
POLITECNICO DI TORINO
DIPARTIMENTO DI INGEGNERIA MECCANICA E

AEREOSPAZIALE (DIMEAS)

Master’s Degree Course in Biomedical Engineering

Towards an Electromyographic
Armband: an Embedded Machine
Learning Algorithms Comparison

Supervisors
Prof. Danilo Demarchi
Ph.D. Paolo Motto Ros
M.Sc. Fabio Rossi
M.Sc. Andrea Mongardi

Candidate
Matteo Tolomei

TORINO, December 2020

Abstract

Gesture recognition is a trending topic in modern technology, being used to control
mobile apps, robotics and also videogames.
Many approaches are in use to detect gestures and make them suitable for digital
processing and machine learning classifier. For this specific application, data are
collected starting from the surface ElectroMyoGraphic (sEMG) signals, obtained
applying non-invasive electrodes on a selected skin area.
The acquisition setup makes gesture recognition also suitable for Human-Machine
Interface (HMI), like prosthesis and robotic limb control.

This thesis work offers a wide overview of the machine learning algorithms used
for hand gesture recognition. Considering low-energy consumption as key feature,
the system is based on an event-driven approach focused on the Average Threshold
Crossing (ATC) information. This feature is obtained averaging, in a fixed time
window, the number of voltage threshold crossings by the sEMG signal, which can
also be seen as an index of muscle activation.

The first analyzed dataset, acquired with custom made boards, has involved 25
healthy people, each one performing five gesture over five sessions. Algorithms
like Neural Network (NN), K-means, Support Vector Machines (SVM), Random
Forest (RF) and Gaussian Mixture Model (GMM) Naïve Bayes were tested and
implemented on a microcontroller (i.e., Ambiq Apollo 3 Blue with a Cortex M4-F
processor) for real-time applications.
During the assessment, requirements like power consumption and a system latency
below 300ms were taken into consideration.

For all the algorithms the system latency was way below the 300ms; in particu-
lar: 2.56ms for neural network, 185.49 µs for random forest, 140.46 µs for GMM
Naïve Bayes, 61.92 µs for K-means and 54.84 ms for support vector machines.
Power consumption analysis have been performed on the MCU obtaining: 0.54
mW for NN, 0.5131 mW for K-means, 0.9324 mW for SVM, 0.5126 mW for RF and
0.3758 mW for Naïve Bayes.

Further investigations were made towards the design of an armband. Electrodes
(i.e. two for signal acquisition and one for reference) placement on the forearm has
been deeply analyzed and an optimal setup was reached.
Bringing the acquisition channels up to seven, it was possible to increase the number
of recognized gestures for a total of seven active poses plus the resting position. For
these new data, a preliminary machine learning study has been conducted reaching
an accuracy of 88%.

iv

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Muscular System . 1

1.1.1 The Skeletal Muscle . 2
1.1.2 Forearm muscles . 4

1.2 Electromyography (EMG) . 6
1.2.1 Surface - Electromyography (sEMG) 7

1.3 The Average Threshold Crossing Technique 10
1.4 State of the art . 12

2 Classification Algorithms 14
2.1 Neural Network . 14
2.2 Support Vector Machine (SVM) . 15
2.3 K-Means . 17
2.4 Decision Trees . 18
2.5 Random Forest . 19
2.6 Naive Bayes . 19
2.7 Gaussian Mixture Modelling (GMM) 20

2.7.1 GMM Naive Bayes . 22

3 Evolution Of Hand Gesture Recognition Based On ATC 23
3.1 Acquisition protocol for 3D Dataset 27

3.1.1 Training protocol . 28
3.1.2 Testing protocol . 28

3.2 ML Analysis on the 3D Dataset . 29

4 Further Investigation on 3D Dataset 32
4.1 Offline training . 32

4.1.1 Neural Network . 32

vi

4.1.2 Support Vector Machine (SVM) 34
4.1.3 Random Forest (RF) . 35
4.1.4 Gaussian Mixture Modelling (GMM) 36
4.1.5 Gaussian Naive Bayes . 37
4.1.6 Stacking Classifier . 37
4.1.7 Offline results comparison 39

4.2 Online Prediction . 40
4.3 Firmware for Online Mode . 41

4.3.1 Neural Network . 42
4.3.2 Support Vector Machine . 42
4.3.3 Random Forest . 43
4.3.4 K-Means . 43
4.3.5 Naive Bayes . 44

4.4 System latency . 44
4.5 Power consumption . 45
4.6 Online Results Comparison On The 3D Dataset 49

5 ML With ATC On Public Dataset 51
5.1 MeganePro . 51
5.2 3DC Long Dataset . 54

6 Towards an Armband 57
6.1 Preliminary ML Analysis . 62

6.1.1 Neural Network . 62
6.1.2 Random Forest . 63
6.1.3 SVM . 63
6.1.4 Naive Bayes . 64
6.1.5 Preliminary ML Analysis Summary 64

6.2 Protocol for the Dataset Acquisition 65
6.3 ML Analysis on the new dataset . 66

6.3.1 Neural Network . 66
6.3.2 Random Forest . 67
6.3.3 K-Means . 67
6.3.4 SVM . 68
6.3.5 GMM Naive Bayes . 69

6.4 Final ML comparison . 70

7 Conclusions and Future Works 71

vii

List of Figures

1.1 Different types of skeletal muscle 1
1.2 Structure of a skeletal muscle . 2
1.3 Inner view of a sarcomere . 3
1.4 Muscles of the anterior compartment of the right forearm 5
1.5 Muscles of the posterior compartment of the right forearm 6
1.6 Intracellular Action Potential . 7
1.7 sEMG technique . 8
1.8 Example of pre-gelled EMG electrode 9
1.9 Example of dry electrode . 9
1.10 Standard structure of sEMG acquisition chain 10
1.11 Transmission cost comparison between sampling the signal and using

the ATC technique . 11

2.1 Example of a neural network . 14
2.2 Example of a hyperplane . 15
2.3 Increase the dimensional space to find an optimal decision surface . 16
2.4 Example of different kernels . 16
2.5 Intra-class and inter-class distance 17
2.6 Example of a decision tree . 18
2.7 Example of a decision tree which gives numerical values as output . 19
2.8 Different type of covariance . 21
2.9 Comparison between Gaussian naive bayes and GMM naive bayes

distribution for two classes . 22

3.1 Wrist flexion gesture . 23
3.2 Wrist extension gesture . 24
3.3 Hand grasp gesture . 24
3.4 Wrist radial deviation gesture . 24
3.5 Idle state gesture from two views 25
3.6 Wrist ulnar deviation gesture . 26
3.7 Electrode placement for the 3D Dataset acquisition 26

ix

4.1 Possinle system schematic . 40
4.2 The AmbiqMicro Apollo3 Blue evaluation board 41
4.3 DMM7510 7 1/2 digit graphical sampling multimeter 45
4.4 Voltage Selection on Header P19 of Apollo3 Blue 46
4.5 Setup used for measuring the power consumption 46
4.6 Current absorption graph for Neural Network 47
4.7 Current absorption graph for Support Vector Machine 47
4.8 Current absorption graph for Random Forest 48
4.9 Current absorption graph for Naive Bayes 48
4.10 Current absorption graph for K-Means 49

5.1 Spike problem 3DC Long Dataset 55

6.1 g.HIamp-Research 144-Channel Research Amplifier 57
6.2 Example of different armband placement 58
6.3 sEMG signals of muscles of the right forearm with bad electrode

placement . 58
6.4 sEMG signals of muscles of the right forearm with good electrode

placement . 59
6.5 Reference electrode placement . 59
6.6 Electrode placement: section of the forearm viewed from distal to

proximal . 60
6.7 Electrode placement on a subject 60
6.8 sEMG signals obtained with the described configuration 61
6.9 Pinch grip gesture . 61
6.10 Open hand gesture . 62

x

List of Tables

3.1 Statistical results obtained by Sapienza et al. using SVM 25
3.2 NN perfomances on 3D Dataset by Mongardi et al. 29
3.3 Statistical results obtained by Morgardi with NN during online clas-

sification . 30
3.4 Statistical results obtained by Barresi with SVM for the online pre-

diction . 30
3.5 Statistical results obtained by Barresi with K-Means during online

classification . 31
3.6 Comparison between all the tested ML algorithms 31

4.1 Iterations for hyparameter optimization of the NN for the 3D Dataset 33
4.2 NN offline training . 34
4.4 SVM offline training . 34
4.3 Iterations for hyparameter optimization of the SVM for the 3D Dataset 35
4.5 Iterations for hyparameter optimization of the RF for the 3D Dataset 36
4.6 Random Forest offline training . 36
4.7 GMM covariance performances comparison 37
4.8 Naive Bayes offline training . 37
4.9 GMM and NN offline training . 38
4.10 GMM and SVM offline training . 38
4.11 Offline results comparison . 39
4.12 Apollo3 Blue technical sheet . 41
4.13 Statistical results for NN online application 42
4.14 Performances on 3D Dataset using SVM on the MCU 43
4.15 Statistical analysis for all the gestures of the 3D Dataset using RF . 43
4.16 Online K-Means performances on 3D Dataset 44
4.17 Online Naive Bayes performances on 3D Dataset 44
4.18 DMM7510 main specifics . 45
4.19 Online Comparison . 49

5.1 RF analysis on Ninapro, ranked based on accuracy 52
5.2 GMM and NN analysis on Ninapro, ranked based on accuracy . . . 53

xi

5.3 SVM analysis on Ninapro, ranked based on accuracy 53
5.4 GMM and SVM analysis on Ninapro, ranked based on accuracy . . 54
5.5 RF analysis on 3DC Long Dataset, ranked based on accuracy . . . 55
5.6 GMM and SVM analysis on 3DC Long Dataset, ranked based on

accuracy . 56
5.7 SVM analysis on 3DC Long Dataset, ranked based on accuracy . . 56

6.1 Performances obtained with Neural Network during the preliminary
analysis . 63

6.2 Performances obtained with Random Forest during the preliminary
analysis . 63

6.3 Performances obtained with SVM during the preliminary analysis . 64
6.4 Performances obtained with Naive Bayes during the preliminary

analysis . 64
6.5 Preliminary ML results comparison with the new electrodes placement 65
6.6 Iterations for hyparameter optimization of the NN for the new Dataset 66
6.7 Iterations for hyparameter optimization of the new dataset 67
6.8 K-Means training for the new dataset 68
6.9 Iterations for hyparameter optimization of the SVM for the new dataset 68
6.10 Iterations for hyparameter optimization of the GMM NB for the new

dataset . 69
6.11 Comparison between all the tested ML algorithms 70

xii

Chapter 1

Introduction

1.1 Muscular System
The muscular system is structured to allow the movement of the body and main-
taining the posture to safeguard the underlying organs. There are three different
types of muscle tissue, each one has is own characteristics [1]:

• Skeletal muscle is responsible for the movements. It is controlled by the
peripheral portion of the Central Nervous System (CNS). Thus, these muscles
are under conscious, or voluntary, control;

• Smooth muscle is an involuntary tissue directly controlled by the autonomic
nervous system, meaning that they are incapable of being moved by conscious
thoughts;

• Cardiac muscle is only found in the heart, where it performs coordinated
contractions allowing the blood to move through the circulatory system. Sim-
ilar to the smooth muscle, is movement is involuntary.

Figure 1.1: Different types of skeletal muscle [2].

1

Introduction

1.1.1 The Skeletal Muscle
A good knowledge of the main characteristics of skeletal muscles helps to deeply
understand the anatomy behind the movement and most important the related
EMG signal.
Each skeletal muscle is the result of integration between the muscle fibers, blood
vessels, nerve fibers, and connective tissue. Each skeletal muscle is wrapped in
three connective tissue layer, providing structure and subdividing it in muscle fibers
(Figure 1.2).
A dense and irregular tissue, called epimysium, encloses each muscles preserving
the structural integrity while allowing indipendency from the surrounding [3]. It
is also responsible for the contraction and the movement of the muscles.

Figure 1.2: Structure of a skeletal muscle [4].

Bundles of muscle fibers, covered by a connective tissue called perimysium, con-
stitute the fascicle. The nervous system could trigger a single fascicle, allowing
many different types of movements. The last connective tissue layer is the endomy-
sium which surrounds each muscle fiber and plays an important role for transfer
the strength produced by the single muscle fiber up to the tendons.
Each muscle fiber is elongated and in most of the cases thinned out at the ends.
Inside each muscle fiber is located the cytoplasm, containing glycosomes, myoglobin
and sarcoplasmic reticulum. This multinuclear cell is also called sarcolemma.
Inside the cytoplasm, mitochondria have the main role in the production of the nec-
essary energy: starting from the substances coming from the circulatory system,
the ATP (Adenosine TriPhosphate) is obtained through chemical reactions. Based

2

Introduction

of the fiber’s function, mitochondria can increase their presence up to 20% of total
volume. A myofibril, known also as muscle fiber, is the functional unit of a muscle
cell which in turn can be split in sarcomeres.

Figure 1.3: Inner view of a sarcomere [5].

A sarcomere is made of light and dark bands reoccurring in series, giving the cell
a striated appearance. It is defined as the portion between two very dark-colored
bands called Z-lines which also act as an anchoring point for the actin filaments.
Around the Z-lines there are Isotropic bands (I-bands), which are the lighter ones
and made of thin actin filaments [6].
Following the I-band are the dark Anisotropic bands (A-bands) containing myosin.
The sarcomere central area is occupied by a brighter area (H-bands, from the Ger-
man heller) due to the absence of actin filaments. Within the H-zone is a thin line
(M-line, from the German Mittelscheibe) that helps to connect myosin filaments
of the two side. During a contraction, the I-band and the H-band increase their
thickness, while the A-band keeps its shape.

The focus of this work is related to analyze the acquired sEMG signals of the
forearm muscles while performing gestures. Having a good knowledge of the fore-
arm muscles helps to better understand the results and the electrode placement
during the recording sessions. In the following pages, muscles’ forearm are listed
and briefly described.

3

Introduction

1.1.2 Forearm muscles
The forearm is divided in posterior and anterior compartment, each one further
divided into layers [7].

• Anterior compartment
The anterior compartment runs along the inside of the forearm. The muscles
in this area are mostly involved with wrist flexion and fingers mobility, as well
as for the movement of pronation and supination of the forearm. There are
eight muscles subdivided in three layers: superficial, intermediate and deep
layer (Figure 1.4).

The superficial layer contains four muscles:

– flexor carpi ulnaris is the most medial muscle in the superficial layer, and
it has a center role for wrist movements (wrist flexion and adduction);

– palmaris longus is missing in almost 15% of the population. When it is
present, it fits between the flexor carpi ulnaris and flexor carpi radialis
muscles. It is the most superficial forearm muscle and has a secondary
role like tendon transfers;

– flexor carpi radialis is found close to the palmaris longus, and whenever
it is present is found in a lateral position. It is responsible for the wrist
flexion and abduction;

– pronator teres is a functionally important muscle that contains two heads,
separating the ulnar artery from the ulnar head of pronator teres. It acts
for the pronation of the forearm.

The intermediate layer contains only the flexor digitorum superficialis which
function is the flexion at the proximal interphalangeal, metacarpophalangeal
and wrist joints.

The deep layer of the anterior compartment is made of three muscles:

– flexor pollicis longus is a long muscle of the forearm. His main con-
tribuition is during the gripping being responsible for the flexion of the
thumb at the interphalangeal joint;

– flexor digitorum profundus is the most voluminous muscle of the forearm.
It has a central role for a wrist flexor and for powerful finger, one of the
most crucial elements responsiblr for strength of the grip and the pincer
grip;

– pronator quadratus is a small, flat, quadrilateral muscle. As the name
suggests, the main function of this muscle is to assist and stabilize the
forearm pronation.

4

Introduction

Figure 1.4: Muscles of the anterior compartment of the right forearm [8].

• Posterior compartment
This compartment mainly produces wrist and/or finger extension, and thumb
abduction. It is divided in superfical and deep layer for a total of twelve mus-
cles (Figure 1.5).

The superficial layer is made of seven muscles:

– brachioradialis produces minimal flexion at the elbow, but has a primary
role as elbow fixator

– extensor carpi radialis longus extends between the humerus and the second
metacarpal bone. It is responsible for the extension and abduction of the
hand, vital movements for the hand gripping

– extensor carpi radialis brevis has a main role for the extension and abduc-
tion of the wrist

– extensor digitorum (communis) starts from a very short common muscle
belly that splits into four individual muscle bellies, each giving rise to a
single tendon. It activates the extension of digits II-V

– extensor digiti minimi (extensor digiti quinti proprius) is responsible for
the extension of digit V

– extensor carpi ulnaris with the extensor carpi radialis brevis coordinate
the extension and abduction of the wrist

– anconeus provides support to the other muscles during the extension

5

Introduction

The deep layer of the posterior forearm contains five muscles, all of them
starting by the posterior interosseous nerve:

– supinator is a spiral muscle that curls around the proximal part of radius.
As the name suggests, it helps to supinate the forearm

– abductor pollicus longus contributes to thumb abduction and has a role in
abduction at the wrist

– extensor pollicus longus passes around the dorsal radial tubercle before
reaching the thumb.

– extensor pollicus brevis along with the extensor pollicus brevis controls the
extension of the carpometacarpal and metacarpophalangeal joints of digit
I

– extensor indicis allows the extension of digit II

Figure 1.5: Muscles of the posterior compartment of the right forearm [8].

1.2 Electromyography (EMG)
During a muscolar contraction, the depolarization and repolarization of the exter-
nal membrane of muscle fibers generate an electrical signal that can be recorded
with the electromyography (EMG) technique providing information on the muscular
activity.
The signal amplitude can be affected not only by the anatomical features but it

6

Introduction

depends also on the type of electrodes used and their position, as it will be fur-
ther discussed in 1.2.1. The measured bioeletrical signal, called Motor Unit Action
Potential (MUAP) is the spatial-temporal summation of the individual action po-
tentials generated by the depolarizations of the muscle fibers of a motor unit.
A sequence of activation by the same motor unit generates a train of action po-
tential, called MUAPT. By looking at the graph representing the behaviour of a
single Intracellular Action Potential (IAP) (Figure 1.6) it is possible to identify
three phases. It starts with an initial depolarization phase, then a repolarization
phase with almost the same slope. Before returning to the resting state, a long
iperpolarization phase occurs. During a state of muscular fatigue, the shape can
change significantly making difficult to identify the three stages: in particular, the
repolarization phase become slower increasing the peak width.
The action potential of the motor unit, triggered by an external stimulus or by the
central nervous system (CNS), generates some variations in the electromagnetic
field around the muscle fiber. With a technology called surface electromyography
(sEMG), it is possible to record these fluctuations with an invasive or non-invasive
approach.

Figure 1.6: Intracellular Action Potential [9].

1.2.1 Surface - Electromyography (sEMG)
With a non-invasive methodology, called surface electromyography, EMG signal
recording is possible by simply placing the electrode on the surface of the skin.
The acquired bio-signal is the sum of all the motor units, below the electrode,
recruited in the movement. The recording is performed using a single or a electrodes
matrix placed above the muscles to be tested.
The most common applicstions for sEMG technique are:

• temporal characterization of a movement, studying the muscular activation;

7

Introduction

• feedback for the patient on how well he is performing the assigned movement
during a rehabilitation session;

• monitoring a group of muscle or just a single one.
From a more technical point of view, the amplitude of the sEMG signal can span
between 0mV and 10mV. The frequency range spectrum is 6–500 Hz, with major
contribution in the 20Hz - 150Hz slot.

Figure 1.7: sEMG technique [10].

A signal with this low amplitude and a wide frequency range, during the recording
session can be easily affected by many source of noise:

• a noise, called movement artifact, usually lower than 10 Hz is generated
by the friction between the skin, the adjacent under skin substrates and the
electrode. In the preprocessing phase, this noise component can be moved out
from the sEMG spectrum;

• cross-talk due to the presence of multiple muscles in the area, can affect the
recording of a single muscle activity. This noise can only be lowered with an
accurate placement of the electrodes;

• muscular fatigue is another contribution to take in account. In fact, as
written earlier, in a fatigue state the muscle activity will decrease, causing the
signal to have a lower frequency and amplitude;

• the environment noise can affect the recording making more difficult to
have a clean signal. One of the most dangerous could be the noise at 50 Hz
introduced by the voltage supply. It can be removed but it is always a trade-off
between having a clear signal and the loss of informations in that frequency
range.

8

Introduction

On the market, there are many different types of electrodes based on the type of
exam and their technology. The electrodes can be divided in two main species: wet
and dry. The most common are made of silver/silver chloride (Ag/AgCl), silver
chloride (AgCl), silver (Ag) or gold (Au).
The Ag/AgCl type is the most used thanks to its property of not be polarizable.
The use of a conductive gel skin helps to prevent and reduce the noise due to the
friction between the electrode and the underneath skin layer.
The gel layer increases also the mechanical stability at the electrode-skin interface.
There are disposable electrodes with a built-in gel layer for reducing the applica-
tion time. They are available in all sizes and shapes: from a few millimeters to
centimeters, where the dimension influences the field of application and the spatial
resolution.

Figure 1.8: Example of pre-gelled EMG electrode [11].

Dry electrodes represent a good alternative and in the last years have been widely
used for the acquisition of biopotentials. Using them avoids the use of conductive
gel, which is ideal for long-term analysis. The absence of the gel prevents also skin
irritation and the need to reapply the gel every few hours in a long procedure.
The drawback of using dry electrodes is the absence of any electrolyte between the
metal and the skin, requiring a more sophisticated signal conditioning circuit to
control the skin-electrode impedance.

Figure 1.9: Example of dry electrode [12].

9

Introduction

1.3 The Average Threshold Crossing Technique
The most common chain structure for a commercial data acquisition device is com-
posed by:

– electrodes arrays for monopolar or bipolar configuration for acquiring the
sEMG simply by putting them on the skin surface;

– first stage circuit, made of amplifiers and filters, responsible for the preprocess-
ing of the signal. A right components selection let pass only the meaningful
frequency, obstructing the undesired one;

– a digital section where an Analog-to-Digital-Converter (ADC), controlled by
a microcontroller, samples the conditioned signal. The data could be stored
locally or transmitted to a computer.

Signal from
Electrodes

Filter

Amplifier

Analog to Digital
Converter

MicroController Unit

PC

A
nalog Part

D
igital Part

Figure 1.10: Standard structure of sEMG acquisition chain.

The particular shape and the systematically electrical variations of the IAP opened
the way to different approaches of analysis. Some researchers have formalized a
way to study it based on a threshold.
Among the others, the Average Threshold Crossing (ATC) technique will be de-
scribed in the following lines. It is an event-driven technique where the Threshold
Crossing (TC) counter increases whenever the myoelectrical signal crosses a cer-
tain set threshold. This new approach, described in detail by [13, 14, 15] is, in

10

Introduction

some ways, a game-changer compared to the other, especially in terms of power
consumption. It could easily be implemented directly in hardware with a circuit
made of voltage comparators.
The output is determined based on a two signals comparison: between the set
threshold and the incoming sEMG signal. This step can be found after the analog
part (filter and amplifier). The output signal will have information based on the
time domain and not on the analog value, leaving at the end a quasi-digital signal.
The output state could be high when the threshold is crossed and low in all the
other circumstances.

Figure 1.11: Transmission cost comparison between sampling the signal and using
the ATC technique [16].

The ATC parameter is defined as how many times the sEMG signal crosses the set
threshold, in a fixed time window, divided by the duration of the window itself.
The threshold crossing can be defined as an event, easily detectable in hardware
employing a comparator and a threshold.
In modern application, to avoid problems due to cables obstructing movements,
data are sent dynamically through wireless. An event-driven approach drastically
reduces the number of packets sent, while increasing the battery life.
In Figure 1.11 is shown, given a fixed time window, the different number of packets
sent by the two approaches: standard sampling and the event-driven approach.
Using the TC allows the transmission of a single ATC value every time window,
avoiding the need of a constant transmission. This approach, like it has already
been demonstrated [15], could also work with a dynamic threshold, being adaptable
to many environment.

11

Introduction

1.4 State of the art

Gesture recognition is a trending topic in many technological fields: videogames,
medical, and entertainment. The possibility to perform action simply by moving
the hand freely is pushing scientists and researchers to the boundaries of technology.
Different technologies are used for this purpose: starting from sEMG analysis to
the infrared cameras and even using an eye-tracking system.
All these approaches have in common several steps before the real prediction of the
gesture begins: data preprocessing and features extraction.
In the following pages the most interesting literature works based on sEMG signals
are listed, focusing on the accuracy and the computational time.

Momen et al. [17] group realized a classifier that allows the user to make all the
desired movements, without any predefined set of gesture. Only two sEMG features
were used during the implementation: the RMS and its logarithm extracted over a
200 ms window.
During the testing phase was reached a final accuracy of 87% with a standard de-
viation of 13% and no constraints about the type of movements. The classifier was
based on a fuzzy clustering C-means method.

Another great study was published by Shenoy et al. [18] in which they reduced
the number of used features, exploiting only the RMS. This approach gave good
results with a predefined set of movements. The RMS value has been extracted
over 128 samples windows.
With a sampling frequency of 2048 Hz, a 60 ms window is obtained allowing to con-
trol of a robotic arm in real-time. In this work, a Support Vector Machine (SVM)
classifier is presented and during the cross-validation process accuracy of 90% was
reached.

SVM classifier offered other good results in a work proposed by Lucas et al. [19].
This time the Discrete Wavelet Transform (DWT) was used as a unique feature,
which increased the general performances while reducing the system flexibility and
having longer computational time.
With a misclassification rate of 5% for the six classes it was necessary to use 512
samples, bringing the total system latency up to 250 ms still suitable for real-time
applications. The overall performances of the proposed system were around 95%,
a better result compared with the previous ones.

Coté-Allard et al. [20] proposed a hand gesture recognition system based on Convo-
lutional Neural Network (CNN). During this study, subjects were asked to perform
6 active gestures and the sEMG signals were acquired with the Myo armband and
a time window of 260 ms.

12

Introduction

Due to the low sampling frequency of the Myo and the decision of prefering accu-
racy over time, the total system latency was set at 300 ms. This complex algorithm
brought the accuracy of the system up to 97%.

A different approach was used by Zhang et al. [21] based on Artificial Neural Net-
work (ANN). A 256 ms time window is implemented and five features were ex-
tracted: MAV, slope sign change (SSC), waveform length (WL), root mean square
(RMS), and Hjorth parameter (HP).
The system was tested on 5 active gestures with a global accuracy of 98% and with
a response time of 227.76 ms, which is lower than the maximum permissible latency
of 300 ms for real-time classification.

Qi et al. [22] proposed a model for hand gesture recognition based on sEMG ac-
quired from 16 electrodes.
RMS, wavelength (WL), sample entropy (SampEn), and median amplitude spec-
trum (MAS) were used as features, leaving the total information with 64 dimensions
(16 channels x 4 features).
Using principal component analysis (using 3 principal components) and General
Regression Neural Network (GRNN), obtained a system that recognizes 9 gestures
with an accuracy of 95% and a recognition time of 190ms.

13

Chapter 2

Classification Algorithms

Several supervised and unsupervised machine learning algorithms were used for the
system validation. In the following pages a briefly theorical introduction of them
is given.

2.1 Neural Network

A neural network can be define as a series of algorithms that attempt to recognize
underlying relationships between data through a process that takes inspiration from
how the human brain works.
In the algorithm a neuron is define as a mathematical function that receives and
classifies information following a particular architecture [23]. The network has a
strong similarity to statistical methods such as curve fitting and regression analysis.

Figure 2.1: Example of a neural network [24].

14

Classification Algorithms

A neural network is made of layers of interconnected nodes. Each node is a per-
ceptron and is similar to a multiple linear regression. The signal produced by a
multiple linear regression is feed, by the perceptron, into an activation function,
which may be nonlinear [25]. If perceptrons are arranged in interconnected layers
the architecure is called multi-layered perceptron (MLP). The input layer takes the
features as input. The output layer has classifications for the input features based
on their patterns.

2.2 Support Vector Machine (SVM)
A Support Vector Machine (SVM) is a supervised machine learning algorithm [26]
that can be used either for classification or regression problems.
The key idea of SVMs is to find a hyperplane that best divides a dataset into two
or more classes and maximize the distance between the two. This distance, which
is also called margin, is the one between the closet point of each class defined as
support vectors [27]. An example can be seen in Figure 2.2.

Figure 2.2: Example of a hyperplane [28].

A hyperplane is a (N-1)-dimensional subspace in a N -dimensional space (2.1).
In a 2 -dimension space, the hyperplane will be 1 -dimension, which is simple just a
line.

β0 + β1 ∗ x1 + β2 ∗ x2 + ... + βn ∗ xn = 0 (2.1)
In case of non-linear dataset, the data are randomly distributed making hard to
linerly separate the classes.

15

Classification Algorithms

A possible solution can be to increase the dimensional space for finding a hyperplane
that clearly separates the classes (shown in Figure 2.3).

Figure 2.3: Increase the dimensional space to find an optimal decision surface [29].

However, in the case of more dimensions, the computation cost increase expo-
nentially. In this situations it is more convenient to use a kernel. A kernel is a
mathematical function that takes data as input and transform it into the required
form, allowing to operate in the original feature space without increasing the di-
mensional space [30].
There are many kernels, the most popular ones are: linear, polynomial, radial basis
function (RBF) and sigmoid.

Figure 2.4: Example of different kernels [31].

While using SVM algorithms is crucial to tune the hyperparameters otherwise
negative overall performances results can be achieved. The most important ones
are:

• Regularization parameter (called C in many ML languages) sets how much
to avoid miss classifying. Higher C means lower miss classification rate and
smaller margin;

16

Classification Algorithms

• Gamma defines how far the influence of a single training example reaches. An
high gamma value will only consider points close to the hyperplane and a low
value will aso take in consideration points at greater distance.

2.3 K-Means
K-means is one of the most common unsupervised machine learning algorithms used
for clustering problems [32]. Clustering is used when the data are not pre-labeled,
leaving the doubt to what type of groups to create. Data are grouped together
trying to reach:

• High intra-class similarity;

• Low inter-class similarity.

Figure 2.5: Intra-class and inter-class distance [33].

It is an iteratively algorithm assigning each point to one of the K groups. The points
are assigned to clusters based on feature similarity, like the distance between them.
At the end we will have:

• The centroids of the K clusters;

• Labelled data according to their cluster.

The algorithm, assuming to have input data points x1,x2,x3,. . . ,xn and value of
K (the number of clusters needed), can be summarized as follows:

1. Select K points as the initial centroid choosing it either randomly or the first
K ;

17

Classification Algorithms

2. Calculate the euclidean distance of each point in the data set with the cen-
troids;

3. Assign each entry, according to the distance found in step 2, to the closest
centroid;

4. Compute the new centroid by averaging the points in each cluster group;

5. Repeat 2 to 4 for a fixed number of iteration or untill the centroids don’t
change significantly.

2.4 Decision Trees
Decision Trees (DTs) are a non-parametric supervised machine learning algorithm
that learn from data to estimate a path with a set of if-then-else decision rules [34].
It starts by breaking down data into smaller groups while simultaneously develop
the correlate tree. The final result is a tree with decision nodes and leaf nodes,
where the decision node has two or more branches and the leaf node is the decision
or the classification. The construction of a tree is divided in some steps:

• splitting, based on particular variable, the data into subset;

• pruning is the process to reduce the tree size by switching some branch nodes
into leaf nodes, and removing the leaf nodes under the original branch;

• tree selection by looking at the smallest tree that fits the data. Commonly
is the one that relents the lowest cross-validated error.

Figure 2.6: Example of a decision tree [35].

18

Classification Algorithms

2.5 Random Forest
A Random Forest is a data construct applied to machine learning that develops
large numbers of random decision trees analyzing sets of variables.
It merges the results from the single decision tree together to get a more accurate
and stable prediction [36]. The final output will be: the most voted class if it is a
label problem or the average if the trees produce a numerical value.
Random forest while computing the trees adds additional randomness to the sys-
tem. While splitting a node, it does not look for the most important feature but
for the best one between a random subset of features. This ends in a wide diversity
that usualy results in a better outcome [37].

Figure 2.7: Example of a decision tree which gives numerical values as output [38].

2.6 Naive Bayes
Naive Bayes algorithm can be defined as a supervised classification algorithm, based
on the Bayes Theorem created by Thomas Bayes [39].
This theorem is centered around the conditional probability, defined as the probabil-
ity that something will happen, based on the fact that something else has already
occurred. Using this probability it is possible to calculate the probability of an
event knowing the history of the previous event.

P (A|B) = P (B|A)P (A)
P (B) (2.2)

19

Classification Algorithms

where:

P (A|B) = posterior probability, probability of A given value of B;
P (B|A) = likelihood of B given A is true;
P (A) = prior probability, probability of hypothesis A being true;
P (B) = marginal probability, probability of event B.

The algorithm [40] works also based on the assumptions that each feature in the
data may not be correlated or mutually independent and the likelihood P (A | B)
must follow one of the statistical distributions: Gaussian, Multinomial or Bernoulli.

P (x|c) = P (x1|cj) ∗ P (x2|cj) ∗ ... ∗ P (xd|cj) =

=
d∏︂

k=1
P (xk|cj)

(2.3)

The equation (2.3) calculates the prior probability for the class x taking in consid-
eration all the features c individually. Taking the highest probability we can label
the data points.

2.7 Gaussian Mixture Modelling (GMM)
Gaussian mixture models is a popular unsupervised machine learning algorithm. It
is similar to K-Means but it is more robust thanks to some improvements.
The first drawback of K-means is related to the use of the euclidean distance func-
tion to assign data to clusters. This methods works fine as long as the data follows
a circular distribution with respect to centroids.
An other important drawback related to K-means is the use of hard clustering
method, which assign each point to one and only one cluster, leaving no uncer-
tainty measure or probability of how much a data point is related with his cluster.
On the other hand, GMM captures the uncertainty of data points belonging to dif-
ferent clusters by using soft-assignments and it works well with non-linear dataset
not having a bias for circular clusters [41].
In each cluster, for 1-dimension problem, the probability will have a Gaussian
distribution, where µ is the the Gaussian’s mean and σ2 is the variance. For a
d-dimensional gaussian the distribution will have a form like:

N(x|µ, Σ) = 1
(2π)d/2

√︂
|Σ|

exp(−1
2(x − µ)T Σ−1(x − µ)) (2.4)

• x refers to the random observation over which this distribution is placed;

• the mean µ, controls the Gaussian’s "center position" and the standard devia-
tion σ, controls its shape;

20

Classification Algorithms

• Σ refers to the determinant of the covariance matrix.

Also in d-dimensional case, a Gaussian is fully specified by a mean vector µ and
a d-by-d covariance matrix, Σ. For example in two dimension, the Gaussian’s pa-
rameters might look like this:

N

[︄(︄
µ1
µ2

)︄
,

(︄
σ2

1 σ12
σ21 σ2

2

)︄]︄
(2.5)

The equation is made of two components: the first one is the mean vector, con-
taining elements µ1 and µ2. This element centers the distribution of the Gaussian
along every dimension. The second component, called covariance matrix, specifies
the spread and orientation of the distribution.
Along covariance matrix diagonal, there are the variance terms σ2

1 and σ2
2 repre-

senting the shape (spread) along each of the dimensions. The off-diagonal terms,
σ12 and σ21, are equal due to the simmetry of the matrix and they specify the
correlation structure of the distribution.
GMM can allow different type of covariance matrix:

• spherical: the probability distribution has spherical symmetry which means
equal variance along the diagonal and zero off-diagonal value. Having a diago-
nal covariance matrix allows the distribution to spread exactly the same along
the dimensions;

• diagonal: the covariance matrix is also a diagonal one but with different
variances along it, spreading differently in each dimension in a ellipses shape;

• full: allows non-zero off-diagonal values, ending up with a non-axis aligned
ellipses.

Figure 2.8: Different type of covariance.

21

Classification Algorithms

2.7.1 GMM Naive Bayes
This algorithm combines the Naive Bayes basic principles with the statistical dis-
tribution follow the GMM instead of the Gaussian one.
The Gaussian mixture distribution helps to better describe a complex model having
more Gaussian peaks and valleys.

Gaussian Naive Bayes GMM Naive Bayes

Figure 2.9: Comparison between Gaussian naive bayes and GMM naive bayes dis-
tribution for two classes.

22

Chapter 3

Evolution Of Hand Gesture
Recognition Based On ATC

In the past few years, our research group has started to use ATC as main feature
for hand gesture recognition using machine learning algorithms.
The first considerable study was done by Sapienza et al. [42], where it was demon-
strated the possibility of using the ATC technique for hand gesture recognition.
In this work a system based on three differential sEMG signals is proposed, allowing
the prediction of four movements and idle state:

- wrist flexion: the hand palm goes towards the inner arm. The muscles involved
are flexor carpi radialis, palmaris longus and flexor carpi ulnaris, as well as
flexor digitorum superficialis and profundus;

Figure 3.1: Wrist flexion gesture.

- wrist extension: the back of the hand is moved towards the distal forearm.
The extensor carpi radialis longus, the extensor carpi radialis brevis and the
extensor carpi ulnaris, together with some deep muscles, are the most used
muscles while performing this action;

23

Evolution Of Hand Gesture Recognition Based On ATC

Figure 3.2: Wrist extension gesture.

- hand grasp: the finger are all closed in the direction of the hand palm. Flexor
digitorum and palmaris longus are the most used, together with many intrinsic
muscles of the hand;

Figure 3.3: Hand grasp gesture.

- wrist radial deviation: the hand is moved up along the thumb direction. Ab-
ductor pollicis longus, flexor carpi radialis, extensor carpi radialis longus and
brevis are the muscles used;

Figure 3.4: Wrist radial deviation gesture.

24

Evolution Of Hand Gesture Recognition Based On ATC

- idle state: all the muscles are relaxed, keeping the hand in a steady position,
without contrasting gravity.

Figure 3.5: Idle state gesture from two views.

A SVM classifier was trained using Matlab™ Statistics and Machine Learning Tool-
box and after the cross-validation an average accuracy of 92.8% was reached, as
fully described in Table 3.1 below.

Table 3.1: Statistical results obtained by Sapienza et al. using SVM.

Accuracy(%) Sensitivity(%) Specificity(%) Precision(%)

Extension 88.25 73.00 93.33 78.49
Grasp 93.25 91.00 94.00 83.49
Abduction 92.00 84.00 94.67 84.00
Flexion 98.00 95.00 99.00 96.94
Avg. 92.87 85.75 95.25 85.73

Following this direction, Mongardi et al. [43] brougth the number of recognized
gesture up to five: wrist extension, wrist flexion, wrist radial deviation, wrist ulnar
deviation and hand grasp.
Wrist ulnar deviation was added as new recognized movements, which is the action
of moving the hand down, along the little finger direction. In this gesture the ex-
tensor carpi ulnaris and the flexor carpi ulnaris are the muscles involved.

25

Evolution Of Hand Gesture Recognition Based On ATC

Figure 3.6: Wrist ulnar deviation gesture.

An other key factor was to move all the classification process into a MCU, while
using custom board for acquiring the sEMG signals and extracting the ATC values.
Initially the selected MCU was Apollo 2 by Ambiq, a ultra-low power device. In
this occasion a new dataset, called from now on 3D Dataset, was acquired using
the configuration described above.

The sEMG signal was acquired by placing 3 couples of 24 mm electrode on the
forearm (Figure 3.7), arranged in the following locations:

• the first pair was placed on the lower area of the palmaris longus, near to the
flexor carpi ulnaris;

• the second couple was placed, near the wrist, on the superficial area of the
abductor pollicis longus;

• the last pair was placed instead on the extensor carpi ulnaris.

(a) Forearm back (b) Forearm front

Figure 3.7: Electrode placement for the 3D Dataset acquisition.

26

Evolution Of Hand Gesture Recognition Based On ATC

The reference electrode was placed, looking for a neutral electrical area, on the back
of the hand. This placement also did not affect the ability to perform the assigned
movements.
All the process followed a very detailed protocol for both the training and test-
ing process. In the following pages these steps are explained in detail and the
classification results are presented.

3.1 Acquisition protocol for 3D Dataset
After an initial test phase, to evaluate the best electrode placement and list of
gestures, an in vivo experimentation has been launched. This signal acquisition
campaign aimed to acquire enough data to validate the algorithm and the system.
The 3D dataset is made of data from 25 people: 16 males and 9 females, in the
age range 23 to 37 years old. After being informed of the protocol and the possible
risks, they all signed the informed consent for the study, following the guidelines
and the regulations of the local bio-ethical committee.
Volunteers have been split into two groups: 20 people used their signals to train
the classifier, while the remaining 5 have been enrolled in the online testing phase.
The sessions took place on various days without trying to replicate in any case
the environment conditions, to prevent a correlation between the training data and
the test set. The two groups followed a slightly different procedure, but the initial
calibration phase was the same for everyone.
After making the subject feel comfortable, with the arm on a table and free to
move, the session began. After a brief introduction to the study, the electrodes
were placed on the subject’s forearm.
This placement is really critical and a bad positioning could lead to low quality
of the signal, bringing the accuracy down up to 30 points. Trying to avoid this
problem, a calibration protocol is follow to find the best electrode placement specific
for each subject.

• starting from the rest position, one movement at the time is executed for 6.5 s.
In this period, 50 values of ATC are acquired having a 130 ms time window;

• the hand returns in the rest position while relaxing for 5s to avoid muscular
fatigue;

• acquiring for 6.5 s a new movement. The routine is reiterate until all the five
active movements are performed;

• obtained data are then saved to a file and loaded to Matlab™ environment,
where they are visually observed;

• if problems in the recorded signal are found, some electrodes could be slightly
moved to enhance classifier performances.

27

Evolution Of Hand Gesture Recognition Based On ATC

3.1.1 Training protocol
In the 3D Dataset, subjects were asked to performed sequentially five active move-
ments. In order to have clean signals and trying not to rush things, data were
acquired in a window long twice the one used for the calibration part.
The ATC values were acquired with the Apollo2 MCU, using the debug mode of
the board to control, when necessary, the flow and to reset and stop the system
when needed. Trying to replicate a not optimal condition of the forearm, no skin
treatment was performed before the electrode placement, to ensure the robustness
of the system. In the following lines the protocol used during the training session:

1. few seconds before each movement, the supervisors reminds which one to per-
form;

2. a start command begins the recording session and the movement performing;

3. performing the movement for 13 s and at the end return to rest position;

4. at the end of 13 s, 100 windows should have been acquired and a stop command
puts on hold the recording;

5. a rest of 5 s is observed. If there are still movements to be execute, the flow
goes back to point 1;

6. at the end of the execution of all the movements, a rest session of 1 min is
observed. During this time, the person can lay the arm on the table;

7. data are stored on the computer. Session restarts from 1, unless five session
have already been done.

During the various sessions, the volunteers had to perform the gesture at their best
capabilities since the classifier was not already trained. At the end of the procotol,
the electrodes were removed from the forearm.

3.1.2 Testing protocol
After the training session, data were analyzed and the classifier was trained ac-
cording to them. When the classifier was ready, the remaining five volunteers were
called in to test the algorithm. During the testing protocol, the acquisitions last
for 5.2 s (40 windows of 130 ms).
The acquisition time was selected of 5.2 s for keeping the execution low and to
avoid muscle fatigue. Like in the training phase, data flow was controlled with the
debug mode. Classifier results were not displayed to the volunteers in order to not
conditioning their gesture in case of misclassification. All six movements, including
Idle, were performed for complete validation of the classifier.

28

Evolution Of Hand Gesture Recognition Based On ATC

During the testing phase the following steps were followed:

1. few seconds before each movement, the supervisors reminds which one to per-
form;

2. after a start command is given and the geasture is reached, trough debug mode
the firmware execution continues;

3. recording session lasts for 5.2 s;

4. at the of the 5.2 s, 40 windows are acquired and the execution is put on hold;

5. a rest of 5 s is observed. If there are still movements for the current session,
the flow goes back to point 1;

6. at the end of the execution of all the movements follows a rest session of 1
min. During this time, the person can lay the arm on the table;

7. data are stored on the computer. Session restarts from 1, unless five session
have already been done.

3.2 ML Analysis on the 3D Dataset
With the acquired dataset, machine learning analysis has been performed. Mon-
gardi et al. [43] focused his attention on NN model, finding the best architecture
for the model with 2 hidden layers with 26 neurons each, reaching an accuracy of
more than 92%. In Table 3.2 the main characteristics of the selected model and
the required training time are listed.

Table 3.2: NN perfomances on 3D Dataset by Mongardi et al.

Layers Nodes Regularize(λ) Val. Error Acc(%) Training Time(s)

2 26 0.010 0.630 92.31 2110

The following step was the model implementation on the MCU to obtain also
measurements related to system latency and power consumption.
In Table 3.3 the performance obtained with the MCU are listed, in particular the
results were specified for each gesture and the obtained results for the accuracy
were all over the 94%.

29

Evolution Of Hand Gesture Recognition Based On ATC

Table 3.3: Statistical results obtained by Morgardi with NN during online classifi-
cation.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

EX 96.87 84.64 99.20 91.34
FL 96.47 90.29 88.30 89.28
RD 97.18 91.76 91.30 91.53
UD 94.97 93.63 74.90 83.22
GR 94.92 88.06 88.40 84.06
ID 97.63 87.57 100.00 93.37
Avg. 96.34 89.32 89.02 88.80

Using the same dataset, Barresi [44], using Ambiq Apollo 3 as MCU, tested two
new machine learning algorithms: SVM and K-Means.
In the offline training phase, the performances reached for the SVM and K-Means
were 95.3% and 83.35% respectively. With these good offline results, the two new
algorithms were deployed on the MCU obtainig the results presented in Table 3.4
and 3.5.

Table 3.4: Statistical results obtained by Barresi with SVM for the online predic-
tion.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

EX 96.79 78.84 79.34 79.13
FL 97.50 78.92 88.16 83.24
RD 98.86 99.38 86.09 92.26
UD 96.83 66.66 68.97 67.80
GR 98.08 80.00 81.36 80.67
ID 99.83 99.94 99.82 99.87
Avg. 97.98 83.95 83.05 83.07

30

Evolution Of Hand Gesture Recognition Based On ATC

Table 3.5: Statistical results obtained by Barresi with K-Means during online clas-
sification.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

EX 95.00 97.06 35.87 79.13
FL 93.71 52.65 100.00 83.24
RD 99.62 98.90 96.25 92.26
UD 92.79 40.00 98.28 67.80
GR 93.46 62.14 35.16 80.67
ID 96.25 99.74 94.72 97.16
Avg. 95.14 75.08 76.71 69.64

An other major focus was making sure to have a total system latency (ATC window
length and computational time) below 300 ms and having a low power consumption
for increasing battery life.
In Table 3.6 these two important aspects are analyzed, in particular it can be seen
that it was necessary to bring the MCU clock up to 48 MHz to have a total system
latency below 300 ms, which also increased the power consumption of 0.5 mW.

Table 3.6: Comparison between all the tested ML algorithms.

Work Algorithm N. Gesture Embedded Global Computational Average Power
Accuracy Time Consumption

[42] SVM 4 92.87% 60 ms n.d.
[43] NN 5 92.3 % 5.15 ms 0.80 mW

[44]
K-Means 5 83.3 % 124 µs 0.61 mW

SVM (24 MHz) 5 95.3 % 283.75 ms 1.28 mW
SVM (48 MHz) 5 95.3 % 141.90 ms 1.78 mW

In the wake of following this good results, it was decided to test new ML algorithms
on the same 3D Dataset in order to offer a more complete overview in terms of
accuracy, system latency and power consumption.

31

Chapter 4

Further Investigation on 3D
Dataset

With the desire to further analyze the 3D Dataset and offer a complete overview
of the possible ML algorithms to use, new tests were carried out.
The process started by testing offline new algorithms and then, after a carefull
evaluation, deploying the best one on a MCU.

4.1 Offline training
Old and new machine learning algorithms have been tested continuing using the
3D Dataset. This time all the models were tested using ML libraries developed for
Python® environment.
During the training session, to offer a complete overview and comparison were
followed the same steps and settings:

• 100 initializations of the algorithm;

• k-fold validation with k=5. The fold are made by preserving the percentage
of samples for each class using a stratified k-fold method.

During the training process, some parameters are learned (like node weights), some
others need to be set to control the learning process. To determine the best hyper-
parameter a grid search optimization was used.

4.1.1 Neural Network
The neural network model was created using a combination of keras and tensorflow
libraries. In order to find the right model, many different combinations have been
tried as reported in Table 4.1. The selected model was the second best in terms

32

Further Investigation on 3D Dataset

of test accuracy (less than 0.5% compared with the first one) but it was much
simpler, keeping in mind the constrains in terms of memory usage for the MCU. A
full description of the model is given in the following lines and the complete results
can be found in Table 4.2.

– input layer: 3 neurons as the number of features;

– 1st hidden layer: dense layer with 26 neurons and Rectified Linear Unit
(ReLU) as activation function. This linear function sends the result straight
to the output if positive, otherwise, it will output zero;

– 2nd hidden layer: dense layer with 26 neurons and relu as activation function;

– output layer: 6 neurons as the number of gestures to be recognized and soft-
max as activation function. Softmax creates a vector of probabilities that sum
to one, representing the probability distributions of the potential outcomes.

Table 4.1: Iterations for hyparameter optimization of the NN for the 3D Dataset

Architecture Dropout before output layer Train (%) Test (%)

36, 28, 18, 6 No 86.99 82.66
26, 18, 18, 6 No 86.38 83.66
26, 18, 12, 6 No 85.50 83.18
26, 18, 14, 6 No 85.65 82.95
22, 18, 14, 6 No 85.10 83.24
22, 18, 6 No 86.63 83.66
26, 18, 6 Yes (0.2) 86.98 83.75
26, 26, 6 Yes (0.2) 87.48 83.49
34, 26, 6 Yes (0.2) 87.56 83.69
34, 26, 6 No 87.86 83.63
26, 26, 6 No 87.85 83.97
32, 32, 6 No 87.89 84.32
36, 36, 6 No 88.06 84.40
36, 42, 6 No 87.86 83.55
26, 35, 6 No 87.90 83.98

Note:
1 In the architecture column, the values are the number of neurons for each

layer.
2 The Dropout layer, each step during training time, randomly sets input

units to 0 with the selected rate, trying to prevent overfitting. Non-zero
inputs are scaled up by 1/(1 - rate) such that the sum over stays the same.

33

Further Investigation on 3D Dataset

Adam optimizer was used during the training phase with a learning rate of 0.001.
The scope is to update network weights during the epochs of the training phase.
This optimizer is a stochastic gradient descent method, based on adaptive estima-
tion of the mean (first moment) and the uncentered variance (second-order mo-
ments).

Table 4.2: NN offline training

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Mean 89.42 89.90 89.42 89.46
Std 0.16 0.19 0.16 0.17
Max 89.82 90.24 89.84 89.90
Min 89.08 89.42 89.08 89.12

4.1.2 Support Vector Machine (SVM)
Support vector machine was implemented using scikit-learn library. While using
a SVM model is crucial to apply an hyperparameter optimization method (Table
4.3) to the dataset for finding the best setup.

After the optimization, the chosen hyperparameters were:

– kernel: radial basis function (RBF);

– regularization parameter (C): ’100’, the regularization is inversely propor-
tional to C. The values needs to be stricly positive, keeping in mind that the
penalty during the regularization is a squared L2 penalty;

– gamma: ’scale’ which means is equal to 1 / (n_features * variance).

Table 4.4: SVM offline training

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Mean 89.55 89.92 89.55 89.58
Std 0.14 0.14 0.13 0.14
Max 89.90 90.27 89.89 89.89
Min 89.17 89.64 89.17 89.24

34

Further Investigation on 3D Dataset

Table 4.3: Iterations for hyparameter optimization of the SVM for the 3D Dataset

Rank Params Test0 Test1 Test2 Mean Std

1 {100,’scale’, ’rbf’} 0.8444 0.8664 0.8973 0.8694 0.0216
2 {1000,’auto’, ’rbf’} 0.8441 0.8675 0.8960 0.8692 0.0212
3 {1000,’scale’, ’rbf’} 0.8439 0.8671 0.8962 0.8691 0.0213
4 {100,’auto’, ’rbf’} 0.8441 0.8659 0.8971 0.8690 0.0217
5 {10,’auto’, ’rbf’} 0.8428 0.8620 0.8976 0.8674 0.0226
6 {10,’scale’, ’rbf’} 0.8425 0.8614 0.8973 0.8671 0.0226
7 {1,’auto’, ’rbf’} 0.8391 0.8546 0.9011 0.8650 0.0263
8 {1,’scale’, ’rbf’} 0.8388 0.8543 0.9011 0.8647 0.0264
9 {100,’scale’, ’sigmoid’} 0.6743 0.7147 0.6733 0.6874 0.0192
10 {100,’auto’, ’sigmoid’} 0.6780 0.7071 0.6756 0.6869 0.0143
11 {1000,’scale’, ’sigmoid’} 0.6715 0.7153 0.6733 0.6867 0.0202
12 {1000,’auto’, ’sigmoid’} 0.6732 0.7066 0.6783 0.6860 0.0147
13 {1,’scale’, ’sigmoid’} 0.6728 0.7123 0.6695 0.6849 0.0194
14 {1,’auto’, ’sigmoid’} 0.6771 0.7033 0.6724 0.6843 0.0135
15 {10,’scale’, ’sigmoid’} 0.6725 0.7078 0.6711 0.6838 0.0169
16 {10,’auto’, ’sigmoid’} 0.6762 0.6979 0.6749 0.6830 0.0105

Note: In the params column, the first value is referred to the regularization
parameter (C), the second to gamma and the last one to the type of kernel

4.1.3 Random Forest (RF)
Random forest was also implemented using scikit-learn library. Like the SVM algo-
rithm, this also requires a hyperparameter optimization (Table 4.5). The selected
model was the one ranked as second because, with almost the same accuracy, re-
quires less trees. Analyzing in detail the structure and the results:

– n_estimator: ’20’, number of trees in the forest;

– max_depth: ’20’, maximum depth of the single tree;

– min_samples_leaf : ’1’, samples required to be at a leaf node;

– min_samples_split: ’2’, minimum number of samples required to split the
node.

35

Further Investigation on 3D Dataset

Table 4.5: Iterations for hyparameter optimization of the RF for the 3D Dataset

Rank Params Test0 Test1 Test2 Mean Std

1 {200, 30, 1, ’auto’, 30} 0.8902 0.8906 0.8885 0.8898 0.0008
2 {20, 2, 1, ’auto’, 20} 0.8899 0.8919 0.8868 0.8895 0.0021
3 {100, 20, 5, ’sqrt’, 20} 0.8897 0.8909 0.8871 0.8892 0.0015
4 {100, 15, 15, ’sqrt’, 30} 0.8878 0.8909 0.8878 0.8888 0.0014
5 {100, 15, 2, ’log2’, 30} 0.8883 0.8908 0.8860 0.8884 0.0019
6 {50, 5, 15, ’log2’, None} 0.8878 0.8899 0.8868 0.8882 0.0012
7 {50, 30, 15, ’log2’, 50} 0.8868 0.8903 0.8867 0.8879 0.0016
8 {20, 2, 10, ’sqrt’, 40} 0.8895 0.8897 0.8844 0.8879 0.0024
9 {10, 5, 15, ’sqrt’, None} 0.8881 0.8892 0.8863 0.8879 0.0012
10 {20, 20, 2, ’sqrt’, None} 0.8880 0.8903 0.8851 0.8878 0.0021
11 {50, 5, 5, ’sqrt’, None} 0.8876 0.8886 0.8843 0.8869 0.0018
12 {20, 20, 20, ’sqrt’, 30} 0.8855 0.8887 0.8850 0.8864 0.0016
13 {20, 10, 20, ’sqrt’, 20} 0.8844 0.8886 0.8846 0.8859 0.0019
14 {5, 20, 15, ’log2’, 10} 0.8847 0.8853 0.8854 0.8851 0.0002
15 {10, 5, 20, ’auto’, 10} 0.8863 0.8851 0.8834 0.8849 0.0011
16 {20, 5, 2, ’sqrt’, 40} 0.8829 0.8829 0.8823 0.8827 0.0002

Note: In the params column, the values represent respectively: number of
estimators, min samples split, min samples leaf, max features, max depth

Table 4.6: Random Forest offline training

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Mean 89.98 91.03 89.98 90.26
Std 0.12 0.54 0.12 0.21
Max 90.30 91.75 90.29 90.68
Min 89.70 90.16 89.70 89.82

4.1.4 Gaussian Mixture Modelling (GMM)

Continuing using scikit-learn the GMM algorithm was implemented. All the pos-
sible covariance settings were tested (’spherical’,’tied’,’diagonal’,’full’) performing
each time 3 initialization for every run.

36

Further Investigation on 3D Dataset

Table 4.7: GMM covariance performances comparison. All the values are in per-
centage

Full
Acc Pre Rec F1-S

Mean 19.01 55.92 19.01 17.32
Std 5.36 5.34 5.36 5.24
Max 35.04 70.70 35.04 32.30
Min 9.89 46.73 9.88 8.69

Tied
Acc Pre Rec F1-S

Mean 17.46 62.21 17.47 17.48
Std 5.47 8.19 5.47 6.25
Max 32.11 80.16 32.11 33.19
Min 6.42 46.12 6.43 6.54

Spherical
Acc Pre Rec F1-S

Mean 20.30 56.8 20.30 18.43
Std 6.34 5.98 6.35 6.05
Max 35.53 70.39 35.53 32.45
Min 8.51 44.83 8.51 6.69

Diagonal
Acc Pre Rec F1-S

Mean 19.32 54.72 19.32 16.69
Std 6.99 6.42 6.98 6.57
Max 37.39 71.17 37.38 33.97
Min 5.96 42.87 5.96 4.42

With any possible covariance matrix the results were way below a possible real life
application.

4.1.5 Gaussian Naive Bayes
The Naive Bayes based on a Gaussian distribution was tested using scikit-learn
library. This algorithm did not require any hyperparameter tuning since it creates
the distribution starting from the labelled data. The obtained results are listed in
Table 4.8.

Table 4.8: Naive Bayes offline training

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Mean 83.02 84.02 83.02 83.13
Std 0.22 0.19 0.22 0.21
Max 83.62 84.57 83.62 83.75
Min 82.38 83.41 82.38 82.53

4.1.6 Stacking Classifier
Two types of classifiers were combined togheter. The output of spherical GMM,
which is a propability distribution, was the input for the NN or the SVM.
The NN model used in this session was:

– input layer: 6 neurons as the number of classes (the GMM returns the prob-
ability of belonging to each class);

37

Further Investigation on 3D Dataset

– 1st hidden layer: dense layer with 38 neurons and ReLU as activation func-
tion;

– 2nd hidden layer: dense layer with 24 neurons and relu as activation function;

– output layer: 6 neurons as the number of gestures to be recognized and
softmax as activation function.

The results in terms of accuracy, precision, recall and F1-score for the described
model are presented in Table 4.9.

Table 4.9: GMM and NN offline training

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Mean 87.25 87.06 87.25 87.06
Std 0.22 0.29 0.22 0.26
Max 87.95 87.92 87.94 87.93
Min 86.76 86.53 86.76 86.50

An other similar configuration using stacked classifier was tested, this time giving
the GMM output as input of a SVM model. The chosen plane can be described
with the following paramters:

– kernel: ’rbf’;

– regularization parameter (C): ’1000’;

– gamma: ’scale’.

This second setup gave a lower performance in terms of accuracy compared to the
GMM and NN as listed in Table 4.10

Table 4.10: GMM and SVM offline training

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Mean 84.16 83.57 84.16 83.01
Std 0.24 0.27 0.24 0.31
Max 86.00 85.66 86.01 85.49
Min 83.82 83.23 83.82 82.65

38

Further Investigation on 3D Dataset

4.1.7 Offline results comparison
In Table 4.11 a comparison between all the tested ML algorithm is offered. By
looking at the data several observations can be made:

• even the best results for the GMM, obtained with the spherical covariance,
are way below a possible usage in real-time application;

• the overall results for the GMM & NN and GMM & SVM were acceptable
but an increase in terms of accuracy did not justified a more complex system.
A more complex model increases the computational time and correlate power
consumption. Despite the good performances, for the reasons cited above,
for both models it was decided not to go further with the implementation on
MCU;

• the performaces of NN, SVM, RF and NB were at good usability level.

After a carefull evaluation of the offline training results, the attention moved on
the MCU firmware design.
NN, SVM, K-Means, RF and Naive Bayes were the algorithms choosed to be de-
ployed on the MCU. K-Means algorithm was choosen not for its performances but
just for comparison, particularly in terms of computational time, being the only
unsupervised algorithm tested. While writing the code, constrains in terms of mem-
ory usage and maximum latency of 300 ms had to take into account.
In the following pages the design choises, the libraries used, the system latency and
power consumption are listed.

Table 4.11: Offline results comparison

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

NN 84.16 83.57 84.16 83.01
SVM 89.55 89.92 89.55 89.58
RF 89.98 91.03 89.98 90.26
GMM (spherical) 20.30 56.8 20.30 18.43
NB 83.02 84.02 83.02 83.13
GMM & NN 87.25 87.06 87.25 87.06
GMM & SVM 84.16 83.57 84.16 83.01

39

Further Investigation on 3D Dataset

4.2 Online Prediction
After the analysis on the offline training have been made, it was time to move the
classification process into the MCU.
All the algorithms described in the following pages were designed specifically for the
AmbiqMicro Apollo3 Blue Evaluation Board (EVB), using also some ARM custom
libraries and all the online results presented were obtained using the Apollo3 Blue
EVB (Figure 4.2). Due to the situation under which this work was carried out there
were no possibilities to acquired real sEMG signals. For continuing testing new ML
algorithms, it was decided to write a code to allow an online mode reading the 3D
Dataset ATC value from a table stored on the MCU. In Figure 4.1 a possible setup
for real-time applications is illustrated.

sEMG Acquisition

sEMG Acquisition

sEMG Acquisition

DAC I2CconfTC events

TC events

TC events

Threshold

Predicted
class

Figure 4.1: Possinle system schematic

The Apollo 3 EVB has as microprocessor (µP) the ARM Cortex-M4F DMA, a 32-bit
µP designed for low power applications. In Table 4.12 the operating frequency and
other main characteristics are listed. While writing the firmware for this purpose the
clock frequencies was set at 48 and 24 MHz, while a low frequency crystal, designed
to run at 32.768 kHz has been selected for the time window implementation needed
by the ATC. The buck converters have been enabled to guarantee a very low power
consumption by the µP.

40

Further Investigation on 3D Dataset

Figure 4.2: The AmbiqMicro Apollo3 Blue evaluation board [45]

Table 4.12: Apollo3 Blue technical sheet

Max operating frequency 48 MHz - TurboSpot 96 MHz
MCU 32-bit ARM Cortex-M4F DMA
MCU min power 6 µA MHz−1

Flash/SRAM 1 MB/384 kB
VDD 1.8 - 3.6 V
I/O I2C/SPI (6x) - UARTS (2x)

4.3 Firmware for Online Mode
Following AmbiqMicro guide for developers, the firmware for the MCU was written
using Keil µVision IDE v5.31. The useful part about using Keil is the already
pre-build software development kit (SDK) for the Arm products family, which sim-
plifies the access to many important packages like the one used: CMSIS.
This package, and more in particular the Digital Signal Processing (DSP) library,
was used for the matrices calculation. Other packages define macros to use the
most common components of the board with high-level functions, simplifying the
programming, especially for complex tasks.

The program is structured to have three main blocks: in the first part, all vari-
ables and constants are initialized followed by the routine implementation. The
last one has the main function to execute all the commands.
In the following lines a list of the routine used during the execution is disclosed:

• system boot: functions are initialized based of the enviromental configuration.
Depending of the desired operation frequency the MCU can be set to 48 Mhz
or 24 Mhz and the low power mode activated;

41

Further Investigation on 3D Dataset

• led initialization: using the specific library, LEDs are easily controlled with
very few lines of code. During the system boot LEDs are turned on in sequence
meaning that the system is ready;

• timer configuration: a timer is set to fulfill the ATC window length require-
ments. With the needs of having a 130 ms time window, while reducing power
consumption, an external high precision clock can be used (F = 32.768 kHz).
To obtain the selected 130 ms period an interrupt is raised when a value of
4260 is reached, leaving a window of 130.005 ms. While setting the timer, the
REPEAT mode is activated, clearing and restarting the timer at every inter-
rupt event. If another time measurement is needed, a second timer with a
quarter of the selected hard frequency(typically 6 MHz) is initialized;

• matrices initialization: matrices are used to store intermediate value read from
the ATC table that will be used as input for the classifier, and parameters of
the selected ML algorithms;

• running loop: a while loop is used for class prediction, after the class evalu-
tation has been done with the selected algorithms, the board enters in deep
sleep mode untill the follow interrupt is raised.

4.3.1 Neural Network
The NN routine is based on the feed-forward propagation using the weight obtained
during the offline training session. Rectified linear unit function is used to avoid
divergence. No external library was used except for DSP to optimize the matrices
calculation.

Table 4.13: Statistical results for NN online application

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

EX 96.45 88.17 85.24 86.68
FL 95.60 89.09 75.38 81.67
RD 95.90 84.75 87.11 85.91
UD 94.35 74.60 68.45 71.39
GR 94.05 62.23 82.39 70.90
ID 99.95 99.88 100.00 99.94
Avg. 96.05 83.12 83.10 82.75

4.3.2 Support Vector Machine
The SVM algorithm was brought on the MCU taking advantage of the libsvm
library [46]. It takes as input the type of kernel, the value of gamma and the file

42

Further Investigation on 3D Dataset

containing the support vector obtained during the offline training.
The overall results were way above a possible usage in a real application and the
best results, for an active gesture, were obtained with the wrist flexion.

Table 4.14: Performances on 3D Dataset using SVM on the MCU

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

EX 93.86 82.58 77.63 79.68
FL 95.36 75.84 81.45 82.45
RD 94.34 82.45 83.52 81.33
UD 91.60 72.45 55.80 58.89
GR 92.67 55.84 61.44 53.71
ID 98.88 98.55 98.86 98.24
Avg. 94.45 77.95 76.45 75.72

4.3.3 Random Forest
This algorithm was deployed using emlearn library [47]. It allows to convert a
model trained in python environment to a header file that can be used on the
MCU. The implementation on the MCU was challenging due to the constraint
about the memory available. To decrease the occupied space the algorithm was
trained over eight subjects instead of twenty. As can be seen in Table 4.15 reducing
the training set did not drastically reduced overall performance of the classifier.

Table 4.15: Statistical analysis for all the gestures of the 3D Dataset using RF

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

EX 94.40 81.67 75.65 78.54
FL 94.50 76.79 82.69 79.63
RD 94.55 81.34 80.49 80.91
UD 92.05 64.42 50.97 56.91
GR 90.95 48.84 59.66 53.71
ID 98.95 98.27 99.13 98.69
Avg. 94.23 75.22 74.77 74.73

4.3.4 K-Means
K-Means model did not require any specific library, since it is based on the eu-
clidean distance calculation from the centroid previously obtained in the offline
training session.

43

Further Investigation on 3D Dataset

In Table 4.16 all the most important statistical parameters are presented, in par-
ticular the accuracy for ulnar deviation and hand grasp was below the 90% with
this type of algorithm.

Table 4.16: Online K-Means performances on 3D Dataset

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

EX 92.40 78.47 60.52 68.33
FL 90.05 61.78 61.54 61.66
RD 93.25 72.89 84.32 78.19
UD 89.10 47.44 53.88 50.45
GR 89.60 41.58 44.89 43.17
ID 98.50 99.61 96.63 98.10
Avg. 93.83 74.95 76.86 75.75

4.3.5 Naive Bayes
This algorithm was also implemented with emlearn, which converts the already
trained model in the python enviroment to C, allowing inference on any device
with a C99 compiler.
Naive Bayes offered the low performance in terms of accuracy while performing the
ulnar deviation and the best one with the wrist extension.

Table 4.17: Online Naive Bayes performances on 3D Dataset

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

EX 94.95 83.46 78.23 80.76
FL 93.30 71.72 80.00 75.64
RD 94.25 77.92 83.62 80.67
UD 90.75 54.51 61.65 57.86
GR 93.50 62.11 67.05 64.48
ID 96.25 100.00 90.63 95.08
Avg. 93.83 74.95 76.86 75.75

4.4 System latency
In a real-time application, the system latency due to computational time is a key
factor while deciding which is the best algorithm.
In this application, the latency has been measured using the Apollo3 Blue board

44

Further Investigation on 3D Dataset

itself. A timer with a frequency of 6 MHz was initialized and started at the end of
each ATC window and stopped after the output class is defined.
In this way, the computational time can be easily measured without interfering
with any other process. With the clock frequency of the MCU set at 24 MHz, the
average values obtained from the measurements were the following:

• 2.56 ms for the NN algorithm;

• 185.49 µs for the Random Forest algorithm;

• 140.46 µs for the GMM Naive Bayes;

• 61.92 µs for K-Means;

• 54.84 ms for the SVM algorithm with radial basis function as kernel.
All the tested algorithms had a total latency time (ATC window length and com-
putation time) lower than 300 ms, possibly allowing the usage in real-time applica-
tions.

4.5 Power consumption
An important aspect to consider while choosing a machine learning algorithm is
power consumption. This analysis was conducted using the DMM7510 multimeter
by Tektronix.

Table 4.18: DMM7510 main specifics

DC voltage sensitivity 10 nV
Current sensitivity 1 pA
Resistance sensitivity 0.1 µΩ
Maximum Resolution 7.5 digits

Figure 4.3: DMM7510 7 1/2 digit graphical sampling multimeter

By removing the jumper placed between the board power (VDD_SP) and VDD
_MCU (Figure 4.4) and adding a different header it is possible to apply the mul-
timeter for the measure (Figure 4.5). Using the dedicated software it was possible

45

Further Investigation on 3D Dataset

to control the multimeter through the computer and store the data directly on the
PC. After the digitize current option has been selected, the sampling frequency was
set to 650 kHz.

Figure 4.4: Voltage Selection on Header P19 of Apollo3 Blue

Figure 4.5: Setup used for measuring the power consumption

Figures 4.6, 4.7, 4.8, 4.9, 4.10 show the measured current for each classifier. The
red rectangles highlight the prediction phase during the execution. As exepected it
occurs every 130 ms and it lasts differently according to the type of algorithm.

46

Further Investigation on 3D Dataset

1480 1500 1520 1540 1560 1580 1600 1620

Time (ms)

-2

0

2

4

6

8

C
u
rr

e
n
t
(m

A
)

2,56 ms 2,56 ms

130 ms

Figure 4.6: Current absorption graph for Neural Network

640 660 680 700 720 740 760 780 800 820

Time (ms)

-4

-3

-2

-1

0

1

2

3

4

5

6

C
u
rr

e
n
t
(m

A
)

130 ms

54.84 ms 54.84 ms

Figure 4.7: Current absorption graph for Support Vector Machine

47

Further Investigation on 3D Dataset

1440 1460 1480 1500 1520 1540 1560

Time (ms)

-1

0

1

2

3

4

C
u
rr

e
n
t
(m

A
)

185 us 185 us

130 ms

Figure 4.8: Current absorption graph for Random Forest

2360 2380 2400 2420 2440 2460 2480

Time (ms)

-1

0

1

2

3

4

C
u
rr

e
n
t
(m

A
)

130 ms

140 us 140 us

Figure 4.9: Current absorption graph for Naive Bayes

48

Further Investigation on 3D Dataset

3100 3120 3140 3160 3180 3200 3220 3240

Time (ms)

-2

-1

0

1

2

3

4

C
u
rr

e
n
t
(m

A
)

61.92 us 61.92 us

130 ms

Figure 4.10: Current absorption graph for K-Means

4.6 Online Results Comparison On The 3D Dataset
In Table 4.19 results of all the classifier are listed and some observations can be
made:

- K-Means offers the lowest computational time but it also has the lowest global
accuracy between the five classifiers;

- NN returns the highest accuracy but with one of the highest energy consump-
tion during computation;

- Naive Bayes and RF give good result in terms of accuracy, low time and energy
for the class prediction. Between the two, with less than 2% of global accuracy,
Bayes offers a better trade-off in terms also of power consumption and energy.

Table 4.19: Online Comparison

Global Computational Energy per Average Power
Accuracy(%) Time (µs) Prediction(µJ) Consumption(mW)

NN 88.15 2560 6.20 0.5442
SVM 84.55 54840 6.90 0.9324
RF 82.70 185.49 0.79 0.5131
K-Means 76.45 61.92 0.32 0.5126
NB 81.50 140.46 0.55 0.3758

49

Further Investigation on 3D Dataset

After a complete analysis on the 3D Dataset, it was time to move on trying to
increase the number of recognized gestures and have an electrodes placement more
suitable for an application as an armband.
Due to the situation, the study initially started analyzing datasets available online.

50

Chapter 5

ML With ATC On Public
Dataset

To further validate machine learning algorithms based on ATC, classifications were
performed on publicly available datasets of sEMG signal while performing hand
gestures. ATC values were extracted by software replicating the same signal con-
ditioning applied on our datasets, in particular hysteresis and threshold evaluation
were taken into consideration for counting the TC event.
First of all the algorithm dinamically evaluates the baseline for each channel ana-
lyzing 10 s of idle state. During this evaluation, the signal is also rectified and noise
mean and standard deviation are computed. Once the baseline is determined the
threshold line is defined as:

Vth = baseline + mean_noise + 3 ∗ std_noise (5.1)

The signal hysteresis for triggering a TC event was set Vth ± 15 mV. Once all this
parameters have been defined, the algorithm procedes evaluating how many times
in 130 ms the sEMG signal goes first above the Vth + 15 mV threshold and then
below the Vth − 15 mV one, which represents the ATC.

5.1 MeganePro
MeganePro dataset, provided by Harvard [48], is mad of data by 30 participants
performing 11 gestures (10 active gesture and rest condition).
The performed movements were focused on different types of grasp: medium wrap,
lateral, parallel extension, tripod grasp, power sphere, precision disk, prismatic
pinch, index finger extension, adducted thumb, prismatic four finger.
The sEMG signal was acquired with Delsys Trigno Wireless sEMG System (Delsys
Inc., USA, http://www.delsys.com/) sampled at 1926 Hz.

51

ML With ATC On Public Dataset

Gestures were classified with several algorithms:

- SVM;

- Random forest;

- Pipeline GMM and SVM;

- Pipeline GMM and NN.

For SVM and RF hyperparameters were optimized with Grid Search optimization
and the results are reported below. The obtained performances did not reached
acceptable values for a real application. It was probably due to the close similarity
between all the gestures, all choosen between different types of grip.

Table 5.1: RF analysis on Ninapro, ranked based on accuracy.

Rank Params Test0 Test1 Test2 Mean Std

1 {50, 30, 2, ’sqrt’, 20} 0.5455 0.5457 0.5455 0.5456 0.00008
2 {50, 30, 1, ’auto’, 20} 0.5453 0.5452 0.5451 0.5452 0.00006
3 {500, 2, 10, ’log2’, 30} 0.5447 0.5449 0.5447 0.5447 0.00009
4 {50, 30, 2, ’log2’, 40} 0.5450 0.5443 0.5444 0.5446 0.00029
5 {50, 2, 10, ’log2’, 30} 0.5445 0.5448 0.5441 0.5445 0.00030
6 {200, 10, 15, ’auto’, 40} 0.5436 0.5441 0.5436 0.5438 0.00023
7 {100, 20, 15, ’sqrt’, 40} 0.5438 0.5436 0.5436 0.5437 0.00009
8 {100, 15, 15, ’auto’, 20} 0.5436 0.5439 0.5434 0.5436 0.00018
9 {100, 30, 15, ’sqrt’, 30} 0.5435 0.5440 0.5434 0.5436 0.00024
10 {500, 10, 20, ’sqrt’, 40} 0.5427 0.5433 0.5427 0.5429 0.00026
11 {100, 2, 2, ’log2’, 30} 0.5422 0.5421 0.5422 0.5421 0.00006
12 {500, 10, 1, ’sqrt’, 30} 0.5425 0.5417 0.5420 0.5421 0.00034
13 {200, 20, 15, ’sqrt’, 10} 0.5380 0.5380 0.5388 0.5383 0.00040
14 {200, 10, 20, ’auto’, 10} 0.5364 0.5380 0.5385 0.5376 0.00091
15 {200, 2, 5, ’sqrt’, 5} 0.5162 0.5173 0.5186 0.5174 0.00099
16 {50, 20, 10, ’log2’, 5} 0.5147 0.5167 0.5194 0.5169 0.00193
1 Note: In the params column, the values represent respectively: number of

estimators, min samples split, min samples leaf, max features, max depth

52

ML With ATC On Public Dataset

Table 5.2: GMM and NN analysis on Ninapro, ranked based on accuracy.

Rank Architecture Test0 Test1 Test2 Mean Std

1 {48, 36, 16} 0.1331 0.1433 0.1418 0.1394 0.0044
1 {48, 32, 18} 0.1421 0.1432 0.1328 0.1394 0.0045
1 {54, 28, 16} 0.1420 0.1432 0.1332 0.1394 0.0044
4 {46, 46, 22} 0.1422 0.1431 0.1326 0.1393 0.0047
5 {46,38,18} 0.1414 0.1430 0.1331 0.1392 0.0043
5 {46,46,24} 0.1424 0.1421 0.1332 0.1392 0.0043
7 {36,36,24} 0.1419 0.1416 0.1320 0.1386 0.0045
8 {36,36,18} 0.1418 0.1414 0.1281 0.1370 0.0065
1 Note: In the architecture coloum, the values are the number of

neurons for each layer

Table 5.3: SVM analysis on Ninapro, ranked based on accuracy.

Rank Params Test0 Test1 Test2 Mean Std

1 {’rbf’, ’scale’, 1} 0.6828 0.6411 0.5964 0.6401 0.0352
2 {’rbf’, ’scale’, 10} 0.6738 0.6525 0.5937 0.6400 0.0338
3 {’rbf’, ’auto’, 1} 0.6756 0.6558 0.5742 0.6352 0.0438
4 {’rbf’, ’scale’, 100} 0.6531 0.6525 0.5799 0.6285 0.0343
5 {’rbf’, ’scale’, 1000} 0.6564 0.6456 0.5739 0.6253 0.0366
6 {’rbf’, ’auto’, 10} 0.6570 0.6489 0.5655 0.6238 0.0413
7 {’rbf’, ’auto’, 100} 0.6453 0.6369 0.5634 0.6152 0.0367
8 {’rbf’, ’auto’, 1000} 0.6417 0.6378 0.5646 0.6147 0.0354
9 {’sigmoid’, ’scale’, 10} 0.4992 0.5115 0.4734 0.4947 0.0158
10 {’sigmoid’, ’scale’, 1} 0.4992 0.5124 0.4722 0.4946 0.0167
11 {’sigmoid’, ’scale’, 100} 0.4989 0.5115 0.4644 0.4916 0.0199
11 {’sigmoid’, ’scale’, 1000} 0.4989 0.5115 0.4644 0.4916 0.0199
13 {’sigmoid’, ’auto’, 10} 0.4446 0.4803 0.4017 0.4422 0.0321
13 {’sigmoid’, ’auto’, 1000} 0.4446 0.4803 0.4017 0.4422 0.0321
15 {’sigmoid’, ’auto’, 1} 0.4440 0.4806 0.3882 0.4376 0.0379
16 {’sigmoid’, ’auto’, 100} 0.4446 0.4803 0.3858 0.4369 0.0389
1 Note: In the params column, the first value is referred to the regularization

parameter (C), the second to gamma and the last one to the type of kernel

53

ML With ATC On Public Dataset

Table 5.4: GMM and SVM analysis on Ninapro, ranked based on accuracy.

Rank Params Test0 Test1 Test2 Mean Std

1 {10, ’scale’, ’rbf’} 0.1418 0.1433 0.1331 0.1394 0.0044
1 {100, ’auto’, ’rbf’} 0.1420 0.1433 0.1330 0.1394 0.0045
1 {1000, ’auto’, ’rbf’} 0.1418 0.1433 0.1331 0.1394 0.0044
4 {1, ’auto’, ’rbf’} 0.1420 0.1433 0.1326 0.1393 0.0047
5 {1, ’scale’, ’rbf’} 0.1420 0.1425 0.1330 0.1392 0.0043
5 {10, ’auto’, ’rbf’} 0.1420 0.1425 0.1330 0.1392 0.0043
7 {100, ’scale’, ’rbf’} 0.1418 0.1418 0.1322 0.1386 0.0045
8 {1000, ’scale’, ’rbf’} 0.1415 0.1418 0.1277 0.1370 0.0065
1 Note: In the params column, the first value is referred to the regular-

ization parameter (C), the second to gamma and the last one to the
type of kernel

5.2 3DC Long Dataset
This is a dataset made available by Université Laval [49]. It is made of twenty-two
participants performing ten active gestures plus the idle position.
The sEMG was sampled at 1000 Hz using a 10-channels custom-made armband
validated making a comparison of the signal to the one acquired with Myo Armband.
Several problems were found while analyzing the data:

• unexpected spikes made of one sample (Figure 5.1), removed by substitute the
value with the average of the two closest points;

• signal given not in voltage and range scale not defined.

Different settings were tried in order to reach the best results: moving the threshold
line for trigger an TC event, changing the rescale range and adjusting the time win-
dow. Decent result were reached by increasing the time window up to 250ms and
excluding from the classification the two pinches. Following these steps, brougth
the accuracy up to 75% with a neural network and 73% with a support vector ma-
chine. The drawback of having a longer time windows is the difficulty of a real-time
usage of the system.
In any circumstances the usability of these classifications were way below the stan-
dards of real hand gesture recognition device.
Below the result of different machine learning algorithms with different hyperpa-
rameter settings are presented.

54

ML With ATC On Public Dataset

0 100 200 300 400 500 600 700 800

-1

-0.5

0

0.5

1

1.5
10

4

Figure 5.1: Spike problem 3DC Long Dataset.

Table 5.5: RF analysis on 3DC Long Dataset, ranked based on accuracy.

Rank Params Test0 Test1 Test2 Mean Std

1 {500, 5, 2, ’sqrt’, 40} 0.4083 0.4172 0.4230 0.4162 0.0060
2 {500, 15, 1, ’auto’, 30} 0.4075 0.4117 0.4144 0.4112 0.0028
3 {500, 5, 10, ’log2’, 30} 0.3928 0.3949 0.3972 0.3949 0.0018
4 {100, 30, 5, ’log2’, 20} 0.3882 0.3908 0.3967 0.3919 0.0035
5 {100, 15, 10, ’log2’, 30} 0.3854 0.3896 0.3928 0.3893 0.0030
6 {200, 15, 15, ’log2’, 40} 0.3770 0.3806 0.3880 0.3819 0.0045
7 {100, 2, 15, ’log2’, 30} 0.3749 0.3795 0.3838 0.3794 0.0036
8 {100, 15, 15, ’log2’, 30} 0.3771 0.3801 0.3804 0.3792 0.0014
9 {100, 2, 20, ’log2’, 20} 0.3635 0.3678 0.3685 0.3666 0.0021
10 {200, 30, 1, ’sqrt’, 10} 0.3633 0.3590 0.3711 0.3645 0.0050
11 {500, 15, 15, ’log2’, 10} 0.3545 0.3544 0.3649 0.3579 0.0049
12 {200, 20, 15, ’sqrt’, 10} 0.3537 0.3546 0.3613 0.3565 0.0033
13 {50, 30, 15, ’auto’, 10} 0.3493 0.3523 0.3576 0.3531 0.0034
14 {100, 2, 20, ’log2’, 10} 0.3450 0.3479 0.3565 0.3498 0.0048
15 {200, 30, 2, ’sqrt’, 5} 0.2569 0.2615 0.2641 0.2608 0.0029
16 {50, 2, 20, ’sqrt’, 5} 0.2546 0.2578 0.2616 0.2580 0.0028
1 Note: In the params column, the values represent respectively: number

of estimators, min samples split, min samples leaf, max features, max depth

55

ML With ATC On Public Dataset

Table 5.6: GMM and SVM analysis on 3DC Long Dataset, ranked based on accu-
racy.

Rank Params Test0 Test1 Test2 Mean Std

1 {1000, ’scale’, ’rbf’} 0.1263 0.1394 0.1252 0.1303 0.0064
2 {100, ’scale’, ’rbf’} 0.1217 0.1368 0.1225 0.1270 0.0069
3 {1, ’scale’, ’rbf’} 0.1234 0.1383 0.1172 0.1263 0.0088
4 {10, ’scale’, ’rbf’} 0.1219 0.1358 0.1211 0.1263 0.0067
5 {100, ’auto’, ’rbf’} 0.1230 0.1365 0.1186 0.1260 0.0075
6 {1000, ’auto’, ’rbf’} 0.1214 0.1312 0.1199 0.1242 0.0050
7 {1, ’auto’, ’rbf’} 0.1314 0.1328 0.1055 0.1232 0.0125
8 {10, ’auto’, ’rbf’} 0.1213 0.1345 0.1052 0.1203 0.0120
1 Note: In the params column, the first value is referred to the regular-

ization parameter (C), the second to gamma and the last one to the
type of kernel

Table 5.7: SVM analysis on 3DC Long Dataset, ranked based on accuracy.

Rank Params Test0 Test1 Test2 Mean Std

1 {10, ’scale’, ’rbf’} 0.1691 0.1960 0.1500 0.1717 0.0188
2 {10, ’auto’, ’rbf’} 0.1685 0.1959 0.1501 0.1715 0.0188
3 {1, ’scale’, ’rbf’} 0.1581 0.1926 0.1579 0.1695 0.0163
4 {1, ’auto’, ’rbf’} 0.1580 0.1930 0.1576 0.1695 0.0165
5 {100, ’scale’, ’rbf’} 0.1739 0.1863 0.1469 0.1690 0.0164
6 {100, ’auto’, ’rbf’} 0.1740 0.1866 0.1464 0.1690 0.0167
7 {1000, ’auto’, ’rbf’} 0.1711 0.1797 0.1463 0.1657 0.0141
8 {1000, ’scale’, ’rbf’} 0.1707 0.1799 0.1461 0.1656 0.0142
9 {10, ’scale’, ’sigmoid’} 0.1156 0.1250 0.1272 0.1226 0.0050
10 {10, ’auto’, ’sigmoid’} 0.1094 0.1163 0.1275 0.1177 0.0074
11 {1000, ’auto’, ’sigmoid’} 0.1144 0.1146 0.1117 0.1136 0.0013
12 {1000, ’scale’, ’sigmoid’} 0.1138 0.1138 0.1119 0.1132 0.0009
13 {100, ’scale’, ’sigmoid’} 0.1139 0.1199 0.1052 0.1130 0.0060
14 {100, ’auto’, ’sigmoid’} 0.1140 0.1181 0.1050 0.1124 0.0054
15 {1, ’scale’, ’sigmoid’} 0.1055 0.0933 0.1052 0.1013 0.0056
16 {1, ’auto’, ’sigmoid’} 0.1051 0.0954 0.1013 0.1006 0.0039
1 Note: In the params column, the first value is referred to the regularization

parameter (C), the second to gamma and the last one to the type of kernel

56

Chapter 6

Towards an Armband

The studies continued with the ultimate goal of having a user-friendly wearable
device, like an armband, that can be used for gesture recognition.
With the desire to move in this direction, there is the need to gather all the elec-
trodes from all over the forearm to a specific region, arranging them around an
entire section.
The number of channels was set at seven, a good trade-off between the quantity
of information and the constraints due to the dimensions of the used electrode
(24 mm), especially with skinny subjects.
All the preliminary studies to reach an optimal setup were conducted using the
g.HIamp-Research amplifier by g.tec (Figure 6.1) [50]. It has 144 analog input
channels sampled with 24 bit of resolution and with a sampling frequency that can
be set up to 38 400 Hz.
For this particular application, the sampling frequency was set to 2400 Hz with a
filter that cuts out all the frequencies not in the 5-500 Hz range.

Figure 6.1: g.HIamp-Research 144-Channel Research Amplifier.

57

Towards an Armband

The first part of the study was dedicated to research a section of the forearm where
the signal was less affected by noise and the morphological identity was maintained.
The selected position of the armband was reached by placing it on the first 1/3 of
the total forearm starting from the elbow, as shown in Figure 6.2.

Figure 6.2: Example of different armband placement.

(a) Different armband positioning. (b) Selected position for the armband.

The electrode placement affects the quality of the recorded signals. In particular
by looking at Figure 6.3, which is the sEMG signal referred to the positioning
illustrated in Figure 6.2a, few considerations can be made.
Channel 3, which correspond to the extensor carpi ulnaris, in this configuration has
a lot of noise due to the continuous activation of the muscle which has to support
the arm weight. Wrist radial deviation is hardly recognized with this configuration.

Figure 6.3: sEMG signals of the right forearm with bad electrode placement.
Muscles activation investigated by each channel: Ch1 - Flexor carpi radialis, Ch2 -
Flexor carpi ulnaris, Ch3 - Extensor carpi ulnaris, Ch4 - Flexor digitorum pro-
fundus, Ch5 - Extensor digiti minimi/Extensor digitorum, Ch6 - Extensor carpi
radiali brevis, Ch7 - Brachioradialis.

58

Towards an Armband

Figure 6.4 refers to the signals acquired with the 6.2b configuration, which allows
to record a more clear signals and a better gesture recognition.

Figure 6.4: sEMG signals of the right forearm with good electrode placement.
Muscles activation investigated by each channel: Ch1 - Flexor carpi radialis, Ch2 -
Flexor carpi ulnaris, Ch3 - Extensor carpi ulnaris, Ch4 - Flexor digitorum pro-
fundus, Ch5 - Extensor digiti minimi/Extensor digitorum, Ch6 - Extensor carpi
radiali brevis, Ch7 - Brachioradialis.

An other challenge was trying to move the reference electrode from the back of the
hand to a region closer to the active electrodes.
After some researches and experiments have been done [51], the reference electrode
was moved and substituted with a fabric bracelet positioned between the first and
the second row of electrodes.

Figure 6.5: Reference electrode placement.

(a) Reference electrode placed on the
back of the hand.

(b) Reference electrode placed between
the active electrodes.

59

Towards an Armband

When the armband placement was completely defined, it was time to standardize
the placement of the electrodes around the entire section. The decision, according
to other works [52], was to place the first electrode above the extensor digitorum
muscle (Figure 6.6) and to equally space the other starting from the medial section.

Figure 6.6: Electrode placement: section of the forearm viewed from distal to
proximal.

Figure 6.7: Electrode placement on the forearm of a subject.

60

Towards an Armband

The sEMG signals presented in Figure 6.8 were acquired with the fully defined
setup, in which it was possibile to recognize the different gestures focusing on the
different muscles activations.

Figure 6.8: sEMG signals obtained with the described configuration.

For this acquisition, after a carefull evaluation of muscles activations, it was decided
to bring the number of gestures up to seven active ones and the idle position. The
two new added gestures, in addition to the ones proposed by [43], were:

• pinch grip: a form of precision grip where the palmar surface of the index
finger touches the opposing thumb. Flexor digitorum superficialis, flexor digi-
torum profundus, palmaris longus, and flexor pollicis brevis combined with the
adducting force of the adductor pollicis are the muscles used for this movement;

Figure 6.9: Pinch grip gesture.

61

Towards an Armband

• open hand: the hand is fully extended with the open palm. All the forearm
muscles activate during this gesture, especcially the flexor carpi radialis.

Figure 6.10: Open hand gesture.

After a first qualitative evalution of the recorded signals, a preliminary machine
learning analysis has been performed to extract quantitative data to verify the
quality of the sEMG signals.

6.1 Preliminary ML Analysis
A preliminary analysis was performed on a small dataset made of data from 2
people: 1 male and 1 female performing seven active gesture and the idle state.
The methods and all the libraries used during the study were the same as the one
described in Section 4.1.

6.1.1 Neural Network
The selected model, which gave the performances listed in Table 6.1, for this study
was:

– input layer: 7 neurons as the number of features;

– 1st hidden layer: dense layer with 64 neurons and ReLU activation function;

– 2nd hidden layer: dense layer with 36 neurons and ReLU activation function;

– 3rd hidden layer: dense layer with 22 neurons and ReLU activation function;

– output layer: 8 neurons as the number of gestures to be recognized and
softmax as activation function.

62

Towards an Armband

Adam optimizer was used during the training phase with a learning rate of 0.001.

Table 6.1: Performances obtained with Neural Network during the preliminary
analysis.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Mean 82.78 82.83 82.38 83.16
Std 0.32 0.35 0.47 0.32
Max 83.41 83.16 83.04 83.63
Min 82.34 82.27 81.77 82.83

6.1.2 Random Forest
The results of Table 6.2 were obtained with the following hyperparameters:

– n_estimator: ’100’, number of trees in the forest;

– max_depth: ’20’, maximum depth of the single tree;

– min_samples_leaf : ’1’, samples required to be at a leaf node;

– min_samples_split: ’2’, minimum number of samples required to split the
node.

Table 6.2: Performances obtained with Random Forest during the preliminary anal-
ysis.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Mean 88.55 88.55 88.56 88.51
Std 0.18 0.17 0.18 0.17
Max 88.96 88.96 88.96 88.90
Min 88.22 88.26 88.22 88.18

6.1.3 SVM
The results for the SVM algorithm are presented in Table 6.3 and they were ob-
tained with the following settings:

– kernel: ’RBF’;

– regularization parameter (C): ’1000’;

– gamma: ’scale’.

63

Towards an Armband

Table 6.3: Performances obtained with SVM during the preliminary analysis.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Mean 83.98 83.92 83.98 83.88
Std 0.33 0.32 0.33 0.33
Max 85.01 84.92 85.01 84.92
Min 83.61 83.63 83.60 83.50

6.1.4 Naive Bayes

The best NB performances were achieved with the following parameters:

– n_components: ’8’, mixture components;

– max_iter: ’300’, number of iterations to perform;

– n_init: ’3’, number of initializations, keeping the best results.

Table 6.4: Performances obtained with Naive Bayes during the preliminary analysis.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Mean 61.90 62.91 62.90 60.91
Std 0.44 0.47 0.44 0.49
Max 62.50 63.70 62.50 61.58
Min 60.90 62.40 60.90 59.85

6.1.5 Preliminary ML Analysis Summary

Table 6.5 offers a comparison between all the tested ML algorithms and gives a
quantitative information about the new recording setup.
For the RF model, the performance were as good as the one obtained with the 3D
Dataset but this time performed over seven active gestures rather than five.
NN and SVM performances were a little lower than the RF one, still allowing a
usage in real applications. NB had the lowest accuracy, probably related to the
increased number of features.

64

Towards an Armband

Table 6.5: Preliminary ML results comparison with the new electrodes placement.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

NN 82.78 82.83 82.38 83.16
SVM 83.98 83.92 83.98 83.88
RF 88.55 88.55 88.56 88.51
NB 61.90 62.91 62.90 60.91

After the results were analyzed, it was decided to further validate, over a larger
dataset, the choosen electrode placement.
With the approval of the bio-ethical committee of the Università degli studi di
Torino, an acquisition campaign was launched.

6.2 Protocol for the Dataset Acquisition
The acquisition campaign involved 14 subjects (11 males and 3 females) performing
seven active gesture with both arms, one at a time.
After being informed about the protocol and the possible risks, each volunteer
signed the informed consent for the study, following the guidelines and the regula-
tions of the local bio-ethical committee.
After making the subject feel comfortable, the electrodes were placed on the sub-
ject’s forearm starting from the electrodes to be placed above the extensor digito-
rum. A bad placement, for example too close to the elbow, could lead to low signal
quality or to the loss of the gesture’s morphological trend.
Trying to avoid this problem, a calibration check was followed in which the subject
was asked to quickly perform all the gestures to verify muscles activations on all
the channels. During the protocol the subjects were asked to sequentially perform
each gesture for 30 s, with 15 s of rest between each one.
The gesture sequence was performed two times, with 30 s of rest between each
session. The protocol can be summarized in the following steps:

1. the signal acquisition is started and a timer is set to mark a rhythm;

2. few seconds before each movement, the supervisors reminds which one has to
be perform;

3. the timer dictates the starting point for the gesture;

4. the gesture is mantained for 30 s;

5. a rest of 5 s is observed. If there are still movements to be execute for the
actual session, the flow goes back to point 2;

65

Towards an Armband

6. at the end of the execution of all the movements a rest session of 30 s is followed;

7. session restarts from 2, unless two session have already been done.

6.3 ML Analysis on the new dataset
At the end of the acquisition campaign, data were analyzed and ATC values were
extracted over a window of 130 ms. For cleaning the data from any possible spike
due to noise or involuntary movements during the recording, for each gesture only
data between the 5th and the 95th percentile were taken into account. In the
following pages, results based on this new dataset are presented.

6.3.1 Neural Network
Many architectures have been tested to find the best solution in terms of accuracy
and system complexity. Different numbers of hidden layers and learning rate value
have been taken into account.
The selected model had two hidden layers of 16 neurons each and combines an
accuracy over 80% with a low system complexity (Table 6.6).

Table 6.6: Iterations for hyparameter optimization of the NN for the new Dataset.

Architecture1 LR2 Acc(%) Prec(%) Rec(%) F1-S(%)

36-36-22 0.001 0.7817 0.7555 0.7817 0.7509
32-32-14 0.001 0.7961 0.7808 0.7961 0.7835
32-32 0.001 0.7918 0.7601 0.7918 0.7651
38-38 0.001 0.7846 0.7753 0.7846 0.7714
16-16 0.001 0.8033 0.7761 0.8033 0.7823
12-12-12 0.001 0.7721 0.7472 0.7721 0.7526
16-16-16 0.001 0.7625 0.7643 0.7625 0.7583
16-16-16 0.002 0.7841 0.7715 0.7841 0.7728
18-18 0.002 0.7583 0.7494 0.7583 0.7518
24-24 0.002 0.7865 0.7707 0.7865 0.7719
64-36-22 0.002 0.7745 0.7526 0.7745 0.7578
64-36-22 0.001 0.7769 0.7563 0.7769 0.7604
32-24-16 0.001 0.7631 0.7534 0.7631 0.7533

Note:
1 In the architecture column, the values are the number of neurons for

each hidden layer.
2 The LR column indicates the learning rate used for the Adam opti-

mizer

66

Towards an Armband

6.3.2 Random Forest
The best settings for a RF model were obtained through a random search for
hyperparameter optimization. In Table 6.7 the best results are listed. The chosen
model was the one ranked as fourth because it has good accuracy, only 0.3% lower
compared to the first one, while maintaining low the number of trees needed.

Table 6.7: Iterations for hyparameter optimization of the new dataset, ranked based
on the accuracy of the different tests.

Rank Params Test0 Test1 Test2 Mean Std

1 {500, 5, 1, ’sqrt’, 30} 0.7920 0.8000 0.7831 0.7917 0.0068
2 {800, 5, 2, ’auto’, 40} 0.7960 0.7880 0.7831 0.7890 0.0053
2 {800, 2, 1, ’log2’, 20} 0.8000 0.7840 0.7831 0.7890 0.0077
4 {100, 2, 1, ’auto’, 30} 0.8120 0.7800 0.7751 0.7890 0.0163
5 {800, 5, 1, ’auto’, 10} 0.7880 0.7880 0.7871 0.7877 0.0004
6 {500, 2, 1, ’log2’, 20} 0.8000 0.7760 0.7831 0.7863 0.0100
6 {800, 5, 2, ’auto’, 30} 0.7840 0.7920 0.7831 0.7863 0.0039
6 {800, 5, 1, ’sqrt’, 30} 0.7920 0.7840 0.7831 0.7863 0.0039
9 {500, 10, 1, ’auto’, 40} 0.7920 0.7880 0.7791 0.7863 0.0053
9 {500, 10, 1, ’sqrt’, 40} 0.8000 0.7800 0.7791 0.7863 0.0096
11 {100, 5, 2, ’sqrt’, 40} 0.7880 0.7720 0.7951 0.7850 0.0096
12 {800, 10, 1, ’sqrt’, 10} 0.7920 0.7840 0.7791 0.7850 0.0053
13 {800, 2, 2, ’log2’, 30} 0.7800 0.7840 0.7871 0.7837 0.0029
14 {800, 10, 2, ’sqrt’, 40} 0.7800 0.7880 0.7831 0.7837 0.0032
14 {500, 10, 2, ’auto’, 20} 0.7800 0.7880 0.7831 0.7837 0.0032
16 {100, 5, 2, ’log2’, 40} 0.7880 0.7840 0.7791 0.7837 0.0036
16 {200, 2, 1, ’sqrt’, 30} 0.8000 0.7720 0.7791 0.7837 0.0118
16 {200, 15, 1, ’sqrt’, 20} 0.7800 0.7920 0.7791 0.7837 0.0058
19 {800, 2, 2, ’sqrt’, 30} 0.7880 0.7720 0.7871 0.7823 0.0073
20 {200, 5, 1, ’log2’, 20} 0.7840 0.7800 0.7831 0.7823 0.0017

Note: In the params column, the values represent respectively: number of
estimators, min samples split, min samples leaf, max features, max depth

6.3.3 K-Means
K-Means algorithm was tested as comparison being an unsupervised one with no
required settings. An high standard deviation is acceptable for this type of archi-
tecture since the final results is strictly related to the centroid initialization and
it suffer from local minima. Even the best performance in terms of accuracy (Ta-
ble 6.8) was below a possible usage for real applications.

67

Towards an Armband

Table 6.8: K-Means training for the new dataset.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Mean 14.84 18.62 14.84 15.61
Std 7.95 11.32 7.95 8.98
Max 35.74 41.65 35.74 37.41
Min 3.42 2.30 3.42 2.74

6.3.4 SVM
The SVM algorithm required optimization, and in the end, the selected model was
the one ranked as first. It combines a high accuracy (Table 6.9) and a regularization
parameter equal to one, which indicates a lower computational effort.

Table 6.9: Iterations for hyparameter optimization of the SVM for the new dataset.

Rank Params Test0 Test1 Test2 Mean Std

1 {’rbf’, ’scale’, 1} 0.7920 0.7840 0.7670 0.7810 0.0103
2 {’rbf’, ’scale’, 10} 0.7720 0.7800 0.7630 0.7716 0.0069
3 {’poly’, ’scale’, 1} 0.7600 0.7480 0.7429 0.7503 0.0071
4 {’rbf’, ’scale’, 100} 0.7360 0.7280 0.7389 0.7343 0.0046
5 {’poly’, ’scale’, 10} 0.7280 0.7040 0.7469 0.7263 0.0175
6 {’poly’, ’scale’, 100} 0.7200 0.7280 0.7228 0.7236 0.0033
7 {’rbf’, ’scale’, 1000} 0.7040 0.7120 0.7309 0.7156 0.0112
8 {’poly’, ’scale’, 1000} 0.7040 0.7040 0.7148 0.7076 0.0051
9 {’poly’, ’auto’, 1} 0.6880 0.7080 0.6987 0.6982 0.0081
10 {’rbf’, ’auto’, 1000} 0.6840 0.6840 0.6827 0.6835 0.0005
10 {’rbf’, ’auto’, 100} 0.6840 0.6840 0.6827 0.6835 0.0005
10 {’rbf’, ’auto’, 10} 0.6840 0.6840 0.6827 0.6835 0.0005
13 {’rbf’, ’auto’, 1} 0.6640 0.6800 0.6827 0.6755 0.0082
14 {’poly’, ’auto’, 100} 0.6560 0.6640 0.6827 0.6675 0.0112
15 {’poly’, ’auto’, 1000} 0.6560 0.6640 0.6787 0.6662 0.0094
16 {’sigmoid’, ’scale’, 1} 0.4040 0.4200 0.3453 0.3897 0.0320
17 {’sigmoid’, ’auto’, 1} 0.3840 0.3880 0.3855 0.3858 0.0016
17 {’sigmoid’, ’auto’, 100} 0.3840 0.3880 0.3855 0.3858 0.0016
19 {’sigmoid’, ’scale’, 100} 0.3600 0.4000 0.3253 0.3617 0.0305
20 {’sigmoid’, ’scale’, 10} 0.3440 0.3760 0.3293 0.3497 0.0194

Note: In the params column, the first value is referred to the regularization
parameter (C), the second to gamma and the last one to the type of kernel

68

Towards an Armband

6.3.5 GMM Naive Bayes
For GMM Naive Bayes several iterations were made to find the number of mixtures
and the type of covariance required to achieve high accuracy.
Between the models ranked as firsts, it was chosen the one with a spherical covari-
ance for keeping the model as simple as possible in terms of complexity.

Table 6.10: Iterations for hyparameter optimization of the GMM NB for the new
dataset, ranked based on the accuracy of the different tests.

Rank Params Test0 Test1 Test2 Mean Std

1 {1, ’full’} 0.7120 0.6960 0.6947 0.7009 0.0078
1 {1, ’spherical’} 0.7120 0.6960 0.6947 0.7009 0.0078
1 {1, ’tied’} 0.7120 0.6960 0.6947 0.7009 0.0078
1 {1, ’diag’} 0.7120 0.6960 0.6947 0.7009 0.0078
5 {2, ’tied’} 0.6200 0.6720 0.6385 0.6435 0.0215
6 {2, ’spherical’} 0.6520 0.6720 0.5943 0.6394 0.0329
7 {3, ’tied’} 0.6240 0.6400 0.6506 0.6382 0.0109
8 {2, ’diag’} 0.6440 0.6520 0.6064 0.6341 0.0198
9 {2, ’full’} 0.6400 0.6560 0.5542 0.6167 0.0446
10 {6, ’full’} 0.6200 0.6240 0.5863 0.6101 0.0168
11 {6, ’spherical’} 0.6320 0.5760 0.6144 0.6074 0.0233
12 {5, ’tied’} 0.5480 0.6480 0.6104 0.6021 0.0412
13 {6, ’diag’} 0.5760 0.6520 0.5742 0.6007 0.0362
14 {4, ’tied’} 0.6120 0.5800 0.5943 0.5954 0.0130
15 {5, ’spherical’} 0.6000 0.5680 0.6104 0.5928 0.0180
16 {3, ’full’} 0.5440 0.6520 0.5823 0.5927 0.0447
17 {5, ’diag’} 0.5880 0.6040 0.5742 0.5887 0.0121
18 {3, ’spherical’} 0.5920 0.6040 0.5662 0.5874 0.0157
19 {3, ’diag’} 0.5680 0.5960 0.5421 0.5687 0.0219
20 {5, ’full’} 0.5800 0.5360 0.5863 0.5674 0.0223

Note: In the params column, the first value is the number of mixture
components and the second setting is the type of covariance to use.

69

Towards an Armband

6.4 Final ML comparison
A final overview of the five ML algorithms discussed in the previous sections are
compared with previous analyses performed in this thesis work as well with state
of the art, as reported in Table 6.11.
Regarding the last analysis, it can be observed that K-Means unsupervised algo-
rithm is the only one with an accuracy not suitable for real life applications.
The other four algorithms, even if with different accuracies, could all be deployed
on a MCU for online usage. In fact, they have obtained a slitghly lower accuracy
than state of the art works recognizing a higher number of gestures, and needing
even less channels than some of them.

Table 6.11: Comparison between all the tested ML algorithms.

Work Features # Channels # Gestures Algorithm Embedded Accuracy (%)

[53] Multiple 8 6 RBF 66

[54] n.d. 64 5 HD 90-96

[20] Features Maps 8 7 CNN 98.7

[55] DWT 3 5 SVM 94

[42] ATC 3 5 SVM 93

[43] ATC 3 6 NN 92.3

[44] ATC 3 6 SVM 89.5
ATC 3 6 K-Means 83.3

This

RF 3 6 ATC 82.7
NB 3 6 ATC 83.0
NN 7 8 ATC 80.3

SVM 7 8 ATC 78.1
K-Means 7 8 ATC 35.7

RF 7 8 ATC 78.9
GMM NB 7 8 ATC 70.9

70

Chapter 7

Conclusions and Future
Works

This thesis proposed an overview of machine learning algorithms for hand gesture
recognition based on the Average Threshold Crossing (ATC) technique.
The goal was to deeply analyze this innovative approach and offer new solutions to
move towards an armband.

The first part of the analysis, focused on the 3D Dataset, made a comparison
of five algorithms: Neural Network, Gaussian Mixture Modelling, Support Vector
Machine, Random Forest and Naive Bayes.
Tests were first conducted offline using ML libraries specifically designed for Python
environment, aiming to recognize the five wrist movements performed: extension,
flexion, radial deviation, ulnar deviation and grasp.
All the models offer the possibility of usage in real-time applications, thanks to the
total system latency below the 300 ms.
Although, current measurements helped to underline Naive Bayes as a good trade-
off between global accuracy, energy and power consumption.

Once the 3D Dataset was fully analyzed, the focus moved to apply the ATC tech-
nique on publicly available dataset. MeganePro and 3DC Long Dataset were inves-
tigated but due to problems, mostly related to the type and number of performed
gestures and lack of information, the performances were below a possible real usage.

In the last part of the thesis, further investigations helped to determine a pro-
tocol to arrange the electrodes as they were part of an armband. With this new
electrode placement it was also possible to recognize two new gestures: pinch grip
and open hand, bringing the total movements up to eight.
The new setup was first validated over a 2 subjects dataset and then an acquisition

71

Conclusions and Future Works

campaign was launched.

The acquired dataset, made of data from 11 males and 3 females, included sEMG
signals of both arms to offer a more robust analysis. Offline ML analysis has been
performed and a global accuracy of 80% was reached with two of tested algorithms,
justifying a possible deployment on a MCU for real-time predictions.

A natural first step will be to deploy the already tested ML algorithms on the
MCU and make a full comparison keeping in mind key factors such as power con-
sumption and system latency.
In the case of constraints due to memory space or computational power, a possible
solution could be to move to a more high-performance MCU with more flash space,
for example like Ambiq Apollo 4 Blue.

An other big step forward could be the choice of a native tensorflow-lite MCU,
like the SparkFun Edge board, which allows a partial fit on an already trained
model.
The second fit will tailor the parameters based on the current user and his hand
mobility, increasing global accuracy.

The design and development of an electrode holder will bring two major upgrades:
the standardization of the electrode placement and the possible usage of dry elec-
trodes, making the device more user-friendly and easier to place on the forearm.

72

Bibliography

[1] Shane W. Cummings and Christopher Tangen. Human muscle system. url:
https://www.britannica.com/science/human-muscle-system.

[2] url: https://nursecepts.com/7-facts-about-the-muscular-system-
every-nursing-student-should-know/.

[3] Lindsay M. Biga et al. 10.2 Skeletal Muscle. url: https://open.oregonsta
te.education/aandp/chapter/10-2-skeletal-muscle/.

[4] url: http://www.brainkart.com/article/Structure-of-a-skeletal-
muscle(Voluntary-muscle)-fibre_33243/.

[5] Openstax Content. Muscle Tissue. url: https://tophat.com/marketplace
/science-&-math/biology/textbooks/oer-openstax-anatomy-and-
physiology-openstax-content/78/4160/.

[6] Gabriel Nasri Marzuca-Nassr et al. “Sarcomere Structure: The Importance of
Desmin Protein in Muscle Atrophy”. In: International Journal of Morphology
36.2 (2018), pp. 576–583. doi: 10.4067/s0717-95022018000200576.

[7] Keiichi Akita and Akimoto Nimura. “Forearm Muscles”. In: Bergman’s Com-
prehensive Encyclopedia of Human Anatomic Variation. John Wiley and Sons,
Ltd, 2016. Chap. 33, pp. 298–314. isbn: 9781118430309. doi: https://doi.
org/10.1002/9781118430309.ch33. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/9781118430309.ch33.

[8] Anterior Forearm. June 2016. url: https://basicmedicalkey.com/anteri
or-forearm/.

[9] What is an action potential? url: https://www.moleculardevices.com/ap
plications/patch-clamp-electrophysiology/what-action-potential.

[10] Carlo J. De Luca et al. “Decomposition of Surface EMG Signals”. In: Journal
of Neurophysiology 96.3 (2006), pp. 1646–1657. doi: 10.1152/jn.00009.
2006.

[11] Adhesive Electrodes. url: https://shop.neurospec.com/mini-adhesive-
electrodes-covidien.

73

https://www.britannica.com/science/human-muscle-system
https://nursecepts.com/7-facts-about-the-muscular-system-every-nursing-student-should-know/
https://nursecepts.com/7-facts-about-the-muscular-system-every-nursing-student-should-know/
https://open.oregonstate.education/aandp/chapter/10-2-skeletal-muscle/
https://open.oregonstate.education/aandp/chapter/10-2-skeletal-muscle/
http://www.brainkart.com/article/Structure-of-a-skeletal-muscle(Voluntary-muscle)-fibre_33243/
http://www.brainkart.com/article/Structure-of-a-skeletal-muscle(Voluntary-muscle)-fibre_33243/
https://tophat.com/marketplace/science-&-math/biology/textbooks/oer-openstax-anatomy-and-physiology-openstax-content/78/4160/
https://tophat.com/marketplace/science-&-math/biology/textbooks/oer-openstax-anatomy-and-physiology-openstax-content/78/4160/
https://tophat.com/marketplace/science-&-math/biology/textbooks/oer-openstax-anatomy-and-physiology-openstax-content/78/4160/
https://doi.org/10.4067/s0717-95022018000200576
https://doi.org/https://doi.org/10.1002/9781118430309.ch33
https://doi.org/https://doi.org/10.1002/9781118430309.ch33
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118430309.ch33
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118430309.ch33
https://basicmedicalkey.com/anterior-forearm/
https://basicmedicalkey.com/anterior-forearm/
https://www.moleculardevices.com/applications/patch-clamp-electrophysiology/what-action-potential
https://www.moleculardevices.com/applications/patch-clamp-electrophysiology/what-action-potential
https://doi.org/10.1152/jn.00009.2006
https://doi.org/10.1152/jn.00009.2006
https://shop.neurospec.com/mini-adhesive-electrodes-covidien
https://shop.neurospec.com/mini-adhesive-electrodes-covidien

BIBLIOGRAPHY

[12] Dry Electrodes. url: https://www.biometricsltd.com/surface- emg-
sensor.htm.

[13] M. Crepaldi et al. “A quasi-digital radio system for muscle force transmission
based on event-driven IR-UWB”. In: 2012 IEEE Biomedical Circuits and Sys-
tems Conference (BioCAS). 2012, pp. 116–119. doi: 10.1109/BioCAS.2012.
6418406.

[14] S. Sapienza et al. “On Integration and Validation of a Very Low Complexity
ATC UWB System for Muscle Force Transmission”. In: IEEE Transactions
on Biomedical Circuits and Systems 10.2 (2016), pp. 497–506. doi: 10.1109/
TBCAS.2015.2416918.

[15] Masoud Shahshahani et al. “An All-Digital Spike-based Ultra-Low-Power IR-
UWB Dynamic Average Threshold Crossing Scheme for Muscle Force Wireless
Transmission”. In: Mar. 2016.

[16] Fabio Rossi et al. “Wireless Low Energy System Architecture for Event-
Driven Surface Electromyography”. In: May 2019, pp. 179–185. isbn: 978-
3-030-11972-0. doi: 10.1007/978-3-030-11973-7_21.

[17] K. Momen, S. Krishnan, and T. Chau. “Real-Time Classification of Fore-
arm Electromyographic Signals Corresponding to User-Selected Intentional
Movements for Multifunction Prosthesis Control”. In: IEEE Transactions on
Neural Systems and Rehabilitation Engineering 15.4 (2007), pp. 535–542. doi:
10.1109/TNSRE.2007.908376.

[18] Pradeep Shenoy et al. “Online Electromyographic Control of a Robotic Pros-
thesis”. In: IEEE transactions on bio-medical engineering 55 (Apr. 2008),
pp. 1128–35. doi: 10.1109/TBME.2007.909536.

[19] Marie-Francoise Lucas et al. “Multi-channel surface EMG classification using
support vector machines and signal-based wavelet optimization”. English. In:
Biomedical Signal Processing and Control 3.2 (2008), pp. 169–174. issn: 1746-
8094. doi: 10.1016/j.bspc.2007.09.002.

[20] U. Côté-Allard et al. “Transfer learning for sEMG hand gestures recognition
using convolutional neural networks”. In: 2017 IEEE International Conference
on Systems, Man, and Cybernetics (SMC). 2017, pp. 1663–1668. doi: 10.
1109/SMC.2017.8122854.

[21] Min Zhang, Jaemo Yang, and Qian. “Real-Time Surface EMG Pattern Recog-
nition for Hand Gestures Based on an Artificial Neural Network”. In: Sensors
19 (July 2019), p. 3170. doi: 10.3390/s19143170.

[22] Jinxian Qi et al. “Surface EMG hand gesture recognition system based on
PCA and GRNN”. In: Neural Computing and Applications 32 (May 2020).
doi: 10.1007/s00521-019-04142-8.

74

https://www.biometricsltd.com/surface-emg-sensor.htm
https://www.biometricsltd.com/surface-emg-sensor.htm
https://doi.org/10.1109/BioCAS.2012.6418406
https://doi.org/10.1109/BioCAS.2012.6418406
https://doi.org/10.1109/TBCAS.2015.2416918
https://doi.org/10.1109/TBCAS.2015.2416918
https://doi.org/10.1007/978-3-030-11973-7_21
https://doi.org/10.1109/TNSRE.2007.908376
https://doi.org/10.1109/TBME.2007.909536
https://doi.org/10.1016/j.bspc.2007.09.002
https://doi.org/10.1109/SMC.2017.8122854
https://doi.org/10.1109/SMC.2017.8122854
https://doi.org/10.3390/s19143170
https://doi.org/10.1007/s00521-019-04142-8

BIBLIOGRAPHY

[23] Charu Aggarwal. Neural Networks and Deep Learning: A Textbook. url: htt
ps://link.springer.com/book/10.1007/978-3-319-94463-0.

[24] Stacey Ronaghan. Deep Learning: Overview of Neurons and Activation Func-
tions. July 2018. url: https : / / srnghn . medium . com / deep - learning -
overview-of-neurons-and-activation-functions-1d98286cf1e4.

[25] Shizhao Sun et al. On the Depth of Deep Neural Networks: A Theoretical
View. 2015. arXiv: 1506.05232 [cs.LG].

[26] John C. Platt. “Probabilistic Outputs for Support Vector Machines and Com-
parisons to Regularized Likelihood Methods”. In: ADVANCES IN LARGE
MARGIN CLASSIFIERS. MIT Press, 1999, pp. 61–74.

[27] Theodoros Evgeniou and Massimiliano Pontil. “Support Vector Machines:
Theory and Applications”. In: vol. 2049. Jan. 2001, pp. 249–257. doi: 10.
1007/3-540-44673-7_12.

[28] Esperanza García-Gonzalo et al. “Hard-Rock Stability Analysis for Span De-
sign in Entry-Type Excavations with Learning Classifiers”. In: Materials 9
(June 2016), p. 531. doi: 10.3390/ma9070531.

[29] Grace Zhang. What is the kernel trick? Why is it important? Nov. 2018. url:
https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-
important-98a98db0961d.

[30] Zhiliang Liu and Hongbing Xu. “Kernel Parameter Selection for Support Vec-
tor Machine Classification”. In: Journal of Algorithms & Computational Tech-
nology 8.2 (2014), pp. 163–177. doi: 10.1260/1748-3018.8.2.163.

[31] Lujing Chen. Support Vector Machine. Jan. 2019. url: https://towardsda
tascience.com/support-vector-machine-simply-explained-fee28eba
5496.

[32] J. MacQueen. “Some methods for classification and analysis of multivariate
observations”. In: Proceedings of the Fifth Berkeley Symposium on Mathemati-
cal Statistics and Probability, Volume 1: Statistics. Berkeley, Calif.: University
of California Press, 1967, pp. 281–297. url: https://projecteuclid.org/
euclid.bsmsp/1200512992.

[33] Yuanzheng Cai et al. “A robust interclass and intraclass loss function for
deep learning based tongue segmentation”. In: Concurrency and Computation:
Practice and Experience 32.22 (2020), e5849. doi: https://doi.org/10.
1002/cpe.5849. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/cpe.5849.

[34] Lior Rokach and Oded Maimon. “Decision Trees”. In: Data Mining and Knowl-
edge Discovery Handbook. Ed. by Oded Maimon and Lior Rokach. Boston,
MA: Springer US, 2005, pp. 165–192. isbn: 978-0-387-25465-4. doi: 10.1007/
0-387-25465-X_9. url: https://doi.org/10.1007/0-387-25465-X_9.

75

https://link.springer.com/book/10.1007/978-3-319-94463-0
https://link.springer.com/book/10.1007/978-3-319-94463-0
https://srnghn.medium.com/deep-learning-overview-of-neurons-and-activation-functions-1d98286cf1e4
https://srnghn.medium.com/deep-learning-overview-of-neurons-and-activation-functions-1d98286cf1e4
https://arxiv.org/abs/1506.05232
https://doi.org/10.1007/3-540-44673-7_12
https://doi.org/10.1007/3-540-44673-7_12
https://doi.org/10.3390/ma9070531
https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d
https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d
https://doi.org/10.1260/1748-3018.8.2.163
https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496
https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496
https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/https://doi.org/10.1002/cpe.5849
https://doi.org/https://doi.org/10.1002/cpe.5849
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5849
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5849
https://doi.org/10.1007/0-387-25465-X_9
https://doi.org/10.1007/0-387-25465-X_9
https://doi.org/10.1007/0-387-25465-X_9

BIBLIOGRAPHY

[35] Decision Trees in Machine Learning. Oct. 2019. url: https://www.tutoria
landexample.com/decision-trees/.

[36] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32.
doi: 10.1023/a:1010933404324.

[37] Misha Denil, David Matheson, and Nando De Freitas. “Narrowing the Gap:
Random Forests In Theory and In Practice”. In: ed. by Eric P. Xing and Tony
Jebara. Vol. 32. Proceedings of Machine Learning Research 1. Bejing, China:
PMLR, 22–24 Jun 2014, pp. 665–673.

[38] Chris Aldrich. “Process Variable Importance Analysis by Use of Random
Forests in a Shapley Regression Framework”. In: Minerals 10.5 (2020), p. 420.
doi: 10.3390/min10050420.

[39] Daniel Berrar. “Bayes’ Theorem and Naive Bayes Classifier”. In: Jan. 2018.
isbn: 9780128096338. doi: 10.1016/B978-0-12-809633-8.20473-1.

[40] Harry Zhang. “The Optimality of Naïve Bayes”. In: In FLAIRS2004 confer-
ence. 2004.

[41] Christopher M. Bishop. Pattern recognition and machine learning. Springer,
2016.

[42] S. Sapienza et al. “On-Line Event-Driven Hand Gesture Recognition Based on
Surface Electromyographic Signals”. In: 2018 IEEE International Symposium
on Circuits and Systems (ISCAS). 2018, pp. 1–5. doi: 10.1109/ISCAS.2018.
8351065.

[43] Andrea Mongardi et al. “A Low-Power Embedded System for Real-Time
sEMG based Event-Driven Gesture Recognition”. In: Nov. 2019, pp. 65–68.
doi: 10.1109/ICECS46596.2019.8964944.

[44] V. Barresi. “Machine Learning Approaches for Embedded Real-Time Gesture
Recognition”. 2020.

[45] Apollo3 Blue. Nov. 2020. url: https://ambiq.com/apollo3-blue/.
[46] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM : a library for support vector

machines”. In: ed. by ACM Transactions on Intelligent Systems and Technol-
ogy. http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2011, 2:27:1–27:27.

[47] Jon Nordby. emlearn: Machine Learning inference engine for Microcontrollers
and Embedded Devices. Mar. 2019. doi: 10.5281/zenodo.2589394. url:
https://doi.org/10.5281/zenodo.2589394.

[48] Francesca Giordaniello et al. “Megane Pro: Myo-electricity, visual and gaze
tracking data acquisitions to improve hand prosthetics”. In: vol. 2017. July
2017, pp. 1148–1153. doi: 10.1109/ICORR.2017.8009404.

76

https://www.tutorialandexample.com/decision-trees/
https://www.tutorialandexample.com/decision-trees/
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.3390/min10050420
https://doi.org/10.1016/B978-0-12-809633-8.20473-1
https://doi.org/10.1109/ISCAS.2018.8351065
https://doi.org/10.1109/ISCAS.2018.8351065
https://doi.org/10.1109/ICECS46596.2019.8964944
https://ambiq.com/apollo3-blue/
https://doi.org/10.5281/zenodo.2589394
https://doi.org/10.5281/zenodo.2589394
https://doi.org/10.1109/ICORR.2017.8009404

BIBLIOGRAPHY

[49] Ulysse Côté-Allard; Gabriel Gagnon-Turcotte; Angkoon Phinyomark; Kyrre
Glette; Erik Scheme; François Laviolette; Benoit Gosselin. Long-term 3DC
Dataset. 2019. doi: 10.21227/f5ne-ya31. url: https://dx.doi.org/10.
21227/f5ne-ya31.

[50] g.tec medical engineering GmbH. url: https://www.gtec.at/.
[51] J. Tomczyński, T. Mańkowski, and P. Kaczmarek. “Influence of sEMG elec-

trode matrix configuration on hand gesture recognition performance”. In: 2017
Signal Processing: Algorithms, Architectures, Arrangements, and Applications
(SPA). 2017, pp. 42–47. doi: 10.23919/SPA.2017.8166835.

[52] Zhenjin Xu et al. “Advanced Hand Gesture Prediction Robust to Electrode
Shift with an Arbitrary Angle”. In: Sensors 20 (Feb. 2020), p. 1113. doi:
10.3390/s20041113.

[53] T. Phienthrakul. “Armband Gesture Recognition on Electromyography Signal
for Virtual Control”. In: 2018 10th International Conference on Knowledge
and Smart Technology (KST). 2018, pp. 149–153. doi: 10.1109/KST.2018.
8426118.

[54] A. Moin et al. “An EMG Gesture Recognition System with Flexible High-
Density Sensors and Brain-Inspired High-Dimensional Classifier”. In: 2018
IEEE International Symposium on Circuits and Systems (ISCAS). 2018, pp. 1–
5. doi: 10.1109/ISCAS.2018.8351613.

[55] S. Benatti et al. “Online Learning and Classification of EMG-Based Gestures
on a Parallel Ultra-Low Power Platform Using Hyperdimensional Comput-
ing”. In: IEEE Transactions on Biomedical Circuits and Systems 13.3 (2019),
pp. 516–528. doi: 10.1109/TBCAS.2019.2914476.

77

https://doi.org/10.21227/f5ne-ya31
https://dx.doi.org/10.21227/f5ne-ya31
https://dx.doi.org/10.21227/f5ne-ya31
https://www.gtec.at/
https://doi.org/10.23919/SPA.2017.8166835
https://doi.org/10.3390/s20041113
https://doi.org/10.1109/KST.2018.8426118
https://doi.org/10.1109/KST.2018.8426118
https://doi.org/10.1109/ISCAS.2018.8351613
https://doi.org/10.1109/TBCAS.2019.2914476

	List of Figures
	List of Tables
	Introduction
	Muscular System
	The Skeletal Muscle
	Forearm muscles

	Electromyography (EMG)
	Surface - Electromyography (sEMG)

	The Average Threshold Crossing Technique
	State of the art

	Classification Algorithms
	Neural Network
	Support Vector Machine (SVM)
	K-Means
	Decision Trees
	Random Forest
	Naive Bayes
	Gaussian Mixture Modelling (GMM)
	GMM Naive Bayes

	Evolution Of Hand Gesture Recognition Based On ATC
	Acquisition protocol for 3D Dataset
	Training protocol
	Testing protocol

	ML Analysis on the 3D Dataset

	Further Investigation on 3D Dataset
	Offline training
	Neural Network
	Support Vector Machine (SVM)
	Random Forest (RF)
	Gaussian Mixture Modelling (GMM)
	Gaussian Naive Bayes
	Stacking Classifier
	Offline results comparison

	Online Prediction
	Firmware for Online Mode
	Neural Network
	Support Vector Machine
	Random Forest
	K-Means
	Naive Bayes

	System latency
	Power consumption
	Online Results Comparison On The 3D Dataset

	ML With ATC On Public Dataset
	MeganePro
	3DC Long Dataset

	Towards an Armband
	Preliminary ML Analysis
	Neural Network
	Random Forest
	SVM
	Naive Bayes
	Preliminary ML Analysis Summary

	Protocol for the Dataset Acquisition
	ML Analysis on the new dataset
	Neural Network
	Random Forest
	K-Means
	SVM
	GMM Naive Bayes

	Final ML comparison

	Conclusions and Future Works

