = i)
corresponds to the entry Qij of the normalized weight matrix Q = D−1W –
denoted as the transition probability matrix.
However, since the states of a Markov chain are probability distributions,
in order to have a perfect equivalence, I need to introduce an initial prob-
ability distribution π(0) over the node set V – representing the probability
distribution of the particle’s starting position. In such way, there is a perfect
equivalence between discrete-time Markov chains with finite discrete state
space and random walks over a weighted directed graph, by associating:

• the finite discrete state space X to the node set V , i.e. V = X
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• the transition probability matrix to the normalized weight matrix Q,
whose entries satisfy

Qij = P(X(t+ 1) = j|X(t) = i) , i, j ∈ V

• the initial probability distribution of the Markov chain X(0) to the
initial probability distribution π(0), whose entries satisfy

πi(0) = P(X(0) = i) , i ∈ V

Consequently, by defining Q and π(0), it is possible to determine the proba-
bility distribution of a trajectory (X(t) = it, X(t− 1) = it−1 . . . , X(0) = i0),
by simply applying the Markov property. Indeed,

P(X(t) = it, X(t− 1) = it−1 . . . , X(0) = i0)

= P(X(t) = it|X(t− 1) = it−1 . . . , X(0) = i0) ·P(X(t− 1) = it−1 . . . , X(0) = i0)

= Qt−1,t ·P(X(t− 1) = it−1|X(t− 2) = it−2 . . . , X(0) = i0) ·P(X(t− 2) = it−2 . . . , X(0) = i0)

= Qt−1,t ·Qt−2,t−1 ·P(X(t− 2) = it−2, X(t− 3) = it−3 . . . , X(0) = i0)

...

=
∏

1≤s≤t

Qis−1,is · πi0(0) (3.1)

where t = 0, 1, 2, . . . .
This justifies the description of the coefficient (2.5) weighting the strategic

nodes’ states for the calculation of the asymptotic opinions. Indeed, the
probabilities of all the possible k-length walks towards strategic nodes can
be described as random walk trajectories.

Hitting Time and Absorbing Probability

Another interesting notion is the one of hitting time. This value is a random
variable that refers to the time spent by a Markov chain X(t) to move from
a state i to another state j and it is defined in the following way.

Let X(t) be a Markov chain with finite discrete state space X . Then,
the hitting time on a node i ∈ X and the hitting time on a subset of states
S ⊆ X are the random variables defined by

Tj := inf{t ∈ N : X(t) = j} , TS := inf{t ∈ N : X(t) ∈ S}



3.3. ELECTRICAL ANALOGY 33

where the convention that the infimum of an empty set is equal to +∞ is
used. In practice, such hitting times Tj and TS consist in the first times at
which the markov chain X(t) jumps to j or one of the states of S, respectively.

On the other hand, this idea is strictly related to another notion: the one
of absorbing probability. Indeed, when studying random walks on graphs –
especially in presence of absorbing sets – a natural question that comes into
mind is not only when such random walk will end up in a subset of nodes – if
ever – but also where such subset is first hit. Indeed, for many applications,
it is important to know which state of an absorbing set – also called absorbing
state – is more probable to be hit first.

Formally, let X(t) be a Markov chain with finite discrete state space X ,
let S ⊆ X be a subset of states, and let i ∈ X be the initial state of X(t).
Then, the absorbing ptobability in s ∈ S is defined by

Γis := P(X(TS) = s|X(0) = i)

Which means that Γis represents the probability that the Markov chain X(t),
initiated at node i, hits the node s ∈ S before hitting any other node in
S \ {s}, i.e.

Γis = P(TS = Ts|X(0) = i)

3.3 Electrical Analogy

In order to study analytically the targeting problem from the perspective of
the + agent, it is convenient to use the electrical analogy, as I present below.
Let us briefly recall the basic notions of such analogy.

First of all, let us consider a strongly connected undirected graph G =
(V , E ,W ), where E is the set of unordered couples {i, j} rather than ordered
ones as we previously used. Such graph can be seen as an electrical network
GC = (V , E , C) where the weight matrix W is substituted by the conductance
matrix C ∈ RV×V , where Cij = Cji is now the conductance between the
nodes i and j (notice how the reciprocity assumption must hold). Then, let
us define

• B ∈ {0,+1,−1}E×V the incidence matrix, such that{
B1 = 0

Bei 6= 0 ⇐⇒ i ∈ e , e ∈ E
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• DC ∈ RE×E diagonal matrix such that

(DC)ee = Cij = Cji , e = {i, j} ∈ E

leading to
B>DCB = DC1 − C

where DC1 = diag(C1). Indeed DCB associates at each row of B the
weight of the corresponding edge multiplying 1 or −1, while B>DCB
generates the matrix that on each diagonal entry has the sum of all
the conductances on such node, while on the ij-th entry it has the
conductance value of edge {i, j} of negative sign, if present.

• η ∈ RV the input current vector (positive if ingoing, negative if outgo-
ing), such that η>1 = 0

• V ∈ RV the voltage vector

• Φ ∈ RE the current flow vector (positive if going from i to j on (i, j))

In such way, the usual Kirchoff and Ohm’s law can be expressed as{
B>Φ = η

DCBV = Φ

leading to

B>(DCBV ) = η

(DC1 − C)V = η

L(C)V = η (3.2)

where L(C) := DC1−C is the Laplacian of C. Since the graph is strongly con-
nected, L(C) has rank |V|− 1 and L(C)1 = 0, making V , up to translations,
the unique solution of the system. Also notice that (L(C)V )i = 0 ∀i ∈ V
such that ηi = 0. Consequently, the solution of Equation (3.2) in terms of
voltages correspond to the one of Equation (2.6) in terms of asymptotic opin-
ions, where the regular nodes are the ones with 0 input current, while the
strategic ones are the nodes with input current different from 0. Indeed it is
possible to interpret the asymptotic opinion of regular agents in a strongly
connected undirected graph as the voltage in the corresponding regular node
of the electrical network.
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From now on, I will thus talk about this electrical equivalence where the
agents are nodes in the electrical network and their asymptotic opinions are
the associated voltages. In such equivalence, the strategic nodes − and + are
considered voltage sources of value −1 and +1. Thus, the objective function
of the optimal targeting problem (2.8) becomes

F+(A) =
1

N

∑
i∈R

V (A)(i)

where V (A)(i) is the voltage of node i when the set of nodes linked to + is
A.

Remark. Let us notice that in the electrical network it is possible to glue
together nodes having the same voltage, i.e. substituting the graph with a
simplified version. This allows for more interesting interpretations of this
thesis work since, by considering two agents competing with each other, it is
possible to equivalently represent the problem where two group of people of
opposite opinion – represented as strategic agents – compete with each other,
independently from the number of people involved.
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Chapter 4

Properties of the Linear
Optimization Problem

In this chapter I will present two of the main properties of the objective
function of the optimization problem (2.8): monotonicity and submodularity.
Such properties will allow for some heuristics to find sub-optimal results, as
I will show in Chapter 6.2 and Chapter ??.

Notice how both proofs have been made with the same approach and
following analogous steps, in order to be easier to understand. Nevertheless,
different approaches could have been taken, in particular for monotonicity,
for which I will put an alternative proof in Appendix A.1. For the proof
of submodularity instead, a proof based on the work from Yildiz et al. [11]
has also been made in Appendix A.2. Such proof it has not been used in
order to develop a self-consistent work. However a part of the proof has been
inspired by theirs, as it will be reminded hereafter. However, notice that the
submodularity result is not an original contribution to the literature, since
Yi et al. recently published in preprint a work with the same result [10].

4.1 Monotonicity of F+( · )

Proposition 4.1.1. Let F+ : 2R → R be the objective function of the opti-
mization problem (2.8), which is a set function. Let A,B be node sets such
that A ⊆ B ⊆ R. Then,

F+(B) ≥ F+(A)

i.e. F+ is monotonic.

37
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Proof. In Chapter 3.2 I showed that the asymptotic opinion of a regular
agent following the DeGroot dynamics in (2.3) – representable as a convex
hull of the strategic agents’ opinion – can be formulated in a probabilistic
framework. This means that – asymptotically – a regular agent i weights
the opinion xs of each strategic node s with a coefficient proportional to the
probability that the random walk X(t) initiated at node i hits the absorbing
state s, with transition probability matrix Q. More formally,

x̄i =
∑
s∈S

(HQ12)isxs

=
∑
s∈S

(∑
k≥0

∑
i0=i,i1...ik−1∈R,ik=s

∏
1≤h≤k

Qih−1,ih

)
is

xs

=
∑
s∈S

(
lim

t→+∞
P(X(t) = s|X(0) = i)

)
xs

= lim
t→+∞

P(X(t) = +|X(0) = i)− lim
t→+∞

P(X(t) = −|X(0) = i)

= pi − (1− pi)
where pi := lim

t→+∞
P(X(t) = +|X(0) = i)

= 2pi − 1 (4.1)

where I denoted by pi the probability that the Markov chain X(t) initiated
in i hits the strategic node + before hitting −.

Now, let us remember from Chapter 3.3 that – when talking of asymptotic
opinions – it is possible to reason in terms of the equivalent electrical net-
work. In such framework, the two strategic nodes are considered as voltage
sources of opposite voltage and we know that two nodes of same voltage can
be glued together. In the same way, a voltage source can also be split into
several identical voltage sources without affecting the circuit. This is what
I am going to do with the strategic node + in order to complete the proof.
Indeed, from the graph G with set A of nodes linked to +, I will consider
the equivalent graph where each node p in A is linked to a different strategic
node +(p) generated from the splitting of +, so as to have each strategic node
+(p) of in-degree 1.

More formally, for each case U = A,B of node sets where A ⊆ B – which
are the set of nodes linked to the strategic + – let us build a corresponding
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graph G(U) = (V(U), E(U),W (U)) where the strategic node + is no more
unique in general, but there are as many type-one strategic nodes +(p) as the
cardinality of U , each one of in-degree one. For clarity, let us rearrange the
nodes of the graph putting the nodes of A first, followed by the remaining
|B \A| nodes of B and, then, the remaining ones. Thus, by writing the node
sets partitions of regular and strategic nodes as functions of the node set
considered we can summarize the two cases in

R(A) = R(B) = R
S(A) = {+(1), . . . ,+(|A|)} ∪ {−}
S(B) = S(A) ∪ {+(|A|+1), . . . ,+(|B|)} ∪ {−}

where R is the set of regular nodes of G, while R(U) and S(U) are the sets of
regular and strategic nodes of G(U) respectively such that V(U) = R(U) ∪ S(U),
where U = A,B.

Let us now build two different graphs from the two cases considered. Such
graphs G̃(U) = (Ṽ(U), Ẽ(U),W̃ (U)) – where U = A,B – will be built by tak-
ing the biggest graph, in this case G(B), and transforming the strategic nodes
linked to the set B \ U in regular ones, thus maintaining the same number of
nodes of G(B). Summarizing, the two new graphs satisfy

G̃(B) :

{
R̃(B) = R(B)

S̃(B) = S(B)

G̃(A) :

{
R̃(A) = R(B) ∪ {+(|A|+1), . . . ,+(|B|)}
S̃(A) = R(B) \ {+(|A|+1), . . . ,+(|B|)} = S(A)

In such way, the number of nodes always stays the same while the discrim-
inant between the two different cases becomes the set of type-one strategic
nodes, unambiguously determined by U = A,B – set of nodes that are linked
to the strategic node + in the original graph.

In order to prove the monotonicity of the objective function, which is the
sum of all the asymptotic opinions, let us remember that each asymptotic
state x̄i is proportional to the probability pi that the associated random walk
started in i ends up to the strategic node +. This holds true also for our
equivalent graphs G(U) – which show the same Markov chain and probability
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value, after some modifications – and for the new graphs G̃(U) – even if with
their differences – where U = A,B.

Consequently, let us denote by XU(t) the random walk with transition
probability matrix Q(U) – normalized version of W (U) –, by pUi the probabil-
ity that such random walk – started in i – is absorbed by one of the strategic
nodes +(p), p ∈ U , and by +(U) := {+(p), p ∈ U} the set of strategic nodes
linked to the node set U , U = A,B. Thus,

pUi := lim
t→+∞

P(XU(t) ∈ +(U)|XU(0) = i) , i ∈ R, U = A,B

On the other hand, let us define by X̃U(t) the random walk with transition
probability matrix Q̃(U) – normalized version of W̃ (U) – and by p̃Ui the prob-
ability that such random walk started in i hits one of the type-one strategic
nodes +(p) ∈ +(U) where p ∈ U , U = A,B, i.e.

p̃Ui := lim
t→+∞

P(X̃U(t) ∈ +(U)|X̃U(0) = i) , i ∈ R,U = A,B

which can be rewritten in terms of hitting times

p̃Ui = P(T+(U) < T−|X̃U(0) = i)

i.e. as the probability of hitting one of the type-one strategic nodes before
hitting −.

At the same time, it is possible to evidence the equality between the value
of pUi and p̃Ui for the regular nodes of G(U). Indeed, while for U = B we have
G̃(B) = G(B), for U = A the difference between G̃(A) and G(A) is simply
the addition of regular nodes of degree one, in place of the type-one strategic
nodes of G(B) that are not linked to the nodes of A but only to the ones
of B \ A. This means that such additional regular nodes – that originate
by passing from G(U) to G̃(U) – are all of degree one, and, thus, are not
affecting the asymptotic opinion of the other nodes. Indeed, by consider-
ing the equivalent electrical network, the nodes of degree one correspond to
short-circuited nodes and do not affect the voltage of the overall network.
Consequently we can state that

˜̄xUi = 2p̃Ui − 1 = 2pUi − 1 = x̄Ui , i ∈ R

where I defined by ˜̄xUi the asymptotic opinion of agent i when the set of nodes
linked to the strategic + is U , that is proportional to p̃Ui in an analogous way
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to what has been found for x̄i – which here specifies the set of nodes linked
to + by the superscript U . This leads to

p̃Ui = pUi , i ∈ R

Then, in order to prove the result, let us write

p̃Bi = P(T+(B) < T−|X̃B(0) = i)

by the partitioning theorem [32]

= P(T+(B) < T− ∩ T+(B) < T+(A) |X̃B(0) = i)+

+ P(T+(B) < T− ∩ T+(B) = T+(A)|X̃B(0) = i)+

+ P(T+(B) < T− ∩ T+(B) > T+(A)|X̃B(0) = i)

where only the probabilities of hitting the strategic nodes linked to B \ A
or the ones linked to A survive

= P(T+(B\A) < T−|X̃B(0) = i) + P(T+(A) < T−|X̃B(0) = i)

where the second term is equal to the probaility of hitting the strategic node

nodes linked to A with the Markov chain X̃A(t)

= P(T+(B\A) < T−|X̃B(0) = i) + P(T+(A) < T−|X̃A(0) = i)

≥ P(T+(A) < T−|X̃A(0) = i)

= p̃Ai

proving that

p̃Bi ≥ p̃Ai

pBi ≥ pAi

2pBi − 1 ≥ 2pAi − 1

x̄Bi ≥ x̄Ai

which, by summing over i ∈ R, leads to

1

N

∑
i∈R

x̄Bi ≥
1

N

∑
i∈R

x̄Ai

F+(B) ≥ F+(A)
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4.2 Submodularity of F+( · )

Proposition 4.2.1. Let F+ : 2R → R be the objective function of the opti-
mization problem (2.8), which is a set function. Let A,B be node sets such
that A ⊆ B ⊆ R and let v ∈ R \ B be a node. Then,

F+(Â)− F+(A) ≥ F+(B̂)− F+(B)

where Û = U ∪ {v} , U = A,B, i.e. F+ is submodular.

Proof. To prove the proposition avoiding redundancies we relate as much as
possible to the previous proof, by underlying the necessary differences when
following analogous steps. However, for completeness, I will not omit any
step, even if the construction of the proof is almost completely analogous to
the previous one.

First of all, let us consider the generic sets A,B and a node v such that
A ⊆ B ⊂ R and v ∈ R \ B. From these, let us build the four cases that I am
going to compare: A, Â = A∪{v},B, B̂ = B ∪{v}. These correspond to the
sets of nodes that are linked to the + in each different case. Since their choice
is arbitrary, proving that F+(Â)−F+(A) ≥ F+(B̂)−F+(B) will end the proof.

In (4.1) I showed that the asymptotic opinion x̄i of each regular agent is
proportional to the probability pi that a random walk X(t) with transition
matrix Q is absorbed by the strategic node +, i.e.

x̄i = 2pi − 1

In the same way as in the previous proof, in Chapter 3.3 I showed that,
instead of asymptotic opinions, it is possible to reason in terms of voltages
in the equivalent electrical network. In such way, it is possible to split the
strategic node + – described as a voltage source – into several identical
sources, without affecting the network.

Then, let us build for each of the four cases U = A, Â,B, B̂ a correspond-
ing equivalent graph G(U) = (V(U), E(U),W (U)) where the strategic node +
is no more unique in general, but there are as many type-one strategic nodes
+(p) as the cardinality of U , each one with degree of exactly one. Let us then
rearrange the nodes in the following order: A, B \ A, v, R \ B̂, S. Thus, by
writing the node sets partitions as function of the case considered, we can
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summarize the four cases in
R(B̂) = R(B) = R(Â) = R(A) = R
S(B̂) = S(B) ∪ {+(|B|+1)} = S(Â) ∪ {+(|A|+1), . . . ,+(|B|)}

= S(A) ∪ {+(|A|+1), . . . ,+(|B|+1)} = {+(1), . . . ,+(|B|+1)}

where R is the set of regular nodes of G, while R(U) and S(U) are the sets of
regular and strategic nodes of G(U) respectively such that V(U) = R(U) ∪ S(U),
where U = A, Â,B, B̂.

Let us now build four different graphs from the cases considered. Such graphs
G̃(U) = (Ṽ(U), Ẽ(U),W̃ (U)) – where U = A, Â,B, B̂ – will be built by taking
the biggest graph, in this case G(B̂), and transforming the strategic nodes
linked to the set B̂ \ U in regular ones, thus maintaining the same number of
nodes of G(B̂). Summarizing, the new graphs satisfy

G̃(B̂) :

{
R̃(B̂) = R(B̂)

S̃(B̂) = S(B̂)

G̃(B) :

{
R̃(B) = R(B) ∪ {+(|B|+1)}
S̃(B) = S(B̂) \ {+(|B|+1)} = S(B)

G̃(Â) :

{
R̃(Â) = R(B) ∪ {+(|A|+1), . . . ,+(|B|)}
S̃(Â) = S(B̂) \ {+(|A|+1), . . . ,+(|B|)} = S(Â)

G̃(A) :

{
R̃(A) = R(B) ∪ {+(|A|+1), . . . ,+(|B|+1)}
S̃(A) = S(B̂) \ {+(|A|+1), . . . ,+(|B|+1)} = S(A)

In such way, the number of nodes always stays the same while the discrim-
inant between the two different cases becomes the set of type-one strategic
nodes, unambiguously determined by U = A, Â,B, B̂ – set of nodes that are
linked to the strategic node + in the original graph.

Now, it is possible to notice how the asymptotic opinion x̄i can be writ-
ten in terms of pi also for the equivalent graphs G(U) – which show the same
Markov chain and probability value, after some modifications – and for the
new graphs G̃(U) where U = A, Â,B, B̂.

Consequently, let us denote by XU(t) the random walk with transition
probability matrix Q(U) – normalized version of W (U) – , by pUi the prob-
ability that such random walk – started in i – is absorbed by one of the
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strategic nodes +(p), p ∈ U , and by +(U) := {+(p), p ∈ U} the set of strategic
nodes linked to the node set U , U = A, Â,B, B̂. Thus,

pUi := lim
t→+∞

P(XU(t) ∈ +(U)|XU(0) = i) , i ∈ R,U = A, Â,B, B̂

On the other hand, let us define by X̃U(t) the random walk with transition
probability matrix Q̃(U) – normalized version of W̃ (U) – and by p̃Ui the prob-
ability that such random walk started in i hits one of the type-one strategic
nodes +(p) where p ∈ U , U = A, Â,B, B̂, i.e.

p̃Ui := lim
t→+∞

P(X̃U(t) ∈ +(U)|X̃U(0) = i) , i ∈ R,U = A, Â,B, B̂

which can be rewritten in terms of hitting times

p̃Ui = P(T+(U) < T−|X̃U(0) = i)

i.e. as the probability of hitting one of the type-one strategic nodes before
hitting −.

At the same time, as it has been done in the previous proof, it is possible
to show that pUi = p̃Ui for each regular node of G(U). Indeed, the difference
between G̃(U) and G(U) is the addition of regular nodes of degree one – cor-
responding to the type-one strategic nodes of G(B) that are linked to the
nodes of B \ U . Nevertheless, since such additional nodes have degree one,
by building the analogous electrical network, they are all short-circuited with
their only linked node, thus thet do not influence the other nodes’ voltage.
Hence,

˜̄xUi = 2p̃Ui − 1 = 2pUi − 1 = x̄Ui , i ∈ R, U = A, Â,B, B̂

where ˜̄xUi is the asymptotic opinion of agent i when the set of nodes linked
to + is U and x̄i specifies the set of nodes linked to + by the superscript U .
Therefore,

p̃Ui = pUi , i ∈ R, U = A, Â,B, B̂

Now, let us prove that p̃Ui – in terms of U – is submodular for each i ∈
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Ṽ \ {−}, as it has been done by Yildiz et al. [11]. In order to do this, I need
to prove the equivalent definition of submodularity, i.e.

p̃Ui submodular ⇐⇒ p̃U1i + p̃U2i ≥ p̃U1∪U2i + p̃U1∩U2i

for each nonempty set U1,U2 ⊆ R.
Since the Markov chain X̃U(t) has a different absorbing set depending on

U , let us base our calculation on the random walk made by the Markov chain
X̃∅(t), i.e. with transition probability matrix Q̃(∅), whose only absorbing
state is the strategic node −, independently from U . In addition, let us
denote by Pi(Tv < Tu) the probability that such random walk iniated at
node i hits node v before hitting u. Thus, by using again the partitioning
theorem [32], we can state that

Pi(T+(U1) < T−) = Pi(T+(U1) < T− ∩ T+(U1) < T+(U2)) + Pi(T+(U1) < T− ∩ T+(U1) = T+(U2))+

+ Pi(T+(U1) < T− ∩ T+(U1) > T+(U2))

Pi(T+(U1) < T−) = Pi(T+(U2) < T− ∩ T+(U1) < T+(U2)) + Pi(T+(U2) < T− ∩ T+(U1) = T+(U2))+

+ Pi(T+(U2) < T− ∩ T+(U1) > T+(U2))

Pi(T+(U1∪U2) < T−) = Pi(T+(U1∪U2) < T− ∩ T+(U1) < T+(U2))+

+ Pi(T+(U1∪U2) < T− ∩ T+(U1) > T+(U2))+

+ Pi(T+(U1∪U2) < T− ∩ T+(U1) = T+(U2))

= Pi(T+(U1) < T− ∩ T+(U1) < T+(U2)) + Pi(T+(U2) < T− ∩ T+(U1) > T+(U2))+

+ Pi(T+(U1∪U2) < T− ∩ T+(U1∩U2) < T+(U1\U2) ∩ T+(U1∩U2) < T+(U2\U1))

= Pi(T+(U1) < T− ∩ T+(U1) < T+(U2)) + Pi(T+(U2) < T− ∩ T+(U1) > T+(U2))+
(4.2)

+ Pi(T+(U1∩U2) < T− ∩ T+(U1∩U2) < T+(U1\U2) ∩ T+(U1∩U2) < T+(U2\U1))
(4.3)

where the two terms (4.2) are the probabilities of hitting +(U1) before hitting
({−} ∪+(U2)) and of hitting +(U2) before hitting ({−} ∪+(U1)), respectively,
while (4.3) is the probability of hitting +(U1∩U2) before hitting ({−}∪+(U1\U2)∪
+(U2\U1)). On the other hand, since T+(U1) = T+(U2) is the set of events where
the hitting times to +(U1) and +(U2) are equal, it is possible to write

Pi(T+(U1∩U2) < T−) ≤ Pi(T+(U1) < T− ∩ T+(U1) = T+(U2))
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Then, it follows that

p̃U1i + p̃U2i = Pi(T+(U1) < T−) + Pi(T+(U2) < T−)

= Pi(T+(U1) < T− ∩ T+(U1) < T+(U2)) + Pi(T+(U1) < T− ∩ T+(U1) = T+(U2))+

+ Pi(T+(U1) < T− ∩ T+(U1) > T+(U2)) + Pi(T+(U2) < T− ∩ T+(U1) < T+(U2))+

+ Pi(T+(U2) < T− ∩ T+(U1) = T+(U2)) + Pi(T+(U2) < T− ∩ T+(U1) > T+(U2))

= Pi(T+(U1∪U2) < T−)+

− Pi(T+(U1∩U2) < T− ∩ T+(U1∩U2) < T+(U1\U2) ∩ T+(U1∩U2) < T+(U2\U1))+

+ Pi(T+(U1) < T− ∩ T+(U1) = T+(U2)) + Pi(T+(U2) < T− ∩ T+(U1) = T+(U2))

= Pi(T+(U1∪U2) < T−)− Pi(T+(U1∩U2) < T− ∩ T+(U1) = T+(U2))

+ Pi(T+(U1∩U2) < T− ∩ T+(U1) = T+(U2)) + Pi(T+(U1∩U2) < T− ∩ T+(U1) = T+(U2))

≥ Pi(T+(U1∪U2) < T−) + Pi(T+(U1∩U2) < T−)

= p̃U1∪U2i + p̃U1∩U2i

which proves the submodularity of p̃Ui , for i ∈ Ṽ \ {−}.

On the other hand, having p̃Ui submodular, it means that it is possible to use
the classical definition of submodularity for the particular sets U = A, Â,B, B̂
considered, i.e.

p̃Âi − p̃Ai ≥ p̃B̂i − p̃Bi , i ∈ Ṽ \ {−}

that since p̃Ui = pUi for each i ∈ R, U = A, Â,B, B̂, it leads to

pÂi − pAi ≥ pB̂i − pBi , i ∈ R

which, by summing over i ∈ R, it proves the submodularity of F+∑
i∈R

pÂi −
∑
i∈R

pAi ≥
∑
i∈R

pB̂i −
∑
i∈R

pBi

1

N

(
2
∑
i∈R

pÂi − 1

)
− 1

N

(
2
∑
i∈R

pAi − 1

)
≥ 1

N

(
2
∑
i∈R

pB̂i − 1

)
− 1

N

(
2
∑
i∈R

pBi − 1

)
F+(Â)− F+(A) ≥ F+(B̂)− F+(B)



Chapter 5

Optimal Targeting Analytical
Results

In this chapter I will show the main results of this thesis work: the analytical
solutions of the OTP and STP. Such results are calculated for specific mean-
ingful graphs, also accounting for the number of nodes that each strategic
agent can target.

In this regard, I will subdivide the work into two categories: single tar-
geting on sparse graphs and multiple targeting on dense graphs, where I
remember I talk of single targeting when k+, k− = 1, and multiple targeting
when k+, k− ≥ 1. In particular, in this chapter I will show the analytical
results that I found for special graphs of both categories: line graph and tree
graph for sparse graphs, and complete graph for dense graph. Then, from the
results on these graphs I will build the main heuristics of Chapter 6, which
can be applied to more general sparse and dense graphs, such as Tree-like
Graphs and Erdos-Renyi Graphs, respectively.

5.1 Line Graph Single Targeting

One of the simplest settings from which to start when studying the optimal
targeting problem (2.8) is an STP over a line graph – i.e. where the links
available to agents + and − are k+ = 1 and k− = 1 respectively, while the
graph made up by regular nodes is a Line Graph. Moreover, based on the
position of node −, different complications arise. In this regard, let us denote
by v+ and v− the nodes of the regular graph that are linked to the strategic

47
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nodes + and − respectively. In such way, the single targeting optimization
problem becomes a problem in terms of such nodes, where v− is given and
F+ depends on node v+, as outlined in (2.9). Then, let us study the problem
from the simplest case to the most general one.

v− = `)

Let us see the case where the strategic node − linked to a generic node `,
and let us split the problem in the two symmetric cases: k ≥ ` and k < `.

• k ≥ `)

Starting with the former, the graph representation becomes

1 . . . `

−

. . . k

+

. . . N

Figure 5.1: Line Graph with v− = `, v+ = k, k ≥ l

Notice that the directedeness of the edges among strategic and regular
nodes is draw to emphasize the strategic nature of − and +. Then, by
means of the electrical analogy, we can consider the strategic nodes −
and + as voltage sources of value −1 and +1 respectively, while the
nodes in the left and right tails of the line graph will be short-circuited
with the nodes ` and k, respectively, i.e.


V (−) = −1

V (+) = +1

V (1) = V (2) = · · · = V (`)

V (k) = V (k + 1) = · · · = V (N)

represented by the analogous circuit
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− ` . . . k +

...

1

...

N

Figure 5.2: Circuit analogous line graph with v− = `, v+ = k, k ≥ l

Since G is unweighted, i.e. Cij = 1 for each i, j ∈ V , it is possible
to compute the voltage in each node i = `, ` + 1 . . . , k as the voltage
drop in the voltage divider (as represented below) where the effective
resistances are the summation of the resistances on the left and on the
right of node i:

− i +

Reff
−i Reff

i+

where {
Reff
−i = i− `+ 1

Reff
i+ = k − i+ 1

which leads to

V (i)− V (−) = (V (+)− V (−))
i− `+ 1

i− `+ 1 + k − i+ 1

V (i) = 2
i− `+ 1

k − `+ 2
− 1

for each i = `, `+ 1 . . . k, that is monotonically increasing with i, max-
imal in k and for k = 1 it implies V (k) = V (1) = 0 =⇒ V (i) =
0 ∀i = 1 . . . k.
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So, with a slight abuse of notation, it is possible to write the objective
function as

F+(k) = (`− 1)V (`) +
k∑

i=`

V (i) + (N − k)V (k)

= `V (`) +
k∑

i=`+1

V (`) + (N − k)V (k)

= `

(
2
`− `+ 1

k − `+ 2
− 1

)
+

(
k∑

i=1

V (i)−
∑̀
i=1

V (i)

)
+

+ (N − k)

(
2
k − `+ 1

k − `+ 2
− 1

)
=

1

k − `+ 2

[
−k2 + (N + 1)k − (N + 1)`+ `2

]
which can be drawn for different values of ` as below

5 10 15 20 25 30 35 40 45 50

-40

-30

-20

-10

0

10

20

30

Figure 5.3: F+(k) of line graph with v− = `, k ≥ l, N = 50

By relaxing the objective function in the continuous domain, it is pos-
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sible to compute the maximum of F+(k) by imposing ∂F+(k)
∂k

= 0, i.e.

∂F+(k)

∂k
=

∂

∂k

(
1

k − `+ 2

[
−k2 + (N + 1)k − (N + 1)`+ `2

])
= − 1

(k − `+ 2)2

[
−k2 + (N − 1)k − (N + 1)`+ `2

]
+

+
1

k − `+ 2

[
−2k +N + 1

]
=

1

(k − `+ 2)2

[
−k2 − 2(2− `)k + (2N + 2− `2)

]
so that, by studying the expression inside the square brackets, the roots
can be written as

k1,2 =
(2− `)±

√
(2− `)2 + (2N + 2− `2)

−1

= (`− 2)∓
√

2N + 6− 4`

In order to find a maximum inside the domain, I need k1,2 to be greater
than or equal to `, leading to the existence of at most one maximum
when the following inequality is satisfied

`− 2 +
√

2N + 6− 4` ≥ `

2N + 6− 4` ≥ 4

` ≤ N + 1

2
(5.1)

where condition (5.1) means that when − is linked to a node ` in the
first half of the Line Graph, there exists a maximum for F+ for k ≥ l.
Otherwise, from what we know until here, the function is decreasing
with k and the only option such that k ≥ ` would be k = `, leading
to F+ = 0. However, let us also consider the symmetric case for which
k < ` and let us see if there are other options for the case ` > N+1

2

• k < `)

Let us repeat all the procedure for this symmetric case. The line graph
can be represented as



52 CHAPTER 5. OPTIMAL TARGETING ANALYTICAL RESULTS

1 . . . k

+

. . . `

−

. . . N

Figure 5.4: Line Graph with v− = `, v+ = k, k < l

that can again be represented by the analogous circuit

+ k . . . ` −

...

N

...

1

Figure 5.5: Circuit analogous line graph with v− = `, v+ = k, k < l

for which 
V (−) = −1

V (+) = +1

V (1) = V (2) = · · · = V (k)

V (`) = V (`+ 1) = · · · = V (N)

Then, the voltage divider for each node i = `, `+ 1 . . . , k, i.e.

− i +

Reff
−i Reff

i+
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where, now,

{
Reff
−i = `− i+ 1

Reff
i+ = i− k + 1

it leads to

V (i)− V (−) = (V (+)− V (−))
`− i+ 1

i− `+ 1 + k − i+ 1

V (i) = 2
`− i+ 1

`− k + 2
− 1

for each i = `, ` + 1 . . . k. Notice how in this case V (i) is decreasing
with i – since a smaller number means being closer to +.
So, with the same abuse of notation as before it is possible to write the
objective function in terms of k, i.e.

F+(k) = kV (k) +
∑̀
i=k+1

V (i) + (N − `)V (k)

=
1

`− k + 2

[
−k2 + (N + 1)k − (N + 1)`+ `2

]

which is symmetrical to the previous expression of F+. Indeed, we
can see that the numerator is the same, whereas in the denominator k
and ` are inverted. The similarity can be easily grasped by comparing
Figure 5.6 with Figure 5.3, for which I maintained the same colors for
corresponding ` values.
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5 10 15 20 25 30 35 40 45 50

-40

-30

-20

-10

0

10

20

30

Figure 5.6: F+(k) of line graph with v− = `, k < l, N = 50

Again, by relaxing the objective function in the continuous domain, it
is possible to find the maximum of F+(k), by imposing ∂F+(k)

∂k
= 0, i.e.

∂F+(k)

∂k
=

∂

∂k

(
1

`− k + 2

[
−k2 + (N + 1)k − (N + 1)`+ `2

])
=

1

(`− k + 2)2

[
k2 − 2(`+ 2)k + (`2 + 2N + 2)

]
so that, by studying the expression inside the square brackets, the roots
of the polynomial are

k1,2 = (`+ 2)±
√

4`+ 2− 2N

which are real for k smaller than `, leading to the existence of at most
one maximum when the following inequality is satisfied

`+ 2−
√

4`+ 2− 2N < `

` >
N + 1

2
(5.2)

in perfect analogy with (5.1).
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Then, by combining both conditions (5.1) and (5.2) we can tell that for the
line graph it always exist an optimum value of v+ = k, that is placed on the
left or on the right of v− = ` depending on the value of `. This is quite trivial
since, if the target of − is not in the middle, by targeting an agent on the
opposite side it is possible to influence a larger amount of individuals. How-
ever, the counterintuitive result is that in general it is not optimal to target
an agent next to v−, while it is more effective to target an agent slightly on
the opposite side, with some nodes of distance. Such notion is probably due
to the impact effect that also agent − would have, being close to v+ too,
so that in order to be more impactful on other agents, it is better to stay
with some distance from the opponent. Clearly, when the adversary targets
optimally, i.e. in the middle, the only option for + is to cancel out its effect
by targeting the same note, kind of the same situation that happens in the
famous game theoretical Hotelling model [33].

Concluding, let us represent the comprehensive result below, for different
values of `:

10 20 30 40 50

-40

-30

-20

-10

0

10

20

30

Figure 5.7: F+(k) of line graph with v− = `, N = 50
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5.2 Tree Graph Single Targeting

For the line graph we have seen an analytical solution for the problem (2.8),
determining exactly the optimal position of v+ in order to maximize the in-
fluence of +. In an analogous way, we could think of extending the reasoning
behind the previous section to a generic tree. Indeed, given the position of
v− for each possible choice of v+ it exists just one path connecting v− to v+,
thus leading to a similar situation as before – by considering the correspond-
ing electrical network it is easy to see that each node non-belonging to such
path is short-circuited with one belonging to it, i.e. the only voltage drops
happen along such line.

On the other hand, when talking of a generic tree, the situation gets more
complicated, since the computation of V (i) is not straightforward as before.
Indeed, while for the line graph each intermediate node (between ` and k)
caused an identical voltage drop, for the tree graph each node belonging to
the path among v− and v+ contributes to such drop proportionally to the
number of nodes of its subtree. This is better explained in Figure 5.8.

−

v− . . . v+

+

... ...

...
...

Figure 5.8: Tree Graph with v− = `, v+ = k

Because of this complication, in order to compute F+ for a generic tree graph,
it becomes necessary to have more information about the tree, making it un-
feasible in general to have an analytical result as we had before.

In order to be more formal, let us introduce a few notations to describe
the subtrees of a tree graph, i.e. the subsets of nodes of the original tree
which form themselves a tree.

Let T = (I, E) be an unweighted tree graph. Then, given a pair of distinct
nodes i, j ∈ I, let denote by I<ij the subtree rooted at node i that does not
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contain node j, along with the path from i to j (apart from i), i.e.

I<ij = {h ∈ I|path from h to j goes through i}

Such definition allows to describe all the needed subtrees in a formal way.
Let us also notice that the intersection of two subtrees is also a subtree.

In addition, when studying the voltage drop happening on the path be-
tween v− and v+, a notion of interest is the cardinality of the subtrees gen-
erated under each node of such path, i.e. the subset of nodes short-circuited
with each other node on the corresponding electrical network.
More formally, let denote by ci the cardinality of the subtree rooted at node
i ∈ {path from v− to v+} made up by the nodes j ∈ I<iv− ∩ I<iv+ , i.e.

ci = |I<iv− ∩ I<iv+ | , i ∈ {path from v− to v+}

Then, it is possible to write an expression for the objective function F+:

F+(k) = |I<v−v+ |V (v−) +
∑

i∈{path from
v− to v+}

ciV (i) + |I<v+v−|V (v+)

which, however, cannot be used for solving the targeting problem without
knowing the structure of the studied tree; apparently not allowing for better
approaches than a brute force maximum search – i.e. by computing the ob-
jective function F+(v+) for each possible node v+ of the graph.

Despite this, the similarity among the line graph representation and the
path among the two strategic nodes of a tree graph is strong, and suggests
that the results on the former could be in some way transferred to the more
general representation.

In particular, I will show in the following two important properties of
the tree graph representation, that will make possible to solve the targeting
problem in a smart way, by calculating the objective function just on a subset
of the nodes – improving what would have been the brute force approach.

Branch Proposition

It has been shown in Chapter 5.1 how, for the line graph with a node ` on
the first half of the line linked to −, i.e. v− = ` < N

2
, by moving v+ = k
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from node ` towards the line’s tail, the continuous version of the objective
function F+(k) exhibits a concave behavior. In particular, this is true also
for the case where ` = 1, whose graph is represented below

−

1 2 . . . k

+

. . . N

Figure 5.9: Line graph with v− = 1, v+ = k

In order to make use of this result for a generic tree, let us notice the similarity
between the line graph and a branch of a tree. Indeed, when studying trees,
it is always possible to consider each path from the root to one of the leafs –
i.e. one of the nodes having degree one – as pseudo-line graphs where, now,
each line node i has, in turn, another subtree generating from it of cardinality
ci. Notice that cN is always equal to 1 by construction, while the line graph
case can be seen as a special case of this where ci = 1 ∀i = 1, . . . , N .

−

1 2 . . . k

+

. . . N-1 N

...

...

... ...

Figure 5.10: Generic branch of tree graph with v− = 1, v+ = k

By representing a generic tree in such form – that I will denote as pseudo-
line branch representation of a tree – intuition suggests that, by considering
v− as the generic tree root as shown in Figure 5.10, each of its branches
could behave as the line graph case of Figure 5.9, for some properties of F+.
Indeed, the most interesting feature of the objective function is about the
concave behavior of its continuous version, that leads to a unique maximum
or, at most, to two and adjacent ones in its discrete counterpart. Clearly,
because of the loss of the subtrees’ cardinality homogeneity in the extension,
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the objective function concave behavior would not hold anymore in general.
However, the monotonicity property of such function prior to and following
the maximum could intuitively hold.

This behavior, if transferred, would allow for a relevant performance im-
provement in the maximum search. Indeed, if this property successfully
transfers to the general tree case, it could be used to just visit each branch
until the objective function value starts decreasing on it, since the monotonic-
ity of F+ over the following tails would ensure that this procedure would not
rule out any optimal solution.

Proposition 5.2.1. Let us consider the single targeting problem (2.9) for an
undirected tree graph T = (I, E). Let the node linked to the strategic node −,
v−, be the root of the tree, and consider a tree branch as a path going from the
root to one of the leafs. Then, the objective function F+( · ), on such branch
is monotone prior to and following the maximum.

Proof. Let us remember that in the line graph case with v− = 1, represented
in Figure 5.9, it is possible to write down the voltage equation as

V (i) =
2i

k + 1
− 1 ∀i = 1, . . . , k

As it has been shown in Chapter 5.2 for the Tree optimal placement, this
property still holds for its tree extension, since the subtrees eventually gener-
ating from each line node are short-circuited with their root, then assuming
its voltage, i.e.

V (j) = V (i) ∀j ∈ I<i1 ∩ I<ik, i ∈ {1, . . . , k}

It is then possible to write the objective function F+ in terms of k ∈ {1, . . . , N},
that is the same expression computed for the tree graph with ` = 1.
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F+(k) = |I<1k|V (1) +
k−1∑
i=2

|I<i1 ∩ I<ik|V (i) + |I<k1|V (k)

= |I<1N |V (1) +
k−1∑
i=2

|I<i1 ∩ I<iN |V (i) + |I<k1|V (k)

where I<ik = I<iN ∀k : i < k < N

=
k−1∑
i=1

ciV (1) + V (k)
N∑
j=k

cj

where ci = |I<i1 ∩ I<iN | and I<1N = I<11 ∩ I<1N

=
k−1∑
i=1

ci

(
2i

k + 1
− 1

)
+

(
2k

k + 1
− 1

) N∑
j=k

cj

=
k∑

i=1

ci

(
2i

k + 1
− 1

)
+

(
2k

k + 1
− 1

) N∑
j=k+1

cj

while

F+(k + 1) =
k∑

i=1

ci

(
2i

k + 2
− 1

)
+

(
2k + 2

k + 2
− 1

) N∑
j=k+1

cj

so that

F+(k + 1)− F+(k) =
k∑

i=1

ci

(
2i

k + 2
− 2i

k + 1

)
+

(
2k + 2

k + 2
− 2k

k + 1

) N∑
j=k+1

cj

=
k∑

i=1

ci

(
− 2i

(k + 1)(k + 2)

)
+

2

(k + 1)(k + 2)

N∑
j=k+1

cj

=
2

(k + 1)(k + 2)

(
N∑

j=k+1

cj −
k∑

i=1

ici

)
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Then, the proof reduces to the sign study of

N∑
j=k+1

cj −
k∑

i=1

ici

Yet, notice how this expression is always made up of a positive side (min-
uend) and a negative side (subtrahend) and, by increasing k of 1 unit, i.e.
moving towards the line tail, one term moves from the positive side to the
negative one, multiplied by k + 1. Then, moving towards the tail always
means decreasing the positive side and increasing the negative one, leading
the increment F+(k+1)−F+(k) to always decrease, as k grows. Such term, at
some point, will necessarily reach a negative value, because of the multiplica-
tion factor, and along with this change of sign, if happening, such difference
will continuously decrease heading towards the tail. This proves the result
of having a monotone behavior prior to and following the maximum for each
branch starting from v− and, with it, the proposition.

Offspring Proposition

Let us now focus on another intuition, considering the same pseudo-line
branch representation of a generic tree. Indeed, by imagining to visit the
tree nodes starting from the root node v− = 1, and heading away from it,
at each step k the strategic node +, currently linked to node k, could move
to one of its children, looking for an increasing value of F+( · ). However, if
we think about two competing possible choices m and n, by moving to m, +
would influence more the m’s subtree, while she is losing influence over n’s
one. In the same way, choosing to move to n would mean losing influence
over m’s leg. Consequently, if some choice is optimal the other does not seem
plausible to be either, whereas, if they are both equally important, staying
on the parent should be a better choice. With such an intuition in mind, this
would mean that, for each node k over a branch, at most one of its children
can increase the objective function value, while the rest of them cannot – so
that it would be useless to compare the rest of them, if an improving node
has already been found. This, if true, would mean to improve once more the
speed of the maximum search algorithm. This is what the proposition below
tells.
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Proposition 5.2.2. Let us consider the single targeting problem (2.9) for
an undirected tree graph T = (I, E). Let the node linked to the strategic node
−, v− ∈ I, be the root node, and let us consider a path from node v− to a
generic node k ∈ I. Let O(k) be the offspring of k, denoted as the set of
nodes linked to k belonging to the subtree I<kv−. If exists m ∈ O(k) such
that F (m) > F (k), then F (n) < F (k) for each n ∈ O(k) \ {m}.

Proof. Let us represent T in its pseudo-line branch representation, and let
us denote the path from the root node v− to k, as the length-k path shown
in Figure 5.11. Let us assume that at least one node m in k’s offspring O(k)
is such that F (m) > F (k), where |O(k)| ≥ 2, otherwise the proof would be
trivial, and denote with n a generic node in such offspring different from m.

k

m

n

. . .21−

...

............

Figure 5.11: Generic path from 1 to k on a tree graph with v− = 1

To be rigorous with previous notation, we should write the cardinality ci of
the subtree generating from each line node i with respect to the v+ con-
sidered. Indeed, by stopping the line in k,m, n we are looking at different

c
(v+)
k , c

(v+)
m , c

(v+)
n in terms of v+, causing a very heavy notation, such as the

relationship c
(k)
k = c

(m)
k +c

(m)
m = c

(n)
k +c

(n)
n . Consequently, in order to simplify

the notation, let us use the following redefinition:
c

(m)
m = |I<m1| := cm

c
(n)
n = |I<n1| := cn

c
(k)
k − c

(m)
m − c(n)

n = |I<k1 ∩ I<km ∩ I<kn| := M

Let us write the objective function F+ for the three cases studied, along with
their electrical analogy representation:

• v+ = k
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− 1 2 . . . k +

F+(k) =
k−1∑
i=1

ciV
(k)
i (i) + c

(k)
k V

(k)
k (k)

=
k−1∑
i=1

ci

(
2i

k + 1
− 1

)
+ (M + cm + cn)

(
2k

k + 2
− 1

)

• v+ = m

− 1 2 . . . k m +

F+(m) =
k−1∑
i=1

ciV
(i)
i (i) + c

(m)
k V

(m)
k (k) + c(m)

m V (m)
m (m)

=
k−1∑
i=1

ci

(
2i

k + 2
− 1

)
+ (M + cn)

(
2k

k + 2
− 1

)
+ cm

(
2k + 2

k + 2
− 1

)

• v+ = n

− 1 2 . . . k n +

F+(n) =
k−1∑
i=1

ciV
(i)
i (i) + c

(n)
k V

(n)
k (k) + c(n)

n V (n)
n (n)

=
k−1∑
i=1

ci

(
2i

k + 2
− 1

)
+ (M + cm)

(
2k

k + 2
− 1

)
+ cn

(
2k + 2

k + 2
− 1

)
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So that

F+(m)− F+(k) =
k−1∑
i=1

ci

(
2i

k + 2
− 2i

k + 1

)
+ (M + cn)

(
2k

k + 2
− 2k

k + 1

)
+

+ cm

(
2k + 2

k + 2
− 2k

k + 1

)
=

2

(k + 1)(k + 2)

[
−

k−1∑
i=1

ici − k(M + cn) + cm

]
=

2

(k + 1)(k + 2)
[−f − kcn + cm]

where f :=
k−1∑
i=1

ici + kM > 0

while, analogously

F+(n)− F+(k) =
2

(k + 1)(k + 2)
[−f − kcn + cm]

By hypothesis, we know

F+(m)− F+(k) > 0

2

(k + 1)(k + 2)
[−f − kcn + cm] > 0

cm > kcn + f

and we want to prove that

F+(n)− F+(k) < 0

2

(k + 1)(k + 2)
[−f − kcm + cn] < 0

cm >
1

k
cn −

f

k
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but

cm > kcn + f

since k ≥ 1

≥ 1

k
cn +

f

k
since cn, f > 0

>
1

k
cn −

f

k

proving the proposition.

Tree Graph 1-edge Optimal Targeting Algorithm

Concluding, the two propositions presented above can be summarized like
this: when studying the single targeting problem (2.9) for a generic tree, by
considering v− as the root node, and moving v+ from v− to one node in its
offspring, at most one of them will make F+ increase. Then, this is true also
for the offspring of such node, and so on until no improving son is found.This
holds true because F+ increases at most on one of its sons, and because it is
monotonically increasing until the maximum is found, and then decreasing
on the rest of the branch. This notion has been exploited in the algorithm
below to solve the STP.

Theorem 5.2.3. Given a generic tree graph, the Algorithm (1) solves the
single targeting problem (2.9).

Proof. The proof simply comes as a result of both Proposition 5.2.1 and
5.2.2, since the former tells that F+( · ) is monotone prior to and following
the maximum of each branch, while the latter tells that there is at most one
initial node from which a monotonically increasing branch can start.

The power of this algorithm is the fact that, in order to solve STP, instead
of applying the objective function onto each node of the graph to find the
maximum, it is possible to reduce the number of computations to a smaller
subset of nodes. In this way, it is possible to reduce enormously the compu-
tational expensiveness of the problem.
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Algorithm 1 Tree Graph Single Targeting Algorithm

Require: T = (I, E) tree graph, node v−

Initialization:
Root node r = v−

Number of visited nodes s = 0
Evaluate F+(r)
Flag f = 0

while f = 0 do
f = 1
for ` ∈ O(r) do
s = s+ 1
Evaluate F+(`)
if F+(r) < F+(`) then
r = `, F+(r) = F+(`), f = 0
break for

end if
end for

end while
return v+ = r, F+(r), s
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Numerical Experiment 1. As a first experiment, let us consider a tree
obtained starting from a root node and generating two nodes from each other
node, until reaching the desired number of nodes N , for N = 11, 101, 1001.
For all cases, by linking − to the last generated leaf and solving the STP,
we find that the optimal choice for the strategic agent + is not the root, but
a node in the first or second generation, in the same branch of −. Let us
show the result for the tree with N = 101, in Figure 5.12. There, each node
is colored in terms of its asymptotic opinion, as reported in the color-bar on
the right, while the strategic nodes are marked by squares..

Figure 5.12: Asymptotic opinion of agents in the tree graph, when solving STP,
with v− = 101, N = 101

We can easily see how, by solving STP, the agent + made all the agents
in the other side of the tree, with respect to −, contribute positively. The
optimal choice consists then in making a trade-off between having more agents
contributing with a positive net contribution – by moving towards the opposite
agent – and increasing the contribution of each agent – by moving in the
opposite direction.
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Now, in order to test the power of Algorithm 1, we apply it to random
generated trees. In particular, I will make this simulations in order to test
the number of steps required by the algorithm to find the optimum. This
is done for a certain number of simulations, for four different kind of trees,
each with increasing density, and for increasing sizes of the trees.

Numerical Experiment 2. Let us generate a Branching Process by starting
from a root node and generating its offspring according to a truncated Poisson
distribution of parameter λ and with probability of having no sons equal to
0. Then, by treating each node of the previous generation offspring as the
roots of their own subtree, the process is repeated until the number of nodes
becomes the desired N .

Now, let us generate 50 trees for each λ ∈ {3, 6, 9, 12}, and N = 100, 200, . . . , 800:
this leads to the generation of 1600 trees. For each of these trees we solve
the STP and we save the number of steps that each algorithm needs to find
the optimum. We show the average percentage of visited nodes over the 50
simulations as function of number of nodes N , for different λ, in Figure 5.13.

100 200 300 400 500 600 700 800

0%

2%

4%

6%

8%

10%

12%

14%

16%

Figure 5.13: Average percentage of visited nodes averaged over 50 simulations for
different offspring distribution generated as truncated Poisson(λ)
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From the figure above it becomes evident how Algorithm 1 reduces the
computational expensiveness of the STP. Moreover, not only the percentage
of visited nodes is much smaller than the number of nodes (assuming values
in the range [11%, 15%] with N=100), but also that as N increases (which
means when complexity reduction is most needed), such percentage is decreas-
ing, reaching values in the range [2%, 4%], allowing for a reduction of time
expensiveness of two orders of magnitude.

In Chapter 6.2 I will discuss how this notion can also be extended to more
general cases, such as locally tree-like graphs or more in general sparse graphs.
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5.3 Complete Graph Multiple Targeting

One of the most powerful results of this work is the analytical solution of
the multiple targeting problem (2.8) for the complete graph. Such result
is immediate, whichever k− and k+ there are. But, more importantly, being
valid for complete graphs, also allows for similar considerations on relaxations
of the complete graph case – as the Erdos-Renyi graph could be, or any other
dense graph. Let us then analyze the multiple targeting problem (2.8) for
the complete graph.

Definitions and Objective Function

In order to compute the objective function for the complete graph, let us
exploit its anonymity property – the fact that each node shares the neigh-
borhood with all the others. When the k− + k+ + k0

+ edges originating from
the strategic nodes are placed, we can simply distinguish among four kinds
of nodes, in terms of possible strategic nodes linked: the ones linked to +
but not to −, the ones linked to − but not to +, the ones linked to both,
and the ones linked to none of them. In particular, let us split these N nodes
into

• p nodes linked to + but not to −

• q nodes linked to − but not to +

• r nodes linked to both + and −

• N−p−q−r nodes linked to none of them

where k++k0
+ = p+r, k− = q+r. In addition, let us indicate by vp,vq,vr and

v0 a generic node of each category, respectively, as shown in the example of
Figure 5.14.



5.3. COMPLETE GRAPH MULTIPLE TARGETING 71

v0

vp

vp

v0

vr

vr
v0

v0

v0

vq

− +

Figure 5.14: Complete graph with N = 10, p = 2, q = 1, and r = 2

This subdivision turns out to be extremely useful when describing the
asymptotic opinion of agents. Indeed, asymptotically, each agent’s opinion
can be described just by the geometry of the graph, without considering
the agent’s initial opinion. This means that within a type each individual
is indistinguishable, making the description of the asymptotic opinion easy:
the asymptotic opinion state vector corresponds to the fixed point satisfying
the system of four equations below.

x̄vp = p−1
N
x̄vp + q

N
x̄vq + r

N
x̄vr + N−p−q−r

N
x̄v0 + 1

N

x̄vq = p
N
x̄vp + q−1

N
x̄vq + r

N
x̄vr + N−p−q−r

N
x̄v0− 1

N

x̄vr = p
N+1

x̄vp + q
N+1

x̄vq + r−1
N+1

x̄vr + N−p−q−r
N+1

x̄v0 + 1
N+1
− 1

N+1

x̄vs = p
N−1

x̄vp + q
N−1

x̄vq + r
N−1

x̄vr + N−p−q−r−1
N−1

x̄v0

leading to

F̃+(p, q, r) = px̄vp + qx̄vq + rx̄vr + (N − p− q − r)x̄v0

=
N(N + 2)(p− q)

(N + 2)(p+ q) + 2(N + 1)r

where F̃+(p, q, r) = F+(A) is the objective function of the OTP (2.8) such
that k+ = |A| = p + r, k− = q + r, i.e. it is the objective function rewritten
in terms of p, q, r.
Notice here that F̃+ is symmetric with respect to p = q, which gives 0 value,
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as expected. Moreover, let us notice that the more connections there are
– greater p, q, r – the smaller F̃+ would be, under the same p − q. This
means that, when there are a lot of links coming from the strategic nodes, an
increment of one edge to p would lead to a smaller variation of F̃+ with respect
to a less connected situation: the basic intuition behind submodularity. In
particular, it is possible to prove the submodularity of the objective function
for the complete graph by simply comparing different configurations of F̃+,
as reported in Appendix B.1.

Optimal Targeting

Let us now present the analytical solution of the OTP on complete graphs,
and let us prove the result by making use of the notations above presented.

Theorem 5.3.1 (OTP on complete graph). Let p, q, r be the number of
regular nodes initially linked to strategic agent + but not to −, to − but not
to +, and to both, respectively. Then, the optimal objective function F ?

+ of
the OTP (2.8) is given by

F ?
+ := max

A⊆R:|A|≤k+
F+(A)

where

• if k+ < q − p, then

F ?
+ = F̃+(p+ k+, q, r)

• if k+ = q − p, then

F ?
+ = F̃+(p+m, q − (k+ −m), r0 + (k+ −m))

for any m such that max{0, k+− q} ≤ m ≤ min{k+− 1, N − p− q− r}

• if k+ > q − p, then

F ?
+ = F̃+(p+ max{0, k+ − q}, q −min{k+, q}, r + min{k+, q})

solving the OTP for the complete graph.
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Proof. In order to compute the solution of the OTP for the complete graph,
we need to fully understand the setting here considered: each of the N regular
nodes is linked to all the others; the k− nodes linked to − and the k0

+ nodes
initially linked to + are given. Then, we can split these nodes as we previously
did, where now k+ = 0: i.e. k− = q+r, k0

+ = p+r.
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v0

vq

vr
v0

v0

v0

vq

− +

Figure 5.15: Complete graph with N = 10, p = 1, q = 2, and r = 1

This means that before + placing its available k+ edges, the objective func-
tion can be written as

F̃+(p, q, r) =
N (N + 2) (p− q)

(N + 2) (p+ q) + 2 (N + 1) r

Starting from this, we are interested in the computation of the optimal place-
ment of these k+ edges available. In this context, agent + has simply two
options: the targeting of nodes not linked to −, or the targeting of nodes
already linked to − – the former causing the increase of p, the latter caus-
ing both the increase of r, and the decrease of q. It is then convenient to
calculate F̃+ in terms of the number of nodes that agent + decides to place
to nodes not linked to −, that I will denote as m. For simplicity, let us also
rewrite k+ as z, so that m is the number of nodes not linked to − targeted
by +, whereas z−m is the number of nodes already linked to − targeted by
+.
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Figure 5.16: Complete graph with N=10, z=3, m=2, p+m=3, q−(z−m)=1,
and r+(z−m) = 2

In addition, let us notice that agent + can target at most q nodes already
linked to −, so that the maximum z−m value is q. This means that if q < z,
the minimum number of nodes not linked to − that + can target is z − q.
On the other hand, agent + cannot target more than N−p−q−r nodes not
linked to −. Then, for m such that max{0, z−q} ≤ m ≤ min{z,N−p−q−r},

F+(p+m, q − (z −m), r + (z −m)) =

=
N(N + 2)(p+m− q + (z −m))

(N + 2)(p+m+ q − (z −m))) + 2(N + 1)(r + (z −m))

=
N(N + 2)(p+ z − q)

Dm

where Dm = (N + 2)(p+m+ q − (z −m))) + 2(N + 1)(r+ (z −m)). Then,
for m such that max{0, z − q} ≤ m ≤ min{z−1, N−p−q−r}, if + changes
one of the targeted nodes: from one already linked to − to one not linked to
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−, the objective function becomes

F̃+(p+ (m+ 1), q − (z − (m+ 1)), r + (z − (m+ 1))) =

=
N(N + 2)(p+ (m+ 1)− q + (z − (m+ 1)))

(N + 2)(p+ (m+ 1) + q − (z − (m+ 1))) + 2(N + 1)(r + (z − (m+ 1)))

=
N(N + 2)(p+ z − q)

(N + 2)(p+m+ q − (z −m)) + 2(N + 2) + 2(N + 1)(r + (z −m)))− 2(N + 1)

=
N(N + 2)(p+ z − q)

(N + 2)(p+m+ q − (z −m)) + 2(N + 1)(r + (z −m))) + 2

=
N(N + 2)(p+ z − q)

Dm + 2

for which we can easily see how the numerator is the same for both expres-
sions, while the denominator is larger for the latter, so that

F̃+(p+(m+1), q−(z−(m+1)), r+(z−(m+1))) > F̃+(p+m, q−(z−m), r+(z−m)) ⇐⇒ p+z < q

F̃+(p+(m+1), q−(z−(m+1)), r+(z−(m+1))) = F̃+(p+m, q−(z−m), r+(z−m)) ⇐⇒ p+z = q

F̃+(p+(m+1), q−(z−(m+1)), r+(z−(m+1))) < F̃+(p+m, q−(z−m), r+(z−m)) ⇐⇒ p+z > q

for each m such that max{0, z − q} ≤ m ≤ min{z−1, N−p−q−r}.
This means that the objective function F̃+ is increasing or decreasing

with m, depending on the inequality p + z < q. Hence the maximum value
of F̃+ will be one of the two extreme cases, i.e. where m = z − 1 or m =
max{0, q − z}, depending on the values of p, q, z, proving the theorem.

Let us present graphically the interpretation of these results, from the +
agent perspective:

• p + k+ < q : if the sum of links available and placed, not targeted by
the opponent, does not surpass the number of nodes hit by − but not
by +, the optimal strategy is to use all the available budget to target
the nodes not already linked to −; leading to

F̃+(p+k+, q, r)

This means that when the adversary has a bigger budget, the optimal
tactic is to target nodes different from the opponent.
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Figure 5.17: Complete graph with N = 10, k+ = 2, m= 2, and before targeting
p=1, q=5, r=1

• p + k+ = q : if the sum of links available and placed, not targeted by
the opponent, is equal to the number of nodes hit by − but not by +,
each strategy is optimal; leading, for each m such that max{0, k+−q} ≤
m ≤ min{k+−1, N−p−q−r}, to

F̃+(p+m, q−(k+−m), r+(k+−m))
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Figure 5.18: Complete graph with N = 10, z = 3, m = 2, and before targeting
p=1, q=4, r=1

• p + k+ > q : if the sum of links available and placed, not targeted by
the opponent, surpasses the number of nodes hit by − but not by +,
the optimal strategy is to use a portion of the budget to target all the
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nodes linked to −, and the extra budget to influence the rest; leading
to

F̃+(p+max{0, k+−q}, q−min{k+, q}, r+min{k+, q})

This means that when the budget of the adversary is lower, the optimal
tactic is to target all the opponent’s nodes and next to target the rest.
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Figure 5.19: Complete graph with N = 10, k+ = 4, m= 1, and before targeting
p=1, q=3, r=1

In Chapter ?? I will show how these results can be exploited to build powerful
heuristics for dense graphs, by treating such graphs as a relaxation of the
complete graph model.
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Chapter 6

Optimal Targeting Heuristics

In the previous chapter we have seen how the optimal targeting problem can
be tackled for the cases of tree graphs and complete graphs. However, in
order to get the optimum for more general cases, the only option is to use a
brute-force approach – i.e. computing the objective function for every subset
of nodes agent + could link to, given the budget k+. This means comput-
ing F+ for each possible combination of nodes agent + could be connected
to, that consists in solving the linear system (I − Q11)x̄R = Q12xS , where
the unknown is x̄R, for every possible combination. This leads the problem
to a complexity of O(N3+k+), that for large graphs becomes easily unfeasible.

Since the OTP is too expensive to be optimally solved, in this section I
will show, depending on the underlying graph, how it is possible to find some
heuristics giving the suboptimum of the problem, i.e. an approximation of
the optimal solution that gives a result that is close to the real optimum. I
then discuss the complexity and the assessments that can be made in order
to get the result in a feasible time, discussing the possible trade-offs that
can be made in terms of expensiveness and accuracy. Finally, we compare
these strategies with zero-cost heuristics that can be built by simply target-
ing agents in a smart way, and we put together all the strategies to get a
scheme of work for building the best possible heuristic, depending on the
underlying graph.

More specifically, I will start presenting a simple greedy algorithm, that
is supported by the submodularity result in Chapter 4.2. Then, I will pro-
vide two heuristics that are built upon the results of the previous chapter:
one that combines a generalization of the STP algorithm over tree graphs,

79



80 CHAPTER 6. OPTIMAL TARGETING HEURISTICS

with a greedy approach, the other that exploits the complete graph result.
These are motivated by looking at more general graphs as relaxations of tree
graphs and complete graphs respectively. In this way, it has been possible to
built algorithms that are a relaxation of the techniques presented in Chap-
ters 5.2 and 5.3. Then again, a heuristic is built from the intuition that high
degree nodes are more relevant, as a modification of the greedy result. Ulti-
mately, two zero-cost heuristics are provided for comparison. All of these are
then combined and summed up in a scheme that suggests the best heuristic
depending on the underlying graph.

6.1 Standard Greedy Heuristic

To avoid the computations of the objective function for all the
(
N
k+

)
com-

binations of the subset of nodes with maximal cardinality, one of the most
common approaches is to solve the problem in a greedy manner. This means
that we look for a solution by solving the STP one target at a time, until
all the k+ edges available are placed. Let us denote by ∆(v|A) the discrete
derivative, defined as ∆(v|A) := F+(A ∪ {v}) − F+(A). Then, let us define
the Greedy Heuristic algorithm as follows.

Algorithm 2 Greedy algorithm for OTP

Require: G = (V , E) graph, set node A−, number of available links k+

Initialization:
A0 = ∅

for i ∈ {1, . . . , k+} do
Ai = Ai−1 ∪ argmax

v∈R
{∆(v|Ai−1)}

end for
return Ak+ , F+(Ak+)

Since the objective function F+ is monotone and submodular, we know from
[24] that

F+(Ak+) ≥ (1− 1/e)F ?
+

where F ?
+ = maxA:|A<k+| F+(A) and F+(Ak+) is the result returned by the

algorithm. This means that by using Algorithm 2 it is possible to find a
bounded approximation of the real optimum, while reducing the complexity
from O(N3+k+) to O(N4k+).
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6.2 Tree-like Heuristic

Thanks to the results in Chapter 5.2, it is possible to additionally reduce the
number of computations of the objective function when applying a greedy
heuristic. To show this, I will first present how it is possible to extend the
STP Algorithm 1 over tree-like/sparse graphs. Then, I will generalize it to
the cases where − has more than one placed edge. Finally, I will apply it
repetitively in a greedy manner to produce a heuristic for the OTP.

Tree-like Heuristic for STP

When trying to solve the STP for the tree graph case, we have seen that an
analytical solution is not feasible in general. However, we have seen that when
moving v+ (the node selected by agent +) from the root v− (the node linked
to agent−) to the extremes of the branches, it is possible to infer the behavior
of F+. In particular, as shown in Numerical Experiment 2, an algorithm that
is able to reduce the computations of almost two order of magnitude when
N is large is built, by reducing the objective function computations to a
subset of the nodes. For locally tree-like graphs, it is possible to imagine
that F+ follows approximately the same behavior, and that one can build an
algorithm exploiting such result. In particular, since such graph can be seen
as a relaxed version of the tree graph, we need to build the relaxed version
of the algorithm, denoted as Tree-like Single Targeting Algorithm. This new
algorithm, when looking at the root’s offspring, does not stop looking at
the first increasing F+ value found, but it saves each improving node (i.e. a
node leading to an increasing value of F+) and uses all of them as roots for
the next iterations. In plain words, we are assuming that, being the graph
not a tree, it is possible to have more values in the nearest neighborhood
leading to increasing values of F+. Then, we can decide to visit all of the
branches starting from them. In such a way, while for the tree the sequence
of improving nodes consists of a path (made up of increasing values of F+),
now the sequence of visited nodes consists of a tree: this means that the
number of iterations is much larger, but this is needed to avoid stopping the
algorithm at non-optimal values.

The results of the algorithm over Regular Graphs follow below.

Numerical Experiment 3. For each µ ∈ {3, 6, 9, 12}, and N = 100, 200, . . . , 800,
let us generate 50 Regular Graphs of degree µ and number of nodes N . Regu-
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Algorithm 3 Tree-like Single Targeting Algorithm

Require: G = (V , E) graph, node v−

Initialization:
Set of root nodes r = {v−}
Number of visited nodes s = 0
w = ∅ set of visited nodes

while r 6= ∅ do
v = ∅ set of improving nodes
for r̂ ∈ r do

for ` ∈ O(r̂) \ w do
s = s+ 1
Evaluate F+(`)
if F+(r̂) < F+(`) then
v = v ∪ {`}

end if
end for

end for
r = v \ w
w = w ∪ r

end while
m = argmax

ŵ∈w
(F+(ŵ))

return v+ = m, F+(m), s
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lar graphs are known to be locally tree-like, so let us use Algorithm 3 to solve
the STP over such graphs.

For each simulation, let us plot the suboptmal value of F+ that is found by
the algorithm versus the optimal value (computed by a brute-force maximum
search). This is shown below for µ = 3 and µ = 9
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Figure 6.1: F+ found by Algorithm 3 versus optimal value, for each simulation,
for N = 100, 400, 800, for µ = 3 (a)(b)(c) and µ = 9 (d)(e)(f)

While the average percentages of visited nodes by the algorithm, for each N
and µ, are shown below
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Figure 6.2: Average percentage of visited nodes averaged over 50 simulations for
different degree of the regular graphs nodes µ

From Figure 6.1 we see that the value reached by the algorithm are usually
close to the optimal values. On the other hand, from Figure 6.2 we see that
as µ increases, the percentage of nodes visited increases as well. This means
that the algorithm becomes much less efficient as the graph becomes more
dense. At the same time, by comparing the upper plots of Figure 6.1 with the
lower ones, in the latter cases by visiting a larger portion of the graph, F+

tends to be more accurate.

As it has been shown in the above experiment, Algorithm 3, depending
on the graph, could be too much expensive or too much strict. On the one
hand, when the graph is more dense (it has more connections), the number
of nodes that will be visited can grow almost exponentially: if each node for
m steps has, on average, k improving sons, this would lead to an order of km

nodes that have to be visited. Clearly we do not evaluate F+ for the same
node twice, but it is easy to see how this algorithm could not be effective
in reducing computational complexity, leading to the visit of most of the
graph. On the other hand, when the graph is more sparse, the condition of
proceeding along improving paths (i.e. paths made up of improving nodes)
is really strict and can stop the algorithm before finding the optimum, or at
least a suboptimum.

For these two reasons, if we have more information about the graph on which
we are studying the problem, let us build the following two modified version
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of Algorithm 3, denoted as Strict version of Tree-like Single Targeting Algo-
rithm and Relaxed version of Tree-like Single Targeting Algorithm.

• Strict version of Tree-like Single Targeting Algorithm:
The strict version of Algorithm 3 should be used on graphs that we
think are not much sparse, in order to save computational time. The
modification to the original version is the following: of all the nodes
visited, save each improving node, but use only the node leading to the
maximum improvement as the root for the next iteration. In this way
the sequence of improving nodes of the algorithm consists again in a
path, as for the tree original algorithm.

Algorithm 4 Strict Version of Tree-like Single Targeting Algorithm

Require: G = (V , E) graph, node v−

Initialization:
Root node r = v−

Number of visited nodes s = 0
while r 6= ∅ do
v = ∅ empty set of improving nodes
for ` ∈ O(r) do
s = s+ 1
Evaluate F+(`)
if F+(r) < F+(`) then
v = v ∪ {`}

end if
end for
r = argmax

v̂∈v
F+(v̂)

end while
return v+ = r, F+(r), s

• Relaxed version of Tree-like Single Targeting Algorithm:
The strict version of Algorithm 3 should be used on graphs that we
think are very sparse, in order to find a sufficiently optimal result.
The modification to the original version is the following: instead of
saving and iterating the research only on improving nodes, we select
the new roots of the algorithm also to non-improving nodes, with a
certain tolerance. In this case we set the tolerance as 0.95 of the parent
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F+ value, but different values can be implemented depending on the
application: if it is more important to look for the best result or saving
time.

Algorithm 5 Relaxed Version of Tree-like Single Targeting Algorithm

Require: G = (V , E) graph, node v−

Initialization:
Set of root nodes r = {v−}
Number of visited nodes s = 0
w = ∅ set of visited nodes

while r 6= ∅ do
v = ∅ set of improving nodes
for r̂ ∈ r do

for ` ∈ O(r̂) \ w do
s = s+ 1
Evaluate F+(`)
if F+(r̂) < 0.95 ∗ F+(`) then
v = v ∪ {`}

end if
end for

end for
r = v \ w
w = w ∪ r

end while
m = argmax

ŵ∈w
(F+(ŵ))

return v+ = m, F+(m), s

Numerical Experiment 4. Let us now test the strict version of Algorithm
3 on a real large-scale online social network: the Facebook ego-network, re-
trieved from Stanford Large Network Dataset Collection (https: // snap.
stanford. edu/ data/ egonets-Facebook. html ). This dataset contains
anonymized personal networks of connections between friends and the size
of the graph associated is |V| = 4039, while the number of links is equal to
|E| = 88234. Such graph is extremely sparse, since the number of nonzero
elements |E|/|V|2 ≈ 5 ∗ 10−3. We then set 10 different STP over the graphs
to test the performance of both Algorithm 3 and Algorithm 4. The 10 STP
are generated by linking agent − to 10 random different agents.

https://snap.stanford.edu/data/ egonets-Facebook.html
https://snap.stanford.edu/data/ egonets-Facebook.html
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We find that both the algorithms reach the optimum (computed by using the
solving STP by means of the brute-force approach), so that the strict version
is the most convenient algorithm to use. The distribution of the numbers of
visited nodes for each algorithm are plotted in the boxplot below:
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Figure 6.3: Algorithms 3 (on the left) and 4 (on the right) over Facebook ego-
network: Proportion of visited nodes over 10 experiments

By comparing the median, and the 25th and 75th percentiles, we can see
how the strict version improves the computational complexity of the algo-
rithm.
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Tree-like Heuristic for single targeting with k−>1

In an analogous way, it is possible to produce an algorithm for the cases where
the single targeting is done when the number of links placed by strategic agent
− is greater than one. In this case, we use a generalized version of the tree-
like heuristic, as summarized in Algorithm 6. In particular, among the nodes
linked to −, we select the one with smallest degree as the root v− from which
Algorithm 6 is started. The reasoning behind this algorithm, supported by
experimental results, is that in sparser graphs it is easier to move away from
less relevant nodes rather than vice versa. Indeed, by starting the algorithm
from high degree nodes, the first steps would generally be more affected by
the influence of −, compromising the accuracy.

Algorithm 6 Tree-like Single Targeting Algorithm, |V−| > 1

Require: G = (V , E) graph, node set V−
Initialization:

Root node r ∈ argmin
v−∈V−

d(v−)

Number of visited nodes s = 0
while r 6= ∅ do
v = ∅ set of improving moves
for ` ∈ O(r) do
s = s+ 1
Evaluate F+(`)
if F+(r) < F+(`) then
v = v ∪ {`}

end if
end for
r = argmax

w∈v
F+(w)

end while
return v+ = r, F+(r), s
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Tree-like Heuristic for OTP

Thanks to these results, it is then possible to construct the Tree-like Heuristic
for the OTP. In particular, I propose an algorithm that applies the singular
targeting version of the Tree-like Heuristic in a greedy manner, in order
to approximate the Greedy Heuristic. Specifically, in order to increase the
accuracy, this is done by selecting at each step a different root node among
the ones linked to −, as summarized in Algorithm 7.

Algorithm 7 Tree-like Optimal Targeting Algorithm

Require: G = (V , E) graph, node set V−, budget k
Initialization:

Node set V−
Empty sets V+ = ∅,F+ = ∅
Number of visited nodes s = 0

for i = 1, . . . , k do
r = (mod(i−1, k)+1)-th element of V−
while r 6= ∅ do
v = ∅ set of improving moves
for ` ∈ O(r) do
s = s+ 1
Evaluate F+(`)
if F+(r) < F+(`) then
v = v ∪ {`}

end if
end for
r = argmax

w∈v
F+(w)

end while
V+ = V+ ∪ {r}
F+ = F+ ∪ {F+(r)}

end for
return V+, F+, s

Numerical Experiment 5. Let us now compare two Tree-like Heuristics by
running them on random generated Erdos-Renyi graphs of parameters N =
200 and p = 0.1. We generate 15 random graphs and we link k− = 3 nodes
randomly selected to the strategic agent −. Then, we perform one Tree-
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like Heuristic using a strict version of the Tree-like algorithm, one Tree-like
Heuristic using the standard version, and Greedy Heuristic. The results are
reported below:

Average F+ Average number of computations
Tree-like Heuristic (strict) 51.09 54.53

Tree-like Heuristic 51.25 103.87
Greedy Heuristic 51.31 200

We can easily see how the F+ values are really close to each other, while
the average number of computations, determining the speed of the algorithm,
is halved thanks to the tree-like algorithm, and halved again if the strict ver-
sion is used.
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6.3 Blocking Heuristic

In Chapter 5.3 we solved the OTP for the complete graph, finding that if
p+k+ > q, it is optimal to block the influence of agent − placing min{k+, q}
edges to the nodes linked to −, otherwise it is not. On the other hand, if we
wanted to find a suboptimum of the OTP for the complete graph by using the
greedy Algorithm 2, at each iteration the algorithm would have tested the
condition p(k) + 1 > q(k), where p(k), q(k) are p, q at iteration k = 1, . . . , k+.

This suggests that when relating to the greedy algorithm, if the graph
is dense enough we are losing at each iteration some amount of the optimal
result, and this is more true as the graph is closer to a complete graph. We
then exploit this intuition, coming from the result on the complete graph, to
build the following algorithm. Let us denote by A− the set of nodes linked
to −, while by A(0) the set of initial nodes linked to +.

Algorithm 8 Blocking Heuristic for OTP

Require: G = (V , E) graph, set node A−, set node A(0), number of available
links k+

Initialization:
A0 = ∅ , s = 0

if k+ > |A− \ A(0)| − |A(0) \ A−| then
As = A− \ A(0) , s = |A− \ A(0)|

end if
if k+ > s then

for i ∈ {s+ 1, . . . , k+} do
Ai = Ai−1 ∪ argmax

v∈R
{∆(v|Ai−1)}

end for
else
Ak+ = As

end if
return Ak+ , F+(Ak+)

Algorithm 8, in practice, compares the |A(0) \A−|+k+ overall edges of agent
+ not linked to −, with the |A− \ A(0)| edges not linked to + of agent −.
If the comparison tells that the former il larger, the k+ edges of + yet to
be placed are used until possible to target the nodes in A− \ A(0). Then, if
some edges are still available to agent +, they are placed by following the
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greedy Algorithm 2. On the other hand, if the first condition is not satisfied,
it simply reduces to the Greedy Heuristics.

In such a way it is possible to improve both the accuracy and the cost of
the heuristic. Indeed, if the first condition is satisfied, the complexity passes
from O(N3k+) to O(N4(k+ −min{k+, q}).

However, the more the degrees are heterogeneous among the nodes, the
more the case will be far from the complete graph scenario. Then, the op-
ponent could be linked to nodes that have a small influence on the overall
graph, and blocking them by targeting the same nodes could not be optimal
in such cases. For this reason, a modification to the algorithm is considered
where the only nodes that are considered for the blocking targeting are the
ones with a larger degree. In this way, the decision of blocking or not the
opponent targets is determined by comparing the number k∗− of opponent’s
high degree nodes with k+ + k0∗

+ , where k0∗
+ is the number of high degree

previously placed links, rather than comparing k− with k+ + k0
+.

Algorithm 9 Modified Blocking Heuristic for OTP

Require: G = (V , E) graph, set node A−, set node A(0), number of available
links k+

Initialization:
A0 = ∅ , s = 0
D set containing the N/10 distinct nodes with highest degree
A−∗ = A− ∩ D, A(0)∗ = A(0) ∩ D

if k+ > |A−∗ \ A(0)∗| − |A(0)∗ \ A−∗| then
As = A−∗ \ A(0)∗ , s = |A−∗ \ A(0)∗|

end if
if k+ > s then

for i ∈ {s+ 1, . . . , k+} do
Ai = Ai−1 ∪ argmax

v∈R
{∆(v|Ai−1)}

end for
else
Ak+ = As

end if
return Ak+ , F+(Ak+)

The results of this modified version of the Blocking Heuristic are much better
than the standard version ones when the opponent is not placed optimally.
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6.4 Degree Heuristic

I now build the Degree Heuristic, a heuristic that makes use of the node
degrees of the graph. Indeed, when the graph has a heterogeneous degree
distribution, the nodes with highest degrees are also the most influential
ones. This is both intuitive and empirically found in various performed ex-
periments. From this notion, I build a greedy algorithm that instead of
looking for the optimum over the entire node set, it performs the optimum
search restricted to the nodes with highest degrees. In this way, it is possi-
ble to find an approximation of the Greedy Heuristics results, additionally
reducing the OTP complexity.

Algorithm 10 Degree Heuristic (Greedy Search Version) for OTP

Require: G = (V , E) graph, set node A−, number of available links k+,
vector of nodes degree d
Initialization:
A0 = ∅
M = min{10 ∗ k+, |R|}
M set containing the M distinct nodes with highest degrees

for i ∈ {1, . . . , k+} do
Ai = Ai−1 ∪ argmax

v∈M
{∆(v|Ai−1)}

end for
return Ak+ , F+(Ak+)

In this version of the Degree Heuristic the algorithm selects the 10k+ nodes
with highest degree. Then, it performs the greedy algorithm over that nodes
to find a suboptimum of the problem. In this way, the computational com-
plexity goes from the O(N4k+) of the greedy algorithm to O(N310k2

+).

Example 1 (Blocking + Degree Heuristic). Let us combine the Blocking
Heuristic with the Degree Heuristic in order to show how these heuristics
can be easily mixed together, in order to reach better accuracy or to reduce
complexity. The algorithm of this mixed heuristic is shown below.
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Algorithm 11 Blocking + Degree Heuristic for OTP

Require: G = (V , E) graph, set node A−, number of available links k+

Initialization:
A0 = ∅ , s = 0
M = min{10 ∗ k+, |R|}
M set containing the M distinct nodes with highest degrees
D set containing the N/10 distinct nodes with highest degree
A−∗ = A− ∩ D, A(0)∗ = A(0) ∩ D

if k+ > |A−∗ \ A(0)∗| − |A(0)∗ \ A−∗| then
As = A−∗ \ A(0)∗ , s = |A−∗ \ A(0)∗|

end if
if k+ > s then

for i ∈ {s+ 1, . . . , k+} do
Ai = Ai−1 ∪ argmax

v∈M
{∆(v|Ai−1)}

end for
else
Ak+ = As

end if
return Ak+ , F+(Ak+)

This algorithm, combining the Blocking Heuristic with the Degree Heuristics,
states that if the condition |A(0)\A−|+k+ > |A−\A(0)| is satisfied, the nodes
in A− have to be chosen before running the greedy algorithm. Then, if some
edges are left, the greedy algorithm is applied among the 10 ∗ k+ nodes with
highest degree. This leads to a complexity of O(N310k+(k+−min{k+, q}), if
the condition above is satisfied, and O(N310k2

+) if not.

6.5 Zero-cost Heuristics

I now present two Zero-cost Heuristics that can be used to approximate the
OTP solution without performing any computation. These heuristics can be
used as a comparison for the other heuristics, in order to understand when
these are needed to improve accuracy, or when their cost is not justified.

• The first one consists in selecting the k+ nodes of highest degree (if there
are more subsets with this property, select one of them randomly).
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Algorithm 12 Zero-cost Standard Heuristic for OTP

Require: G = (V , E) graph, number of available links k+

Initialization:
D set of nodes with top-k+ degree
Ak+ = D

return Ak+ , F+(Ak+)

• The second one, motivated by the complete graph and the Blocking
Heuristic results, compares the available budget with the number of
high degree nodes that are already placed in a similar manner, and
places the remaining links to the highest degree nodes.

Algorithm 13 Zero-cost Blocking Heuristic for OTP

Require: G = (V , E) graph, set node A−, set node A(0), number of available
links k+

Initialization:
A0 = ∅ , s = 0
D set of nodes with top-10% degree
A−∗ = A− ∩ D, A(0)∗ = A(0) ∩ D

if k+ > |A−∗ \ A(0)∗| − |A(0)∗ \ A−∗| then
As = A−∗ \ A(0)∗ , s = |A−∗ \ A(0)∗|

end if
if k+ > s then
D′ set containing the k+−s distinct nodes with highest degree
Ak+ = As ∪ D′

else
Ak+ = As

end if
return Ak+ , F+(Ak+)

Numerical Experiment 6 (Greedy Heuristics Comparison). Let us now
compare some of these heuristics by running them on random generated
Erdos-Renyi graphs of parameters N = 400 and p = a logN

N
. For each pa-

rameter a ∈ {10, 4}, we generate 50 random graphs and we link k− = 3
nodes randomly selected to the strategic agent − (so that it becomes conve-
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nient to use the Blocking algorithms). Then, we perform the five heuristics
over such graphs and we compare the results.

Let us plot the results for each simulation, for different a values:
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Figure 6.4

For a = 10 the generated graphs are the ones that are the closest to be com-
plete graphs, with an average number of edges of E[|E|] = a(N − 1)logN =
23896 and a nonzero elements percentage about 15%. Here, the Blocking
Heuristic advantage should be more evident. We can se how in all the ex-
periments, the best performing solution seems to be the Blocking Heuristic,
followed by the Blocking+Degree Heuristic and then by the Greedy Heuristic,
whereas the worst solutions are given by the two Degree-based Heuristics: in
particular, the zero-cost one is the one that performs the worst.

However, to better see the actual advantage of such heuristic over the others,
let us repeat the experiment above, by running the same heuristics to random
generated Erdos-Renyi graph for a larger number of a values and let us aver-
age the responses, over each a, to get a curve of average performance of each
algorithm. By taking a ∈ {1.5, 1.6032, 1.7316, 1.8911, 2.0893, 2.3357, 2.6419,
3.0226, 3.4957, 4, 4.0838, 4.8147, 5.7231, 6.8522, 8.2557, 10} we get:
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we can see how the performances of the Blocking and Blocking+Degree
heuristics are the ones that give the best results, whereas the zero-cost ap-
proach here performs the worst.
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6.6 Heuristic Choice Scheme

Let us now summarize all previous heuristics for the OTP by combining
them in the visual scheme of Figure 6.6. In this scheme, the composition
of a heuristic is performed moving from the black central node towards the
leafs. The circles are colored in terms of the computational complexity of the
choices. In particular, the greedy heuristics are colored in blue, and they are
graduated towards lighter colors when the complexity is reduced. Conversely,
zero-cost heuristics are colored in orange.

OTP
Heuristics

Greedy

Blocking

brute-
force

degree

tree-like

Standard brute-
force

degree

tree-like

Zero-cost

Blocking

Standard

Figure 6.6: Scheme of OTP heuristics, colored in terms of computational com-
plexity. Dark blue: more expensive heuristics; light blue: less expen-
sive; orange: zero-cost
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Another level of interpretation is determined by the accuracy of the heuris-
tics. Specifically, they have been ordered clockwise in terms of generally
better performance. However, notice that this is much less rigorous, since
heuristic accuracy is strongly dependent on the underlying graph.

In particular, a simple scheme of work providing some of the main reasons
behind different choices can be summarized as follows

Start

Is accuracy more
important than cost?

or
Is the distribu-

tion of high degree

nodes homogeneous?

Greedy

Heuristics

Zero-cost

Heuristics

Is the graph

dense enough?

Is the graph

dense enough?

Blocking Standard
Blocking

Max Degree

Standard

Max Degree

Brute-force

Degree

Tree-like

Brute-force

Degree

Tree-like

YES NO

YES NO YES NO
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The first decision split the heuristics between greedy and zero-cost ones.
Here the choice is done depending mostly on the accuracy. Indeed, the com-
plexity difference is extremely large between the two options. On the other
hand, a zero-cost heuristic could be extremely accurate if the distribution of
high degree nodes is heterogeneous, and some extremely high degree nodes
are present.

Then, the second decision is among blocking or standard heuristics. While
the general results, show a generally better performance for Blocking Heuris-
tics, let us highlight that the modified version of the algorithm is always
suggested. Indeed, when the opponent is not linked to high degree nodes,
it is not convenient to block her in such nodes. On the other hand, this
heuristics sometimes performs worse than the greedy one, when the graph is
sparser.

Concluding, the reasons behind the three last greedy options (brute-force,
degree, and tree-like) are mainly based on the graph structure. Indeed, if
the graph is locally tree-like or sparse, a tree-like approach would be well-
performing, improving the complexity of the heuristic. In addition, in this
case, one has also to choose among the three modified versions of the Tree-
like algorithm in the STP steps (standard, strict, and relaxed). On the other
hand, if the graph is well split between high and low degree nodes, a degree-
based approach would be a good choice. Conversely, if none of these notions
are true or no information is known about the graph, a brute-force approach
is the safest option.

Nevertheless, notice that a good approach would probably be to study a
subset of the social network to compare different heuristics, so as to better
understand their accuracy and cost before performing the computations with
the entire network.



Chapter 7

Conclusions

In this thesis, I provided different methods for solving the Optimal Targeting
Problem in a smart way.

First, I presented the theoretical tools thanks to which one can describe
a network and its properties. By formalizing the graph theoretical notions
with well known algebraic tools, it is possible to derive the main properties
of the graph by looking at the spectral properties of the matrices involved.
In this context, the French-DeGroot opinion dynamics model is presented
and the competition between two agents is set. Such competition involves
two strategic agents of opposite opinion who try to influence the network
providing the same opinion to the population. However, the consequent op-
timization problem is computationally hard and feasible heuristics are needed
to solve the problem.

Therefore, I proved the monotoncity and submodularity of the average
opinion, making use of the Markov Chain representation of opinion dynam-
ics over graphs. This justified the main greedy approach upon which my
heuristics are built.

Then, I exploited the equivalent electrical representation of the graph to
solve the singular targeting problem for the line graph. Next, I extended this
result to general tree graphs, thanks to which I built an algorithm allowing
to drastically reduce the complexity of a brute-force approach for STP over
tree-graphs. Upon this, I successively extended the algorithm for STP over
tree-like/sparse graphs, and then to the more general OTP, by combining
STP solutions in a greedy manner.

Moreover, the solution of the OTP for the complete graph is provided.
This result is quite simple and powerful since it provides the answer to the
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question whether it is convenient or not to target to same nodes of the op-
ponent to block her influence, by simply looking at the available and placed
links of the two strategic nodes. Upon this result, another heuristic is built,
consisting in the simple strategy to block the opponent or not, depending on
a similar criteria.

Then, motivated by intuition, two kinds of degree based heuristics are
built. One to reduce the complexity of the greedy algorithms, one to provide
a zero-cost solution.

A scheme of all the possible heuristics combinations is then provided to
better understand which approach one should have depending on the accu-
racy vs cost trade-off, and the underlying graph.
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Appendix A

Alternative Proofs

A.1 Alternative Monotonicity Proof

Proof.

F+(B) =
∑
i∈R

x̄
(B)
i

=
∑
i∈R

[(I −Q11,B)−1Q12,BxS ]i

=
∑
i∈R

(∑
m∈S

∑
n∈R

[
(I −Q11,B)−1

]
in
Q12,B

nm xSm

)

analogously

F+(A) =
∑
i∈R

(∑
m∈S

∑
n∈R

[(I −Q11,A)−1]inQ
12,A
nm xSm

)

where the superscripts A and B on the matrices Q11 and Q12 are used to
identify the two matrices in the different cases. Indeed each new connection
with the strategic node + of the nodes that are in B but not in A has an
impact on the whole matrix Q, even if on the weight matrix W the only
block affected is the W 12 one, having 1 values on the corresponding nodes
linked to the strategic agents: in particular B will have all the 1 elements of
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A, and the ones corresponding to the elements in B \ A, since A ⊆ B.

So

F+(B)− F+(A) =
∑
i∈R

(∑
m∈S

∑
n∈R

(
[(I −Q11,B)−1]inQ

12,B
nm − [(I −Q11,A)−1]inQ

12,A
nm

)
xSm

)

=
∑
i∈R

(∑
m∈S

∑
n∈R

([∑
k≥0

(D−1
B W 11)k

]
in

[D−1
B ]nnW

12,B
nm −

[∑
k≥0

(D−1
A W 11)k

]
in

[D−1
A ]nnW

12,A
nm

)
xSm

)

≥
∑
i∈R

(∑
m∈S

∑
n∈R

([∑
k≥0

(D−1
B W 11)k

]
in

[D−1
B ]nnW

12,B
nm −

[∑
k≥0

(D−1
B W 11)k

]
in

[D−1
B ]nnW

12,B
nm

)
xSm

)

=
∑
i∈R

(∑
m∈S

∑
n∈R

[∑
k≥0

(D−1
B W 11)k

]
in

[D−1
B ]nn

(
W 12,B

nm −W 12,A
nm

)
xSm

)
≥ 0

where the first inequality comes from the fact that [D−1
B ]nn ≤ [D−1

A ]nn for
each n, indeed the matrix D with the degrees of the nodes on the diag-
onal counts how many links each node has, then having a plus one for
each row corresponding to a node in B \ A. The last inequality holds since[∑

k≥0(D−1
B W 11)k

]
in
≥ 0, [D−1

B ]nn ≥ 0 and
(
W 12,B

nm − −W 12,A
nm

)
∈ {0, 1} for

each i, n,m in their domain, while xSm takes only 1 values in correspondence

to each
(
W 12,B

nm −−W 12,A
nm

)
6= 0, since the strategic node that influences the

matrices W 12,B and W 12,A is just the + one, i.e. all the −1 contributions are
canceled out.
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A.2 Alternative Submodularity Proof

Proof. In order to prove the proposition, we relate to the work made by Yildiz
et al. [11] where they studied the optimal placement of strategic agents in a
voter model dynamics. In this work they successfully proved the submodu-
larity of what is the analogous of our agent’s asymptotic opinion, so that we
can build our proof as a corollary of their result.

In order to do so let us present the analogies between the two problems.
First of all, the asymptotic opinion of a regular agent following the DeG-
root dynamics, that we have seen as being representable as a convex hull of
the strategic agent’s opinion, can be formulated in a probabilistic context.
Consequently, for a regular agent i, the coefficient ahead the opinion xs of
each generic strategic node s can be seen as the probability that the simple
random walk Z(t) initiated at node i with transition probability matrix Q
will be absorbed by the absorbing state s, i.e.

x̄i =
∑
s∈S

(HQ12)isxs

=
∑
s∈S

lim
t→+∞

P(Z(t) = s|Z(0) = i)xs

= lim
t→+∞

P(Z(t) = +|Z(0) = i)− lim
t→+∞

P(Z(t) = −|Z(0) = i)

= pi − (1− pi)
where pi = lim

t→+∞
P(Z(t) = +|Z(0) = i)

= 2pi − 1

Let us now present the analogies with the Yildiz et al. model. In their
work they studied the optimal placement of k strategic nodes in a slightly
different setting, where all the agents’ opinion can assume values in {0, 1}, by
copying the other agents’ opinion as a continuous-time Markov process, ac-
cording to the transition rate matrix Λ, while the strategic nodes are collected
in the non-empty set V0, if type-zero, and in V1, if type-one. Additionally,
such optimal strategic agent placement (OSAP) for the type-one agent cor-
responds to the choice of the optimal k > 0 regular nodes to be added to
V1 in order to maximize the sum of the asymptotic opinions’ expected value,
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i.e. solving

max
`1,...`k∈V\(V0∪V1)

∑
i∈V

E[x̄i]
(`1∪···∪`k) (A.1)

where the superscript of E[x̄i] is just a notation to specify the set of nodes
to be added to V1.

On the other hand, analogously to our case, the expected value of the
asymptotic opinion of a regular agent i can be written as the probability that
the continuous-time random walk Z̃(t) initiated at node i with transition rate
matrix Λ and jump chain Q̃ will be absorbed by the set V1, i.e.

E[x̄i] = lim
t→+∞

P(Z̃(t) ∈ V1|Z̃(0) = i)

= p̃i

It is now evident how, by studying the same graph G with Wij = Λij for
i 6= j, it follows that Q = Q̃ (since Qii can be put to 0 without changing the
asymptotic opinion, for each i) [*o da definire meglio o da omettere*] and
then

pi = p̃i

Successively we will simply treat the two problems as equivalent taking for
granted these necessary conditions.

Let us now consider the Lemma proved by Yildiz et al. that we want to
exploit. Such lemma successfully proved the submodularity of

∑
i∈V p̃

(`1∪···∪`k)
i

but actually a more general result has been implicitly proved, i.e. that the
very same p̃i is submodular, not only the sum over all the agents. Hence,
we try to exploit such result by connecting our optimal targeting problem to
the optimal strategic agent placement.

First of all, let us take a generic B ⊆ V ,A ⊆ B and v ∈ V \ B, that will
form the four cases A, Â = A ∪ {v},B, B̂ = B ∪ {v} in terms of nodes di-
rectly connected to + that we need to compare to prove the submodularity.
Then, let us build for each case U a corresponding graph G(U) where the
strategic node + is not unique in general, but there are as many type-one
strategic nodes +(i) as the cardinality of U , each one with degree of exactly
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one. By also writing the node sets as function of the case considered, we can
summarize the four cases in{
R(A) = R(Â) = R(B) = R(B̂) = R
S(B̂) = S(B) ∪ {+(v)} = S(Â) ∪ {+(1), . . . ,+(m)} = S(A) ∪ {+(v)} ∪ {+(1), . . . ,+(m)}

where +(v) is the strategic node directly connected to v while +(1), . . . ,+(m)

are the strategic nodes connected to the m nodes belonging to B \ A.
Such new representation doesn’t modify the previous dynamics and in partic-
ular the asymptotic opinions, as we can see by studying the electrical network
representation, since the strategic nodes can be considered as voltage sources.

Let us now build other four different graphs G ′(U), one for each case,
where V ′(U) = V(B̂), E ′(U) = E(B̂) for U = A, Â,B, B̂ and such that{

R′(B̂) = R
S ′(B̂) = S(B̂){

R′(B) = R∪ {+(v)}
S ′(B) = S(B̂) \ {+(v)} = S(B)

{
R′(Â) = R∪ {+(1), . . . ,+(m)}
S ′(Â) = S(B̂) \ {+(1), . . . ,+(m)} = S(Â){

R′(A) = R∪ {+(1), . . . ,+(m)} ∪ {+(v)}
S ′(A) = S(B̂) \ ({+(1), . . . ,+(m)} ∪ {+(v)}) = S(A)

where we built such new four configurations in such a way that the numbers
of nodes and edges always stay the same while the discriminant between
the different cases is just the set of type-one strategic nodes, unambiguously
determined by the nodes directly connected to the strategic + in the original
graph.

Now, by using the stronger result coming from Yildiz et al. on G ′(A),
combined with the previously proved equivalence of the two settings, it is
possible to say that

p
′(Â)
i − p′(A)

i ≥ p
′(B̂)
i − p′(B)

i ∀i ∈ R ∪ {+(1), . . . ,+(m)} ∪ {+(v)}
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At the same time we have that, for U = A, Â,B, the main difference be-
tween G ′(U) and G(U) is that the former presents regular nodes connected
to B̂ \U where in B̂ there are strategic nodes, while the latter simply doesn’t
have such connected nodes. Nevertheless, such regular nodes have all degree
one, by construction, so that they do not influence the asymptotic opinion
of each other node. indeed, we can easily see how, by building the electrical
network analogous, such nodes are all short-circuited with their only con-
nected node, hence not influencing the other nodes’ voltage. Consequently
we can say that

p
(U)
i = p

′(U)
i ∀i ∈ R, U = A, Â,B, B̂

hence

p
(Â)
i − p(A)

i ≥ p
(B̂)
i − p

(B)
i ∀i ∈ R∑

i∈R

(2p
(Â)
i − 1)−

∑
i∈R

(2p
(A)
i − 1) ≥

∑
i∈R

(2p
(B̂)
i − 1)−

∑
i∈R

(2p
(B)
i − 1) ∀i ∈ R

F+(Â)− F+(A) ≥ F+(B̂)− F+(B)

and since the choice of B ⊆ V ,A ⊆ B and v ∈ V \ B has been generic, it
follows that F+ is submodular.
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Additional Results

B.1 Complete Graph Objective Function Sub-

modularity

In order to prove the submodularity of F+ for the complete graph we need to
compare four different configurations of p, q, r, in terms of nodes connected to
+ but not to −, nodes connected to + but not to −, and nodes connected to
both of them. We need to prove that adding one edge-to-strategic in a greater
set is less convenient than adding it in a smaller one. In particular, it is
sufficient to prove that adding one edge to a general configuration determined
by p, q, r is more convenient than adding two of them, i.e. we just need to
compare the four possible configurations

configuration 1 configuration 2 configuration 3 configuration 4
A, q p, q, r p, q, r p, q, r p, q, r

Â, q p+ 1, q, r p+ 1, q, r p, q − 1, r + 1 p, q − 1, r + 1
B, q p+ 1, q, r p, q − 1, r + 1 p+ 1, q, r p, q − 1, r + 1

B̂, q p+ 2, q, r p+ 1, q − 1, r + 1 p+ 1, q − 1, r + 1 p, q − 2, r + 2

Table B.1: Possible configuration by adding two edges to A, q = p, q, r

Then, by comparing F+(Â) − F+(A) with F+(B̂) − F+(B) for each configu-
ration we find
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• (F+(k + 1, l, p)− F+(k, l, p))− (F+(k + 2, l, p)− F+(k + 1, l, p)) =

4N (N + 2) (4 l + 2 p+ 4N l + 3N p+N2 l +N2 p)

(2 k + 2 l + 2 p+N k +N l + 2N p) (N + 2 k + 2 l + 2 p+N k +N l + 2N p+ 2)

(2N + 2 k + 2 l + 2 p+N k +N l + 2N p+ 4)

≥ 0

• (F+(k+1, l, p)−F+(k, l, p))−(F+(k+1, l−1, p+1)−F+(k, l−1, p+1)) =

2N (N + 2) (2N3 k l + 2N3 k p+ 2N3 l2 + 6N3 l p+ 2N3 l + 4N3 p2 + 2N3 p+

+N2 k2 + 10N2 k l + 10N2 k p+N2 k + 9N2 l2 + 22N2 l p+ 7N2 l + 12N2 p2+

+6N2 p+ 4N k2 + 16N k l + 16N k p+ 4N k + 12N l2 + 24N l p+ 8N l+

+ 12N p2 + 8N p+ 4 k2 + 8 k l + 8 k p+ 4 k + 4 l2 + 8 l p+ 4 l + 4 p2 + 4 p)

(2 k + 2 l + 2 p+N k +N l + 2N p) (N + 2 k + 2 l + 2 p+N k +N l + 2N p)

(N + 2 k + 2 l + 2 p+N k +N l + 2N p+ 2)

(2N + 2 k + 2 l + 2 p+N k +N l + 2N p+ 2)

≥ 0

• (F+(k, l−1, p+1)−F+(k, l, p))−(F+(k+1, l−1, p+1)−F+(k+1, l, p)) =

2N (N + 2) (2N3 k l + 2N3 k p+ 2N3 l2 + 6N3 l p+ 2N3 l + 4N3 p2 + 2N3 p+

+N2 k2 + 10N2 k l + 10N2 k p+N2 k + 9N2 l2 + 22N2 l p+ 7N2 l + 12N2 p2+

+6N2 p+ 4N k2 + 16N k l + 16N k p+ 4N k + 12N l2 + 24N l p+ 8N l+

+ 12N p2 + 8N p+ 4 k2 + 8 k l + 8 k p+ 4 k + 4 l2 + 8 l p+ 4 l + 4 p2 + 4 p)

(2 k + 2 l + 2 p+N k +N l + 2N p) (N + 2 k + 2 l + 2 p+N k +N l + 2N p)

(N + 2 k + 2 l + 2 p+N k +N l + 2N p+ 2)

(2N + 2 k + 2 l + 2 p+N k +N l + 2N p+ 2)

= F+(k + 1, l, p)− F+(k, l, p))− (F+(k + 1, l − 1, p+ 1)− F+(k, l − 1, p+ 1))

≥ 0

• (F+(k, l−1, p+1)−F+(k, l, p))−(F+(k, l−2, p+2)−F+(k, l−1, p+1)) =

4N (N + 2) (N k +N l +N p+N2 l +N2 p)

(2 k + 2 l + 2 p+N k +N l + 2N p) (N + 2 k + 2 l + 2 p+N k +N l + 2N p)

(2N + 2 k + 2 l + 2 p+N k +N l + 2N p)

≥ 0
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which can be summarized as
[F+(p+ 1, q, r)− F+(p, q, r)]− [F+(p+ 1, q − 1, r + 1)− F+(p, q − 1, r + 1)] ≥ 0

[F+(p, q − 1, r + 1)− F+(p, q, r)]− [F+(p+ 1, q − 1, r + 1)− F+(p+ 1, q, r)] ≥ 0

[F+(p, q − 1, r + 1)− F+(p, q, r)]− [F+(p, q − 2, r + 2)− F+(p, q − 1, r + 1)] ≥ 0

then proving the submodularity of F+.



114 APPENDIX B. ADDITIONAL RESULTS



Bibliography

[1] P. Iosifidis and M. Wheeler. Modern Political Communication and Web
2.0 in Representative Democracies. Javnost - The Public, 25:1-2, 110-118,
DOI: 10.1080/13183222.2018.1418962, 2018

[2] P. Metaxas and S. T. Finn. The infamous #Pizzagate conspiracy theory:
Insight from a TwitterTrails investigation. Conference proceeding from
Computation + Journalism Symposium 2017, Northwestern University,
Chicago, IL, 2017.

[3] M. H. DeGroot. Reaching a consensus. J. Am. Stat. Assoc. 69, 118-121,
1974.

[4] J.R.P. French. A formal theory of social power. Psychological Review 63,
181=194, 1956.

[5] F. Harari. A criterion for unanimity in french’s theory of social power.
vol. Studies in Social Power, Institute for Social Research, 1959.

[6] N. E. Friedkin and E. C. Johnsen. Social influence networks and opinion
change. Advances in Group Processes, 16(1), 1-29, 1999.

[7] N. E. Friedkin. A formal theory of reflected appraisals in the evolution of
power. Administrative Science Quarterly, 56(4), 501-529, 2011.

[8] J. Ghaderi, and R. Srikant. Opinion dynamics in social networks with
stubborn agents: Equilibrium and convergence rate. Automatica, 50(12),
3209-3215, 2014.

[9] D. Acemoglu, A. Ozdaglar, A. Parandehgheibi. Spread of misinformation
in social networks. Dynamic Games Appl. 1, 1, 3–49, 2011.

115



116 BIBLIOGRAPHY

[10] Y. Yi, T. Castiglia, S. Patterson. Shifting Opinions in a Social Network
Through Leader Selection. arXiv:1910.13009 [cs.SI], 2019

[11] E. Yildiz, D. Acemoglu, A. Ozdaglar, A. Saberi, A. Scaglione. Binary
Opinion Dynamics with Stubborn Agents. ACM Tran. Econ. Comput.,
vol. 1, no. 4, 2013.

[12] L. Vassio, F. Fagnani, P. Frasca, A. Ozdaglar. Message Passing Opti-
mization of Harmonic Influence Centrality. IEEE Transactions on Con-
trol of Network Systems 1 (1), 109–120, 2014.

[13] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the Spread of Influ-
ence through a Social Network. Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. 137-146,
2003.

[14] A. Gionis, E. Terzi, and P. Tsaparas. Opinion Maximization in Social
Networks. 10.1137/1.9781611972832.43, 2013

[15] V. Mai, and E. Abed. Optimizing Leader Influence in Networks Through
Selection of Direct Followers IEEE Transactions on Automatic Control.
PP. 1-1, 2018.

[16] S. Dhamal, W. Ben-Ameur, T. Chahed, E. Altman. Optimal investment
strategies for competing camps in a social network: A broad framework.
IEEE Transactions on Network Science and Engineering, in press, 2018.

[17] S. Dhamal, W. Ben-Ameur, T. Chahed, E. Altman. Manipulating opin-
ion dynamics in social networks in two phases. in: The Joint International
Workshop on Social Influence Analysis and Mining Actionable Insights
from Social Networks, 2018.

[18] S. Dhamal, W. Ben-Ameur, T. Chahed, E. Altman. A two phase invest-
ment game for competitive opinion dynamics in social networks. Informa-
tion Processing & Management, Volume 57, Issue 2, 2020

[19] M. Grabisch, A. Mandel, A. Rusinowska, E. Tanimura. Strategic in-
fluence in social networks. Mathematics of Operations Research 43 (1),
29–50, 2018.



BIBLIOGRAPHY 117

[20] A. Rusinowska, A. Taalaibekova. Opinion formation and targeting
when persuaders have extreme and centrist opinions. Université Paris1
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