\

eima 1) Y/

life.augmented

Ines Slimi

Nanotechnologies for ICTs
2019/2020

STMICROELECTRONICS
12 RUE JULES HOROWITZ, 38019 GRENOBLE, FRANCE

Verification of a non-volatile memory block
(flash) using mixed simulation tools (analog
+ digital).

From 16/02/2020 to 31/06/2020

Confidentiality: YES

Under the supervision of Present at the defense: YES
- Company supervisor: Thomas Jouanneau, thomas.jouanneau @st.com
- Phelma tutor : Lorena Anghel, lorena.anghel @ grenoble-inp.fr

Ecole nationale

supérieure de physique,
électronique, matériaux
Phelma

Bat. Grenoble INP - Minatec

3 Parvis Louis Néel - CS 50257
F-38016 Grenoble Cedex 01
Tél +33 (0)4 56 52 91 00

Fax +33 (0)4 56 5291 03
http://phelma.grenoble-inp.fr

“all models are wrong but some are useful”

Georges box

Contents

1

Introduction

1.1 Introduction e e

1.2 HostCompany

Theoretical background

2.1 FlashMemories e e e
21,1 Overview e e
2.1.2 TheeSTMmemory v v it it

2.2 Charge Pumps e

2.3 Circuit Verification e
2.3.1 General presentationo
2.3.2 Existing models and simulations

VXR Pump modelling

3.1 Theoretical presentation of the vxrpump

3.2 Preliminary Study
3.2.1 Testbench and simulations
322 Results

3.3 Different strategies e
3.3.1 Explanation and development of two strategies
3.3.2 Results comparison of the two strategy

3.4 Development of the chosen strategy
34.1 Detailedscript
34.2 SimulationandResults oo

Integration of the model in mixed simulation environment

4.1 Testbench and simulations
4.2 Scripts and simulations L
4.2.1 Code of the VXR pump existingmodel
4.2.2 Current measurement schematic
423 Modelintegration
43 Results. e e
43.1 FunctionalCheck
4.3.2 Currents consumptiont e e
4.3.3 Simulationtime
Conclusion

Personal comments
6.1 Personal conclusion
6.2 Acknowledgments

Bibliography

12
12
13
13
14
15
15
17
18
18
19

22
22
23
23
24
25
26
26
27
29

30

30
30
31

32

8 Annexes

8.1

Gantt Chart

82 Tclcode e
8.3 VerilogAMScode

Glossary

eSTM : embedded Select in Trench Memory.
VXR2 : An output pin of the VXR charge pump.
VDD, VDDPUMP : The input pins of the VXR charge pump.

List of Figures
1 STBuilding
2 eSTM bitcell schematics e
3 eSTM core organisation OVeIVieW v v v v v v v i e
4 Power Tree e
5 eSTM core organisation OVEIVIEW v v v v v v v v e
6 A simplified schematic of the VXRpump
7 Testbench schematic of the VXRpump
8 First strategy
9 Second strategy e e e e
10 Iypppump COMPATISON o v v e et e e e e e e e e
11 Iypp comparison o v v i vt e e
12 Transient results of simulation1
13 Extractsof the outputtextfile.
14 “Read”task e
15 Existingmodel
16 Current measurement schematic
17 Output text file containing only the equations’ coefficients for Iypppump - - - -
18 e
19 Functional check of themodel
20 Input Current consumption check (Iypp and Iypppump) - - -« « o« o o o o ..
21 Output current consumption lyxgo - -+« « « v v v e e et e e
List of Tables
1 Different parameters affecting the two supply currents
2 Supply currents variation for each parameter
3 Parameter variation for the different simulations
4 Maximum Error
5 Added command lines for current measurement
6 Bitcell voltagescheck
7 Simulation time comparison for the same CPU frequency 3GHz

33
33
33
36

Abstract

The eSTM memory block is made of digital and analog sub blocks. Analog sub blocks may
be described through models to speed up the simulation while keeping reasonable accuracy.
This work aims at presenting the improvement done on existing charge pump models by adding
information about their supply currents consumption in order to optimize the trade off between
time and accuracy.
key words: charge pump - simulation.

Le bloc de mémoire eSTM est composé de sous-blocs numériques et analogiques. Des sous-
blocs analogiques peuvent €tre décrits a travers des modeles pour accélérer la simulation tout
en conservant une précision raisonnable. Ce travail vise a présenter les améliorations apportées
aux modeles de pompe de charge existants en ajoutant des informations sur leur consommation
de courants d’alimentation afin d’optimiser le compromis entre le temps et la précision.
mots clés: pompe de charge - simulation.

Il blocco di memoria eSTM ¢ costituito da blocchi secondari digitali e analogici. I blocchi
secondari analogici possono essere descritti attraverso modelli per accelerare la simulazione
mantenendo una precisione ragionevole. Questo lavoro intende presentare 1 miglioramenti ap-
portati ai modelli esistenti di pompe di carica aggiungendo informazioni sul loro consumo di
correnti di alimentazione al fine di ottimizzare il compromesso tra tempo e precisione.
parole chiave: pompa di carica - simulazione

1 Introduction

1.1 Introduction

My internship was carried out within the MDG Division (Microcontrollers Digital IC Group)
of STMicroelectronics which is an organisation mainly deployed in France and Italy. It mainly
designs microcontrollers for various applications such as consumer electronics (STM32) and
secure products (NFC, banking). I’ve joined the Central RD team eNVM (Embedded Non-
Volatile Memory) within this MDG division. This team is in charge of producing non-volatile
memory blocks (Flash, EEPROM) intended to be integrated into various microcontrollers.

A flash memory block is a complex system with various analog and digital components. Be-
fore going into production, this system is verified by mixed simulations. This allows to verify
the interactions between the different sub-blocks and the proper functioning of the whole sys-
tem. The effectiveness of these mixed simulations is measured on two criteria : accuracy of the
simulation and speed of execution.

However, for certain simulations which target functionality rather than performance, a com-
promise could be found by intelligent modeling of different analog sub-blocks. This allows to
greatly improve the speed of simulation while limiting the loss of precision.

This is the case of charge pumps which are analog sub-blocks of the flash memory block that
are very heavy to simulate on full transistor level.

For this reason, this internship aims at participating in the improvement of existing models
of charge pumps in order to increase their accuracy while minimizing the impact on the speed
of the simulation. The main purpose of this thesis is to first develop models in hardware and
behavioral description languages, then to check up the validity of these models compared to the
original blocks, and finally to integrate the models into the whole circuit and perform a global
simulation to check its functionality.

1.2 Host Company

(7l
—
_

en T
4"

I

Figure 1: ST Building

The training period extends over twenty-four weeks in STMicroelectronics Grenoble in

France. STMicroelectronics is a global independent semiconductor company and a leader in
developing and delivering semiconductor solutions across the spectrum of microelectronics ap-
plications.
The company was born from the 1987 merger of the Italian company SGS Societa Generale
Semiconduttori SpA and the French company Thomson Semiconducteurs a subsidiary of Thom-
son. It employs 46,000 creators and makers of semiconductor technologies that cover its 11
manufacturing sites.[1]

My internship was carried out in Grenoble site which now hosts many divisions (marketing,
design, industrialization) and is an important RD center (design, software, research on manu-
facturing processes).

2 Theoretical background

2.1 Flash Memories
2.1.1 Overview

Flash memory is an electronic non volatile memory that was first developed by Toshiba in
the early 1980 based on EEPROM (Electrically Erasable Programmable Read Only Memory).
Tanks to its remarkable speed, it has evaded several devices ranging from smart phones to solid
state drivers. It is based on a floating gate that tunes the switch on or off depending on the charge
stored in it.

There are two main kinds of flash memory, NOR flash and NAND flash. The first one is
based on a NOR logical gate for each bit cell of the memory array, this type of flash memory
allows each single byte to be operated independently and shows a good performance during
read operation with lower latency . The second one is based on a NAND logical gate for each
bit cell, this type of memory may be operated in blocks or pages and has better storage density
with lower price. NOR is used as a first support component in simple embedded systems while
NAND plays the role of a second storage component in complex embedded systems such as
SDD drivers.[5]

2.1.2 The eSTM memory

The eSTM is an innovative charge storage non-volatile memory cell conceived, developed and
industrialized by STMicroelectronics that has allowed to achieve a breakthrough scaling.

It is based on flash NOR memory cells with a conventional polysilicon floating gate and a select
transistor built vertically in the depth of the silicon and representing the wordline as shown in
figure 2-a.

Bitline(i+1)-------------==========-=----- P Bitline (i+1)
Bitline(i) --------- L {-mmmme oo
i CG 1
-—ri-"rfu—e‘wu—o.‘r..
R ol
Finating | | |
H SR B
necrui J00RE | |
....... . o
=E
channsl | == |
p-sub b Sabet 107
=] [
B i =] T——— | biried source line
deo (source)
(a) Schematic cross-section of eSTM cell (b) Device schematic of coupled cells ar-

rangement

Figure 2: eSTM bitcell schematics

Each single cell is identified at the intersection of a BL and a WL. In fact, the structure of
the vertical select transistor determines the vertical selection of the two rows of symmetrical
cells simultaneously, and since each drain of these two cells is connected to a different bitline,
the selection of the horizontal bitline would determine the selected cell as shown in figure 2-b.[8]

The eSTM cell gathers the advantages of a conventional 1T Flash Memory cell together
with a more compact cellbit area outpacing state-of-the-art in term of bit-cell area.

The eSTM macrocell flash memory block is composed of two main sub-block: a digital
controller and an analog core as sown in figure 3. It has two main supplies VDD ranging from
0.9 to 1.4V and VCC ranging from 1.5 to 5.5V.

The digital controller is composed of a micro core controller which executes a code stored
in a ROM (Read Only Memory). It has access to registers that store the resources, configuration
registers that store the trimmings and configurations needed for the different operations. It also
has access to RAM memory in case the code needs to be patched. Several function for analog
blocks managements are also implemented in the digital controller.

The hardmacro has two main sub blocks which are the eSTM memory array and the analog
control circuits. The analog control circuit contains four charge pumps to generate supplies for
other analog blocks, oscillators, current references and two HV (high voltage) blocks. Besides,
the eSTM memory array is divided into two half arrays with a read circuitry in between.

Analog control
Oscillator
Current & voltage
references

Charge pumps

DAC Latches HV switches

Memory cells
Registers

controller

Figure 3: eSTM core organisation overview

The main operations of the cell are the read, program and erase operations.
The read operation is used to output the content of the cell. During this operation 2 words are
read at a time by the sense amplifier which apply about 0.7V to the selected bitline of the cell
while its worldline is biased to 3V, its control gate biased to OV and its buried source is kept
to GND potential. Besides, the measured drain current would characterize whether the cell is
programmed if it is negative or erased if it’s positive.

The Programming operation is equivalent to writing 0’ in the array with a granularity down
to 1 bit by introducing electrons into the floating gate.
During this operation the control gate is biased to a positive high voltage around 10V so that the
left transistor according to figure 2 (b) is ON and that way, the potential on its source is equal
to the potential at the drain of the right transistor which is equal to 4.5V and therefore the right
transistor is in saturation. This condition generates hot electrons in its vertical drain region since
they have enough kinetic energy to cross the thin oxide barrier and reach the gate. A vertical
electric field is also generated thanks to the high control gate biasing and controls the injection
of electrons to the floating gate.

The Erase operation is equivalent to writing 1’ in the array with a granularity down to 1
page by subtracting electrons from the floating gate.
During this operation, the selected control gate line is biased to a high negative voltage equal to
-10V. the unselected control gate world line is biased to the same positive high voltage 10V of
the p-well and source in order to avoid any electrical noise from unselected pages. The physical
mechanism involved is the Fowler-Nordheim effect.[8]

2.2 Charge Pumps

DC-DC voltage converters are very common in integrated circuits. LDO (Low Dropout Reg-
ulators) and SMPS (Switched Mode Power Supplies) are the main converters used for high to
low conversion. On the one hand, LDO has a simple implementation technique, a low cost and
low noise but it has a limited flexibility since it could only be used to step down voltages. On
the other hand, SMPS has a better flexibility since it could step down or step up voltages with a
high efficiency but it has a more complicated design with higher cost and noise.

In the case of low to high conversion, transformers followed by a filter have been used over
the 100 past years. transformers were mainly used as AC-DC converters but being followed with
a filter has allowed to use them as DC-DC converters. Although this technique was successful
but with the continuous scaling down of circuits it becomes large and costly compared to the
rest of the power conversion circuity it supports due to its inductive component.[6]

For this reason charge pumps which are compact inductor-less DC-DC converters are more
suitable for IC design. A charge pump uses capacitors as an element that stores the energy.
There are many types of charge pumps, the main topologies are :[7]

» Two-stage charge pump with DC voltage supply and a pump control signal.
* Dickson charge pump with diodes.

* Dickson charge pump with MOSFETs

* PLL (Phase Locked Loop) charge pump.

Charge pumps are commonly used to provide a positive or negative voltage from low voltage
power supplies which is the case in the eSTM memory for the VXR charge pump having
VDD (0.9-1.4V) and VDDPUMP (1.5-2.1V) as the only two low power supplies and requiring
voltages up to 20V for erasing aged cells. Therefore, the circuit is made of three charge pumps.
The main one VXR pump which creates two high voltage supplies for analog blocks and gen-
erate the bitline biasing voltage for programming operations. Vyp that generates the positive
supply voltage (10V) used for example to bias bitcell control gate during programming oper-
ations. And Vneg which is a negative charge pump that generates control gate negative voltages
(-10V) for the erase operations.

VDD

VDD

VNEG
Vddpump

Clk1
Vref

VDD

Clk3
vref

Figure 4: Power Tree

2.3 Circuit Verification

The previously presented block needs to be verified thereafter its design. This is done through
mixed simulators.

2.3.1 General presentation

SPICE (Simulation Program With Integrated Circuit Emphasis) is the most important analog
simulator in the word of microelectronics to check the integrity of circuit designs and to predict
circuit behavior.

Although SPICE is a general purpose analog circuits simulator, it may has some limitations
with large circuits as the run time exponentially increases with the circuit size. Besides, with
the wide spread of mixed-signal designs, the need of simulating mixed analog-digital circuits

10

has arisen. Simulating the digital parts with full SPICE simulation is very time-consuming,
that’s why efficient event-driven techniques are used for simulating the digital parts. And mixed
mode simulators glue together an accurate full SPICE analog simulator to an efficient digital
simulator.[2][3]

The interaction between analog and digital parts is made through DAC (Digital Analog Con-
verters) as well as ADC (Analog Digital Converters) that bridges the path between the modes
and which are only virtual devices.

2.3.2 Existing models and simulations

Following the previous part, several blocks of the eSTM block are modeled and the figure 5
below points the modeled blocks in red while keeping the analog ones in blue.

Digital controller

Analog control

Current & voltage
references

Charge pumps
& regulators

Figure 5: eSTM core organisation overview

The eSTM is simulated using this type of mixed simulation tools. Several existing simula-
tions for the different operations of the memory already exist.
Full transistor level simulations are very long and could go up to 2 days for a ”programming”
simulation for example. For this reason a lot of sub parts are modeled which makes the simula-
tion time shrink down to 20 min while limiting the loss of precision.
Some models already exist for this charge pump with short simulation times but these models
don’t provide any information about the currents consumption of the charge pump, and this is
why this internship aims at figuring out a model with these missing information while keeping
the same run time.

11

3 VXR Pump modelling

3.1 Theoretical presentation of the vxr pump

The VXR pump is made of three identical stages as the one shown in figure 6. One of these
three stages can be by passed making the charge pump having two different operating modes
according to the number of stages (either two or three).

The VXR pump is connected to a DCDC converter at its input and to two other charge pumps
Vyp and Vneg at its output. It is also connected to the bitcell control blocks at its output since it
would deliver different levels of supply voltages according to the type of operation done by the
memory.

I, ~ - T

IR gL S

Figure 6: A simplified schematic of the VXR pump

The VXR charge-pump circuit uses two fly capacitors for storage in order to achieve higher
voltages. The circuit has two states, which it continually switches between. The first state has
two opposite switches on (77 and 74 for example) and the two others off (73 and 73 in this case),
this is a charging state for the Cy;, 1. Then, in state 2 when Tj and Tj are now off and 7 and T3
on, the potential at the node between 71 and 7, becomes virtually equal to 2*V;, and is thereafter
transferred to V,,,;. The same process occurs to Cy;,2 but with phase opposition with respect to
Ct1y1 making V,,, increase at each state.

12

3.2 Preliminary Study

The VXR Pump has two main voltage supplies Vypp which ranges from 0.9 to 1.4V and
Wpppump which ranges from 1.4 to 2.1V. Added to an output voltage Vyxg> which is main-
tained constant at a certain level through a voltage regulator. Its value is triggered using a digital
control bus (VxrCtl).

The whole purpose of this modelling is to estimate the two currents (Iypp and Iypppyyp) de-
livered to the charge pump supplies. In order to do so all the parameters that may affect these
two supply currents need to be determined first. 8 parameters are held as shown in table 1 below.

Voltage supplies Vypp and Vy pppump

Output current Iy xgo

Output voltage Vyxg2 (Controlled by VxrCtl)

Temperature

Clock frequency

Number of stages

Process variation

Table 1: Different parameters affecting the two supply currents

The Output voltage Vyxgo is a discrete parameter that can take 47 different values and the
number of stages is a discrete parameter as well that can be fixed rather to 2 or 3. for this reason
these two parameters could be dropped of because a model will be found for each different
value of them instead of being included into a general equation. Besides, the process variation
is very difficult to model and the worst case (FFA) will be considered for the rest of the study.
This makes the number of parameters shrink from 8 to 5.

3.2.1 Testbench and simulations

Modelling the behavior of this pump in term of current consumption by finding out an equation
that relates 5 parameters is still very uncomfortable. For this reason, each parameter’s impact on
the input current needs to be studied independently and compared to other parameters’ impacts
in order to simplify the modelling by only keeping the critical parameters.

First of all, Cadence Virtuoso environment is used in order to create a testbench schematic
for the existing instance of the VXR pump using some power supplies from the analog library
added to an existing instance of current mirror. This schematic is shown in figure 7.

Then Eldo Premier engine from Mentor Graphics is used for simulations. Each parameter is
fixed to an operating value except the one being studied, then a parametric sweep is applied to
the studied parameter which will allow the two supply currents to be measured for different val-
ues of this parameter. And these two supply currents are extracted using additional commands.

13

Figure 7: Testbench schematic of the VXR pump

3.2.2 Results

At nominal current values of the output, the clock frequency has no impact on the currents de-
livered by the two supply voltages Vypp and Vypppump - This frequency gives the maximum
pumping capacity, the higher the frequency is the higher the driving capability is.

The output current is the most critical parameter. However, according to its curve, the vari-
ation of the two supply currents with respect to it is linear with a steep slope so it could be
added as a multiplying factor to the equation at the end. A constant could be added as well if
the supply currents are significant when the output current is equal to zero.

The temperature and the two supply voltages are therefore the three main contributors. How-
ever, for the sake of simplicity, temperature is going to be dropped out in a first approximation
taking the worst case corresponding to the case with the highest temperature. And the following
parts are going to focus on the modelling of the currents variation with respect to Vypp and

WopbrPump -

H Parameter IVDDPUMP IVDD H

Wpp 7.6 % 26.14 %
VWbbrPUuMP 7.3 % 29 %
Frequency 0 % 0 %

Temperature 3.18 % 14.97 %
lyxgr2 >100% > 100 %

Table 2: Supply currents variation for each parameter

14

3.3 Different strategies
3.3.1 Explanation and development of two strategies

As explained in the previous section, this part is focused on the modelling of the two supply
currents as a function of Vypp and Vypppump .

The launched simulation aims at plotting Iy pp and Iy pppymp as a function of Vypp and Vy pppuyp
each, and this simulation is done in the following conditions:

- Vwxrr =3.26V - T=270C -f=200Mhz -lyxro ZSOHA.

So the first step is to report the data of the simulation results to excel for observation. And
by plotting point by point the supply currents as a function of Vypppyup for different values of
Wbb, one could clearly notice a linear behavior which leads to make a linear approximation for
each curve as shown in figure 8-a. This leads to several different linear equations for different
values of Vypp whose slopes and constants depend on Vypp. As a consequence, the variation of
the slope as well as the constant as a function of Vypp is plotted in figures 8-b and 8-c in order
to find a general equation that relates each supply current with the two supply voltages and this
results in equations (3.3.1.1) and (3.3.1.2).

Vdd and Vdd_Pump current as a function of Vdd_Pump supply voltage for different Vdd

e .y
| e S e Vdd_Pump Current
——= —

R f‘ ! Vdd Current

vdd_Pump [V]

(a) Linearization

Slope and constant variations as a function of Vdd
100£-03

Slope and constant variation of Vdd current as a function of vdd
80004 V= 2926001+ 212604

S
% 4.006-04

< 200604
g
s ¥=-4.35E05x- 267E.05
0 02 04 05 [I s S S - w
200604
vdd (V)

(b) Slope and Constant for Iypppump (c) Slope and Constant for Vypp
Figure 8: First strategy
One can notice that there is also the possibility of doing the same previous steps but by
starting with plotting the currents as a function of Vypp instead of Vypppyap then getting the

expression of the slope and constant as a function of Vy pppyarp. This possibility has been tested
but it was much more complex to find an easy and representative modelling strategy in that case.

15

vddpump current vdd current

0.00075 0.00025
0.0007 0.0002
= —
= <
0.00065 1
£ —e—vdd 1.0 E 0.00015 —e—vdd_1.0
=] vdd 0.9 =
= 5 wdd_0.9
£ oo widil 2 gpoo1 1
= wd12 S v
= 1 vdd 1.2
0.00055 vaa s 0.00005
—a—vdd 14 —e—vdd 1.3
—a—vdd 1.4
0.0005 0
14 16 18 2 14 16 18 2
VddPump(V) VddPump(V)
(@) lvpprump (®) lvpp

vddpump current after adding an offset vdd current after multipliying by a matching factor (1/vdd2)

0.00064
0.00062

0.0006

—e—vdd 1.0

0.00058 —e—wdd 10

vdd 0.9

rent
5
=1
=)
=
=
&

vdd 1.1

0.00056 Series3

vdd 1.2

Vdd Cur

Seriesd

w

—a—vdd 1

0.00054

=

—a— Seriess —e—vdd 1

Vdd_Pump current

0.00052 —a—Seriesh

0.0005
14 16 1B 2 0
14 15 16 17 18 19 2 21

Vdd_Pump (V)
vdd_Pume (v vdd_Pump (V)

(c) Iypppump after adding an offset (d) Iypp after adding an offset

Figure 9: Second strategy

So far, a first strategy has been explained and for which the results are going to be exposed in
the next subsection. However, this isn’t the only strategy that has been explored. In fact, coming
back to plotting point by point the supply currents as a function Vypppyyp for different values
of Vypp, the linear approximation of the curves could be pushed further to the second order
resulting in more accurate curves as shown in figure 9.

However in that case plotting up the three constants as a function of Vypp would result in a
very rough equation, for that reason the strategy here is to find a way to ”get from one equation
to another”.

In the case of the current delivered by Vypp, according to the figure 9-b the curves are charac-
terized by an hyperbolic trend and adding a multiplying factor would lead to a general equation.
This factor is equal to Vypp? because in order to get from any curve of figure 9-b to the curve

at which Vypp is equal to 1V, one needs to multiply by ﬁ , so after finding a second order

linearization to the curve at which Vypp is equal to 1V multiplying by Vv pp? would result in
the general equation (3.3.1.4).

In the case of the current delivered by Vypppump, the curves are parallel as shown in figure
9-a and therefore adding an offset would generalize the equation. The expression of the offset
is found by plotting the variation of the supply current offset of each curve of figure 9-a with
respect to the one at which Vypppyap is equal to 2V as a function of Vypp. Thus, this generates

16

the equation (3.3.1.3).

First strategy

Ivpp= ‘1-94*10_4*VVDD*VVDDPUMP + 9-47*10_5*VVDDPUMP + 4.95*10_4*VVDD -2.46%10~%
3.3.1.1)

Iypppump= -4.35%107*Vy pp*Vypppump — 2.67¥10 ¥V pppump + 2.92¥10~4*Vypp +
4.12*%107% (3.3.1.2)

Second strategy

Iypp = Vypp?* (1.267%10**Vypppump® - 5.313*¥10~**Vy pppump + 6.078%107%) (3.3.1.3)

IvpprPump = 9-78*10_5*VVDDPUMP2 - 4-13*10_4*VVDDPUMP +9.99%107% +
4.89%10~*Vypp? - 9.38%10~**Vypp + 4.51%107* (3.3.1.4)

The previous equations for an output current Iy xg, equal to 80 A and therefore still need
to be normalized in the following parts.

3.3.2 Results comparison of the two strategy

According to the previous section, two strategies were developed leading to two different equa-
tions for each supply current. In order to decide which strategy is better for the modelling, there
is a need to compare the resulting currents from each equation to the ones resulting directly
from simulations.

According to figure 10, the Iypppypp error of the second strategy is below 3% while the
Iypppump error of the first one is below 5 %. So both strategies are acceptable for Iypppymp
modelling.

However, according to figure 11, Iypp errors of the second strategy are below 12 % while the
ones of the first strategy go up to 500 % . So the first strategy failed to model Iy pp consumption
and therefore the second strategy is going to be kept to further the study.

17

vddPump Current (A)

VddPump Current (A)
0.0008

- 0.0008
0.0007 Vdd=1.3 vdd=14
= = vdd=1.1 vdd=1.2 vdd=1.4
00008 vdd=0.9 Vdd=1 0.0007 - i _vdd=1 34__7_
Vdd=0.9 vdd=1 Vdd=11pVOd=LIPN
0.0005 0.0006 .) T~ 4
0.0004 00005
0.0002 VddPumpCurrent_excel VddPump Curremt_simulation 0.0004
0.0002 0.0003 —VddPumpCurrent _Simulation VddPumpCurrent_Excel
0.0001 0.0002
o 0.0001
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
1357 5111315171921232527293133353735414345474551535557506163656769717375
(a) First strategy (b) Second strategy

Figure 10: Iypppymp comparison

Vdd Current (A)
0.0008 Vdd Current A)

0.00025
0.0007

e VddCurrent_Simulation NddCurrent_Excel

.‘N
|\

0.0006
0.0002

0.0005

0.0004 0.00015
VXRPD_CONSO_MOY_VDD VddCurrent_Eorel

A
A\
A ‘
‘I\ 1
0.0003 | dd=1.2]
0.0001 1 jdd=1.1 |
0.0002 Véd=1 | |
| K |
| 0.0
0.0001 ooooos VS0 |

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 0

1357 9111315171921232527 293133 3537394143 4547 49 51 53 55 57 50 6163 65 6769 7173 75

(a) First strategy (b) Second strategy

Figure 11: Iypp comparison

3.4 Development of the chosen strategy

Up to here, a preliminary study was held to determine which parameters to focus on for the
study leading to consider the two supply voltages as a first approximation.Then, two strategies
were developed leading to choose the second one because it matches better with simulations.
So, this last results in two equations of the two supply currents as a function of the two supply
voltages. However, these equations are determined for a specific value of the output voltage
Vvxr2 and in the case of using the pump with three stages. Since there is 47 different trims
leading to 47 different output voltages and the number of used stages may be 2 or 3, there is 94
different equations for each supply current.

Determining each equation separately using excel as done in the previous case is very time con-
suming. For this reason, using tcl scripts for automatizing has become essential.

3.4.1 Detailed script

The detailed script is in annexes but here the main steps of it.
The first step consists in putting the supply currents data when Vypp is equal to 1 into a
list. In order then to find each current as a function of Vypppymp, a second order polynomial

approximation is done. The three coefficients of this second order equation are found using
Gaussian process for regression.

18

The second step consists in generalizing the equation to all values of Vypp. In the case of
Iy pp, the second order equation that corresponds to Iypp(Vypp=1V) is multiplied by the square
of Vypp to find a general one.
In the case of Iy pppyayp equation, a list of current offsets as a function of Vypp when Vypppump
is equal to 2V is built. The offset is the difference of the current Iy pppyarp at a specific value of
Vvpp with respect to the current Iy pppyyp(Vvpp=1V). The same method of polynomial resol-
ution is then used to find a second order equation of this offset as a function of Vypp, and this
equation is added to the previous one in order to obtain a general equation of Vypp variation as
a function of the two supply voltages.

The third step consists in applying the same previous whole process on different values of
the output voltage Vyxgo (triggered the by digital control bus VxrCitl) leading to different equa-
tions. These equation are then gathered into an output text file.

The fourth step consists in verifying if the resulting equations of the tcl script match with
simulation results. To do so, for each value of Vypp, Vypppump and Vyxgo the two supply cur-
rents are computed using the resulting equations from the scripts. These results are gathered
into an output text file behind the simulation results and then the error between simulation and
model results is computed and displayed as well in the output file.

An input text file needs to be filled before executing the script with the following informa-
tions:
e Number of rows of the csv file minus one.
e Number of columns of the csv file.
e Number of trims.
e Number of different values of Vypppusp-
e Number of different values of Vypp.
e The index of the first column of Iypp.
* The index of the first column of Iy pppyamep.
* Number of extractions of average values of current (In additional spice command tab while
launching the simulation) .
* The index of the row of the first value of VxrCtl minus one.

This input file will allow to execute the script for the two configurations of the VXR pump
(2 or 3 stages).
Before the execution of the script, the right name of the csv file needs to be put into the script.
besides, all the commas in the csv file need to be replaced by a space.
Added to that, the csv file is generated right after the simulation by converting the Eldo simula-
tion output file (aex file) into csv one.
It is also important to mention that this script is valid only when the different trims of the VxrCtl
are extracted in rising order. For example, 11000 could only be followed by 11001.

3.4.2 Simulation and Results

The previous script was executed with all the possible cases of the VXR pump functioning in-
cluding all the possible values of Vyxg, as well as all the possible values of the number of stages
resulting in 94 different equations.

19

Three main simulations are held in order to obtain all the equations. The three simulation
has the same worst case temperature equal to 105°, the same worst case of the process variation
(so called FFA) as well as the same range of Vypp [0.9 - 1.4]. Although two parameters differ
between the three simulations and are summarized in table 3 below corresponding to the actual
use cases of the VXR pump.

i 2000 40.0u 60.0u 0.0y 10000 120.0n
Tirme (s)

Figure 12: Transient results of simulation 1

The transient analysis of simulation 1 of figure 12 lasts 160 uS making the simulation time
of each value of Vyxgy» 5 uS which is more than enough since the stabilization time is about 1
uS and therefore the supply currents are extracted 1 uS after the change of the value of Vyxg
each time. The first curve which is the green one of figure 12 shows the evolution of the output
voltage Vyxr2 depending on the value of VxrCtl control bus monitored by five bits as shown by
the remaining curves.

Simulation Simulation 1 Simulation 2 Simulation 3

(High performance mode) (Low perf read mode) (Low perf modify mode)

Number of stages 3 2 2
Range of Vy pppump [1.4-2.1] [1.4-2.1] [1.75-2.1]
Wxr2 \ <447V > 447V
VxrCtl(4)=0 VxrCtl(4)=1

Table 3: Parameter variation for the different simulations

The execution of the script results in two text output files containing 5 columns with the
tcl and simulation supply current values and the error between them according to the values of

20

Vwpp and Vypppupyp. One output file is for the supply current Iypp and the other output file
is for the supply current Iypppyayp. Each output file contains as well the Current consumption
equation for each value of Vyxg;. Finally, it contains maximum errors which are summarized in
table 4. According to this table, the maximum error for Iypppyyp is equal to 3.982 % and the
maximum error for Iypp is equal to 0.972 % which is quite tolerable. So the tcl script current
values are similar to the simulation ones and the model precision is satisfactory.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

B.3363e-05
g.2957e-05

0.0D01z272
0.000L162
0.000L0781
EI CDJIDZDI

5015362 2000663

9 2325805
9.185le-05
0.00013583
0.00012586
U.oooLzzav
0.00011417
0.000107&4
U.oooLozaz
D.DO0100s
0.00015620
000014633
0.00013802
0.000L239
0.0004 2152
D.DOD1L6BES
4012q4 G 203535 0.00011335

S PYRTREFI RN SERERY SESTEY SIS

. BS
. 56459101 Ua323342
.T116224254676425

e e 1 b [BB 14 e T

VDDPempCursenl = (1.7107142857077207e-54 VDD PunpZ + -8, T45357T1428336560e-54VIDEPumn + 0. 000451 3492857140775)
"TI-'."Hi"n’ * vddZ + -0.00053049549993A3591 + vdd + 0.000244731 77142764576)

0.« 0.000LD627

a. 2857118 0.00010293

a. 0304642B5711393 0.000L0025

a. 254l 157142633

ol ¥

0.

0o

a. 2.
0. N
0. 4. r‘33ﬂe 0s s
o. EA1ZBS H.4548e-05 2.5
0.000Z9904041 42057201 7.930%a-05 2.
E,JDD;'BS""QEQZBETJ-.OES 7.7500e-05 3,
0.00029204341428571456 7.610le-05 Z.BEDTLEZ9S27T4BES

(a) Wpppump

1 2 H.25H05714285T1n3e- 5 H.4395%e-08 o.
1 2.1 8.1720761 9047 7448e-5 7.250%a-05 a. 1 &l
1.1 1.5 O.0001B8553459247R15191: o.pooi1evse 0.00503604780595524
1.1 1.6 0.00015%6909559%993995 0.,00025146 0.05434411725667299
1.1 1.7 0.0001 3407794285705 0.0001303 0.046874BE0212602481
1.1 1.8 0.0001166A53276190354% 0.00011566 0.02615707780594406
1.1 1.9 0.00010E523550%99991 23 0.00010563 0.00B459339202794878
1.1 z 5.932245%14285716%9e-5 9.2413e-05 0.015338333640553L45
1.1 z.1 9_REAZ1Z19047 771 5a-5 9. Z6R52a-05 0.06GT24217399275934
1.2 1.5 0.00022437202285715953 0.00022786 0.0L5307544732902493
1.2 1.6 0.000190N45439%9933994 n.onoialsg n. % 521236
1.2 1.7 0.00016233554B5714275 0.00025577 0.
1.2 1.8 0.0001412453405714141 0,00013609 o.
1.2 1.9 0.00012e7T183629953954 0.0001 2554 0.c 12330731
1.2 2 0.00011391402265714314 . U:IUIIGUT U.EITJUGU(_GUsz‘ljUﬁG
1.2 2.1 O.000117aTraeT14287528 . 0.0722350048559554
il ez il 5l 0.000263325495904T7 1 0,05377304593100093
1.3 1.6 0.0o00: 3543939959932 o.poozz4aos 0.0045430%8A 73045292
ilog i 0.0001%051%97714284417 0.0D0016B%81 0.00374006226670972%
1.3 1.8 O0.00016576711 047617352 0.0001 6206 0.013543279327775543
iLo® it 0.0001487R0835%99%8772 0.0D0015191 0.0205987755508591183
1.3 2 0.00013%56116571428605 0.noo14101 0.010274%1TEAS12792
LoE 2.1 E,DJUI3EID3UBTEL93€BB 0.00013179 0.047%40569231875535
1.4 1.5 0.0003ns3ass? aas. 0.0003Fsa1 0,101 2764507941 5989
1.4 1.6 0.000258RT29] 0.0D02T7151 0.0472801738425B7L75
1.4 1.7 0.0002209530792993749 n.onozatsy N.046564935064241 504
1.4 1.8 0.0001 5225061 333331 352 0.00020473 0.060%55339553002376
1.4 1.9 0.0001 725505592993 0.0001 0534 0,06900525757966057
1.4 2 0.0001818579 ULUUJLU ,f Q.0001718 0.0572700214501 0204
1.4 Z.1 0.0001601 7269333335797 0.00016146 0,007272913027032635
Vzreel = 11001 VDOCurrent = Vdd2(0.0002623404T619081 027+ VDDEump2+-0, 001081 2700000012007+ VDD Famp+0. 001197100523810599)
0.2 1.5 0.00013402399214287005 0.0001 8549 0,2813346%814536%43
n.s 1.6 0.0001123147157142852 0.00015083 0.Z553555%42830657
0.2 1.7 5.13554549399514%9e-5 0.coo1z27 0.253106653543374L
n.s 1.8 A.154R10993998%1 1 a-5 n.oon1is4= 0.Z926785%3N86A1 354
(b) Wpp

Figure 13: Extracts of the output text file

H IVDDPUMP—3stages IVDD-3stages IVDDPUMP—2stages IVDD-Zstages H
Maximum Error 3.910 % 0.425 % 3.982 % 0.972 %

Table 4: Maximum Error

21

4 Integration of the model in mixed simulation environment

In the previous section, the supply currents consumption of the VXR pump were modelled by
finding an equation that relates each current with the other parameters of the pump.

This section aims at integrating these equations into existing models of the pump using Verilo-
gAMS description language into mixed simulation environment.

4.1 Testbench and simulations

Several simulations are already available for different purposes. And each simulation has a test-
bench in SystemVerilog description language.

Simulations that perform the “erase” operation on full transistor level are very long (Up to 2
weeks) and are therefore not being to be performed since they don’t have a specific interest for
this work. Besides, the “read” operation is included in most of the “erase” and “’prog” simula-
tions, so there is no interest of simulating it independantly.

For this reason, only simulations that perform the “prog” operation are going to be done in this
part.

.HI \ 4 F: \

|
|
[
|

I |
I | |
Hetk |] | I
AddESW[l?:D] th’uld il.'x.'lna:}(: :
Iy 1 | I-"F | |
& IIIIL I I _I_Jil [[
ReadBusyESTM Ir I{ Ir : : :
y
DoutESTMI63:0], ECCout{13:0] L1 odam (ween
[[| | [
= — :
Toks ™ Tokh
le | |
(R
el
Taccoss

(a) Chronogram

task read _nvm ;

input [17:0] add;

input [63:0] expected;

begin

AJdESTM = add;

QkSelESTM = 0

2 HCLKESTM = 1;

22 HC1KESTM = 0;

4 Ok8elESTHM = 1 ;

34 OkSelESTM = 1 ;//waiting time to be sure doutESTH is properly updated (corresponds to 60ns delay for low cons read)
if (DoutESTM == expected)

Sdisplay("<INFO ENVM>: OF read at address %h with %h , as expected", add, DoutESTM);

else

bhegin

édisplay("<INFO ENVM:: ERROR read at address %h with %h , not as ewpected", add, DoutESTM);
$stop;

end

end
endtask

(b) Code

Figure 14: ”Read” task

A simple ”prog” simulation without any additional functional constraints is picked up. Its

22

testbench is mainly made of a first part that declares the module of the memory block by declar-
ing all its inputs and outputs as registers and wires. A digital sub block that contain the sequence
of operations performed on the memory which are read, prog then read operation. Each opera-
tion takes in argument the address of the bitcell on which the operation is made and an expected
value for auto-check. And they are all defined in another verilog file. Finally it instantiate the
top level module using “named” association.

Going back to the sequence of operations performed during the testench, one could check
in details one of these operations.
For example the read” task has two inputs according to figure 14-b : ”add” which is the address
of the read bitcell and “expected” which is the expected read value from this bitcell. The reading
starts on the positive edge of HCIKESTM clock when OkSelESTM is active low that’s why it’s
assigned to zero before HCIKESTM is assigned to 1 after two sequences of time according to
the first lines of the code.
Besides, when reading is finished ReadBusyESTM is reset and the new data is sampled in
DoutESTM.
The testbench code then checks if this new data DoutESTM is equal to the expected one and
displays an external message.

4.2 Scripts and simulations

This subsection aims at modifying the VerilogAMS script that describes the VXR pump model
in order to integrate the new model exposed in previous sections adding information about the
currents consumption Iypp and Iypppyyp-

4.2.1 Code of the VXR pump existing model

The model of the VXR pump is described in VerilogAMS language which is a language that
brings analog and digital modeling together. The potentials and flows for example are calculated
in the continuous domain (analog) while other values like the register contents are calculated in
the discrete domain (digital).

The code is made from several blocks such as “initial” and “always” blocks that describe a

digital behavior and ”analog” block that describes the analog one. The interaction between the
two previous domains (digital and analog) is done through variables and nets. In fact, analog
variables and nets could be read from digital blocks and vice versa.[10]
The digital part of the code of the VXR pump model transforms the binary input (VxrCtl) into
a decimal one and deduces the assigned value of the output voltage according to the value of
VxrCtl and puts it into a variable. It also checks if the pump is ON or OFF based on its digital
1nputs.

The analog block starts by checking analog inputs such as the voltage value of VBgap, vdd
and gnd. It is then composed of two main parts. The first one treats the case of the pump in
ON mode, in that case, it assigns the values of the output voltages according to a trim table
that has been hard coded according to the corresponding mode of functioning. The second part

23

Check Pump ON Chec.k the Modify mode Check the High perf mode| Adjust the
analog > digital » number of * yalue of the
inputs control bus stages output voltage
Pump|OFF F{eadlmode Low perjmode VXRA1
L4 » according to
ek Not Ok , the
ec _h-| Assign output voltages to 0. corresponding
supplies mode.
Ok
L 4

Assign output voltages to low values. ‘

Figure 15: Existing model

treats the case of the pump in OFF mode and assign the values of the output voltages to zero
when supplies are not ok or to other low values when the pump is simply OFF. Precision is not
critical in OFF mode because this model is mainly intended to be used in ON mode. This is
better represented in figure 15.

4.2.2 Current measurement schematic

The first step was to figure out a way to measure the output current flowing through the VXR2
pin of the VXR pump with VerilogAMS description language. To do so, an ideal internal node
named VXR2 ideal is created (as shown in figure 16) on which the target Vyxg, voltage is ap-
plied (based on VxrCtl values). Then a command line 1 of table 5 is added in order to impose a
certain current between VXR2 ideal internal node and VXR2 output port so that their potential
difference is equal to zero. Doing so enables to indirectly control VXR2 output port voltage and
measure the current flowing from it to VXR2_ideal. So command 2 measure this current and
put its value into a variable.

Besides command 3 is a timing statement that allows to smooth variations of the VXR2 r vari-
able with a certain rate (analog solvers do not work with instantaneous variations).

This also include adding some required probes in the .cir file in order to be able to plot the
corresponding waves at the end of the simulation.

1- "I(VXR2,VXR2_ideal): V(VXR2,VXR?2 ideal) == 0.0;”
2- "LVXR2 = [(VXR2,VXR2 ideal);”
3- ”V(VXR2._ideal) <+ transition(VXR2._t, 2e-7, 2¢-7);”

Table 5: Added command lines for current measurement

24

VDD VDD_PUMP

WXRZ_ideal VXR2
M

ESTM15_VXR_TOP

Figure 16: Current measurement schematic

4.2.3 Model integration

The second step was to integrate the model that was previously found of the input supply cur-
rents consumption and to check thereafter the VXR pump behavior through simulation results.

The first method of integration consists on manually integrating the related equations of the
two supply currents according to the value of the VxrCtl. These two equations were added in
the sub-part of the analog block were the pump is on working conditions.

This method was functional but poor in efficiency since it requires to check the output voltage
value Vyxg2 and then to look for the corresponding equation in the output text file.

For this reason the second method aimed at automatically calling the output files and de-
ducing the corresponding equations according to the value of Vy xgo. VerilogAMS can’t handle
character chains so it was not possible to extract the corresponding coefficients of each equation
from the existing text output file.

For this reason another output text file that contains only the coefficients of each equation
was created as shown in figure 17 so that VerilogAMS could manipulate integers and registers
only.

14.0452380952594006e-5 -0.0001863285714293392 0.0005322619047625879 0.00026000357142785303 -0.0005411407857126283 0.00025323574285620795
21.7107142857077307e-5 -5.745357142833656e-5 0.0004513492857140779 0.00025666785714214586 -0.00053049549959583591 0.00024473177142764576
31.0571428571902753e-5 -7.32142857159963e-5 0.00043080142857295227 0.00030614285714202557 -0.0006376779999980816 0.0003012047714274894
4 -1.6488095237852424e-5 1.6399285713408497«-5 0.00035877166666744924 0.0003119035714277096 -0.0006495230714265838 0.00030587237142745027
51.3654761904835684e-5 -B8.386071428598052e-5 0.000442953595238118%6 0.00024912142857076925 -0.000501010999%98479 0.00021795068571342776
6 -1.015476190495064e-5 2.6810714286397217e-6 0.000365835976019041516 0.000284323214268493036 -0.0005869178642839055 0.00026662061426469376
7-1.1488095238307291e-5 7.575000000763977e-6 0.0003643445236088441 0.0002588374959991767 -0.0006139282499581006 0.0002793572999589285
B8 -1.788095238102%15d4e-5 3.127142857170579e-5 0.00034421095236070524 0.000348624%%99990471 -0.0007323337857120875 0.0003475612285701886
9 1.6083333333558975e-5 —-B.512500000081523¢-5 0.00044438166666739396 0.00031577321428486176 -0.000661671535712319 0.0003084124714274621
o

10 -5.5000000004633286=-6 -1.1871428569758882e-5 0.00038348714285565716 0.00027443107142782906 -0.0005558431785697153 0.00024054755714189094
11 2.3059523809432733¢-5 -0.00010852499599967281 0.00046688119047590023 0.000245317657142168654 -0.00047833649999845274 0.00016626117142769854
12 2.30952380953343e-5 -0.00011204285714320445 0.0004733333333336429 0.0002885607142845272 -0.0005770815285696128 0.00024220648571326135
13 4.4333333333265e-5 -0.00019653571428546786 0.0005575536095235%01 0.0002774035714278017 -0.00054%903592656%6526 0.0002213406571418553

14 6.020238095224345e-5 -0.00025001071428521616 0.0006026554761900341 0.00028579999999523386 -0.00056564428571251681 0.00022601642857043142
15 6.315476190439535e-5 -0.00026322499939867582 0.00061894588035226325 0.00025133035714215344 -0.0004832326785698049 0.000173262214284795828
16 6.240476190462258e-5 -0.0002659999995994953 0.00062721523609476866 0.000385023214284578 -0.00061079939268545211 0.00036720075714137806

17 3.250000000022085e-6 -5.0582142857223024s-5 0.0004829107142657861 0.0003400142857133684 -0.00066868317142835979 0.00027791362857023463
18 6.285714285877102e-6 -6.212857142916133e-5 0.0004966357142862421 0.00035904642857046554 -0.000708115%285692067 0.00023557322857017514
19 3.4726190475920036e-5 -0.000165068928571331045 0.0005909286095229411 0.0004280517657131356 -0.0008555508214259168 0.00036590136142842175
20 2.3142857143173746e-5 -0.0001239357142865856 0.0005581355714295851 0.0004368410714273684 -0.0008719173214257959 0.0003723270714270057

21 4.1023809523618685e-5 -0.0001924499995993125 0.0006255147619041498 0.00043236214265597925 -0.0008646512142630297 0.000364461199396848566
22 7.272619047625018.-5 -0.0003054175571430715 0.0007274230952382853 0.0004401732142845172 -0.0008774121071400953 0.00036327012856987063
23 6.528571428583635e-5 -0.00028632857142901324 0.0007212728571432501 0.0004625214285701797 -0.000%206404285685471 0.00037584702856980294
24 7.082142657112248e-5 -0.0003121535714274669 0.0007526792857133016 0.000475684682142844232 -0.0009475123214255925 0.000380651499956831596

25 0.00010813095238067791 -0.00044954642585704373 0.0008820411904753064 0.00045257142857018615 -0.00058940908571339907 0.0003403327714269543
26 0.00012768095236133653 -0.00052697685714299545 0.0009600761904774198 0.00049268249999966001 -0.0009854120714253415 0.00038006225714103493
27 0.00015811904761912674 -0.0006495214265717119 0.001085212380952631 0.0005107874999985213 -0.001025807249996586 0.0003876788999980751

28 0.00018852380952432153 -0.0007692642857161313 0.0012058004761%21187 0.0005256535714271435 -0.00105406149%996705 0.00035823623142838551
29 0.0002580476190476534 -0.001036500000000842 0.001465368523680959648 0.0005212446426556403 -0.00103568929642622477 0,00034651169999804454
30 0.0003126428571433365 -0.0012551258571430296 0.001685057142858675 0.00055346596428555414 -0.001110403321424876 0.00035702518571220063

31 0.0004897738095241851 -0.0019259750000013465 0.0023214011304773624 0.0005426%4642855654 -0.0010736671071394214 0.0002863684142837759%

32 0.00067845236809535667 -0.00265620714268614083 0.0030270676190514074 0.0005431749999962034 -0.0010755670714244251 0.00021522425714051718

Figure 17: Output text file containing only the equations’ coefficients for Iypppump

25

Besides, the detailed code of the second method is in annexes with the added part encircled
in red but here are its main three steps.
The first step starts with creating six empty lists for the coefficients of Iy pppyyp and three other
additional empty lists for the coefficients of Iy pp. It continue with opening the text file of figure
17 and checking if its empty. If not, it extract each line independently and puts its coefficients
in the corresponding lists. And finally it closes the text file.
The second step consists in checking continuously during the simulation the value of VxrCitl
and extracting each time its corresponding coefficients from the previously created lists to put
them into final variables.
The third step consists in using the final variables to assign the values of Iypp and Iypppyyp in
the sub-part of the analog block.

The whole code is in annexes 3 but figure 18 shows the differences between the manual (a)
and automatic (b) integration in the analog sub part.

I_YDDPump = -((0.0007318235452407457+VDD_PUME_r+VDD_PUMP_r-0.0029792740651 7716235 VDD_PUMP_r+
0.003344868608225653+0. 00051 60854166653283*VDD_r+VDD_r-0.00104660595833036%39*VDD_r+0.0005233964999983842)* (I
_WVHERZ/0.00008));

I VDD = - ((WDD_r*VDD_r*

(a. 0013530417129173668*\,’DD DUMP_y#VDD_PUMP_r-0.005515%9201 %8221 083*VDD_PUMP_r+0.005695330221616578))% (I_WVHR2/
0.00008));

(a) Manual integration

I_VDDPump = -((coceff final 1#VDD_PUMP r*VDD_ PUMP_r-coeff final 2#VDD_PUMP_ r+
coeff final 3+coceff final 4*#VDD_r*VDD_r- coeff final S*VDD r+coeff final 6)*(1 VXRZHD DDDDB))
I_VDD = - ((VDD_r*VDD_r*

(coeff final VDD_ 1*VDD PUMP r*ﬂ@D PUMP r-coeff final VDD_2*VDD_PUMP_ r+coeff final VDD_3))+ (I_WHR2/0.00008);

(b) Automatic integration

Figure 18

4.3 Results
4.3.1 Functional Check

A first verification of the new model could be done through the messages displayed in the tran-
script of the output window of the simulator that are the following.

”OK read at address 14000 with ffffffftftffftt , as expected”

”OK read at address 14000 with ffffffff00000000 , as expected”

14000 being the address of the read bitcell and ffffffT/FO0000000 the expected value
each time. These messages indicate that the first and second “read” operations were done suc-
cessfully and that the programation of the bitceel from fffffffffffiffff to frffrrO0000000 was
successful.

Besides, a functional check needs to be done by verifying the voltage levels of the bit cell. This
could be done by plotting the control gate, bitline and worldline voltages as shown in figure 19.

26

Veg=10.12v

e e

Figure 19: Functional check of the model

These previous voltages values as well as the bitline current are then compared to the ex-
pected ones for a programming operation. According to table 6 simulation values matches the
expected theoretical ones and therefore the model is functionally correct.

H Control Gate voltage Bitline Voltage Worldline voltage Bitline Current H
Simulation value 10.12V 4.69V 1.2V 5.12 uA
Theoretical value 10V 47V 1.3V S A

Table 6: Bitcell voltages check

4.3.2 Currents consumption

Besides, currents consumption of the VXR pump as well as of the whole memory need to be
checked because they need to be inferior to 2.2mA according to the specifications of the eSTM
macrocell.

To start with, the curves of figure 20-a are plotted in the case of full transistor simulation
and are therefore a reference to which the old as well as new models are going to be compared.
Besides, one may notice that programming operations start after about 60 p from the beginning
of the simulation and the first part corresponds to the ”power on” phase.

In the case of the old model simulation, the VXR charge pump model didn’t take into ac-
count supply currents consumption by assuming ideal voltage sources and the values of the
input currents of the VXR charge pump Iypp and Iypppump are therefore equal to zero in that
case. This also affect the whole memory current consumption. In fact according to figure 20-b,
the curve that plot the sum of input current of the eSTM block (Iycc and Iypp) doesn’t match
the reference curve and held lower current values with only pulses during the power on phase
and not any consumption during the operations.

27

(a) Full Transistor Level Simulation

40.01

(b) Old Model Simulation

(c) New Model Simulation

Figure 20: Input Current consumption check (Iypp and Iypppump)

In the case of the new model simulation current consumption of the VXR pump as well as

the eSTM block are shape alike the reference. however, they are equal to 10.02u A and 9.88 A
which is quite above the maximum value equal to 2.2V. This is due to the fact that the value of

Iy x> in the new model is higher than the real one.

So far, only input currents consumption were checked. The output current consumption of

the new model are plotted in figure 21-b just below the reference curve. In the case of the full
transistor level simulation, the value of this current goes down to about 180y A during ’prog”
operation in the case of high performance mode (using the 3 stages of the pump). The VYP
charge pump (fed by the VXR one) only needs 601t A during its operation. Then 20 cells are
programmed consuming SiA each on VXR2 so that makes the output current consumption

28

goes up to 160 1 A. And the remaining 20 A are consumed by the other devices connected to
the VXR charge pump.

In the case of new model simulation, the value of the output current consumption is about 205
WA during "prog” operation. This values difference may be due to the fact that despite the VXR
charge pump other blocks are modelled giving rise to additional errors. The old model holds
zero as a value of the input current as explained in the previous part and is therefore not plotted.

e Wl H“%
r"l L

1

WHJ»‘ J""“"’j\ /"Ww r\'\W(‘PL‘M‘.\‘ /')J'lwll' w\ﬂﬂm\h
U\\/ / K | i

(a) Full Transistor Level Simulation

|

|
|
T -“—“" b
I\.ll U(lf ¥
Y

400 BE0Ou E62.0u TOOu 7200 7400 FEOu FE0Q_ 80 8400 2600 282300 3000 9200 S4.00 3600

(b) New Model Simulation

Figure 21: Output current consumption lyxgs

4.3.3 Simulation time

Although the simulation time of the new model is some minutes longer than the simulation time
of the old one, it still in the same order of magnitude and by far manageable compared to the
speed of the full transistor level simulation.

Therefore, the new model has succeeded in keeping a reasonable simulation time.

H Simulation Full Transistor Level With the old model With the new model H

Simulation time 30h 49mn 49mn 1h 23mn

Table 7: Simulation time comparison for the same CPU frequency 3 GHz

29

5 Conclusion

First, a strategy that models the currents consumption of the charge pump (Iypp and Iy pppump)
was developed leading to 94 different equations (according to the value of Vyxg, and number
of stages) for each current as a function of three parameter: the two supply voltages (Vypp and
Wopppump) as well as the output current Iy xg,. This model was done in the worst case in term
of temperature and process variation.

Then, The previous model was integrated in mixed simulation environment in an already
existing old model using VerilogAMS description language. Along with, a measure of the out-
put current of the charge pump was also added to the model in order to be used in the equations
and allow the computing of the the input currents.

This leads according to the simulation results to a correct functioning of the new model. Never-
theless, the values of the input current consumption were larger than the expected ones.
However, this model allowed keeping a similar simulation speed while improving the charge
pump model.

Besides, only one single charge pump was modeled over three, so for a further study, this
model could be adapted to the two other charge pumps (Vyp and Vneg). It may also be adapted
to other charge pumps in other circuits.

6 Personal comments

6.1 Personal conclusion

Although this internship was not my first working experience related to my master degree, it
was the first in microelectronic field.

I was surprised and challenged at the same time to see that my acquired knowledge in microelec-
tronics during my master was a drop in the ocean. However, my academic training especially
during EPFL semester was an essential basis that has laid the ground for this job.

There is a great cohesion within STMicroelectronics based on a hierarchical structure that
guarantee the organization and progress of the different projects. Good communication and
mutual share and help between members of each team as well as as between different teams
working on different projects are keys to maintaining ST a leader in semi-conductor industry.
And working with people on other sites abroad doesn’t make a barrier to this group working.
Weekly meetings as well as update and work presentation meetings are also constantly held to
contribute to the well functioning of this structure.

Considering the special circumstances that we’ve been facing, ST was very reactive to the
constant change of events advocating the safety of its employees first and the company interests
second. Besides, I was able to carry on in the best conditions my internship after the lock-
down through teleworking thanks to the provided screen and computer as well as the constant
exchange with my supervisor.

30

6.2 Acknowledgments

First of all, I would like to thank my supervisor Thomas Jouanneau as well as my manager
Christophe Forel for welcoming me within their team and giving me the chance and opportun-
ity to be part of this project. I also would like to thank again my supervisor for his constant
technical help and advice as well as more general exchange which gave me a clearer and more
global vision of the profession.

Then, I would like to thank other team members for their kindness and availability whenever I
needed help.

Finally, I'm grateful for the financial and material means that were provided by ST and that
were essential for carrying on this internship.

31

7 Bibliography

1.
2.

https://fr.wikipedia.org/wiki/STMicroelectronicsGrenoble_et_Crolles, France

https://en.wikipedia.org/wiki/SPICECommercial versions_and_spinoffs

. Electronic Design Automation for Integrated Circuits Handbook - Louis Scheffer, Lu-

ciano Lavagno, and Grant Martin - EDA for IC Implementation, Circuit Design, and
Process Technology.

https://www.sciencedirect.com/topics/computer-science/flash-memory

. https://www.powerelectronictips.com/fag-what-is-a-charge-pump-and-why-is-it-useful-part-

1-faq

https://en.wikipedia.org/wiki/Charge_pump

. 40nm embedded Select in Trench Memory (eSTM) Technology Overview - F. La Rosal,

S. Niel2, A. Regnierl , F. Maugainl, M. Mantellil and A. Conte3

. E40 eSTM Macrocell 648KB for K470 Implementation Specification and Handbook.

http://www2.ece.ohio-state.edu/ bibyk/ece822/verilogamsref.pdf.

32

8 Annexes

8.1 Gantt Chart

5.5 month internship

February | March | April | May | June July
w3 | w4 | w1 | w2 | w3 | Wi | w1 | w2 | w3 | Wi | w1 | w2 |w:5 | Wi | Wi |w: |w3 | wq| w1 | wz| Wi | w4

Ohjective 1 : Modelling supply currents consumption

Taskl : Preliminary study

Milesto

Mod

T'as] integrati

Objective 3 : Report, poster and presentations
2 W

Task

the report

Task 3: poster and oral presentation

8.2 Teclcode

1 #File generating different eguations for different Varctl
2

3 set fp [open "/pri/mms_e40/K470/dev/users/sliniine/scripts/Varpd_bis.csv" rl
4 package require math::linearalgebra

S set In [open "/prj/mms_=40/K470/dev/users/slimiine/scripte/Inputs.txt" r]

6

T #First replace all the "," af the csv file with " "

8 #This works when we have only two parametric sweeps VDD and VDDDump supply voltages and when the current is as a function of
9 vDDPump for different walues of VDD

10

11 #Creating an emply list that will contain the input parameters
12 set List_inputs { }

13 for {set i D} {%i<9)} {imcr i} {

14 gets %$In data
15 lappend List_inputs [lindex Sdata 1]
16 1

17 set N1 [lindex $List_inputs 0]
18 set N2 [lindex $List_inputs 1]
18 set N3 [lindex $List_inputs 2]
20 set N4 [lindex $List_inputs 3]
21 set N5 [lindex $List_inputs 4]
22 set N6 [lindex $List_inputs 5]
23 set N7 [lindex $List_inputs 6]
24 set N8 [lindex $List_inputs 7]
25 set N [lindex $List_inputs 8]

27 $Building an empty array and putting the data of the .csv file inside
28 for {set j 0} {$j<$nl} {iner j}
29 for {set i 0O} {$i<fN2} f{iner i} {
30 set array($j,51) 0
} i

32 gets $fp data
33 for {set i O} {$i<fN1} {iner i} {

34 gets $fp data

35 set § 0

36 foreach chiffre f$data {
37 set array($i,$j) $chiffre
38 iner j}

39

40

41

42 #puilding all the necesary lists for VDDCurrent. This builds the two vectors ¥ and ¥ for which we will do a secend order Ilinsarizai
43 set 1ist_x { }

44 set 1ist_¥ { }

45 set 3 SNHE

46 while {§31<$N2} {

a7 for {set i %Nd4} {$i< [expr 5N4 # 2]} {incr i} {

48 lappend list X farray($i,2)
49 lappend list_Y Sarrav($i,$9)}
50 set 3 [expr $7 + $nE]

51}

33

53 #Building all the necesary lists for VDDPumpCurrent
54 set 1ist ¥1 { }
55 set 1list_¥1 { }

56 set list X2 { }

57 set llst ¥ { }

58 set § SN7T

59 wh)le {59=5m2) {

60 for {set i $N4} {§i< [expr $N4 * 2]} {imer i}
61 lappend list N1 Sarray($i,2)

62 lappend list V1 Sarrav($i,$i)}

63 set j [expr ¢j + {ND 1]

64

65 set 3 3

66 while {$j<$N2} {

67 set i [expr $Hd - L]

68 while {§i<$nl} {

69 lappend list X2 $array($i,1

70 lappend list V2 [expr sarray($1 $9)- $array(14,$i)]
71 set i [expr §i + $N4

72 }

k] set j [expr $j + $wE]

74}

76 #rolynomial resolution of the second order. This Is a general polynmisl resolulion that could be used several times
7

78 proe build.matriz {zvec degree} {

79
80

set sums [llength $zvec]
for {set i 1} {51 <= 2*ideqres} (iner i} {
set sum 0
foreach x Szvec {
set sum [expr {$sum + pow($x,§1)}]

lappend sums $sum
#puts dsum

set order [expr {$degree + 1}]
set A [math::linearalgebra::mkMatrix $order fordsr 0]
for {set i D} {$i <= Sdegree} {incr i}
set & [math::linearalgebra::setrow & $i [lrange $sums $i §i+$degree]]

}
return $a

96 proc build.vector {zvec yvec degree} {

98

114
11

149
150
151
152

153
53

set sums [list]
for f{set i 0} {$i <= $degree} {iner i} {
set sum 0O
foreach z Szvec v §yvec {
set sum [expr {$sum + $v * pow($x,$1i)}1

lappend sums $sum

¥

set x [math::linearalgebra::mkVector [expr {{degree + 1}] 0]
for {set i 0} {$i <= Sdegree} {inmecr i} {
set x [math::linearalgebra::setelem x $i [lindex $sums $i]]

1
return §x

#Egquation generation for a particular value of Vxrpd. Thiz is g general fonction that generate the second order coefficients for ar
proc generate.squation {list_¥ 1ist_¥} {

set degree 2

set & [build.matriz $list X Sdegree]

set b [build.vector $1ist ¥ $list_¥ $degree]

set coeffs [math::linearalgebra::solveGauss {4 $b]

return $coeffs

#Creating an empty array of the resalts first column VerCtl second VDD third VDDPump fourth EquationVDD Fifth BgautionVDDPump
for {set j 0} {$j<§N3} {iner j}
for {set i 0} {§i<d} {incr i} {
set array_equation($i,$i) 0
} }

#Gensrating all the eguations of VDDCurrent for different values of VzrCtl and putting them in the array named array_egquation that
set 1 [llength $1ist_¥]
set degree 2
set list_labels {00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011 01100 01101 01110 01111 10000 10001 10010
set k 0
set i 0
set lab §NG
while {§i< §1} {

set 3 [expr %i + [expr swd - 1 11

#6 1s Md-1

set list_X bis [lrange $list X §i $31

set list_¥ bis [lrange $list_¥ $i 591

set coeff [generate.equation §list ¥ bis $1ist ¥ his]

set VarCtl [lindex $1list_labels $lab]

set array_equationisk,0) $vzrcCtl

set array_equation($k,1) $coeff

#puts Sarray_squation(sk,0)

#puts Sarray_egquation(Sk,1)

#puts [lindex farray equation(8k,1) 0]

#puts "VDDCurrent VXrCtl SVzrCtl = VDD~2([lindez $coeff 2]+VDDPump”2+ [lindex Scosff 1]+VDDPump + [lindex Seosff 0])"
#Check tbe crder of the cosffs

et i [expr $1 + $H4]

set k [expr Sk + 1]

incr lab

3

34

157 #eenerating all the egquations of YDDPumpCurrent which means two second order polynomial resolution for each value of Vxrctl and

158 putting them in the same results array named array equation.
159 set 11 [llength $list ¥1]

160 set 12 [llength $list_¥2]

161 set degree 2

162 set k1

163 set i1 O

164 set k2 0

165 set 12 0

166 while {$il< £11} {

167 set j1 [expr $il + [expr $M4 - 1 1]

168 set 1ist _xl_bis [lrange $list xi $ii $91]
169 set 1ist Y1 _bis [lrange $list vl $il $31]
170 set coeffsl [generate.equation §list _¥1_bis $list_¥1 bis]
171 set array_squation($kl,2) $coeffsl

172 set 32 [expr §iZ + $M5]

173 set 1list_X2 bis [lrange §list X2 $iZ $32]
174 set list_¥2_bis [lrange $list_¥2 $i2 $32]
175 set coeffs2 [generate.equation $1list X2 bis $1ist_¥2 bis]
176 set array_equation($k2,3) $coeffs?

177 set 12 [expr $iZ + [expr M4 - 1]

178 set k2 [expr S$kZ + 1]

179 set i1 [expr §il + $md]

180 set k1 [expr §kl + 1]

181 H

18

183 ¢ The following procedure gives the absolute value of a any number.
184 proc v_abs {num} {

185 if {$num > 0} {

186 return Snum

187 }

188 set num [expr $mum * (-1)]

189 return $num

190 }

191

BB gperraorrss VERTHETERNE MEGRLEE reraoen

193

194 # Creating an cutpul txt Ffile that would contain all the resulls of the VDD Current censumption.
195 set tolresult [open "tol_result_for_WDDCurrent.tzt' w+]

196 puts $tclresult "VDD(V) \t VDDPump (V) “t Tcl_Wvalue(d) ‘t Simulation_Value(a) “t Error(%) "

197 # Creating ancther cutput file that centains only the coefficients

198 set tcl_coeffs_result [open "tcl_coeffs_result_for VDDCurrent.tzh' wh]

199

200 #oreating an array named array_ comparision that would contain the simulation data values for the supply currents

ZEIl for {set j 0} {$j<éWi} {iner j}
for {set i 0} {$i<[expr $N3 + 21} {iner i} {
0

203 set array_companslon(Sj $1)

204 if {$i==0 || 1

205 set h [expr §i + 1]

206 set array_comparision($j,$i) $array($j.$h) }
207 } }

209 #Computing the supply currents velues using the egquations found by tel and then putfing them in the output .txt file.
210 #Computing the error between tel and simulation valwe for each data and adding It to the .txt Ffile as well.

211

212 set k 3

213 set max_wvdd 0

214 for {set i 0} {$i<sm3} {incr i} {

215 set h [expr §i + 2]

216 puts §tcl coeffs result '[lindex $array equation($i,1) 2] [lindex $array equation($i,1) 1]

217 [lindex Sarray_equation($i,1)

218 puts $tclresult "\n Vzrctl — [lindex $array_equation($i,0)] \t VDDCurrent = Vdd2([lindex $array equation($i,1)
219 VDDPumpZ+[lindex $array_squation($i,1) 1]#vDDPump+[lindex $array_esquation($i,1) 0]) n"

220 for {set j 0} {$j<ini} {iner j} {

221 set factor [expr Sarray comparision($],0)*$array _comparisionf$i,0)]

222 tputs farray comparision($1,0

223 set a [expr $array comparision($i,1)*$array comparision($j,1) * [Lindex $array equation($i,1) 2]]
224 #Weed to check if it is 0 or 2

225 set b [expr $array_comparizion($3,1) * [lindex $array_equation($i,1) 11 1

226 set « [lindex Sarray eguaticn($i,1) 01

227 set thecvalue [expr Sfactor * [expr $a + [expr $h + Sc]] 1

228 set array_comparision{t], sh) $theovalue

229 set e [expr Sarray comparision($d,&h) $array($j,$k) 1

230 set Err [v_abs [expr $e / $array($j 39

231 if {$maxz_vdd < SErr}

232 set maxz_vdd $Err }

233 puts $tclresult "Sarray comparision($3,0) \t $array comparision($3,1) \t $array_comparision($i, $h)
234 sarray(§],$k) \t $Err "

235 1

236 set k [expr $k + 3]

237 }

238 #This adds the value of the msximum error to the .ixt file.
239 puts $telresult ' \n The maximun error is equal to $max_vdd in "
240

241
242
243 gasrasrns VDOPUMPCurrent Results #rrsrtst
244

245

246 # Creating an output txt Ffile that would contain all the results of the VDDPIMP Current consumption.
247

248 set tclresultVDDPump [open "tcl_result_for VDDPumpCurrent.tzt' w+]

249 puts $tclresultVDDPump "VDD(V) &t VDDPump (V) “t Tel_Valus(a) \t Simulation_Value(&) “t Errori%) "
250 # Cresting another output file that contains only the coefficients

251 set tcl coeffs resultVDDPUMP [open "tcl coeffs result for VDDPumplurrent.tst! w+]

253 #Creating an array named array_comparision that would contain the simulation data values for the supply currents

255 for {set j 0} {$j<swi} {imer 3} {
for {set i 0} {si<[expr N3 + 2]} {iner i} {

257 set array_comparision VDDPump(§i,$i) O

258 if (51 1] $i==1}

259 set h [expr $i + 1]

260 set array_comparision_vDDPump($i,$i) $array($i,$h) }
261 } i

35

alse putting

2]+

8.3

264 #Computing the supply currents values using the equations found by tel and then putting them in the output .txt file. Alsc putéing
285 #Compuling the error between tel and simulstion value for sach data and adding it to the .ixt file as well.

266

267 set k 3

268 set max_vddpump O

269 for {set i 0} {$i<$n3} {iner i} {
270 set h [expr $i + 21

1T * vdd + [1index $array_equation($i,3)

{[1index $array_equation($i,2) 2]*

01) “n v

[lindex Sarray equaticn($i,3) 2]

271 puts $tcl coeffs resultVDDPUMP "[lindex $array equation($i,2) 2] [lindex $array equation($i,2) 1]
272 [lindex $array_equation($i,2) 0] [lindez $array_equation($i,3) 2] [lindez $array_equation($i,3) 1]
273 [lindex $array_equation(§i,3) 0]"

274 puts $tclresultVDDPump "“n VzrCtl = [lindex $array_equation($i,0)] “t VDDPumpCurrent =

275 VDDPump? + [lindex $array equation($i,2) 1]*VDDPump + [lindex $array equation($i,2) 0

276 + ([lindex $array esquation($i,3) 2] * vdd2 + [lindexz $array_equatiom($i,3)

277 for {set 3 O} (53<$Nl} {incr 3} {

278 set a [expr $array comparision VDDPump($j,1) #* $array comparision VDDPump($j,1) #

279 [lindex $array_equation($i,2) 27 1

280 set b [expr Sarray_comparision VDDPump($j,1) # [lindex $array_equation($i,2) 1] 1]

281 set ¢ [lindex Sarray equation(%i,2) 0]

262 set eql [expr Sa + [expr §b + Sc 1 1

283 set al [expr Sarray_comparisicn VDDPump($9,0)*Sarrvay comparision WDDPump($5,0) *

284 set bl [expr $array comparision VDDPump($j,0) # [lindex $array equation($i,3) 1] 1]

285 set ¢l [lindex $array_squation($i,3) 01

286 set eq? [expr Sal + [expr Sbl + Scl] 1

267 set theovalue [expr feql + Seq? 1

288 set array_comparision VDDPump($i,$h) $theovalue

289 set e [expr $farray comparisicn YDDPump($9, $h) - Sarravi$i, $k)]

250 set Err [v_abs [expr $e / Sarravy($], k)

291 if {$max_vddpump < $Err}

292 set max_vddpump $Err }

263 puts $tclresultVDDPump " $array_comparision_VDDPump($3,0) \t $array_comparision_vDDPumpi$i, 1) Yt
294 $array_comparision_ vDDPump($i, $h) Sarray($y, $k) \t $Err "

295 1

296 set k [expr $k + 3]

297}

298

299 #This adds the value of the maximum error to the .txt file.
300 puts $tclresultVDDPump " \n The maximun error is equal to $max_vddpump \n "

VerilogAMS code

1 "timescale Ilns/lns
2 "include "disciplines.vams"
3 Tinclude "constants.vams"

4

S module ESTMIS_WVHR_TOP (
6 // intput
7 ADD_STAGE,
8 // unused
9 CKPUMPSBY,
10 // powers
11 CABCPAVYD,
12 f/ inpuils

WHERCTL, PROG,
HIBERNATE_STATE_MY, ENABLESBYPUME, CONFIFROG,

GND, VDD, VEGAP, VIREF, VDD_PUMP, VPOL, VCC, VYP, VIPTV,

TLWVHERFDGOVRANGE;

13 BADPOWER, ENABLEVER, SLEEPINT, VPSEN, TLDISABLEVHRPUMPREG, TLVHRPDEVRANGE,
14 ff elack

15 CKPUMP,

16 // eoutput

17 WERZ, ELEMU, VERET1, VHR1, SLEEPHY, SLEEPN, ¥MSEMUOUT,

18);

19 input ENABLESBYPUMP, PROG, CKPUMPSEY;

20 input VIREF, VPOL, GND, VDD, VBGAP, VDD_PUMP, VCC, CASCPAVYP, VYP, VYPTV;
21 input BADPOWER, CKPUMP, ENABLEVHR, HIBERNATE STATE MY, SLEEPINT, TLDISAELEVERPUMPREG, VPSEN,
22 input [4:0] WHRCTL;

23 input [3:0] CONFIPROG;

24 input ADD_STAGE;

25 output BLEMU, SLEEPHY, SLEEPN, VHRET1, VHR1, VHRZ, YMREMUQUT;

26

27 real VDD_PUMP_r, VOUT, pump_dwv, VDDCurrent;

28 logic clkpump ok;

29 integer refresh, refresh wdd_pump, vxrctl_add;

30 logic functional_ok;

31

32 integer

33 integer

34 integer

35 integer

36 integer

37 integer

38 integer

39 integer

40 integer

41

42 integer

43

44 electrical VIREF,
SLEEPN, VHRSTIL,

45 real BLEMU r,
I_¥DDPump,

46

47 parameter real VBgap min

VEBgap_ok;
Viref ok;
WVpol_ok;
Verbump ok;
GndRef_ok;
wvdd_ok;
gnd_ok;
pump_ok;
pump_on;

analog_ok;

VPOL, GND, VDD, VEGAF, VDD_EUMP,
VERL, WHRZ, YMSEMUOUT, VHRZ_ideal;
SLEEPHV v, SLEEPN r, VERSTL r, VRl r, VERZ r,
WDDPump_out, I_VHRZ, I_VDD;

vee,

0.53; //low limit of BandGap veltage

48 parameter real VEgap_max 0.74; /lrhigh 1imit of Bandgap voltage
49
50 parameter real VIref min = 0.5; //law limit of Viref valtage

36

CASCPAVYP, VYP,

YMSEMUCOUT r,

Fiflay which is =1 if clock 15 between min_freg & max freg

VY¥PTV, HIBERNATE_STATE_MV, BLEMU, SLEEPHY,

YCC r, VDD_r, VDD PUMP CALC, WCCmVDDP,

50 paramater real VIref_min = 0.5; //low limit of Viref wveltage
51 parameter real Viecef max = 0.8; /fhigh limit of Wiref voltage
52

53 parameter real Vpol min
gg paramatar real Vpol_max
56 parameter real wdd_min = 0
57 parameter real wdd_max = 1
11}

5% parameter real gnd_min
g'lil parameter real gnd max

flew limit of Vpol cazoode voltage
fhigh limit of Vpol cascode voltage

il
-
e

LH
J5; S
5; /flew limit of digital wdd voltage
5; fikigh limit of digital wdd veltage

i /flow limit of gnd voltage
Jihigh 1imit of gnd veltage

P

62 f/parameter tel result for WDDCurpent = "= bit_seguence. Lxt":

22 flinteger fp;

65 ;aail'lvxrz_modifvlﬂ:l.sl ='{3,91, 4.01, 4.10, 4.19, 4.2%, 4.3%, 4.4%, 4.56, 4.68, 4.78, 4.88, 4.97, 5.07, 5.17, 5.27,
66 real ;nr2_5‘-"[U:15] ='{5.21, 5.34, 5.46, 5.59, 5.72, 5.85, 5.98, 6.11, 6.24, 6.37, 6.50, 6.63, 6.76, B.89, 7.02, 7.15};
6T real wxr? resd[0:15] ="({3.26, 3.34, 3.41, 3.4%, 3.58, 3.66, 3.74, 3.82, 3.%0, 3.%98, 4.06, 4.14, 4.23, 4.31, 4.39,

4.47};
68 real \axrl_read[l]:l!.] ="{2.28, 2.34, 2.39, 2.45, 2.50, 2.56, 2.62, 2.67, 2.73, 2.79, 2.84, 2.90, 2.9, 3.01, 3.07,
k

raal coeff_final_1;
0 real coeff final_2;
1 raal coeff_final_3;
2 real coeff final 4;
3 real coeff final_5;
4 real coeff final 6;

real coeff final VDD_3:

19
80 ffclock_checkerlS0 clke\\mpchk (CKEUHE, 10e6, 28066, clkpump_ok),;

81 assign functional ok = [ENABLEVNR==1'bl && SLEEPINT==1'b0 g& BADPOWER==1'b0 £& TLDIBABLEVHRPUMPREG==1'b0 &&
mu] *hi);

alwaysd(VHRCTL) begin

varctl_add = @*VHRCTL[3] + 4*VHRCTL[Z] + Z*VERCTL[1] + 1*VHRCTL[O];

k = vxrotl_add;

Sdisplay(“here j", k });

87 nlmr:ﬂ(ﬂﬂmmwmﬁ \'!IRI:TL) begin
BB waretl_add = TLL3:0];
NOUT = (Tl,mvoﬁ.mm'p wxrZ_6V[viretl_add] :(VHRCTL[4])? wxr?_modify[vrrerl_add] : wxrZ read[verctl_add]:

3
4

90 antd

coeffsl [0:31] ;
coeffs2[0:31] ;
coeffsd[0:31] ;
coaffad[0:31] :
coaffs5[0:31] ;
coaffsk[0:31] :
cosffl _VDD([O:31
coeff2_VDD[O:31

nteger file results, _VODDPUMP;
integer file_results VDD
03 intagar scan_results ‘-I'DDWHP.
104 integer scan_results _VDD;
105 integer scan_string_VDDPUMP;

106 integer sctn_ﬂring VDD

107 inteager 1 = 0 ;

108 integer j = 0

109 rag [4095:0] dat.a _VDDFUME;

110 req [4095:0] data_VDD;

111

112 initial begin

113 file_results_VDDPUMP = Sfopen("tcl_coeffs_result_for VDDPumpCurrent 3stages.txt", "r=);

114 file resulkz_ VDD = $fopen("tel_coeffs result_for VDDCurrent 3stages.txt™, "e");

115 if (file_results_VDDPUMP == 0) bagin

116 fdisplay ("Results VDDPUMP i= espty");

117 sfinish;

118 and

119 if (file_results_VDD == 0] bagin

120 $display("Results VDD is empty"):

121 sfinish;

122 anid

123 while (!{fecf(file_results_VDDPUMP)) bagin

124 scan resulbs ‘.I'DDPI.IHP = §fgets(data VODPUMP, file results VDDPUMP) ;

125 _string = $sscanf (data_VODDPUMP, “%g %5 %g %g %g %g /n", coeffsl[i], coeffs2[i], coeffs3[i),
aoeffsd.[i]. GoeffaE(i]. cneffaﬁ[i]).

126 fdisplay(“scan_results_VODPUMP: %s data_VDDPUMP: %s", scan_results_VDDFUMP, data_VDDPUMP) ;

127 4display(“coeffs are displayed heree");

128 i=1+1;

129 and

130 ffolose(file results VDDPUME) ;

131 [8finish;

132 while (!ifecf(file_results_VDD)) begin

133 scan_tresults VDD = $fgets(data_vDD, file_results_VDD);

134 sean_string VDD = fsscanf(data VDD, "%3 %3 %y /n", coeffl vDD([{]., coeff2 VDD[4], ooaff3 VDD[4]);

135 $display(“scan_results_VDD: % data_VDD: %s", scan_results_YDD, data_VDD);

136 §display(“coeffs VDD are displayed heree®);

137 j=13+1;

139 $fclose(file_results _VDD);
A0 emid

1 alog begin

IH I_VERZ = I({VHRZ, VERZ_ideal);

1

145 VBgap_ok = (((V(VBGAP) >= VBgap_min) &«& (V(VEGAP) <= VBgap _max))}? 1 : 0);
146 VIref_ok = [((W{VIREF) >= VIref min) && (V(VIREF) <= VIref max:l}‘? 1 :0);
147 Vpol_ek = (((V(VPOL) 2= Vpal_min) & (V(VPOL) == Vpol max))? 1 : 0);

148 wadd_ok = (((V(VDD)} >= wdd_min) && (V(VDD) <= wdd_maz)}7 1 : 0):

149 gnd_ok = [({V(GND]} >= gnd_min) £& (V(GND) <= gnd _max))? 1 : D0);

150 analog_ok = (((VByap ok + VIref ok + ¥pol ok + wdd_ok + gnd_ok) == 5)7 1 : 0);
151 pump en = [([{l*funsticnal ok #+ analag ok) == 2)% 1 : 0);

152

37

153 VDD_PUMP_r = V{VDD_PUMP) ;

154 VCC_F = ¥(VCC):

155 VOD_r = VIVDD):

156 YMEEMUOUT r = 0O;

157

158 flhandling Ehe fuil functional casze of the pump

158 if (pump_on==1) begin

160 T/I_VDDPump = - le-6;

161 SHI_VOD = - le-6;

162

123 VDD_PUMP_CALC = 3*%DD_PUMP_r-0.3;

165 ffdiffersnt trim table depending if the pump Is in medify mode or :n::t
lgg BLEMU_r = (ADD_STAGE===1'kbl && VOUT>VDD_PUMP_CALC) 7 VDD_PUMP_CALC VOUT ;
1

168 // VXRI_r = (VPSEN--=1'b0) P BLEMU_r : VOC_r ;

165 if (WPSEN===1'b0) bagin

170 WVHRZ_r = BLEMU_r;

171 end eloe Ingl.n

172 = VCC_r

173 end

174

175 pump_dv = VOUT - VOD_PUMP_r;

1?2

178 DPump = -((coeff final_1+VDD_PUMF_r*VOD_FUMP_r-coeff final 2*VDD_P

UMP_r
coeff_final_ 3+ooa?f_ﬁna1 4*WDD_r*VDD_r-coaff_final_S*VDD_r+oceff_final_B)* (I_VHR2/0. unnu!h:,
I_VDD = - ({VDD_r#¥DD_r*
(meff final_VOD_T*VDD_PUMP_r+VDD_FUMP_r-coeff_final_VDD_2*VDD_PUMP_r+coeff_final_WDD_3))*(I_VHRZ/0.00008));

163 F/I_VODPumEp = -{(0.0007318239492407497 +VpD_PUMP_r +VDD_PUNE_r-0, 0029792740681 771623 4V0D_PUKD_r
0.0033448 66 60822565740, 00051 508541 56653283 +VDD. £#VDD. £-0.0B1096E059 393309639 4VDD. 2 40, 0052339 64939983672) + (. VER2/0.000
08));

182 F/I_WDD = - ((VBD_r+VDD_r#

fﬂ‘ 001353081 71291 13666 sVDD_PUND_r*VDE_PUMP_r-0.005515020198221083+VD0_EUMP_r+0. 005635330221 626578)) *(I_VER2/0.00008))

3 Fftaking different values for WER! and WYRET! depending on read/modify mode, and lowcons (2 stages) [
bighperf (3 shgw.‘l
5 fimadify mode sctivated by VKRCTL[d] bit, resdmode if '0°

186 J/VER] & VXRETI are juste iniermediate woltages, not regulated
187 if ((VERCTL[4]) || (TL¥KRPDGVRANGE]) begin
188 .-’;'Myh perf mode t:iggsrod by ADD_STAGE (VIRPDISTAGEQN)
188 f (ADD_STAGE === 1" bagin
190 VERL_p= VDD_PUMP_r + pump_dv=0.67 ;
191 VHRST1_r= VDD_FUMF_r + pump_dw+0.45 ;
192 ffin low cons mods, VERSTI = VERI
193 and alee bagin
194 VER{_r= VDD_PUMP r + pusmp dve0.52 ;
195 VHRET1_r= VARL_r;
195 and
197 ff in read mode, VIRI is regulated (same velue for low cons & kigh perf), while VXRST! is nol
198 end else begin
199 YRRl _r = warl_read[varctl_add];
200 VHRSTL_r = (ADD STAGE=ss=1'bl)? (VOD_PUMP_r + D0.66%(VHRl_r - VDD_PUMP_r)) : VERI_r;
201 and
202 f{bandl!m; sleap mode
203 and «lse qln
204 I Punp =0;
205 1 VDD = 0;
206 if ((BADPOWER wws 1'bi)||(¥pol_ok == 0)) bagin
207 VHRZ_r
208 L1}
209 VERL_F = 0}
210 VHERETL r = 0;
211 end else if (SLEEPINT===1'bi) bagin
212 VCOCMVDDE = WCC_r=VDD_PUMP_r;
213 wee_r;
214 YCC_r-13
215 VERETL ¢ = HADD STAGE===1'bl}? VOD_FUMP ¥ + 0.35*VCCmVDDP © '\?DB_PU:MP_ + 0. 52aVCCaVDDP) ;
216 VERL = ((ADD_STAGEwswl'kl)? VDD _PUMP_r + 0.67#VCCmVDDP : VDD_PUMP_r + 0.52+VCCmVDDP) ;
217 end alse beg
218 VJCRZ_r = VOD_PUHP_r;
219 BLEMU_r = VOD_PUMP_r:
220 VERL r = VDD_PUMP_k;
221 VKRSTL r = ¥DD_PUMP_r;
222 and
223 and
224
225 SLEEPHV_r = [SLEEPINT=: ‘bl) * VOC_r : O;
226 SLEEPN_r = (SLEEPINT B0} ? VOD_r : 0O;
227 ffaszign FHSERUQUT - g
228
229 V(BELEMU) <+ transition(BLEMU_r, Z2e-7, 2e-T);
230 V({SLEEPHV]} <+ transition(SLEEFHV r, le-5, le-9);
231 VI(SLEEPN) <+ transition(SLEEPN_r, le-9, le-9);
232 V(VERSTL) <+ transition(VERST1 ¢, 2e-T, 2e-T);
1l r. 2a-7, Za-7);
[VIVEED Jdeal) <t Lrancitlon(VRs v, Je-1, Jo-11:)
Tk Ze-7, 2e-7);
36 I(VDD_PUMP) <+ tramsition(I_VDDPump,Z2a-7, Ze-T);
237 I(VDD] <+ transition(I_VDD,Ze-7, Ze=1);
238 I(VKRZ, VERZ_ideal) : V(VRRZ, VXR2_ideal) == 0.0;
TrEmr
240
241 endmodule

38

	Introduction
	Introduction
	Host Company

	Theoretical background
	Flash Memories
	Overview
	The eSTM memory

	Charge Pumps
	Circuit Verification
	General presentation
	Existing models and simulations

	VXR Pump modelling
	Theoretical presentation of the vxr pump
	Preliminary Study
	Testbench and simulations
	Results

	Different strategies
	Explanation and development of two strategies
	Results comparison of the two strategy

	Development of the chosen strategy
	Detailed script
	Simulation and Results

	Integration of the model in mixed simulation environment
	Testbench and simulations
	Scripts and simulations
	Code of the VXR pump existing model
	Current measurement schematic
	Model integration

	Results
	Functional Check
	Currents consumption
	Simulation time

	Conclusion
	Personal comments
	Personal conclusion
	Acknowledgments

	Bibliography
	Annexes
	Gantt Chart
	Tcl code
	VerilogAMS code

