POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Meccanica

Tesi di Laurea Magistrale

Modellazione numerica del comportamento di compositi in impatti balistici

Relatore

Laureando

Prof. Lorenzo PERONI

Antonio MARANGI

Correlatore

Ing. Martina SCAPIN

Anno accademico 2019-2020

Sommario

Il seguente elaborato tratta l'analisi del comportamento di materiali compositi, in particolare fibre aramidiche tipo Kevlar o Twaron, in impatti balistici. Attraverso il software commerciale LS-DYNA è stato possibile analizzare il comportamento del materiale in caso di impatto di un proiettile su un tessuto di Twaron. L'analisi iniziale ha compreso l'utilizzo di un proiettile rigido in acciaio durante l'impatto su un filato singlelayer per l'ottimizzazione del valore del time step per ridurre i tempi di simulazione. Successivamente è stata analizzata l'energia assorbita dal singolo strato e le variazioni della stessa in funzione della variazione dell'angolo in punta del proiettile, definito sempre rigido. L'analisi successiva ha portato allo studio del comportamento del filato durante l'impatto con un proiettile deformabile in piombo. Successivamente è stato analizzato un caso multilayer, ipotizzano nuovamente il proiettile rigido in acciaio, con 5 strati di tessuto e ad un'analisi dell'infulenza delle angolazioni relative dei layer, fondamentali per permettere di attenuare l'anisotropia tipica dei materiali compositi. L'analisi finale ha compreso lo studio di un filato multilayer, formato da 15 strati e un proiettile deformabile in piombo. Sono state confrontate tre mesh differenti per poter ottenere una simulazione accettabile in termini energetici e successivamente sono stati analizzati i comportamenti di quest'ultima al variare della velocità iniziale.

Ringraziamenti

Prima di procedere con la trattazione vorrei ringraziare il mio relatore Peroni Lorenzo e il mio correlatore Scapin Martina per avermi seguito nella stesura di questo elaborato e per la loro disponibilità.

Un ringraziamento particolare va ai miei genitori, a mio fratello e ai miei parenti tutti , che con i loro sacrifici mi hanno permesso di arrivare dove sono ora e che mi hanno supportato in tutti i momenti, belli e brutti.

Grazie a tutti i miei amici Gianluca, Silvia, Giovanni, Giorgio, Lorenzo, Angelo, Giuliana, Cristina e tanti altri per essere stati sempre presenti anche durante questa ultima fase del mio percorso di studi. Grazie per avermi supportato e sopportato e grazie per aver ascoltato i miei sfoghi e soprattutto per tutti i momenti di spensieratezza che mi avete permesso di avere.

Indice

El	enco	delle	tabelle	VIII
El	enco	delle i	figure	XI
1	Mat	eriali	compositi	1
	1.1	Genera	alità	. 1
	1.2	Matric	21	. 2
		1.2.1	Matrici Polimeriche	. 2
		1.2.2	Matrici Metalliche	. 3
		1.2.3	Matrici Ceramiche	. 3
	1.3	Fibre		. 3
		1.3.1	Fibra lunga	. 4
		1.3.2	Fibra corta	. 4
		1.3.3	Roving	. 5
		1.3.4	Tessuti	. 5
		1.3.5	Fibre Aramidiche	. 5
2	Mec	canica	a dei compositi	7
	2.1	Micron	meccanica	. 7
		2.1.1	Comportamento meccanico della lamina	. 12
		2.1.2	Confronto comportamento Sforzo-Deformazione	. 13
	2.2	Macro	omeccanica	. 14
		2.2.1	Comportamento meccanico del laminato	. 14
		2.2.2	Critieri di resistenza	. 16
3	Imp	atto		18
	3.1	Urti		. 18
		3.1.1	Urti elastici	. 19
		3.1.2	Urti anaelastici	. 19
		3.1.3	Urti completamente anaelastici	. 20
	3.2	Onde	• • • • • • • • • • • • • • • • • • • •	. 20

		3.2.1 Onde di pressione	20
		3.2.2 Onde elastiche	21
		3.2.3 Onde plastiche	22
4	Met 4.1 4.2 4.3	codo degli Elementi finiti 2 LS-Dyna 2 Discretizzazione in spazio 2 Discretizzazione in tempo 2	24 24 24 25
	1.0	4.3.1 Mass scaling	$\frac{25}{25}$
	4.4	Creazione mesh	23 27 28 28
	45	Definizione parametri scelti	20
	1.0	4.5.1 Materiali	29 30 31
5	Ana	lisi Singlelayer	34
	5.1	Introduzione	34
	5.2	Mass Scaling-Proiettile rigido	34
		5.2.1 Mass scaling elementi shell	34
		5.2.2 Mass scaling elementi solid	39
		5.2.3 Conclusioni	44
	5.3	Geometria Proiettili-Proiettile rigido	44
		5.3.1 Introduzione	44 46
		5.3.2 Bilancio energetico	$\frac{40}{47}$
		5.3.4 Deformazioni e tensioni	±1 49
	5.4	Formulazione degli elementi-Projettile deformabile	52
	5.5	Controllo dell'energia di hourglass-Proiettile Rigido	56
6	Ana	lisi Multilaver	58
	6.1	Introduzione	58
	6.2	Mass scaling multilayer-Proiettile rigido	59
	6.3	Angolo relativo tra i layer-Proiettile rigido	63
		6.3.1 Velocità finali	68
	6.4	Variazione Mesh-Proiettile deformabile	69
		6.4.1 Deformazioni e tensioni	72
	~ ~	6.4.2 Velocità	77
	6.5	Variazione velocità iniziali-Proiettile deformabile	((
7	Con	clusioni	81

\mathbf{A}	Bila	Bilanci energetici 84		
	A.1	Bilanci Energetici Singlelayer Mass Scaling	85	
	A.2	Energia totale Singlelayer Analisi Proiettili	95	
	A.3	Bilanci Energetici SL Proiettile deformabile	99	
	A.4	Bilanci Energetici Multilayer Mass Scaling	109	
	A.5	Bilanci Energetici ML Angolo relativo	116	
	A.6	Velocità ML Angolo relativo	123	
	A.7	Bilanci Energetici ML Analisi Mesh Proiettile deformabile	126	
	A.8	Bilanci Energetici ML Analisi Velocità Proiettile deformabile	135	

Bibliografia

Elenco delle tabelle

4.1	Proprietà dell'acciaio	29
4.2	Proprietà del Twaron [®] [6] \ldots \ldots \ldots \ldots \ldots	29
4.3	Proprietà del Piombo $[6]$	30
		~ ~
5.1	Tempi di risoluzione in funzione del time step- Mesh shell	35
5.2	Tempi di risoluzione in funzione del time step-Mesh solid	41
5.3	Sliding energy Caso 1 $[J]$	41
5.4	Sliding energy Caso 2 $[J]$	42
5.5	Tempi di risoluzione in funzione del time step-Mesh solid	43
5.6	Sliding energy Caso 3 [J]	43
5.7	Parametri proiettili	45
5.8	Errori energia totale e di hourglass	46
5.9	Velocità finali dei proiettili	47
5.10	Formulazioni Elementi	53
5.11	Aumento di energia totale	56
5.12	Aumento di energia totale e peso hourglass	57
61	Timesten multilaver	50
6.2	Rigultati analisi mass scaling multilayor	60
0.2 6.2	Concerne dell'energie	65
0.5	Volocità finali	60
0.4 6 5	Velocita IIIali	00
0.0	Kisuitati Energetici-variazione Mesi	12
0.0	Velocita iniali ed Energia assorbita - variazione Mesn	((
6.7	Risultati Variazione velocita iniziale	78
A.1	Calcoli energetici caso 1 elementi shell - Pagina 1 [J]	85
A.2	Calcoli energetici caso 1 elementi shell - Pagina 2 [J]	86
A.3	Calcoli energetici caso 1 elementi shell - Pagina 3 [J]	87
A.4	Calcoli energetici caso 2 elementi shell - Pagina 1 [J]	88
A.5	Calcoli energetici caso 2 elementi shell- Pagina 2 [J]	89
A.6	Calcoli energetici caso 2 elementi shell- Pagina 3 [J]	90
-		

A.7 Calcoli energetici caso 3 elementi shell- Pagina 1 [J] 9
A.8 Calcoli energetici caso 3 elementi shell- Pagina 2 [J] 9
A.9 Calcoli energetici caso 3 elementi shell- Pagina 3 [J] 9
A.10 Energia totale- Pagina 1 [J]
A.11 Energia totale- Pagina 2 [J]
A.12 Energia totale- Pagina 3 J
A.13 Bilancio energetico caso 1- Pagina 1 [J]
A.14 Bilancio energetico caso 1- Pagina 2 [J]
A.15 Bilancio energetico caso 1- Pagina 3 [J]
A.16 Bilancio energetico caso 2 - Pagina 1 [J]
A.17 Bilancio energetico caso 2 - Pagina 2 [J]
A.18 Bilancio energetico caso 2 - Pagina 3 [J]
A.19 Bilancio energetico caso 3 - Pagina 1 [J]
A.20 Bilancio energetico caso 3 - Pagina 2 [J]
A.21 Bilancio energetico caso 3 - Pagina 3 [J]
A.22 Energie Multilayer Timestep $9 \cdot 10^{-10}$ - Pagina 1 [J]
A.23 Energie Multilayer Timestep $9 \cdot 10^{-10}$ - Pagina 2 [J]
A.24 Energie Multilayer Timestep $5 \cdot 10^{-9}$ - Pagina 1 [J]
A.25 Energie Multilayer Timestep $5 \cdot 10^{-9}$ - Pagina 2 [J]
A.26 Energie Multilayer Timestep $9 \cdot 10^{-9}$ - Pagina 1 [J]
A.27 Energie Multilayer Timestep $9 \cdot 10^{-9}$ - Pagina 2 [J]
A.28 Energie Multilayer 22,5° - Pagina 1 [J]
A.29 Energie Multilayer 22,5° - Pagina 2 [J]
A.30 Energie Multilayer 30° - Pagina 1 [J]
A.31 Energie Multilayer 30° - Pagina 2 [J]
A.32 Energie Multilayer 45° - Pagina 1 [J]
A.33 Energie Multilayer 45° - Pagina 2 [J]
A.34 Velocità Angolo relativo - Pagina 1 [m/s]
A.35 Velocità Angolo relativo - Pagina 2 [m/s]
A.36 Energia Mesh 1- Pagina 1 [J]
A.37 Energia Mesh 1- Pagina 2 [J]
A.38 Energia Mesh 2 - Pagina 1 [J]
A.39 Energia Mesh 2- Pagina 2 [J]
A.40 Energia Mesh 2- Pagina 3 [J]
A.41 Energia Mesh 3 - Pagina 1 [J]
A.42 Energia Mesh 3- Pagina 2 [J]
A.43 Energia Mesh 3- Pagina 3 $[J]$
A.44 Velocità iniziale 100m/s - Pagina 1 [J]
A.45 Velocità iniziale 100m/s - Pagina 2 [J]
A.46 Velocità iniziale 100m/s - Pagina 3 [J]
A.47 Velocità iniziale 100m/s - Pagina 4 [J]

A.48 Velocità iniziale 400m/s - Pagina 1 [J]		39
A.49 Velocità iniziale 400m/s - Pagina 2 [J]	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1^d$	10
A.50 Velocità iniziale $800 \text{m/s} [\text{J}] \dots \dots$		11

Elenco delle figure

Classificazione Polimeri 2 Struttura chimica del Kevlar® 6
Sezione lamina [2]
fibre [3]
Dipendenza del modulo tangenziale dalla frazione volumetrica delle fibre [3]
Sforzo-Deformazione fibra e matrice [3]
Comportamento sforzo-deformazione $[1]$
Sezione infinitesima della trave [4]
Scheda *Control_Timestep
Particolare e Filato 2D
Particolare e Filato $3D$
Vincoli SingleLayer
Scheda elementi shell
Scheda elementi solid
Scheda contatto fibra-fibra
Schede contatto fibra-proiettile
Scheda contatti multilayer
Rottura tessuto caso 1
Riduzione velocità caso 1
Rottura tessuto caso $2 \ldots 37$
Riduzione velocità caso 2
Rottura tessuto caso $3 \ldots 38$
Kiduzione velocita caso 3
Rottura tessuto caso 2- Elementi solid

0.9	Rottura tessuto caso 3- Elementi solid
5.10	Tronco di cono
5.11	Proiettili da 180° a 30°
5.12	Energia totale da 180° a 30°
5.13	Velocità da 180° a 30° $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 4$
5.14	Energia assorbita istante per istante
5.15	Energia assorbita
5.16	Angolo di 30°
5.17	Angolo di 120° $\ldots \ldots 5$
5.18	Angolo di 180° $\ldots \ldots 5$
5.19	Angolo di 30°
5.20	Angolo di 120°
5.21	Angolo di 180° $\ldots \ldots 5$
5.22	Energia cinetica proiettile in piombo
5.23	Energia interna proiettile in piombo
5.24	Energia totale proiettile in piombo
5.25	Energia di hourglass proiettile in piombo 5
5.26	Energia di contatto proiettile in piombo
5.27	Energia di hourglass con controllo dell'energia 5
5.28	Deformazione Control_Hourglass di tipo rigido 5
6.1	Mesh multilayer 5
$6.1 \\ 6.2$	Mesh multilayer
$6.1 \\ 6.2 \\ 6.3$	Mesh multilayer 5 Proiettile 5 Energia totale 6
$6.1 \\ 6.2 \\ 6.3 \\ 6.4$	Mesh multilayer 5 Proiettile 5 Energia totale 6 Energia di hourglass 6
$6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5$	Mesh multilayer 5 Proiettile 5 Energia totale 6 Energia di hourglass 6 Energia di contatto 6
6.1 6.2 6.3 6.4 6.5 6.6	Mesh multilayer 5 Proiettile 5 Energia totale 6 Energia di hourglass 6 Energia di contatto 6 Energia cinetica 6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \end{array}$	Mesh multilayer5Proiettile5Energia totale6Energia di hourglass6Energia di contatto6Energia cinetica6Energia interna6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \end{array}$	Mesh multilayer5Proiettile5Energia totale6Energia di hourglass6Energia di contatto6Energia cinetica6Energia interna6Energia interna6Confronto energia interna ed energia cinetica6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \end{array}$	Mesh multilayer 5 Proiettile 5 Energia totale 6 Energia di hourglass 6 Energia di contatto 6 Energia cinetica 6 Energia interna 6 Confronto energia interna ed energia cinetica 6 Angolo relativo di 22,5° 6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \end{array}$	Mesh multilayer 5 Proiettile 5 Energia totale 6 Energia di hourglass 6 Energia di contatto 6 Energia cinetica 6 Energia interna 6 Confronto energia interna ed energia cinetica 6 Angolo relativo di 22,5° 6 Angolo relativo di 30° 6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \\ 6.11 \end{array}$	Mesh multilayer5Proiettile5Energia totale6Energia di hourglass6Energia di contatto6Energia cinetica6Energia interna6Confronto energia interna ed energia cinetica6Angolo relativo di $22,5^{\circ}$ 6Angolo relativo di 30° 6Angolo relativo di 45° 6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \\ 6.11 \\ 6.12 \end{array}$	Mesh multilayer 5 Proiettile 5 Energia totale 6 Energia di hourglass 6 Energia di contatto 6 Energia cinetica 6 Energia interna 6 Confronto energia interna ed energia cinetica 6 Angolo relativo di 22,5° 6 Angolo relativo di 30° 6 Energia cinetica 6 Energia cinetivo di 30° 6 Angolo relativo di 45° 6 Energia cinetica 6 Angolo relativo di 45° 6 Angolo relativo di 45° 6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \\ 6.11 \\ 6.12 \\ 6.13 \end{array}$	Mesh multilayer5Proiettile6Energia totale6Energia di hourglass6Energia di contatto6Energia cinetica6Energia interna6Confronto energia interna ed energia cinetica6Angolo relativo di $22,5^{\circ}$ 6Angolo relativo di 30° 6Energia cinetica6Energia cinetica6Angolo relativo di 30° 6Energia cinetica6Energia cinetica6Angolo relativo di 45° 6Energia cinetica6Energia cinetica6Energia interna6Energia interna6Energia cinetica6Energia cinetica6Energia interna6Energia interna6Energia interna6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \\ 6.11 \\ 6.12 \\ 6.13 \\ 6.14 \end{array}$	Mesh multilayer5Proiettile6Energia totale6Energia di hourglass6Energia di contatto6Energia cinetica6Energia interna6Confronto energia interna ed energia cinetica6Angolo relativo di $22,5^{\circ}$ 6Angolo relativo di 30° 6Energia cinetica6Energia cinetica6Angolo relativo di 45° 6Energia interna6Energia cinetica6Energia cinetica6Angolo relativo di 45° 6Energia cinetica6Energia interna6Energia interna6Energia interna6Energia cinetica6Energia cinetica6Energia interna6Energia interna6Energia interna6Energia interna6Energia di contatto6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \\ 6.11 \\ 6.12 \\ 6.13 \\ 6.14 \\ 6.15 \end{array}$	Mesh multilayer5Proiettile5Energia totale6Energia di hourglass6Energia di contatto6Energia cinetica6Energia interna6Confronto energia interna ed energia cinetica6Angolo relativo di $22,5^{\circ}$ 6Angolo relativo di 30° 6Energia cinetica6Energia cinetica6Angolo relativo di 45° 6Energia interna6Energia cinetica6Energia cinetica6Energia interna6Energia cinetica6Energia cinetica6Energia di contatto6Energia di contatto6Energia di contatto6Energia di hourglass6Energia di hourglass6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \\ 6.11 \\ 6.12 \\ 6.13 \\ 6.14 \\ 6.15 \\ 6.16 \end{array}$	Mesh multilayer 5 Proiettile 5 Energia totale 5 Energia di hourglass 6 Energia di contatto 6 Energia cinetica 6 Energia interna 6 Confronto energia interna ed energia cinetica 6 Angolo relativo di 22,5° 6 Angolo relativo di 30° 6 Energia cinetica 6 Energia interna 6 Energia cinetica 6 Angolo relativo di 22,5° 6 Angolo relativo di 45° 6 Energia cinetica 6 Energia di contatto 6 Energia di hourglass 6 Energia totale 6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \\ 6.11 \\ 6.12 \\ 6.13 \\ 6.14 \\ 6.15 \\ 6.16 \\ 6.17 \end{array}$	Mesh multilayer 5 Proiettile 5 Energia totale 6 Energia di hourglass 6 Energia di contatto 6 Energia cinetica 6 Energia interna 6 Confronto energia interna ed energia cinetica 6 Angolo relativo di 22,5° 6 Angolo relativo di 30° 6 Energia cinetica 6 Energia interna 6 Angolo relativo di 30° 6 Energia interna 6 Energia interna 6 Angolo relativo di 45° 6 Energia interna 6 Energia di contatto 6 Energia di hourglass 6 Energia totale 6 Energia totale 6 Velocità finali 6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \\ 6.11 \\ 6.12 \\ 6.13 \\ 6.14 \\ 6.15 \\ 6.16 \\ 6.17 \\ 6.18 \end{array}$	Mesh multilayer 5 Proiettile 5 Energia totale 6 Energia di hourglass 6 Energia di contatto 6 Energia cinetica 6 Energia interna 6 Confronto energia interna ed energia cinetica 6 Angolo relativo di 22,5° 6 Angolo relativo di 30° 6 Energia cinetica 6 Energia interna 6 Energia cinetica 6 Angolo relativo di 45° 6 Energia interna 6 Energia di contatto 6 Energia interna 6 Energia di contatto 6 Energia di contatto 6 Energia di hourglass 6 Energia totale 6 Velocità finali 6 Mesh 2 6
$\begin{array}{c} 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \\ 6.11 \\ 6.12 \\ 6.13 \\ 6.14 \\ 6.15 \\ 6.16 \\ 6.17 \\ 6.18 \\ 6.19 \end{array}$	Mesh multilayer 5 Proiettile 5 Energia totale 6 Energia di hourglass 6 Energia di intergia 6 Energia cinetica 6 Energia interna 6 Confronto energia interna ed energia cinetica 6 Angolo relativo di 22,5° 6 Angolo relativo di 30° 6 Energia interna 6 Energia interna 6 Angolo relativo di 30° 6 Energia interna 6 Energia interna 6 Angolo relativo di 45° 6 Energia interna 6 Energia di contatto 6 Energia di contatto 6 Energia di contatto 6 Energia di hourglass 6 Energia totale 6 Energia totale 6 Nesh 2 6 Mesh 3 6

6.21	Energia Interna - Variazione Mesh
6.22	Energia di Contatto - Variazione Mesh 71
6.23	Energia di Hourglass - Variazione Mesh
6.24	Mesh 1
6.25	Mesh 2
6.26	Mesh 3
6.27	Deformazione Proiettili
6.28	Mesh 1
6.29	Mesh 2
6.30	Mesh 3
6.31	Velocità finale - Variazione velocità iniziale
6.32	Energia assorbita - Variazione velocità iniziale
7.1	Energia analisi ELFORM
7.2	Deformazione Control_Hourglass di tipo rigido

Capitolo 1 Materiali compositi

1.1 Generalità

Per materiali compositi, genericamente, viene indicata una categoria di materiali caratterizzata dalla presenza di due o più micro o macro-costituenti che differiscono nella forma, nella composizione chimica e che sono essenzialmente insolubili l'uno nell'altro [1]. Generalmente tali materiali sono composi da due fasi:

- Materiale omogeneo detto matrice;
- Materiale con funzione di rinforzo, nella maggior parte delle applicazioni di tipo filiforme, detta fibra.

L'importanza insita nella combinazione di più materiali nasce dalla ricerca di qualità meccaniche superiori rispetto ai singoli componenti.

Vi sono differenze anche nelle proprietà termiche e in quelle chimiche; considerando le proprietà termiche, i compositi hanno:

- coefficienti di dilatazioni inferiori, anche se per opportune combinazioni di matrice e fibre si può avere lo stesso valore dell'acciaio, importante per l'utilizzo combinato dei materiali;
- Coefficienti di conducibilità termica bassi, anche 1000 volte inferiori ai metalli.

In merito alle proprietà chimiche, con particolare attenzione ai compositi in matrice polimerica, si ha un'assenza di corrosione, in quanto la matrice polimerica risulta inattaccabile rispetto ad una vasta gamma di agenti chimici, anche se la corrosione dipende da altri fattori come la temperatura di esercizio, gli stress meccanici e la concentrazione dell'agente corrosivo.

1.2 Matrici

Le matrici hanno il compito di:

- Trasferire i carichi e ridistribuire gli stessi sulle fibre;
- Proteggere le stesse dai fattori corrosivi ambientali;
- Permettere di conservarne l'orientamento iniziale.

Le caratteristiche meccaniche delle matrici sono inferiore a quelle delle fibre. Le matrici possono essere, in funzione del tipo di applicazione:

- Matrici polimeriche;
- Matrici metalliche;
- Matrici ceramiche.

1.2.1 Matrici Polimeriche

Rappresentano il 95% delle applicazioni, sono comunemente dette resine e sono composte da catene polimeriche. I polimeri sono sostanze composte da macromolecole formate dalla successione di un piccolo gruppo molecolare, caratteristico del polimero stesso, detto monomero.

I polimeri si distinguono, in base alle proprietà termiche, in termoplastici e termoindurenti.

Figura 1.1: Classificazione Polimeri

I primi sono caratterizzati da polimeri a catena lineare. Tale polimero, se riscaldato, può raggiungere lo stato liquido per poi tornare allo stato precedente se raffreddato, ciò se non viene superata la temperatura di esercizio massima del materiale. Hanno uno scarso utilizzo a causa della scarsa resistenza alle alte temperature e ai solventi, nonostante abbiano un allungamento a rottura maggiore dei materiali termoindurenti e una migliore tenacità ed un processo di produzione molto breve ma più costoso.

Le resine termoindurenti invece sono costituite da grosse molecole tridimensionali collegate da legami trasversali. Questo tipo di materiale, raggiunto lo stato solido, non può effettuare la transizione a stato liquido. Sono generalmente composti da resina più relativo indurente.

Le più note sono:

- Resine epossidiche;
- Resine poliestere;
- Resine vinil-estere;
- Resine fenoliche.

1.2.2 Matrici Metalliche

Sono matrici principalmente in alluminio, magnesio e titanio, grazie ad un peso ridotto e a delle elevate caratteristiche meccaniche. Rispetto alle matrici polimeriche presentano caratteristiche migliori, a discapito della duttilità e della resistenza a fatica. I tipi di rinforzo utilizzati sono tramite fibre continue, fibre discontinue e particelle.

1.2.3 Matrici Ceramiche

Sono stati recentemente sviluppati compositi con matrice ceramica con il compito di aumentare tenacità e resistenza di quest'ultima, per poter sfruttare l'ottima resistenza dei materiali ceramici alle alte temperature e agli agenti corrosivi. I tipi di rinforzo corrispondono a quelli delle matrici metalliche. Al momento le applicazioni sono molto limitate.

1.3 Fibre

Le fibre sono caratterizzate da diametri da 5 a 15 micron e vengono riunite in fasci. La sezione può essere circolare o ellittica. Queste fungono da materiale di rinforzo e determinano le proprietà meccaniche finali del composito. I tipi di fibre utilizzate sono:

- Vetro;
- Carbonio;
- Aramidiche;
- Boro;
- Carburo di silicio;
- Ceramiche;
- Metalliche (Al, Ti, Tg).

La materia prima può presentarsi in quattro forme fondamentali:

- Stuoie di fibra lunga;
- Fibre frammentate (corte o wiskers);
- Fibra continua in bobina (roving);
- Tessuti.

Tutte queste tipologie possono essere reperite sul mercato in versione secca o pre-impregnata con matrice di polimerizzazione. Quest'ultima variante deve essere mantenuta ad una temperatura prossima ai 0°C per evitare il completamento della polimerizzazione ma ciò può avvenire per un periodo di tempo limitato (10-20 mesi).

1.3.1 Fibra lunga

Vengono utilizzate per componenti ad elevate prestazioni strutturali. Le fibre sono tenute insieme da cuciture trasversali e vengono ritagliate per aderire meglio alla geometria del componente da produrre.

1.3.2 Fibra corta

Prodotte dalla fibra lunga o da scarti di esse, vengono fornite alla rinfusa e vengono inserite nelle presse per stampaggio a iniezione o tramite applicazione a spruzzo.

1.3.3 Roving

Vengono utilizzati processi, generalmente a secco, che permettono di dare alla fibra lunghezze rilevanti e sono generalmente raggruppate in rocchetti.

1.3.4 Tessuti

Il processo di fabbricazione risulta simile a quello dei tessuti tradizionali con la differenza che i costituenti fondamentali del tessuto sono fasci formati da un elevato numero di fibre, indicati con il termine YARN. I tessuti possono essere distinti in

- 2D, quando, in una stratificazione, tra i due piani, o layer, non vi è presenza di fibre intersecate;
- 3D, quando vi è un intreccio tra i vari layer costituenti tutti gli strati del tessuto.

I tessuti 2D sono i più diffusi grazie ad i minor costi di produzione. A loro volta i tessuti 2D hanno differenti tipologie di layout:

- Weaves, intrecciati attraverso un telaio, sono i meno costosi;
- Braids, ottenuti tramite intrecci su un mandrino cilindrico;
- Knits, ottenuti tramite una lavorazione a maglia, unendo yarn di diversi strati di rinforzo mediante fili in poliestere.

L'analisi effettuata ha come oggetto un tessuto con layout di tipo "weaves" ottenuto intrecciando fibre aramidiche.

1.3.5 Fibre Aramidiche

Le fibre aramidiche sono conosciute con il nome commerciale di KEVLAR® (le più utilizzate sono kevlar29® e kevlar49®).

Nascono nel 1965 da un'azienda chimica statunitense, la DuPont.

Figura 1.2: Struttura chimica del Kevlar®

Questo tipo di fibre, pur non avendo modulo elastico e tensione di rottura elevata, si sono dimostrate essere ad alta resilienza, con capacità di assorbimento dell'urto elevata. Tali fibre sono di fatti utilizzate per tecnologie di protezione leggera contro carichi impulsivi, come ad esempio nel campo balistico.

Capitolo 2 Meccanica dei compositi

Le principali differenze del comportamento meccanico dei compositi rispetto ai materiali più comuni sono la disomogeneità e l'anisotropia. Quest'ultima può essere attenuata attraverso un'adeguata stratificazione delle lamine, ovvero il risultato dell'unione di matrice e fibra, secondo diverse orientazioni, che permette di ottenere un laminato con un'anisotropia minore rispetto alle singole lamine.

2.1 Micromeccanica

La micromeccanica, partendo dai materiali che costituiscono la lamina, tenta di definire le caratteristiche del materiale finale.

Le ipotesi di base sono:

- Perfetta adesione tra fibra e matrice;
- Fibre continue e disposte uniformemente;
- Fibre e matrice sono materiali elastici e seguono la legge di Hooke;
- Assenza di vuoti.

Considerando una sezione di lamina, facendo riferimento a [1] è possibile determinare i valori dei moduli elastici e del coefficiente di Poisson del composito a partire da quelli dei materiali costituenti definendo il comportamento a rigidezza.

Figura 2.1: Sezione lamina [2]

Se si indica con P il carico in direzione 1, l'equazione di equilibrio sotto carico lungo la direzione parallela alle fibre risulta:

$$P = P_f + P_m \tag{2.1}$$

Dato che:

$$\sigma = \frac{P}{A} \tag{2.2}$$

$$\sigma_1 A = \sigma_f A_f + \sigma_m A_m \tag{2.3}$$

Dove con i pedici "f" ed "m" si intendono sollecitazioni e sezioni rispettivamente di fibre e matrici.

Dato che la lunghezza di matrice, fibra e composito risultano uguali, l'area delle sezioni può essere sostituita con le frazioni in volume:

$$\sigma_1 = \sigma_f V_f + \sigma_m V_m \tag{2.4}$$

Nell'ipotesi di isodeformazione ho:

$$\varepsilon_1 = \varepsilon_f = \varepsilon_m = \varepsilon \tag{2.5}$$

Avendo ipotizzato che matrice e fibra abbiano comportamento elastico lineare, è possibile riscrivere la (1.4) come:

$$\frac{\sigma_1}{\varepsilon} = \frac{\sigma_f V_f}{\varepsilon_f} + \frac{\sigma_m V_m}{\varepsilon_m} \tag{2.6}$$

E sostituendo il modulo di elasticità secondo la seguente espressione:

$$E = \frac{\sigma}{\varepsilon} \tag{2.7}$$

Si ottiene:

$$E_1 = E_f V_f + E_m V_m \tag{2.8}$$

Tale equazione è conosciuta come "regola delle miscele di composti binari" e consente di calcolare il modulo elastico conoscendo i moduli elastici e le frazioni in volume dei costituenti.

La dipendenza nel caso del modulo elastico longitudinale del composito è rappresentata nel seguente grafico.

Figura 2.2: Dipendenza del modulo longitudinale dalla frazione volumetrica delle fibre [3]

Per determinare il modulo elastico trasversale bisogna considerare una situazione di isosollecitazione, ovvero:

$$\sigma_1 = \sigma_f = \sigma_m \tag{2.9}$$

Nella direzione 2, ovvero perpendicolarmente alle fibre. La deformazione totale del composito sarà:

$$\varepsilon_1 = \varepsilon_f + \varepsilon_m \tag{2.10}$$

Assumendo unitaria la lunghezza del composito e assumendo che l'area perpedicolare allo sforzo non cambi dopo l'applicazione dello stesso si ha:

$$\varepsilon_1 = \varepsilon_f V_f + \varepsilon_m V_m \tag{2.11}$$

Poichè è stata ipotizzata la valenza della legge di Hooke:

$$\varepsilon = \frac{\sigma}{E} \tag{2.12}$$

Possiamo scrivere:

$$\frac{\sigma_1}{E_1} = \frac{\sigma_f}{E_f} V_f + \frac{\sigma_m}{E_m} V_m \tag{2.13}$$

Dividendo successivamente per la tensione ed elaborando il tutto si ottiene:

$$E_1 = \frac{E_f E_m}{V_m E_f + V_f E_m} \tag{2.14}$$

La dipendenza del modulo elastico tangenziale in funzione della frazione in peso delle fibre è rappresentato nella Fig.1.5

Figura 2.3: Dipendenza del modulo tangenziale dalla frazione volumetrica delle fibre [3]

Analogamente è possibile ottenere il modulo di Poisson globale:

$$\nu_1 = \nu_f V_f + \nu_m V_m \tag{2.15}$$

e il modulo di elasticità tangenziale:

$$G_1 = \frac{G_f G_m}{V_m G_f + V_f G_m} \tag{2.16}$$

Risulta necessario analizzare anche il comportamento a resistenza del composito. Lungo la direzione perpendicolare alle fibre, la resistenza è data esclusivamente dalla matrice.

Parallelamente alle fibre si avrà una preponderanza delle fibre fino al cedimento di queste, oltre il quale subentrerà il comportamento della matrice.

Il bilancio di energia in direzione 1 risulta:

$$L = L_f + L_m \tag{2.17}$$

Esprimibile come:

$$\sigma_1 A \varepsilon = \sigma_f A_f \varepsilon + \sigma_m A_m \varepsilon \tag{2.18}$$

Indicando con \mathbf{R}_f il limite della tensione nelle fibre, si otterrà una deformazione massima $\varepsilon_f.$

Figura 2.4: Sforzo-Deformazione fibra e matrice [3]

Utilizzando la regola delle miscele, è possibile identificare un valore di tensione massimo espresso da:

$$\sigma_{max} = R_f V_f + R_{m,f} (1 - V_f) \tag{2.19}$$

In questo modo è possibile determinare la frazione in volume di fibre che permette di migliorare le caratteristiche della matrice:

$$R_m < R_f V_f + R_{m,f} (1 - V_f) \tag{2.20}$$

$$V_f > \frac{R_m - R_{m,f}}{R_f - R_{m,f}}$$
(2.21)

2.1.1 Comportamento meccanico della lamina

Definite le caratteristiche meccaniche della lamina a partire dalle caratteristiche di fibra e matriche, è necessario sviluppare la trattazione della teoria dell'elasticità per un materiale caratterizzato da ortotropia.

Il legame costitutivo può essere definito da una versione ridotta della matrice di Lamè:

$$\begin{cases} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \tau_{12} \\ \tau_{13} \\ \tau_{23} \end{cases} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{21} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{31} & C_{32} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \cdot \begin{cases} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \gamma_{12} \\ \gamma_{13} \\ \gamma_{23} \end{cases}$$
 (2.22)

Nel caso di lamina ortotropa è possibile considerare uno stato di tensione piano a causa dello spessore sottile. Facendo ciò si ottiene:

$$\sigma_{33} \cdot = \tau_{23} \cdot = \tau_{31} = 0 \tag{2.23}$$

Ciò permette di semplificare il legame costitutivo secondo la relazione:

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \tau_{12} \end{cases} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{21} & Q_{22} & 0 \\ 0 & 0 & 2Q_{66} \end{bmatrix} \cdot \begin{cases} \varepsilon_1 \\ \varepsilon_2 \\ \frac{1}{2}\gamma_{12} \end{cases}$$
(2.24)

Dove:

$$Q_{11} = \frac{E_{11}}{(1 - \nu_{12})\nu_{21}} \tag{2.25}$$

$$Q_{22} = \frac{E_{22}}{(1 - \nu_{12})\nu_{21}} \tag{2.26}$$

$$Q_{12} = \frac{E_{11}\nu_{21}}{(1-\nu_{12})\nu_{21}} = \frac{E_{22}\nu_{12}}{(1-\nu_{12})\nu_{21}}$$
(2.27)

$$Q_{66} = G_{12} \tag{2.28}$$

Con E_{11} , E_{22} e G_{12} si indicano rispettivamente i moduli di elsticità longitudinale, trasversale e tangenziale della lamina.

2.1.2 Confronto comportamento Sforzo-Deformazione

Le caratteristiche principali di questo tipo di materiali consistono nella leggerezza, con una densità di gran lunga inferiore ad altri tipi di materiali, come i metalli, unita ad un'elevata resistenza, anche superiore ad alcune leghe di comune utilizzo. La resistenza varia in funzione delle fibre utilizzate. Nella Fig.1.2 è possibile notare un confronto dei diagrammi sforzo deformazione per fibre di carbonio, aramidiche e di vetro.

Figura 2.5: Comportamento sforzo-deformazione [1]

È possibile notare che la resistenza è compresa tra 1700 e 3500 Mpa con un allungamento a rottura che va da 0,4% fino ad un massimo del 4%. Il modulo di elasticità varia da 69 GPa a 413 GPa.

Le fibre di carbonio forniscono una combinazione ottimale tra elevata rigidità, elevata resistenza meccanica e bassa densità, pur presentando un allungamento a rottura molto basso a differenza del Kevlar49® che pur presentando un modulo elastico minore (minor rigidità) hanno un allungamento a rottura maggiore, che permette il loro utilizzo nel campo balistico grazie ad un elevata resistenza all'urto. Le fibre di vetro hanno caratteristiche meccaniche inferiori e una densità maggiore rispetto agli altri tipi di fibre analizzate ma trovano un largo utilizzo grazie al basso costo di produzione.

2.2 Macromeccanica

L'insieme di più lamine costituisce un laminato. Per ridurre l'anisotropia del materiale è possibile disporre le diverse lamine con angolazioni relative differenti. Risulta più efficiente, nei i compositi, disporre la maggior parte delle fibre secondo le direzione dei carichi primari, lasciando solo la stretta quantità nel verso dei carichi secondari per poter garantire integrità alla struttura. Per questo motivo i materiali compositi hanno un'elevata versatilità.

2.2.1 Comportamento meccanico del laminato

L'insieme di più lamine è detto laminato ed è solitamente caratterizzato da un'orientamento diverso delle lamine. La trattazione del comportamento del laminato si basa su alcune ipotesi:

- Le lamine sono perfettamente aderenti;
- il comportamento della lamina rimane invariato nel laminato;
- Il laminato ha un comportamento simile a quello delle piastra di Kirckoff:
 - Spessore costante;
 - Asse retto e perpendicolare al piano medio;
 - Distorsioni presenti solo nella sezione trasversale.

Prendendo in considerazione un laminato costituito da N lamine e considerando l'i-esima lamina, possiamo scrivere l'equazione costitutiva come:

$$\begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases}_i = \begin{bmatrix} \overline{Q} \end{bmatrix}_i \cdot \begin{cases} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{cases}_i \quad 1 \le i \le N$$
 (2.29)

Dove $[\overline{Q}]$ è la matrice di rigidezza, dipendente dall'orientazione, dalla frazione in volume di fibre e dai materiali di fibre e matrice.

Con le ipotesi sopra formulate, è possibile considerare le deformazioni come somma della deformazione di un punto del piano medio del laminato $[\varepsilon^0]$ e della curvatura [k]:

$$\begin{cases} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{cases}_i = \begin{cases} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \\ 14 \end{cases}_i + z \cdot \begin{cases} k_x \\ k_y \\ k_{xy} \\ k_{xy} \end{cases}_i$$
 (2.30)

Andando a sostituire nell'equazione precedente otteniamo:

$$\{\sigma\} = [\overline{Q}]_i \cdot \{\varepsilon^0\} + z \cdot [\overline{Q}]_i \cdot \{k\}$$
(2.31)

L'equazione costitutiva dell'intero laminato si ottiene considerando tutti i carichi esterni a cui esso è sottoposto.

Possiamo esprimere le caratteristiche di sollecitazione come:

$$\begin{cases} N_x \\ N_y \\ N_{xy} \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases} dz$$
 (2.32)

$$\begin{cases} M_x \\ M_y \\ M_{xy} \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases} z \cdot dz$$
 (2.33)

Integrando su tutto lo spessore del laminato:

$$\begin{cases} N_x \\ N_y \\ N_{xy} \end{cases} = \sum_{k=1}^N \int_{h_{k+1}}^{h_k} \begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases} dz$$
 (2.34)

$$\begin{cases}
 M_x \\
 M_y \\
 M_{xy}
\end{cases} = \sum_{k=1}^N \int_{h_{k+1}}^{h_k} \begin{cases}
 \sigma_x \\
 \sigma_y \\
 \tau_{xy}
\end{cases} z \cdot dz$$
(2.35)

Se in tali equazioni, si inserisce l'equazione costitutiva della lamina (2.29) e si integra lungo z, si ottiene una pseudo-equazione costitutiva del laminato:

$$\begin{cases} N \\ M \end{cases} = \begin{bmatrix} A & B \\ B & D \end{bmatrix} \cdot \begin{cases} \varepsilon^0 \\ k \end{cases}$$
 (2.36)

Dove:

$$A = \sum_{k=1}^{N} \overline{Q}_k \cdot (h_{k+1} - h_k)$$
(2.37)

$$B = \frac{1}{2} \sum_{k=1}^{N} \overline{Q}_k \cdot (h_{k+1}^2 - h_k^2)$$
(2.38)

$$D = \sum_{k=1}^{N} \overline{Q}_{k} \cdot (h_{k+1}^{3} - 3h_{k})$$
(2.39)

Se la disposizione delle lamine è simmetrica [B]=[0] e l'equazione sostitutiva si semplifica in:

$$\{N\} = [A]\{\varepsilon^0\} \tag{2.40}$$

$$\{M\} = [D]\{k\}$$
(2.41)

2.2.2 Critieri di resistenza

I criteri di resistenza per un laminato differiscono molto da quelli dei materiali metallici a causa della differente orientazione delle varie lamine.

Ipotizzando uno stato di tensione piano sulla lamina, è possibile definire dei criteri di rottura per il singolo layer.

Criterio della massima tensione

Come per i materiali classici, tale teoria prevede che nessuna tensione debba superare il massimo carico ammissibile:

$$\sigma_1 < \sigma_{1max} \tag{2.42}$$

$$\sigma_2 < \sigma_{2max} \tag{2.43}$$

$$\tau_{12} < \tau_{12max} \tag{2.44}$$

Criterio della massima deformazione

Analogamente al criterio precedente, tale criterio impone che nessuna componente dello stato deformativo del componente deve superare il valore limite:

$$\varepsilon_1 < \varepsilon_{1max}$$
 (2.45)

$$\varepsilon_2 < \varepsilon_{2max}$$
 (2.46)

$$\gamma_{12} < \gamma_{12max} \tag{2.47}$$

In caso di ipotesi di linearità del materiale i due criteri si equivalgono, poichè vale la legge di Hooke:

$$\varepsilon_{imax} = \frac{\sigma_{imax}}{E_{imax}} \tag{2.48}$$

$$\gamma_{ijmax} = \frac{\tau_{ijmax}}{G_{ij}} \tag{2.49}$$

Criterio della massima energia di deformazione

Tale criterio è noto anche come Criterio di Tsai-Hill e impone la seguente disuguaglianza:

$$\left(\frac{\sigma_1}{\sigma_{1max}}\right) + \left(\frac{\sigma_2}{\sigma_{2max}}\right) - \left(\frac{\sigma_1 \sigma_2}{\sigma_{1max}^2}\right) + \left(\frac{\tau_{12}}{\tau_{12max}}\right) \le 1$$
(2.50)

Questo criterio è più conservativo rispetto ai precedenti e permette di tener conto di tutte e tre le componenti della tensione. Tale relazione vale esclusivamente per carichi di trazione; in caso di carichi di compressione bisogna utilizzare una formulazione che tenga conto delle caratteristiche di resistenza a compressione. Tale equazione prende in considerazione la condizione limite; solitamente il termina a sinistra, in uno stato di tensione ammissibile, è strettamente inferiore di 1.

Capitolo 3 Impatto

In questo capitolo verranno analizzate le componenti dell'impatto: in primo luogo sono stati trattati gli urti e successivamente le onde generate dall'urto e la loro propagazione nel componente.

3.1 Urti

Per urto si intende l'interazione tra due corpi estesi che si sviluppa attraverso forze di tipo impulsivo in un tempo molto ridotto.

Considerando l'urto tra due particelle isolate, di massa m_1 ed m_2 e ponendo F_{21} la forza che m_2 esercita su m_1 , si avrà una variazione della quantità di moto della particella pari a:

$$\Delta p_1 = \int_{t_1}^{t_2} F_{21} dt \tag{3.1}$$

Ed analogamente, ponendo come F_{12} la forza che m_1 esercita su m_2 , si avrà una variazione della quantità di moto della particella 2 pari a:

$$\Delta p_2 = \int_{t_1}^{t_2} F_{12} dt \tag{3.2}$$

Considerando la terza legge di Newton, essendo:

$$F_{12} = -F_{21} \tag{3.3}$$

risulta che:

$$\Delta p_1 = \Delta p_2 \tag{3.4}$$

Ciò sta a significare che in un urto si conserva la quantità di moto totale del sistema. Il risultato risulta ovvio considerando che il sistema è isolato, ovvero non esitono forze esterne e le forze interne non provocano variazioni della quantità di moto, essendo appunto interne. Nel caso vi siano forze esterne, si avrebbe un incremento di quantità di moto pari a:

$$\Delta p = \int_{t_1}^{t_2} F^{(ext)} dt = \langle F^{(ext)} \rangle \Delta t \tag{3.5}$$

se la media della forza esterna è piccola, la variazione della quantità di moto dovuta alla forza è trascurabile. Al contrario, generalmente, l'energia cinetica totale del sistema non si conserva.

La conservazione di quest'ultima viene utilizzata per classificare l'urto, che può essere:

- Elastico;
- Anaelastico;
- Completamente anaelastico.

Per identificare i tre casi, si può fare riferimento al coefficiente di restituzione "e":

$$\frac{\Delta E_k}{E_k^i} = \frac{E_k^f - E_k^i}{E_k^i} = e^2 - 1 \tag{3.6}$$

Se il coefficiente è pari ad 1 si parla di urto elastico, se è compreso tra 0 e 1 si tratta di urto anaelastico e se è pari a 0 si tratta di urto completamente anaelastico. A prescindere dal tipo di urto, l'energia totale si conserva, dunque tale proprietà verrà successivamente utilizzata per validare le simulazioni.

3.1.1 Urti elastici

Se le forze interne manifestate durante l'urto risultano conservative, oltre a conservarsi la quantità di moto, si conserva anche l'energia cinetica.

I corpi, all'urto, subiscono deformazioni elastiche per poi tornare alla configurazione precedente all'urto stesso.

3.1.2 Urti anaelastici

Quando in un urto si conserva la quantità di moto in assenza di forze esterne, non si conserva l'energia cinetica e le particelle si separano dopo l'interazione, si parla di urto anaelastico. In questo caso, parte dell'energia cinetica si trasforma in energia di deformazione o in calore.

3.1.3 Urti completamente anaelastici

In questo tipo di urto si ha la massima perdita di energia cinetica e questo avviene quando i due corpi che urtano, successivamente si muovono come un solo corpo di massa pari alla somma delle masse dei corpi.

3.2 Onde

3.2.1 Onde di pressione

Quando un componente riceve dell'energia molto elevata, ad esempio energia cinetica, ad esempio da un corpo che si muove a velocità elevata, si nota che all'impatto si genera un cratere, ma contemporaneamente dalla parte opposta si crea una frattura dovuta alla tensione di trazione, che supera il limite di resistenza del materiale. Lo stato di tensione che si viene a creare dipende dalla parte idrostatica del tensore delle tensioni. Il materiale tende a comportarsi come un fluido.

Quando un corpo viene caricato si genera il tensore delle tensioni:

$$\sigma = \sigma_d + \sigma_h \tag{3.7}$$

Dove σ_d è la parte deviatorica, responsabile della deformazione plastica e σ_h è la parte idrostatica, responsabile della deformazione volumica.

Il materiale viene compresso ed aumenta la velocità del suono nel materiale a causa di un aumento di rigidità. Quando la velocità del suono nel mezzo aumenta si ha la formazione di fenomeni dette onde d'urto. Sono onde di pressione che si muovono con una discontinuità elevata ed una velocità superiore a quella del suono.

Osservando la condizione di un impatto planare tra due corpi si nota che sul corpo che impatta si genera una compressione sulla σ longitudinale; a causa dell'inerzia del corpo, questo non riesce a deformarsi per il modulo di Poisson in direzioni diverse da quella del moto, e si ha quindi la nascita di uno stato di tensione triassiale.

Quando viene generata un'onda di compressione, questa comprime parte del materiale, creando un fronte d'onda. La velocità del fronte sarà maggiore di quella delle particelle compresse, ma essendo queste compresse, hanno una velocità del suono maggiore facendo aumentare, in questo modo, sempre di più la discontinuità. Questo è il meccanismo di formazione di un'onda di pressione. Quando un'onda raggiunge la superficie libera cambia segno, ad esempio, considerando l'impatto tra due corpi o un corpo e una lastra, l'onda di compressione generata raggiunge la superficie libera dall'altra parte della piastra cambiando successivamente di segno: si genera un'onda di trazione in grado di danneggiare il componente, infatti sono le onde di trazione a danneggiare i componenti, e non quelle di compressione.

Lo studio delle onde di pressione avviene utilizzando 5 equazioni in 5 incognite:

- Conservazione della portata;
- Conservazione del momento della quantità di moto;
- Conservazione dell'energia;
- Equazione di stato del materiale;
- Equazioni di vincolo.

3.2.2 Onde elastiche

Considerando una barra cilindrica colpita da un'altra barra con velocità V, è possibile ricavare l'equazione delle onde.

Trascurando l'inerzia e la deformazione lungo le direzioni differenti da quella longitudinale e considerando una sezione infinitesima della barra del tipo in figura:

Figura 3.1: Sezione infinitesima della trave [4]

Partendo dalla seconda legge di Newton:

$$F = m \cdot a \tag{3.8}$$

Che per l'elementino infinitesimo può essere riscritta come:

$$-[A\sigma - A(\sigma + \frac{\delta\sigma}{\delta x}\delta x)] = A\rho\delta x \frac{\delta^2 u}{\delta t^2}$$
(3.9)

Assumendo valida la legge di Hooke, dato che la deformazione è elastica, otteniamo:

$$\frac{\delta}{\delta x} \left[E \frac{\delta u}{\delta x} \right] = \rho \frac{\delta^2 u}{\delta t^2} \tag{3.10}$$
Poichè la deformazione può essere scritta come:

$$\varepsilon = \frac{\delta u}{\delta x} \tag{3.11}$$

Riarrangiando l'equazione e indicando con C_0 la velocità del suono del materiale, si ottiene:

$$C_0 = \sqrt{\frac{E}{\rho}} \tag{3.12}$$

Ci sono cinque diversi tipi di onde:

- Onde longitudinali, dove in moto delle particelle è parallelo alla direzione di propagazione delle onde;
- Onde distorsive (o di taglio), dove il moto delle particelle è perpendicolare a quello di propagazione dell'onda;
- Onde di superficie, sono facilmente rappresentabili come le onde che si generano sulla superficie dell'acqua;
- Onde interfacciali, generate all'interfaccia di due materiali con proprietà diverse che si toccano;
- Onde di flessione, che comprendono la propagazione della flessione in elementi 1D (barra) o 2D (piastre o membrane).

3.2.3 Onde plastiche

Quando in un materiale lo stress supera il limite elastico si genera una deformazione plastica sia in campo statico che in campo dinamico.

Quando viene trasferito un impulso ad un materiale tale che l'apiezza superi il limite elastico, questo impulso si dividerà in un'onda elastica ed una plastica [4]. Le onde plastiche possono essere:

- Onde plastiche su aste;
- Onde plastiche su corpi semi-infiniti;
- Onde di taglio.

La teoria sviluppata da Karman e Duwez per le onde plastiche porta ad una equazione della velocità delle onde plastiche riportata di seguito:

$$V_p = \sqrt{\frac{d\sigma/d\varepsilon}{\rho}} \tag{3.13}$$

Dove $d\sigma/d\varepsilon$ è la pendenza della regione plastica della curva sforzo deformazione. Nel caso elastico la pendenza è sempre maggiore del caso plastico e di conseguenza è possibile dire che la velocità di propagazione delle onde plastiche è inferiore a quella delle onde elastiche.

Il materiale preso in considerazione nella presente tesi è stato considerato avente un comportamento perfettamente elastico fino a rottura, per questo motivo le onde plastiche interessano in maniera marginale ai fini del presente elaborato.

Capitolo 4 Metodo degli Elementi finiti

4.1 LS-Dyna

Il software commerciale utilizzato per simulare il comportamento dei materiali compositi in campo balistico è LS-Dyna. Questo è un software di simulazione multifisica che permette di effettuare analisi dinamiche degli elementi finiti con integrazione esplicita.

4.2 Discretizzazione in spazio

Una struttura, per poter essere studiata, viene normalmentte divisa in parti più semplici di cui sono note le proprietà.

Il metodo degli elementi finiti è una tecnica numerica che permette di risolvere problemi descritti da equazioni differenziali, riducendo queste ultime a equazioni algebriche.

Il componente viene discretizzato tramite elementi di geometria nota, ottenendo una mesh. Ogni tipo di elemento è caratterizzato da una funzione di forma. Queste esprimono il campo di spostamenti rappresentando le variabili nodali. Gli elementi possono essere:

- Monodimensionali, ovvero elementi a due nodi;
- Bidimensionali, che si suddividono in:
 - Triangolari;
 - Quadrangolari;
- Tridimensionali, che, analogamente ai bidimensionali, possonono essere:
 - Tetraedrici;

- Parallelepipedi;

Più nodi vengono utilizzati, più le funzioni di forma sono accurate e permettono una corretta realizzazione del reale comportamento del componente.

A partire dall'elemento e conoscendone matrice di rigidezza e carichi nodali equivalenti, è possibile ottenere la matrice di rigidezza dell'intera struttura assemblando opportunamente le matrici dei singoli elementi [5].

4.3 Discretizzazione in tempo

Successivamente alla discretizzazione in spazio mediante elementi finiti, avviene la discretizzazione in tempo.

Partendo da un sistema differenziale del tipo:

$$\begin{cases} Bu' + Au = f & 0 < t \le T, \\ u(0) = u_0 & \end{cases}$$
(4.1)

E riscrivendola come:

$$u' = -B^{-1}Au + B^{-1}f = F(u,t)$$
(4.2)

La discretizzazione in tempo mediante metodo esplicito, ad esempio il metodo di eulero esplicito, risulta:

$$u^{k+1} = (I - \Delta t B^{-1} A) u^k + \Delta t B^{-1} f(t_k) \quad k \ge 0;$$
(4.3)

Anche riassumibile come:

$$u^{k+1} = u^k + \Delta t F(u^k, t_k) \qquad k \ge 0;$$
 (4.4)

Tale metodo non è incondizionatamente stabile, ma dipende dal time step scelto. Ci sono comunque metodologie implementate nel software per poter aumentare il time step permettendo quindi di diminuire il tempo di elaborazione, come il mass scaling, spiegato successivamente per i vari casi.

4.3.1 Mass scaling

Il mass scaling è un procedimento utilizzato per ottenere simulazioni che normalmente richiederebbero giorni o settimane, in tempi ragionevoli. La durata di una simulazione è funzione del time step, che deve essere inferiore al tempo richiesto da un'onda di pressione per attraversare il più piccolo elemento della mesh per poter garantire la stabilità del metodo numerico. Tale condizione è espressa dalla relazione:

$$\Delta t \le f \cdot \left[\frac{h}{c}\right]_{min} \tag{4.5}$$

Dove con h si intende la dimensione dell'elemento più piccolo del modello, con f si intende il fattore di scala e con c la velocità del suono nel mezzo:

$$c = \sqrt{\frac{E}{\rho}} \tag{4.6}$$

Dove E è il modulo elastico del materiale e ρ è la sua densità. per diminuire il tempo di simulazione si può intervenire su:

- Modulo elastico;
- Densità del materiale;
- Dimensione delgi elementi.

Agire su tali fattori renderebbe il risultato grossolano e poco accurato. Si utilizza il mass scaling.

Applicando il mass scaling, il solutore incrementa la massa degli elementi che sono causa di un time step eccessivamente piccolo in modo da aumentare lo stesso al valore prefissato. L'approccio utilizzato in questa tesi per trovare il valore ottimo di time step in modo da ottenere il minor tempo di elaborazione senza inficiare sull'accuratezza dei risultati e un approccio trial and error.

Il mass scaling utilizzato è, inoltre, definito selettivo, ovvero il software aumenta la massa dei soli elementi aventi time step inferiore e non di tutta la mesh.

									l	Clear	ACC
Use *Parameter Comment									(Sub		
						*CONTROL_T	IMESTEP (1)			
1	DTINIT	TSSFAC	ISDO	TSLIMT	PT2ND	LCTM •	ERODE	MS1ST			
	0.0	0.9000000	0	0.0	-1.000e-08	0	0 ~	0	\sim		
2	DT2MSF	DT2MSLC •	IMSCL	UNUSED	UNUSED	RMSCL	UNUSED	<u>IHDO</u>			
	0.0	0	0	0	0	0.0	0	0	\sim		
						Enter data int	o text field				
С	COMMENT:										

Figura 4.1: Scheda *Control_Timestep

Il mass scaling si ottiene inserendo il valore del time step desiderato in DT2MS con segno negativo se si vuole applicare un mass scaling selettivo. Il time step finale è ottenuto dal software come:

$$TimeStep = DT2MS \cdot TSSFAC \tag{4.7}$$

4.4 Creazione mesh

Sono state analizzate, a parità di proiettile, due tipi differenti di mesh, di dimensioni 64x64 mm, una ottenuta utilizzando elementi bidimensionali SHELL e una ottenuta utilizzando elementi tridimensionali SOLID.

La mesh 2D è stata realizzata a partire da una cella base e successivamente specchiata tramite gli appositi comandi di LS-Dyna, fino ad ottenere la dimensione finale desiderata.

Figura 4.2: Particolare e Filato 2D

La mesh 3D, invece, è stata ottenuta attraverso un software di meshatura basato su PYTHON, inserendo in questo le dimensioni della singola fibra e le dimensioni totali del tessuto.

Figura 4.3: Particolare e Filato 3D

Le dimensioni del proiettile in entrambi i casi sono uguali e gli elementi utilizzati per il proiettile sono di tipo SOLID.

Dopo aver effettuato le analisi e definito il tipo di mesh da utilizzare, è stata creata una mesh multilayer riproducendo il primo layer più volte in direzione z, lasciando un'opportuna distanza tra i layer.

4.4.1 Vincoli

Sono stati applicati vincoli lungo i bordi del tessuto, limitando gli spostamenti e le rotazioni in tutte le direzioni delle fibre lungo y.

Figura 4.4: Vincoli SingleLayer

Successivamente, nell'analisi multilayer sono stati aggiunti i vincoli alle fibre lungo x per poter ottenere risultati più accurati del comportamento del tessuto disponendo i layer con angolazioni relative differenti senza l'influenza della differenza dei vincoli nelle varie direzioni.

Figura 4.5: Vincoli MultiLayer

4.4.2 Modello del materiale

Il materiale utilizzato per il proiettile, in prima apporssimazione, è l'acciaio, modellato come elastico, mentre per il tessuto sono state utilizzate fibre aramidiche, con comportamento perfettamente elastico fino al limite di rottura.

Per la definizione del materiale sono stati scelti due tipi di materiali dalla libreria LS-Dyna, ovvero:

- *MAT_ELASTIC;
- *MAT_PLASTIC_KINEMATIC.

Il primo materiale, *MAT_ELASTIC è stato utilizzato per la caratterizzazione iniziale del proiettile, mentre il secondo, *MAT_PLASTIC_KINEMATIC è stato

utilizzato per caratterizzare il tessuto.

Data l'elevata velocità del proiettile, pari a 200 m/s, l'impatto è classificato come impatto ad alta velocità ed è stato utilizzato il modello del materiale di Cowper-Symonds, rappresentato dalla relazione:

$$\sigma_Y = \sigma_{Y0} \left[1 + \left(\frac{\dot{\varepsilon}}{C}\right)^{\frac{1}{p}} \right] \tag{4.8}$$

Dove $\sigma_Y \in \sigma_{Y_0}$ sono rispettivamente le tensioni di snervamento con o senza effetto della velocità di deformazione $\dot{\varepsilon} \in C \in p$ sono costanti del materiale.

Successivamente sono state effettuate simulazioni ipotizzando il proiettile deformabile, utilizzando il modello *MAT_PLASTIC_KINEMATIC, caratterizzato dalla stessa relazione riportata sopra con l'utilizzo dei parametri C e p che tengono conto della velocità di deformazione. Tale analisi è stata sviluppata in seguito, poichè, per definire in maniera ottimale i parametri di simulazione del filato, senza perturbazioni dovute alla deformazione del proiettile, è risultato più conveniente utilizzare *MAT_ELASTIC.

4.5 Definizione parametri scelti

I materiali utilizzati sono rispettivamente acciaio e piombo per il proiettile e Twaron® per il tessuto.^[1] Inoltre, per la corretta realizzazione del modello è stato necessario definire correttamente i contatti tra i singoli componenti della mesh e i parametri degli elementi utilizzati nella scheda *SECTION.

4.5.1 Materiali

Le caratteristiche dei materiali sono riportate nelle successive tabelle. Per l'acciaio è stato usato il materiale di tipo *MAT_ELASTIC e si ha:

Densità	Modulo Elastico	Poisson
$7.5 \cdot 10^3 \text{ kg/m}^3$	$2.1 \cdot 10^{11} \text{ Pa}$	0.3

 Tabella 4.1:
 Proprietà dell'acciaio

Per il Twaron[®] è stato utilizzato il materiale *MAT_PLASTIC_KINEMATIC e nella scheda sono stati riportati i seguenti valori delle caratteristiche:

Densità	Modulo Elastico	Poisson	Snerv.o	Failure strain
1440 kg/m^3	9.10^{10} Pa	0.3	$3.6 \cdot 10^9 \text{ Pa}$	0.04

Tabella 4.2:Proprietà del Twaron® [6]

Per le successive analisi, considerando il proiettile deformabile, è stato variato il modello utilizzato per il materiale del proiettile, nonchè il materiale stesso. È stato utilizzato il modello *PLASTIC_KINEMATIC, come per il Twaron®, utilizzando i parametri del piombo, ovvero:

Densità	Mod. El.	Poisson	Snervamento	E_{tan}	Beta	С	p
11270 kg/m^3	$1.7 \cdot 10^{10}$ Pa	0.4	$8 \cdot 10^6$ Pa	$1.5 \cdot 10^{7}$	0.1	$600 s^{-1}$	3

Tabella 4.3: Proprietà del Piombo [6]

4.5.2 Section

Nella scheda section è possibile definire le caratteristiche degli elementi. Per gli elementi shell sono stati definiti i valori di ELFORM, NIP e lo spessore degli elementi.

Figura 4.6: Scheda elementi shell

Come è possibile evincere dalla scheda, sono stati scelti i valori di NIP, ovvero il numero di punti di integrazione lungo lo spessore pari a 1, uno spessore degli elementi pari a 0,1 mm ed una formulazione degli elementi definita dal numero 2, corrispondente alla formulazione di Belytschko-Tsay (default). Tale formulazione è estremamente efficace, con un solo punto di integrazione, ma necessita il controllo dell'energia di hourglass per i modi a zero energia, causati dalla sottointegrazione.

Keyword Input Form						
NewID Draw	RefBy	Add	Accept	Delete	Default	Done
Use *Parameter Comment			(Subsys: 1	Model_9_5	HG.k)	Setting
*SECTION_SOLID	_(TITLE) (1)				
TITLE						^
SECID ELFORM AET						
1 1 0 V						
Repeated Data by Button and List		D.+++ (_
		Data		la cast		
		керіа	ce	insert		
		Delet	e	Help		
Reneated Data by Button and List						
Total Card: 1 Smallest ID: 1 Largest ID: 1 Total deleted card: 0						`

I parametri degli elementi solid sono rappresentati nella seguente scheda:

Figura 4.7: Scheda elementi solid

In questo caso viene scelto unicamente il valore di ELFORM, impostato pari ad 1, corrispondente ad un elemento solido a tensione costante. Questa formulazione è ad un solo punto di integrazione e risulta accurata ed efficiente ma necessita anch'essa della stabilizzazione tramite il calcolo dell'energia di hourglass. Sono stati scelti elementi sottointegrati perchè:

- Permettono di svolgere le simulazioni in tempi minori;
- La mesh sarebbe risultata eccessivamente rigida, come sarà possibile notare successivamente.

Queste impostazioni valgono sia per le simulazioni single layer che per le simulazioni multilayer.

4.5.3 Contatti

Per poter esprimere i contatti relativi tra le fibre e tra le fibre e il proiettile, nella scheda *CONTACT è stato selezionato il contatto CONTACT_AUTOMATIC_SURFACE _ TO_SURFACE. Questo tipo di contatto:

- Considera sempre l'offset dello spessore;
- Non ha un orientamento preferenziale, ovvero gestisce il contatto in entrambe le direzioni;
- Non necessita di particolari distinioni tra master e slave;
- Ha un metodo di ricerca bucket sorting efficiente e robusto.

Contatti modello singlelayer

Per modellare il contatto nel caso singlelayer sono state generate tre schede, una per il contatto tra le fibre lungo x e lungo y e due per i contatti delle due fibre con il proiettile.

K	eyword Input I	Form										×
	NewID D	raw				Pick	Add	Accept	Delete	Default	Done	1 (1) X-Y
] Use *Parame	ter Com	ment					(Subsys: 1	Model_9_5	HG.k)	Setting	3 (3) Bullet-Y
			CONTACT_AU	TOMATIC_SUR	FACE_TO_SUF	FACE_(ID/TIT	LE/MPP)_(THERMAL)	(3)			
1	CID	TITLE									^	
1	1	X-Y										
					P1	MPP2						
2	IGNORE	BCKET	LCBCKT	NS2TRK	INITITR		UNUSED		<u>V18</u>			
	0	200		3	2	1.0005		0				
3	UNUSED	CHKSEGS	PENSE	GRPABLE								
		0	1.0	0								
4	SSID •	MSID •	SSTYP	MSTYP	SBOXID •	MBOXID •	SPR	MPR				
	3	2	3 ~	3 V	0	0	0	~ 0	\sim			
5	<u>FS</u>	FD	DC	<u>VC</u>	VDC	PENCHK	<u>BT</u>	DT				
_	0.2000000	0.2000000	0.0	0.0	0.0	0 ~	0.0	1.000	e+20		~	
T	otal Card: 3 S	Smallest ID: 1	Largest ID: 3	Total deleted o	ard: 0						\sim	
											~	

Figura 4.8: Scheda contatto fibra-fibra

Nel contatto fibra-fibra è stato definito un coefficiente d'attrito pari a 0,2 ed un riconoscimento definito come "PART ID", ovvero il numero corrispondente alle parti di mesh rappresentanti le fibre lungo x e le fibre lungo y, selezionando il valore 3 nella scheda alle voci MSTYP e SSTYP rispettivamente per nodi master e slave.

Figura 4.9: Schede contatto fibra-proiettile

Analogamente al contatto fibra-fibra, anche nel contatto fibra-proiettile è stato scelto un tipo di contatto che considera gli ID delle parti.

Contatti modello multilayer

Nel caso multilayer, per limitare il numero di contatti da definire, sono stati creati due differenti definizioni dei valori MSTYP e SSTYP:

- Per i contatti tra fibre del singolo layer è stato utilizzato un valore di 3, ovvero "part ID";
- Per i contatti tra layer diversi è stato scelto un valore pari a 2, corrispondente a "part set ID", ovvero ad una selezioni di parti, in questo caso ogni part set ID corrisponde alla selezione delle fibre nelle direzioni x e y per ogni layer, per un totale di 5 set part;
- Una combinazione dei due metodi è stata utilizzata per il contatto layerproiettile, utilizzando nel caso del layer un valore pari a 2 e per il proiettile un valore pari a 3.

Figura 4.10: Scheda contatti multilayer

I contatti definiti in questa maniera risultano venti:

- Cinque riferiti ai contatti tra le fibre di uno stesso layer;
- Dieci per i contatti reciproci tra i cinque layer;
- Cinque riferiti ai contatti tra i layer e il proiettile.

Successivamente, con il cambio di materiale, si è passati ad una rappresentazione più realistica del fenomeno, creando un tessuto composto da 15 layer con un totale di 135 contatti, proporzionati a quelli precedentemente esposti per i caso formato da 5 layer.

Capitolo 5 Analisi Singlelayer

5.1 Introduzione

In prima analisi sono state conforntate le mesh 2D e 3D in modo da poter ottenere i risultati migliori in termini di tempi di simulazione e accuratezza dei risultati. Il proiettile utilizzato è sferico, con un volume di 998 mm³, valore tenuto in considerazione per le analisi successive al mass scaling.

È stata effettuata un'analisi parallela tra i modelli 2D e 3D variando il time step e confrontando i risultati.

Scelta la mesh e il valore di time step è stata effettuata un'analisi al variare della geometria della punta del proiettile mantenendo costante la massa dello stesso.

Successivamente, mantenenedo invariate i parametri è stato variato il materiale del proiettile, passando da un proiettile rigido in acciaio ad uno deformabile in piombo.

5.2 Mass Scaling-Proiettile rigido

5.2.1 Mass scaling elementi shell

Il valore ottimale del time step è stato ottenuto mediante un approccio trial and error. Il valore massimo definito dal software per non avere instabilità è pari a $1.053 \cdot 10^{-9}$.

Sono stati analizzati i valori di energia totale e la conservazione della stessa per ogni istante di tempo, secondo la relazione:

$$E_{tot} = E_{in} + E_{kin} + E_{hg} + E_{sl} + E_{rw} + E_{damp} = E_{kin}^0 + E_{in}^0 + W_{ext}$$
(5.1)

Dove,

- E_{in} è l'energia interna;
- E_{kin} è l'energia cinetica;
- E_{hg} è l'energia di hourglass, dovuta all'utilizzo di elementi sotto
integrati;
- E_{si} è l'energia di contatto;
- E_{damp} è l'energia di smorzamento, nulla in questo caso;
- E_{rw} è l'energia di rigid wall, nulla in questo caso;
- E_{in}^0 è l'energia interna iniziale, pari a zero;
- E_{kin}^0 è l'energia cinetica iniziale;
- W_{ext} è il lavoro delle forze esterne, nullo.

Eliminando le energie nulle, si ottiene:

$$E_{tot} = E_{in} + E_{kin} + E_{hq} + E_{sl} = E_{kin}^0$$
(5.2)

Sono state effettuate tre diverse simulazioni, con tre diversi valori di time step, uno prossimo al valore fornito dal software, uno inferiore ed uno maggiore a tale valore, come riportato in tabella, comprendente anche l'aumento di massa e il tempo di risoluzione totale.

Time Step [s]	Percentuale di massa aggiunta	Tempo di risoluzione
9.10^{-8}	264%	2 minuti
9.10^{-9}	3,5%	15 minuti
9.10^{-10}	0.006%	2 h e 50 minuti

Tabella 5.1: Tempi di risoluzione in funzione del time step- Mesh shell

Il time step impostato nel primo caso è il più grande simulato. Si può notare che l'aumento della massa è pari a 264% per un tempo di simulazione di 2 minuti. Tale valore risulterebbe già fondamentale nell'esclusione di tale time step ma è stata effettuata comunque un'analisi energetica.

Come è possibile notare dalle tabelle riportate nell'appendice, l'energia totale aumenta del 3% al termine della simulazione. Tale valore potrebbe risultare ottimale, ma è possibile notare l'energia iniziale pari a 156 J, superiore all'energia iniziale effettiva. Confrontando l'energia totale finale con l'energia iniziale reale, pari a 142,2 J, si ottiene un'errore finale del 14%, valore eccessivamente elevato. I problemi dovuti al time step eccessivamente grande è facilmente riscontrabile nella seguente figura, che rappresenta il momento della rottura del tessuto:

Figura 5.1: Rottura tessuto caso 1

Il comportamento delle fibre è di tipo fragile, lontano dalla realtà. Tale comportamento è facilmente rappresentato dalla diminuzione repentina di velocità, riportata nella figura seguente.

Figura 5.2: Riduzione velocità caso 1

Il valore di time step impostato nella seconda simulazione è più prossimo al valore minimo consigliato dal software seppur superiore. L'aumendo di massa in questo caso è pari al 3,5%, valore accettabile ai fini della riduzione del tempo di simulazione, e il tempo di simulazione è approssimativamente di 15 minuti.

L'analisi energetica ha dimostrato un incremento dell'energia totale pari al 1%, come è possibile notare nella tabella in appendice. Tale valore risulta accettabile. Il comportamento del tessuto nel momento della rottura è più aderente alla realtà, con una deformazione del tessuto prima della rottura rappresentato nella seguente figura:

Figura 5.3: Rottura tessuto caso 2

Con una diminuzione della velocità finale a 194 m/s.

Figura 5.4: Riduzione velocità caso 2

L'ultimo time step analizzato è inferiore al massimo calcolato da LS-Dyna. L'aumento di massa è pari allo 0.006% per un tempo di simulazione pari a 2 ore e 50 minuti.

I risulati del bilancio energetico in termini numerici sono riportati in appendice, con un aumento di energia finale dello 0,14%, considerabile quindi nullo.

Il comportamento del tessuto all'impatto è simile al caso 2:

Figura 5.5: Rottura tessuto caso 3

Con una diminuzione della velocità finale a 197 m/s, ovvero un valore paragonabile al caso 2.

Figura 5.6: Riduzione velocità caso 3

5.2.2 Mass scaling elementi solid

Analogamente agli elementi shell, anche gli elementi solid sono stati analizzati accuratamente. A causa di risultati non accettabili sono state effettuate diverse simulazioni con sostanziali differenze rispetto al caso con gli elementi shell. Essendosi manifestato un cedimento nei pressi dei vincoli sono stati analizzati tre differenti casi, con relativi sottocasi:

- Vincoli analoghi agli elementi shell;
- Assenza di vincoli;
- Vincoli analoghi agli elementi shell con l'eliminazione delle fibre adiacenti alla zona dei vincoli.

Il cedimento ottenuto dalla simulazione è rappresentato nelle seguenti figure per ogni caso:

Figura 5.7: Rottura tessuto caso 1- Elementi solid

Figura 5.8: Rottura tessuto caso 2- Elementi solid

Figura 5.9: Rottura tessuto caso 3- Elementi solid

In tutti i casi sono stati rilevati valori negativi di energia di contatto. Tale fenomeno, generalmente, nasce da un'instabilità dovuta a:

- Initial penetration;
- Definizione di contatti ridondanti;
- Time step eccessivamente grande.

Non è stato possibile agire sulla mesh, poichè questa è stata ottenuta tramite il software TexGen, i contatti sono stati definiti univocamente, senza ridondanza e il time step è stato ridotto fino ad ottenere un tempo di simulazione elevato, incompatibile con il tipo di analisi.

Caso 1

Tale caso corrisponde alla mesh con vincoli analoghi alla mesh con elementi shell. Sono state effettuate tre diverse simulazioni al variare del time step. Il time step più piccolo è stato selezionato come termine di paragone per i restati time step a causa di un tempo di simulazione pari a 24 ore, eccessivo per un'analisi single layer.

Time Step [s]	Percentuale di massa aggiunta	Tempo di risoluzione
9.10^{-9}	14%	90 minuti
9.10^{-10}	12%	4 ore
$4.5 \cdot 10^{-10}$	0.16%	25 ore

I valori sono riportati in tabella.

Tabella 5.2: Tempi di risoluzione in funzione del time step-Mesh solid

I risultati ottenuti per ogni time step risultano inaccettabili a causa dell'energia di contatto (sliding energy) che risulta negativa come riportato nelle tabelle successive.

TEMPO	SE-1a	SE-1b	SE-1c
0,000E+00	0,00	0,00	0,00
9,999E-06	0,00	0,00	0,00
2,000E-05	-0,03	-0,01	-0,01
3,000E-05	-0,06	-0,02	-0,03
4,000E-05	-0,11	-0,02	-0,04
5,000E-05	-0,16	0,01	-0,06
5,999E-05	-0,21	-0,07	-0,10
6,999E-05	-0,27	-0,15	-0,16
7,999E-05	-0,31	-0,26	-0,24
8,999E-05	-0,35	-0,40	-0,39
1,000E-04	-0,40	-0,52	-0,51
1,100E-04	-0,44	-0,61	-0,58
1,200E-04	-0,48	-0,67	-0,62
1,300E-04	-0,52	-0,72	-0,66
1,400E-04	-0,55	-0,77	-0,69
1,500E-04	-0,58	-0,80	-0,74
1,600E-04	-0,62	-0,83	-0,78
1,700E-04	-0,65	-0,85	-0,84
1,800E-04	-0,68	-0,88	-0,89
1,900E-04	-0,71	-0,89	-0,91
2,000E-04	-0,74	-0,91	-0,92

Tabella 5.3: Sliding energy Caso 1 [J]

Il caso 2 si differenzia dal precedente per l'eliminazione dei vincoli, in quanto il cedimento avveniva in tale zona. Poichè non è stato riscontrato nessun cedimento è stata effettuata una singola simulazione con un time step pari a $9 \cdot 10^{-10}$.

Anche in questo caso si manifesta lo stesso problema del caso precedente, ovvero valori di energia di contatto negativi.

TE	SE
0,00E+00	0,00
1,00E-05	0,00
2,00E-05	-0,01
3,00E-05	-0,03
4,00E-05	-0,04
5,00E-05	-0,06
6,00E-05	-0,10
7,00E-05	-0,16
8,00E-05	-0,24
9,00E-05	-0,39
1,00E-04	-0,51
1,10E-04	-0,58
1,20E-04	-0,62
1,30E-04	-0,66
1,40E-04	-0,69
1,50E-04	-0,74
1,60E-04	-0,78
1,70E-04	-0,84
1,80E-04	-0,89
1,90E-04	-0,91
2,00E-04	-0,92

Tabella 5.4: Sliding energy Caso 2 [J]

L'ultimo caso analizzato propone la reintroduzione dei vincoli e l'eliminazione delle fibre nella zona del fallimento del caso 1, nei pressi dei vincoli. Sono stati analizzati due time step:

Time Step [s]	Percentuale di massa aggiunta	Tempo di risoluzione
9.10^{-9}	14%	90 minuti
9.10^{-10}	12%	4 ore

Tabella 5.5: Tempi di risoluzione in funzione del time step-Mesh solid

I tempi di simulazione sono analoghi al caso 1.

Anche in questo caso si riscontra lo stesso problema dei casi precedenti.

TEMPO	SE 3a	SE 3b
0,000E+00	0,00	0,00
9,999E-06	0,00	0,00
2,000E-05	-0,04	-0,01
3,000E-05	-0,09	-0,02
4,000E-05	-0,16	-0,03
5,000E-05	-0,22	-0,03
5,999E-05	-0,27	-0,06
6,999E-05	-0,32	-0,10
7,999E-05	-0,37	-0,13
8,999E-05	-0,41	-0,17
1,000E-04	-0,46	-0,19
1,100E-04	-0,50	-0,22
1,200E-04	-0,54	-0,25
1,300E-04	-0,58	-0,29
1,400E-04	-0,62	-0,33
1,500E-04	-0,66	-0,35
1,600E-04	-0,70	-0,37
1,700E-04	-0,74	-0,39
1,800E-04	-0,77	-0,42
1,900E-04	-0,80	-0,45
2,000E-04	-0,83	-0,47

Tabella 5.6: Sliding energy Caso 3 [J]

5.2.3 Conclusioni

La mesh creata con elementi solid non è utilizzabile a causa dei risultati scadenti ottenuti: la scelta ricade sulla mesh creata con elementi shell. Analizzando i risultati ed in particolare il bilancio energetico e il valore dell'aumento percentuale di massa è stato possibile scegliere il valore di time step ottimale per le future simulazioni. Il primo caso riguardante gli elementi shell risulta inaccettabile a causa di un eccessivo aumento sia della massa, pari a circa tre volte il valore iniziale, che dell'energia totale. I casi due e tre risultano molto simili in termini di fallimento della fibra e di velocità finale, per questo è stato deciso un valore del time step corrispondente al secondo caso, poichè permette la corretta rappresentazione del fenomeno con il vantaggio di un tempo di elaborazione minore. Sono stati analizzati anche i valori di hourglass energy, dovuta all'utilizzo di elementi sotto integrati, ed il valore in percentuale di tale energia confrontato con l'energia totale è il 5% della stessa e tale valore risulta accettabile.

Il time step scelto è dunque 9
· 10^{-9} e gli elementi utilizzati per la mesh sono elementi shell.

5.3 Geometria Proiettili-Proiettile rigido

5.3.1 Introduzione

Definito il tipo di elemento da utilizzare e il valore del time step, analogamente al paper [7], sono stati analizzati sei diversi tipi di proiettile, considerando quest'ultimo rigido per poter analizzare esclusivamente la deformazione e la rottura delle fibre, senza l'influenza di altri parametri.

Il volume del proiettile è stato fissato pari a 998 mm³. A causa di problemi di creazione della mesh nella punta del cono è stato necessario la creazione di un proiettile con punta formata da un tronco di cono con diametro minore di 0.2 mm e diametro maggiore di 10 mm. Definiti i diametri, è stata calcolata l'altezza del tronco di con come:

Figura 5.10: Tronco di cono

$$h_t = \frac{1}{tg(\alpha)} \cdot (R - r); \alpha = \frac{\beta}{2}$$

$$44$$
(5.3)

Dove:

- β è l'angolo in punta al proiettile;
- r è il raggio minore;
- R è il raggio maggiore.

Applicando la conservazione del volume sono state ricavate le altezze del cilindro di diametro pari a 10 mm che completa il proiettile:

$$V = A_t + A_c = \frac{1}{3}\pi \cdot (r^2 + rR + R^2) \cdot h_t + \pi \cdot R^2 \cdot h_c$$
 (5.4)

Dalla quale otteniamo:

$$h_c = \frac{V - \frac{1}{3} \cdot (r^2 + rR + R^2) \cdot h_t}{\pi \cdot R^2}$$
(5.5)

I valori ottenuti, facendo variare l'angolo di 30° a partire da 30° fino ad arrivare a 180° sono riportati nella tabella.

Angolo [°]	Angolo [Rad]	h _t	h _c
180°	3,14	0,00	12,71
150°	2,62	1,31	12,27
120°	2,09	2,83	11,75
90°	1,57	$4,\!90$	11,04
60°	1,05	8,49	9,82
30°	0,52	18,29	6,49

Tabella 5.7: Parametri proiettili

I proiettili sono rappresentati nella figura successiva:

Figura 5.11: Proiettili da 180° a 30°

Per ogni proiettile è stata valutata la conservazione dell'energia, la velocità finale e l'energia assorbita dal tessuto.

5.3.2 Bilancio energetico

Utilizzando la stessa equazione utilizzata per l'analisi energetica nel caso della ricerca del mass scaling, ovvero:

$$E_{tot} = E_{in} + E_{kin} + E_{hg} + E_{sl} = E_{kin}^0$$
(5.6)

è stata valutata la conservazione dell'energia e la percentuale di hourglass energy rispetto all'energia totale.

L'energia totale è riportata nel grafico seguente:

Figura 5.12: Energia totale da 180° a 30°

L'errore massimo di tutti i casi è riportato nella seguente tabella:

Angolo	Errore %	% HGE
180°	1,4%	7,5%
150°	1,5%	7,8%
120°	0,7%	$3,\!4\%$
90°	0,5%	$2,\!6\%$
60°	0.4%	2%
30°	0,2%	1,8%

Tabella 5.8: Errori energia totale e di hourglass

Come si può notare l'errore non supera il 2% e l'hourglass energy non supera l'8% dell'energia totale, quindi i risultati possono essere considerati corretti.

5.3.3 Velocità

Sono state analizzate anche le velocità e di conseguenza l'energia assorbita. Quest'ultima include l'energia dissipata per flettere le fibre, l'energia dovuta alla deformazione delle stesse e l'energia dissipata per attrito tra proiettile e fibre e le fibre stesse. Dal modello utilizzato per rappresentare il proiettile, possiamo assumere che l'energia di deformazione del proiettile è trascurabile.

L'energia assorbita è calcolata come il decremento dell'energia cinetica:

$$E_{ass} = \frac{1}{2} \cdot m \cdot (v_{fin}^2 - v_{in}^2)$$
(5.7)

Le velocità per ogni istante di tempo sono riportate di seguito:

Figura 5.13: Velocità da 180° a 30°

Con i valori finali pari a:

Angolo	Velocità finale [m/s]
180°	191,93
150°	191,36
120°	195,36
90°	196,30
60°	196,97
30°	197,28

Tabella 5.9: Velocità finali dei proiettili

Analizzando la velocità per ogni istante di tempo, è stato possibile analizzare l'energia assorbita istante per istante dal tessuto:

Figura 5.14: Energia assorbita istante per istante

Analizzando i valori massimi, ovvero i valori finali, è stato possibile ottenere un andamento generale al variare dell'angolo in punta:

Figura 5.15: Energia assorbita

È possibile notare un aumento graduale dell'energia assorbita tra 30° e 120°, a differenza dell'intervallo tra 120° e 150°, dove l'incremento è più marcato. Successivamente tra 150° e 180° si ha un andamento circa costante, com'è possibile notare dalle velocità praticamente identiche.

Possiamo dividere il grafico in diverse regioni, in funzione del meccanismo di rottura delle fibre: nel primo si ha un modo di fallimento delle fibre dovuto all'incuneamento delle stesse, riscontrabile da 30° fino a 90° dove si nota un basso numero di fibre rotte. Successivamente si ha una zona intermedia di transizione fino a 120° dove l'effetto dovuto al taglio è ancora mitigato dall'incuneamento delle fibre. Oltre 120° di angolo in punta, si trova la terza zona dove risulta preponderante l'effetto di taglio con conseguente aumento delle fibre rotte, poichè un angolo minore in punta favorisce l'attraversamento del tessuto.

La curva è fortemente dipendente dalla velocità iniziale, quindi potrebbe subire variazioni al variare di quest'ultima.

5.3.4 Deformazioni e tensioni

Scelti tre tipi di proiettile, uno per ogni tipo di zona descritta precedentemente, e analizzati quattro istanti di tempo, è possibile notare le differenze dell'impronta lasciata del proiettile:

Figura 5.16: Angolo di 30°

Figura 5.17: Angolo di 120°

Figura 5.18: Angolo di 180°

Si può notare facilmente come confrontando ogni singolo istante di tempo, all'aumentare dell'angolo in punta aumenta anche l'impronta del proiettile sulla fibra. Per il proiettile con 30° in punta si può notare un elevato incuneamento delle fibre con un numero esiguo di fibre rotte. Nel secondo caso si inizia ad intravedere un aumento delle fibre rotte, fino a raggiungere il massimo con il proiettile cilindrico. Sono state rappresentate per i medesimi casi anche le distribuzioni delle tensioni secondo Von Mises. Per il proiettile con punta di 30° è possibile notare come le tensioni si spostino dalla zona centrale ai bordi del foro:

Figura 5.19: Angolo di 30°

Per quanto riguarda il proiettile con angolo di 120°, si nota un aumento dello stress nelle fibre centrali e successivamente al cedimento si nota un aumento delle tensioni lungo i bordi.

Figura 5.20: Angolo di 120°

Nell'ultimo caso si vede una distribuzione di tensioni simile a quella iniziale manifestata nel proiettile con punta da 120°. La differenza consiste nel cedimento di tutte le fibre toccate dal proiettile, data la punta piatta dello stesso.

Figura 5.21: Angolo di 180°

In tutti i casi si nota che le concentrazioni di stress tendono a spostarsi dopo il fallimento della fibra nella zona d'impatto: si tratta delle stress waves che emergono dal centro e propagano verso i bordi fino a rifletteris sui bordi vincolati. Tali onde possono incidere sulla deformazione del tessuto e dipendono molto dall'ampiezza delle zone di contatto tra proiettile e fibre com'è possibile notare nelle figure riportate precedentemente: maggiore è la zona di contatto più le stress waves sono distribuite nel tessuto, infatti nel caso di una punta di 30° le zone con stress waves sono decisamente più piccole rispetto al caso con un angolo in punta di 180°.

5.4 Formulazione degli elementi-Proiettile deformabile

Utilizzando la stessa mesh definita nel Paragrafo "Mass scaling-Proiettile rigido" e lo stesso valore di time step, è stata effettuata un'analisi comparativa variando il tipo di formulazione degli elementi shell, fino ad ora sottointegrati, e il tipo di formulazione degli elementi solid, anch'essa sottointegrata. Sono state effettuate tre simulazioni, utilizzando valori combinati di formulazioni degli elementi.

Caso	ELFORM SHELL	ELFORM SOLID
1	9	1
2	9	2
3	2	1

Nella seguente tabella, sono riportati i valori delle tre simulazioni:

Tabella 5.10: Formulazioni Elementi

Dove i valori di ELFORM utilizzati per gli elementi shell rappresentano:

- 9-Elementi integrati completamente con formulazione Belytschko-Tsay con comportamento membranale;
- 2-Elementi sottointegrati con formulazione Belytschko-Tsay con un solo punto di integrazione lungo lo spessore.

Mentre i valori di ELFORM utilizzati per gli elementi solid rappresentano:

- 2-Elemento completamente integrato;
- 1-Elemento sotto
integrato, rappresentante un elemento solido a tensione costante.

È possibile notare, analizzando le energie dei tre casi che, per quanto riguarda l'energia cinetica, questa tende a diminuire a valori molto simili tra loro in tutti i casi, salvo aumentare in maniera innaturale nei primi due, dove gli elementi risultano totalmente integrati.

Figura 5.22: Energia cinetica proiettile in piombo

Analizzando l'energia cinetica, è possibile notare che nei primi due casi, questa continui ad aumentare a perforazione avvenuta.

Figura 5.23: Energia interna proiettile in piombo

Il software calcola l'energia interna come:

$$IE_{i+1} = IE_i + (stress \cdot incremental strain \cdot volume)_{nellese idirezioni}$$
(5.8)

Ciò potrebbe quindi essere causato da una deformazione anomala del tessuto successiva alla penetrazione o ad un aumento di stress nello stesso. Tale andamento si ripercuote successivamente sull'energia totale:

Figura 5.24: Energia totale proiettile in piombo

Inoltre è facilmente riscontrabile un aumento di energia eccessivo rispetto al caso 3.

Analizzando le energie di hourglass e di contatto è possibile notare che la prima è nulla o quasi nei primi casi e risulta molto elevata nell'ultimo, mentre la seconda presenta un valore finale che risulta minore nel caso 3 per una minore rigidezza del modello.

Figura 5.25: Energia di hourglass proiettile in piombo

Figura 5.26: Energia di contatto proiettile in piombo

È stata dunque scelta una formulazione del tipo 2 per gli elementi shell e del tipo 1 per gli elementi solid.

Caso	% Aumento ET	% HGE
1	4,9%	0%
2	5.5%	0%
3	0,3%	1,9%

I valori finali di aumento di energia sono riportati nella tabella:

Tabella 5.11: Aumento di energia totale

In queste analisi il proiettile non ha subito deformazioni rilevati a causa dello spessore del singolo layer che è pari a 0,2 mm.

5.5 Controllo dell'energia di hourglass-Proiettile Rigido

Non potendo utilizzare elementi integrati completamente, è stata effettuata un'analisi del tipo di controllo di hourglass da implementare. Il controllo può essere di tipo:

- viscous;
- stiffness.

Il primo tiene conto della velocità dei nodi, il secondo dello spostamento degli stessi.

I risultati dell'energia di hourglass in caso di controllo di tipo viscous sono riportati di seguito:

Figura 5.27: Energia di hourglass con controllo dell'energia

È possibile notare una differenza esigua dei tre casi rispetto al caso senza controllo:

Control Type	% Aumento ET	% HGE
1	0,3%	$2,\!3\%$
2	0,3%	2,0%
3	0,4%	2,2%
Nessuno	0,3%	1,9%

Tabella 5.12: Aumento di energia totale e peso hourglass

La risposta del filato per controlli di tipo stiffness sono riportati di seguito:

Figura 5.28: Deformazione Control_Hourglass di tipo rigido

Il filato tende a disintegrarsi, dunque questi tipi di controlli non sono utilizzabili.
Capitolo 6 Analisi Multilayer

6.1 Introduzione

Per l'analisi multilayer è stata realizzata una mesh a partire da quella utilizzata nelle analisi singlelayer, copiando il layer per un totale di quattro volte. Ogni layer è distaziato dal precedente di 0.2mm per non dar luogo ad errori dovuti a penetrazioni iniziali dei layer. Anche questa analisi è stata suddivisa in due step:

- La prima parte tratta il mass scaling e l'analisi dell'angolo reciproco tra i vari layer utilizzando una mesh formata da 5 layer e un proiettile modellato rigido;
- La seconda parte, a partire dai risultati ottenuti precedentemente sfrutta un modello del proiettile deformabile con una mesh formata da 15 layer analizzando anche la risposta del filato a velocità diverse.

La mesh ottenuta è riportata nella seguente figura:

Figura 6.1: Mesh multilayer

È stata utilizzata una forma del proiettile più vicina ai proiettili reali, cercando di mantenerne inalterato il volume.

Figura 6.2: Proiettile

La velocità del proiettile risulta sempre 200 m/s ma sono state variate le condizioni di vincolo, ovvero sono stati vincolati tutti i lati del tessuto, in modo da poter analizzare successivamente l'influenza delle diverse angolazioni relative tra i layer senza avere disturbi dovuti ai diversi vincoli applicati.

6.2 Mass scaling multilayer-Proiettile rigido

È stata analizzata la conservazione dell'energia per tre diversi time step. Secondo la relazione:

$$\Delta t \le f \cdot \left[\frac{h}{c}\right]_{min} \tag{6.1}$$

non dovrebbero esserci dipendenze del time step dal numero di layer, in quanto le dimensioni degli elementi e il materiale non hanno subito variazioni, ma per un'analisi più scrupolosa sono stati analizzati i time step riportati nella tabella seguente:

Caso	Timestep [s]	Tempo di analisi
1	9.10^{-10}	21 ore e 34 min
2	$5 \cdot 10^{-9}$	3 ore e 50 min
3	9.10^{-9}	45 min

Tabella 6.1: Timestep multilayer

Per tutti e tre i casi è stata valutata la conservazione dell'energia, considerando la variazione percentuale dell'energia totale e la percentuale di hourglass energy rispetto all'energia totale.

Timestep [s]	En. Iniz. [J]	En. Fin.[J]	HGE Fin. [J]	Aumento %	HGE $\%$
9.10^{-10}	148,57	150,16	8,94	1,1%	6%
$5 \cdot 10^{-9}$	148,57	150,58	8,76	1,4%	6%
9.10^{-9}	148,57	152,16	11,71	2,4%	7,7%

I risultati sono riportati nella tabella seguente:

Tabella 6.2: Risultati analisi mass scaling multilayer

È possibile notare come in tutti i casi la conservazione dell'energia è rispettata, con una differenza massima, nel caso 3, inferiore al 3%.

Sono state riscontrate, nell'analisi delle singole energie che compongono l'energia totale, delle incongruenze che si sono manifestate come oscillazioni dell'energia. Diminuendo il time step tali discrepanze sparivano, con tale fenomeno rappresentato nei seguenti grafici:

Figura 6.3: Energia totale

Nel grafico precedente è possibile notare come il caso 2 sia più prossimo al caso 1, utilizzato come campione di riferimento, anche se l'errore del caso 3 risulta accettabile, in quanto il grafico è stato scalato in modo da poter cogliere le differenze nei tre casi.

In merito all'energia di hourglass, è possibile notare un andamento simile tra i casi, ad eccezione di un picco finale nel caso 3:

Figura 6.4: Energia di hourglass

Anche l'energia di contatto non riporta differenze eccessive:

Figura 6.5: Energia di contatto

Le differenze tra i tre casi diventano consistenti considerando l'energia cinetica:

Figura 6.6: Energia cinetica

Figura 6.7: Energia interna

È possibile notare un andamento estremamente altalenante in entrambi i tipi di energia considerati, con picchi e valli sempre più grandi all'aumentare del time step. Nel caso 1 tali andamenti atipici sono assenti. Questo fenomeno non influenza l'energia totale, perché, come è possibile notare dalla figura seguente, i picchi dell'energia interna corrispondono alle valli dell'energia cinetica:

Figura 6.8: Confronto energia interna ed energia cinetica

Data l'anomalia riscontrata in quest'analisi è stato scelto un time step inferiore a quello utilizzato per il caso singlelayer, pari a $5 \cdot 10^{-9}$ che permette un'analisi più accurata senza aumentare eccessivamente il tempo di simulazione, che passa da 45 minuti a circa 4 ore.

6.3 Angolo relativo tra i layer-Proiettile rigido

Con il valore individuato precedentemente è stato possibile analizzare l'influenza dell'angolazione relativa di ogni layer rispetto al precedente.

I materiali compositi sono caratterizzati da una direzionalità delle caratteristiche che portano ad una anisotropia del materiale. Per ridurre tale anisotropia si può ricorrere ad una differente orientazione dei diversi layer costituenti un materiale composito. Data la struttura della fibra e la disposizione relativa delle fibre in uno stesso layer di 90°, sono stati analizzati tre differenti casi. Rappresentando l'angolo a partire all'asse x del primo layer e avanzando in senso antiorario, è possibile distinguere i casi come:

• 0°-22.5°-45°-67.5°-90°;

- 0°-30°-60°-90°-120°;
- 0°-45°-90°-135°-180°.

I risultati ottenuti da queste simulazioni sono state confrontate con il caso 2 esaminato nel paragrafo precedente. Le mesh per ogni caso esaminato sono riportate di seguito.

Per il caso con angolo relativo di 22,5°:

Figura 6.9: Angolo relativo di 22,5°

Per il caso di 30°:

Figura 6.10: Angolo relativo di 30°

Per il caso di 45°

Figura 6.11: Angolo relativo di 45°

Per tutti i casi è stata analizzata la conservazione dell'energia, riportata nella tabella:

Angolo	En. Iniz [J]	En. Fin. [J]	Aumento %	% HGE
90°	$148,\!57$	150,58	1,4%	6%
45°	148,57	151,32	1,9%	8%
30°	148,57	150,87	1,5%	7%
22,5°	148,57	150,81	1,5%	7%

Tabella 6.3: Conservazione dell'energia

Sono state inoltre analizzate le singole energie per avere la possibilità di controllare l'andamento altalenante riscontrato precedentemente, confrontandole con l'energia del caso 2 precedentemente analizzato. Analizzando l'energia cinetica e l'energia interna, si ottengono comportamenti estremamente simili: l'energia cinetica diminuisce maggiormente nel caso di layer con angolazioni relative differenti rispetto al caso normale, seppur di poco:

Figura 6.12: Energia cinetica

Analisi Multilayer

Figura 6.13: Energia interna

Per l'energia di contatto si ha un comportamento praticamente identico nei quattro casi analizzati:

Figura 6.14: Energia di contatto

L'energia di hourglass invece presenta delle differenze dovute all'interazione degli elementi durante il contatto, anche se queste differenze non risultano eccessive:

Figura 6.15: Energia di hourglass

L'energia totale, in tutti i casi analizzati, si conserva con un aumento percentuale inferiore al 2% come riportato nella tabella superiore e come è possibile notare dal grafico seguente:

Figura 6.16: Energia totale

6.3.1 Velocità finali

Il fine ultimo dell'analisi consiste nel valutare le velocità finali dei proiettili per ogni caso e valutare le differenze tra di esse. Le velocità finali sono:

Angolo	Vel Fin $[m/s]$
22,5°	182,12
30°	182,32
45°	181,95
90°	182,78

Tabella 6.4: Velocità finali

I valori sono molto vicini tra loro, ma è possibile notare la diminuzione della velocità finale rispetto al caso con assenza di angolo relativo:

Figura 6.17: Velocità finali

Il caso che permette una diminuzione di velocità maggiore rispetto al caso nominale è il caso con un angolo relativo di 45° .

6.4 Variazione Mesh-Proiettile deformabile

Definiti i parametri della simulazione, è stata effettuata un'analisi del comportamento del filato scegliendo come materiale del proiettile il piombo e modellando lo stesso come deformabile. Nei risultati è stato riscontrando un eccessivo aumento di energia di hourglass, per tale motivo è stato deciso di analizzare altri due tipi di mesh simili, ovvero caratterizzate da:

- Stesso numero di fibre lungo x e y;
- Stessa larghezza di fibra, pari a 0,8 mm, e stesso spessore, pari a 0,1mm;
- Dimensione degli elementi simili per non dover incorrere in problemi di time step, poiché quest'ultimo dipende esclusivamente dal materiale, invariato, e dalla dimensione dell'elemento.

La prima mesh analizzata coincide con quella delle simulazioni precedenti. Questa presentava una penetrazione iniziale tra le fibre di uno stesso layer che fino alla simulazione multilayer con 15 strati non aveva creato problemi. Di conseguenza le due mesh successive sono state create cercando di evitare tale problema iniziale. La seconda mesh presenta yarn più distanziati nelle direzioni x e y, la terza invece riporta un distanziamento maggiore nella direzione z. Le due mesh sono riportate di seguito:

Figura 6.18: Mesh 2

Figura 6.19: Mesh 3

I parametri delle simulazioni sono stati considerati costanti nei tre casi, con particolare attenzione al time step, rimasto invariato poichè i valori massimi di time step forniti dal software sono molto simili tra loro:

- Per la mesh 1 si ha un valore di $1,05 \cdot 10^{-9}$;
- Per la mesh 2 si ha un valore di $1,22 \cdot 10^{-9}$;
- Per la mesh 1 si ha un valore di $1,07 \cdot 10^{-9}$.

Sono stati analizzati, infine, tre fattori:

- Conservazione dell'energia;
- Peso percentuale dell'energia di hourglass;
- Velocità finale.

Analizzando l'energia cinetica, possiamo notare che ogni mesh ha una resistenza diversa:

Figura 6.20: Energia Cinetica - Variazione Mesh

La prima mesh riesce ad ottenere una diminuzione di energia cinetica maggiore e con una certa velocità di arresto, la seconda ha un andamento simile alla prima ma con un valore finale superiore, mentre la terza mesh ha una pendenza minore rispetto alle prime due con un andamento intermedio alla fine, con l'energia cinetica finale intermedia tra i due valori analizzati precedentemente. L'energia interna aumenta maggiormente per la prima mesh e in maniera più moderata per le altre mesh analizzate: le mesh 2 e 3 sono molto meno dense rispetto alla prima mesh, quindi il trasferimento di energia risulta minore.

Figura 6.21: Energia Interna - Variazione Mesh

L'energia di contatto aumenta con il cambio mesh:

L'energia di hourglass invece tende a diminuire maggiormente con la seconda mesh:

Figura 6.23: Energia di Hourglass - Variazione Mesh

In tutti i casi la conservazione dell'energia è rispettata:

	%entot	%hge
Mesh 1	5,5%	46,2%
Mesh 2	$3,\!3\%$	$30,\!6\%$
Mesh 3	4,2%	36,4%

Tabella 6.5: Risultati Energetici-Variazione Mesh

L'aumento minore di energia totale corrisponde anche al peso percentuale minore dell'energia di hourglass sul bilancio energetico totale. Sarebbe possibile diminuire maggiormente l'energia di hourglass, raffinando maggiormente la mesh. Questa opzione risulta controproducente perchè aumenta il valore del time step e conseguentemente il tempo di simulazione che al momento si aggira intorno alle 26 ore.

6.4.1 Deformazioni e tensioni

Considerando i modi di deformazione delle tre mesh, è possibile notare come nel primo sia meno evidente la propagazione dell'onda rispetto alle altre mesh create. Tale differenza è dovuta allo spazio lasciato tra le fibre al momento della creazione della mesh: nella prima presa in analisi lo spazio risulta minimo rispetto alle altre due mesh prese in considerazione ed è possibile notarlo dalle deformazioni della mesh. Prendendo in considerazione quattro diversi istanti di tempo, è possibile notare le differenze:

Figura 6.24: Mesh 1

Figura 6.25: Mesh 2

Figura 6.26: Mesh 3

È possibile notare anche una eccessiva deformazione del proiettile nella prima mesh, cosa che non si verifica successivamente.

Figura 6.27: Deformazione Proiettili

Sono state rappresentate le distribuzioni di tensioni in quattro diversi istanti di tempo per non appesantire eccessivamente l'analisi:

- Inizio del contatto;
- Crescita delle tensioni nel primo layer;
- Fallimento primo layer;
- Fallimento ultimo layer

Figura 6.28: Mesh 1

Nella prima mesh l'inizio del contatto conicide con la crescita delle tensioni nel primo layer e nel momento del fallimento di quest'ultimo si ha gia uno stato di tensione elevato sull'ultimo layer. Nella seconda mesh invece i momenti di contatto iniziale e crescita delle tensioni sono ben distinti e al fallimento del primo layer, l'ultimo non mostra tensioni elevate.

Figura 6.29: Mesh 2

Le osservazioni riguardanti la seconda mesh valgono anche per l'utlima analizzata che ha un comportamento molto simile.

Figura 6.30: Mesh 3

6.4.2 Velocità

A causa della diversa conformazione delle mesh, in merito a distanza tra gli yarn nelle direzioni x e y, si ha anche una resistenza diversa, che porta ad una variazione della velocità finale e dell'energia assorbita dal filato, calcolando quest'ultima come:

$$E_{ass} = \frac{1}{2} \cdot m \cdot (v_{in}^2 - v_{fin}^2)$$
(6.2)

Di seguito sono riportati i valori ottenuti per ciascuna mesh:

	Velocità Finale[m/s]	Energia assorbita[J]
Mesh 1	83,7	185,55
Mesh 2	111,88	154,56
Mesh 3	96,85	172,2

Tabella 6.6: Velocità finali ed Energia assorbita - Variazione Mesh

Nonostante la prima mesh risulti la più performante in termini di arresto del proiettile, ha un energia di hourglass dovuta alla distorsione degli elementi che risulta eccessiva. La mesh scelta per l'analisi finale risulta dunque la seconda mesh: è stato preferito un peso minore dell'energia di hourglass rispetto ad un maggior potere di arresto da parte del filato.

6.5 Variazione velocità iniziali-Proiettile deformabile

Avendo definito la mesh ottimale per un'analisi con 15 layer, sono state analizzate diverse velocità, per poter trovare una velocità che risulti prossima alla velocità massima di resistenza. Tale valore è difficilemente ottenibile sperimentalmente: infatti in questo caso si ottiene il limite balistico, indicato come V_{50} . Tale valore si ottiene effettuando un certo numero di prove sperimentali sparando un proiettile a velocità costante: il valore si ottiene se il tessuto sopravvive a tale prova il 50% delle volte. Ottenere il valore di velocità per la quale il tessuto resiste non è facilmente ottenibile attraverso le simulazioni, perchè un approccio trial and error per poter ridurre il range di interesse avrebbe un costo, in termini temporali, elevato. Sono state analizzati altri tre valori di velocità iniziale in aggiunta alla velocità utilizzata precedentemente, di 200 m/s:

- 100 m/s, la quale ha richiesto un tempo di terminazione di $3.5 \cdot 10^{-4}$;
- 400 m/s la quale ha richiesto un tempo di terminazione di $2 \cdot 10^{-4}$
- 800 m/s la quale ha richiesto un tempo di terminazione di $7.5\cdot 10^{-5}$

I tempi di terminazione sono differenti per poter ottimizzare i tempi di simulazione effettivi in quanto una velocità maggiore comporta un tempo di resistenza del filato minore.

Sono stati confrontati i valori di velocità ottenuti, l'energia assorbita e i valori percentuali dell'errore sulla conservazione dell'energia e del peso dell'hourglass sul bilancio energetico.

I valori sono riportati nella tabella

Vel. Iniziale[m/s]	Vel. Finale[m/s]	En. assorbita [J]	%entot	%hge
100	-15,94	56,24	2,8%	28,2%
200	111,88	295,34	$3,\!3\%$	$30,\!6\%$
400	352,16	1597,23	1,2%	10,9%
800	726,27	6866,89	$0,\!6\%$	4,2%

Tabella 6.7: Risultati Variazione velocità iniziale

L'energia di hourglass, come era prevedibile, risulta maggiore nel caso di velocità di 200 m/s: il valore di energia di hourglass, paragonato all'energia totale, risulta minore nei casi di velocità del proiettile più elevata perchè nella computazione dell'energia totale risulta preponderante l'energia cinetica e inoltre, nel caso di un proiettile con velocità di 100 m/s non si ha il fallimento della fibra e quindi solo alcuni elementi cedono e si distorcono, portando ad un valore di hourlgass inferiore del caso con velocità pari a 200 m/s. Quest'ultimo fenomeno risulta meno incisivo dell'aumento dell'energia cinetica.

La velocità finale per il primo caso risulta negativa poichè il filato ha resistito all'impatto e ha fatto rimbalzare il proiettile, a differenza degli altri casi in cui il proiettile è riuscito a passare. Questo comportamento implica che l'ipotetica velocità di resistenza del filato si aggira nell'intorno superiore di 100 m/s.

Figura 6.31: Velocità finale - Variazione velocità iniziale

L'andamento della velocità, se si prendono in considerazione i quattro casi, risulta quasi lineare. L'energia assorbita dal filato è calcolata come:

$$E_{ass} = \frac{1}{2} \cdot m \cdot (v_{in}^2 - v_{fin}^2)$$
(6.3)

Nel caso di fallimento del filato.

$$E_{ass} = \frac{1}{2} \cdot m \cdot (v_{in}^2) \tag{6.4}$$

Nel caso in cui il filato non fallisse e la velocità finale, in valore assoluto, fosse diversa da zero, perché il filato ha assorbito completametne l'energia cinetica del proiettile e ne ha invertito il verso del moto cedendone nuovamente una parte al proiettile.

Figura 6.32: Energia assorbita - Variazione velocità iniziale

L'energia assrobita ha un andamento quasi parabolico, come era facile attendersi dato l'andamento quasi lineare della velocità.

Capitolo 7 Conclusioni

Le analisi singlelayer hanno permesso di trovare, in tempi ristretti, i valori ottimali di simulazione come:

- Tipologia di elementi;
- Time step;
- Formulazione degli elementi.

Le analisi effettuate hanno riportato un'impossibilità di utilizzo di elementi solid per la riproduzione della mesh in quanto in contrasto con il tentativo di ottenere risultati attendibili in tempi relativamente brevi.

Il problema principale in questo lavoro di tesi è stato il ridimensionamento dell'energia di hourglass nelle analisi multilayer. Empiricamente, l'energia di hourglass deve corrispondere, per ogni componente della mesh al massimo al 10% del picco massimo dell'energia interna. Nonostante le simulazioni effettuate e i tentativi di ridimensionamento di tale energia, non è stato possibile raggiungere tale valore.

Sono stati effettuati tentativi di utilizzo di formulazione degli elementi con integrazione completa per eliminarne l'infulenza anche in caso di mesh singlelayer: tale ipotesi risulta controproducente poichè tale formulazione comporta una rigidezza eccessiva, sia per gli elementi shell che compongono il tessuto, che per gli elementi solid che compongono il proiettile e inoltre non era rispettata la conservazione dell'energia a causa di un aumento eccessivo di energia interna e ad un aumento a gradino dell'energia cinetica, riscontrabili nelle immagini seguenti.

Conclusioni

Figura 7.1: Energia analisi ELFORM

Il valori di energia di hourglass, accettabili nel caso singlelayer, risultano eccessivi nel caso di modellazione numerica multilayer con 15 strati: è stato necessario effettuare analisi ulteriori. In primo luogo sono stati analizzati i diversi controlli dell'energia di hourglass che possono essere di tipo:

- viscoso, ovvero basato sulle velocità nodali;
- rigido, ovvero basato sugli spostamenti nodali.

Il primo tipo non ha riportato variazioni significative delle energie, il secondo tipo ha influito negativamente portando alla disintegrazione totale del filato in seguito al fallimento della zona di impatto.

Figura 7.2: Deformazione Control_Hourglass di tipo rigido

Successivamente è stata variata la mesh, producendo filati meno fitti e con diverse dimensioni degli elementi, poichè un buon metodo per ridurre tale energia è infittire la mesh. Le mesh analizzate hanno riportato valori di timestep massimo diversi e i risultati hanno portato ad un miglioramento importante ma non soddisfacente. Infittire maggiormente la mesh comporta un miglioramento dei risultati da un lato, ma un peggioramento delle tempistiche di simulazione, poichè un elemento più piccolo necessita di un timestep più piccolo e dunque di più tempo di simulazione che nel caso di filati multilayer è di circa 26 ore. Anche in questo caso, il controllo dell'energia di hourglass ha dato gli stessi risultati precedentemente enunciati.

Appendice A

Bilanci energetici

A.1 Bilanci Energetici Singlelayer Mass Scaling

TEMPO [s]	KE	IE	TE	HGE	SE	% TE	%HGE
0	156,41	0	156,41	0	0	0%	0%
2,97E-06	156,41	0	156,41	0	0	0%	0%
5,94E-06	156,41	0	156,41	0	0	0%	0%
8,91E-06	$155,\!6$	0,32	156,46	0,02	0,51	0%	0%
1,197E-05	154,82	0,66	156,2	0,05	0,67	0%	0%
1,494E-05	154,88	1,09	156,86	0,07	0,81	0%	0%
1,791E-05	155,07	1,41	157,61	0,1	1,03	1%	0%
2,097E-05	155,44	1,64	158,46	0,13	1,25	1%	0%
2,394E-05	155,47	1,81	158,86	0,16	1,42	2%	0%
2,7E-05	$155,\!45$	1,91	159,09	0,21	1,53	2%	0%
2,997E-05	$155,\!47$	1,97	159,34	0,25	1,64	2%	0%
3,294E-05	$155,\!37$	2,01	159,43	0,31	1,74	2%	0%
3,6E-05	$155,\!35$	2,03	159,56	0,37	1,82	2%	0%
3,897E-05	155,26	2,05	159,65	0,44	1,9	2%	0%
4,194E-05	155,2	2,06	159,74	0,52	1,97	2%	0%
4,5E-05	155,11	2,09	159,84	0,59	2,05	2%	0%
4,797E-05	154,99	2,11	159,89	0,67	2,12	2%	0%
5,094E-05	154,84	2,15	159,94	0,75	2,2	2%	0%
5,4E-05	154,75	2,18	160,01	0,83	2,26	2%	1%
5,697E-05	154,64	2,22	160,09	0,91	2,32	2%	1%
5,994E-05	154,51	2,26	160,15	0,98	2,4	2%	1%
6,3E-05	154,36	2,28	160,17	1,06	2,47	2%	1%

Tabella A.1: Calcoli energetici caso 1 elementi shell - Pagina 1 [J]

Bilanci energetici

6,597E-05	154,22	2,32	160,21	1,15	2,53	2%	1%
6,894E-05	154,15	2,29	160,26	1,22	2,59	2%	1%
7,2E-05	154,06	2,27	160,27	1,3	2,64	2%	1%
7,497E-05	154	2,27	160,32	1,37	2,67	2%	1%
7,794E-05	153,96	2,24	160,37	1,44	2,72	3%	1%
8,1E-05	153,89	2,21	160,38	1,51	2,77	3%	1%
8,397E-05	153,86	2,19	160,43	1,57	2,81	3%	1%
8,694E-05	153,82	2,16	160,47	1,65	2,84	3%	1%
9E-05	153,78	2,13	160,5	1,71	2,88	3%	1%
9,297E-05	153,74	2,12	160,53	1,77	2,89	3%	1%
9,594E-05	153,71	2,1	160,56	1,83	2,91	3%	1%
9,9E-05	153,66	2,11	160,58	1,88	2,93	3%	1%
0,00010197	153,65	2,11	160,62	1,94	2,92	3%	1%
0,00010494	153,61	2,1	160,65	2	2,94	3%	1%
0,000108	153,56	2,1	160,68	2,07	2,94	3%	1%
0,00011097	153,49	2,12	160,69	2,14	2,94	3%	1%
0,00011394	153,43	2,13	160,71	2,21	2,94	3%	1%
0,000117	153,37	2,14	160,73	2,27	2,95	3%	1%
0,00011997	153,32	2,16	160,77	2,33	2,96	3%	1%
0,00012294	153,28	2,15	160,79	2,39	2,96	3%	1%
0,000126	153,23	2,15	160,82	2,45	2,98	3%	2%
0,00012897	153,2	2,16	160,85	2,51	2,97	3%	2%
0,00013194	153,16	2,15	160,86	2,57	2,98	3%	2%
0,00013491	153,11	2,16	160,89	2,63	2,99	3%	2%
0,00013797	153,08	2,17	160,94	2,7	2,99	3%	2%
0,00014094	153,01	2,17	160,95	2,78	2,99	3%	2%
0,00014391	152,94	2,18	160,96	2,84	3	3%	2%
0,00014697	152,85	2,19	160,98	2,95	2,98	3%	2%
0,00014994	152,8	2,19	160,98	3,01	2,98	3%	2%
0,00015291	152,76	2,2	161,04	3,11	2,97	3%	2%
0,00015597	152,74	2,21	161,04	3,15	2,95	3%	2%
0,00015894	152,71	2,22	161,08	3,21	2,94	3%	2%
0,00016191	152,69	2,21	161,1	3,26	2,93	3%	2%
0,00016497	152,67	2,22	161,13	3,32	2,92	3%	2%
0,00016794	152,65	2,21	161,15	3,37	2,92	3%	2%
0,00017091	152,59	2,22	161,14	3,42	2,9	3%	2%
0,00017397	152,55	2,23	161,16	3,48	2,9	3%	2%
0,00017694	152,51	2,23	161,17	3,53	2,89	3%	2%

Tabella A.2: Calcoli energetici caso 1 elementi shell - Pagina 2 $\left[J \right]$

Bilanci energetici

0,00017991	152,5	2,23	161,2	3,58	2,89	3%	2%
0,00018297	152,43	2,24	161,18	3,64	2,87	3%	2%
0,00018594	152,38	2,25	161,18	3,68	2,86	3%	2%
0,00018891	152,31	2,26	161,16	3,75	2,84	3%	2%
0,00019197	152,26	2,27	161,15	3,79	2,83	3%	2%
0,00019494	152,21	2,27	161,16	3,86	2,82	3%	2%
0,00019791	152,2	2,29	161,18	3,9	2,79	3%	2%
0,00020097	152,17	2,3	161,18	3,95	2,77	3%	2%
0,00020394	152,14	2,31	161,2	4	2,75	3%	2%
0,00020691	152,12	2,32	161,22	4,06	2,73	3%	3%
0,00020997	152,11	2,33	161,24	4,1	2,7	3%	3%
0,00021294	152,09	2,34	161,26	4,15	2,69	3%	3%
0,00021591	152,07	2,35	161,27	4,19	2,67	3%	3%
0,00021897	152,06	2,35	161,31	4,25	2,65	3%	3%
0,00022194	152,05	2,36	161,33	4,3	2,62	3%	3%
0,00022491	152,02	2,36	161,33	4,33	2,61	3%	3%
0,00022797	152,03	2,38	161,37	4,39	2,57	3%	3%
0,00023094	151,97	2,38	161,35	4,45	2,55	3%	3%
0,00023391	151,98	2,39	161,36	4,49	2,51	3%	3%
0,00023697	151,97	2,4	161,38	4,54	2,48	3%	3%
0,00023994	151,97	2,4	161,39	4,58	2,45	3%	3%
0,00024291	151,94	2,4	161,42	4,64	2,43	3%	3%
0,00024597	151,94	2,4	161,43	4,68	2,41	3%	3%
0,00024894	151,89	2,41	161,42	4,72	2,4	3%	$\overline{3\%}$

Tabella A.3: Calcoli energetici caso 1 elementi shell - Pagina 3 $\left[J \right]$

Bilanci energetici

TEMPO [s]	KE	IE	TE	HGE	SE	% TE	%HGE
0	142,2	0	142,2	0	0	0%	0%
2,997E-06	142,2	0	142,2	0	0	0%	0%
5,994E-06	142,2	0	142,2	0	0	0%	0%
8,991E-06	142,19	0	142,21	0	0	0%	0%
1,1997E-05	$142,\!18$	0	142,21	0,01	$0,\!01$	0%	0%
1,4994E-05	$142,\!16$	0	142,21	0,02	0,02	0%	0%
1,7991E-05	$142,\!15$	$0,\!01$	142,21	$0,\!03$	$0,\!03$	0%	0%
2,0997E-05	$142,\!13$	0,02	142,21	$0,\!03$	$0,\!03$	0%	0%
2,3994E-05	142,1	0,03	142,21	0,04	0,04	0%	0%
2,7E-05	142,08	0,04	142,22	0,04	$0,\!05$	0%	0%
2,9997E-05	$142,\!05$	0,06	142,22	$0,\!05$	$0,\!06$	0%	0%
3,2994E-05	142,02	0,09	142,22	$0,\!05$	$0,\!07$	0%	0%
3,6E-05	141,98	0,12	142,23	0,06	0,08	0%	0%
3,8997E-05	$141,\!93$	$0,\!15$	142,24	$0,\!07$	$0,\!09$	0%	0%
4,1994E-05	141,88	$0,\!19$	142,24	0,07	0,1	0%	0%
4,5E-05	141,82	0,24	142,25	0,08	0,12	0%	0%
4,7997E-05	141,69	$0,\!35$	142,26	0,09	0,13	0%	0%
5,0994E-05	$141,\!47$	$0,\!55$	142,27	0,1	0,16	0%	0%
5,4E-05	141,12	0,88	142,28	0,1	0,18	0%	0%
5,6997E-05	$140,\!63$	$1,\!36$	142,3	0,11	0,2	0%	0%
5,9994E-05	$139,\!98$	$1,\!98$	142,31	0,12	0,23	0%	0%
6,3E-05	$139,\!16$	2,77	142,32	$0,\!13$	$0,\!26$	0%	0%
6,5997E-05	$139,\!45$	2,24	142,45	0,27	0,49	0%	0%
6,8994E-05	139,24	1,79	142,68	$0,\!69$	0,96	0%	0%
7,2E-05	$139,\!08$	$1,\!26$	$142,\!85$	1,14	$1,\!37$	0%	1%
7,4997E-05	$138,\!49$	1,27	$142,\!98$	$1,\!62$	$1,\!6$	1%	1%
7,7994E-05	137,75	$1,\!51$	$143,\!05$	2	$1,\!8$	1%	1%
8,1E-05	$137,\!17$	$1,\!68$	$143,\!15$	2,32	$1,\!98$	1%	2%
8,3997E-05	$136,\!84$	$1,\!63$	143, 19	$2,\!56$	$2,\!16$	1%	2%
8,6994E-05	$136,\!59$	1,48	143,23	2,83	2,32	1%	2%
9E-05	$136,\!39$	$1,\!32$	$143,\!27$	$3,\!09$	$2,\!47$	1%	2%
9,2997E-05	$136,\!29$	1,1	$143,\!3$	$3,\!34$	$2,\!57$	1%	2%
$9,5994\overline{\text{E-}05}$	136, 15	$0,\!\overline{97}$	143,33	$3,\!58$	$2,\overline{63}$	1%	2%
9,9E-05	$136,\!04$	0,86	143,36	3,81	$2,\!65$	1%	3%
$0,0001\overline{01997}$	135,8	0,86	143,37	3,99	2,72	1%	3%
$0,0001\overline{04994}$	$135,\!56$	$0,\!88$	143,39	4,18	2,78	1%	3%
0,000108	$135,\!33$	0,91	$143,\!41$	4,36	$2,\!81$	1%	3%

Tabella A.4: Calcoli energetici caso 2 elementi shell - Pagina 1 $\left[J \right]$

D • 1 •	
Bilanci	energetici
Difanci	CHUIGUUU
	0

0.000110007	125.9	0.91	1/2/2	1 56	2.85	107	20%
0,000110997	100,2	0,01	140,40	4,50	2,00	1/0	J/0 207
0,000113994	135,09	0,72	143,44	4,74	2,89	1%	3%
0,000117	135,02	0,64	143,47	4,9	2,92	1%	3%
0,000119997	135	$0,\!58$	143,5	5,01	2,91	1%	3%
0,000122994	134,98	$0,\!54$	143,5	5,08	2,91	1%	4%
0,000126	134,94	0,52	143,51	5,14	2,91	1%	4%
0,000128997	134,9	0,51	143,51	5,19	2,91	1%	4%
0,000131994	134,87	0,51	143,51	5,23	2,9	1%	4%
0,000135	134,84	0,51	143,52	5,27	2,9	1%	4%
0,000137997	134,8	0,51	143,52	5,32	2,89	1%	4%
0,000140994	134,77	0,51	143,52	5,36	2,88	1%	4%
0,000143991	134,75	0,51	143,53	5,39	2,88	1%	4%
0,000146997	134,73	0,51	143,53	5,43	2,87	1%	4%
0,000149994	134,71	0,51	143,53	5,46	2,86	1%	4%
0,000152991	134,69	0,51	143,53	5,49	2,85	1%	4%
0,000155997	134,66	0,51	143,54	5,52	2,84	1%	4%
0,000158994	134,64	0,51	143,54	$5,\!57$	2,82	1%	4%
0,000161991	134,63	0,51	143,54	5,6	2,8	1%	4%
0,000164997	134,61	0,51	143,54	5,64	2,79	1%	4%
0,000167994	134,6	0,51	143,55	5,67	2,76	1%	4%
0,000170991	134,58	0,51	143,55	5,71	2,74	1%	4%
0,000173997	134,57	0,51	143,55	5,73	2,73	1%	4%
0,000176994	134,55	0,51	143,55	5,76	2,73	1%	4%
0,000179991	134,54	0,51	143,55	5,78	2,71	1%	4%
0,000182997	134,53	0,52	143,55	5,81	2,7	1%	4%
0,000185994	134,51	0,52	143,55	5,84	2,69	1%	4%
0,000188991	134,49	0,52	143,56	5,87	2,68	1%	4%
0,000191997	134,47	0,52	143,56	5,89	2,68	1%	4%
0,000194994	134,46	0,52	143,56	5,92	2,66	1%	4%
0,000197991	134,44	0,52	143,56	5,96	2,64	1%	4%

Tabella A.5: Calcoli energetici caso 2 elementi shell
- Pagina 2 $\left[J \right]$

Bilanci energetici

0,000200997	134,43	0,52	143,56	6	2,62	1%	4%
0,000203994	134,4	0,52	143,56	6,04	2,6	1%	4%
0,000206991	134,38	0,51	143,56	6,07	2,6	1%	4%
0,000209997	134,35	$0,\!52$	143,57	6,11	2,59	1%	4%
0,000212994	134,33	0,52	143,56	6,17	2,55	1%	4%
0,000215991	134,31	0,51	143,57	6,22	2,53	1%	4%
0,000218997	134,28	0,51	143,57	6,27	2,5	1%	4%
0,000221994	134,26	0,51	143,57	6,33	2,48	1%	4%
0,000224991	134,25	0,51	143,57	6,39	2,42	1%	4%
0,000227997	134,22	0,51	143,57	6,44	2,41	1%	4%
0,000230994	134,2	0,51	143,58	6,48	2,39	1%	5%
0,000233991	134,19	0,5	143,58	6,5	2,38	1%	5%
0,000236997	134,17	0,5	143,58	6,53	2,37	1%	5%
0,000239994	134,16	$0,\!5$	143,58	6,55	2,36	1%	5%
0,000242991	134,15	0,5	143,58	6,57	2,36	1%	5%
0,000245997	134,14	$0,\!5$	143,58	6,59	2,35	1%	5%
0,000248994	134,13	$0,\!5$	143,58	6,6	2,35	1%	5%

Tabella A.6: Calcoli energetici caso 2 elementi shell- Pagina 3 [J]

Bilanci energetici

TEMPO [s]	KE	IE	TE	HGE	SE	% TE	%HGE
0	142,2	0	142,2	0	0	0%	0%
2,9997E-06	142,2	0	142,2	0	0	0%	0%
5,9994E-06	142,2	0	142,2	0	0	0%	0%
8,9991E-06	142,2	0	142,2	0	0	0%	0%
1,19997E-05	142,2	0	142,21	0	0	0%	0%
1,49994E-05	142,21	0	142,21	0	0	0%	0%
1,8E-05	142,21	0	142,21	0	0	0%	0%
2,09997E-05	142,21	0	142,21	0	0	0%	0%
2,39994E-05	142,21	0	142,21	0	0	0%	0%
2,7E-05	142,21	0	142,21	0	0	0%	0%
2,99997E-05	142,21	0	142,21	0	0	0%	0%
3,29994E-05	142,21	0	142,21	0	0	0%	0%
$3,\!6E-05$	142,21	0	142,22	0	0	0%	0%
3,89997E-05	142,22	0,01	142,22	0	0	0%	0%
4,19994E-05	142,18	0,04	142,22	0	0	0%	0%
4,5E-05	142,1	0,11	142,22	0,02	0	0%	0%
4,79997E-05	141,96	0,22	142,21	0,05	-0,02	0%	0%
5,09994E-05	141,74	0,41	142,21	0,07	-0,02	0%	0%
5,4E-05	141,44	0,69	142,2	0,1	-0,03	0%	0%
5,69997E-05	141,01	1,09	142,19	0,12	-0,03	0%	0%
5,99994 E-05	140,44	1,62	142,18	0,14	-0,03	0%	0%
6,3E-05	139,75	2,28	142,17	0,17	-0,03	0%	0%
6,59997E-05	139,34	0,85	142,34	1,41	0,75	0%	1%
6,89994E-05	139,01	0,66	142,36	1,79	0,9	0%	1%
7,2E-05	138,73	0,53	142,36	2,1	1,01	0%	1%
7,49997E-05	138,5	0,54	142,37	2,29	1,04	0%	2%
7,79994E-05	138,31	0,31	142,37	2,67	1,09	0%	2%
8,1E-05	138,16	0,29	142,38	2,85	1,07	0%	2%
8,39997E-05	$138,\!07$	0,23	142,38	3,04	1,04	0%	2%
8,69994E-05	138,01	0,18	142,39	3,18	1,03	0%	2%
9E-05	137,98	0,18	142,4	3,24	1	0%	2%
9,29997E-05	137,94	0,19	142,4	3,29	0,98	0%	2%
9,59994E-05	137,92	0,18	142,41	3,33	0,98	0%	2%
9,9E-05	137,91	0,18	142,41	$3,\!35$	0,97	0%	2%
0,000102	137,9	0,17	142,41	3,36	0,97	0%	2%
0,000104999	137,9	0,17	142,41	3,39	0,95	0%	2%
0,000108	137,9	0,17	142,42	3,42	0,93	0%	2%
0,000111	137,9	$0,\!17$	142,41	3,42	0,92	0%	2%

Tabella A.7: Calcoli energetici caso 3 elementi shell- Pagina 1 [J]

D • 1	•	
Bilai	nci	energetici
Dia	101	CHUIGUNUI
		0

0,000113999	137,89	0,17	142,41	3,43	0,92	0%	2%
0,000117	137,9	0,17	142,42	3,43	0,91	0%	2%
0,00012	137,89	0,17	142,42	3,44	0,91	0%	2%
0,000122999	137,89	0,17	142,41	3,44	0,91	0%	2%
0,000126	137,89	0,17	142,41	3,45	0,9	0%	2%
0,000129	137,89	0,17	142,42	3,45	0,9	0%	2%
0,000131999	137,89	0,17	142,42	3,45	0,9	0%	2%
0,000135	137,89	0,17	142,42	3,46	0,89	0%	2%
0,000138	137,89	0,17	142,42	3,46	0,89	0%	2%
0,000140999	137,89	0,17	142,42	3,46	0,89	0%	2%
0,000143999	137,89	0,17	142,42	3,46	0,89	0%	2%
0,000147	137,89	0,17	142,42	3,46	0,89	0%	2%
0,000149999	137,89	0,17	142,42	3,46	0,89	0%	2%
0,000152999	137,89	$0,\!17$	142,42	3,47	0,88	0%	2%
0,000156	137,89	0,17	142,42	3,47	0,88	0%	2%
0,000158999	137,89	0,17	142,42	3,47	0,88	0%	2%
0,000161999	137,89	0,17	142,42	3,47	0,88	0%	2%
0,000165	137,89	0,17	142,42	3,47	0,88	0%	2%
0,000167999	137,89	0,17	142,42	3,47	0,88	0%	2%
0,000170999	137,89	0,17	142,42	3,48	0,87	0%	2%
0,000174	137,89	0,17	142,42	3,48	0,87	0%	2%
0,000176999	137,89	0,17	142,42	3,48	0,87	0%	2%
0,000179999	137,89	0,17	142,42	3,49	0,87	0%	2%
0,000183	137,89	0,17	142,42	3,49	0,87	0%	2%
0,000185999	137,89	0,17	142,42	3,49	0,87	0%	2%
0,000188999	137,89	0,17	142,42	3,49	0,87	0%	2%
0,000192	137,89	0,17	142,42	3,49	0,86	0%	2%
0,000194999	137,89	0,17	142,42	3,49	0,86	0%	2%
0,000197999	137,89	$0,\!17$	142,42	3,49	0,86	0%	2%

Tabella A.8: Calcoli energetici caso 3 elementi shell
- Pagina 2 $\left[J \right]$

Bilanci energetici

0.000201	137.89	0.17	142.42	3.5	0.86	0%	2%
0,000201	107,00	0,11	142,42	0,0	0,00	070	270
0,000203999	137,89	0,17	142,42	3,5	0,86	0%	2%
0,000206999	137,89	0,17	142,42	3,5	0,86	0%	2%
0,00021	137,89	0,17	142,42	3,5	0,86	0%	2%
0,000212999	137,89	0,17	142,42	3,5	0,86	0%	2%
0,000215999	137,89	0,17	142,42	3,5	0,85	0%	2%
0,000219	137,89	0,17	142,42	3,5	0,85	0%	2%
0,000221999	137,89	0,17	142,42	3,5	0,85	0%	2%
0,000224999	137,89	0,17	142,42	3,5	0,85	0%	2%
0,000228	137,89	0,17	142,42	3,51	0,85	0%	2%
0,000230999	137,89	0,17	142,42	3,51	0,85	0%	2%
0,000233999	137,89	0,17	142,42	3,51	0,84	0%	2%
0,000237	137,89	0,17	142,42	3,51	0,84	0%	2%
0,000239999	137,89	0,17	142,42	3,51	0,84	0%	2%
0,000242999	137,89	0,17	142,42	3,51	0,84	0%	2%
0,000246	137,89	0,17	142,42	3,52	0,84	0%	2%
0,000248999	137,89	0,17	142,42	3,52	0,84	0%	2%

Tabella A.9: Calcoli energetici caso 3 elementi shell
- Pagina 3 $\left[J \right]$
A.2 Energia totale Singlelayer Analisi Proiettili

	180°	150°	120°	90°	60°	30°
TEMPO [s]	TE	TE	TE	TE	TE	TE
0	147,17	147,35	147,26	147,19	147,27	147,29
2,997E-06	147,17	147,35	147,26	147,19	147,27	147,29
5,994E-06	147,17	147,35	147,26	147,19	147,27	147,29
8,991E-06	147,18	147,35	147,26	147,19	147,27	147,29
1,1997E-05	147,18	147,35	147,26	147,19	147,27	147,29
1,4994E-05	147,18	147,36	147,26	147,19	147,27	147,29
1,7991E-05	147,19	147,36	147,26	147,19	147,27	147,29
2,0997E-05	147,19	147,36	147,26	147,19	$147,\!27$	147,29
2,3994E-05	147,19	147,36	147,27	147,19	147,27	147,29
2,7E-05	147,2	147,36	147,27	147,19	147,27	147,29
2,9997E-05	147,2	147,37	147,27	147,19	147,27	147,29
3,2994E-05	147,21	147,37	147,28	147,2	147,27	147,29
3,6E-05	147,22	147,38	147,28	147,2	147,27	147,29
3,8997E-05	147,23	147,38	147,29	147,2	147,28	147,29
4,1994E-05	147,24	147,39	147,29	147,21	147,28	147,29
4,5E-05	147,25	147,4	147,3	147,21	147,28	147,29
4,7997E-05	147,26	147,41	147,31	147,22	147,29	147,29
5,0994E-05	147,28	147,42	147,32	147,23	147,29	147,3
5,4E-05	147,29	147,43	147,33	147,23	147,29	147,3
5,6997E-05	147,31	$147,\!45$	147,34	147,24	147,3	147,3
5,9994E-05	147,4	147,46	147,36	147,25	147,31	147,3
6,3E-05	147,74	$147,\!47$	147,37	147,26	147,31	147,3
6,5997E-05	147,91	$147,\!57$	147,41	147,3	147,32	147,31
6,8994E-05	148,02	$147,\!95$	147,5	$147,\!35$	$147,\!33$	147,31
7,2E-05	148,11	148,2	147,63	147,42	147,34	147,31
7,4997E-05	$148,\!23$	148,3	$147,\!8$	$147,\!48$	$147,\!37$	147,31
7,7994E-05	$148,\!27$	$148,\!39$	147,91	$147,\!53$	$147,\!41$	147,32
8,1E-05	$148,\!32$	$148,\!46$	147,96	$147,\!58$	$147,\!45$	147,32
8,3997E-05	$148,\!39$	$148,\!51$	148,01	$147,\!65$	$147,\!49$	147,32
8,6994E-05	148,5	$148,\! 6$	$148,\!05$	$147,\!69$	$147,\!54$	147,33
9E-05	$148,\!58$	$148,\!66$	148,09	147,72	$147,\!56$	147,34
9,2997E-05	148,66	148,72	148,13	147,75	$147,\!58$	147,34
9,5994E-05	148,73	148,76	148,16	147,78	147,62	$147,\!35$
9,9E-05	148,94	148,82	148,18	147,8	147,64	147,36
0,000101997	148,96	148,87	148,2	147,82	$147,\!67$	147,4

Tabella A.10: Energia totale- Pagina 1 $\left[J\right]$

Bilanci energetici

0,000104994	148,99	148,9	148,21	147,83	147,7	147,42
0,000108	149	148,92	148,22	147,84	147,72	147,43
0,000110997	149,09	149,01	148,22	147,84	147,73	147,44
0,000113994	149,13	149,07	148,22	147,85	147,74	147,45
0,000117	149,14	149,11	148,23	147,85	147,75	147,46
0,000119997	149,15	149,17	148,23	147,85	147,76	147,47
0,000122994	149,18	149,19	148,23	147,85	147,76	147,48
0,000126	149,19	149,21	148,23	147,86	147,76	147,49
0,000128997	149,19	149,22	148,24	147,86	147,76	147,5
0,000131994	149,2	149,25	148,24	147,86	147,77	147,51
0,000135	149,2	149,27	148,24	147,86	147,77	147,52
0,000137997	149,21	149,32	148,24	147,86	147,77	147,54
0,000140994	149,21	149,34	148,25	147,86	147,77	147,58
0,000143991	149,22	149,33	148,25	147,86	147,77	147,6
0,000146997	149,22	149,34	148,25	147,87	147,77	147,62
0,000149994	149,22	149,34	148,25	147,87	147,77	147,63
0,000152991	149,23	149,35	148,25	147,87	147,77	147,63
0,000155997	149,23	149,38	148,25	147,87	147,77	147,63
0,000158994	149,23	149,43	148,26	147,87	147,77	147,63
0,000161991	149,23	149,39	148,26	147,87	147,77	147,64
0,000164997	149,24	149,39	148,26	147,87	147,77	147,64
0,000167994	149,24	$149,\!39$	148,26	147,88	147,78	147,64
0,000170991	149,24	149,39	148,26	147,88	147,78	147,64
0,000173997	149,25	149,4	148,27	147,88	147,78	147,64
0,000176994	149,24	149,4	$148,\!27$	147,88	147,78	147,64
0,000179991	149,24	149,42	$148,\!27$	147,88	147,78	147,64
0,000182997	149,25	149,42	148,27	147,88	147,78	147,64
0,000185994	149,25	149,42	148,27	147,88	147,78	147,64
0,000188991	149,25	149,42	$148,\!27$	147,88	147,78	147,64
0,000191997	149,25	149,42	148,28	147,88	147,78	147,64
0,000194994	149,25	149,42	148,28	147,89	147,78	147,63
0,000197991	149,26	149,42	148,28	147,89	147,78	147,63
0,000200997	149,26	149,42	148,28	147,89	147,78	147,63

Tabella A.11: Energia totale
- Pagina 2 $\left[J \right]$

Bilanci energetici

0,000203994	149,26	149,5	148,28	147,89	147,78	147,63
0,000206991	149,26	149,5	148,28	147,89	147,78	147,63
0,000209997	149,26	149,51	148,29	147,89	147,79	147,63
0,000212994	149,26	149,51	148,29	147,89	147,79	147,63
0,000215991	149,26	149,51	148,29	147,89	147,79	147,63
0,000218997	149,27	149,51	148,29	147,89	147,79	147,64
0,000221994	$149,\!27$	149,51	148,29	147,89	147,79	147,64
0,000224991	149,27	149,51	148,29	147,89	147,79	147,64
0,000227997	149,27	149,51	148,29	147,89	147,79	147,64
0,000230994	149,27	149,51	148,29	147,89	147,79	147,64
0,000233991	149,27	149,51	148,3	147,89	147,79	147,64
0,000236997	149,27	149,51	148,3	147,89	147,79	147,64
0,000239994	149,27	149,51	148,3	147,89	147,79	147,64
0,000242991	149,27	149,52	148,3	147,9	147,79	147,64
0,000245997	149,27	149,52	148,3	147,9	147,79	147,64
0,000248994	149,27	149,52	148,3	147,9	147,79	147,64

Tabella A.12: Energia totale- Pagina 3 $\left[J\right]$

A.3 Bilanci Energetici SL Proiettile deformabile

Tempo [s]	KE	IE	TE	HGE	SE	%Tot	%hge
0	214,26	0	214,26	0	0	0%	0%
2,997E-06	214,26	0	214,26	0	0	0%	0%
5,9985E-06	214,26	0	214,26	0	0	0%	0%
8,9955E-06	214,25	0	214,26	0	0	0%	0%
1,1997E-05	214,24	0,01	214,26	0	0	0%	0%
1,49985E-05	214,23	0,02	214,26	0	0,01	0%	0%
1,79955E-05	214,22	0,02	214,26	0	0,01	0%	0%
2,0997E-05	214,2	0,04	214,26	0	0,02	0%	0%
2,39985E-05	214,18	$0,\!05$	214,26	0	0,03	0%	0%
2,7E-05	214,15	0,07	214,26	0	0,04	0%	0%
2,9997E-05	214,12	0,09	214,26	0	0,05	0%	0%
3,29985E-05	214,08	0,11	214,26	0	0,07	0%	0%
3,6E-05	214,04	0,13	214,26	0	0,09	0%	0%
3,8997E-05	213,98	0,16	214,26	0	0,12	0%	0%
4,19985E-05	213,9	0,21	214,26	0	$0,\!15$	0%	0%
4,5E-05	213,78	0,29	214,26	0	0,18	0%	0%
4,7997E-05	213,59	0,44	214,26	0	0,22	0%	0%
5,09985E-05	213,32	0,67	214,26	0	0,27	0%	0%
5,4E-05	212,93	0,99	214,26	0	0,33	0%	0%
5,6997E-05	212,43	1,41	214,26	0,0001	0,42	0%	0%
5,99985E-05	211,85	1,85	214,27	0,0001	$0,\!57$	0%	0%
6,3E-05	211,6	1,61	214,34	0,0003	1,13	0%	0%
6,5997E-05	211,17	1,86	214,65	0,0005	1,62	0%	0%
6,89985E-05	210,95	1,55	214,73	0,0008	2,24	0%	0%
7,2E-05	210,66	1,57	214,86	0,0011	2,62	0%	0%
7,4997E-05	210,46	1,63	214,98	0,0013	2,88	0%	0%
7,79985E-05	210,25	1,69	215,04	0,0014	3,1	0%	0%
8,1E-05	210,07	1,82	215,18	0,0015	3,29	0%	0%
8,3997E-05	209,86	1,9	215,26	0,0016	3,51	0%	0%
8,69985E-05	209,97	2,24	215,92	0,0017	3,71	1%	0%
9E-05	209,84	2,23	215,97	0,0018	3,89	1%	0%
9,2997E-05	209,8	2,32	216,15	0,0019	4,02	1%	0%
9,59985E-05	209,8	2,42	216,3	0,002	4,08	1%	0%
9,9E-05	209,79	2,71	216,65	0,002	4,14	1%	0%
0,000101997	209,78	2,94	216,9	0,0021	4,17	1%	0%

Tabella A.13:	Bilancio	energetico	caso	1- Pagina	1 [J]
---------------	----------	------------	------	-----------	-------

Bilanci energetici

0,000104999	209,77	3,13	217,11	0,0021	4,2	1%	0%
0,000108	209,76	3,34	217,33	0,0021	4,23	1%	0%
0,000110997	209,75	3,62	217,62	0,0021	4,25	2%	0%
0,000113998	209,73	3,78	217,8	0,0022	4,27	2%	0%
0,000117	209,84	4,16	218,3	0,0022	4,3	2%	0%
0,000119997	209,83	4,24	218,39	0,0022	4,31	2%	0%
0,000122998	209,83	4,34	218,5	0,0022	4,33	2%	0%
0,000126	209,82	4,49	218,65	0,0022	4,34	2%	0%
0,000128997	209,81	4,52	218,69	0,0022	4,35	2%	0%
0,000131999	209,81	4,55	218,73	0,0023	4,37	2%	0%
0,000135	209,8	4,57	218,75	0,0023	4,38	2%	0%
0,000137997	209,8	4,62	218,8	0,0023	4,39	2%	0%
0,000140998	209,79	4,66	218,85	0,0023	4,39	2%	0%
0,000143995	209,79	4,91	219,1	0,0023	4,4	2%	0%
0,000146997	209,79	4,94	219,14	0,0023	4,41	2%	0%
0,000149998	209,78	4,99	219,19	0,0023	4,42	2%	0%
0,000152996	209,78	5,04	219,24	0,0023	4,42	2%	0%
0,000155997	209,78	5,07	219,28	0,0023	4,43	2%	0%
0,000158999	209,85	5,19	219,48	0,0023	4,43	2%	0%
0,000161996	209,85	5,22	219,51	0,0024	4,44	2%	0%
0,000164997	209,85	5,29	219,58	0,0024	4,45	2%	0%
0,000167998	209,84	5,32	219,62	0,0024	4,45	3%	0%
0,000170995	209,84	$5,\!37$	219,67	0,0024	4,46	3%	0%
0,000173997	209,84	5,41	219,71	0,0024	4,46	3%	0%
0,000176998	209,84	5,51	219,81	0,0024	4,46	3%	0%
0,000179995	209,83	$5,\!69$	219,99	0,0024	4,47	3%	0%
0,000182997	209,84	5,75	220,07	0,0024	4,47	3%	0%
0,000185998	209,83	5,85	220,17	0,0024	4,48	3%	0%
0,000188996	209,83	6,01	220,33	0,0024	4,48	3%	0%
0,000191997	209,83	6,15	220,47	0,0024	4,49	3%	0%
0,000194999	210,8	7,08	222,38	0,0024	4,49	4%	0%
0,000197995	210,8	7,17	222,47	0,0024	4,5	4%	0%
0,000200997	210,8	7,27	222,57	0,0025	4,5	4%	0%
0,000203998	210,8	7,4	222,7	0,0025	4,5	4%	0%
0,000206995	211,43	8,01	223,94	0,0025	4,51	5%	0%
0,000209997	211,42	8,1	224,04	0,0025	4,51	5%	0%

Tabella A.14: Bilancio energetico caso 1- Pagina 2 $\left[J \right]$

Bilanci energetici

0,000212998	211,42	8,16	224,1	0,0025	4,51	5%	0%
0,000215996	211,42	8,19	224,14	0,0025	4,52	5%	0%
0,000218997	211,42	8,22	224,17	0,0025	4,52	5%	0%
0,000221999	211,42	8,24	224,19	0,0025	4,52	5%	0%
0,000224995	211,42	8,26	224,2	0,0025	4,53	5%	0%
0,000227997	211,42	8,29	224,23	0,0025	4,53	5%	0%
0,000230998	211,42	$8,\!38$	224,33	0,0025	4,53	5%	0%
0,000233995	211,42	8,42	224,37	0,0025	4,53	5%	0%
0,000236997	211,42	8,45	224,4	0,0025	4,53	5%	0%
0,000239998	211,42	8,47	224,43	0,0025	4,53	5%	0%
0,000242995	211,42	8,49	224,45	0,0025	4,53	5%	0%
0,000245997	211,42	8,74	224,7	0,0025	4,54	5%	0%
0,000248998	211,42	8,77	224,73	0,0025	4,54	5%	0%

Tabella A.15: Bilancio energetico caso 1- Pagina 3 [J]

Bilanci energetici

Tempo [s]	KE	IE	TE	HGE	SE	%Tot	%hge
0	215,09	0	215,09	0	0	0%	0%
2,997E-06	215,09	0	215,09	0	0	0%	0%
5,9985E-06	215,09	0	215,09	0	0	0%	0%
8,9955E-06	215,09	0	215,09	0	0	0%	0%
1,1997E-05	215,08	0,01	215,09	0	0	0%	0%
1,49985E-05	215,07	0,02	215,09	0	0,01	0%	0%
1,79955E-05	215,05	0,02	215,09	0	0,01	0%	0%
2,0997E-05	215,04	0,04	215,09	0	0,02	0%	0%
2,39985E-05	215,01	0,05	215,09	0	0,03	0%	0%
2,7E-05	214,98	0,07	215,09	0	0,04	0%	0%
2,9997E-05	214,95	0,09	215,09	0	0,05	0%	0%
3,29985E-05	214,91	0,11	215,09	0	0,07	0%	0%
3,6E-05	214,87	0,13	215,09	0	0,09	0%	0%
3,8997E-05	214,82	0,16	215,09	0	0,12	0%	0%
4,19985E-05	214,73	0,21	215,09	0	0,14	0%	0%
4,5E-05	214,61	0,3	215,09	0	0,18	0%	0%
4,7997E-05	214,42	0,45	215,1	0	0,22	0%	0%
5,09985E-05	214,14	0,68	215,1	0	0,27	0%	0%
5,4E-05	213,75	1,01	215,1	0	0,33	0%	0%
5,6997E-05	213,33	1,34	215,11	0	0,44	0%	0%
5,99985E-05	212,81	1,6	215,12	0	0,71	0%	0%
6,3E-05	212,66	1,33	215,16	0	1,16	0%	0%
6,5997E-05	212,07	1,47	215,22	0	1,68	0%	0%
6,89985E-05	211,84	1,29	215,28	0	2,14	0%	0%
7,2E-05	211,5	1,29	215,32	0	2,54	0%	0%
7,4997E-05	211,17	1,42	215,4	0	2,81	0%	0%
7,79985E-05	210,9	1,46	215,48	0	3,11	0%	0%
8,1E-05	210,59	1,52	215,55	0	3,44	0%	0%
8,3997E-05	210,37	1,59	215,69	0	3,74	0%	0%
8,69985E-05	210,11	1,63	215,75	0	4,01	0%	0%
9E-05	209,82	1,77	215,82	0	4,23	0%	0%
9,2997E-05	209,57	2	216,03	0	4,46	0%	0%
9,59985E-05	209,26	2,32	216,28	0	4,7	1%	0%
9,9E-05	209,06	2,5	216,53	0	4,97	1%	0%
0,000101997	208,9	2,54	216,63	0	5,19	1%	0%

Tabella A.16: Bilancio energetico caso 2 - Pagina 1 $\left[J\right]$

D • 1 •	
Bilanci	energetici
Difanci	CHUIGUUU
	0

0,000104999	208,81	2,6	216,79	0	5,38	1%	0%
0,000108	208,73	$2,\!67$	216,91	0	5,51	1%	0%
0,000110997	208,72	2,7	217,02	0	5,6	1%	0%
0,000113998	208,73	2,74	217,12	0	5,66	1%	0%
0,000117	208,74	2,83	217,26	0	5,7	1%	0%
0,000119997	208,73	3,05	217,51	0	5,73	1%	0%
0,000122998	208,76	3,25	217,76	0	5,75	1%	0%
0,000126	208,75	3,46	217,98	0	5,77	1%	0%
0,000128997	208,73	3,65	218,18	0	5,79	1%	0%
0,000131999	208,72	3,83	218,36	0	5,81	2%	0%
0,000135	208,72	4,06	218,6	0	5,83	2%	0%
0,000137997	208,7	4,28	218,82	0	5,84	2%	0%
0,000140998	208,7	4,57	219,12	0	5,85	2%	0%
0,000143995	208,69	4,8	219,35	0	5,87	2%	0%
0,000146997	208,68	4,93	219,5	0	5,88	2%	0%
0,000149998	208,68	5,1	219,67	0	5,89	2%	0%
0,000152996	208,67	5,28	219,85	0	5,9	2%	0%
0,000155997	208,66	5,43	220	0	5,92	2%	0%
0,000158999	208,65	$5,\!53$	220,11	0	5,93	2%	0%
0,000161996	208,64	$5,\!65$	220,24	0	5,94	2%	0%
0,000164997	208,64	5,82	220,41	0	5,95	2%	0%
0,000167998	208,63	5,99	220,58	0	5,96	3%	0%
0,000170995	208,62	6,11	220,7	0	5,97	3%	0%
0,000173997	208,61	6,32	220,92	0	5,98	3%	0%
0,000176998	208,61	6,46	221,07	0	5,99	3%	0%
0,000179995	208,6	$6,\!58$	221,19	0	6	3%	0%
0,000182997	208,59	6,7	221,31	0	6,01	3%	0%
0,000185998	208,59	6,83	221,44	0	6,02	3%	0%
0,000188996	208,58	6,99	221,6	0	6,03	3%	0%
0,000191997	208,58	7,11	221,71	0	6,01	3%	0%
0,000194999	208,58	7,26	221,85	0	6,02	3%	0%
0,000197995	208,57	7,36	221,96	0	6,03	3%	0%
0,000200997	209,8	8,14	223,97	0	6,03	4%	0%
0,000203998	209,8	8,35	224,19	0	6,04	4%	0%
0,000206995	209,8	8,55	224,4	0	6,05	4%	0%
0,000209997	209,8	8,71	224,56	0	6,05	4%	0%
0,000212998	209,8	8,8	224,66	0	6,06	4%	0%

Tabella A.17: Bilancio energetico caso 2 - Pagina 2 $\left[J\right]$

D · 1 ·	
Rilanci	anargatici
Difanci	CHUIGUNUI
	0

$ \begin{vmatrix} 0,000215996 & 209,8 & 8,93 & 224,79 & 0 & 6,06 & 5\% \end{vmatrix} $	0%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0%
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	0%

Tabella A.18: Bilancio energetico caso 2 - Pagina 3 $\left[J \right]$

Bilanci energetici

Tempo [s]	KE	IE	TE	HGE	SE	%Tot	%hge
0	214,26	0	214,26	0	0	0%	0%
2,997E-06	214,26	0	214,26	0	0	0%	0%
5,9985E-06	214,26	0	214,26	0	0	0%	0%
8,9955E-06	214,25	0	214,26	0,0023	0	0%	0%
1,1997E-05	214,25	0	214,26	0,0058	0	0%	0%
1,49985E-05	214,24	0	214,26	0,0085	0	0%	0%
1,79955E-05	214,24	0	214,26	0,0104	0	0%	0%
2,0997E-05	214,24	0	214,26	0,0126	0,01	0%	0%
2,39985E-05	214,23	0	214,26	0,0145	0,01	0%	0%
2,7E-05	214,22	0,01	214,26	0,0163	0,01	0%	0%
2,9997E-05	214,22	0,01	214,26	0,0183	0,01	0%	0%
3,29985E-05	214,21	0,02	214,26	0,0208	0,02	0%	0%
3,6E-05	214,2	0,02	214,26	0,0235	0,02	0%	0%
3,8997E-05	214,18	0,03	214,26	0,0265	0,02	0%	0%
4,19985E-05	214,15	0,06	214,26	0,0299	0,03	0%	0%
4,5E-05	214,06	0,14	214,26	0,0334	0,03	0%	0%
4,7997E-05	213,9	0,29	214,26	0,0371	0,04	0%	0%
5,09985E-05	213,65	0,53	214,27	0,0416	0,05	0%	0%
5,4E-05	213,31	0,85	214,27	0,0498	0,07	0%	0%
5,6997E-05	212,84	1,27	214,27	0,0713	0,1	0%	0%
5,99985E-05	212,23	1,82	214,28	0,107	0,13	0%	0%
6,3E-05	212,04	1,79	214,31	0,1854	0,29	0%	0%
6,5997E-05	211,79	1,08	214,49	0,7775	0,84	0%	0%
6,89985E-05	211,47	0,65	214,59	1,301	1,17	0%	1%
7,2E-05	211,12	0,43	214,63	1,7688	1,32	0%	1%
7,4997E-05	210,8	0,36	214,65	2,1087	1,39	0%	1%
7,79985E-05	210,6	0,33	214,68	2,3445	1,4	0%	1%
8,1E-05	210,41	0,34	214,71	2,557	1,4	0%	1%
8,3997E-05	210,23	0,34	214,72	2,72	1,42	0%	1%
8,69985E-05	210,07	$0,\!37$	214,72	2,8567	1,43	0%	1%
9E-05	209,93	$0,\!37$	214,73	3,017	1,42	0%	1%
9,2997E-05	209,81	0,34	214,74	$3,\!156$	1,44	0%	1%
9,59985E-05	209,72	0,26	214,74	3,3077	1,45	0%	2%
9,9E-05	209,65	0,23	214,74	$3,\!4258$	1,44	0%	2%
0,000101997	209,58	0,22	214,75	3,4966	1,45	0%	2%
0,000104999	209,51	0,24	214,78	3,5862	1,44	0%	2%
0,000108	209,43	0,26	214,79	$3,\!6597$	1,45	0%	2%
0,000110997	209,39	0,22	214,8	3,7384	1,45	0%	2%
0,000113998	209,38	0,19	214,8	3,7806	1,45	0%	2%
0,000117	209,36	$0,\!18$	214,8	3,8018	$1,\!45$	0%	2%

105Tabella A.19: Bilancio energetico caso 3 - Pagina 1 [J]

Bilanci energetici

0,000119997	209,35	0,18	214,8	3,8157	1,45	0%	2%
0,000122998	209,35	0,19	214,8	3,8286	1,44	0%	2%
0,000126	209,33	0,19	214,8	3,8392	1,44	0%	2%
0,000128997	209,33	0,18	214,8	3,8501	1,44	0%	2%
0,000131999	209,32	0,18	214,8	3,858	1,44	0%	2%
0,000135	209,31	0,18	214,8	3,8672	1,44	0%	2%
0,000137997	209,3	0,18	214,8	3,8779	1,43	0%	2%
0,000140998	209,3	0,18	214,8	3,8895	1,43	0%	2%
0,000143995	209,29	0,18	214,8	3,9001	1,43	0%	2%
0,000146997	209,28	0,18	214,8	3,9112	1,42	0%	2%
0,000149998	209,27	0,18	214,8	3,9223	1,42	0%	2%
0,000152996	209,27	0,18	214,8	3,9306	1,42	0%	2%
0,000155997	209,27	0,18	214,8	3,9455	1,41	0%	2%
0,000158999	209,26	0,19	214,8	3,9614	1,39	0%	2%
0,000161996	209,26	0,19	214,8	3,9681	1,39	0%	2%
0,000164997	209,25	0,19	214,8	3,9749	1,39	0%	2%
0,000167998	209,25	0,19	214,8	3,9827	1,38	0%	2%
0,000170995	209,25	0,19	214,8	3,9893	1,38	0%	2%
0,000173997	209,24	0,19	214,8	3,9943	1,38	0%	2%
0,000176998	209,24	0,19	214,8	4,0035	1,37	0%	2%
0,000179995	209,24	0,19	214,8	4,011	1,37	0%	2%
0,000182997	209,23	0,19	214,8	4,0152	1,37	0%	2%
0,000185998	209,24	0,19	214,81	4,0284	1,35	0%	2%
0,000188996	209,23	0,19	214,81	4,0373	1,35	0%	2%
0,000191997	209,23	0,19	214,81	4,0433	1,35	0%	2%
0,000194999	209,22	0,19	214,81	4,049	1,34	0%	2%
0,000197995	209,22	0,19	214,81	4,0535	1,34	0%	2%
0,000200997	209,22	0,19	214,81	4,0584	1,34	0%	2%
0,000203998	209,22	0,19	214,81	4,0663	1,33	0%	2%
0,000206995	209,21	0,19	214,81	4,0709	1,33	0%	2%
0,000209997	209,21	0,19	214,81	4,0771	1,33	0%	$\overline{2\%}$

Tabella A.20: Bilancio energetico caso 3 - Pagina 2 $\left[J \right]$

Bilanci energetici

0,000212998	209,21	0,19	214,81	4,0809	1,33	0%	2%
0,000215996	209,21	0,19	214,81	4,0853	1,32	0%	2%
0,000218997	209,21	0,19	214,81	4,0884	1,32	0%	2%
0,000221999	209,21	0,19	214,81	4,0928	1,32	0%	2%
0,000224995	209,2	0,19	214,81	4,0958	1,32	0%	2%
0,000227997	209,2	0,19	214,81	4,0982	1,32	0%	2%
0,000230998	209,2	0,19	214,81	4,1012	1,32	0%	2%
0,000233995	209,2	0,19	214,81	4,106	1,32	0%	2%
0,000236997	209,2	0,19	214,81	4,1094	1,31	0%	2%
0,000239998	209,2	0,19	214,81	4,118	1,31	0%	2%
0,000242995	209,19	0,19	214,81	4,1235	1,3	0%	2%
0,000245997	209,19	0,19	214,81	4,1305	1,3	0%	$2\overline{\%}$
0,000248998	209,19	0,19	214,81	4,138	1,29	0%	2%

Tabella A.21: Bilancio energetico caso 3 - Pagina 3 $\left[J \right]$

A.4 Bilanci Energetici Multilayer Mass Scaling

Tempo [s]	KE	IE	TE	HE	SE
0	148,57	0	148,57	0	0
2,9997E-06	148,57	0	148,57	0	0
5,9994E-06	148,57	0	148,57	0	0
8,9991E-06	148,57	0	148,57	0	0
1,19997E-05	148,57	0	148,58	0	0
1,49994E-05	148,58	0	148,58	0	0
1,8E-05	148,58	0	148,59	0,01	0
2,09997E-05	148,56	0,01	148,58	0,01	0
2,39994E-05	148,5	0,03	148,56	0,01	0,01
2,7E-05	148,33	0,18	148,55	0,02	0,02
2,99997E-05	147,9	0,53	148,54	0,05	0,06
3,29994E-05	147,05	1,26	148,56	0,11	0,13
3,6E-05	145,73	2,46	148,61	0,21	0,21
3,89997E-05	143,77	4,14	148,67	0,4	0,36
4,19994E-05	141,03	6,62	148,8	0,63	0,51
4,5E-05	137,19	10,17	148,99	0,93	0,71
4,79997E-05	133,98	5,92	149,62	4,03	5,68
5,09994E-05	131	7,82	149,72	4,71	6,18
5,4E-05	129,28	2,38	149,98	7,28	11,02
5,69997E-05	128,63	0,93	150,05	8,16	12,33
5,99994E-05	128,5	0,71	150,08	8,35	12,52
6,3E-05	128,44	0,69	150,09	8,43	12,53
6,59997E-05	128,39	0,7	150,08	8,46	12,53
6,89994E-05	128,35	0,7	150,09	8,51	12,53
7,2E-05	128,34	0,7	150,09	8,54	12,51
7,49997E-05	128,32	0,7	150,11	8,59	12,49
7,79994E-05	128,32	0,7	150,14	8,64	12,48
8,1E-05	128,32	0,7	150,14	8,66	12,46
8,39997E-05	128,32	0,7	150,14	8,67	12,46
8,69994E-05	128,32	0,7	150,14	8,68	12,45
9E-05	128,3	0,71	150,14	8,69	12,44
9,29997E-05	128,27	0,72	150,15	8,73	12,43
9,59994E-05	128,25	0,71	150,15	8,77	12,42
9,9E-05	128,24	0,7	150,15	8,81	12,4
0,000102	128,23	0,7	150,16	8,84	12,39

Tabella A.22: Energie Multilayer Timestep $9\cdot 10^{-10}$ - Pagina 1 [J]

D • 1 •	
Bilanci	energetici
Difanci	CHUIGUUU
	0

0,000104999	128,23	0,7	150,16	8,85	12,38
0,000108	128,23	0,7	150,16	8,86	12,37
0,000111	128,23	0,7	150,16	8,86	12,37
0,000113999	128,23	0,7	150,16	8,88	12,35
0,000117	128,23	0,7	150,16	8,89	12,35
0,000119998	127,37	1,1	150,47	6,83	15,17
0,000122999	128,23	0,7	150,16	8,89	12,34
0,000126	128,23	0,7	150,16	8,9	12,34
0,000129	128,23	0,7	150,16	8,9	12,34
0,000131999	128,23	0,7	150,16	8,9	12,34
0,000135	128,22	0,7	150,16	8,9	12,34
0,000138	128,23	0,7	150,16	8,9	12,34
0,000140999	128,23	0,7	150,16	8,91	12,33
0,000143999	128,23	0,7	150,16	8,91	12,33
0,000147	128,23	0,7	150,16	8,91	12,33
0,000149999	128,22	0,7	150,16	8,91	12,33
0,000152999	128,22	0,7	150,16	8,91	12,33
0,000156	128,22	0,7	150,16	8,92	12,32
0,000158999	128,22	0,7	150,16	8,92	12,32
0,000161999	128,22	0,7	150,16	8,92	12,32
0,000165	128,22	0,7	150,16	8,92	12,32
0,000167999	128,22	0,7	150,16	8,93	12,31
0,000170999	128,22	0,7	150,16	8,93	12,31
0,000174	128,22	0,7	150,16	8,93	12,31
0,000176999	128,22	0,7	150,16	8,94	12,3
0,000179999	128,22	0,7	150,16	8,94	12,3
0,000183	128,22	0,7	150,16	8,94	12,3
0,000185999	128,22	0,7	150,16	8,94	12,3
0,000188999	128,22	0,7	150,16	8,94	12,3
0,000192	128,22	0,7	150,16	8,94	12,3
0,000194999	128,22	0,7	150,16	8,94	12,3
0,000197999	128,22	0,7	150,16	8,94	12,3

Tabella A.23: Energie Multilayer Timestep $9\cdot 10^{-10}$ - Pagina 2 [J]

D • 1		, . .
- Bil	anci	energetici
		energetter

Tempo [s]	KE	IE	TE	HE	SE
0	148,57	0	148,57	0	0
2,9997E-06	148,57	0	148,57	0	0
5,9994E-06	148,57	0	148,57	0	0
8,9991E-06	148,54	0	148,57	0,02	0,01
1,19988E-05	148,51	0,01	148,56	0,04	0,02
1,49985E-05	148,45	0,03	148,56	0,05	0,03
1,79982E-05	148,32	0,11	148,57	0,08	0,06
2,09979E-05	148,12	0,24	148,57	0,11	0,1
2,39976E-05	147,82	0,49	148,58	0,12	0,14
2,69973E-05	147,4	0,85	148,58	0,13	0,21
2,9997E-05	146,83	1,34	148,59	0,14	0,28
3,29967E-05	146,05	2,04	148,6	0,15	0,36
3,59964E-05	144,9	3,09	148,62	0,16	0,47
3,89961E-05	143,05	4,78	148,62	0,18	0,62
4,19958E-05	140,15	7,46	148,64	0,21	0,83
4,49955E-05	135,95	11,35	148,71	0,27	1,13
4,79952E-05	130,66	16,34	148,89	0,49	1,4
5,09998E-05	130	10,81	149,4	1,69	6,91
5,39995E-05	129,89	4,71	149,93	3,67	11,65
5,69992E-05	129,52	2,59	150,14	4,67	13,35
5,9999E-05	129,6	1,41	150,23	5,12	14,1
6,29986E-05	129,53	1,05	150,27	5,31	14,37
6,59983E-05	129,42	0,97	150,29	5,42	14,48
6,89981E-05	129,31	0,96	150,31	5,5	14,53
7,19977E-05	129,24	0,96	150,32	5,56	14,56
7,49974E-05	129,11	1	150,33	5,61	14,6
7,79972E-05	128,82	1,23	150,34	5,68	14,62
8,09968E-05	127,54	2,33	150,36	5,76	14,74
8,39966E-05	126,16	3,43	150,37	5,88	14,9
8,69962E-05	125,35	3,95	150,39	6,06	15,02
8,99959E-05	125,95	3,02	150,41	6,28	15,16
9,29957E-05	127,04	1,74	150,43	6,44	15,2
9,59953E-05	127,65	1,04	150,44	6,55	15,2
9,9E-05	127,71	0,95	150,44	6,61	15,19
0,000102	127,67	0,95	150,45	6,65	15,17

Tabella A.24: Energie Multilayer Timestep $5\cdot 10^{-9}$ - Pagina 1 $[{\rm J}]$

D 11	•	, . .
Riland	ono ir	rootici
Dhan	лошо	Igener
		0

0,000104999	127,63	0,95	150,45	$6,\!69$	15,18
0,000107999	127,62	0,95	150,45	6,72	15,17
0,000110999	127,59	0,95	150,46	6,74	15,17
0,000113998	127,56	0,97	150,46	6,77	15,16
0,000116998	127,51	0,99	150,47	6,79	15,17
0,000119998	127,37	1,1	150,47	$6,\!83$	15,17
0,000122998	126,95	1,46	150,47	6,88	15,19
0,000125997	126,18	2,12	150,48	6,94	15,24
0,000128997	$125,\!51$	2,64	150,49	7,03	15,32
0,000131997	125,26	2,62	150,5	7,2	15,41
0,000134996	125,43	2,05	150,53	7,52	15,53
0,000137996	125,97	1,3	150,55	7,72	15,56
0,000140996	126,22	0,98	150,55	7,79	15,56
0,000143995	126,23	0,95	150,55	$7,\!83$	15,55
0,000146995	126,21	0,95	150,55	$7,\!85$	15,54
0,00015	126,2	0,95	150,55	7,88	15,52
0,000153	126,19	0,95	150,55	$7,\!89$	15,52
0,000155999	126,18	0,95	150,55	7,9	15,52
0,000158999	126,17	0,95	150,55	7,91	15,52
0,000161999	126,15	0,96	150,55	7,92	15,52
0,000164998	126,13	0,96	150,55	7,94	15,52
0,000167998	126,1	0,98	150,55	7,95	15,52
0,000170998	126,04	1,03	$150,\!55$	$7,\!97$	15,51
0,000173997	125,9	1,14	150,55	$7,\!98$	15,52
0,000176997	125,7	1,31	$150,\!55$	8,01	15,53
0,000179997	$125,\!47$	1,46	$150,\!55$	8,06	15,57
0,000182997	125,29	1,55	$150,\!55$	8,11	15,61
0,000185996	$125,\!17$	1,54	150,56	8,2	15,65
0,000188996	125	1,48	150,56	8,35	15,72
0,000191996	124,93	1,31	150,56	8,55	15,77
0,000194995	125,04	1,08	150,58	8,69	15,77
0,000197995	125,12	0,97	150,58	8,76	15,74

Tabella A.25: Energie Multilayer Timestep $5\cdot 10^{-9}$ - Pagina 2 [J]

Tempo [s]	KE	IE	TE	HE	SE
0	148,57	0	148,57	0	0
2,997E-06	148,57	0	148,57	0	0
5,994E-06	148,55	0,01	148,57	0,01	0,01
8,991E-06	148,48	0,02	148,57	0,04	0,03
1,1997E-05	148,38	0,03	148,56	0,08	0,07
1,4994E-05	148,23	0,1	148,55	0,11	0,11
1,7991E-05	147,97	0,27	148,56	0,16	0,17
2,0997E-05	147,53	0,6	148,59	0,2	0,26
2,3994E-05	146,96	1,04	148,6	0,24	0,36
2,7E-05	146,19	1,67	148,61	0,27	0,48
2,9997E-05	145,22	2,51	148,62	0,29	0,6
3,2994E-05	144,03	3,55	148,64	0,31	0,75
3,6E-05	142,6	4,83	148,66	0,33	0,9
3,8997E-05	140,86	6,4	148,68	0,34	1,08
4,1994E-05	138,58	8,47	148,7	0,36	1,29
4,5E-05	135,45	11,35	148,73	0,38	1,54
4,7997E-05	131,16	15,5	148,8	0,44	1,7
5,0994E-05	126,83	18,64	148,97	0,63	2,87
5,4E-05	124,83	16,15	149,33	1,22	7,13
5,6997E-05	122,52	13,4	150,04	2,54	11,58
5,9994E-05	120,66	11,68	150,43	3,94	14,15
6,3E-05	121	9,43	150,69	4,86	15,41
6,5997E-05	123,25	6,1	150,96	5,45	16,16
6,8994E-05	125,82	2,84	151,02	5,76	16,59
7,2E-05	126,31	1,97	151,1	$5,\!99$	16,83
7,4997E-05	126,44	1,61	151,14	6,14	16,95
7,7994E-05	126,23	1,61	151,17	6,27	17,06
8,1E-05	126,09	1,57	151,2	6,39	17,15
8,3997E-05	126,01	1,51	151,22	6,48	17,22
8,6994E-05	125,89	1,53	151,24	$6,\!55$	17,27
9E-05	125,59	1,73	151,26	6,61	17,32
9,2997E-05	124,94	2,26	151,27	6,67	17,41
9,5994E-05	124,25	2,8	151,29	6,72	17,51
9,9E-05	123,26	3,63	$151,\!31$	6,78	17,64
0,000101997	121,64	5,06	151,33	6,84	17,79

Bilanci energetici

Tabella A.26: Energie Multilayer Timestep $9\cdot 10^{-9}$ - Pagina 1 [J]

D · 1 ·	, . .
Bilanci	anargatici
Difanci	CHUIGUUU
	0

0,000104994	119,56	6,87	151,36	6,91	18,01
0,000108	118,07	8,07	151,39	7,03	18,21
0,000110997	117,69	8,09	151,42	7,19	18,45
0,000113994	118,03	7,28	151,46	7,47	18,69
0,000117	119,14	5,72	151,51	7,79	18,86
0,000119997	120,65	3,93	$151,\!55$	8,04	18,93
0,000122994	121,83	2,57	151,58	8,24	18,95
0,000126	122,39	1,87	151,62	8,4	18,96
0,000128997	122,64	1,55	151,65	8,52	18,94
0,000131994	122,72	1,43	151,69	8,63	18,9
0,000135	122,71	1,41	151,72	8,72	18,88
0,000137997	122,66	1,43	151,75	8,78	18,88
0,000140994	122,61	1,46	151,77	8,82	18,87
0,000143991	122,57	1,47	151,78	8,87	18,87
0,000146997	122,55	1,46	151,8	8,91	18,88
0,000149994	122,52	1,47	151,8	8,95	18,86
0,000152991	122,45	1,53	151,82	9	18,85
0,000155997	122,21	1,72	151,84	9,05	18,85
0,000158994	121,59	2,28	151,85	9,13	18,86
0,000161991	120,17	$3,\!55$	151,87	9,22	18,93
0,000164997	118,11	$5,\!39$	151,89	9,37	19,02
0,000167994	116,39	6,78	151,92	9,62	19,13
0,000170991	115,59	7,26	151,94	9,95	19,14
0,000173997	115,69	6,74	151,98	10,34	19,2
0,000176994	116,78	5,3	152,01	10,68	19,25
0,000179991	118,11	3,71	152,06	11	19,24
0,000182997	119,12	2,51	152,09	11,23	19,23
0,000185994	119,68	1,81	152,12	11,41	19,22
0,000188991	119,9	1,52	152,14	11,52	19,2
0,000191997	119,94	1,44	152,14	11,61	$19,\!15$
0,000194994	119,93	1,43	$152,\!15$	11,68	19,11
0,000197991	119,91	1,43	152,16	11,71	19,1

Tabella A.27: Energie Multilayer Timestep $9\cdot 10^{-9}$ - Pagina 2 [J]

A.5 Bilanci Energetici ML Angolo relativo

Tempo	KE	IE	TE	HE	SE
0	148,57	0	148,57	0	0
2,9997E-06	148,57	0	148,57	0	0
5,9994E-06	148,56	0	148,57	0	0
8,9991E-06	148,54	0	148,57	0,02	0,01
1,19988E-05	148,5	0,01	148,57	0,03	0,02
1,49985E-05	148,43	0,04	148,56	0,05	0,04
1,79982E-05	148,29	0,13	148,57	0,08	0,07
2,09979E-05	148,08	0,28	148,57	0,11	0,11
2,39976E-05	147,76	0,54	148,57	0,12	0,15
2,69973E-05	147,32	0,91	148,58	0,13	0,21
2,9997E-05	146,75	1,42	148,59	0,14	0,28
3,29967E-05	146,01	2,08	148,6	0,15	0,36
3,59964E-05	144,93	3,06	148,62	0,17	0,46
3,89961E-05	142,93	4,88	148,62	0,19	0,62
4,19958E-05	139,29	8,08	148,63	0,3	0,96
4,49955E-05	134,88	11,9	148,7	0,53	1,4
4,79952E-05	130,5	15,87	148,83	0,73	1,73
5,09998E-05	130,14	10,95	149,34	2,19	6,06
5,39995E-05	129,38	4,59	149,96	4,77	11,21
5,69992E-05	128,48	2,48	150,35	6,15	13,24
5,9999E-05	128,3	1,45	150,46	6,63	14,08
6,29986E-05	128,17	1,13	150,5	6,83	14,38
6,59983E-05	128,01	1,08	150,53	6,95	14,48
6,89981E-05	127,85	1,1	150,55	7,05	14,55
7,19977E-05	127,58	1,2	150,59	7,14	14,66
7,49974E-05	127,22	1,42	150,62	7,23	14,74
7,79972E-05	126,71	1,77	150,62	7,34	14,81
8,09968E-05	125,98	2,24	150,64	7,5	14,92
8,39966E-05	125,05	2,81	150,65	7,74	15,06
8,69962E-05	124,54	2,96	150,67	8	15,17
8,99959E-05	124,7	2,44	150,7	8,27	15,29
9,29957E-05	125,14	1,6	150,74	8,56	15,45
9,59953E-05	125,47	1,09	150,74	8,69	15,48
9,9E-05	125,48	1,05	150,74	8,73	15,48
0,000102	125,46	1,05	150,74	8,76	15,48

Tabella A.28: Energie Multilayer 22,5° - Pagina 1 [J]

D • 1	· · · ·
Bilanci	energetici
Difanci	CHUIGUUU
	0

0,000104999	125,43	1,05	150,74	8,79	$15,\!47$
0,000107999	125,4	1,05	150,74	8,82	15,47
0,000110999	125,38	1,05	150,75	8,84	15,47
0,000113998	$125,\!37$	1,05	150,75	8,85	15,47
0,000116998	125,34	1,07	150,76	8,87	15,48
0,000119998	125,3	1,09	150,76	8,89	15,48
0,000122998	125, 19	1,17	150,76	8,92	15,48
0,000125997	124,97	1,33	150,76	8,96	15,49
0,000128997	124,63	1,6	150,76	9,02	$15,\!52$
0,000131997	124,25	1,85	150,76	9,09	$15,\!58$
0,000134996	124,03	1,89	150,78	9,21	15,64
0,000137996	123,99	1,73	150,8	9,36	15,72
0,000140996	124,04	1,46	150,81	9,51	15,79
0,000143995	124,18	1,22	150,81	9,6	15,81
0,000146995	$124,\!27$	1,09	150,82	9,65	15,8
0,00015	124,29	1,06	150,82	9,67	15,79
0,000153	124,29	1,05	150,82	9,69	15,79
0,000155999	124,28	1,05	150,82	9,7	15,78
0,000158999	$124,\!27$	1,05	150,82	9,71	15,78
0,000161999	$124,\!27$	1,05	150,82	9,73	15,77
0,000164998	$124,\!27$	1,05	150,82	9,74	15,76
0,000167998	124,26	1,05	150,82	9,75	15,76
0,000170998	124,26	1,06	150,82	9,77	15,73
0,000173997	$124,\!25$	1,06	150,82	9,8	15,71
0,000176997	124,24	1,06	150,82	9,81	15,7
0,000179997	$124,\!23$	1,07	$150,\!81$	$9,\!83$	$15,\!69$
0,000182997	124,2	1,08	$150,\!81$	$9,\!85$	$15,\!69$
0,000185996	$124,\!15$	1,11	150,81	9,86	$15,\!69$
0,000188996	124,08	1,17	150,81	9,87	15,69
0,000191996	123,96	1,26	150,81	9,89	15,7
0,000194995	123,83	1,34	150,81	9,92	15,72
0,000197995	123,76	1,34	150,81	9,97	15,73

Tabella A.29: Energie Multilayer 22,5° - Pagina 2 $[{\rm J}]$

D '		, . .
R	anci	energetici
D_{Π}	and	CHUIGUNUI
		0

Tempo [s]	KE	IE	TE	HE	SE
0	148,57	0	148,57	0	0
2,9997E-06	148,57	0	148,57	0	0
5,9994E-06	148,56	0	148,57	0	0
8,9991E-06	148,54	0	148,57	0,02	0,01
1,19988E-05	148,5	0,01	148,56	0,03	0,02
1,49985E-05	148,43	0,04	148,56	0,05	0,04
1,79982E-05	148,29	0,13	148,57	0,08	0,07
2,09979E-05	148,07	0,29	148,57	0,11	0,11
2,39976E-05	147,75	0,55	148,57	0,12	0,15
2,69973E-05	147,31	0,92	148,58	$0,\!13$	0,21
2,9997E-05	146,73	1,44	148,59	0,14	0,28
3,29967E-05	145,99	2,1	148,6	$0,\!15$	0,36
3,59964E-05	144,94	3,05	148,62	0,16	0,46
3,89961E-05	142,85	4,95	148,61	0,19	0,63
4,19958E-05	139,12	8,22	148,63	0,3	0,98
4,49955E-05	134,81	12,01	148,7	0,49	1,39
4,79952E-05	130,37	16,03	148,81	0,66	1,75
5,09998E-05	129,85	11,93	149,25	1,81	5,66
5,39995E-05	129,95	4,1	149,96	4,45	11,46
5,69992E-05	129,52	1,9	150,33	5,8	13,1
5,9999E-05	129,47	1,2	150,44	6,26	13,51
6,29986E-05	129,28	1,09	150,52	6,5	13,64
6,59983E-05	129,07	1,12	150,55	6,63	13,74
6,89981E-05	128,73	1,25	150,58	6,73	13,87
7,19977E-05	128,33	1,45	150,6	6,84	13,98
7,49974E-05	127,89	1,7	150,63	6,98	14,05
7,79972E-05	127,32	2,04	150,64	7,15	14,14
8,09968E-05	126,42	2,67	150,65	7,33	14,24
8,39966E-05	125,1	3,63	150,66	7,53	14,39
8,69962E-05	124,76	3,57	150,69	7,77	14,58
8,99959E-05	125,97	1,97	150,72	8,05	14,73
9,29957E-05	126,71	1,09	150,73	8,17	14,76
9,59953E-05	126,73	1,04	150,73	8,21	14,75
9,9E-05	126,69	1,05	150,73	8,26	14,74
0,000102	126,62	1,06	150,74	8,31	14,75

Tabella A.30: Energie Multilayer 30° - Pagina 1 $[{\rm J}]$

D'1 '	, . .
Bilanci	energetici
Direction	01101800101

0,000104999	126,55	1,08	150,74	8,35	14,76
0,000107999	126,48	1,1	150,74	8,4	14,76
0,000110999	126,36	1,16	150,74	8,44	14,79
0,000113998	126,25	1,2	150,75	8,49	14,81
0,000116998	126,11	1,26	150,75	8,54	14,84
0,000119998	125,86	1,42	150,76	8,59	14,89
0,000122998	125,51	1,67	150,76	8,64	14,94
0,000125997	125,13	1,97	150,77	8,71	14,96
0,000128997	124,77	2,15	150,78	8,83	15,03
0,000131997	124,61	2,06	150,79	9,02	15,1
0,000134996	124,73	1,59	150,81	9,31	15,18
0,000137996	124,91	1,16	150,82	9,6	15,15
0,000140996	124,94	1,05	150,82	9,72	15,12
0,000143995	124,91	1,04	150,83	9,77	15,1
0,000146995	124,89	1,04	150,83	9,8	15,1
0,00015	124,89	1,04	150,83	9,83	15,07
0,000153	124,87	1,04	150,83	9,85	15,06
0,000155999	124,86	1,04	150,83	9,89	15,05
0,000158999	124,85	1,04	150,84	9,91	15,03
0,000161999	124,84	1,05	150,84	9,95	15,01
0,000164998	124,81	1,05	150,84	9,97	15
0,000167998	124,79	1,06	150,84	10	14,98
0,000170998	124,75	1,08	150,84	10,03	14,98
0,000173997	124,68	1,13	150,84	10,06	14,97
0,000176997	124,59	1,19	150,84	10,1	14,96
0,000179997	124,48	1,25	150,84	10,14	14,97
0,000182997	124,38	1,3	150,86	10,22	14,97
0,000185996	124,24	1,34	150,86	10,31	14,97
0,000188996	124,14	1,34	150,86	10,43	14,95
0,000191996	124,07	1,3	150,86	10,56	14,94
0,000194995	124,04	1,23	150,87	10,67	14,94
0,000197995	124,02	1,14	150,87	10,76	14,95

Tabella A.31: Energie Multilayer 30° - Pagina 2 $[\mathrm{J}]$

D '		, . .
R	anci	energetici
D_{Π}	and	CHUIGUNUI
		0

Tempo [s]	KE	IE	TE	HE	SE
0	148,57	0	148,57	0	0
2,9997E-06	148,57	0	148,57	0	0
5,9994E-06	148,56	0	148,57	0	0
8,9991E-06	148,54	0	148,57	0,02	0,01
1,19988E-05	148,5	0,01	148,56	0,03	0,02
1,49985E-05	148,43	0,04	148,56	0,05	0,04
1,79982E-05	148,29	0,14	148,57	0,08	0,07
2,09979E-05	148,07	0,29	148,57	0,11	0,11
2,39976E-05	147,75	0,55	148,58	0,12	0,15
2,69973E-05	147,31	0,93	148,58	0,13	0,2
2,9997E-05	146,73	1,45	148,59	0,14	0,27
3,29967E-05	145,99	2,12	148,61	0,15	0,35
3,59964E-05	144,95	3,06	148,62	0,16	0,45
3,89961E-05	142,95	4,87	148,61	0,18	0,61
4,19958E-05	139,04	8,36	148,62	0,26	0,97
4,49955E-05	134,9	11,97	148,69	0,44	1,38
4,79952E-05	130,38	16,06	148,81	0,62	1,74
5,09998E-05	127,95	15,78	149,11	1,24	4,13
5,39995E-05	130,32	4,82	150,1	4,17	10,81
5,69992E-05	130,29	1,91	150,55	5,77	12,58
5,9999E-05	130,18	1,32	150,7	6,33	12,87
6,29986E-05	129,89	1,27	150,82	6,67	13
6,59983E-05	129,48	1,39	150,89	6,87	13,15
6,89981E-05	128,93	1,63	150,93	7,06	13,32
7,19977E-05	128,55	1,77	150,97	7,26	13,4
7,49974E-05	128,12	1,97	150,99	7,46	13,44
7,79972E-05	127,47	2,39	151,02	7,66	13,5
8,09968E-05	126,09	3,5	151,02	7,81	13,63
8,39966E-05	124,27	4,92	151,04	8,02	13,83
8,69962E-05	125,05	3,53	151,09	8,43	14,08
8,99959E-05	126,75	1,52	151,11	8,68	14,16
9,29957E-05	127,02	1,18	151,12	8,75	14,17
9,59953E-05	126,96	1,19	151,12	8,79	14,18
9,9E-05	126,86	1,22	151,12	8,84	14,2
0,000102	126,74	1,26	151,13	8,89	14,23

Tabella A.32: Energie Multilayer 45° - Pagina 1 $[\mathrm{J}]$

D • 1	· · · ·
Bilanci	energetici
Difanci	CHUIGUUU
	0

0,000104999	126,6	1,33	151,14	8,95	14,26
0,000107999	126,46	1,38	151,15	9	14,3
0,000110999	126,36	1,41	151,15	9,06	14,32
0,000113998	126,14	1,54	151,16	9,12	14,36
0,000116998	125,97	$1,\!63$	151,17	9,18	14,38
0,000119998	125,67	1,84	151,18	9,25	14,41
0,000122998	125,05	2,3	151,19	9,36	14,47
0,000125997	124,46	2,62	151,21	9,57	14,55
0,000128997	124,3	2,35	151,23	9,93	14,65
0,000131997	124,5	1,6	151,27	10,48	14,7
0,000134996	124,71	1,2	151,28	10,7	14,68
0,000137996	124,68	1,18	151,29	10,77	14,66
0,000140996	124,66	1,18	151,3	10,82	14,64
0,000143995	124,63	1,18	151,3	10,86	14,63
0,000146995	124,61	1,18	151,29	10,87	14,63
0,00015	124,59	1,18	151,29	10,89	14,63
0,000153	124,57	1,19	151,3	10,92	14,62
0,000155999	124,53	1,2	151,3	10,96	14,6
0,000158999	124,49	1,22	151,3	10,99	14,6
0,000161999	124,43	1,24	151,3	11,03	14,6
0,000164998	124,39	1,25	151,31	11,07	14,59
0,000167998	124,33	1,27	151,31	11,12	14,59
0,000170998	124,25	1,31	151,31	11,21	14,55
0,000173997	124,12	1,37	151,31	11,29	14,53
0,000176997	123,98	1,45	151,31	11,37	14,51
0,000179997	123,87	1,49	151,31	11,44	14,5
0,000182997	123,77	1,52	151,3	11,49	14,52
0,000185996	123,69	1,5	151,31	11,57	14,54
0,000188996	123,59	1,4	151,32	11,71	14,61
0,000191996	123,48	1,28	151,32	11,9	14,66
0,000194995	123,39	1,21	151,32	12,03	14,69
0,000197995	123,34	1,19	151,32	12,1	14,7

Tabella A.33: Energie Multilayer 45° - Pagina 2 $[\mathrm{J}]$

A.6 Velocità ML Angolo relativo

	000	150	200	00 K°
Tompo [a]	90 Velecità	40 Volacità	30 Volacità	ZZ,0
Tempo [s]				
$\frac{0}{20007E}$	200	200	200	200
2,9997E-06	200	200	200	200
5,9994E-06	199,98	199,98	199,98	199,98
8,9991E-06	199,95	199,94	199,94	199,94
1,1999E-05	199,89	199,88	199,88	199,88
1,4998E-05	199,79	199,77	199,77	199,77
1,7998E-05	199,61	199,56	199,57	199,57
2,0998E-05	199,28	199,22	199,22	199,23
2,3998E-05	198,84	198,76	198,76	198,77
2,6997E-05	$198,\!26$	$198,\!15$	$198,\!15$	198,17
2,9997E-05	$197,\!52$	197,38	197,38	197,41
3,2997E-05	196,61	196,44	196,44	196,47
3,5996E-05	195,48	195,31	195,3	195,34
3,8996E-05	194,09	193,92	193,91	193,95
4,1996E-05	192,29	192,1	192,09	192,14
4,4996E-05	189,94	189,77	189,76	189,82
4,7995E-05	186,82	186,74	186,73	186,79
5,1E-05	184,79	183,4	184,05	184,4
5,4E-05	183,64	182,13	182,73	183,02
5,6999E-05	183,07	182,03	182,54	182,52
5,9999E-05	182,98	181,76	182,35	182,27
6.2999E-05	182,81	181,95	182,35	182,17
6.5998E-05	182.93	181.81	182.38	182.26
6.8998E-05	182,79	181,8	182,23	182.06
7.1998E-05	182.86	181.87	182.38	182.22
7.4997E-05	182.83	181.72	182.19	182.04
7.7997E-05	182.79	181.94	182.34	182.13
8.0997E-05	182.87	181 73	182.26	182.12
8,3997E-05	102,01 182.74	181.89	182,20 182,26	182.04
8 6996E-05	182.87	181.8	102,20 182.34	182.19
8 9996E-05	182,01	181 79	182.04	182.01
9.2996E_05	182.83	181.80	182.37	182.01
0 5005E 05	182.89	181 79	182.97	182.10
9,0990E-00	102,02	101,12	102,2	102,00
9,9E-00	182,11	181,92	182,33	182,11

Tabella A.34: Velocità Angolo relativo - Pagina 1 $[\rm m/s]$

D • 1			
- R1	onor	oporrotio	
	anci	energenici	
		onor gouror	

0,000102	182,87	181,73	182,27	182,13
0,000105	182,74	181,87	182,25	182,04
0,000108	182,86	181,81	182,35	182,19
0,000111	182,77	181,77	182,2	182,02
0,000114	182,81	181,89	182,37	182,17
0,000117	182,83	181,71	182,22	182,07
0,00012	182,76	181,91	182,31	182,1
0,000123	182,87	181,77	182,29	182,15
0,000126	182,75	181,89	182,24	182,04
0,000129	182,86	181,88	182,35	182,19
0,000132	182,79	181,81	182,2	182,03
0,000135	182,81	181,96	182,36	182,16
0,000138	182,84	181,77	182,23	182,08
0,000141	182,76	181,95	182,3	182,09
0,000144	182,87	181,81	182,3	182,15
0,000147	182,76	181,88	182,23	182,03
0,00015	182,85	181,9	182,36	182,18
0,000153	182,8	181,8	182,21	182,04
0,000156	182,8	181,96	182,35	182,15
0,000159	182,85	181,78	182,25	182,1
0,000162	182,76	181,94	182,28	182,08
0,000165	182,87	181,83	182,32	182,16
0,000168	182,76	181,86	182,22	182,03
0,000171	182,84	181,91	182,35	182,18
0,000174	182,81	181,79	182,22	182,05
0,000177	182,79	181,96	182,33	182,13
0,00018	182,85	181,79	182,26	182,11
0,000183	182,76	181,92	182,27	182,07
0,000186	182,86	181,85	182,32	182,17
0,000189	182,77	181,85	182,22	182,03
0,000192	182,83	181,92	182,35	182,17
0,000195	182,82	181,79	182,22	182,06
0,000198	182,78	181,95	182,32	182,12

Tabella A.35: Velocità Angolo relativo - Pagina 2 $[\rm m/s]$

A.7 Bilanci Energetici ML Analisi Mesh Proiettile deformabile

Tempo [s]	KE	IE	TE	HGE	SE	Vel [m/s]	%Tot	%hge
0	223,85	0	223,85	0	0	200	0%	0%
2,9997E-06	223,85	0	223,85	0	0	200	0%	0%
5,9994E-06	223,84	0	223,85	0,0047	0	199,99	0%	0%
8,9991E-06	223,79	0,01	223,84	0,0311	0,02	199,92	0%	0%
1,19988E-05	223,68	0,02	223,83	0,0775	0,06	199,8	0%	0%
1,49985E-05	223,52	0,07	223,83	0,1373	0,11	199,62	0%	0%
1,79982E-05	223,21	0,21	223,85	0,2198	0,2	199,32	0%	0%
2,09979E-05	222,71	0,49	223,86	0,3193	0,33	198,79	0%	0%
2,39976E-05	221,98	0,96	223,87	0,4239	0,5	198	0%	0%
2,69973E-05	221,04	1,63	223,88	0,5164	0,69	196,9	0%	0%
2,9997E-05	219,84	2,56	223,89	0,6109	0,88	195,54	0%	0%
3,29967E-05	218,36	3,72	223,9	0,7306	1,1	193,91	0%	0%
3,59964E-05	216,55	5,17	223,9	0,8347	1,34	192,03	0%	0%
3,89961E-05	214,27	7,07	223,9	0,9571	1,6	189,9	0%	0%
4,19958E-05	210,37	10,46	223,93	1,1118	1,99	187,41	0%	0%
4,49955E-05	201,81	17,88	224	1,4066	2,91	184,28	0%	1%
4,79952E-05	194,36	24,22	224,09	1,8201	3,69	180,29	0%	1%
5,09998E-05	187,59	29,84	224,29	2,3176	4,54	175,56	0%	1%
5,39995E-05	180,13	35,6	224,67	3,1308	5,81	169,47	0%	1%
5,69992E-05	168,81	42,45	225,25	4,7488	9,24	159,99	1%	2%
5,9999E-05	163,3	35,92	226,68	10,8266	16,63	149,75	1%	5%
6,29986E-05	155,17	30,62	227,76	19,1174	22,86	143,63	2%	8%
6,59983E-05	148,36	32,05	228,2	23,8834	23,91	138,92	2%	10%
6,89981E-05	140,98	36,23	228,53	26,9691	24,34	134,580	2%	12%
7,19977E-05	134,49	39,99	228,85	29,6617	24,71	130,01	2%	13%
7,49974E-05	127,45	44,09	229,15	32,4601	25,15	125,61	2%	14%
7,79972E-05	120,47	48,07	229,47	35,4243	25,51	120,78	3%	15%
8,09968E-05	113,18	50,52	229,9	39,216	26,98	115,34	3%	17%
8,39966E-05	106,29	52	230,44	43,7337	28,42	110,02	3%	19%
8,69962E-05	99,88	53,1	230,88	48,1852	29,73	105,64	3%	21%
8,99959E-05	93,46	55,02	231,25	52,3471	30,43	101,53	3%	23%
9,29957E-05	87,26	58	231,65	56,133	30,25	97,33	3%	24%
9,59953E-05	81,72	59,41	232,06	60,0019	30,93	93,30	4%	26%
9,9E-05	77,28	56,03	232,62	65,4555	33,85	90,13	4%	28%

Tabella A.36:	Energia Mesh	1- Pagina 1	J]
---------------	--------------	-------------	---	---

Bilanci energetici

0,000102	73,26	53,81	233,19	70,7288	35,39	87,71	4%	30%
0,000104999	69,12	54,07	233,46	75,2077	35,06	85,75	4%	32%
0,000107999	65,67	54,82	233,78	79,0891	34,2	84,12	4%	34%
0,000110999	62,62	56,07	234,23	82,6039	32,93	82,77	5%	35%
0,000113998	60,05	57,11	234,45	85,5676	31,72	81,70	5%	36%
0,000116998	57,79	57,65	234,78	88,4915	30,85	80,91	5%	38%
0,000119998	55,75	58,62	235,08	91,0048	29,71	80,35	5%	39%
0,000122998	54,01	$59,\!53$	235,24	93,1115	$28,\!58$	79,96	5%	40%
0,000125997	52,5	60,34	235,42	94,9838	27,6	79,71	5%	40%
0,000128997	51,17	61,06	$235,\!49$	96,7381	26,53	$79,\!58$	5%	41%
0,000131997	50	61,69	235,52	98,2721	$25,\!55$	79,51	5%	42%
0,000134996	48,96	62,24	$235,\!6$	99,6967	24,7	79,60	5%	42%
0,000137996	48,09	62,76	235,62	100,94	23,83	79,73	5%	43%
0,000140996	47,26	63,23	235,72	102,133	23,1	$79,\!97$	5%	43%
0,000143995	46,53	63,68	235,75	103,119	22,43	80,23	5%	44%
0,000146995	45,83	64,09	235,8	103,94	21,95	80,54	5%	44%
0,00015	45,22	64,53	235,83	104,691	21,39	80,88	5%	44%
0,000153	44,65	64,96	235,84	105,34	20,9	81,20	5%	45%
0,000155999	44,11	65,36	235,89	$105,\!888$	20,53	81,53	5%	45%
0,000158999	43,59	65,72	235,9	106,282	20,31	81,82	5%	45%
0,000161999	43,16	66,06	235,92	106,606	20,1	82,11	5%	45%
0,000164998	42,78	66,36	235,94	106,928	19,88	82,37	5%	45%
0,000167998	42,43	66,62	235,96	107,177	19,74	82,60	5%	45%
0,000170998	42,14	66,85	$235,\!97$	107,422	19,57	82,81	5%	46%
0,000173997	41,89	67,03	236	$107,\!652$	19,43	82,99	5%	46%
0,000176997	41,72	67,19	236,05	107,886	19,25	83,16	5%	46%
0,000179997	41,56	67,31	236,07	108,117	19,09	83,29	5%	46%
0,000182997	41,48	67,41	236,1	108,333	18,88	83,41	5%	46%
0,000185996	41,34	67,49	236,11	$108,\!56$	18,73	$83,\!50$	5%	46%
0,000188996	41,28	67,54	$236,\!13$	108,724	18,59	83,58	5%	46%
0,000191996	41,2	$67,\!57$	236,08	$108,\!827$	18,48	83,63	5%	46%
0,000194995	41,16	$67,\!58$	236,09	108,961	18,38	$83,\!67$	5%	46%
0,000197995	41,13	67,59	236,09	109,076	18,29	83,69	5%	46%

Tabella A.37: Energia Mesh 1- Pagina 2 [J]

Bilanci energetici

Tempo [s]	KE	IE	TE	HGE	SE	Vel [m/s]	%Tot	%hge
0	223,85	0	223,85	0	0	200	0%	0%
2,9997E-06	223,85	0	223,85	0	0	200	0%	0%
5,9994E-06	223,85	0	223,85	0,0035	0	199,99	0%	0%
8,9991E-06	223,83	0	223,85	0,0135	0	199,98	0%	0%
1,19988E-05	223,81	0	223,85	0,0295	0,01	199,96	0%	0%
1,49985E-05	223,78	0	223,85	0,0513	0,02	199,93	0%	0%
1,79982E-05	223,74	0	223,85	0,0803	0,02	199,89	0%	0%
2,09979E-05	223,69	0	223,84	0,1145	0,04	199,84	0%	0%
2,39976E-05	223,63	0	223,84	0,1551	0,05	199,78	0%	0%
2,69973E-05	223,56	0,01	223,84	0,2023	0,07	199,71	0%	0%
2,9997E-05	223,49	0,01	223,84	0,2517	0,09	199,64	0%	0%
3,29967E-05	223,42	0,01	223,84	0,3001	0,11	199,56	0%	0%
3,59964E-05	223,35	0,01	223,83	0,348	0,13	199,49	0%	0%
3,89961E-05	223,28	0,01	223,83	0,3962	0,15	199,4	0%	0%
4,19958E-05	223,21	0,01	223,83	0,4461	0,17	199,32	0%	0%
4,49955E-05	223,13	0,01	223,83	0,498	0,19	199,22	0%	0%
4,79952E-05	223,05	0,01	223,83	0,5572	0,21	199,11	0%	0%
5,09998E-05	222,96	0,02	223,85	0,6277	0,24	198,97	0%	0%
5,39995E-05	222,84	0,03	223,86	0,7151	0,28	198,79	0%	0%
5,69992E-05	222,69	0,04	223,88	0,8234	0,33	198,57	0%	0%
5,9999E-05	222,48	0,06	223,89	0,9635	0,39	198,29	0%	0%
6,29986E-05	222,23	0,08	223,91	1,1405	0,46	197,97	0%	1%
6,59983E-05	221,91	0,11	223,92	1,3462	0,55	197,58	0%	1%
6,89981E-05	221,55	0,15	223,93	1,5791	0,65	197,12	0%	1%
7,19977E-05	221,14	0,19	223,94	1,8328	0,77	196,57	0%	1%
7,49974E-05	220,69	0,24	223,94	2,1048	0,91	195,96	0%	1%
7,79972E-05	220,21	0,29	223,95	2,3939	1,06	195,31	0%	1%
8,09968E-05	219,67	0,36	223,95	2,6972	1,22	194,6	0%	1%
8,39966E-05	219,09	0,47	223,96	3,0087	1,39	193,8	0%	1%
8,69962E-05	218,43	0,63	223,98	3,3329	1,59	192,91	0%	1%
8,99959E-05	217,67	0,85	224	$3,\!6739$	1,8	191,9	0%	2%
9,29957E-05	216,75	1,2	224,02	4,0345	2,04	190,72	0%	2%
9,59953E-05	215,6	1,74	224,06	4,42	2,3	189,33	0%	2%
9,9E-05	214,11	2,55	224,1	4,8307	2,61	187,67	0%	2%

Tabella A.38: Energia Mesh 2 - Pagina 1 [J]

0,000102	212,09	3,8	224,14	5,2657	2,98	185,65	0%	2%
0,000104999	209,36	5,65	224,19	5,7402	3,43	183,17	0%	3%
0,000107999	205,63	8,36	224,22	6,2555	3,97	180,15	0%	3%
0,000110999	200,75	12,13	224,27	6,8208	4,57	176,46	0%	3%
0,000113998	194,61	16,76	224,34	7,4639	5,5	171,96	0%	3%
0,000116998	192,21	10,08	224,82	9,6681	12,86	168,18	0%	4%
0,000119998	185,65	9,17	225,21	12,8386	17,54	165,51	1%	6%
0,000122998	179,95	11,83	225,43	14,7448	18,91	162,63	1%	7%
0,000125997	173,59	15,82	225,61	16,2515	19,95	159,08	1%	7%
0,000128997	167,11	18,29	225,84	18,141	22,3	154,84	1%	8%
0,000131997	160,81	18,3	226,19	21,1782	25,9	150,60	1%	9%
0,000134996	154,52	19,02	226,53	24,4397	28,55	146,57	1%	11%
0,000137996	148,53	19,91	226,89	27,6382	30,82	142,70	1%	12%
0,000140996	142,29	22,06	227,13	30,3337	32,45	138,52	1%	13%
0,000143995	136,09	23,33	227,42	33,269	34,73	134,46	2%	15%
0,000146995	129,52	24,79	227,68	36,3012	37,07	130,44	2%	16%
0,00015	123,11	26,06	228,06	39,5496	39,34	126,78	2%	17%
0,000153	117,26	27,57	228,32	42,4552	41,03	123,44	2%	19%
0,000155999	111,78	29,53	228,52	44,8339	42,37	120,16	2%	20%
0,000158999	106,89	30,85	228,72	46,9706	44,01	117,06	2%	21%
0,000161999	102,28	31,86	228,93	49,3626	45,42	114,41	2%	22%
0,000164998	98	32,95	229,15	51,6393	46,55	112,14	2%	23%
0,000167998	94,07	33,34	229,38	54,1304	47,84	110,36	2%	24%
0,000170998	90,35	34,19	229,69	56,6	48,54	108,95	3%	25%
0,000173997	87,73	34,37	229,95	58,7294	49,12	107,93	3%	26%
0,000176997	85,52	34,4	230,38	61,1674	49,3	107,42	3%	27%
0,000179997	83,34	34,95	230,6	63,0741	49,24	107,25	3%	27%
0,000182997	81,61	35,51	230,78	64,5809	49,09	107,35	3%	28%
0,000185996	80,25	36,06	230,89	65,9179	48,66	107,64	3%	29%
0,000188996	79,1	36,57	230,93	66,8874	48,36	108,11	3%	29%
0,000191996	78,14	37,07	230,97	67,5685	48,19	108,64	3%	29%
0,000194995	77,34	37,56	230,97	68,0926	47,99	109,16	3%	29%
0,000197995	76,65	37,97	230,97	68,4489	47,91	109,69	3%	30%

Tabella A.39: Energia Mesh 2- Pagina 2 [J]
Bilanci energetici

0,000201	76,07	38,31	231	68,7379	47,87	110,14	3%	30%
0,000203999	75,6	38,58	231	68,9731	47,86	110,57	3%	30%
0,000206999	75,22	38,79	231,03	69,2658	47,76	110,93	3%	30%
0,000209999	74,92	$38,\!93$	231,03	$69,\!475$	47,71	111,24	3%	30%
0,000212998	74,7	39,03	231,04	69,6429	47,67	111,49	3%	30%
0,000215998	74,55	39,09	231,06	69,798	47,61	$111,\!67$	3%	30%
0,000218998	74,45	39,13	$231,\!07$	69,9311	47,56	111,81	3%	30%
0,000221998	74,37	39,14	231,08	70,0479	47,53	111,91	3%	30%
0,000224997	74,3	39,14	231,1	70,1406	47,52	111,98	3%	30%
0,000227997	74,25	39,14	231,11	70,2307	47,49	112,00	3%	30%
0,000230997	74,21	$39,\!15$	231,12	70,3318	47,43	111,98	3%	30%
0,000233996	74,16	$39,\!15$	$231,\!13$	$70,\!4236$	47,39	111,96	3%	30%
0,000236996	74,12	$39,\!15$	231,13	$70,\!4968$	47,36	111,93	3%	31%
0,000239996	74,09	39,15	231,14	70,5851	47,32	111,91	3%	31%
0,000242995	74,05	39,15	231,14	70,6658	47,28	111,88	3%	31%
0,000245995	74,02	39,15	231,15	70,7338	47,25	111,87	3%	31%
0,000248995	73,99	39,15	231,15	70,7939	47,22	111,87	3%	31%

Tabella A.40: Energia Mesh 2- Pagina 3 $\left[J \right]$

Bilanci energetici

Tempo [s]	KE	IE	TE	HGE	SE	Vel [m/s]	%Tot	%hge
0	223,85	0	223,85	0	0	200	0%	0%
2,9997E-06	223,84	0	223,85	0,0037	0	199,99	0%	0%
5,9994E-06	223,83	0	223,85	0,0182	0,01	199,97	0%	0%
8,9991E-06	223,8	0	223,85	0,0367	0,01	199,95	0%	0%
1,19988E-05	223,76	0	223,85	0,0621	0,02	199,92	0%	0%
1,49985E-05	223,72	0	223,85	0,0924	0,04	199,89	0%	0%
1,79982E-05	223,67	0	223,85	0,1283	0,05	199,84	0%	0%
2,09979E-05	223,6	0	223,85	0,1708	0,08	199,79	0%	0%
2,39976E-05	223,53	0	223,86	0,2206	0,1	199,72	0%	0%
2,69973E-05	223,44	0,01	223,86	0,2792	0,13	199,63	0%	0%
2,9997E-05	223,34	0,01	223,86	0,3471	0,17	199,53	0%	0%
3,29967E-05	223,22	0,01	223,86	0,4222	0,21	199,43	0%	0%
3,59964E-05	223,09	0,01	223,86	0,5074	0,25	199,31	0%	0%
3,89961E-05	222,94	0,01	223,86	0,603	0,3	199,17	0%	0%
4,19958E-05	222,78	0,01	223,86	0,7081	0,36	199,02	0%	0%
4,49955E-05	222,6	0,01	223,86	0,8246	0,42	198,85	0%	0%
4,79952E-05	222,42	0,01	223,86	0,9471	0,48	198,67	0%	0%
5,09998E-05	222,23	0,01	223,86	1,0734	0,55	198,47	0%	0%
5,39995E-05	222,03	0,01	223,86	1,2019	0,62	198,28	0%	1%
5,69992E-05	221,83	0,02	223,86	1,3361	0,69	198,08	0%	1%
5,9999E-05	221,61	0,02	223,86	1,4764	0,76	197,87	0%	1%
6,29986E-05	221,39	0,02	223,86	1,6223	0,84	197,64	0%	1%
6,59983E-05	221,16	0,02	223,87	1,7723	0,91	197,41	0%	1%
6,89981E-05	220,93	0,02	223,87	1,9284	1	197,16	0%	1%
7,19977E-05	220,68	0,02	223,87	2,0892	1,08	196,9	0%	1%
7,49974E-05	220,43	0,02	223,88	2,2562	1,17	196,64	0%	1%
7,79972E-05	220,15	0,04	223,89	2,4367	1,26	196,34	0%	1%
8,09968E-05	219,83	0,06	223,91	2,6452	1,37	195,98	0%	1%
8,39966E-05	219,45	0,08	223,93	2,8982	1,5	195,54	0%	1%
8,69962E-05	219,01	0,1	223,95	3,1986	1,65	195,03	0%	1%
8,99959E-05	218,51	0,12	223,98	3,5408	1,8	194,48	0%	2%
9,29957E-05	217,96	0,16	224	3,9184	1,97	193,87	0%	2%
9,59953E-05	217,34	0,2	224,04	4,3368	2,16	193,16	0%	2%
9,9E-05	216,66	0,25	224,07	4,801	2,36	192,38	0%	2%

Tabella A.41: Energia Mesh 3 - Pagina 1 [J]

Bilanci energetici

0.000109	915 01	0.21	00/11	5 2105	9 59	101 52	007	007
0,000102	215,91	0,31	224,11	5,3105	2,38	191,55	0%	2%
0,000104999	215,07	0,39	224,15	5,8608	2,83	190,62	0%	3%
0,000107999	214,16	0,49	224,19	6,4455	3,1	189,61	0%	3%
0,000110999	213,14	0,64	224,23	7,0652	3,39	188,51	0%	3%
0,000113998	212,01	0,85	224,28	7,7116	3,71	187,26	0%	3%
0,000116998	210,71	1,16	224,33	8,38	4,08	185,84	0%	4%
0,000119998	209,22	1,59	224,37	9,0734	4,49	184,22	0%	4%
0,000122998	207,48	2,19	224,41	9,7738	4,97	182,34	0%	4%
0,000125997	205,43	3,01	224,45	10,5023	5,51	180,17	0%	5%
0,000128997	203	4,11	224,51	11,2603	6,15	177,69	0%	5%
0,000131997	200,31	5,22	224,58	12,1078	6,95	174,86	0%	5%
0,000134996	196,8	6,98	224,69	13,0981	7,81	171,74	0%	6%
0,000137996	192,79	9,12	224,8	14,0597	8,82	168,16	0%	6%
0,000140996	190,57	5,79	225,07	15,8298	12,88	165,58	1%	7%
0,000143995	186,42	5,08	225,29	18	15,79	163,94	1%	8%
0,000146995	182,87	6,07	225,42	19,621	16,86	162,35	1%	9%
0,00015	178,93	7,73	225,54	20,9481	17,92	160,43	1%	9%
0,000153	175,06	7,93	225,72	22,5843	20,15	158,43	1%	10%
0,000155999	170,76	8,44	225,89	24,3597	22,33	156,59	1%	11%
0,000158999	166,5	9,57	226,09	26,0089	24,01	154,61	1%	12%
0,000161999	162,23	10,18	226,32	27,9026	26,01	152,62	1%	12%
0,000164998	157,69	11,17	226,56	29,8868	27,81	150,50	1%	13%
0,000167998	153,64	11,61	226,88	31,8983	29,73	148,48	1%	14%
0,000170998	149,34	12,02	227,11	34,0542	31,7	146,48	1%	15%
0,000173997	144,7	13,34	227,4	36,1316	33,23	144,33	2%	16%
0,000176997	140,14	15	227,69	37,9484	34,6	141,75	2%	17%
0,000179997	135,9	14,84	228	40,2256	37,03	139,45	2%	18%
0,000182997	131,4	15,45	228,23	42,4697	38,91	137,28	2%	19%
0,000185996	126,8	16,91	228,47	44,4493	40,31	134,88	2%	19%
0,000188996	121,84	18,94	228,73	46,3433	41,61	131,85	2%	20%
0,000191996	117,03	19,92	228,94	48,4018	43,59	128,56	2%	21%
0,000194995	112,23	19,82	229,37	51,0412	46,28	125,46	2%	22%
0,000197995	107,4	20,68	229,68	53,363	48,24	122,30	3%	23%
0,000201	102,76	21,9	230,01	55,635	49,71	119,07	3%	24%

Tabella A.42: Energia Mesh 3- Pagina 2 $\left[J \right]$

Bilanci energetici

0.000202000	09.01	22.00	220.20	57 8400	51.96	115 69	9 07	9507
0,000205999	96,01	23,00	230,29	57,8499	51,50	115,02	370	2370
0,000206999	93,96	22,5	230,52	60,3706	$53,\!69$	112,72	3%	26%
0,000209999	89,23	22,78	230,73	62,9418	55,78	110,35	3%	27%
0,000212998	84,5	23,91	231	65,3338	57,26	108,06	3%	28%
0,000215998	79,92	24,7	231,18	67,6743	58,89	105,86	3%	29%
0,000218998	75,75	$25,\!07$	231,55	70,2657	60,47	103,76	3%	30%
0,000221998	71,83	$25,\!67$	231,79	72,5529	61,73	101,71	4%	31%
0,000224997	68,42	25,84	232,05	74,7235	63,06	100,03	4%	32%
0,000227997	65,59	25,95	232,31	76,79	63,98	98,59	4%	33%
0,000230997	63,09	26,26	232,51	78,4765	64,69	97,53	4%	34%
0,000233996	61,23	26,3	232,71	80,0717	65,11	96,68	4%	34%
0,000236996	60,52	25,51	232,89	81,4665	65,4	96,34	4%	35%
0,000239996	59,39	$25,\!45$	233,03	82,7215	65,47	96,33	4%	35%
0,000242995	58,63	$25,\!43$	233,18	83,701	65,42	96,44	4%	36%
0,000245995	58,12	25,39	233,25	84,4002	65,33	96,65	4%	36%
0,000248995	57,76	$25,\!39$	233,3	85,0035	65,15	96,84	4%	36%

Tabella A.43: Energia Mesh 3- Pagina 3 [J]

Bilanci energetici

A.8 Bilanci Energetici ML Analisi Velocità Proiettile deformabile

Tempo [s]	KE	IE	TE	HGE	SE	Vel [m/s]	%Tot	%hge
0	55,96	0	$55,\!96$	0	0	100	0%	0%
2,9997E-06	55,96	0	55,96	0	0	100	0%	0%
5,9994E-06	55,96	0	$55,\!96$	0	0	100	0%	0%
8,9991E-06	55,96	0	$55,\!96$	0,0003	0	99,99	0%	0%
1,19988E-05	55,96	0	55,96	0,001	0	99,99	0%	0%
1,49985E-05	55,96	0	$55,\!96$	0,0022	0	99,99	0%	0%
1,79982E-05	55,96	0	$55,\!96$	0,0037	0	99,99	0%	0%
2,09979E-05	55,96	0	$55,\!96$	0,0057	0	99,98	0%	0%
2,39976E-05	$55,\!95$	0	$55,\!96$	0,0082	0	99,98	0%	0%
2,69973E-05	55,95	0	$55,\!96$	0,011	0	99,97	0%	0%
2,9997E-05	55,94	0	$55,\!96$	0,0143	0	99,96	0%	0%
3,29967E-05	55,94	0	$55,\!96$	0,0182	0	99,95	0%	0%
3,59964E-05	55,93	0	$55,\!96$	0,0222	0,01	99,94	0%	0%
3,89961E-05	$55,\!93$	0	$55,\!96$	0,0266	0,01	99,93	0%	0%
4,19958E-05	55,92	0	$55,\!96$	0,0314	0,01	99,92	0%	0%
4,49955E-05	55,91	0	$55,\!96$	0,0365	0,01	99,90	0%	0%
4,79952E-05	55,91	0	$55,\!96$	0,0423	0,01	99,89	0%	0%
5,09998E-05	55,9	0	$55,\!96$	0,0485	0,01	99,87	0%	0%
5,39995E-05	$55,\!89$	0	$55,\!96$	0,0549	0,02	99,85	0%	0%
5,69992E-05	55,88	0	$55,\!96$	0,0613	0,02	99,83	0%	0%
5,9999E-05	55,87	0	$55,\!96$	0,0679	0,02	99,82	0%	0%
6,29986E-05	55,86	0	$55,\!96$	0,0741	0,02	99,80	0%	0%
6,59983E-05	$55,\!85$	0	$55,\!96$	0,0804	0,02	99,78	0%	0%
6,89981E-05	55,85	0	$55,\!96$	0,0865	0,03	99,76	0%	0%
7,19977E-05	55,84	0	$55,\!96$	0,0926	0,03	99,74	0%	0%
7,49974E-05	55,83	0	$55,\!96$	0,0988	0,03	99,72	0%	0%
7,79972E-05	55,82	0	$55,\!96$	0,1052	0,03	99,70	0%	0%
8,09968E-05	55,81	0	$55,\!96$	0,1115	0,03	99,68	0%	0%
8,39966E-05	$55,\!8$	0	$55,\!96$	0,1179	0,04	99,66	0%	0%
8,69962E-05	55,79	0	$55,\!95$	0,1245	0,04	99,63	0%	0%
8,99959E-05	55,78	0	$55,\!95$	0,1314	0,04	99,61	0%	0%
9,29957E-05	55,77	0	$55,\!96$	0,1392	0,04	$99,\!58$	0%	0%
9,59953E-05	55,76	0	$55,\!96$	0,1479	0,05	99,55	0%	0%
9,9E-05	55,75	0	55,96	0,1577	0,05	99,52	0%	0%

Tabella A.44:	Velocità	iniziale	100m	/s -	Pagina	1	J
---------------	----------	----------	------	------	--------	---	---

Bilanci energetici

0,000102	55,73	0	$55,\!96$	0,169	0,06	99,48	0%	0%
0,000104999	55,72	0	$55,\!96$	0,1813	0,06	99,44	0%	0%
0,000107999	55,7	0	$55,\!96$	0,1949	0,06	99,39	0%	0%
0,000110999	55,69	0	$55,\!97$	0,2095	0,07	99,34	0%	0%
0,000113998	55,67	0	$55,\!97$	0,2255	0,07	99,28	0%	0%
0,000116998	55,64	0,01	$55,\!97$	0,2438	0,08	99,21	0%	0%
0,000119998	55,61	0,01	$55,\!97$	0,265	0,09	99,13	0%	0%
0,000122998	55,58	0,01	$55,\!97$	0,2897	0,09	99,05	0%	1%
0,000125997	55,54	0,01	$55,\!97$	0,3177	0,1	98,96	0%	1%
0,000128997	55,5	0,01	$55,\!97$	0,3483	0,11	98,87	0%	1%
0,000131997	55,46	0,01	$55,\!98$	0,3807	0,12	98,77	0%	1%
0,000134996	55,41	0,01	$55,\!98$	0,4148	0,14	98,66	0%	1%
0,000137996	55,36	0,02	$55,\!98$	$0,\!4505$	$0,\!15$	$98,\!53$	0%	1%
0,000140996	55,31	0,02	$55,\!98$	$0,\!4881$	0,16	$98,\!40$	0%	1%
0,000143995	55,25	0,02	$55,\!98$	0,5273	0,18	98,26	0%	1%
0,000146995	55,19	0,02	$55,\!98$	0,5675	0,19	98,12	0%	1%
0,00015	55,13	0,03	$55,\!98$	0,6099	0,21	97,96	0%	1%
0,000153	55,07	0,03	$55,\!98$	0,6542	0,23	97,80	0%	1%
0,000155999	55	0,03	$55,\!98$	0,7005	0,25	97,62	0%	1%
0,000158999	54,92	0,04	$55,\!98$	0,7476	0,27	$97,\!43$	0%	1%
0,000161999	54,84	0,05	$55,\!98$	0,7959	0,29	97,23	0%	1%
0,000164998	54,76	0,06	$55,\!98$	0,8456	0,32	97,01	0%	2%
0,000167998	54,66	0,08	$55,\!98$	0,8974	0,34	96,76	0%	2%
0,000170998	54,55	0,1	$55,\!98$	0,9522	0,37	96,48	0%	2%
0,000173997	54,44	$0,\!13$	$55,\!98$	1,0088	0,41	$96,\!18$	0%	2%
0,000176997	54,3	$0,\!17$	$55,\!98$	1,0689	0,44	$95,\!83$	0%	2%
0,000179997	54,14	0,23	$55,\!98$	1,1315	0,49	95,44	0%	2%
0,000182997	53,95	0,31	$55,\!99$	$1,\!1978$	0,53	94,98	0%	2%
0,000185996	53,72	0,41	$55,\!99$	1,2691	0,59	$94,\!45$	0%	2%
0,000188996	53,44	$0,\!56$	56	1,3448	0,65	93,83	0%	2%
0,000191996	53,1	0,76	56	1,4281	0,72	93,12	0%	3%
0,000194995	52,67	1,02	56,01	1,5173	0,8	92,29	0%	3%
0,000197995	52,15	1,37	56,02	1,6132	0,89	91,32	0%	3%
0,000201	51,49	1,82	56,03	1,7168	0,99	90,21	0%	3%

Tabella A.45: Velocità iniziale 100m/s - Pagina 2 $\left[J \right]$

Bilanci energetici

0,000203999	50,7	2,4	56,04	1,8311	1,11	88,94	0%	3%
0,000206999	49,75	3,11	56,05	1,9607	1,23	87,47	0%	3%
0,000209999	48,62	$3,\!98$	56,06	2,1017	1,36	85,80	0%	4%
0,000212998	47,32	5	56,07	2,2477	1,51	83,92	0%	4%
0,000215998	45,86	6,18	56,08	2,4066	1,64	81,81	0%	4%
0,000218998	44,24	7,49	56,1	2,5807	1,79	79,45	0%	5%
0,000221998	42,52	8,91	56,12	2,7619	1,94	76,86	0%	5%
0,000224997	40,71	10,41	$56,\!15$	2,9648	2,06	74,01	0%	5%
0,000227997	38,88	11,75	56, 19	3,204	2,35	70,84	0%	6%
0,000230997	37,12	12,82	56,26	3,5452	2,77	67,19	1%	6%
0,000233996	35,82	10,64	56,41	4,3546	$5,\!6$	63,78	1%	8%
0,000236996	34,19	10,61	$56,\!55$	5,2176	6,54	60,87	1%	9%
0,000239996	32,66	10,99	$56,\!64$	5,8547	7,14	$58,\!10$	1%	10%
0,000242995	31,13	11,82	$56,\!69$	6,3615	7,38	$55,\!51$	1%	11%
0,000245995	29,56	12,75	56,74	6,8231	7,61	52,98	1%	12%
0,000248995	27,98	$13,\!63$	56,78	7,2294	7,94	$50,\!48$	1%	13%
0,000252	$26,\!38$	$14,\!64$	$56,\!83$	$7,\!6811$	8,12	48,03	2%	14%
0,000254999	24,72	15,76	$56,\!87$	8,0964	8,29	$45,\!60$	2%	14%
0,000257999	23,04	$16,\!88$	56, 91	8,482	8,5	43,17	2%	15%
0,000260999	$21,\!39$	$17,\!99$	$56,\!95$	8,8974	8,67	40,74	2%	16%
0,000263998	19,76	$19,\!07$	$56,\!99$	9,3158	8,85	38,30	2%	16%
0,000266998	18,13	20,12	57,03	9,7343	9,05	$35,\!80$	2%	17%
0,000269998	$16,\!58$	$20,\!87$	$57,\!07$	10,1826	9,44	$33,\!45$	2%	18%
0,000272997	$15,\!03$	$21,\!69$	$57,\!11$	$10,\!652$	9,74	$31,\!05$	2%	19%
0,000275997	$13,\!59$	$22,\!47$	$57,\!16$	$11,\!1294$	9,97	28,74	2%	19%
0,000278997	12,18	$23,\!23$	$57,\!19$	$11,\!5515$	$10,\!23$	$26,\!45$	2%	20%
0,000281997	$10,\!88$	$24,\!09$	$57,\!22$	$11,\!8839$	10,36	24,21	2%	21%
0,000284996	$9,\!67$	$24,\!85$	$57,\!25$	12,2126	10,52	21,98	2%	21%
0,000287996	8,58	$25,\!47$	$57,\!28$	$12,\!5706$	$10,\!66$	19,74	2%	22%
0,000290996	7,58	$25,\!92$	$57,\!31$	12,9735	10,83	$17,\!55$	$2\overline{\%}$	$23\overline{\%}$
0,000293995	6,63	$26,\!48$	$57,\!34$	13,3736	10,85	$15,\!42$	2%	23%
$0,00029699\overline{5}$	5,76	27,05	57,37	13,6737	10,89	13,34	3%	24%
$0,000\overline{299995}$	4,97	$27,\!61$	$57,\!39$	13,9217	$10,\!89$	11,30	$3\overline{\%}$	$24\overline{\%}$

Tabella A.46: Velocità iniziale 100m/s - Pagina 3 $\left[J \right]$

Bilanci energetici

0,000302999	4,26	28,11	57,4	14,1532	$10,\!89$	$9,\!25$	3%	25%
0,000305999	3,65	28,55	57,42	14,3494	10,87	7,24	3%	25%
0,000308999	3,12	28,91	57,44	14,5517	10,86	5,23	3%	25%
0,000311999	2,69	29,13	57,45	14,7485	10,88	3,23	3%	26%
0,000314998	2,33	29,34	57,47	14,9214	10,87	1,29	3%	26%
0,000317998	2,08	29,41	57,48	15,0911	10,91	0,67	3%	26%
0,000320998	1,88	29,44	57,5	15,2848	10,88	2,50	3%	27%
0,000323997	1,75	29,45	57,5	15,4052	10,89	4,27	3%	27%
0,000326997	1,7	29,42	57,51	15,5252	10,86	5,97	3%	27%
0,000329997	1,7	29,3	57,52	15,6505	10,87	7,62	3%	27%
0,000332996	1,75	29,18	57,52	15,7707	10,82	9,18	3%	27%
0,000335996	1,84	29,03	57,53	15,8883	10,77	10,68	3%	28%
0,000338996	1,97	28,84	57,54	15,9955	10,73	12,10	3%	28%
0,000341996	2,12	28,64	57,54	16,0854	10,69	13,44	3%	28%
0,000344995	2,29	28,44	57,55	16,1594	10,66	14,72	3%	28%
0,000347995	2,47	28,22	57,55	16,2392	10,62	15,94	3%	28%

Tabella A.47: Velocità iniziale 100m/s - Pagina 4 [J]

Bilanci energetici

Tempo [s]	KE	IE	TE	HGE	SE	Vel [m/s]	%Tot	%hge
0	895,41	0	895,41	0	0	400	0%	0%
2,9997E-06	895,39	0	895,4	0,01	0	399,99	0%	0%
5,9994E-06	895,25	0,01	895,4	0,095	0,04	399,9	0%	0%
8,9991E-06	894,98	0,02	895,4	0,268	0,13	399,76	0%	0%
1,19988E-05	894,57	0,04	895,39	0,5224	0,27	399,54	0%	0%
1,49985E-05	894,03	0,05	895,39	0,8661	0,44	399,23	0%	0%
1,79982E-05	893,48	0,06	895,39	1,2311	0,62	398,92	0%	0%
2,09979E-05	892,9	0,06	895,38	1,613	0,8	398,61	0%	0%
2,39976E-05	892,25	0,1	895,39	2,0335	1	398,19	0%	0%
2,69973E-05	891,46	0,23	895,51	2,562	1,26	397,58	0%	0%
2,9997E-05	890,2	0,5	895,67	3,3082	1,66	396,57	0%	0%
3,29967E-05	888,23	0,88	895,79	4,4014	2,28	395,13	0%	0%
3,59964E-05	885,57	1,41	895,9	5,8221	3,1	393,26	0%	1%
3,89961E-05	882,46	2,02	896	7,4226	4,09	390,95	0%	1%
4,19958E-05	878,95	2,74	896,1	9,1895	5,22	388,31	0%	1%
4,49955E-05	874,93	3,74	896,27	11,0942	6,5	385,37	0%	1%
4,79952E-05	870,07	5,39	896,51	13,1712	7,88	382	0%	1%
5,09998E-05	863,7	8,26	896,79	15,3857	9,44	377,96	0%	2%
5,39995E-05	854,44	13,67	897,08	17,7136	11,26	372,92	0%	2%
5,69992E-05	840,76	21,71	897,35	20,3424	14,54	366,61	0%	2%
5,9999E-05	830,61	13,75	898,33	26,3842	27,58	361,83	0%	3%
6,29986E-05	815,28	14,5	899,12	33,3194	36,02	358,58	0%	4%
6,59983E-05	798,15	19,94	899,78	39,2763	42,41	354,98	0%	4%
6,89981E-05	778,95	25,04	900,62	45,8393	50,79	351,23	1%	5%
7,19977E-05	759,85	29,06	901,63	53,0877	59,62	348,04	1%	6%
7,49974E-05	744,28	28,39	902,5	61,2219	68,6	345,77	1%	7%
7,79972E-05	737,91	19,72	903,24	69,6268	75,98	344,97	1%	8%
8,09968E-05	733,13	17	903,58	75,1561	78,3	345,58	1%	8%
8,39966E-05	729,68	17,56	903,61	77,5919	78,77	346,28	1%	9%
8,69962E-05	727,55	18,44	903,73	78,844	78,9	346,92	1%	9%
8,99959E-05	725,9	19,27	903,82	79,714	78,94	347,53	1%	9%
9,29957E-05	724,49	20,04	903,88	80,4071	78,95	348,02	1%	9%
9,59953E-05	723,3	20,71	903,94	80,9443	78,98	348,5	1%	9%
9,9E-05	722,33	21,31	903,98	81,3522	78,98	348,95	1%	9%

Tabella A.48: Velocità iniziale 400m/s - Pagina 1 [J]

Bilanci energetici

0,000102	721,54	21,84	904,02	81,6722	78,96	349,36	1%	9%
0,000104999	720,89	22,3	904,07	81,947	78,93	349,75	1%	9%
0,000107999	720,25	22,69	904,07	82,197	78,93	350,11	1%	9%
0,000110999	719,73	23,02	904,09	82,4247	78,92	350,45	1%	9%
0,000113998	719,25	23,29	904,12	82,655	78,93	350,78	1%	9%
0,000116998	718,84	23,5	904,12	82,8657	78,92	351,08	1%	9%
0,000119998	718,48	23,65	904,14	83,09	78,92	351,36	1%	9%
0,000122998	718,17	23,76	904,15	83,2969	78,93	351,62	1%	9%
0,000125997	717,93	23,83	904,2	83,5323	78,9	351,86	1%	9%
0,000128997	717,71	23,86	904,22	83,7605	78,89	352,07	1%	9%
0,000131997	717,52	23,87	904,24	83,9694	78,89	352,23	1%	9%
0,000134996	717,34	23,86	904,28	84,1937	78,88	352,32	1%	9%
0,000137996	717,16	23,86	904,31	84,4117	78,88	352,3	1%	9%
0,000140996	716,97	23,87	904,36	84,638	78,88	352,23	1%	9%
0,000143995	716,78	23,88	904,41	84,8822	78,87	352,19	1%	9%
0,000146995	716,55	23,89	904,44	85,1527	78,85	352,17	1%	9%
0,00015	716,24	23,91	904,46	85,4668	78,84	352,16	1%	9%
0,000153	715,84	23,95	904,47	85,8454	78,83	352,14	1%	9%
0,000155999	715,3	24,04	904,47	86,2958	78,84	352,15	1%	10%
0,000158999	714,55	24,18	904,53	86,9503	78,85	352,18	1%	10%
0,000161999	713,71	24,32	904,69	87,771	78,89	352,19	1%	10%
0,000164998	712,79	24,46	904,87	88,6527	78,97	352,17	1%	10%
0,000167998	711,82	24,55	904,98	89,661	78,94	352,14	1%	10%
0,000170998	710,8	24,6	905,04	90,6731	78,97	352,15	1%	10%
0,000173997	709,88	24,66	905,22	91,636	79,04	352,17	1%	10%
0,000176997	708,94	24,76	905,42	92,5679	79,17	352,18	1%	10%
0,000179997	707,83	24,77	905,61	93,6159	79,39	352,17	1%	10%
0,000182997	706,7	24,62	905,66	94,6706	79,67	352,16	1%	10%
0,000185996	705,96	24,3	905,75	95,609	79,88	352,16	1%	11%
0,000188996	705,59	24,05	905,83	96,286	79,91	352,16	1%	11%
0,000191996	705,29	23,96	905,86	96,7325	79,88	352,16	1%	11%
0,000194995	705,02	23,94	905,87	97,0797	79,83	352,16	1%	11%
0,000197995	704,82	23,93	905,87	97,3487	79,77	352,16	1%	11%

Tabella A.49: Velocità iniziale 400m/s - Pagina 2 $\left[J \right]$

Bilanci energetici

Tempo [s]	KE	IE	TE	HGE	SE	Vel [m/s]	%Tot	%hge
0	3581,62	0	3581,62	0	0	800	0%	0%
2,9997E-06	3581,06	0,07	3581,62	0,259	0,23	799,80	0%	0%
5,9994E-06	3578,51	0,26	3581,63	1,5369	1,32	798,99	0%	0%
8,9991E-06	3574,36	0,52	3581,75	3,8823	2,99	797,48	0%	0%
1,19988E-05	3569,52	0,79	3581,9	6,8688	4,72	795,81	0%	0%
1,49985E-05	3562,11	3,13	3582,9	10,6313	7,03	793,12	0%	0%
1,79982E-05	3547,92	8,22	3584,25	16,5776	11,54	787,93	0%	0%
2,09979E-05	3526,83	15,42	3585,54	24,8899	18,4	779,95	0%	1%
2,39976E-05	3504,17	17,39	3586,49	35,7745	29,15	771,75	0%	1%
2,69973E-05	3482,25	11,36	3588,03	50,3899	44,03	766,93	0%	1%
2,9997E-05	3458,19	15,41	3589,56	62,4004	53,55	763,09	0%	2%
3,29967E-05	3435,1	20,24	3591,64	73,1023	63,19	759,18	0%	2%
3,59964E-05	3411,41	23,44	3593,53	83,8147	74,86	756,37	0%	2%
3,89961E-05	3396,42	20,71	3595,26	93,8598	84,27	$756,\!38$	0%	3%
4,19958E-05	3375,78	26,98	3597	102,837	91,4	757,16	0%	3%
4,49955E-05	3337,88	42,2	3599,92	116,772	103,07	757,86	1%	3%
4,79952E-05	3337,31	21,18	3602,19	131,212	112,49	758,59	1%	4%
5,09998E-05	3332,38	16,8	3602,59	138,331	115,09	759,10	1%	4%
5,39995E-05	3324,79	17,01	3602,1	143,747	116,55	759,65	1%	4%
5,69992E-05	3321,74	17,38	3602,37	146,219	117,03	760,14	1%	4%
5,9999E-05	3319,91	17,81	3602,33	147,426	117,18	760,54	1%	4%
6,29986E-05	3318,53	18,25	3602,26	148,21	117,27	760,98	1%	4%
6,59983E-05	3317,49	18,66	3602,24	148,797	117,29	761,32	1%	4%
6,89981E-05	3316,61	19,01	3602,25	149,304	117,32	761,67	1%	4%
7,19977E-05	3315,84	19,31	3602,29	149,829	117,32	761,99	1%	4%
7,49974E-05	3315,19	19,55	3602,31	150,265	117,31	762,27	1%	4%

Tabella A.50: Velocità iniziale 800m/s $\left[J \right]$

Bibliografia

- William F. Smith. Scienza e tecnologia dei materiali. 1993 (cit. alle pp. 1, 8, 13).
- [2] Milena Salvatore. «Meccanica dei compositi». In: Quad. di Progett. () (cit. a p. 8).
- [3] Joachim Roesler, Harald Harders e Martin Baeker. Mechanical Behaviour of Engineering Materials. 2007, pp. 62–118. ISBN: 9783835100084 (cit. alle pp. 9–11).
- K. A. Dannemann, V. B. Chalivendra e B. Song. *Dynamic Behavior of Materials*.
 Vol. 52. 2. John Wiley & Sons, Inc., 2012, pp. 117–118. DOI: 10.1007/s11340-012-9598-0 (cit. alle pp. 21, 22).
- [5] Antonio Gugliotta. *Elementi Finiti*. 2002 (cit. a p. 25).
- [6] Rimantas Barauskas e Aušra Abraitiene. «Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA». In: Int. J. Impact Eng. 34.7 (2007), pp. 1286–1305. ISSN: 0734743X. DOI: 10.1016/j.ijimpeng.2006.06.002 (cit. alle pp. 29, 30).
- [7] H. Talebi, S. V. Wong e A. M.S. Hamouda. «Finite element evaluation of projectile nose angle effects in ballistic perforation of high strength fabric». In: *Compos. Struct.* 87.4 (2009), pp. 314–320. ISSN: 02638223. DOI: 10.1016/j.compstruct.2008.02.009. URL: http://dx.doi.org/10.1016/j.compstruct.2008.02.009 (cit. a p. 44).